2008-01-26 Jerry DeLisle <jvdelisle@gcc.gnu.org>
[official-gcc.git] / gcc / lower-subreg.c
blobfa3a2c87a985a2a9cb1e625b89b94555db9f6d05
1 /* Decompose multiword subregs.
2 Copyright (C) 2007 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 Ian Lance Taylor <iant@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "machmode.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "timevar.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "obstack.h"
33 #include "basic-block.h"
34 #include "recog.h"
35 #include "bitmap.h"
36 #include "expr.h"
37 #include "except.h"
38 #include "regs.h"
39 #include "tree-pass.h"
40 #include "df.h"
42 #ifdef STACK_GROWS_DOWNWARD
43 # undef STACK_GROWS_DOWNWARD
44 # define STACK_GROWS_DOWNWARD 1
45 #else
46 # define STACK_GROWS_DOWNWARD 0
47 #endif
49 DEF_VEC_P (bitmap);
50 DEF_VEC_ALLOC_P (bitmap,heap);
52 /* Decompose multi-word pseudo-registers into individual
53 pseudo-registers when possible. This is possible when all the uses
54 of a multi-word register are via SUBREG, or are copies of the
55 register to another location. Breaking apart the register permits
56 more CSE and permits better register allocation. */
58 /* Bit N in this bitmap is set if regno N is used in a context in
59 which we can decompose it. */
60 static bitmap decomposable_context;
62 /* Bit N in this bitmap is set if regno N is used in a context in
63 which it can not be decomposed. */
64 static bitmap non_decomposable_context;
66 /* Bit N in the bitmap in element M of this array is set if there is a
67 copy from reg M to reg N. */
68 static VEC(bitmap,heap) *reg_copy_graph;
70 /* Return whether X is a simple object which we can take a word_mode
71 subreg of. */
73 static bool
74 simple_move_operand (rtx x)
76 if (GET_CODE (x) == SUBREG)
77 x = SUBREG_REG (x);
79 if (!OBJECT_P (x))
80 return false;
82 if (GET_CODE (x) == LABEL_REF
83 || GET_CODE (x) == SYMBOL_REF
84 || GET_CODE (x) == HIGH
85 || GET_CODE (x) == CONST)
86 return false;
88 if (MEM_P (x)
89 && (MEM_VOLATILE_P (x)
90 || mode_dependent_address_p (XEXP (x, 0))))
91 return false;
93 return true;
96 /* If INSN is a single set between two objects, return the single set.
97 Such an insn can always be decomposed. INSN should have been
98 passed to recog and extract_insn before this is called. */
100 static rtx
101 simple_move (rtx insn)
103 rtx x;
104 rtx set;
105 enum machine_mode mode;
107 if (recog_data.n_operands != 2)
108 return NULL_RTX;
110 set = single_set (insn);
111 if (!set)
112 return NULL_RTX;
114 x = SET_DEST (set);
115 if (x != recog_data.operand[0] && x != recog_data.operand[1])
116 return NULL_RTX;
117 if (!simple_move_operand (x))
118 return NULL_RTX;
120 x = SET_SRC (set);
121 if (x != recog_data.operand[0] && x != recog_data.operand[1])
122 return NULL_RTX;
123 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
124 things like x86 rdtsc which returns a DImode value. */
125 if (GET_CODE (x) != ASM_OPERANDS
126 && !simple_move_operand (x))
127 return NULL_RTX;
129 /* We try to decompose in integer modes, to avoid generating
130 inefficient code copying between integer and floating point
131 registers. That means that we can't decompose if this is a
132 non-integer mode for which there is no integer mode of the same
133 size. */
134 mode = GET_MODE (SET_SRC (set));
135 if (!SCALAR_INT_MODE_P (mode)
136 && (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0)
137 == BLKmode))
138 return NULL_RTX;
140 /* Reject PARTIAL_INT modes. They are used for processor specific
141 purposes and it's probably best not to tamper with them. */
142 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
143 return NULL_RTX;
145 return set;
148 /* If SET is a copy from one multi-word pseudo-register to another,
149 record that in reg_copy_graph. Return whether it is such a
150 copy. */
152 static bool
153 find_pseudo_copy (rtx set)
155 rtx dest = SET_DEST (set);
156 rtx src = SET_SRC (set);
157 unsigned int rd, rs;
158 bitmap b;
160 if (!REG_P (dest) || !REG_P (src))
161 return false;
163 rd = REGNO (dest);
164 rs = REGNO (src);
165 if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
166 return false;
168 if (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
169 return false;
171 b = VEC_index (bitmap, reg_copy_graph, rs);
172 if (b == NULL)
174 b = BITMAP_ALLOC (NULL);
175 VEC_replace (bitmap, reg_copy_graph, rs, b);
178 bitmap_set_bit (b, rd);
180 return true;
183 /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
184 where they are copied to another register, add the register to
185 which they are copied to DECOMPOSABLE_CONTEXT. Use
186 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
187 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
189 static void
190 propagate_pseudo_copies (void)
192 bitmap queue, propagate;
194 queue = BITMAP_ALLOC (NULL);
195 propagate = BITMAP_ALLOC (NULL);
197 bitmap_copy (queue, decomposable_context);
200 bitmap_iterator iter;
201 unsigned int i;
203 bitmap_clear (propagate);
205 EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
207 bitmap b = VEC_index (bitmap, reg_copy_graph, i);
208 if (b)
209 bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
212 bitmap_and_compl (queue, propagate, decomposable_context);
213 bitmap_ior_into (decomposable_context, propagate);
215 while (!bitmap_empty_p (queue));
217 BITMAP_FREE (queue);
218 BITMAP_FREE (propagate);
221 /* A pointer to one of these values is passed to
222 find_decomposable_subregs via for_each_rtx. */
224 enum classify_move_insn
226 /* Not a simple move from one location to another. */
227 NOT_SIMPLE_MOVE,
228 /* A simple move from one pseudo-register to another with no
229 REG_RETVAL note. */
230 SIMPLE_PSEUDO_REG_MOVE,
231 /* A simple move involving a non-pseudo-register, or from one
232 pseudo-register to another with a REG_RETVAL note. */
233 SIMPLE_MOVE
236 /* This is called via for_each_rtx. If we find a SUBREG which we
237 could use to decompose a pseudo-register, set a bit in
238 DECOMPOSABLE_CONTEXT. If we find an unadorned register which is
239 not a simple pseudo-register copy, DATA will point at the type of
240 move, and we set a bit in DECOMPOSABLE_CONTEXT or
241 NON_DECOMPOSABLE_CONTEXT as appropriate. */
243 static int
244 find_decomposable_subregs (rtx *px, void *data)
246 enum classify_move_insn *pcmi = (enum classify_move_insn *) data;
247 rtx x = *px;
249 if (x == NULL_RTX)
250 return 0;
252 if (GET_CODE (x) == SUBREG)
254 rtx inner = SUBREG_REG (x);
255 unsigned int regno, outer_size, inner_size, outer_words, inner_words;
257 if (!REG_P (inner))
258 return 0;
260 regno = REGNO (inner);
261 if (HARD_REGISTER_NUM_P (regno))
262 return -1;
264 outer_size = GET_MODE_SIZE (GET_MODE (x));
265 inner_size = GET_MODE_SIZE (GET_MODE (inner));
266 outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
267 inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
269 /* We only try to decompose single word subregs of multi-word
270 registers. When we find one, we return -1 to avoid iterating
271 over the inner register.
273 ??? This doesn't allow, e.g., DImode subregs of TImode values
274 on 32-bit targets. We would need to record the way the
275 pseudo-register was used, and only decompose if all the uses
276 were the same number and size of pieces. Hopefully this
277 doesn't happen much. */
279 if (outer_words == 1 && inner_words > 1)
281 bitmap_set_bit (decomposable_context, regno);
282 return -1;
285 /* If this is a cast from one mode to another, where the modes
286 have the same size, and they are not tieable, then mark this
287 register as non-decomposable. If we decompose it we are
288 likely to mess up whatever the backend is trying to do. */
289 if (outer_words > 1
290 && outer_size == inner_size
291 && !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner)))
293 bitmap_set_bit (non_decomposable_context, regno);
294 return -1;
297 else if (REG_P (x))
299 unsigned int regno;
301 /* We will see an outer SUBREG before we see the inner REG, so
302 when we see a plain REG here it means a direct reference to
303 the register.
305 If this is not a simple copy from one location to another,
306 then we can not decompose this register. If this is a simple
307 copy from one pseudo-register to another, with no REG_RETVAL
308 note, and the mode is right, then we mark the register as
309 decomposable. Otherwise we don't say anything about this
310 register--it could be decomposed, but whether that would be
311 profitable depends upon how it is used elsewhere.
313 We only set bits in the bitmap for multi-word
314 pseudo-registers, since those are the only ones we care about
315 and it keeps the size of the bitmaps down. */
317 regno = REGNO (x);
318 if (!HARD_REGISTER_NUM_P (regno)
319 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
321 switch (*pcmi)
323 case NOT_SIMPLE_MOVE:
324 bitmap_set_bit (non_decomposable_context, regno);
325 break;
326 case SIMPLE_PSEUDO_REG_MOVE:
327 if (MODES_TIEABLE_P (GET_MODE (x), word_mode))
328 bitmap_set_bit (decomposable_context, regno);
329 break;
330 case SIMPLE_MOVE:
331 break;
332 default:
333 gcc_unreachable ();
337 else if (MEM_P (x))
339 enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
341 /* Any registers used in a MEM do not participate in a
342 SIMPLE_MOVE or SIMPLE_PSEUDO_REG_MOVE. Do our own recursion
343 here, and return -1 to block the parent's recursion. */
344 for_each_rtx (&XEXP (x, 0), find_decomposable_subregs, &cmi_mem);
345 return -1;
348 return 0;
351 /* Decompose REGNO into word-sized components. We smash the REG node
352 in place. This ensures that (1) something goes wrong quickly if we
353 fail to make some replacement, and (2) the debug information inside
354 the symbol table is automatically kept up to date. */
356 static void
357 decompose_register (unsigned int regno)
359 rtx reg;
360 unsigned int words, i;
361 rtvec v;
363 reg = regno_reg_rtx[regno];
365 regno_reg_rtx[regno] = NULL_RTX;
367 words = GET_MODE_SIZE (GET_MODE (reg));
368 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
370 v = rtvec_alloc (words);
371 for (i = 0; i < words; ++i)
372 RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
374 PUT_CODE (reg, CONCATN);
375 XVEC (reg, 0) = v;
377 if (dump_file)
379 fprintf (dump_file, "; Splitting reg %u ->", regno);
380 for (i = 0; i < words; ++i)
381 fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
382 fputc ('\n', dump_file);
386 /* Get a SUBREG of a CONCATN. */
388 static rtx
389 simplify_subreg_concatn (enum machine_mode outermode, rtx op,
390 unsigned int byte)
392 unsigned int inner_size;
393 enum machine_mode innermode;
394 rtx part;
395 unsigned int final_offset;
397 gcc_assert (GET_CODE (op) == CONCATN);
398 gcc_assert (byte % GET_MODE_SIZE (outermode) == 0);
400 innermode = GET_MODE (op);
401 gcc_assert (byte < GET_MODE_SIZE (innermode));
402 gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (innermode));
404 inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0);
405 part = XVECEXP (op, 0, byte / inner_size);
406 final_offset = byte % inner_size;
407 if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
408 return NULL_RTX;
410 return simplify_gen_subreg (outermode, part, GET_MODE (part), final_offset);
413 /* Wrapper around simplify_gen_subreg which handles CONCATN. */
415 static rtx
416 simplify_gen_subreg_concatn (enum machine_mode outermode, rtx op,
417 enum machine_mode innermode, unsigned int byte)
419 rtx ret;
421 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
422 If OP is a SUBREG of a CONCATN, then it must be a simple mode
423 change with the same size and offset 0, or it must extract a
424 part. We shouldn't see anything else here. */
425 if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
427 rtx op2;
429 if ((GET_MODE_SIZE (GET_MODE (op))
430 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
431 && SUBREG_BYTE (op) == 0)
432 return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
433 GET_MODE (SUBREG_REG (op)), byte);
435 op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
436 SUBREG_BYTE (op));
437 if (op2 == NULL_RTX)
439 /* We don't handle paradoxical subregs here. */
440 gcc_assert (GET_MODE_SIZE (outermode)
441 <= GET_MODE_SIZE (GET_MODE (op)));
442 gcc_assert (GET_MODE_SIZE (GET_MODE (op))
443 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))));
444 op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
445 byte + SUBREG_BYTE (op));
446 gcc_assert (op2 != NULL_RTX);
447 return op2;
450 op = op2;
451 gcc_assert (op != NULL_RTX);
452 gcc_assert (innermode == GET_MODE (op));
455 if (GET_CODE (op) == CONCATN)
456 return simplify_subreg_concatn (outermode, op, byte);
458 ret = simplify_gen_subreg (outermode, op, innermode, byte);
460 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
461 resolve_simple_move will ask for the high part of the paradoxical
462 subreg, which does not have a value. Just return a zero. */
463 if (ret == NULL_RTX
464 && GET_CODE (op) == SUBREG
465 && SUBREG_BYTE (op) == 0
466 && (GET_MODE_SIZE (innermode)
467 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
468 return CONST0_RTX (outermode);
470 gcc_assert (ret != NULL_RTX);
471 return ret;
474 /* Return whether we should resolve X into the registers into which it
475 was decomposed. */
477 static bool
478 resolve_reg_p (rtx x)
480 return GET_CODE (x) == CONCATN;
483 /* Return whether X is a SUBREG of a register which we need to
484 resolve. */
486 static bool
487 resolve_subreg_p (rtx x)
489 if (GET_CODE (x) != SUBREG)
490 return false;
491 return resolve_reg_p (SUBREG_REG (x));
494 /* This is called via for_each_rtx. Look for SUBREGs which need to be
495 decomposed. */
497 static int
498 resolve_subreg_use (rtx *px, void *data)
500 rtx insn = (rtx) data;
501 rtx x = *px;
503 if (x == NULL_RTX)
504 return 0;
506 if (resolve_subreg_p (x))
508 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
509 SUBREG_BYTE (x));
511 /* It is possible for a note to contain a reference which we can
512 decompose. In this case, return 1 to the caller to indicate
513 that the note must be removed. */
514 if (!x)
516 gcc_assert (!insn);
517 return 1;
520 validate_change (insn, px, x, 1);
521 return -1;
524 if (resolve_reg_p (x))
526 /* Return 1 to the caller to indicate that we found a direct
527 reference to a register which is being decomposed. This can
528 happen inside notes, multiword shift or zero-extend
529 instructions. */
530 return 1;
533 return 0;
536 /* We are deleting INSN. Move any EH_REGION notes to INSNS. */
538 static void
539 move_eh_region_note (rtx insn, rtx insns)
541 rtx note, p;
543 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
544 if (note == NULL_RTX)
545 return;
547 gcc_assert (CALL_P (insn)
548 || (flag_non_call_exceptions && may_trap_p (PATTERN (insn))));
550 for (p = insns; p != NULL_RTX; p = NEXT_INSN (p))
552 if (CALL_P (p)
553 || (flag_non_call_exceptions
554 && INSN_P (p)
555 && may_trap_p (PATTERN (p))))
556 REG_NOTES (p) = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0),
557 REG_NOTES (p));
561 /* If there is a REG_LIBCALL note on OLD_START, move it to NEW_START,
562 and link the corresponding REG_RETVAL note to NEW_START. */
564 static void
565 move_libcall_note (rtx old_start, rtx new_start)
567 rtx note0, note1, end;
569 note0 = find_reg_note (old_start, REG_LIBCALL, NULL);
570 if (note0 == NULL_RTX)
571 return;
573 remove_note (old_start, note0);
574 end = XEXP (note0, 0);
575 note1 = find_reg_note (end, REG_RETVAL, NULL);
577 XEXP (note0, 1) = REG_NOTES (new_start);
578 REG_NOTES (new_start) = note0;
579 XEXP (note1, 0) = new_start;
582 /* Remove any REG_RETVAL note, the corresponding REG_LIBCALL note, and
583 any markers for a no-conflict block. We have decomposed the
584 registers so the non-conflict is now obvious. */
586 static void
587 remove_retval_note (rtx insn1)
589 rtx note0, insn0, note1, insn;
591 note1 = find_reg_note (insn1, REG_RETVAL, NULL);
592 if (note1 == NULL_RTX)
593 return;
595 insn0 = XEXP (note1, 0);
596 note0 = find_reg_note (insn0, REG_LIBCALL, NULL);
598 remove_note (insn0, note0);
599 remove_note (insn1, note1);
601 for (insn = insn0; insn != insn1; insn = NEXT_INSN (insn))
603 while (1)
605 rtx note;
607 note = find_reg_note (insn, REG_NO_CONFLICT, NULL);
608 if (note == NULL_RTX)
609 break;
610 remove_note (insn, note);
615 /* Resolve any decomposed registers which appear in register notes on
616 INSN. */
618 static void
619 resolve_reg_notes (rtx insn)
621 rtx *pnote, note;
623 note = find_reg_equal_equiv_note (insn);
624 if (note)
626 int old_count = num_validated_changes ();
627 if (for_each_rtx (&XEXP (note, 0), resolve_subreg_use, NULL))
629 remove_note (insn, note);
630 remove_retval_note (insn);
632 else
633 if (old_count != num_validated_changes ())
634 df_notes_rescan (insn);
637 pnote = &REG_NOTES (insn);
638 while (*pnote != NULL_RTX)
640 bool delete = false;
642 note = *pnote;
643 switch (REG_NOTE_KIND (note))
645 case REG_NO_CONFLICT:
646 case REG_DEAD:
647 case REG_UNUSED:
648 if (resolve_reg_p (XEXP (note, 0)))
649 delete = true;
650 break;
652 default:
653 break;
656 if (delete)
657 *pnote = XEXP (note, 1);
658 else
659 pnote = &XEXP (note, 1);
663 /* Return whether X can be decomposed into subwords. */
665 static bool
666 can_decompose_p (rtx x)
668 if (REG_P (x))
670 unsigned int regno = REGNO (x);
672 if (HARD_REGISTER_NUM_P (regno))
673 return (validate_subreg (word_mode, GET_MODE (x), x, UNITS_PER_WORD)
674 && HARD_REGNO_MODE_OK (regno, word_mode));
675 else
676 return !bitmap_bit_p (non_decomposable_context, regno);
679 return true;
682 /* Decompose the registers used in a simple move SET within INSN. If
683 we don't change anything, return INSN, otherwise return the start
684 of the sequence of moves. */
686 static rtx
687 resolve_simple_move (rtx set, rtx insn)
689 rtx src, dest, real_dest, insns;
690 enum machine_mode orig_mode, dest_mode;
691 unsigned int words;
692 bool pushing;
694 src = SET_SRC (set);
695 dest = SET_DEST (set);
696 orig_mode = GET_MODE (dest);
698 words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
699 if (words <= 1)
700 return insn;
702 start_sequence ();
704 /* We have to handle copying from a SUBREG of a decomposed reg where
705 the SUBREG is larger than word size. Rather than assume that we
706 can take a word_mode SUBREG of the destination, we copy to a new
707 register and then copy that to the destination. */
709 real_dest = NULL_RTX;
711 if (GET_CODE (src) == SUBREG
712 && resolve_reg_p (SUBREG_REG (src))
713 && (SUBREG_BYTE (src) != 0
714 || (GET_MODE_SIZE (orig_mode)
715 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
717 real_dest = dest;
718 dest = gen_reg_rtx (orig_mode);
719 if (REG_P (real_dest))
720 REG_ATTRS (dest) = REG_ATTRS (real_dest);
723 /* Similarly if we are copying to a SUBREG of a decomposed reg where
724 the SUBREG is larger than word size. */
726 if (GET_CODE (dest) == SUBREG
727 && resolve_reg_p (SUBREG_REG (dest))
728 && (SUBREG_BYTE (dest) != 0
729 || (GET_MODE_SIZE (orig_mode)
730 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
732 rtx reg, minsn, smove;
734 reg = gen_reg_rtx (orig_mode);
735 minsn = emit_move_insn (reg, src);
736 smove = single_set (minsn);
737 gcc_assert (smove != NULL_RTX);
738 resolve_simple_move (smove, minsn);
739 src = reg;
742 /* If we didn't have any big SUBREGS of decomposed registers, and
743 neither side of the move is a register we are decomposing, then
744 we don't have to do anything here. */
746 if (src == SET_SRC (set)
747 && dest == SET_DEST (set)
748 && !resolve_reg_p (src)
749 && !resolve_subreg_p (src)
750 && !resolve_reg_p (dest)
751 && !resolve_subreg_p (dest))
753 end_sequence ();
754 return insn;
757 /* It's possible for the code to use a subreg of a decomposed
758 register while forming an address. We need to handle that before
759 passing the address to emit_move_insn. We pass NULL_RTX as the
760 insn parameter to resolve_subreg_use because we can not validate
761 the insn yet. */
762 if (MEM_P (src) || MEM_P (dest))
764 int acg;
766 if (MEM_P (src))
767 for_each_rtx (&XEXP (src, 0), resolve_subreg_use, NULL_RTX);
768 if (MEM_P (dest))
769 for_each_rtx (&XEXP (dest, 0), resolve_subreg_use, NULL_RTX);
770 acg = apply_change_group ();
771 gcc_assert (acg);
774 /* If SRC is a register which we can't decompose, or has side
775 effects, we need to move via a temporary register. */
777 if (!can_decompose_p (src)
778 || side_effects_p (src)
779 || GET_CODE (src) == ASM_OPERANDS)
781 rtx reg;
783 reg = gen_reg_rtx (orig_mode);
784 emit_move_insn (reg, src);
785 src = reg;
788 /* If DEST is a register which we can't decompose, or has side
789 effects, we need to first move to a temporary register. We
790 handle the common case of pushing an operand directly. We also
791 go through a temporary register if it holds a floating point
792 value. This gives us better code on systems which can't move
793 data easily between integer and floating point registers. */
795 dest_mode = orig_mode;
796 pushing = push_operand (dest, dest_mode);
797 if (!can_decompose_p (dest)
798 || (side_effects_p (dest) && !pushing)
799 || (!SCALAR_INT_MODE_P (dest_mode)
800 && !resolve_reg_p (dest)
801 && !resolve_subreg_p (dest)))
803 if (real_dest == NULL_RTX)
804 real_dest = dest;
805 if (!SCALAR_INT_MODE_P (dest_mode))
807 dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT,
808 MODE_INT, 0);
809 gcc_assert (dest_mode != BLKmode);
811 dest = gen_reg_rtx (dest_mode);
812 if (REG_P (real_dest))
813 REG_ATTRS (dest) = REG_ATTRS (real_dest);
816 if (pushing)
818 unsigned int i, j, jinc;
820 gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0);
821 gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
822 gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
824 if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
826 j = 0;
827 jinc = 1;
829 else
831 j = words - 1;
832 jinc = -1;
835 for (i = 0; i < words; ++i, j += jinc)
837 rtx temp;
839 temp = copy_rtx (XEXP (dest, 0));
840 temp = adjust_automodify_address_nv (dest, word_mode, temp,
841 j * UNITS_PER_WORD);
842 emit_move_insn (temp,
843 simplify_gen_subreg_concatn (word_mode, src,
844 orig_mode,
845 j * UNITS_PER_WORD));
848 else
850 unsigned int i;
852 if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
853 emit_insn (gen_rtx_CLOBBER (VOIDmode, dest));
855 for (i = 0; i < words; ++i)
856 emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest,
857 dest_mode,
858 i * UNITS_PER_WORD),
859 simplify_gen_subreg_concatn (word_mode, src,
860 orig_mode,
861 i * UNITS_PER_WORD));
864 if (real_dest != NULL_RTX)
866 rtx mdest, minsn, smove;
868 if (dest_mode == orig_mode)
869 mdest = dest;
870 else
871 mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
872 minsn = emit_move_insn (real_dest, mdest);
874 smove = single_set (minsn);
875 gcc_assert (smove != NULL_RTX);
877 resolve_simple_move (smove, minsn);
880 insns = get_insns ();
881 end_sequence ();
883 move_eh_region_note (insn, insns);
885 emit_insn_before (insns, insn);
887 move_libcall_note (insn, insns);
888 remove_retval_note (insn);
889 delete_insn (insn);
891 return insns;
894 /* Change a CLOBBER of a decomposed register into a CLOBBER of the
895 component registers. Return whether we changed something. */
897 static bool
898 resolve_clobber (rtx pat, rtx insn)
900 rtx reg, note;
901 enum machine_mode orig_mode;
902 unsigned int words, i;
903 int ret;
905 reg = XEXP (pat, 0);
906 if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
907 return false;
909 /* If this clobber has a REG_LIBCALL note, then it is the initial
910 clobber added by emit_no_conflict_block. We were able to
911 decompose the register, so we no longer need the clobber. */
912 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
913 if (note != NULL_RTX)
915 remove_retval_note (XEXP (note, 0));
916 delete_insn (insn);
917 return true;
920 orig_mode = GET_MODE (reg);
921 words = GET_MODE_SIZE (orig_mode);
922 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
924 ret = validate_change (NULL_RTX, &XEXP (pat, 0),
925 simplify_gen_subreg_concatn (word_mode, reg,
926 orig_mode, 0),
928 df_insn_rescan (insn);
929 gcc_assert (ret != 0);
931 for (i = words - 1; i > 0; --i)
933 rtx x;
935 x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
936 i * UNITS_PER_WORD);
937 x = gen_rtx_CLOBBER (VOIDmode, x);
938 emit_insn_after (x, insn);
941 resolve_reg_notes (insn);
943 return true;
946 /* A USE of a decomposed register is no longer meaningful. Return
947 whether we changed something. */
949 static bool
950 resolve_use (rtx pat, rtx insn)
952 if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
954 delete_insn (insn);
955 return true;
958 resolve_reg_notes (insn);
960 return false;
963 /* Checks if INSN is a decomposable multiword-shift or zero-extend and
964 sets the decomposable_context bitmap accordingly. A non-zero value
965 is returned if a decomposable insn has been found. */
967 static int
968 find_decomposable_shift_zext (rtx insn)
970 rtx set;
971 rtx op;
972 rtx op_operand;
974 set = single_set (insn);
975 if (!set)
976 return 0;
978 op = SET_SRC (set);
979 if (GET_CODE (op) != ASHIFT
980 && GET_CODE (op) != LSHIFTRT
981 && GET_CODE (op) != ZERO_EXTEND)
982 return 0;
984 op_operand = XEXP (op, 0);
985 if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
986 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
987 || HARD_REGISTER_NUM_P (REGNO (op_operand))
988 || !SCALAR_INT_MODE_P (GET_MODE (op)))
989 return 0;
991 if (GET_CODE (op) == ZERO_EXTEND)
993 if (GET_MODE (op_operand) != word_mode
994 || GET_MODE_BITSIZE (GET_MODE (op)) != 2 * BITS_PER_WORD)
995 return 0;
997 else /* left or right shift */
999 if (GET_CODE (XEXP (op, 1)) != CONST_INT
1000 || INTVAL (XEXP (op, 1)) < BITS_PER_WORD
1001 || GET_MODE_BITSIZE (GET_MODE (op_operand)) != 2 * BITS_PER_WORD)
1002 return 0;
1005 bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
1007 if (GET_CODE (op) != ZERO_EXTEND)
1008 bitmap_set_bit (decomposable_context, REGNO (op_operand));
1010 return 1;
1013 /* Decompose a more than word wide shift (in INSN) of a multiword
1014 pseudo or a multiword zero-extend of a wordmode pseudo into a move
1015 and 'set to zero' insn. Return a pointer to the new insn when a
1016 replacement was done. */
1018 static rtx
1019 resolve_shift_zext (rtx insn)
1021 rtx set;
1022 rtx op;
1023 rtx op_operand;
1024 rtx insns;
1025 rtx src_reg, dest_reg, dest_zero;
1026 int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
1028 set = single_set (insn);
1029 if (!set)
1030 return NULL_RTX;
1032 op = SET_SRC (set);
1033 if (GET_CODE (op) != ASHIFT
1034 && GET_CODE (op) != LSHIFTRT
1035 && GET_CODE (op) != ZERO_EXTEND)
1036 return NULL_RTX;
1038 op_operand = XEXP (op, 0);
1040 if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
1041 return NULL_RTX;
1043 /* src_reg_num is the number of the word mode register which we
1044 are operating on. For a left shift and a zero_extend on little
1045 endian machines this is register 0. */
1046 src_reg_num = GET_CODE (op) == LSHIFTRT ? 1 : 0;
1048 if (WORDS_BIG_ENDIAN
1049 && GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD)
1050 src_reg_num = 1 - src_reg_num;
1052 if (GET_CODE (op) == ZERO_EXTEND)
1053 dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
1054 else
1055 dest_reg_num = 1 - src_reg_num;
1057 offset1 = UNITS_PER_WORD * dest_reg_num;
1058 offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
1059 src_offset = UNITS_PER_WORD * src_reg_num;
1061 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1063 offset1 += UNITS_PER_WORD - 1;
1064 offset2 += UNITS_PER_WORD - 1;
1065 src_offset += UNITS_PER_WORD - 1;
1068 start_sequence ();
1070 dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1071 GET_MODE (SET_DEST (set)),
1072 offset1);
1073 dest_zero = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1074 GET_MODE (SET_DEST (set)),
1075 offset2);
1076 src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
1077 GET_MODE (op_operand),
1078 src_offset);
1079 if (GET_CODE (op) != ZERO_EXTEND)
1081 int shift_count = INTVAL (XEXP (op, 1));
1082 if (shift_count > BITS_PER_WORD)
1083 src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
1084 LSHIFT_EXPR : RSHIFT_EXPR,
1085 word_mode, src_reg,
1086 build_int_cst (NULL_TREE,
1087 shift_count - BITS_PER_WORD),
1088 dest_reg, 1);
1091 if (dest_reg != src_reg)
1092 emit_move_insn (dest_reg, src_reg);
1093 emit_move_insn (dest_zero, CONST0_RTX (word_mode));
1094 insns = get_insns ();
1096 end_sequence ();
1098 emit_insn_before (insns, insn);
1100 if (dump_file)
1102 rtx in;
1103 fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
1104 for (in = insns; in != insn; in = NEXT_INSN (in))
1105 fprintf (dump_file, "%d ", INSN_UID (in));
1106 fprintf (dump_file, "\n");
1109 delete_insn (insn);
1110 return insns;
1113 /* Look for registers which are always accessed via word-sized SUBREGs
1114 or via copies. Decompose these registers into several word-sized
1115 pseudo-registers. */
1117 static void
1118 decompose_multiword_subregs (void)
1120 unsigned int max;
1121 basic_block bb;
1123 if (df)
1124 df_set_flags (DF_DEFER_INSN_RESCAN);
1126 max = max_reg_num ();
1128 /* First see if there are any multi-word pseudo-registers. If there
1129 aren't, there is nothing we can do. This should speed up this
1130 pass in the normal case, since it should be faster than scanning
1131 all the insns. */
1133 unsigned int i;
1135 for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
1137 if (regno_reg_rtx[i] != NULL
1138 && GET_MODE_SIZE (GET_MODE (regno_reg_rtx[i])) > UNITS_PER_WORD)
1139 break;
1141 if (i == max)
1142 return;
1145 /* FIXME: When the dataflow branch is merged, we can change this
1146 code to look for each multi-word pseudo-register and to find each
1147 insn which sets or uses that register. That should be faster
1148 than scanning all the insns. */
1150 decomposable_context = BITMAP_ALLOC (NULL);
1151 non_decomposable_context = BITMAP_ALLOC (NULL);
1153 reg_copy_graph = VEC_alloc (bitmap, heap, max);
1154 VEC_safe_grow (bitmap, heap, reg_copy_graph, max);
1155 memset (VEC_address (bitmap, reg_copy_graph), 0, sizeof (bitmap) * max);
1157 FOR_EACH_BB (bb)
1159 rtx insn;
1161 FOR_BB_INSNS (bb, insn)
1163 rtx set;
1164 enum classify_move_insn cmi;
1165 int i, n;
1167 if (!INSN_P (insn)
1168 || GET_CODE (PATTERN (insn)) == CLOBBER
1169 || GET_CODE (PATTERN (insn)) == USE)
1170 continue;
1172 if (find_decomposable_shift_zext (insn))
1173 continue;
1175 recog_memoized (insn);
1176 extract_insn (insn);
1178 set = simple_move (insn);
1180 if (!set)
1181 cmi = NOT_SIMPLE_MOVE;
1182 else
1184 bool retval;
1186 retval = find_reg_note (insn, REG_RETVAL, NULL_RTX) != NULL_RTX;
1188 if (find_pseudo_copy (set) && !retval)
1189 cmi = SIMPLE_PSEUDO_REG_MOVE;
1190 else if (retval
1191 && REG_P (SET_SRC (set))
1192 && HARD_REGISTER_P (SET_SRC (set)))
1194 rtx note;
1196 /* We don't want to decompose an assignment which
1197 copies the value returned by a libcall to a
1198 pseudo-register. Doing that will lose the RETVAL
1199 note with no real gain. */
1200 cmi = NOT_SIMPLE_MOVE;
1202 /* If we have a RETVAL note, there should be an
1203 EQUAL note. We don't want to decompose any
1204 registers which that EQUAL note refers to
1205 directly. If we do, we will no longer know the
1206 value of the libcall. */
1207 note = find_reg_equal_equiv_note (insn);
1208 if (note != NULL_RTX)
1209 for_each_rtx (&XEXP (note, 0), find_decomposable_subregs,
1210 &cmi);
1212 else
1213 cmi = SIMPLE_MOVE;
1216 n = recog_data.n_operands;
1217 for (i = 0; i < n; ++i)
1219 for_each_rtx (&recog_data.operand[i],
1220 find_decomposable_subregs,
1221 &cmi);
1223 /* We handle ASM_OPERANDS as a special case to support
1224 things like x86 rdtsc which returns a DImode value.
1225 We can decompose the output, which will certainly be
1226 operand 0, but not the inputs. */
1228 if (cmi == SIMPLE_MOVE
1229 && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1231 gcc_assert (i == 0);
1232 cmi = NOT_SIMPLE_MOVE;
1238 bitmap_and_compl_into (decomposable_context, non_decomposable_context);
1239 if (!bitmap_empty_p (decomposable_context))
1241 sbitmap sub_blocks;
1242 unsigned int i;
1243 sbitmap_iterator sbi;
1244 bitmap_iterator iter;
1245 unsigned int regno;
1247 propagate_pseudo_copies ();
1249 sub_blocks = sbitmap_alloc (last_basic_block);
1250 sbitmap_zero (sub_blocks);
1252 EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
1253 decompose_register (regno);
1255 FOR_EACH_BB (bb)
1257 rtx insn;
1259 FOR_BB_INSNS (bb, insn)
1261 rtx next, pat;
1263 if (!INSN_P (insn))
1264 continue;
1266 next = NEXT_INSN (insn);
1268 pat = PATTERN (insn);
1269 if (GET_CODE (pat) == CLOBBER)
1270 resolve_clobber (pat, insn);
1271 else if (GET_CODE (pat) == USE)
1272 resolve_use (pat, insn);
1273 else
1275 rtx set;
1276 int i;
1278 recog_memoized (insn);
1279 extract_insn (insn);
1281 set = simple_move (insn);
1282 if (set)
1284 rtx orig_insn = insn;
1285 bool cfi = control_flow_insn_p (insn);
1287 /* We can end up splitting loads to multi-word pseudos
1288 into separate loads to machine word size pseudos.
1289 When this happens, we first had one load that can
1290 throw, and after resolve_simple_move we'll have a
1291 bunch of loads (at least two). All those loads may
1292 trap if we can have non-call exceptions, so they
1293 all will end the current basic block. We split the
1294 block after the outer loop over all insns, but we
1295 make sure here that we will be able to split the
1296 basic block and still produce the correct control
1297 flow graph for it. */
1298 gcc_assert (!cfi
1299 || (flag_non_call_exceptions
1300 && can_throw_internal (insn)));
1302 insn = resolve_simple_move (set, insn);
1303 if (insn != orig_insn)
1305 remove_retval_note (insn);
1307 recog_memoized (insn);
1308 extract_insn (insn);
1310 if (cfi)
1311 SET_BIT (sub_blocks, bb->index);
1314 else
1316 rtx decomposed_shift;
1318 decomposed_shift = resolve_shift_zext (insn);
1319 if (decomposed_shift != NULL_RTX)
1321 insn = decomposed_shift;
1322 recog_memoized (insn);
1323 extract_insn (insn);
1327 for (i = recog_data.n_operands - 1; i >= 0; --i)
1328 for_each_rtx (recog_data.operand_loc[i],
1329 resolve_subreg_use,
1330 insn);
1332 resolve_reg_notes (insn);
1334 if (num_validated_changes () > 0)
1336 for (i = recog_data.n_dups - 1; i >= 0; --i)
1338 rtx *pl = recog_data.dup_loc[i];
1339 int dup_num = recog_data.dup_num[i];
1340 rtx *px = recog_data.operand_loc[dup_num];
1342 validate_unshare_change (insn, pl, *px, 1);
1345 i = apply_change_group ();
1346 gcc_assert (i);
1348 remove_retval_note (insn);
1354 /* If we had insns to split that caused control flow insns in the middle
1355 of a basic block, split those blocks now. Note that we only handle
1356 the case where splitting a load has caused multiple possibly trapping
1357 loads to appear. */
1358 EXECUTE_IF_SET_IN_SBITMAP (sub_blocks, 0, i, sbi)
1360 rtx insn, end;
1361 edge fallthru;
1363 bb = BASIC_BLOCK (i);
1364 insn = BB_HEAD (bb);
1365 end = BB_END (bb);
1367 while (insn != end)
1369 if (control_flow_insn_p (insn))
1371 /* Split the block after insn. There will be a fallthru
1372 edge, which is OK so we keep it. We have to create the
1373 exception edges ourselves. */
1374 fallthru = split_block (bb, insn);
1375 rtl_make_eh_edge (NULL, bb, BB_END (bb));
1376 bb = fallthru->dest;
1377 insn = BB_HEAD (bb);
1379 else
1380 insn = NEXT_INSN (insn);
1384 sbitmap_free (sub_blocks);
1388 unsigned int i;
1389 bitmap b;
1391 for (i = 0; VEC_iterate (bitmap, reg_copy_graph, i, b); ++i)
1392 if (b)
1393 BITMAP_FREE (b);
1396 VEC_free (bitmap, heap, reg_copy_graph);
1398 BITMAP_FREE (decomposable_context);
1399 BITMAP_FREE (non_decomposable_context);
1402 /* Gate function for lower subreg pass. */
1404 static bool
1405 gate_handle_lower_subreg (void)
1407 return flag_split_wide_types != 0;
1410 /* Implement first lower subreg pass. */
1412 static unsigned int
1413 rest_of_handle_lower_subreg (void)
1415 decompose_multiword_subregs ();
1416 return 0;
1419 /* Implement second lower subreg pass. */
1421 static unsigned int
1422 rest_of_handle_lower_subreg2 (void)
1424 decompose_multiword_subregs ();
1425 return 0;
1428 struct tree_opt_pass pass_lower_subreg =
1430 "subreg", /* name */
1431 gate_handle_lower_subreg, /* gate */
1432 rest_of_handle_lower_subreg, /* execute */
1433 NULL, /* sub */
1434 NULL, /* next */
1435 0, /* static_pass_number */
1436 TV_LOWER_SUBREG, /* tv_id */
1437 0, /* properties_required */
1438 0, /* properties_provided */
1439 0, /* properties_destroyed */
1440 0, /* todo_flags_start */
1441 TODO_dump_func |
1442 TODO_ggc_collect |
1443 TODO_verify_flow, /* todo_flags_finish */
1444 'u' /* letter */
1447 struct tree_opt_pass pass_lower_subreg2 =
1449 "subreg2", /* name */
1450 gate_handle_lower_subreg, /* gate */
1451 rest_of_handle_lower_subreg2, /* execute */
1452 NULL, /* sub */
1453 NULL, /* next */
1454 0, /* static_pass_number */
1455 TV_LOWER_SUBREG, /* tv_id */
1456 0, /* properties_required */
1457 0, /* properties_provided */
1458 0, /* properties_destroyed */
1459 0, /* todo_flags_start */
1460 TODO_df_finish | TODO_verify_rtl_sharing |
1461 TODO_dump_func |
1462 TODO_ggc_collect |
1463 TODO_verify_flow, /* todo_flags_finish */
1464 'U' /* letter */