2008-01-26 Jerry DeLisle <jvdelisle@gcc.gnu.org>
[official-gcc.git] / gcc / reg-stack.c
blob248a8c2b9a5c3162f3a5a899a3f912a48f7d5723
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "cfglayout.h"
171 #include "varray.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "timevar.h"
175 #include "tree-pass.h"
176 #include "target.h"
177 #include "df.h"
178 #include "vecprim.h"
180 #ifdef STACK_REGS
182 /* We use this array to cache info about insns, because otherwise we
183 spend too much time in stack_regs_mentioned_p.
185 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
186 the insn uses stack registers, two indicates the insn does not use
187 stack registers. */
188 static VEC(char,heap) *stack_regs_mentioned_data;
190 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
192 int regstack_completed = 0;
194 /* This is the basic stack record. TOP is an index into REG[] such
195 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
197 If TOP is -2, REG[] is not yet initialized. Stack initialization
198 consists of placing each live reg in array `reg' and setting `top'
199 appropriately.
201 REG_SET indicates which registers are live. */
203 typedef struct stack_def
205 int top; /* index to top stack element */
206 HARD_REG_SET reg_set; /* set of live registers */
207 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
208 } *stack;
210 /* This is used to carry information about basic blocks. It is
211 attached to the AUX field of the standard CFG block. */
213 typedef struct block_info_def
215 struct stack_def stack_in; /* Input stack configuration. */
216 struct stack_def stack_out; /* Output stack configuration. */
217 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
218 int done; /* True if block already converted. */
219 int predecessors; /* Number of predecessors that need
220 to be visited. */
221 } *block_info;
223 #define BLOCK_INFO(B) ((block_info) (B)->aux)
225 /* Passed to change_stack to indicate where to emit insns. */
226 enum emit_where
228 EMIT_AFTER,
229 EMIT_BEFORE
232 /* The block we're currently working on. */
233 static basic_block current_block;
235 /* In the current_block, whether we're processing the first register
236 stack or call instruction, i.e. the regstack is currently the
237 same as BLOCK_INFO(current_block)->stack_in. */
238 static bool starting_stack_p;
240 /* This is the register file for all register after conversion. */
241 static rtx
242 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
244 #define FP_MODE_REG(regno,mode) \
245 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
247 /* Used to initialize uninitialized registers. */
248 static rtx not_a_num;
250 /* Forward declarations */
252 static int stack_regs_mentioned_p (const_rtx pat);
253 static void pop_stack (stack, int);
254 static rtx *get_true_reg (rtx *);
256 static int check_asm_stack_operands (rtx);
257 static int get_asm_operand_n_inputs (rtx);
258 static rtx stack_result (tree);
259 static void replace_reg (rtx *, int);
260 static void remove_regno_note (rtx, enum reg_note, unsigned int);
261 static int get_hard_regnum (stack, rtx);
262 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
263 static void swap_to_top(rtx, stack, rtx, rtx);
264 static bool move_for_stack_reg (rtx, stack, rtx);
265 static bool move_nan_for_stack_reg (rtx, stack, rtx);
266 static int swap_rtx_condition_1 (rtx);
267 static int swap_rtx_condition (rtx);
268 static void compare_for_stack_reg (rtx, stack, rtx);
269 static bool subst_stack_regs_pat (rtx, stack, rtx);
270 static void subst_asm_stack_regs (rtx, stack);
271 static bool subst_stack_regs (rtx, stack);
272 static void change_stack (rtx, stack, stack, enum emit_where);
273 static void print_stack (FILE *, stack);
274 static rtx next_flags_user (rtx);
276 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
278 static int
279 stack_regs_mentioned_p (const_rtx pat)
281 const char *fmt;
282 int i;
284 if (STACK_REG_P (pat))
285 return 1;
287 fmt = GET_RTX_FORMAT (GET_CODE (pat));
288 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
290 if (fmt[i] == 'E')
292 int j;
294 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
295 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
296 return 1;
298 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
299 return 1;
302 return 0;
305 /* Return nonzero if INSN mentions stacked registers, else return zero. */
308 stack_regs_mentioned (const_rtx insn)
310 unsigned int uid, max;
311 int test;
313 if (! INSN_P (insn) || !stack_regs_mentioned_data)
314 return 0;
316 uid = INSN_UID (insn);
317 max = VEC_length (char, stack_regs_mentioned_data);
318 if (uid >= max)
320 /* Allocate some extra size to avoid too many reallocs, but
321 do not grow too quickly. */
322 max = uid + uid / 20 + 1;
323 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
326 test = VEC_index (char, stack_regs_mentioned_data, uid);
327 if (test == 0)
329 /* This insn has yet to be examined. Do so now. */
330 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
331 VEC_replace (char, stack_regs_mentioned_data, uid, test);
334 return test == 1;
337 static rtx ix86_flags_rtx;
339 static rtx
340 next_flags_user (rtx insn)
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
345 while (insn != BB_END (current_block))
347 insn = NEXT_INSN (insn);
349 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 return insn;
352 if (CALL_P (insn))
353 return NULL_RTX;
355 return NULL_RTX;
358 /* Reorganize the stack into ascending numbers, before this insn. */
360 static void
361 straighten_stack (rtx insn, stack regstack)
363 struct stack_def temp_stack;
364 int top;
366 /* If there is only a single register on the stack, then the stack is
367 already in increasing order and no reorganization is needed.
369 Similarly if the stack is empty. */
370 if (regstack->top <= 0)
371 return;
373 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
375 for (top = temp_stack.top = regstack->top; top >= 0; top--)
376 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
378 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
381 /* Pop a register from the stack. */
383 static void
384 pop_stack (stack regstack, int regno)
386 int top = regstack->top;
388 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
389 regstack->top--;
390 /* If regno was not at the top of stack then adjust stack. */
391 if (regstack->reg [top] != regno)
393 int i;
394 for (i = regstack->top; i >= 0; i--)
395 if (regstack->reg [i] == regno)
397 int j;
398 for (j = i; j < top; j++)
399 regstack->reg [j] = regstack->reg [j + 1];
400 break;
405 /* Return a pointer to the REG expression within PAT. If PAT is not a
406 REG, possible enclosed by a conversion rtx, return the inner part of
407 PAT that stopped the search. */
409 static rtx *
410 get_true_reg (rtx *pat)
412 for (;;)
413 switch (GET_CODE (*pat))
415 case SUBREG:
416 /* Eliminate FP subregister accesses in favor of the
417 actual FP register in use. */
419 rtx subreg;
420 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
422 int regno_off = subreg_regno_offset (REGNO (subreg),
423 GET_MODE (subreg),
424 SUBREG_BYTE (*pat),
425 GET_MODE (*pat));
426 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
427 GET_MODE (subreg));
428 return pat;
431 case FLOAT:
432 case FIX:
433 case FLOAT_EXTEND:
434 pat = & XEXP (*pat, 0);
435 break;
437 case UNSPEC:
438 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
439 pat = & XVECEXP (*pat, 0, 0);
440 return pat;
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = & XEXP (*pat, 0);
446 break;
448 default:
449 return pat;
453 /* Set if we find any malformed asms in a block. */
454 static bool any_malformed_asm;
456 /* There are many rules that an asm statement for stack-like regs must
457 follow. Those rules are explained at the top of this file: the rule
458 numbers below refer to that explanation. */
460 static int
461 check_asm_stack_operands (rtx insn)
463 int i;
464 int n_clobbers;
465 int malformed_asm = 0;
466 rtx body = PATTERN (insn);
468 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469 char implicitly_dies[FIRST_PSEUDO_REGISTER];
470 int alt;
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_insn (insn);
478 constrain_operands (1);
479 alt = which_alternative;
481 preprocess_constraints ();
483 n_inputs = get_asm_operand_n_inputs (body);
484 n_outputs = recog_data.n_operands - n_inputs;
486 if (alt < 0)
488 malformed_asm = 1;
489 /* Avoid further trouble with this insn. */
490 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
491 return 0;
494 /* Strip SUBREGs here to make the following code simpler. */
495 for (i = 0; i < recog_data.n_operands; i++)
496 if (GET_CODE (recog_data.operand[i]) == SUBREG
497 && REG_P (SUBREG_REG (recog_data.operand[i])))
498 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
500 /* Set up CLOBBER_REG. */
502 n_clobbers = 0;
504 if (GET_CODE (body) == PARALLEL)
506 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
508 for (i = 0; i < XVECLEN (body, 0); i++)
509 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
511 rtx clobber = XVECEXP (body, 0, i);
512 rtx reg = XEXP (clobber, 0);
514 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
515 reg = SUBREG_REG (reg);
517 if (STACK_REG_P (reg))
519 clobber_reg[n_clobbers] = reg;
520 n_clobbers++;
525 /* Enforce rule #4: Output operands must specifically indicate which
526 reg an output appears in after an asm. "=f" is not allowed: the
527 operand constraints must select a class with a single reg.
529 Also enforce rule #5: Output operands must start at the top of
530 the reg-stack: output operands may not "skip" a reg. */
532 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
533 for (i = 0; i < n_outputs; i++)
534 if (STACK_REG_P (recog_data.operand[i]))
536 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
538 error_for_asm (insn, "output constraint %d must specify a single register", i);
539 malformed_asm = 1;
541 else
543 int j;
545 for (j = 0; j < n_clobbers; j++)
546 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
548 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
549 i, reg_names [REGNO (clobber_reg[j])]);
550 malformed_asm = 1;
551 break;
553 if (j == n_clobbers)
554 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
559 /* Search for first non-popped reg. */
560 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
561 if (! reg_used_as_output[i])
562 break;
564 /* If there are any other popped regs, that's an error. */
565 for (; i < LAST_STACK_REG + 1; i++)
566 if (reg_used_as_output[i])
567 break;
569 if (i != LAST_STACK_REG + 1)
571 error_for_asm (insn, "output regs must be grouped at top of stack");
572 malformed_asm = 1;
575 /* Enforce rule #2: All implicitly popped input regs must be closer
576 to the top of the reg-stack than any input that is not implicitly
577 popped. */
579 memset (implicitly_dies, 0, sizeof (implicitly_dies));
580 for (i = n_outputs; i < n_outputs + n_inputs; i++)
581 if (STACK_REG_P (recog_data.operand[i]))
583 /* An input reg is implicitly popped if it is tied to an
584 output, or if there is a CLOBBER for it. */
585 int j;
587 for (j = 0; j < n_clobbers; j++)
588 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
589 break;
591 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
592 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
595 /* Search for first non-popped reg. */
596 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
597 if (! implicitly_dies[i])
598 break;
600 /* If there are any other popped regs, that's an error. */
601 for (; i < LAST_STACK_REG + 1; i++)
602 if (implicitly_dies[i])
603 break;
605 if (i != LAST_STACK_REG + 1)
607 error_for_asm (insn,
608 "implicitly popped regs must be grouped at top of stack");
609 malformed_asm = 1;
612 /* Enforce rule #3: If any input operand uses the "f" constraint, all
613 output constraints must use the "&" earlyclobber.
615 ??? Detect this more deterministically by having constrain_asm_operands
616 record any earlyclobber. */
618 for (i = n_outputs; i < n_outputs + n_inputs; i++)
619 if (recog_op_alt[i][alt].matches == -1)
621 int j;
623 for (j = 0; j < n_outputs; j++)
624 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
626 error_for_asm (insn,
627 "output operand %d must use %<&%> constraint", j);
628 malformed_asm = 1;
632 if (malformed_asm)
634 /* Avoid further trouble with this insn. */
635 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
636 any_malformed_asm = true;
637 return 0;
640 return 1;
643 /* Calculate the number of inputs and outputs in BODY, an
644 asm_operands. N_OPERANDS is the total number of operands, and
645 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
646 placed. */
648 static int
649 get_asm_operand_n_inputs (rtx body)
651 switch (GET_CODE (body))
653 case SET:
654 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
655 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
657 case ASM_OPERANDS:
658 return ASM_OPERANDS_INPUT_LENGTH (body);
660 case PARALLEL:
661 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
663 default:
664 gcc_unreachable ();
668 /* If current function returns its result in an fp stack register,
669 return the REG. Otherwise, return 0. */
671 static rtx
672 stack_result (tree decl)
674 rtx result;
676 /* If the value is supposed to be returned in memory, then clearly
677 it is not returned in a stack register. */
678 if (aggregate_value_p (DECL_RESULT (decl), decl))
679 return 0;
681 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
682 if (result != 0)
683 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
684 decl, true);
686 return result != 0 && STACK_REG_P (result) ? result : 0;
691 * This section deals with stack register substitution, and forms the second
692 * pass over the RTL.
695 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
696 the desired hard REGNO. */
698 static void
699 replace_reg (rtx *reg, int regno)
701 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
702 gcc_assert (STACK_REG_P (*reg));
704 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
705 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
707 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
710 /* Remove a note of type NOTE, which must be found, for register
711 number REGNO from INSN. Remove only one such note. */
713 static void
714 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
716 rtx *note_link, this;
718 note_link = &REG_NOTES (insn);
719 for (this = *note_link; this; this = XEXP (this, 1))
720 if (REG_NOTE_KIND (this) == note
721 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
723 *note_link = XEXP (this, 1);
724 return;
726 else
727 note_link = &XEXP (this, 1);
729 gcc_unreachable ();
732 /* Find the hard register number of virtual register REG in REGSTACK.
733 The hard register number is relative to the top of the stack. -1 is
734 returned if the register is not found. */
736 static int
737 get_hard_regnum (stack regstack, rtx reg)
739 int i;
741 gcc_assert (STACK_REG_P (reg));
743 for (i = regstack->top; i >= 0; i--)
744 if (regstack->reg[i] == REGNO (reg))
745 break;
747 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
750 /* Emit an insn to pop virtual register REG before or after INSN.
751 REGSTACK is the stack state after INSN and is updated to reflect this
752 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
753 is represented as a SET whose destination is the register to be popped
754 and source is the top of stack. A death note for the top of stack
755 cases the movdf pattern to pop. */
757 static rtx
758 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
760 rtx pop_insn, pop_rtx;
761 int hard_regno;
763 /* For complex types take care to pop both halves. These may survive in
764 CLOBBER and USE expressions. */
765 if (COMPLEX_MODE_P (GET_MODE (reg)))
767 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
768 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
770 pop_insn = NULL_RTX;
771 if (get_hard_regnum (regstack, reg1) >= 0)
772 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
773 if (get_hard_regnum (regstack, reg2) >= 0)
774 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
775 gcc_assert (pop_insn);
776 return pop_insn;
779 hard_regno = get_hard_regnum (regstack, reg);
781 gcc_assert (hard_regno >= FIRST_STACK_REG);
783 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
784 FP_MODE_REG (FIRST_STACK_REG, DFmode));
786 if (where == EMIT_AFTER)
787 pop_insn = emit_insn_after (pop_rtx, insn);
788 else
789 pop_insn = emit_insn_before (pop_rtx, insn);
791 REG_NOTES (pop_insn)
792 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
793 REG_NOTES (pop_insn));
795 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
796 = regstack->reg[regstack->top];
797 regstack->top -= 1;
798 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
800 return pop_insn;
803 /* Emit an insn before or after INSN to swap virtual register REG with
804 the top of stack. REGSTACK is the stack state before the swap, and
805 is updated to reflect the swap. A swap insn is represented as a
806 PARALLEL of two patterns: each pattern moves one reg to the other.
808 If REG is already at the top of the stack, no insn is emitted. */
810 static void
811 emit_swap_insn (rtx insn, stack regstack, rtx reg)
813 int hard_regno;
814 rtx swap_rtx;
815 int tmp, other_reg; /* swap regno temps */
816 rtx i1; /* the stack-reg insn prior to INSN */
817 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
819 hard_regno = get_hard_regnum (regstack, reg);
821 if (hard_regno == FIRST_STACK_REG)
822 return;
823 if (hard_regno == -1)
825 /* Something failed if the register wasn't on the stack. If we had
826 malformed asms, we zapped the instruction itself, but that didn't
827 produce the same pattern of register sets as before. To prevent
828 further failure, adjust REGSTACK to include REG at TOP. */
829 gcc_assert (any_malformed_asm);
830 regstack->reg[++regstack->top] = REGNO (reg);
831 return;
833 gcc_assert (hard_regno >= FIRST_STACK_REG);
835 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
837 tmp = regstack->reg[other_reg];
838 regstack->reg[other_reg] = regstack->reg[regstack->top];
839 regstack->reg[regstack->top] = tmp;
841 /* Find the previous insn involving stack regs, but don't pass a
842 block boundary. */
843 i1 = NULL;
844 if (current_block && insn != BB_HEAD (current_block))
846 rtx tmp = PREV_INSN (insn);
847 rtx limit = PREV_INSN (BB_HEAD (current_block));
848 while (tmp != limit)
850 if (LABEL_P (tmp)
851 || CALL_P (tmp)
852 || NOTE_INSN_BASIC_BLOCK_P (tmp)
853 || (NONJUMP_INSN_P (tmp)
854 && stack_regs_mentioned (tmp)))
856 i1 = tmp;
857 break;
859 tmp = PREV_INSN (tmp);
863 if (i1 != NULL_RTX
864 && (i1set = single_set (i1)) != NULL_RTX)
866 rtx i1src = *get_true_reg (&SET_SRC (i1set));
867 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
869 /* If the previous register stack push was from the reg we are to
870 swap with, omit the swap. */
872 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
873 && REG_P (i1src)
874 && REGNO (i1src) == (unsigned) hard_regno - 1
875 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
876 return;
878 /* If the previous insn wrote to the reg we are to swap with,
879 omit the swap. */
881 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
882 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
883 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
884 return;
887 /* Avoid emitting the swap if this is the first register stack insn
888 of the current_block. Instead update the current_block's stack_in
889 and let compensate edges take care of this for us. */
890 if (current_block && starting_stack_p)
892 BLOCK_INFO (current_block)->stack_in = *regstack;
893 starting_stack_p = false;
894 return;
897 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
898 FP_MODE_REG (FIRST_STACK_REG, XFmode));
900 if (i1)
901 emit_insn_after (swap_rtx, i1);
902 else if (current_block)
903 emit_insn_before (swap_rtx, BB_HEAD (current_block));
904 else
905 emit_insn_before (swap_rtx, insn);
908 /* Emit an insns before INSN to swap virtual register SRC1 with
909 the top of stack and virtual register SRC2 with second stack
910 slot. REGSTACK is the stack state before the swaps, and
911 is updated to reflect the swaps. A swap insn is represented as a
912 PARALLEL of two patterns: each pattern moves one reg to the other.
914 If SRC1 and/or SRC2 are already at the right place, no swap insn
915 is emitted. */
917 static void
918 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
920 struct stack_def temp_stack;
921 int regno, j, k, temp;
923 temp_stack = *regstack;
925 /* Place operand 1 at the top of stack. */
926 regno = get_hard_regnum (&temp_stack, src1);
927 gcc_assert (regno >= 0);
928 if (regno != FIRST_STACK_REG)
930 k = temp_stack.top - (regno - FIRST_STACK_REG);
931 j = temp_stack.top;
933 temp = temp_stack.reg[k];
934 temp_stack.reg[k] = temp_stack.reg[j];
935 temp_stack.reg[j] = temp;
938 /* Place operand 2 next on the stack. */
939 regno = get_hard_regnum (&temp_stack, src2);
940 gcc_assert (regno >= 0);
941 if (regno != FIRST_STACK_REG + 1)
943 k = temp_stack.top - (regno - FIRST_STACK_REG);
944 j = temp_stack.top - 1;
946 temp = temp_stack.reg[k];
947 temp_stack.reg[k] = temp_stack.reg[j];
948 temp_stack.reg[j] = temp;
951 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
954 /* Handle a move to or from a stack register in PAT, which is in INSN.
955 REGSTACK is the current stack. Return whether a control flow insn
956 was deleted in the process. */
958 static bool
959 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
961 rtx *psrc = get_true_reg (&SET_SRC (pat));
962 rtx *pdest = get_true_reg (&SET_DEST (pat));
963 rtx src, dest;
964 rtx note;
965 bool control_flow_insn_deleted = false;
967 src = *psrc; dest = *pdest;
969 if (STACK_REG_P (src) && STACK_REG_P (dest))
971 /* Write from one stack reg to another. If SRC dies here, then
972 just change the register mapping and delete the insn. */
974 note = find_regno_note (insn, REG_DEAD, REGNO (src));
975 if (note)
977 int i;
979 /* If this is a no-op move, there must not be a REG_DEAD note. */
980 gcc_assert (REGNO (src) != REGNO (dest));
982 for (i = regstack->top; i >= 0; i--)
983 if (regstack->reg[i] == REGNO (src))
984 break;
986 /* The destination must be dead, or life analysis is borked. */
987 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
989 /* If the source is not live, this is yet another case of
990 uninitialized variables. Load up a NaN instead. */
991 if (i < 0)
992 return move_nan_for_stack_reg (insn, regstack, dest);
994 /* It is possible that the dest is unused after this insn.
995 If so, just pop the src. */
997 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
998 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
999 else
1001 regstack->reg[i] = REGNO (dest);
1002 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1003 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1006 control_flow_insn_deleted |= control_flow_insn_p (insn);
1007 delete_insn (insn);
1008 return control_flow_insn_deleted;
1011 /* The source reg does not die. */
1013 /* If this appears to be a no-op move, delete it, or else it
1014 will confuse the machine description output patterns. But if
1015 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1016 for REG_UNUSED will not work for deleted insns. */
1018 if (REGNO (src) == REGNO (dest))
1020 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1021 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1023 control_flow_insn_deleted |= control_flow_insn_p (insn);
1024 delete_insn (insn);
1025 return control_flow_insn_deleted;
1028 /* The destination ought to be dead. */
1029 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1031 replace_reg (psrc, get_hard_regnum (regstack, src));
1033 regstack->reg[++regstack->top] = REGNO (dest);
1034 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1035 replace_reg (pdest, FIRST_STACK_REG);
1037 else if (STACK_REG_P (src))
1039 /* Save from a stack reg to MEM, or possibly integer reg. Since
1040 only top of stack may be saved, emit an exchange first if
1041 needs be. */
1043 emit_swap_insn (insn, regstack, src);
1045 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1046 if (note)
1048 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1049 regstack->top--;
1050 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1052 else if ((GET_MODE (src) == XFmode)
1053 && regstack->top < REG_STACK_SIZE - 1)
1055 /* A 387 cannot write an XFmode value to a MEM without
1056 clobbering the source reg. The output code can handle
1057 this by reading back the value from the MEM.
1058 But it is more efficient to use a temp register if one is
1059 available. Push the source value here if the register
1060 stack is not full, and then write the value to memory via
1061 a pop. */
1062 rtx push_rtx;
1063 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1065 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1066 emit_insn_before (push_rtx, insn);
1067 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1068 REG_NOTES (insn));
1071 replace_reg (psrc, FIRST_STACK_REG);
1073 else
1075 rtx pat = PATTERN (insn);
1077 gcc_assert (STACK_REG_P (dest));
1079 /* Load from MEM, or possibly integer REG or constant, into the
1080 stack regs. The actual target is always the top of the
1081 stack. The stack mapping is changed to reflect that DEST is
1082 now at top of stack. */
1084 /* The destination ought to be dead. However, there is a
1085 special case with i387 UNSPEC_TAN, where destination is live
1086 (an argument to fptan) but inherent load of 1.0 is modelled
1087 as a load from a constant. */
1088 if (GET_CODE (pat) == PARALLEL
1089 && XVECLEN (pat, 0) == 2
1090 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1091 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1092 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1093 emit_swap_insn (insn, regstack, dest);
1094 else
1095 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1097 gcc_assert (regstack->top < REG_STACK_SIZE);
1099 regstack->reg[++regstack->top] = REGNO (dest);
1100 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1101 replace_reg (pdest, FIRST_STACK_REG);
1104 return control_flow_insn_deleted;
1107 /* A helper function which replaces INSN with a pattern that loads up
1108 a NaN into DEST, then invokes move_for_stack_reg. */
1110 static bool
1111 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1113 rtx pat;
1115 dest = FP_MODE_REG (REGNO (dest), SFmode);
1116 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1117 PATTERN (insn) = pat;
1118 INSN_CODE (insn) = -1;
1120 return move_for_stack_reg (insn, regstack, pat);
1123 /* Swap the condition on a branch, if there is one. Return true if we
1124 found a condition to swap. False if the condition was not used as
1125 such. */
1127 static int
1128 swap_rtx_condition_1 (rtx pat)
1130 const char *fmt;
1131 int i, r = 0;
1133 if (COMPARISON_P (pat))
1135 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1136 r = 1;
1138 else
1140 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1141 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1143 if (fmt[i] == 'E')
1145 int j;
1147 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1148 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1150 else if (fmt[i] == 'e')
1151 r |= swap_rtx_condition_1 (XEXP (pat, i));
1155 return r;
1158 static int
1159 swap_rtx_condition (rtx insn)
1161 rtx pat = PATTERN (insn);
1163 /* We're looking for a single set to cc0 or an HImode temporary. */
1165 if (GET_CODE (pat) == SET
1166 && REG_P (SET_DEST (pat))
1167 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1169 insn = next_flags_user (insn);
1170 if (insn == NULL_RTX)
1171 return 0;
1172 pat = PATTERN (insn);
1175 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1176 with the cc value right now. We may be able to search for one
1177 though. */
1179 if (GET_CODE (pat) == SET
1180 && GET_CODE (SET_SRC (pat)) == UNSPEC
1181 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1183 rtx dest = SET_DEST (pat);
1185 /* Search forward looking for the first use of this value.
1186 Stop at block boundaries. */
1187 while (insn != BB_END (current_block))
1189 insn = NEXT_INSN (insn);
1190 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1191 break;
1192 if (CALL_P (insn))
1193 return 0;
1196 /* We haven't found it. */
1197 if (insn == BB_END (current_block))
1198 return 0;
1200 /* So we've found the insn using this value. If it is anything
1201 other than sahf or the value does not die (meaning we'd have
1202 to search further), then we must give up. */
1203 pat = PATTERN (insn);
1204 if (GET_CODE (pat) != SET
1205 || GET_CODE (SET_SRC (pat)) != UNSPEC
1206 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1207 || ! dead_or_set_p (insn, dest))
1208 return 0;
1210 /* Now we are prepared to handle this as a normal cc0 setter. */
1211 insn = next_flags_user (insn);
1212 if (insn == NULL_RTX)
1213 return 0;
1214 pat = PATTERN (insn);
1217 if (swap_rtx_condition_1 (pat))
1219 int fail = 0;
1220 INSN_CODE (insn) = -1;
1221 if (recog_memoized (insn) == -1)
1222 fail = 1;
1223 /* In case the flags don't die here, recurse to try fix
1224 following user too. */
1225 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1227 insn = next_flags_user (insn);
1228 if (!insn || !swap_rtx_condition (insn))
1229 fail = 1;
1231 if (fail)
1233 swap_rtx_condition_1 (pat);
1234 return 0;
1236 return 1;
1238 return 0;
1241 /* Handle a comparison. Special care needs to be taken to avoid
1242 causing comparisons that a 387 cannot do correctly, such as EQ.
1244 Also, a pop insn may need to be emitted. The 387 does have an
1245 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1246 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1247 set up. */
1249 static void
1250 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1252 rtx *src1, *src2;
1253 rtx src1_note, src2_note;
1255 src1 = get_true_reg (&XEXP (pat_src, 0));
1256 src2 = get_true_reg (&XEXP (pat_src, 1));
1258 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1259 registers that die in this insn - move those to stack top first. */
1260 if ((! STACK_REG_P (*src1)
1261 || (STACK_REG_P (*src2)
1262 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1263 && swap_rtx_condition (insn))
1265 rtx temp;
1266 temp = XEXP (pat_src, 0);
1267 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1268 XEXP (pat_src, 1) = temp;
1270 src1 = get_true_reg (&XEXP (pat_src, 0));
1271 src2 = get_true_reg (&XEXP (pat_src, 1));
1273 INSN_CODE (insn) = -1;
1276 /* We will fix any death note later. */
1278 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1280 if (STACK_REG_P (*src2))
1281 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1282 else
1283 src2_note = NULL_RTX;
1285 emit_swap_insn (insn, regstack, *src1);
1287 replace_reg (src1, FIRST_STACK_REG);
1289 if (STACK_REG_P (*src2))
1290 replace_reg (src2, get_hard_regnum (regstack, *src2));
1292 if (src1_note)
1294 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1295 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1298 /* If the second operand dies, handle that. But if the operands are
1299 the same stack register, don't bother, because only one death is
1300 needed, and it was just handled. */
1302 if (src2_note
1303 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1304 && REGNO (*src1) == REGNO (*src2)))
1306 /* As a special case, two regs may die in this insn if src2 is
1307 next to top of stack and the top of stack also dies. Since
1308 we have already popped src1, "next to top of stack" is really
1309 at top (FIRST_STACK_REG) now. */
1311 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1312 && src1_note)
1314 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1315 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1317 else
1319 /* The 386 can only represent death of the first operand in
1320 the case handled above. In all other cases, emit a separate
1321 pop and remove the death note from here. */
1323 /* link_cc0_insns (insn); */
1325 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1327 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1328 EMIT_AFTER);
1333 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1334 is the current register layout. Return whether a control flow insn
1335 was deleted in the process. */
1337 static bool
1338 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1340 rtx *dest, *src;
1341 bool control_flow_insn_deleted = false;
1343 switch (GET_CODE (pat))
1345 case USE:
1346 /* Deaths in USE insns can happen in non optimizing compilation.
1347 Handle them by popping the dying register. */
1348 src = get_true_reg (&XEXP (pat, 0));
1349 if (STACK_REG_P (*src)
1350 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1352 /* USEs are ignored for liveness information so USEs of dead
1353 register might happen. */
1354 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1355 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1356 return control_flow_insn_deleted;
1358 /* Uninitialized USE might happen for functions returning uninitialized
1359 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1360 so it is safe to ignore the use here. This is consistent with behavior
1361 of dataflow analyzer that ignores USE too. (This also imply that
1362 forcibly initializing the register to NaN here would lead to ICE later,
1363 since the REG_DEAD notes are not issued.) */
1364 break;
1366 case CLOBBER:
1368 rtx note;
1370 dest = get_true_reg (&XEXP (pat, 0));
1371 if (STACK_REG_P (*dest))
1373 note = find_reg_note (insn, REG_DEAD, *dest);
1375 if (pat != PATTERN (insn))
1377 /* The fix_truncdi_1 pattern wants to be able to allocate
1378 its own scratch register. It does this by clobbering
1379 an fp reg so that it is assured of an empty reg-stack
1380 register. If the register is live, kill it now.
1381 Remove the DEAD/UNUSED note so we don't try to kill it
1382 later too. */
1384 if (note)
1385 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1386 else
1388 note = find_reg_note (insn, REG_UNUSED, *dest);
1389 gcc_assert (note);
1391 remove_note (insn, note);
1392 replace_reg (dest, FIRST_STACK_REG + 1);
1394 else
1396 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1397 indicates an uninitialized value. Because reload removed
1398 all other clobbers, this must be due to a function
1399 returning without a value. Load up a NaN. */
1401 if (!note)
1403 rtx t = *dest;
1404 if (COMPLEX_MODE_P (GET_MODE (t)))
1406 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1407 if (get_hard_regnum (regstack, u) == -1)
1409 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1410 rtx insn2 = emit_insn_before (pat2, insn);
1411 control_flow_insn_deleted
1412 |= move_nan_for_stack_reg (insn2, regstack, u);
1415 if (get_hard_regnum (regstack, t) == -1)
1416 control_flow_insn_deleted
1417 |= move_nan_for_stack_reg (insn, regstack, t);
1421 break;
1424 case SET:
1426 rtx *src1 = (rtx *) 0, *src2;
1427 rtx src1_note, src2_note;
1428 rtx pat_src;
1430 dest = get_true_reg (&SET_DEST (pat));
1431 src = get_true_reg (&SET_SRC (pat));
1432 pat_src = SET_SRC (pat);
1434 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1435 if (STACK_REG_P (*src)
1436 || (STACK_REG_P (*dest)
1437 && (REG_P (*src) || MEM_P (*src)
1438 || GET_CODE (*src) == CONST_DOUBLE)))
1440 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1441 break;
1444 switch (GET_CODE (pat_src))
1446 case COMPARE:
1447 compare_for_stack_reg (insn, regstack, pat_src);
1448 break;
1450 case CALL:
1452 int count;
1453 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1454 --count >= 0;)
1456 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1457 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1460 replace_reg (dest, FIRST_STACK_REG);
1461 break;
1463 case REG:
1464 /* This is a `tstM2' case. */
1465 gcc_assert (*dest == cc0_rtx);
1466 src1 = src;
1468 /* Fall through. */
1470 case FLOAT_TRUNCATE:
1471 case SQRT:
1472 case ABS:
1473 case NEG:
1474 /* These insns only operate on the top of the stack. DEST might
1475 be cc0_rtx if we're processing a tstM pattern. Also, it's
1476 possible that the tstM case results in a REG_DEAD note on the
1477 source. */
1479 if (src1 == 0)
1480 src1 = get_true_reg (&XEXP (pat_src, 0));
1482 emit_swap_insn (insn, regstack, *src1);
1484 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1486 if (STACK_REG_P (*dest))
1487 replace_reg (dest, FIRST_STACK_REG);
1489 if (src1_note)
1491 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1492 regstack->top--;
1493 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1496 replace_reg (src1, FIRST_STACK_REG);
1497 break;
1499 case MINUS:
1500 case DIV:
1501 /* On i386, reversed forms of subM3 and divM3 exist for
1502 MODE_FLOAT, so the same code that works for addM3 and mulM3
1503 can be used. */
1504 case MULT:
1505 case PLUS:
1506 /* These insns can accept the top of stack as a destination
1507 from a stack reg or mem, or can use the top of stack as a
1508 source and some other stack register (possibly top of stack)
1509 as a destination. */
1511 src1 = get_true_reg (&XEXP (pat_src, 0));
1512 src2 = get_true_reg (&XEXP (pat_src, 1));
1514 /* We will fix any death note later. */
1516 if (STACK_REG_P (*src1))
1517 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1518 else
1519 src1_note = NULL_RTX;
1520 if (STACK_REG_P (*src2))
1521 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1522 else
1523 src2_note = NULL_RTX;
1525 /* If either operand is not a stack register, then the dest
1526 must be top of stack. */
1528 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1529 emit_swap_insn (insn, regstack, *dest);
1530 else
1532 /* Both operands are REG. If neither operand is already
1533 at the top of stack, choose to make the one that is the dest
1534 the new top of stack. */
1536 int src1_hard_regnum, src2_hard_regnum;
1538 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1539 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1540 gcc_assert (src1_hard_regnum != -1);
1541 gcc_assert (src2_hard_regnum != -1);
1543 if (src1_hard_regnum != FIRST_STACK_REG
1544 && src2_hard_regnum != FIRST_STACK_REG)
1545 emit_swap_insn (insn, regstack, *dest);
1548 if (STACK_REG_P (*src1))
1549 replace_reg (src1, get_hard_regnum (regstack, *src1));
1550 if (STACK_REG_P (*src2))
1551 replace_reg (src2, get_hard_regnum (regstack, *src2));
1553 if (src1_note)
1555 rtx src1_reg = XEXP (src1_note, 0);
1557 /* If the register that dies is at the top of stack, then
1558 the destination is somewhere else - merely substitute it.
1559 But if the reg that dies is not at top of stack, then
1560 move the top of stack to the dead reg, as though we had
1561 done the insn and then a store-with-pop. */
1563 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1565 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1566 replace_reg (dest, get_hard_regnum (regstack, *dest));
1568 else
1570 int regno = get_hard_regnum (regstack, src1_reg);
1572 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1573 replace_reg (dest, regno);
1575 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1576 = regstack->reg[regstack->top];
1579 CLEAR_HARD_REG_BIT (regstack->reg_set,
1580 REGNO (XEXP (src1_note, 0)));
1581 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1582 regstack->top--;
1584 else if (src2_note)
1586 rtx src2_reg = XEXP (src2_note, 0);
1587 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1589 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1590 replace_reg (dest, get_hard_regnum (regstack, *dest));
1592 else
1594 int regno = get_hard_regnum (regstack, src2_reg);
1596 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1597 replace_reg (dest, regno);
1599 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1600 = regstack->reg[regstack->top];
1603 CLEAR_HARD_REG_BIT (regstack->reg_set,
1604 REGNO (XEXP (src2_note, 0)));
1605 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1606 regstack->top--;
1608 else
1610 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1611 replace_reg (dest, get_hard_regnum (regstack, *dest));
1614 /* Keep operand 1 matching with destination. */
1615 if (COMMUTATIVE_ARITH_P (pat_src)
1616 && REG_P (*src1) && REG_P (*src2)
1617 && REGNO (*src1) != REGNO (*dest))
1619 int tmp = REGNO (*src1);
1620 replace_reg (src1, REGNO (*src2));
1621 replace_reg (src2, tmp);
1623 break;
1625 case UNSPEC:
1626 switch (XINT (pat_src, 1))
1628 case UNSPEC_FIST:
1630 case UNSPEC_FIST_FLOOR:
1631 case UNSPEC_FIST_CEIL:
1633 /* These insns only operate on the top of the stack. */
1635 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1636 emit_swap_insn (insn, regstack, *src1);
1638 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1640 if (STACK_REG_P (*dest))
1641 replace_reg (dest, FIRST_STACK_REG);
1643 if (src1_note)
1645 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1646 regstack->top--;
1647 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1650 replace_reg (src1, FIRST_STACK_REG);
1651 break;
1653 case UNSPEC_FXAM:
1655 /* This insn only operate on the top of the stack. */
1657 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1658 emit_swap_insn (insn, regstack, *src1);
1660 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1662 replace_reg (src1, FIRST_STACK_REG);
1664 if (src1_note)
1666 remove_regno_note (insn, REG_DEAD,
1667 REGNO (XEXP (src1_note, 0)));
1668 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1669 EMIT_AFTER);
1672 break;
1674 case UNSPEC_SIN:
1675 case UNSPEC_COS:
1676 case UNSPEC_FRNDINT:
1677 case UNSPEC_F2XM1:
1679 case UNSPEC_FRNDINT_FLOOR:
1680 case UNSPEC_FRNDINT_CEIL:
1681 case UNSPEC_FRNDINT_TRUNC:
1682 case UNSPEC_FRNDINT_MASK_PM:
1684 /* Above insns operate on the top of the stack. */
1686 case UNSPEC_SINCOS_COS:
1687 case UNSPEC_XTRACT_FRACT:
1689 /* Above insns operate on the top two stack slots,
1690 first part of one input, double output insn. */
1692 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1694 emit_swap_insn (insn, regstack, *src1);
1696 /* Input should never die, it is replaced with output. */
1697 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1698 gcc_assert (!src1_note);
1700 if (STACK_REG_P (*dest))
1701 replace_reg (dest, FIRST_STACK_REG);
1703 replace_reg (src1, FIRST_STACK_REG);
1704 break;
1706 case UNSPEC_SINCOS_SIN:
1707 case UNSPEC_XTRACT_EXP:
1709 /* These insns operate on the top two stack slots,
1710 second part of one input, double output insn. */
1712 regstack->top++;
1713 /* FALLTHRU */
1715 case UNSPEC_TAN:
1717 /* For UNSPEC_TAN, regstack->top is already increased
1718 by inherent load of constant 1.0. */
1720 /* Output value is generated in the second stack slot.
1721 Move current value from second slot to the top. */
1722 regstack->reg[regstack->top]
1723 = regstack->reg[regstack->top - 1];
1725 gcc_assert (STACK_REG_P (*dest));
1727 regstack->reg[regstack->top - 1] = REGNO (*dest);
1728 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1729 replace_reg (dest, FIRST_STACK_REG + 1);
1731 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1733 replace_reg (src1, FIRST_STACK_REG);
1734 break;
1736 case UNSPEC_FPATAN:
1737 case UNSPEC_FYL2X:
1738 case UNSPEC_FYL2XP1:
1739 /* These insns operate on the top two stack slots. */
1741 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1742 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1744 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1745 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1747 swap_to_top (insn, regstack, *src1, *src2);
1749 replace_reg (src1, FIRST_STACK_REG);
1750 replace_reg (src2, FIRST_STACK_REG + 1);
1752 if (src1_note)
1753 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1754 if (src2_note)
1755 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1757 /* Pop both input operands from the stack. */
1758 CLEAR_HARD_REG_BIT (regstack->reg_set,
1759 regstack->reg[regstack->top]);
1760 CLEAR_HARD_REG_BIT (regstack->reg_set,
1761 regstack->reg[regstack->top - 1]);
1762 regstack->top -= 2;
1764 /* Push the result back onto the stack. */
1765 regstack->reg[++regstack->top] = REGNO (*dest);
1766 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1767 replace_reg (dest, FIRST_STACK_REG);
1768 break;
1770 case UNSPEC_FSCALE_FRACT:
1771 case UNSPEC_FPREM_F:
1772 case UNSPEC_FPREM1_F:
1773 /* These insns operate on the top two stack slots,
1774 first part of double input, double output insn. */
1776 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1777 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1779 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1780 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1782 /* Inputs should never die, they are
1783 replaced with outputs. */
1784 gcc_assert (!src1_note);
1785 gcc_assert (!src2_note);
1787 swap_to_top (insn, regstack, *src1, *src2);
1789 /* Push the result back onto stack. Empty stack slot
1790 will be filled in second part of insn. */
1791 if (STACK_REG_P (*dest))
1793 regstack->reg[regstack->top] = REGNO (*dest);
1794 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1795 replace_reg (dest, FIRST_STACK_REG);
1798 replace_reg (src1, FIRST_STACK_REG);
1799 replace_reg (src2, FIRST_STACK_REG + 1);
1800 break;
1802 case UNSPEC_FSCALE_EXP:
1803 case UNSPEC_FPREM_U:
1804 case UNSPEC_FPREM1_U:
1805 /* These insns operate on the top two stack slots,
1806 second part of double input, double output insn. */
1808 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1809 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1811 /* Push the result back onto stack. Fill empty slot from
1812 first part of insn and fix top of stack pointer. */
1813 if (STACK_REG_P (*dest))
1815 regstack->reg[regstack->top - 1] = REGNO (*dest);
1816 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1817 replace_reg (dest, FIRST_STACK_REG + 1);
1820 replace_reg (src1, FIRST_STACK_REG);
1821 replace_reg (src2, FIRST_STACK_REG + 1);
1822 break;
1824 case UNSPEC_C2_FLAG:
1825 /* This insn operates on the top two stack slots,
1826 third part of C2 setting double input insn. */
1828 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1829 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1831 replace_reg (src1, FIRST_STACK_REG);
1832 replace_reg (src2, FIRST_STACK_REG + 1);
1833 break;
1835 case UNSPEC_SAHF:
1836 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1837 The combination matches the PPRO fcomi instruction. */
1839 pat_src = XVECEXP (pat_src, 0, 0);
1840 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1841 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1842 /* Fall through. */
1844 case UNSPEC_FNSTSW:
1845 /* Combined fcomp+fnstsw generated for doing well with
1846 CSE. When optimizing this would have been broken
1847 up before now. */
1849 pat_src = XVECEXP (pat_src, 0, 0);
1850 gcc_assert (GET_CODE (pat_src) == COMPARE);
1852 compare_for_stack_reg (insn, regstack, pat_src);
1853 break;
1855 default:
1856 gcc_unreachable ();
1858 break;
1860 case IF_THEN_ELSE:
1861 /* This insn requires the top of stack to be the destination. */
1863 src1 = get_true_reg (&XEXP (pat_src, 1));
1864 src2 = get_true_reg (&XEXP (pat_src, 2));
1866 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1867 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1869 /* If the comparison operator is an FP comparison operator,
1870 it is handled correctly by compare_for_stack_reg () who
1871 will move the destination to the top of stack. But if the
1872 comparison operator is not an FP comparison operator, we
1873 have to handle it here. */
1874 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1875 && REGNO (*dest) != regstack->reg[regstack->top])
1877 /* In case one of operands is the top of stack and the operands
1878 dies, it is safe to make it the destination operand by
1879 reversing the direction of cmove and avoid fxch. */
1880 if ((REGNO (*src1) == regstack->reg[regstack->top]
1881 && src1_note)
1882 || (REGNO (*src2) == regstack->reg[regstack->top]
1883 && src2_note))
1885 int idx1 = (get_hard_regnum (regstack, *src1)
1886 - FIRST_STACK_REG);
1887 int idx2 = (get_hard_regnum (regstack, *src2)
1888 - FIRST_STACK_REG);
1890 /* Make reg-stack believe that the operands are already
1891 swapped on the stack */
1892 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1893 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1895 /* Reverse condition to compensate the operand swap.
1896 i386 do have comparison always reversible. */
1897 PUT_CODE (XEXP (pat_src, 0),
1898 reversed_comparison_code (XEXP (pat_src, 0), insn));
1900 else
1901 emit_swap_insn (insn, regstack, *dest);
1905 rtx src_note [3];
1906 int i;
1908 src_note[0] = 0;
1909 src_note[1] = src1_note;
1910 src_note[2] = src2_note;
1912 if (STACK_REG_P (*src1))
1913 replace_reg (src1, get_hard_regnum (regstack, *src1));
1914 if (STACK_REG_P (*src2))
1915 replace_reg (src2, get_hard_regnum (regstack, *src2));
1917 for (i = 1; i <= 2; i++)
1918 if (src_note [i])
1920 int regno = REGNO (XEXP (src_note[i], 0));
1922 /* If the register that dies is not at the top of
1923 stack, then move the top of stack to the dead reg.
1924 Top of stack should never die, as it is the
1925 destination. */
1926 gcc_assert (regno != regstack->reg[regstack->top]);
1927 remove_regno_note (insn, REG_DEAD, regno);
1928 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1929 EMIT_AFTER);
1933 /* Make dest the top of stack. Add dest to regstack if
1934 not present. */
1935 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1936 regstack->reg[++regstack->top] = REGNO (*dest);
1937 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1938 replace_reg (dest, FIRST_STACK_REG);
1939 break;
1941 default:
1942 gcc_unreachable ();
1944 break;
1947 default:
1948 break;
1951 return control_flow_insn_deleted;
1954 /* Substitute hard regnums for any stack regs in INSN, which has
1955 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1956 before the insn, and is updated with changes made here.
1958 There are several requirements and assumptions about the use of
1959 stack-like regs in asm statements. These rules are enforced by
1960 record_asm_stack_regs; see comments there for details. Any
1961 asm_operands left in the RTL at this point may be assume to meet the
1962 requirements, since record_asm_stack_regs removes any problem asm. */
1964 static void
1965 subst_asm_stack_regs (rtx insn, stack regstack)
1967 rtx body = PATTERN (insn);
1968 int alt;
1970 rtx *note_reg; /* Array of note contents */
1971 rtx **note_loc; /* Address of REG field of each note */
1972 enum reg_note *note_kind; /* The type of each note */
1974 rtx *clobber_reg = 0;
1975 rtx **clobber_loc = 0;
1977 struct stack_def temp_stack;
1978 int n_notes;
1979 int n_clobbers;
1980 rtx note;
1981 int i;
1982 int n_inputs, n_outputs;
1984 if (! check_asm_stack_operands (insn))
1985 return;
1987 /* Find out what the constraints required. If no constraint
1988 alternative matches, that is a compiler bug: we should have caught
1989 such an insn in check_asm_stack_operands. */
1990 extract_insn (insn);
1991 constrain_operands (1);
1992 alt = which_alternative;
1994 preprocess_constraints ();
1996 n_inputs = get_asm_operand_n_inputs (body);
1997 n_outputs = recog_data.n_operands - n_inputs;
1999 gcc_assert (alt >= 0);
2001 /* Strip SUBREGs here to make the following code simpler. */
2002 for (i = 0; i < recog_data.n_operands; i++)
2003 if (GET_CODE (recog_data.operand[i]) == SUBREG
2004 && REG_P (SUBREG_REG (recog_data.operand[i])))
2006 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2007 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2010 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2012 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2013 i++;
2015 note_reg = alloca (i * sizeof (rtx));
2016 note_loc = alloca (i * sizeof (rtx *));
2017 note_kind = alloca (i * sizeof (enum reg_note));
2019 n_notes = 0;
2020 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2022 rtx reg = XEXP (note, 0);
2023 rtx *loc = & XEXP (note, 0);
2025 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2027 loc = & SUBREG_REG (reg);
2028 reg = SUBREG_REG (reg);
2031 if (STACK_REG_P (reg)
2032 && (REG_NOTE_KIND (note) == REG_DEAD
2033 || REG_NOTE_KIND (note) == REG_UNUSED))
2035 note_reg[n_notes] = reg;
2036 note_loc[n_notes] = loc;
2037 note_kind[n_notes] = REG_NOTE_KIND (note);
2038 n_notes++;
2042 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2044 n_clobbers = 0;
2046 if (GET_CODE (body) == PARALLEL)
2048 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2049 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2051 for (i = 0; i < XVECLEN (body, 0); i++)
2052 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2054 rtx clobber = XVECEXP (body, 0, i);
2055 rtx reg = XEXP (clobber, 0);
2056 rtx *loc = & XEXP (clobber, 0);
2058 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2060 loc = & SUBREG_REG (reg);
2061 reg = SUBREG_REG (reg);
2064 if (STACK_REG_P (reg))
2066 clobber_reg[n_clobbers] = reg;
2067 clobber_loc[n_clobbers] = loc;
2068 n_clobbers++;
2073 temp_stack = *regstack;
2075 /* Put the input regs into the desired place in TEMP_STACK. */
2077 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2078 if (STACK_REG_P (recog_data.operand[i])
2079 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2080 FLOAT_REGS)
2081 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2083 /* If an operand needs to be in a particular reg in
2084 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2085 these constraints are for single register classes, and
2086 reload guaranteed that operand[i] is already in that class,
2087 we can just use REGNO (recog_data.operand[i]) to know which
2088 actual reg this operand needs to be in. */
2090 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2092 gcc_assert (regno >= 0);
2094 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2096 /* recog_data.operand[i] is not in the right place. Find
2097 it and swap it with whatever is already in I's place.
2098 K is where recog_data.operand[i] is now. J is where it
2099 should be. */
2100 int j, k, temp;
2102 k = temp_stack.top - (regno - FIRST_STACK_REG);
2103 j = (temp_stack.top
2104 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2106 temp = temp_stack.reg[k];
2107 temp_stack.reg[k] = temp_stack.reg[j];
2108 temp_stack.reg[j] = temp;
2112 /* Emit insns before INSN to make sure the reg-stack is in the right
2113 order. */
2115 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2117 /* Make the needed input register substitutions. Do death notes and
2118 clobbers too, because these are for inputs, not outputs. */
2120 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2121 if (STACK_REG_P (recog_data.operand[i]))
2123 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2125 gcc_assert (regnum >= 0);
2127 replace_reg (recog_data.operand_loc[i], regnum);
2130 for (i = 0; i < n_notes; i++)
2131 if (note_kind[i] == REG_DEAD)
2133 int regnum = get_hard_regnum (regstack, note_reg[i]);
2135 gcc_assert (regnum >= 0);
2137 replace_reg (note_loc[i], regnum);
2140 for (i = 0; i < n_clobbers; i++)
2142 /* It's OK for a CLOBBER to reference a reg that is not live.
2143 Don't try to replace it in that case. */
2144 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2146 if (regnum >= 0)
2148 /* Sigh - clobbers always have QImode. But replace_reg knows
2149 that these regs can't be MODE_INT and will assert. Just put
2150 the right reg there without calling replace_reg. */
2152 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2156 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2158 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2159 if (STACK_REG_P (recog_data.operand[i]))
2161 /* An input reg is implicitly popped if it is tied to an
2162 output, or if there is a CLOBBER for it. */
2163 int j;
2165 for (j = 0; j < n_clobbers; j++)
2166 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2167 break;
2169 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2171 /* recog_data.operand[i] might not be at the top of stack.
2172 But that's OK, because all we need to do is pop the
2173 right number of regs off of the top of the reg-stack.
2174 record_asm_stack_regs guaranteed that all implicitly
2175 popped regs were grouped at the top of the reg-stack. */
2177 CLEAR_HARD_REG_BIT (regstack->reg_set,
2178 regstack->reg[regstack->top]);
2179 regstack->top--;
2183 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2184 Note that there isn't any need to substitute register numbers.
2185 ??? Explain why this is true. */
2187 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2189 /* See if there is an output for this hard reg. */
2190 int j;
2192 for (j = 0; j < n_outputs; j++)
2193 if (STACK_REG_P (recog_data.operand[j])
2194 && REGNO (recog_data.operand[j]) == (unsigned) i)
2196 regstack->reg[++regstack->top] = i;
2197 SET_HARD_REG_BIT (regstack->reg_set, i);
2198 break;
2202 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2203 input that the asm didn't implicitly pop. If the asm didn't
2204 implicitly pop an input reg, that reg will still be live.
2206 Note that we can't use find_regno_note here: the register numbers
2207 in the death notes have already been substituted. */
2209 for (i = 0; i < n_outputs; i++)
2210 if (STACK_REG_P (recog_data.operand[i]))
2212 int j;
2214 for (j = 0; j < n_notes; j++)
2215 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2216 && note_kind[j] == REG_UNUSED)
2218 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2219 EMIT_AFTER);
2220 break;
2224 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2225 if (STACK_REG_P (recog_data.operand[i]))
2227 int j;
2229 for (j = 0; j < n_notes; j++)
2230 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2231 && note_kind[j] == REG_DEAD
2232 && TEST_HARD_REG_BIT (regstack->reg_set,
2233 REGNO (recog_data.operand[i])))
2235 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2236 EMIT_AFTER);
2237 break;
2242 /* Substitute stack hard reg numbers for stack virtual registers in
2243 INSN. Non-stack register numbers are not changed. REGSTACK is the
2244 current stack content. Insns may be emitted as needed to arrange the
2245 stack for the 387 based on the contents of the insn. Return whether
2246 a control flow insn was deleted in the process. */
2248 static bool
2249 subst_stack_regs (rtx insn, stack regstack)
2251 rtx *note_link, note;
2252 bool control_flow_insn_deleted = false;
2253 int i;
2255 if (CALL_P (insn))
2257 int top = regstack->top;
2259 /* If there are any floating point parameters to be passed in
2260 registers for this call, make sure they are in the right
2261 order. */
2263 if (top >= 0)
2265 straighten_stack (insn, regstack);
2267 /* Now mark the arguments as dead after the call. */
2269 while (regstack->top >= 0)
2271 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2272 regstack->top--;
2277 /* Do the actual substitution if any stack regs are mentioned.
2278 Since we only record whether entire insn mentions stack regs, and
2279 subst_stack_regs_pat only works for patterns that contain stack regs,
2280 we must check each pattern in a parallel here. A call_value_pop could
2281 fail otherwise. */
2283 if (stack_regs_mentioned (insn))
2285 int n_operands = asm_noperands (PATTERN (insn));
2286 if (n_operands >= 0)
2288 /* This insn is an `asm' with operands. Decode the operands,
2289 decide how many are inputs, and do register substitution.
2290 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2292 subst_asm_stack_regs (insn, regstack);
2293 return control_flow_insn_deleted;
2296 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2297 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2299 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2301 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2302 XVECEXP (PATTERN (insn), 0, i)
2303 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2304 control_flow_insn_deleted
2305 |= subst_stack_regs_pat (insn, regstack,
2306 XVECEXP (PATTERN (insn), 0, i));
2309 else
2310 control_flow_insn_deleted
2311 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2314 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2315 REG_UNUSED will already have been dealt with, so just return. */
2317 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2318 return control_flow_insn_deleted;
2320 /* If this a noreturn call, we can't insert pop insns after it.
2321 Instead, reset the stack state to empty. */
2322 if (CALL_P (insn)
2323 && find_reg_note (insn, REG_NORETURN, NULL))
2325 regstack->top = -1;
2326 CLEAR_HARD_REG_SET (regstack->reg_set);
2327 return control_flow_insn_deleted;
2330 /* If there is a REG_UNUSED note on a stack register on this insn,
2331 the indicated reg must be popped. The REG_UNUSED note is removed,
2332 since the form of the newly emitted pop insn references the reg,
2333 making it no longer `unset'. */
2335 note_link = &REG_NOTES (insn);
2336 for (note = *note_link; note; note = XEXP (note, 1))
2337 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2339 *note_link = XEXP (note, 1);
2340 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2342 else
2343 note_link = &XEXP (note, 1);
2345 return control_flow_insn_deleted;
2348 /* Change the organization of the stack so that it fits a new basic
2349 block. Some registers might have to be popped, but there can never be
2350 a register live in the new block that is not now live.
2352 Insert any needed insns before or after INSN, as indicated by
2353 WHERE. OLD is the original stack layout, and NEW is the desired
2354 form. OLD is updated to reflect the code emitted, i.e., it will be
2355 the same as NEW upon return.
2357 This function will not preserve block_end[]. But that information
2358 is no longer needed once this has executed. */
2360 static void
2361 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2363 int reg;
2364 int update_end = 0;
2365 int i;
2367 /* Stack adjustments for the first insn in a block update the
2368 current_block's stack_in instead of inserting insns directly.
2369 compensate_edges will add the necessary code later. */
2370 if (current_block
2371 && starting_stack_p
2372 && where == EMIT_BEFORE)
2374 BLOCK_INFO (current_block)->stack_in = *new;
2375 starting_stack_p = false;
2376 *old = *new;
2377 return;
2380 /* We will be inserting new insns "backwards". If we are to insert
2381 after INSN, find the next insn, and insert before it. */
2383 if (where == EMIT_AFTER)
2385 if (current_block && BB_END (current_block) == insn)
2386 update_end = 1;
2387 insn = NEXT_INSN (insn);
2390 /* Initialize partially dead variables. */
2391 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2392 if (TEST_HARD_REG_BIT (new->reg_set, i)
2393 && !TEST_HARD_REG_BIT (old->reg_set, i))
2395 old->reg[++old->top] = i;
2396 SET_HARD_REG_BIT (old->reg_set, i);
2397 emit_insn_before (gen_rtx_SET (VOIDmode,
2398 FP_MODE_REG (i, SFmode), not_a_num), insn);
2401 /* Pop any registers that are not needed in the new block. */
2403 /* If the destination block's stack already has a specified layout
2404 and contains two or more registers, use a more intelligent algorithm
2405 to pop registers that minimizes the number number of fxchs below. */
2406 if (new->top > 0)
2408 bool slots[REG_STACK_SIZE];
2409 int pops[REG_STACK_SIZE];
2410 int next, dest, topsrc;
2412 /* First pass to determine the free slots. */
2413 for (reg = 0; reg <= new->top; reg++)
2414 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2416 /* Second pass to allocate preferred slots. */
2417 topsrc = -1;
2418 for (reg = old->top; reg > new->top; reg--)
2419 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2421 dest = -1;
2422 for (next = 0; next <= new->top; next++)
2423 if (!slots[next] && new->reg[next] == old->reg[reg])
2425 /* If this is a preference for the new top of stack, record
2426 the fact by remembering it's old->reg in topsrc. */
2427 if (next == new->top)
2428 topsrc = reg;
2429 slots[next] = true;
2430 dest = next;
2431 break;
2433 pops[reg] = dest;
2435 else
2436 pops[reg] = reg;
2438 /* Intentionally, avoid placing the top of stack in it's correct
2439 location, if we still need to permute the stack below and we
2440 can usefully place it somewhere else. This is the case if any
2441 slot is still unallocated, in which case we should place the
2442 top of stack there. */
2443 if (topsrc != -1)
2444 for (reg = 0; reg < new->top; reg++)
2445 if (!slots[reg])
2447 pops[topsrc] = reg;
2448 slots[new->top] = false;
2449 slots[reg] = true;
2450 break;
2453 /* Third pass allocates remaining slots and emits pop insns. */
2454 next = new->top;
2455 for (reg = old->top; reg > new->top; reg--)
2457 dest = pops[reg];
2458 if (dest == -1)
2460 /* Find next free slot. */
2461 while (slots[next])
2462 next--;
2463 dest = next--;
2465 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2466 EMIT_BEFORE);
2469 else
2471 /* The following loop attempts to maximize the number of times we
2472 pop the top of the stack, as this permits the use of the faster
2473 ffreep instruction on platforms that support it. */
2474 int live, next;
2476 live = 0;
2477 for (reg = 0; reg <= old->top; reg++)
2478 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2479 live++;
2481 next = live;
2482 while (old->top >= live)
2483 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2485 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2486 next--;
2487 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2488 EMIT_BEFORE);
2490 else
2491 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2492 EMIT_BEFORE);
2495 if (new->top == -2)
2497 /* If the new block has never been processed, then it can inherit
2498 the old stack order. */
2500 new->top = old->top;
2501 memcpy (new->reg, old->reg, sizeof (new->reg));
2503 else
2505 /* This block has been entered before, and we must match the
2506 previously selected stack order. */
2508 /* By now, the only difference should be the order of the stack,
2509 not their depth or liveliness. */
2511 gcc_assert (hard_reg_set_equal_p (old->reg_set, new->reg_set));
2512 gcc_assert (old->top == new->top);
2514 /* If the stack is not empty (new->top != -1), loop here emitting
2515 swaps until the stack is correct.
2517 The worst case number of swaps emitted is N + 2, where N is the
2518 depth of the stack. In some cases, the reg at the top of
2519 stack may be correct, but swapped anyway in order to fix
2520 other regs. But since we never swap any other reg away from
2521 its correct slot, this algorithm will converge. */
2523 if (new->top != -1)
2526 /* Swap the reg at top of stack into the position it is
2527 supposed to be in, until the correct top of stack appears. */
2529 while (old->reg[old->top] != new->reg[new->top])
2531 for (reg = new->top; reg >= 0; reg--)
2532 if (new->reg[reg] == old->reg[old->top])
2533 break;
2535 gcc_assert (reg != -1);
2537 emit_swap_insn (insn, old,
2538 FP_MODE_REG (old->reg[reg], DFmode));
2541 /* See if any regs remain incorrect. If so, bring an
2542 incorrect reg to the top of stack, and let the while loop
2543 above fix it. */
2545 for (reg = new->top; reg >= 0; reg--)
2546 if (new->reg[reg] != old->reg[reg])
2548 emit_swap_insn (insn, old,
2549 FP_MODE_REG (old->reg[reg], DFmode));
2550 break;
2552 } while (reg >= 0);
2554 /* At this point there must be no differences. */
2556 for (reg = old->top; reg >= 0; reg--)
2557 gcc_assert (old->reg[reg] == new->reg[reg]);
2560 if (update_end)
2561 BB_END (current_block) = PREV_INSN (insn);
2564 /* Print stack configuration. */
2566 static void
2567 print_stack (FILE *file, stack s)
2569 if (! file)
2570 return;
2572 if (s->top == -2)
2573 fprintf (file, "uninitialized\n");
2574 else if (s->top == -1)
2575 fprintf (file, "empty\n");
2576 else
2578 int i;
2579 fputs ("[ ", file);
2580 for (i = 0; i <= s->top; ++i)
2581 fprintf (file, "%d ", s->reg[i]);
2582 fputs ("]\n", file);
2586 /* This function was doing life analysis. We now let the regular live
2587 code do it's job, so we only need to check some extra invariants
2588 that reg-stack expects. Primary among these being that all registers
2589 are initialized before use.
2591 The function returns true when code was emitted to CFG edges and
2592 commit_edge_insertions needs to be called. */
2594 static int
2595 convert_regs_entry (void)
2597 int inserted = 0;
2598 edge e;
2599 edge_iterator ei;
2601 /* Load something into each stack register live at function entry.
2602 Such live registers can be caused by uninitialized variables or
2603 functions not returning values on all paths. In order to keep
2604 the push/pop code happy, and to not scrog the register stack, we
2605 must put something in these registers. Use a QNaN.
2607 Note that we are inserting converted code here. This code is
2608 never seen by the convert_regs pass. */
2610 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2612 basic_block block = e->dest;
2613 block_info bi = BLOCK_INFO (block);
2614 int reg, top = -1;
2616 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2617 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2619 rtx init;
2621 bi->stack_in.reg[++top] = reg;
2623 init = gen_rtx_SET (VOIDmode,
2624 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2625 not_a_num);
2626 insert_insn_on_edge (init, e);
2627 inserted = 1;
2630 bi->stack_in.top = top;
2633 return inserted;
2636 /* Construct the desired stack for function exit. This will either
2637 be `empty', or the function return value at top-of-stack. */
2639 static void
2640 convert_regs_exit (void)
2642 int value_reg_low, value_reg_high;
2643 stack output_stack;
2644 rtx retvalue;
2646 retvalue = stack_result (current_function_decl);
2647 value_reg_low = value_reg_high = -1;
2648 if (retvalue)
2650 value_reg_low = REGNO (retvalue);
2651 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2654 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2655 if (value_reg_low == -1)
2656 output_stack->top = -1;
2657 else
2659 int reg;
2661 output_stack->top = value_reg_high - value_reg_low;
2662 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2664 output_stack->reg[value_reg_high - reg] = reg;
2665 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2670 /* Copy the stack info from the end of edge E's source block to the
2671 start of E's destination block. */
2673 static void
2674 propagate_stack (edge e)
2676 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2677 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2678 int reg;
2680 /* Preserve the order of the original stack, but check whether
2681 any pops are needed. */
2682 dest_stack->top = -1;
2683 for (reg = 0; reg <= src_stack->top; ++reg)
2684 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2685 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2687 /* Push in any partially dead values. */
2688 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2689 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2690 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2691 dest_stack->reg[++dest_stack->top] = reg;
2695 /* Adjust the stack of edge E's source block on exit to match the stack
2696 of it's target block upon input. The stack layouts of both blocks
2697 should have been defined by now. */
2699 static bool
2700 compensate_edge (edge e)
2702 basic_block source = e->src, target = e->dest;
2703 stack target_stack = &BLOCK_INFO (target)->stack_in;
2704 stack source_stack = &BLOCK_INFO (source)->stack_out;
2705 struct stack_def regstack;
2706 int reg;
2708 if (dump_file)
2709 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2711 gcc_assert (target_stack->top != -2);
2713 /* Check whether stacks are identical. */
2714 if (target_stack->top == source_stack->top)
2716 for (reg = target_stack->top; reg >= 0; --reg)
2717 if (target_stack->reg[reg] != source_stack->reg[reg])
2718 break;
2720 if (reg == -1)
2722 if (dump_file)
2723 fprintf (dump_file, "no changes needed\n");
2724 return false;
2728 if (dump_file)
2730 fprintf (dump_file, "correcting stack to ");
2731 print_stack (dump_file, target_stack);
2734 /* Abnormal calls may appear to have values live in st(0), but the
2735 abnormal return path will not have actually loaded the values. */
2736 if (e->flags & EDGE_ABNORMAL_CALL)
2738 /* Assert that the lifetimes are as we expect -- one value
2739 live at st(0) on the end of the source block, and no
2740 values live at the beginning of the destination block.
2741 For complex return values, we may have st(1) live as well. */
2742 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2743 gcc_assert (target_stack->top == -1);
2744 return false;
2747 /* Handle non-call EH edges specially. The normal return path have
2748 values in registers. These will be popped en masse by the unwind
2749 library. */
2750 if (e->flags & EDGE_EH)
2752 gcc_assert (target_stack->top == -1);
2753 return false;
2756 /* We don't support abnormal edges. Global takes care to
2757 avoid any live register across them, so we should never
2758 have to insert instructions on such edges. */
2759 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2761 /* Make a copy of source_stack as change_stack is destructive. */
2762 regstack = *source_stack;
2764 /* It is better to output directly to the end of the block
2765 instead of to the edge, because emit_swap can do minimal
2766 insn scheduling. We can do this when there is only one
2767 edge out, and it is not abnormal. */
2768 if (EDGE_COUNT (source->succs) == 1)
2770 current_block = source;
2771 change_stack (BB_END (source), &regstack, target_stack,
2772 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2774 else
2776 rtx seq, after;
2778 current_block = NULL;
2779 start_sequence ();
2781 /* ??? change_stack needs some point to emit insns after. */
2782 after = emit_note (NOTE_INSN_DELETED);
2784 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2786 seq = get_insns ();
2787 end_sequence ();
2789 insert_insn_on_edge (seq, e);
2790 return true;
2792 return false;
2795 /* Traverse all non-entry edges in the CFG, and emit the necessary
2796 edge compensation code to change the stack from stack_out of the
2797 source block to the stack_in of the destination block. */
2799 static bool
2800 compensate_edges (void)
2802 bool inserted = false;
2803 basic_block bb;
2805 starting_stack_p = false;
2807 FOR_EACH_BB (bb)
2808 if (bb != ENTRY_BLOCK_PTR)
2810 edge e;
2811 edge_iterator ei;
2813 FOR_EACH_EDGE (e, ei, bb->succs)
2814 inserted |= compensate_edge (e);
2816 return inserted;
2819 /* Select the better of two edges E1 and E2 to use to determine the
2820 stack layout for their shared destination basic block. This is
2821 typically the more frequently executed. The edge E1 may be NULL
2822 (in which case E2 is returned), but E2 is always non-NULL. */
2824 static edge
2825 better_edge (edge e1, edge e2)
2827 if (!e1)
2828 return e2;
2830 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2831 return e1;
2832 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2833 return e2;
2835 if (e1->count > e2->count)
2836 return e1;
2837 if (e1->count < e2->count)
2838 return e2;
2840 /* Prefer critical edges to minimize inserting compensation code on
2841 critical edges. */
2843 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2844 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2846 /* Avoid non-deterministic behavior. */
2847 return (e1->src->index < e2->src->index) ? e1 : e2;
2850 /* Convert stack register references in one block. */
2852 static void
2853 convert_regs_1 (basic_block block)
2855 struct stack_def regstack;
2856 block_info bi = BLOCK_INFO (block);
2857 int reg;
2858 rtx insn, next;
2859 bool control_flow_insn_deleted = false;
2861 any_malformed_asm = false;
2863 /* Choose an initial stack layout, if one hasn't already been chosen. */
2864 if (bi->stack_in.top == -2)
2866 edge e, beste = NULL;
2867 edge_iterator ei;
2869 /* Select the best incoming edge (typically the most frequent) to
2870 use as a template for this basic block. */
2871 FOR_EACH_EDGE (e, ei, block->preds)
2872 if (BLOCK_INFO (e->src)->done)
2873 beste = better_edge (beste, e);
2875 if (beste)
2876 propagate_stack (beste);
2877 else
2879 /* No predecessors. Create an arbitrary input stack. */
2880 bi->stack_in.top = -1;
2881 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2882 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2883 bi->stack_in.reg[++bi->stack_in.top] = reg;
2887 if (dump_file)
2889 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2890 print_stack (dump_file, &bi->stack_in);
2893 /* Process all insns in this block. Keep track of NEXT so that we
2894 don't process insns emitted while substituting in INSN. */
2895 current_block = block;
2896 next = BB_HEAD (block);
2897 regstack = bi->stack_in;
2898 starting_stack_p = true;
2902 insn = next;
2903 next = NEXT_INSN (insn);
2905 /* Ensure we have not missed a block boundary. */
2906 gcc_assert (next);
2907 if (insn == BB_END (block))
2908 next = NULL;
2910 /* Don't bother processing unless there is a stack reg
2911 mentioned or if it's a CALL_INSN. */
2912 if (stack_regs_mentioned (insn)
2913 || CALL_P (insn))
2915 if (dump_file)
2917 fprintf (dump_file, " insn %d input stack: ",
2918 INSN_UID (insn));
2919 print_stack (dump_file, &regstack);
2921 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2922 starting_stack_p = false;
2925 while (next);
2927 if (dump_file)
2929 fprintf (dump_file, "Expected live registers [");
2930 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2931 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2932 fprintf (dump_file, " %d", reg);
2933 fprintf (dump_file, " ]\nOutput stack: ");
2934 print_stack (dump_file, &regstack);
2937 insn = BB_END (block);
2938 if (JUMP_P (insn))
2939 insn = PREV_INSN (insn);
2941 /* If the function is declared to return a value, but it returns one
2942 in only some cases, some registers might come live here. Emit
2943 necessary moves for them. */
2945 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2947 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2948 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2950 rtx set;
2952 if (dump_file)
2953 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2955 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2956 insn = emit_insn_after (set, insn);
2957 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2961 /* Amongst the insns possibly deleted during the substitution process above,
2962 might have been the only trapping insn in the block. We purge the now
2963 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2964 called at the end of convert_regs. The order in which we process the
2965 blocks ensures that we never delete an already processed edge.
2967 Note that, at this point, the CFG may have been damaged by the emission
2968 of instructions after an abnormal call, which moves the basic block end
2969 (and is the reason why we call fixup_abnormal_edges later). So we must
2970 be sure that the trapping insn has been deleted before trying to purge
2971 dead edges, otherwise we risk purging valid edges.
2973 ??? We are normally supposed not to delete trapping insns, so we pretend
2974 that the insns deleted above don't actually trap. It would have been
2975 better to detect this earlier and avoid creating the EH edge in the first
2976 place, still, but we don't have enough information at that time. */
2978 if (control_flow_insn_deleted)
2979 purge_dead_edges (block);
2981 /* Something failed if the stack lives don't match. If we had malformed
2982 asms, we zapped the instruction itself, but that didn't produce the
2983 same pattern of register kills as before. */
2985 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
2986 || any_malformed_asm);
2987 bi->stack_out = regstack;
2988 bi->done = true;
2991 /* Convert registers in all blocks reachable from BLOCK. */
2993 static void
2994 convert_regs_2 (basic_block block)
2996 basic_block *stack, *sp;
2998 /* We process the blocks in a top-down manner, in a way such that one block
2999 is only processed after all its predecessors. The number of predecessors
3000 of every block has already been computed. */
3002 stack = XNEWVEC (basic_block, n_basic_blocks);
3003 sp = stack;
3005 *sp++ = block;
3009 edge e;
3010 edge_iterator ei;
3012 block = *--sp;
3014 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3015 some dead EH outgoing edge after the deletion of the trapping
3016 insn inside the block. Since the number of predecessors of
3017 BLOCK's successors was computed based on the initial edge set,
3018 we check the necessity to process some of these successors
3019 before such an edge deletion may happen. However, there is
3020 a pitfall: if BLOCK is the only predecessor of a successor and
3021 the edge between them happens to be deleted, the successor
3022 becomes unreachable and should not be processed. The problem
3023 is that there is no way to preventively detect this case so we
3024 stack the successor in all cases and hand over the task of
3025 fixing up the discrepancy to convert_regs_1. */
3027 FOR_EACH_EDGE (e, ei, block->succs)
3028 if (! (e->flags & EDGE_DFS_BACK))
3030 BLOCK_INFO (e->dest)->predecessors--;
3031 if (!BLOCK_INFO (e->dest)->predecessors)
3032 *sp++ = e->dest;
3035 convert_regs_1 (block);
3037 while (sp != stack);
3039 free (stack);
3042 /* Traverse all basic blocks in a function, converting the register
3043 references in each insn from the "flat" register file that gcc uses,
3044 to the stack-like registers the 387 uses. */
3046 static void
3047 convert_regs (void)
3049 int inserted;
3050 basic_block b;
3051 edge e;
3052 edge_iterator ei;
3054 /* Initialize uninitialized registers on function entry. */
3055 inserted = convert_regs_entry ();
3057 /* Construct the desired stack for function exit. */
3058 convert_regs_exit ();
3059 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3061 /* ??? Future: process inner loops first, and give them arbitrary
3062 initial stacks which emit_swap_insn can modify. This ought to
3063 prevent double fxch that often appears at the head of a loop. */
3065 /* Process all blocks reachable from all entry points. */
3066 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3067 convert_regs_2 (e->dest);
3069 /* ??? Process all unreachable blocks. Though there's no excuse
3070 for keeping these even when not optimizing. */
3071 FOR_EACH_BB (b)
3073 block_info bi = BLOCK_INFO (b);
3075 if (! bi->done)
3076 convert_regs_2 (b);
3079 inserted |= compensate_edges ();
3081 clear_aux_for_blocks ();
3083 fixup_abnormal_edges ();
3084 if (inserted)
3085 commit_edge_insertions ();
3087 if (dump_file)
3088 fputc ('\n', dump_file);
3091 /* Convert register usage from "flat" register file usage to a "stack
3092 register file. FILE is the dump file, if used.
3094 Construct a CFG and run life analysis. Then convert each insn one
3095 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3096 code duplication created when the converter inserts pop insns on
3097 the edges. */
3099 static bool
3100 reg_to_stack (void)
3102 basic_block bb;
3103 int i;
3104 int max_uid;
3106 /* Clean up previous run. */
3107 if (stack_regs_mentioned_data != NULL)
3108 VEC_free (char, heap, stack_regs_mentioned_data);
3110 /* See if there is something to do. Flow analysis is quite
3111 expensive so we might save some compilation time. */
3112 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3113 if (df_regs_ever_live_p (i))
3114 break;
3115 if (i > LAST_STACK_REG)
3116 return false;
3118 df_note_add_problem ();
3119 df_analyze ();
3121 mark_dfs_back_edges ();
3123 /* Set up block info for each basic block. */
3124 alloc_aux_for_blocks (sizeof (struct block_info_def));
3125 FOR_EACH_BB (bb)
3127 block_info bi = BLOCK_INFO (bb);
3128 edge_iterator ei;
3129 edge e;
3130 int reg;
3132 FOR_EACH_EDGE (e, ei, bb->preds)
3133 if (!(e->flags & EDGE_DFS_BACK)
3134 && e->src != ENTRY_BLOCK_PTR)
3135 bi->predecessors++;
3137 /* Set current register status at last instruction `uninitialized'. */
3138 bi->stack_in.top = -2;
3140 /* Copy live_at_end and live_at_start into temporaries. */
3141 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3143 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3144 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3145 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3146 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3150 /* Create the replacement registers up front. */
3151 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3153 enum machine_mode mode;
3154 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3155 mode != VOIDmode;
3156 mode = GET_MODE_WIDER_MODE (mode))
3157 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3158 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3159 mode != VOIDmode;
3160 mode = GET_MODE_WIDER_MODE (mode))
3161 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3164 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3166 /* A QNaN for initializing uninitialized variables.
3168 ??? We can't load from constant memory in PIC mode, because
3169 we're inserting these instructions before the prologue and
3170 the PIC register hasn't been set up. In that case, fall back
3171 on zero, which we can get from `ldz'. */
3173 if ((flag_pic && !TARGET_64BIT)
3174 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3175 not_a_num = CONST0_RTX (SFmode);
3176 else
3178 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3179 not_a_num = force_const_mem (SFmode, not_a_num);
3182 /* Allocate a cache for stack_regs_mentioned. */
3183 max_uid = get_max_uid ();
3184 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3185 memset (VEC_address (char, stack_regs_mentioned_data),
3186 0, sizeof (char) * max_uid + 1);
3188 convert_regs ();
3190 free_aux_for_blocks ();
3191 return true;
3193 #endif /* STACK_REGS */
3195 static bool
3196 gate_handle_stack_regs (void)
3198 #ifdef STACK_REGS
3199 return 1;
3200 #else
3201 return 0;
3202 #endif
3205 struct tree_opt_pass pass_stack_regs =
3207 NULL, /* name */
3208 gate_handle_stack_regs, /* gate */
3209 NULL, /* execute */
3210 NULL, /* sub */
3211 NULL, /* next */
3212 0, /* static_pass_number */
3213 TV_REG_STACK, /* tv_id */
3214 0, /* properties_required */
3215 0, /* properties_provided */
3216 0, /* properties_destroyed */
3217 0, /* todo_flags_start */
3218 0, /* todo_flags_finish */
3219 0 /* letter */
3222 /* Convert register usage from flat register file usage to a stack
3223 register file. */
3224 static unsigned int
3225 rest_of_handle_stack_regs (void)
3227 #ifdef STACK_REGS
3228 reg_to_stack ();
3229 regstack_completed = 1;
3230 #endif
3231 return 0;
3234 struct tree_opt_pass pass_stack_regs_run =
3236 "stack", /* name */
3237 NULL, /* gate */
3238 rest_of_handle_stack_regs, /* execute */
3239 NULL, /* sub */
3240 NULL, /* next */
3241 0, /* static_pass_number */
3242 TV_REG_STACK, /* tv_id */
3243 0, /* properties_required */
3244 0, /* properties_provided */
3245 0, /* properties_destroyed */
3246 0, /* todo_flags_start */
3247 TODO_df_finish | TODO_verify_rtl_sharing |
3248 TODO_dump_func |
3249 TODO_ggc_collect, /* todo_flags_finish */
3250 'k' /* letter */