2008-01-26 Jerry DeLisle <jvdelisle@gcc.gnu.org>
[official-gcc.git] / gcc / lambda.h
blobfc28d463e3c02ee28933c20c8172d6f5de56233a
1 /* Lambda matrix and vector interface.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef LAMBDA_H
22 #define LAMBDA_H
24 #include "vec.h"
26 /* An integer vector. A vector formally consists of an element of a vector
27 space. A vector space is a set that is closed under vector addition
28 and scalar multiplication. In this vector space, an element is a list of
29 integers. */
30 typedef int *lambda_vector;
32 DEF_VEC_P(lambda_vector);
33 DEF_VEC_ALLOC_P(lambda_vector,heap);
35 /* An integer matrix. A matrix consists of m vectors of length n (IE
36 all vectors are the same length). */
37 typedef lambda_vector *lambda_matrix;
39 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
40 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
41 represents the denominator for every element in the matrix. */
42 typedef struct lambda_trans_matrix_s
44 lambda_matrix matrix;
45 int rowsize;
46 int colsize;
47 int denominator;
48 } *lambda_trans_matrix;
49 #define LTM_MATRIX(T) ((T)->matrix)
50 #define LTM_ROWSIZE(T) ((T)->rowsize)
51 #define LTM_COLSIZE(T) ((T)->colsize)
52 #define LTM_DENOMINATOR(T) ((T)->denominator)
54 /* A vector representing a statement in the body of a loop.
55 The COEFFICIENTS vector contains a coefficient for each induction variable
56 in the loop nest containing the statement.
57 The DENOMINATOR represents the denominator for each coefficient in the
58 COEFFICIENT vector.
60 This structure is used during code generation in order to rewrite the old
61 induction variable uses in a statement in terms of the newly created
62 induction variables. */
63 typedef struct lambda_body_vector_s
65 lambda_vector coefficients;
66 int size;
67 int denominator;
68 } *lambda_body_vector;
69 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
70 #define LBV_SIZE(T) ((T)->size)
71 #define LBV_DENOMINATOR(T) ((T)->denominator)
73 /* Piecewise linear expression.
74 This structure represents a linear expression with terms for the invariants
75 and induction variables of a loop.
76 COEFFICIENTS is a vector of coefficients for the induction variables, one
77 per loop in the loop nest.
78 CONSTANT is the constant portion of the linear expression
79 INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
80 one per invariant.
81 DENOMINATOR is the denominator for all of the coefficients and constants in
82 the expression.
83 The linear expressions can be linked together using the NEXT field, in
84 order to represent MAX or MIN of a group of linear expressions. */
85 typedef struct lambda_linear_expression_s
87 lambda_vector coefficients;
88 int constant;
89 lambda_vector invariant_coefficients;
90 int denominator;
91 struct lambda_linear_expression_s *next;
92 } *lambda_linear_expression;
94 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
95 #define LLE_CONSTANT(T) ((T)->constant)
96 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
97 #define LLE_DENOMINATOR(T) ((T)->denominator)
98 #define LLE_NEXT(T) ((T)->next)
100 struct obstack;
102 lambda_linear_expression lambda_linear_expression_new (int, int,
103 struct obstack *);
104 void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
105 int, char);
107 /* Loop structure. Our loop structure consists of a constant representing the
108 STEP of the loop, a set of linear expressions representing the LOWER_BOUND
109 of the loop, a set of linear expressions representing the UPPER_BOUND of
110 the loop, and a set of linear expressions representing the LINEAR_OFFSET of
111 the loop. The linear offset is a set of linear expressions that are
112 applied to *both* the lower bound, and the upper bound. */
113 typedef struct lambda_loop_s
115 lambda_linear_expression lower_bound;
116 lambda_linear_expression upper_bound;
117 lambda_linear_expression linear_offset;
118 int step;
119 } *lambda_loop;
121 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
122 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
123 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
124 #define LL_STEP(T) ((T)->step)
126 /* Loop nest structure.
127 The loop nest structure consists of a set of loop structures (defined
128 above) in LOOPS, along with an integer representing the DEPTH of the loop,
129 and an integer representing the number of INVARIANTS in the loop. Both of
130 these integers are used to size the associated coefficient vectors in the
131 linear expression structures. */
132 typedef struct lambda_loopnest_s
134 lambda_loop *loops;
135 int depth;
136 int invariants;
137 } *lambda_loopnest;
139 #define LN_LOOPS(T) ((T)->loops)
140 #define LN_DEPTH(T) ((T)->depth)
141 #define LN_INVARIANTS(T) ((T)->invariants)
143 lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
144 lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
145 lambda_trans_matrix,
146 struct obstack *);
147 struct loop;
148 bool perfect_nest_p (struct loop *);
149 void print_lambda_loopnest (FILE *, lambda_loopnest, char);
151 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
153 void print_lambda_loop (FILE *, lambda_loop, int, int, char);
155 lambda_matrix lambda_matrix_new (int, int);
157 void lambda_matrix_id (lambda_matrix, int);
158 bool lambda_matrix_id_p (lambda_matrix, int);
159 void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
160 void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
161 void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
162 void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
163 int);
164 void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
165 lambda_matrix, int, int);
166 void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
167 int, int, int);
168 void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
169 void lambda_matrix_row_exchange (lambda_matrix, int, int);
170 void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
171 void lambda_matrix_row_negate (lambda_matrix mat, int, int);
172 void lambda_matrix_row_mc (lambda_matrix, int, int, int);
173 void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
174 void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
175 void lambda_matrix_col_negate (lambda_matrix, int, int);
176 void lambda_matrix_col_mc (lambda_matrix, int, int, int);
177 int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
178 void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
179 void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
180 void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
181 int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
182 void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
183 lambda_vector);
184 void print_lambda_matrix (FILE *, lambda_matrix, int, int);
186 lambda_trans_matrix lambda_trans_matrix_new (int, int);
187 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
188 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
189 int lambda_trans_matrix_rank (lambda_trans_matrix);
190 lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
191 lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
192 lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
193 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
194 void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
195 lambda_vector);
196 bool lambda_trans_matrix_id_p (lambda_trans_matrix);
198 lambda_body_vector lambda_body_vector_new (int, struct obstack *);
199 lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
200 lambda_body_vector,
201 struct obstack *);
202 void print_lambda_body_vector (FILE *, lambda_body_vector);
203 lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
204 VEC(tree,heap) **,
205 VEC(tree,heap) **,
206 struct obstack *);
207 void lambda_loopnest_to_gcc_loopnest (struct loop *,
208 VEC(tree,heap) *, VEC(tree,heap) *,
209 VEC(tree,heap) **,
210 lambda_loopnest, lambda_trans_matrix,
211 struct obstack *);
212 void remove_iv (tree);
214 static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
215 static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
216 static inline void lambda_vector_add (lambda_vector, lambda_vector,
217 lambda_vector, int);
218 static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
219 lambda_vector, int);
220 static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
221 static inline bool lambda_vector_zerop (lambda_vector, int);
222 static inline void lambda_vector_clear (lambda_vector, int);
223 static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
224 static inline int lambda_vector_min_nz (lambda_vector, int, int);
225 static inline int lambda_vector_first_nz (lambda_vector, int, int);
226 static inline void print_lambda_vector (FILE *, lambda_vector, int);
228 /* Allocate a new vector of given SIZE. */
230 static inline lambda_vector
231 lambda_vector_new (int size)
233 return GGC_CNEWVEC (int, size);
238 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
239 and store the result in VEC2. */
241 static inline void
242 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
243 int size, int const1)
245 int i;
247 if (const1 == 0)
248 lambda_vector_clear (vec2, size);
249 else
250 for (i = 0; i < size; i++)
251 vec2[i] = const1 * vec1[i];
254 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
256 static inline void
257 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
258 int size)
260 lambda_vector_mult_const (vec1, vec2, size, -1);
263 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
265 static inline void
266 lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
267 lambda_vector vec3, int size)
269 int i;
270 for (i = 0; i < size; i++)
271 vec3[i] = vec1[i] + vec2[i];
274 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
276 static inline void
277 lambda_vector_add_mc (lambda_vector vec1, int const1,
278 lambda_vector vec2, int const2,
279 lambda_vector vec3, int size)
281 int i;
282 for (i = 0; i < size; i++)
283 vec3[i] = const1 * vec1[i] + const2 * vec2[i];
286 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
288 static inline void
289 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
290 int size)
292 memcpy (vec2, vec1, size * sizeof (*vec1));
295 /* Return true if vector VEC1 of length SIZE is the zero vector. */
297 static inline bool
298 lambda_vector_zerop (lambda_vector vec1, int size)
300 int i;
301 for (i = 0; i < size; i++)
302 if (vec1[i] != 0)
303 return false;
304 return true;
307 /* Clear out vector VEC1 of length SIZE. */
309 static inline void
310 lambda_vector_clear (lambda_vector vec1, int size)
312 memset (vec1, 0, size * sizeof (*vec1));
315 /* Return true if two vectors are equal. */
317 static inline bool
318 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
320 int i;
321 for (i = 0; i < size; i++)
322 if (vec1[i] != vec2[i])
323 return false;
324 return true;
327 /* Return the minimum nonzero element in vector VEC1 between START and N.
328 We must have START <= N. */
330 static inline int
331 lambda_vector_min_nz (lambda_vector vec1, int n, int start)
333 int j;
334 int min = -1;
336 gcc_assert (start <= n);
337 for (j = start; j < n; j++)
339 if (vec1[j])
340 if (min < 0 || vec1[j] < vec1[min])
341 min = j;
343 gcc_assert (min >= 0);
345 return min;
348 /* Return the first nonzero element of vector VEC1 between START and N.
349 We must have START <= N. Returns N if VEC1 is the zero vector. */
351 static inline int
352 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
354 int j = start;
355 while (j < n && vec1[j] == 0)
356 j++;
357 return j;
361 /* Multiply a vector by a matrix. */
363 static inline void
364 lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
365 int n, lambda_vector dest)
367 int i, j;
368 lambda_vector_clear (dest, n);
369 for (i = 0; i < n; i++)
370 for (j = 0; j < m; j++)
371 dest[i] += mat[j][i] * vect[j];
375 /* Print out a vector VEC of length N to OUTFILE. */
377 static inline void
378 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
380 int i;
382 for (i = 0; i < n; i++)
383 fprintf (outfile, "%3d ", vector[i]);
384 fprintf (outfile, "\n");
387 /* Compute the greatest common divisor of two numbers using
388 Euclid's algorithm. */
390 static inline int
391 gcd (int a, int b)
393 int x, y, z;
395 x = abs (a);
396 y = abs (b);
398 while (x > 0)
400 z = y % x;
401 y = x;
402 x = z;
405 return y;
408 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
410 static inline int
411 lambda_vector_gcd (lambda_vector vector, int size)
413 int i;
414 int gcd1 = 0;
416 if (size > 0)
418 gcd1 = vector[0];
419 for (i = 1; i < size; i++)
420 gcd1 = gcd (gcd1, vector[i]);
422 return gcd1;
425 /* Returns true when the vector V is lexicographically positive, in
426 other words, when the first nonzero element is positive. */
428 static inline bool
429 lambda_vector_lexico_pos (lambda_vector v,
430 unsigned n)
432 unsigned i;
433 for (i = 0; i < n; i++)
435 if (v[i] == 0)
436 continue;
437 if (v[i] < 0)
438 return false;
439 if (v[i] > 0)
440 return true;
442 return true;
445 /* Given a vector of induction variables IVS, and a vector of
446 coefficients COEFS, build a tree that is a linear combination of
447 the induction variables. */
449 static inline tree
450 build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
452 unsigned i;
453 tree iv;
454 tree expr = fold_convert (type, integer_zero_node);
456 for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
458 int k = coefs[i];
460 if (k == 1)
461 expr = fold_build2 (PLUS_EXPR, type, expr, iv);
463 else if (k != 0)
464 expr = fold_build2 (PLUS_EXPR, type, expr,
465 fold_build2 (MULT_EXPR, type, iv,
466 build_int_cst (type, k)));
469 return expr;
472 #endif /* LAMBDA_H */