1 /* Analysis Utilities for Loop Vectorization.
2 Copyright (C) 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
38 #include "tree-data-ref.h"
39 #include "tree-vectorizer.h"
43 /* Function prototypes */
44 static void vect_pattern_recog_1
45 (tree (* ) (tree
, tree
*, tree
*), block_stmt_iterator
);
46 static bool widened_name_p (tree
, tree
, tree
*, tree
*);
48 /* Pattern recognition functions */
49 static tree
vect_recog_widen_sum_pattern (tree
, tree
*, tree
*);
50 static tree
vect_recog_widen_mult_pattern (tree
, tree
*, tree
*);
51 static tree
vect_recog_dot_prod_pattern (tree
, tree
*, tree
*);
52 static tree
vect_recog_pow_pattern (tree
, tree
*, tree
*);
53 static vect_recog_func_ptr vect_vect_recog_func_ptrs
[NUM_PATTERNS
] = {
54 vect_recog_widen_mult_pattern
,
55 vect_recog_widen_sum_pattern
,
56 vect_recog_dot_prod_pattern
,
57 vect_recog_pow_pattern
};
60 /* Function widened_name_p
62 Check whether NAME, an ssa-name used in USE_STMT,
63 is a result of a type-promotion, such that:
64 DEF_STMT: NAME = NOP (name0)
65 where the type of name0 (HALF_TYPE) is smaller than the type of NAME.
69 widened_name_p (tree name
, tree use_stmt
, tree
*half_type
, tree
*def_stmt
)
72 loop_vec_info loop_vinfo
;
73 stmt_vec_info stmt_vinfo
;
75 tree type
= TREE_TYPE (name
);
77 enum vect_def_type dt
;
80 stmt_vinfo
= vinfo_for_stmt (use_stmt
);
81 loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_vinfo
);
83 if (!vect_is_simple_use (name
, loop_vinfo
, def_stmt
, &def
, &dt
))
86 if (dt
!= vect_loop_def
87 && dt
!= vect_invariant_def
&& dt
!= vect_constant_def
)
93 if (TREE_CODE (*def_stmt
) != GIMPLE_MODIFY_STMT
)
96 expr
= GIMPLE_STMT_OPERAND (*def_stmt
, 1);
97 if (TREE_CODE (expr
) != NOP_EXPR
)
100 oprnd0
= TREE_OPERAND (expr
, 0);
102 *half_type
= TREE_TYPE (oprnd0
);
103 if (!INTEGRAL_TYPE_P (type
) || !INTEGRAL_TYPE_P (*half_type
)
104 || (TYPE_UNSIGNED (type
) != TYPE_UNSIGNED (*half_type
))
105 || (TYPE_PRECISION (type
) < (TYPE_PRECISION (*half_type
) * 2)))
108 if (!vect_is_simple_use (oprnd0
, loop_vinfo
, &dummy
, &dummy
, &dt
))
115 /* Function vect_recog_dot_prod_pattern
117 Try to find the following pattern:
123 sum_0 = phi <init, sum_1>
126 S3 x_T = (TYPE1) x_t;
127 S4 y_T = (TYPE1) y_t;
129 [S6 prod = (TYPE2) prod; #optional]
130 S7 sum_1 = prod + sum_0;
132 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
133 same size of 'TYPE1' or bigger. This is a special case of a reduction
138 * LAST_STMT: A stmt from which the pattern search begins. In the example,
139 when this function is called with S7, the pattern {S3,S4,S5,S6,S7} will be
144 * TYPE_IN: The type of the input arguments to the pattern.
146 * TYPE_OUT: The type of the output of this pattern.
148 * Return value: A new stmt that will be used to replace the sequence of
149 stmts that constitute the pattern. In this case it will be:
150 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
152 Note: The dot-prod idiom is a widening reduction pattern that is
153 vectorized without preserving all the intermediate results. It
154 produces only N/2 (widened) results (by summing up pairs of
155 intermediate results) rather than all N results. Therefore, we
156 cannot allow this pattern when we want to get all the results and in
157 the correct order (as is the case when this computation is in an
158 inner-loop nested in an outer-loop that us being vectorized). */
161 vect_recog_dot_prod_pattern (tree last_stmt
, tree
*type_in
, tree
*type_out
)
165 tree oprnd00
, oprnd01
;
166 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (last_stmt
);
167 tree type
, half_type
;
170 loop_vec_info loop_info
= STMT_VINFO_LOOP_VINFO (stmt_vinfo
);
171 struct loop
*loop
= LOOP_VINFO_LOOP (loop_info
);
173 if (TREE_CODE (last_stmt
) != GIMPLE_MODIFY_STMT
)
176 expr
= GIMPLE_STMT_OPERAND (last_stmt
, 1);
177 type
= TREE_TYPE (expr
);
179 /* Look for the following pattern
183 DDPROD = (TYPE2) DPROD;
184 sum_1 = DDPROD + sum_0;
186 - DX is double the size of X
187 - DY is double the size of Y
188 - DX, DY, DPROD all have the same type
189 - sum is the same size of DPROD or bigger
190 - sum has been recognized as a reduction variable.
192 This is equivalent to:
193 DPROD = X w* Y; #widen mult
194 sum_1 = DPROD w+ sum_0; #widen summation
196 DPROD = X w* Y; #widen mult
197 sum_1 = DPROD + sum_0; #summation
200 /* Starting from LAST_STMT, follow the defs of its uses in search
201 of the above pattern. */
203 if (TREE_CODE (expr
) != PLUS_EXPR
)
206 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo
))
208 /* Has been detected as widening-summation? */
210 stmt
= STMT_VINFO_RELATED_STMT (stmt_vinfo
);
211 expr
= GIMPLE_STMT_OPERAND (stmt
, 1);
212 type
= TREE_TYPE (expr
);
213 if (TREE_CODE (expr
) != WIDEN_SUM_EXPR
)
215 oprnd0
= TREE_OPERAND (expr
, 0);
216 oprnd1
= TREE_OPERAND (expr
, 1);
217 half_type
= TREE_TYPE (oprnd0
);
223 if (STMT_VINFO_DEF_TYPE (stmt_vinfo
) != vect_reduction_def
)
225 oprnd0
= TREE_OPERAND (expr
, 0);
226 oprnd1
= TREE_OPERAND (expr
, 1);
227 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0
)) != TYPE_MAIN_VARIANT (type
)
228 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1
)) != TYPE_MAIN_VARIANT (type
))
232 if (widened_name_p (oprnd0
, stmt
, &half_type
, &def_stmt
))
235 expr
= GIMPLE_STMT_OPERAND (stmt
, 1);
236 oprnd0
= TREE_OPERAND (expr
, 0);
242 /* So far so good. Since last_stmt was detected as a (summation) reduction,
243 we know that oprnd1 is the reduction variable (defined by a loop-header
244 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
245 Left to check that oprnd0 is defined by a (widen_)mult_expr */
247 prod_type
= half_type
;
248 stmt
= SSA_NAME_DEF_STMT (oprnd0
);
250 stmt_vinfo
= vinfo_for_stmt (stmt
);
251 gcc_assert (stmt_vinfo
);
252 if (STMT_VINFO_DEF_TYPE (stmt_vinfo
) != vect_loop_def
)
254 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
255 inside the loop (in case we are analyzing an outer-loop). */
256 if (TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
)
258 expr
= GIMPLE_STMT_OPERAND (stmt
, 1);
259 if (TREE_CODE (expr
) != MULT_EXPR
)
261 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo
))
263 /* Has been detected as a widening multiplication? */
265 stmt
= STMT_VINFO_RELATED_STMT (stmt_vinfo
);
266 expr
= GIMPLE_STMT_OPERAND (stmt
, 1);
267 if (TREE_CODE (expr
) != WIDEN_MULT_EXPR
)
269 stmt_vinfo
= vinfo_for_stmt (stmt
);
270 gcc_assert (stmt_vinfo
);
271 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo
) == vect_loop_def
);
272 oprnd00
= TREE_OPERAND (expr
, 0);
273 oprnd01
= TREE_OPERAND (expr
, 1);
277 tree half_type0
, half_type1
;
281 oprnd0
= TREE_OPERAND (expr
, 0);
282 oprnd1
= TREE_OPERAND (expr
, 1);
283 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0
))
284 != TYPE_MAIN_VARIANT (prod_type
)
285 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1
))
286 != TYPE_MAIN_VARIANT (prod_type
))
288 if (!widened_name_p (oprnd0
, stmt
, &half_type0
, &def_stmt
))
290 oprnd00
= TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt
, 1), 0);
291 if (!widened_name_p (oprnd1
, stmt
, &half_type1
, &def_stmt
))
293 oprnd01
= TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt
, 1), 0);
294 if (TYPE_MAIN_VARIANT (half_type0
) != TYPE_MAIN_VARIANT (half_type1
))
296 if (TYPE_PRECISION (prod_type
) != TYPE_PRECISION (half_type0
) * 2)
300 half_type
= TREE_TYPE (oprnd00
);
301 *type_in
= half_type
;
304 /* Pattern detected. Create a stmt to be used to replace the pattern: */
305 pattern_expr
= build3 (DOT_PROD_EXPR
, type
, oprnd00
, oprnd01
, oprnd1
);
306 if (vect_print_dump_info (REPORT_DETAILS
))
308 fprintf (vect_dump
, "vect_recog_dot_prod_pattern: detected: ");
309 print_generic_expr (vect_dump
, pattern_expr
, TDF_SLIM
);
312 /* We don't allow changing the order of the computation in the inner-loop
313 when doing outer-loop vectorization. */
314 if (nested_in_vect_loop_p (loop
, last_stmt
))
316 if (vect_print_dump_info (REPORT_DETAILS
))
317 fprintf (vect_dump
, "vect_recog_dot_prod_pattern: not allowed.");
325 /* Function vect_recog_widen_mult_pattern
327 Try to find the following pattern:
330 TYPE a_T, b_T, prod_T;
336 S5 prod_T = a_T * b_T;
338 where type 'TYPE' is at least double the size of type 'type'.
342 * LAST_STMT: A stmt from which the pattern search begins. In the example,
343 when this function is called with S5, the pattern {S3,S4,S5} is be detected.
347 * TYPE_IN: The type of the input arguments to the pattern.
349 * TYPE_OUT: The type of the output of this pattern.
351 * Return value: A new stmt that will be used to replace the sequence of
352 stmts that constitute the pattern. In this case it will be:
353 WIDEN_MULT <a_t, b_t>
357 vect_recog_widen_mult_pattern (tree last_stmt
,
362 tree def_stmt0
, def_stmt1
;
364 tree type
, half_type0
, half_type1
;
368 enum tree_code dummy_code
;
370 if (TREE_CODE (last_stmt
) != GIMPLE_MODIFY_STMT
)
373 expr
= GIMPLE_STMT_OPERAND (last_stmt
, 1);
374 type
= TREE_TYPE (expr
);
376 /* Starting from LAST_STMT, follow the defs of its uses in search
377 of the above pattern. */
379 if (TREE_CODE (expr
) != MULT_EXPR
)
382 oprnd0
= TREE_OPERAND (expr
, 0);
383 oprnd1
= TREE_OPERAND (expr
, 1);
384 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0
)) != TYPE_MAIN_VARIANT (type
)
385 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1
)) != TYPE_MAIN_VARIANT (type
))
388 /* Check argument 0 */
389 if (!widened_name_p (oprnd0
, last_stmt
, &half_type0
, &def_stmt0
))
391 oprnd0
= TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt0
, 1), 0);
393 /* Check argument 1 */
394 if (!widened_name_p (oprnd1
, last_stmt
, &half_type1
, &def_stmt1
))
396 oprnd1
= TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt1
, 1), 0);
398 if (TYPE_MAIN_VARIANT (half_type0
) != TYPE_MAIN_VARIANT (half_type1
))
401 /* Pattern detected. */
402 if (vect_print_dump_info (REPORT_DETAILS
))
403 fprintf (vect_dump
, "vect_recog_widen_mult_pattern: detected: ");
405 /* Check target support */
406 vectype
= get_vectype_for_scalar_type (half_type0
);
408 || !supportable_widening_operation (WIDEN_MULT_EXPR
, last_stmt
, vectype
,
409 &dummy
, &dummy
, &dummy_code
,
414 *type_out
= NULL_TREE
;
416 /* Pattern supported. Create a stmt to be used to replace the pattern: */
417 pattern_expr
= build2 (WIDEN_MULT_EXPR
, type
, oprnd0
, oprnd1
);
418 if (vect_print_dump_info (REPORT_DETAILS
))
419 print_generic_expr (vect_dump
, pattern_expr
, TDF_SLIM
);
424 /* Function vect_recog_pow_pattern
426 Try to find the following pattern:
430 with POW being one of pow, powf, powi, powif and N being
435 * LAST_STMT: A stmt from which the pattern search begins.
439 * TYPE_IN: The type of the input arguments to the pattern.
441 * TYPE_OUT: The type of the output of this pattern.
443 * Return value: A new stmt that will be used to replace the sequence of
444 stmts that constitute the pattern. In this case it will be:
451 vect_recog_pow_pattern (tree last_stmt
, tree
*type_in
, tree
*type_out
)
457 if (TREE_CODE (last_stmt
) != GIMPLE_MODIFY_STMT
)
460 expr
= GIMPLE_STMT_OPERAND (last_stmt
, 1);
461 type
= TREE_TYPE (expr
);
463 if (TREE_CODE (expr
) != CALL_EXPR
)
466 fn
= get_callee_fndecl (expr
);
467 switch (DECL_FUNCTION_CODE (fn
))
473 base
= CALL_EXPR_ARG (expr
, 0);
474 exp
= CALL_EXPR_ARG (expr
, 1);
475 if (TREE_CODE (exp
) != REAL_CST
476 && TREE_CODE (exp
) != INTEGER_CST
)
484 /* We now have a pow or powi builtin function call with a constant
487 *type_out
= NULL_TREE
;
489 /* Catch squaring. */
490 if ((host_integerp (exp
, 0)
491 && tree_low_cst (exp
, 0) == 2)
492 || (TREE_CODE (exp
) == REAL_CST
493 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp
), dconst2
)))
495 *type_in
= TREE_TYPE (base
);
496 return build2 (MULT_EXPR
, TREE_TYPE (base
), base
, base
);
499 /* Catch square root. */
500 if (TREE_CODE (exp
) == REAL_CST
501 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp
), dconsthalf
))
503 tree newfn
= mathfn_built_in (TREE_TYPE (base
), BUILT_IN_SQRT
);
504 *type_in
= get_vectype_for_scalar_type (TREE_TYPE (base
));
507 newfn
= build_call_expr (newfn
, 1, base
);
508 if (vectorizable_function (newfn
, *type_in
, *type_in
) != NULL_TREE
)
517 /* Function vect_recog_widen_sum_pattern
519 Try to find the following pattern:
522 TYPE x_T, sum = init;
524 sum_0 = phi <init, sum_1>
527 S3 sum_1 = x_T + sum_0;
529 where type 'TYPE' is at least double the size of type 'type', i.e - we're
530 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
531 a special case of a reduction computation.
535 * LAST_STMT: A stmt from which the pattern search begins. In the example,
536 when this function is called with S3, the pattern {S2,S3} will be detected.
540 * TYPE_IN: The type of the input arguments to the pattern.
542 * TYPE_OUT: The type of the output of this pattern.
544 * Return value: A new stmt that will be used to replace the sequence of
545 stmts that constitute the pattern. In this case it will be:
546 WIDEN_SUM <x_t, sum_0>
548 Note: The widening-sum idiom is a widening reduction pattern that is
549 vectorized without preserving all the intermediate results. It
550 produces only N/2 (widened) results (by summing up pairs of
551 intermediate results) rather than all N results. Therefore, we
552 cannot allow this pattern when we want to get all the results and in
553 the correct order (as is the case when this computation is in an
554 inner-loop nested in an outer-loop that us being vectorized). */
557 vect_recog_widen_sum_pattern (tree last_stmt
, tree
*type_in
, tree
*type_out
)
561 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (last_stmt
);
562 tree type
, half_type
;
564 loop_vec_info loop_info
= STMT_VINFO_LOOP_VINFO (stmt_vinfo
);
565 struct loop
*loop
= LOOP_VINFO_LOOP (loop_info
);
567 if (TREE_CODE (last_stmt
) != GIMPLE_MODIFY_STMT
)
570 expr
= GIMPLE_STMT_OPERAND (last_stmt
, 1);
571 type
= TREE_TYPE (expr
);
573 /* Look for the following pattern
576 In which DX is at least double the size of X, and sum_1 has been
577 recognized as a reduction variable.
580 /* Starting from LAST_STMT, follow the defs of its uses in search
581 of the above pattern. */
583 if (TREE_CODE (expr
) != PLUS_EXPR
)
586 if (STMT_VINFO_DEF_TYPE (stmt_vinfo
) != vect_reduction_def
)
589 oprnd0
= TREE_OPERAND (expr
, 0);
590 oprnd1
= TREE_OPERAND (expr
, 1);
591 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0
)) != TYPE_MAIN_VARIANT (type
)
592 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1
)) != TYPE_MAIN_VARIANT (type
))
595 /* So far so good. Since last_stmt was detected as a (summation) reduction,
596 we know that oprnd1 is the reduction variable (defined by a loop-header
597 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
598 Left to check that oprnd0 is defined by a cast from type 'type' to type
601 if (!widened_name_p (oprnd0
, last_stmt
, &half_type
, &stmt
))
604 oprnd0
= TREE_OPERAND (GIMPLE_STMT_OPERAND (stmt
, 1), 0);
605 *type_in
= half_type
;
608 /* Pattern detected. Create a stmt to be used to replace the pattern: */
609 pattern_expr
= build2 (WIDEN_SUM_EXPR
, type
, oprnd0
, oprnd1
);
610 if (vect_print_dump_info (REPORT_DETAILS
))
612 fprintf (vect_dump
, "vect_recog_widen_sum_pattern: detected: ");
613 print_generic_expr (vect_dump
, pattern_expr
, TDF_SLIM
);
616 /* We don't allow changing the order of the computation in the inner-loop
617 when doing outer-loop vectorization. */
618 if (nested_in_vect_loop_p (loop
, last_stmt
))
620 if (vect_print_dump_info (REPORT_DETAILS
))
621 fprintf (vect_dump
, "vect_recog_widen_sum_pattern: not allowed.");
629 /* Function vect_pattern_recog_1
632 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
634 STMT: A stmt from which the pattern search should start.
636 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
637 expression that computes the same functionality and can be used to
638 replace the sequence of stmts that are involved in the pattern.
641 This function checks if the expression returned by PATTERN_RECOG_FUNC is
642 supported in vector form by the target. We use 'TYPE_IN' to obtain the
643 relevant vector type. If 'TYPE_IN' is already a vector type, then this
644 indicates that target support had already been checked by PATTERN_RECOG_FUNC.
645 If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
646 to the available target pattern.
648 This function also does some bookkeeping, as explained in the documentation
649 for vect_recog_pattern. */
652 vect_pattern_recog_1 (
653 tree (* vect_recog_func
) (tree
, tree
*, tree
*),
654 block_stmt_iterator si
)
656 tree stmt
= bsi_stmt (si
);
657 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
658 stmt_vec_info pattern_stmt_info
;
659 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
661 tree pattern_vectype
;
662 tree type_in
, type_out
;
668 pattern_expr
= (* vect_recog_func
) (stmt
, &type_in
, &type_out
);
672 if (VECTOR_MODE_P (TYPE_MODE (type_in
)))
674 /* No need to check target support (already checked by the pattern
675 recognition function). */
676 pattern_vectype
= type_in
;
680 enum tree_code vec_mode
;
681 enum insn_code icode
;
684 /* Check target support */
685 pattern_vectype
= get_vectype_for_scalar_type (type_in
);
686 if (!pattern_vectype
)
689 optab
= optab_for_tree_code (TREE_CODE (pattern_expr
), pattern_vectype
);
690 vec_mode
= TYPE_MODE (pattern_vectype
);
692 || (icode
= optab_handler (optab
, vec_mode
)->insn_code
) ==
695 && (!get_vectype_for_scalar_type (type_out
)
696 || (insn_data
[icode
].operand
[0].mode
!=
697 TYPE_MODE (get_vectype_for_scalar_type (type_out
))))))
701 /* Found a vectorizable pattern. */
702 if (vect_print_dump_info (REPORT_DETAILS
))
704 fprintf (vect_dump
, "pattern recognized: ");
705 print_generic_expr (vect_dump
, pattern_expr
, TDF_SLIM
);
708 /* Mark the stmts that are involved in the pattern,
709 create a new stmt to express the pattern and insert it. */
710 code
= TREE_CODE (pattern_expr
);
711 pattern_type
= TREE_TYPE (pattern_expr
);
712 var
= create_tmp_var (pattern_type
, "patt");
713 add_referenced_var (var
);
714 var_name
= make_ssa_name (var
, NULL_TREE
);
715 pattern_expr
= build_gimple_modify_stmt (var_name
, pattern_expr
);
716 SSA_NAME_DEF_STMT (var_name
) = pattern_expr
;
717 bsi_insert_before (&si
, pattern_expr
, BSI_SAME_STMT
);
718 ann
= stmt_ann (pattern_expr
);
719 set_stmt_info (ann
, new_stmt_vec_info (pattern_expr
, loop_vinfo
));
720 pattern_stmt_info
= vinfo_for_stmt (pattern_expr
);
722 STMT_VINFO_RELATED_STMT (pattern_stmt_info
) = stmt
;
723 STMT_VINFO_DEF_TYPE (pattern_stmt_info
) = STMT_VINFO_DEF_TYPE (stmt_info
);
724 STMT_VINFO_VECTYPE (pattern_stmt_info
) = pattern_vectype
;
725 STMT_VINFO_IN_PATTERN_P (stmt_info
) = true;
726 STMT_VINFO_RELATED_STMT (stmt_info
) = pattern_expr
;
732 /* Function vect_pattern_recog
735 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
738 Output - for each computation idiom that is detected we insert a new stmt
739 that provides the same functionality and that can be vectorized. We
740 also record some information in the struct_stmt_info of the relevant
741 stmts, as explained below:
743 At the entry to this function we have the following stmts, with the
744 following initial value in the STMT_VINFO fields:
746 stmt in_pattern_p related_stmt vec_stmt
748 S2: a_2 = ..use(a_i).. - - -
749 S3: a_1 = ..use(a_2).. - - -
750 S4: a_0 = ..use(a_1).. - - -
751 S5: ... = ..use(a_0).. - - -
753 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
754 represented by a single stmt. We then:
755 - create a new stmt S6 that will replace the pattern.
756 - insert the new stmt S6 before the last stmt in the pattern
757 - fill in the STMT_VINFO fields as follows:
759 in_pattern_p related_stmt vec_stmt
761 S2: a_2 = ..use(a_i).. - - -
762 S3: a_1 = ..use(a_2).. - - -
763 > S6: a_new = .... - S4 -
764 S4: a_0 = ..use(a_1).. true S6 -
765 S5: ... = ..use(a_0).. - - -
767 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
768 to each other through the RELATED_STMT field).
770 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
771 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
772 remain irrelevant unless used by stmts other than S4.
774 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
775 (because they are marked as irrelevant). It will vectorize S6, and record
776 a pointer to the new vector stmt VS6 both from S6 (as usual), and also
777 from S4. We do that so that when we get to vectorizing stmts that use the
778 def of S4 (like S5 that uses a_0), we'll know where to take the relevant
779 vector-def from. S4 will be skipped, and S5 will be vectorized as usual:
781 in_pattern_p related_stmt vec_stmt
783 S2: a_2 = ..use(a_i).. - - -
784 S3: a_1 = ..use(a_2).. - - -
785 > VS6: va_new = .... - - -
786 S6: a_new = .... - S4 VS6
787 S4: a_0 = ..use(a_1).. true S6 VS6
788 > VS5: ... = ..vuse(va_new).. - - -
789 S5: ... = ..use(a_0).. - - -
791 DCE could then get rid of {S1,S2,S3,S4,S5,S6} (if their defs are not used
792 elsewhere), and we'll end up with:
795 VS5: ... = ..vuse(va_new)..
797 If vectorization does not succeed, DCE will clean S6 away (its def is
798 not used), and we'll end up with the original sequence.
802 vect_pattern_recog (loop_vec_info loop_vinfo
)
804 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
805 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
806 unsigned int nbbs
= loop
->num_nodes
;
807 block_stmt_iterator si
;
810 tree (* vect_recog_func_ptr
) (tree
, tree
*, tree
*);
812 if (vect_print_dump_info (REPORT_DETAILS
))
813 fprintf (vect_dump
, "=== vect_pattern_recog ===");
815 /* Scan through the loop stmts, applying the pattern recognition
816 functions starting at each stmt visited: */
817 for (i
= 0; i
< nbbs
; i
++)
819 basic_block bb
= bbs
[i
];
820 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
822 stmt
= bsi_stmt (si
);
824 /* Scan over all generic vect_recog_xxx_pattern functions. */
825 for (j
= 0; j
< NUM_PATTERNS
; j
++)
827 vect_recog_func_ptr
= vect_vect_recog_func_ptrs
[j
];
828 vect_pattern_recog_1 (vect_recog_func_ptr
, si
);