1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - a store to the same address as a load does not kill the load if the
28 source of the store is also the destination of the load. Handling this
29 allows more load motion, particularly out of loops.
30 - ability to realloc sbitmap vectors would allow one initial computation
31 of reg_set_in_block with only subsequent additions, rather than
32 recomputing it for each pass
36 /* References searched while implementing this.
38 Compilers Principles, Techniques and Tools
42 Global Optimization by Suppression of Partial Redundancies
44 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Stanford Ph.D. thesis, Dec. 1983
50 A Fast Algorithm for Code Movement Optimization
52 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54 A Solution to a Problem with Morel and Renvoise's
55 Global Optimization by Suppression of Partial Redundancies
56 K-H Drechsler, M.P. Stadel
57 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59 Practical Adaptation of the Global Optimization
60 Algorithm of Morel and Renvoise
62 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64 Efficiently Computing Static Single Assignment Form and the Control
66 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
67 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 J. Knoop, O. Ruthing, B. Steffen
71 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
74 Time for Reducible Flow Control
76 ACM Letters on Programming Languages and Systems,
77 Vol. 2, Num. 1-4, Mar-Dec 1993
79 An Efficient Representation for Sparse Sets
80 Preston Briggs, Linda Torczon
81 ACM Letters on Programming Languages and Systems,
82 Vol. 2, Num. 1-4, Mar-Dec 1993
84 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
85 K-H Drechsler, M.P. Stadel
86 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88 Partial Dead Code Elimination
89 J. Knoop, O. Ruthing, B. Steffen
90 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92 Effective Partial Redundancy Elimination
93 P. Briggs, K.D. Cooper
94 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96 The Program Structure Tree: Computing Control Regions in Linear Time
97 R. Johnson, D. Pearson, K. Pingali
98 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100 Optimal Code Motion: Theory and Practice
101 J. Knoop, O. Ruthing, B. Steffen
102 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104 The power of assignment motion
105 J. Knoop, O. Ruthing, B. Steffen
106 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108 Global code motion / global value numbering
110 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112 Value Driven Redundancy Elimination
114 Rice University Ph.D. thesis, Apr. 1996
118 Massively Scalar Compiler Project, Rice University, Sep. 1996
120 High Performance Compilers for Parallel Computing
124 Advanced Compiler Design and Implementation
126 Morgan Kaufmann, 1997
128 Building an Optimizing Compiler
132 People wishing to speed up the code here should read:
133 Elimination Algorithms for Data Flow Analysis
134 B.G. Ryder, M.C. Paull
135 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137 How to Analyze Large Programs Efficiently and Informatively
138 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
139 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141 People wishing to do something different can find various possibilities
142 in the above papers and elsewhere.
147 #include "coretypes.h"
155 #include "hard-reg-set.h"
158 #include "insn-config.h"
160 #include "basic-block.h"
162 #include "function.h"
171 #include "tree-pass.h"
176 /* Propagate flow information through back edges and thus enable PRE's
177 moving loop invariant calculations out of loops.
179 Originally this tended to create worse overall code, but several
180 improvements during the development of PRE seem to have made following
181 back edges generally a win.
183 Note much of the loop invariant code motion done here would normally
184 be done by loop.c, which has more heuristics for when to move invariants
185 out of loops. At some point we might need to move some of those
186 heuristics into gcse.c. */
188 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
189 are a superset of those done by GCSE.
191 We perform the following steps:
193 1) Compute basic block information.
195 2) Compute table of places where registers are set.
197 3) Perform copy/constant propagation.
199 4) Perform global cse using lazy code motion if not optimizing
200 for size, or code hoisting if we are.
202 5) Perform another pass of copy/constant propagation.
204 Two passes of copy/constant propagation are done because the first one
205 enables more GCSE and the second one helps to clean up the copies that
206 GCSE creates. This is needed more for PRE than for Classic because Classic
207 GCSE will try to use an existing register containing the common
208 subexpression rather than create a new one. This is harder to do for PRE
209 because of the code motion (which Classic GCSE doesn't do).
211 Expressions we are interested in GCSE-ing are of the form
212 (set (pseudo-reg) (expression)).
213 Function want_to_gcse_p says what these are.
215 PRE handles moving invariant expressions out of loops (by treating them as
216 partially redundant).
218 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
219 assignment) based GVN (global value numbering). L. T. Simpson's paper
220 (Rice University) on value numbering is a useful reference for this.
222 **********************
224 We used to support multiple passes but there are diminishing returns in
225 doing so. The first pass usually makes 90% of the changes that are doable.
226 A second pass can make a few more changes made possible by the first pass.
227 Experiments show any further passes don't make enough changes to justify
230 A study of spec92 using an unlimited number of passes:
231 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
232 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
233 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
235 It was found doing copy propagation between each pass enables further
238 PRE is quite expensive in complicated functions because the DFA can take
239 a while to converge. Hence we only perform one pass. The parameter
240 max-gcse-passes can be modified if one wants to experiment.
242 **********************
244 The steps for PRE are:
246 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
248 2) Perform the data flow analysis for PRE.
250 3) Delete the redundant instructions
252 4) Insert the required copies [if any] that make the partially
253 redundant instructions fully redundant.
255 5) For other reaching expressions, insert an instruction to copy the value
256 to a newly created pseudo that will reach the redundant instruction.
258 The deletion is done first so that when we do insertions we
259 know which pseudo reg to use.
261 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
262 argue it is not. The number of iterations for the algorithm to converge
263 is typically 2-4 so I don't view it as that expensive (relatively speaking).
265 PRE GCSE depends heavily on the second CSE pass to clean up the copies
266 we create. To make an expression reach the place where it's redundant,
267 the result of the expression is copied to a new register, and the redundant
268 expression is deleted by replacing it with this new register. Classic GCSE
269 doesn't have this problem as much as it computes the reaching defs of
270 each register in each block and thus can try to use an existing
273 /* GCSE global vars. */
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
278 * If we changed any jumps via cprop.
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse
;
283 /* An obstack for our working variables. */
284 static struct obstack gcse_obstack
;
286 struct reg_use
{rtx reg_rtx
; };
288 /* Hash table of expressions. */
292 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
294 /* Index in the available expression bitmaps. */
296 /* Next entry with the same hash. */
297 struct expr
*next_same_hash
;
298 /* List of anticipatable occurrences in basic blocks in the function.
299 An "anticipatable occurrence" is one that is the first occurrence in the
300 basic block, the operands are not modified in the basic block prior
301 to the occurrence and the output is not used between the start of
302 the block and the occurrence. */
303 struct occr
*antic_occr
;
304 /* List of available occurrence in basic blocks in the function.
305 An "available occurrence" is one that is the last occurrence in the
306 basic block and the operands are not modified by following statements in
307 the basic block [including this insn]. */
308 struct occr
*avail_occr
;
309 /* Non-null if the computation is PRE redundant.
310 The value is the newly created pseudo-reg to record a copy of the
311 expression in all the places that reach the redundant copy. */
315 /* Occurrence of an expression.
316 There is one per basic block. If a pattern appears more than once the
317 last appearance is used [or first for anticipatable expressions]. */
321 /* Next occurrence of this expression. */
323 /* The insn that computes the expression. */
325 /* Nonzero if this [anticipatable] occurrence has been deleted. */
327 /* Nonzero if this [available] occurrence has been copied to
329 /* ??? This is mutually exclusive with deleted_p, so they could share
334 /* Expression and copy propagation hash tables.
335 Each hash table is an array of buckets.
336 ??? It is known that if it were an array of entries, structure elements
337 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
338 not clear whether in the final analysis a sufficient amount of memory would
339 be saved as the size of the available expression bitmaps would be larger
340 [one could build a mapping table without holes afterwards though].
341 Someday I'll perform the computation and figure it out. */
346 This is an array of `expr_hash_table_size' elements. */
349 /* Size of the hash table, in elements. */
352 /* Number of hash table elements. */
353 unsigned int n_elems
;
355 /* Whether the table is expression of copy propagation one. */
359 /* Expression hash table. */
360 static struct hash_table expr_hash_table
;
362 /* Copy propagation hash table. */
363 static struct hash_table set_hash_table
;
365 /* Mapping of uids to cuids.
366 Only real insns get cuids. */
367 static int *uid_cuid
;
369 /* Highest UID in UID_CUID. */
372 /* Get the cuid of an insn. */
373 #ifdef ENABLE_CHECKING
374 #define INSN_CUID(INSN) \
375 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
377 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
380 /* Number of cuids. */
383 /* Maximum register number in function prior to doing gcse + 1.
384 Registers created during this pass have regno >= max_gcse_regno.
385 This is named with "gcse" to not collide with global of same name. */
386 static unsigned int max_gcse_regno
;
388 /* Table of registers that are modified.
390 For each register, each element is a list of places where the pseudo-reg
393 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
394 requires knowledge of which blocks kill which regs [and thus could use
395 a bitmap instead of the lists `reg_set_table' uses].
397 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
398 num-regs) [however perhaps it may be useful to keep the data as is]. One
399 advantage of recording things this way is that `reg_set_table' is fairly
400 sparse with respect to pseudo regs but for hard regs could be fairly dense
401 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
402 up functions like compute_transp since in the case of pseudo-regs we only
403 need to iterate over the number of times a pseudo-reg is set, not over the
404 number of basic blocks [clearly there is a bit of a slow down in the cases
405 where a pseudo is set more than once in a block, however it is believed
406 that the net effect is to speed things up]. This isn't done for hard-regs
407 because recording call-clobbered hard-regs in `reg_set_table' at each
408 function call can consume a fair bit of memory, and iterating over
409 hard-regs stored this way in compute_transp will be more expensive. */
411 typedef struct reg_set
413 /* The next setting of this register. */
414 struct reg_set
*next
;
415 /* The index of the block where it was set. */
419 static reg_set
**reg_set_table
;
421 /* Size of `reg_set_table'.
422 The table starts out at max_gcse_regno + slop, and is enlarged as
424 static int reg_set_table_size
;
426 /* Amount to grow `reg_set_table' by when it's full. */
427 #define REG_SET_TABLE_SLOP 100
429 /* This is a list of expressions which are MEMs and will be used by load
431 Load motion tracks MEMs which aren't killed by
432 anything except itself. (i.e., loads and stores to a single location).
433 We can then allow movement of these MEM refs with a little special
434 allowance. (all stores copy the same value to the reaching reg used
435 for the loads). This means all values used to store into memory must have
436 no side effects so we can re-issue the setter value.
437 Store Motion uses this structure as an expression table to track stores
438 which look interesting, and might be moveable towards the exit block. */
442 struct expr
* expr
; /* Gcse expression reference for LM. */
443 rtx pattern
; /* Pattern of this mem. */
444 rtx pattern_regs
; /* List of registers mentioned by the mem. */
445 rtx loads
; /* INSN list of loads seen. */
446 rtx stores
; /* INSN list of stores seen. */
447 struct ls_expr
* next
; /* Next in the list. */
448 int invalid
; /* Invalid for some reason. */
449 int index
; /* If it maps to a bitmap index. */
450 unsigned int hash_index
; /* Index when in a hash table. */
451 rtx reaching_reg
; /* Register to use when re-writing. */
454 /* Array of implicit set patterns indexed by basic block index. */
455 static rtx
*implicit_sets
;
457 /* Head of the list of load/store memory refs. */
458 static struct ls_expr
* pre_ldst_mems
= NULL
;
460 /* Hashtable for the load/store memory refs. */
461 static htab_t pre_ldst_table
= NULL
;
463 /* Bitmap containing one bit for each register in the program.
464 Used when performing GCSE to track which registers have been set since
465 the start of the basic block. */
466 static regset reg_set_bitmap
;
468 /* For each block, a bitmap of registers set in the block.
469 This is used by compute_transp.
470 It is computed during hash table computation and not by compute_sets
471 as it includes registers added since the last pass (or between cprop and
472 gcse) and it's currently not easy to realloc sbitmap vectors. */
473 static sbitmap
*reg_set_in_block
;
475 /* Array, indexed by basic block number for a list of insns which modify
476 memory within that block. */
477 static rtx
* modify_mem_list
;
478 static bitmap modify_mem_list_set
;
480 /* This array parallels modify_mem_list, but is kept canonicalized. */
481 static rtx
* canon_modify_mem_list
;
483 /* Bitmap indexed by block numbers to record which blocks contain
485 static bitmap blocks_with_calls
;
487 /* Various variables for statistics gathering. */
489 /* Memory used in a pass.
490 This isn't intended to be absolutely precise. Its intent is only
491 to keep an eye on memory usage. */
492 static int bytes_used
;
494 /* GCSE substitutions made. */
495 static int gcse_subst_count
;
496 /* Number of copy instructions created. */
497 static int gcse_create_count
;
498 /* Number of local constants propagated. */
499 static int local_const_prop_count
;
500 /* Number of local copies propagated. */
501 static int local_copy_prop_count
;
502 /* Number of global constants propagated. */
503 static int global_const_prop_count
;
504 /* Number of global copies propagated. */
505 static int global_copy_prop_count
;
507 /* For available exprs */
508 static sbitmap
*ae_kill
, *ae_gen
;
510 static void compute_can_copy (void);
511 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
512 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
513 static void *grealloc (void *, size_t);
514 static void *gcse_alloc (unsigned long);
515 static void alloc_gcse_mem (void);
516 static void free_gcse_mem (void);
517 static void alloc_reg_set_mem (int);
518 static void free_reg_set_mem (void);
519 static void record_one_set (int, rtx
);
520 static void record_set_info (rtx
, const_rtx
, void *);
521 static void compute_sets (void);
522 static void hash_scan_insn (rtx
, struct hash_table
*, int);
523 static void hash_scan_set (rtx
, rtx
, struct hash_table
*);
524 static void hash_scan_clobber (rtx
, rtx
, struct hash_table
*);
525 static void hash_scan_call (rtx
, rtx
, struct hash_table
*);
526 static int want_to_gcse_p (rtx
);
527 static bool can_assign_to_reg_p (rtx
);
528 static bool gcse_constant_p (const_rtx
);
529 static int oprs_unchanged_p (const_rtx
, const_rtx
, int);
530 static int oprs_anticipatable_p (const_rtx
, const_rtx
);
531 static int oprs_available_p (const_rtx
, const_rtx
);
532 static void insert_expr_in_table (rtx
, enum machine_mode
, rtx
, int, int,
533 struct hash_table
*);
534 static void insert_set_in_table (rtx
, rtx
, struct hash_table
*);
535 static unsigned int hash_expr (const_rtx
, enum machine_mode
, int *, int);
536 static unsigned int hash_set (int, int);
537 static int expr_equiv_p (const_rtx
, const_rtx
);
538 static void record_last_reg_set_info (rtx
, int);
539 static void record_last_mem_set_info (rtx
);
540 static void record_last_set_info (rtx
, const_rtx
, void *);
541 static void compute_hash_table (struct hash_table
*);
542 static void alloc_hash_table (int, struct hash_table
*, int);
543 static void free_hash_table (struct hash_table
*);
544 static void compute_hash_table_work (struct hash_table
*);
545 static void dump_hash_table (FILE *, const char *, struct hash_table
*);
546 static struct expr
*lookup_set (unsigned int, struct hash_table
*);
547 static struct expr
*next_set (unsigned int, struct expr
*);
548 static void reset_opr_set_tables (void);
549 static int oprs_not_set_p (const_rtx
, const_rtx
);
550 static void mark_call (rtx
);
551 static void mark_set (rtx
, rtx
);
552 static void mark_clobber (rtx
, rtx
);
553 static void mark_oprs_set (rtx
);
554 static void alloc_cprop_mem (int, int);
555 static void free_cprop_mem (void);
556 static void compute_transp (const_rtx
, int, sbitmap
*, int);
557 static void compute_transpout (void);
558 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
559 struct hash_table
*);
560 static void compute_cprop_data (void);
561 static void find_used_regs (rtx
*, void *);
562 static int try_replace_reg (rtx
, rtx
, rtx
);
563 static struct expr
*find_avail_set (int, rtx
);
564 static int cprop_jump (basic_block
, rtx
, rtx
, rtx
, rtx
);
565 static void mems_conflict_for_gcse_p (rtx
, const_rtx
, void *);
566 static int load_killed_in_block_p (const_basic_block
, int, const_rtx
, int);
567 static void canon_list_insert (rtx
, const_rtx
, void *);
568 static int cprop_insn (rtx
, int);
569 static int cprop (int);
570 static void find_implicit_sets (void);
571 static int one_cprop_pass (int, bool, bool);
572 static bool constprop_register (rtx
, rtx
, rtx
, bool);
573 static struct expr
*find_bypass_set (int, int);
574 static bool reg_killed_on_edge (const_rtx
, const_edge
);
575 static int bypass_block (basic_block
, rtx
, rtx
);
576 static int bypass_conditional_jumps (void);
577 static void alloc_pre_mem (int, int);
578 static void free_pre_mem (void);
579 static void compute_pre_data (void);
580 static int pre_expr_reaches_here_p (basic_block
, struct expr
*,
582 static void insert_insn_end_basic_block (struct expr
*, basic_block
, int);
583 static void pre_insert_copy_insn (struct expr
*, rtx
);
584 static void pre_insert_copies (void);
585 static int pre_delete (void);
586 static int pre_gcse (void);
587 static int one_pre_gcse_pass (int);
588 static void add_label_notes (rtx
, rtx
);
589 static void alloc_code_hoist_mem (int, int);
590 static void free_code_hoist_mem (void);
591 static void compute_code_hoist_vbeinout (void);
592 static void compute_code_hoist_data (void);
593 static int hoist_expr_reaches_here_p (basic_block
, int, basic_block
, char *);
594 static void hoist_code (void);
595 static int one_code_hoisting_pass (void);
596 static rtx
process_insert_insn (struct expr
*);
597 static int pre_edge_insert (struct edge_list
*, struct expr
**);
598 static int pre_expr_reaches_here_p_work (basic_block
, struct expr
*,
599 basic_block
, char *);
600 static struct ls_expr
* ldst_entry (rtx
);
601 static void free_ldst_entry (struct ls_expr
*);
602 static void free_ldst_mems (void);
603 static void print_ldst_list (FILE *);
604 static struct ls_expr
* find_rtx_in_ldst (rtx
);
605 static int enumerate_ldsts (void);
606 static inline struct ls_expr
* first_ls_expr (void);
607 static inline struct ls_expr
* next_ls_expr (struct ls_expr
*);
608 static int simple_mem (const_rtx
);
609 static void invalidate_any_buried_refs (rtx
);
610 static void compute_ld_motion_mems (void);
611 static void trim_ld_motion_mems (void);
612 static void update_ld_motion_stores (struct expr
*);
613 static void reg_set_info (rtx
, const_rtx
, void *);
614 static void reg_clear_last_set (rtx
, const_rtx
, void *);
615 static bool store_ops_ok (const_rtx
, int *);
616 static rtx
extract_mentioned_regs (rtx
);
617 static rtx
extract_mentioned_regs_helper (rtx
, rtx
);
618 static void find_moveable_store (rtx
, int *, int *);
619 static int compute_store_table (void);
620 static bool load_kills_store (const_rtx
, const_rtx
, int);
621 static bool find_loads (const_rtx
, const_rtx
, int);
622 static bool store_killed_in_insn (const_rtx
, const_rtx
, const_rtx
, int);
623 static bool store_killed_after (const_rtx
, const_rtx
, const_rtx
, const_basic_block
, int *, rtx
*);
624 static bool store_killed_before (const_rtx
, const_rtx
, const_rtx
, const_basic_block
, int *);
625 static void build_store_vectors (void);
626 static void insert_insn_start_basic_block (rtx
, basic_block
);
627 static int insert_store (struct ls_expr
*, edge
);
628 static void remove_reachable_equiv_notes (basic_block
, struct ls_expr
*);
629 static void replace_store_insn (rtx
, rtx
, basic_block
, struct ls_expr
*);
630 static void delete_store (struct ls_expr
*, basic_block
);
631 static void free_store_memory (void);
632 static void store_motion (void);
633 static void free_insn_expr_list_list (rtx
*);
634 static void clear_modify_mem_tables (void);
635 static void free_modify_mem_tables (void);
636 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx
);
637 static void local_cprop_find_used_regs (rtx
*, void *);
638 static bool do_local_cprop (rtx
, rtx
, bool, rtx
*);
639 static bool adjust_libcall_notes (rtx
, rtx
, rtx
, rtx
*);
640 static void local_cprop_pass (bool);
641 static bool is_too_expensive (const char *);
644 /* Entry point for global common subexpression elimination.
645 F is the first instruction in the function. Return nonzero if a
649 gcse_main (rtx f ATTRIBUTE_UNUSED
)
652 /* Bytes used at start of pass. */
653 int initial_bytes_used
;
654 /* Maximum number of bytes used by a pass. */
656 /* Point to release obstack data from for each pass. */
657 char *gcse_obstack_bottom
;
659 /* We do not construct an accurate cfg in functions which call
660 setjmp, so just punt to be safe. */
661 if (current_function_calls_setjmp
)
664 /* Assume that we do not need to run jump optimizations after gcse. */
665 run_jump_opt_after_gcse
= 0;
667 /* Identify the basic block information for this function, including
668 successors and predecessors. */
669 max_gcse_regno
= max_reg_num ();
671 df_note_add_problem ();
675 dump_flow_info (dump_file
, dump_flags
);
677 /* Return if there's nothing to do, or it is too expensive. */
678 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
679 || is_too_expensive (_("GCSE disabled")))
682 gcc_obstack_init (&gcse_obstack
);
686 init_alias_analysis ();
687 /* Record where pseudo-registers are set. This data is kept accurate
688 during each pass. ??? We could also record hard-reg information here
689 [since it's unchanging], however it is currently done during hash table
692 It may be tempting to compute MEM set information here too, but MEM sets
693 will be subject to code motion one day and thus we need to compute
694 information about memory sets when we build the hash tables. */
696 alloc_reg_set_mem (max_gcse_regno
);
700 initial_bytes_used
= bytes_used
;
702 gcse_obstack_bottom
= gcse_alloc (1);
704 while (changed
&& pass
< MAX_GCSE_PASSES
)
708 fprintf (dump_file
, "GCSE pass %d\n\n", pass
+ 1);
710 /* Initialize bytes_used to the space for the pred/succ lists,
711 and the reg_set_table data. */
712 bytes_used
= initial_bytes_used
;
714 /* Each pass may create new registers, so recalculate each time. */
715 max_gcse_regno
= max_reg_num ();
719 /* Don't allow constant propagation to modify jumps
721 timevar_push (TV_CPROP1
);
722 changed
= one_cprop_pass (pass
+ 1, false, false);
723 timevar_pop (TV_CPROP1
);
729 timevar_push (TV_PRE
);
730 changed
|= one_pre_gcse_pass (pass
+ 1);
731 /* We may have just created new basic blocks. Release and
732 recompute various things which are sized on the number of
736 free_modify_mem_tables ();
737 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
738 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
741 alloc_reg_set_mem (max_reg_num ());
743 run_jump_opt_after_gcse
= 1;
744 timevar_pop (TV_PRE
);
747 if (max_pass_bytes
< bytes_used
)
748 max_pass_bytes
= bytes_used
;
750 /* Free up memory, then reallocate for code hoisting. We can
751 not re-use the existing allocated memory because the tables
752 will not have info for the insns or registers created by
753 partial redundancy elimination. */
756 /* It does not make sense to run code hoisting unless we are optimizing
757 for code size -- it rarely makes programs faster, and can make
758 them bigger if we did partial redundancy elimination (when optimizing
759 for space, we don't run the partial redundancy algorithms). */
762 timevar_push (TV_HOIST
);
763 max_gcse_regno
= max_reg_num ();
765 changed
|= one_code_hoisting_pass ();
768 if (max_pass_bytes
< bytes_used
)
769 max_pass_bytes
= bytes_used
;
770 timevar_pop (TV_HOIST
);
775 fprintf (dump_file
, "\n");
779 obstack_free (&gcse_obstack
, gcse_obstack_bottom
);
783 /* Do one last pass of copy propagation, including cprop into
784 conditional jumps. */
786 max_gcse_regno
= max_reg_num ();
788 /* This time, go ahead and allow cprop to alter jumps. */
789 timevar_push (TV_CPROP2
);
790 one_cprop_pass (pass
+ 1, true, true);
791 timevar_pop (TV_CPROP2
);
796 fprintf (dump_file
, "GCSE of %s: %d basic blocks, ",
797 current_function_name (), n_basic_blocks
);
798 fprintf (dump_file
, "%d pass%s, %d bytes\n\n",
799 pass
, pass
> 1 ? "es" : "", max_pass_bytes
);
802 obstack_free (&gcse_obstack
, NULL
);
805 /* We are finished with alias. */
806 end_alias_analysis ();
808 if (!optimize_size
&& flag_gcse_sm
)
810 timevar_push (TV_LSM
);
812 timevar_pop (TV_LSM
);
815 /* Record where pseudo-registers are set. */
816 return run_jump_opt_after_gcse
;
819 /* Misc. utilities. */
821 /* Nonzero for each mode that supports (set (reg) (reg)).
822 This is trivially true for integer and floating point values.
823 It may or may not be true for condition codes. */
824 static char can_copy
[(int) NUM_MACHINE_MODES
];
826 /* Compute which modes support reg/reg copy operations. */
829 compute_can_copy (void)
832 #ifndef AVOID_CCMODE_COPIES
835 memset (can_copy
, 0, NUM_MACHINE_MODES
);
838 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
839 if (GET_MODE_CLASS (i
) == MODE_CC
)
841 #ifdef AVOID_CCMODE_COPIES
844 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
845 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
846 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
856 /* Returns whether the mode supports reg/reg copy operations. */
859 can_copy_p (enum machine_mode mode
)
861 static bool can_copy_init_p
= false;
863 if (! can_copy_init_p
)
866 can_copy_init_p
= true;
869 return can_copy
[mode
] != 0;
872 /* Cover function to xmalloc to record bytes allocated. */
875 gmalloc (size_t size
)
878 return xmalloc (size
);
881 /* Cover function to xcalloc to record bytes allocated. */
884 gcalloc (size_t nelem
, size_t elsize
)
886 bytes_used
+= nelem
* elsize
;
887 return xcalloc (nelem
, elsize
);
890 /* Cover function to xrealloc.
891 We don't record the additional size since we don't know it.
892 It won't affect memory usage stats much anyway. */
895 grealloc (void *ptr
, size_t size
)
897 return xrealloc (ptr
, size
);
900 /* Cover function to obstack_alloc. */
903 gcse_alloc (unsigned long size
)
906 return obstack_alloc (&gcse_obstack
, size
);
909 /* Allocate memory for the cuid mapping array,
910 and reg/memory set tracking tables.
912 This is called at the start of each pass. */
915 alloc_gcse_mem (void)
921 /* Find the largest UID and create a mapping from UIDs to CUIDs.
922 CUIDs are like UIDs except they increase monotonically, have no gaps,
923 and only apply to real insns.
924 (Actually, there are gaps, for insn that are not inside a basic block.
925 but we should never see those anyway, so this is OK.) */
927 max_uid
= get_max_uid ();
928 uid_cuid
= gcalloc (max_uid
+ 1, sizeof (int));
931 FOR_BB_INSNS (bb
, insn
)
934 uid_cuid
[INSN_UID (insn
)] = i
++;
936 uid_cuid
[INSN_UID (insn
)] = i
;
941 /* Allocate vars to track sets of regs. */
942 reg_set_bitmap
= BITMAP_ALLOC (NULL
);
944 /* Allocate vars to track sets of regs, memory per block. */
945 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
, max_gcse_regno
);
946 /* Allocate array to keep a list of insns which modify memory in each
948 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
949 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
950 modify_mem_list_set
= BITMAP_ALLOC (NULL
);
951 blocks_with_calls
= BITMAP_ALLOC (NULL
);
954 /* Free memory allocated by alloc_gcse_mem. */
961 BITMAP_FREE (reg_set_bitmap
);
963 sbitmap_vector_free (reg_set_in_block
);
964 free_modify_mem_tables ();
965 BITMAP_FREE (modify_mem_list_set
);
966 BITMAP_FREE (blocks_with_calls
);
969 /* Compute the local properties of each recorded expression.
971 Local properties are those that are defined by the block, irrespective of
974 An expression is transparent in a block if its operands are not modified
977 An expression is computed (locally available) in a block if it is computed
978 at least once and expression would contain the same value if the
979 computation was moved to the end of the block.
981 An expression is locally anticipatable in a block if it is computed at
982 least once and expression would contain the same value if the computation
983 was moved to the beginning of the block.
985 We call this routine for cprop, pre and code hoisting. They all compute
986 basically the same information and thus can easily share this code.
988 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
989 properties. If NULL, then it is not necessary to compute or record that
992 TABLE controls which hash table to look at. If it is set hash table,
993 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
997 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
,
998 struct hash_table
*table
)
1002 /* Initialize any bitmaps that were passed in. */
1006 sbitmap_vector_zero (transp
, last_basic_block
);
1008 sbitmap_vector_ones (transp
, last_basic_block
);
1012 sbitmap_vector_zero (comp
, last_basic_block
);
1014 sbitmap_vector_zero (antloc
, last_basic_block
);
1016 for (i
= 0; i
< table
->size
; i
++)
1020 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1022 int indx
= expr
->bitmap_index
;
1025 /* The expression is transparent in this block if it is not killed.
1026 We start by assuming all are transparent [none are killed], and
1027 then reset the bits for those that are. */
1029 compute_transp (expr
->expr
, indx
, transp
, table
->set_p
);
1031 /* The occurrences recorded in antic_occr are exactly those that
1032 we want to set to nonzero in ANTLOC. */
1034 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1036 SET_BIT (antloc
[BLOCK_NUM (occr
->insn
)], indx
);
1038 /* While we're scanning the table, this is a good place to
1040 occr
->deleted_p
= 0;
1043 /* The occurrences recorded in avail_occr are exactly those that
1044 we want to set to nonzero in COMP. */
1046 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1048 SET_BIT (comp
[BLOCK_NUM (occr
->insn
)], indx
);
1050 /* While we're scanning the table, this is a good place to
1055 /* While we're scanning the table, this is a good place to
1057 expr
->reaching_reg
= 0;
1062 /* Register set information.
1064 `reg_set_table' records where each register is set or otherwise
1067 static struct obstack reg_set_obstack
;
1070 alloc_reg_set_mem (int n_regs
)
1072 reg_set_table_size
= n_regs
+ REG_SET_TABLE_SLOP
;
1073 reg_set_table
= gcalloc (reg_set_table_size
, sizeof (struct reg_set
*));
1075 gcc_obstack_init (®_set_obstack
);
1079 free_reg_set_mem (void)
1081 free (reg_set_table
);
1082 obstack_free (®_set_obstack
, NULL
);
1085 /* Record REGNO in the reg_set table. */
1088 record_one_set (int regno
, rtx insn
)
1090 /* Allocate a new reg_set element and link it onto the list. */
1091 struct reg_set
*new_reg_info
;
1093 /* If the table isn't big enough, enlarge it. */
1094 if (regno
>= reg_set_table_size
)
1096 int new_size
= regno
+ REG_SET_TABLE_SLOP
;
1098 reg_set_table
= grealloc (reg_set_table
,
1099 new_size
* sizeof (struct reg_set
*));
1100 memset (reg_set_table
+ reg_set_table_size
, 0,
1101 (new_size
- reg_set_table_size
) * sizeof (struct reg_set
*));
1102 reg_set_table_size
= new_size
;
1105 new_reg_info
= obstack_alloc (®_set_obstack
, sizeof (struct reg_set
));
1106 bytes_used
+= sizeof (struct reg_set
);
1107 new_reg_info
->bb_index
= BLOCK_NUM (insn
);
1108 new_reg_info
->next
= reg_set_table
[regno
];
1109 reg_set_table
[regno
] = new_reg_info
;
1112 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1113 an insn. The DATA is really the instruction in which the SET is
1117 record_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
1119 rtx record_set_insn
= (rtx
) data
;
1121 if (REG_P (dest
) && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
1122 record_one_set (REGNO (dest
), record_set_insn
);
1125 /* Scan the function and record each set of each pseudo-register.
1127 This is called once, at the start of the gcse pass. See the comments for
1128 `reg_set_table' for further documentation. */
1137 FOR_BB_INSNS (bb
, insn
)
1139 note_stores (PATTERN (insn
), record_set_info
, insn
);
1142 /* Hash table support. */
1144 struct reg_avail_info
1146 basic_block last_bb
;
1151 static struct reg_avail_info
*reg_avail_info
;
1152 static basic_block current_bb
;
1155 /* See whether X, the source of a set, is something we want to consider for
1159 want_to_gcse_p (rtx x
)
1162 /* On register stack architectures, don't GCSE constants from the
1163 constant pool, as the benefits are often swamped by the overhead
1164 of shuffling the register stack between basic blocks. */
1165 if (IS_STACK_MODE (GET_MODE (x
)))
1166 x
= avoid_constant_pool_reference (x
);
1169 switch (GET_CODE (x
))
1181 return can_assign_to_reg_p (x
);
1185 /* Used internally by can_assign_to_reg_p. */
1187 static GTY(()) rtx test_insn
;
1189 /* Return true if we can assign X to a pseudo register. */
1192 can_assign_to_reg_p (rtx x
)
1194 int num_clobbers
= 0;
1197 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1198 if (general_operand (x
, GET_MODE (x
)))
1200 else if (GET_MODE (x
) == VOIDmode
)
1203 /* Otherwise, check if we can make a valid insn from it. First initialize
1204 our test insn if we haven't already. */
1208 = make_insn_raw (gen_rtx_SET (VOIDmode
,
1209 gen_rtx_REG (word_mode
,
1210 FIRST_PSEUDO_REGISTER
* 2),
1212 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
1215 /* Now make an insn like the one we would make when GCSE'ing and see if
1217 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
1218 SET_SRC (PATTERN (test_insn
)) = x
;
1219 return ((icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
)) >= 0
1220 && (num_clobbers
== 0 || ! added_clobbers_hard_reg_p (icode
)));
1223 /* Return nonzero if the operands of expression X are unchanged from the
1224 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1225 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1228 oprs_unchanged_p (const_rtx x
, const_rtx insn
, int avail_p
)
1237 code
= GET_CODE (x
);
1242 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
1244 if (info
->last_bb
!= current_bb
)
1247 return info
->last_set
< INSN_CUID (insn
);
1249 return info
->first_set
>= INSN_CUID (insn
);
1253 if (load_killed_in_block_p (current_bb
, INSN_CUID (insn
),
1257 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
1284 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1288 /* If we are about to do the last recursive call needed at this
1289 level, change it into iteration. This function is called enough
1292 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
1294 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
1297 else if (fmt
[i
] == 'E')
1298 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1299 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
1306 /* Used for communication between mems_conflict_for_gcse_p and
1307 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1308 conflict between two memory references. */
1309 static int gcse_mems_conflict_p
;
1311 /* Used for communication between mems_conflict_for_gcse_p and
1312 load_killed_in_block_p. A memory reference for a load instruction,
1313 mems_conflict_for_gcse_p will see if a memory store conflicts with
1314 this memory load. */
1315 static const_rtx gcse_mem_operand
;
1317 /* DEST is the output of an instruction. If it is a memory reference, and
1318 possibly conflicts with the load found in gcse_mem_operand, then set
1319 gcse_mems_conflict_p to a nonzero value. */
1322 mems_conflict_for_gcse_p (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
1323 void *data ATTRIBUTE_UNUSED
)
1325 while (GET_CODE (dest
) == SUBREG
1326 || GET_CODE (dest
) == ZERO_EXTRACT
1327 || GET_CODE (dest
) == STRICT_LOW_PART
)
1328 dest
= XEXP (dest
, 0);
1330 /* If DEST is not a MEM, then it will not conflict with the load. Note
1331 that function calls are assumed to clobber memory, but are handled
1336 /* If we are setting a MEM in our list of specially recognized MEMs,
1337 don't mark as killed this time. */
1339 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
1341 if (!find_rtx_in_ldst (dest
))
1342 gcse_mems_conflict_p
= 1;
1346 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
1348 gcse_mems_conflict_p
= 1;
1351 /* Return nonzero if the expression in X (a memory reference) is killed
1352 in block BB before or after the insn with the CUID in UID_LIMIT.
1353 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1356 To check the entire block, set UID_LIMIT to max_uid + 1 and
1360 load_killed_in_block_p (const_basic_block bb
, int uid_limit
, const_rtx x
, int avail_p
)
1362 rtx list_entry
= modify_mem_list
[bb
->index
];
1364 /* If this is a readonly then we aren't going to be changing it. */
1365 if (MEM_READONLY_P (x
))
1371 /* Ignore entries in the list that do not apply. */
1373 && INSN_CUID (XEXP (list_entry
, 0)) < uid_limit
)
1375 && INSN_CUID (XEXP (list_entry
, 0)) > uid_limit
))
1377 list_entry
= XEXP (list_entry
, 1);
1381 setter
= XEXP (list_entry
, 0);
1383 /* If SETTER is a call everything is clobbered. Note that calls
1384 to pure functions are never put on the list, so we need not
1385 worry about them. */
1386 if (CALL_P (setter
))
1389 /* SETTER must be an INSN of some kind that sets memory. Call
1390 note_stores to examine each hunk of memory that is modified.
1392 The note_stores interface is pretty limited, so we have to
1393 communicate via global variables. Yuk. */
1394 gcse_mem_operand
= x
;
1395 gcse_mems_conflict_p
= 0;
1396 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1397 if (gcse_mems_conflict_p
)
1399 list_entry
= XEXP (list_entry
, 1);
1404 /* Return nonzero if the operands of expression X are unchanged from
1405 the start of INSN's basic block up to but not including INSN. */
1408 oprs_anticipatable_p (const_rtx x
, const_rtx insn
)
1410 return oprs_unchanged_p (x
, insn
, 0);
1413 /* Return nonzero if the operands of expression X are unchanged from
1414 INSN to the end of INSN's basic block. */
1417 oprs_available_p (const_rtx x
, const_rtx insn
)
1419 return oprs_unchanged_p (x
, insn
, 1);
1422 /* Hash expression X.
1424 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1425 indicating if a volatile operand is found or if the expression contains
1426 something we don't want to insert in the table. HASH_TABLE_SIZE is
1427 the current size of the hash table to be probed. */
1430 hash_expr (const_rtx x
, enum machine_mode mode
, int *do_not_record_p
,
1431 int hash_table_size
)
1435 *do_not_record_p
= 0;
1437 hash
= hash_rtx (x
, mode
, do_not_record_p
,
1438 NULL
, /*have_reg_qty=*/false);
1439 return hash
% hash_table_size
;
1442 /* Hash a set of register REGNO.
1444 Sets are hashed on the register that is set. This simplifies the PRE copy
1447 ??? May need to make things more elaborate. Later, as necessary. */
1450 hash_set (int regno
, int hash_table_size
)
1455 return hash
% hash_table_size
;
1458 /* Return nonzero if exp1 is equivalent to exp2. */
1461 expr_equiv_p (const_rtx x
, const_rtx y
)
1463 return exp_equiv_p (x
, y
, 0, true);
1466 /* Insert expression X in INSN in the hash TABLE.
1467 If it is already present, record it as the last occurrence in INSN's
1470 MODE is the mode of the value X is being stored into.
1471 It is only used if X is a CONST_INT.
1473 ANTIC_P is nonzero if X is an anticipatable expression.
1474 AVAIL_P is nonzero if X is an available expression. */
1477 insert_expr_in_table (rtx x
, enum machine_mode mode
, rtx insn
, int antic_p
,
1478 int avail_p
, struct hash_table
*table
)
1480 int found
, do_not_record_p
;
1482 struct expr
*cur_expr
, *last_expr
= NULL
;
1483 struct occr
*antic_occr
, *avail_occr
;
1485 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1487 /* Do not insert expression in table if it contains volatile operands,
1488 or if hash_expr determines the expression is something we don't want
1489 to or can't handle. */
1490 if (do_not_record_p
)
1493 cur_expr
= table
->table
[hash
];
1496 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1498 /* If the expression isn't found, save a pointer to the end of
1500 last_expr
= cur_expr
;
1501 cur_expr
= cur_expr
->next_same_hash
;
1506 cur_expr
= gcse_alloc (sizeof (struct expr
));
1507 bytes_used
+= sizeof (struct expr
);
1508 if (table
->table
[hash
] == NULL
)
1509 /* This is the first pattern that hashed to this index. */
1510 table
->table
[hash
] = cur_expr
;
1512 /* Add EXPR to end of this hash chain. */
1513 last_expr
->next_same_hash
= cur_expr
;
1515 /* Set the fields of the expr element. */
1517 cur_expr
->bitmap_index
= table
->n_elems
++;
1518 cur_expr
->next_same_hash
= NULL
;
1519 cur_expr
->antic_occr
= NULL
;
1520 cur_expr
->avail_occr
= NULL
;
1523 /* Now record the occurrence(s). */
1526 antic_occr
= cur_expr
->antic_occr
;
1528 if (antic_occr
&& BLOCK_NUM (antic_occr
->insn
) != BLOCK_NUM (insn
))
1532 /* Found another instance of the expression in the same basic block.
1533 Prefer the currently recorded one. We want the first one in the
1534 block and the block is scanned from start to end. */
1535 ; /* nothing to do */
1538 /* First occurrence of this expression in this basic block. */
1539 antic_occr
= gcse_alloc (sizeof (struct occr
));
1540 bytes_used
+= sizeof (struct occr
);
1541 antic_occr
->insn
= insn
;
1542 antic_occr
->next
= cur_expr
->antic_occr
;
1543 antic_occr
->deleted_p
= 0;
1544 cur_expr
->antic_occr
= antic_occr
;
1550 avail_occr
= cur_expr
->avail_occr
;
1552 if (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) == BLOCK_NUM (insn
))
1554 /* Found another instance of the expression in the same basic block.
1555 Prefer this occurrence to the currently recorded one. We want
1556 the last one in the block and the block is scanned from start
1558 avail_occr
->insn
= insn
;
1562 /* First occurrence of this expression in this basic block. */
1563 avail_occr
= gcse_alloc (sizeof (struct occr
));
1564 bytes_used
+= sizeof (struct occr
);
1565 avail_occr
->insn
= insn
;
1566 avail_occr
->next
= cur_expr
->avail_occr
;
1567 avail_occr
->deleted_p
= 0;
1568 cur_expr
->avail_occr
= avail_occr
;
1573 /* Insert pattern X in INSN in the hash table.
1574 X is a SET of a reg to either another reg or a constant.
1575 If it is already present, record it as the last occurrence in INSN's
1579 insert_set_in_table (rtx x
, rtx insn
, struct hash_table
*table
)
1583 struct expr
*cur_expr
, *last_expr
= NULL
;
1584 struct occr
*cur_occr
;
1586 gcc_assert (GET_CODE (x
) == SET
&& REG_P (SET_DEST (x
)));
1588 hash
= hash_set (REGNO (SET_DEST (x
)), table
->size
);
1590 cur_expr
= table
->table
[hash
];
1593 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1595 /* If the expression isn't found, save a pointer to the end of
1597 last_expr
= cur_expr
;
1598 cur_expr
= cur_expr
->next_same_hash
;
1603 cur_expr
= gcse_alloc (sizeof (struct expr
));
1604 bytes_used
+= sizeof (struct expr
);
1605 if (table
->table
[hash
] == NULL
)
1606 /* This is the first pattern that hashed to this index. */
1607 table
->table
[hash
] = cur_expr
;
1609 /* Add EXPR to end of this hash chain. */
1610 last_expr
->next_same_hash
= cur_expr
;
1612 /* Set the fields of the expr element.
1613 We must copy X because it can be modified when copy propagation is
1614 performed on its operands. */
1615 cur_expr
->expr
= copy_rtx (x
);
1616 cur_expr
->bitmap_index
= table
->n_elems
++;
1617 cur_expr
->next_same_hash
= NULL
;
1618 cur_expr
->antic_occr
= NULL
;
1619 cur_expr
->avail_occr
= NULL
;
1622 /* Now record the occurrence. */
1623 cur_occr
= cur_expr
->avail_occr
;
1625 if (cur_occr
&& BLOCK_NUM (cur_occr
->insn
) == BLOCK_NUM (insn
))
1627 /* Found another instance of the expression in the same basic block.
1628 Prefer this occurrence to the currently recorded one. We want
1629 the last one in the block and the block is scanned from start
1631 cur_occr
->insn
= insn
;
1635 /* First occurrence of this expression in this basic block. */
1636 cur_occr
= gcse_alloc (sizeof (struct occr
));
1637 bytes_used
+= sizeof (struct occr
);
1639 cur_occr
->insn
= insn
;
1640 cur_occr
->next
= cur_expr
->avail_occr
;
1641 cur_occr
->deleted_p
= 0;
1642 cur_expr
->avail_occr
= cur_occr
;
1646 /* Determine whether the rtx X should be treated as a constant for
1647 the purposes of GCSE's constant propagation. */
1650 gcse_constant_p (const_rtx x
)
1652 /* Consider a COMPARE of two integers constant. */
1653 if (GET_CODE (x
) == COMPARE
1654 && GET_CODE (XEXP (x
, 0)) == CONST_INT
1655 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1658 /* Consider a COMPARE of the same registers is a constant
1659 if they are not floating point registers. */
1660 if (GET_CODE(x
) == COMPARE
1661 && REG_P (XEXP (x
, 0)) && REG_P (XEXP (x
, 1))
1662 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 1))
1663 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
1664 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 1))))
1667 return CONSTANT_P (x
);
1670 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1674 hash_scan_set (rtx pat
, rtx insn
, struct hash_table
*table
)
1676 rtx src
= SET_SRC (pat
);
1677 rtx dest
= SET_DEST (pat
);
1680 if (GET_CODE (src
) == CALL
)
1681 hash_scan_call (src
, insn
, table
);
1683 else if (REG_P (dest
))
1685 unsigned int regno
= REGNO (dest
);
1688 /* See if a REG_NOTE shows this equivalent to a simpler expression.
1689 This allows us to do a single GCSE pass and still eliminate
1690 redundant constants, addresses or other expressions that are
1691 constructed with multiple instructions. */
1692 note
= find_reg_equal_equiv_note (insn
);
1695 ? gcse_constant_p (XEXP (note
, 0))
1696 : want_to_gcse_p (XEXP (note
, 0))))
1697 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
1699 /* Only record sets of pseudo-regs in the hash table. */
1701 && regno
>= FIRST_PSEUDO_REGISTER
1702 /* Don't GCSE something if we can't do a reg/reg copy. */
1703 && can_copy_p (GET_MODE (dest
))
1704 /* GCSE commonly inserts instruction after the insn. We can't
1705 do that easily for EH_REGION notes so disable GCSE on these
1707 && !find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1708 /* Is SET_SRC something we want to gcse? */
1709 && want_to_gcse_p (src
)
1710 /* Don't CSE a nop. */
1711 && ! set_noop_p (pat
)
1712 /* Don't GCSE if it has attached REG_EQUIV note.
1713 At this point this only function parameters should have
1714 REG_EQUIV notes and if the argument slot is used somewhere
1715 explicitly, it means address of parameter has been taken,
1716 so we should not extend the lifetime of the pseudo. */
1717 && (note
== NULL_RTX
|| ! MEM_P (XEXP (note
, 0))))
1719 /* An expression is not anticipatable if its operands are
1720 modified before this insn or if this is not the only SET in
1721 this insn. The latter condition does not have to mean that
1722 SRC itself is not anticipatable, but we just will not be
1723 able to handle code motion of insns with multiple sets. */
1724 int antic_p
= oprs_anticipatable_p (src
, insn
)
1725 && !multiple_sets (insn
);
1726 /* An expression is not available if its operands are
1727 subsequently modified, including this insn. It's also not
1728 available if this is a branch, because we can't insert
1729 a set after the branch. */
1730 int avail_p
= (oprs_available_p (src
, insn
)
1731 && ! JUMP_P (insn
));
1733 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
, table
);
1736 /* Record sets for constant/copy propagation. */
1737 else if (table
->set_p
1738 && regno
>= FIRST_PSEUDO_REGISTER
1740 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
1741 && can_copy_p (GET_MODE (dest
))
1742 && REGNO (src
) != regno
)
1743 || gcse_constant_p (src
))
1744 /* A copy is not available if its src or dest is subsequently
1745 modified. Here we want to search from INSN+1 on, but
1746 oprs_available_p searches from INSN on. */
1747 && (insn
== BB_END (BLOCK_FOR_INSN (insn
))
1748 || (tmp
= next_nonnote_insn (insn
)) == NULL_RTX
1749 || BLOCK_FOR_INSN (tmp
) != BLOCK_FOR_INSN (insn
)
1750 || oprs_available_p (pat
, tmp
)))
1751 insert_set_in_table (pat
, insn
, table
);
1753 /* In case of store we want to consider the memory value as available in
1754 the REG stored in that memory. This makes it possible to remove
1755 redundant loads from due to stores to the same location. */
1756 else if (flag_gcse_las
&& REG_P (src
) && MEM_P (dest
))
1758 unsigned int regno
= REGNO (src
);
1760 /* Do not do this for constant/copy propagation. */
1762 /* Only record sets of pseudo-regs in the hash table. */
1763 && regno
>= FIRST_PSEUDO_REGISTER
1764 /* Don't GCSE something if we can't do a reg/reg copy. */
1765 && can_copy_p (GET_MODE (src
))
1766 /* GCSE commonly inserts instruction after the insn. We can't
1767 do that easily for EH_REGION notes so disable GCSE on these
1769 && ! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1770 /* Is SET_DEST something we want to gcse? */
1771 && want_to_gcse_p (dest
)
1772 /* Don't CSE a nop. */
1773 && ! set_noop_p (pat
)
1774 /* Don't GCSE if it has attached REG_EQUIV note.
1775 At this point this only function parameters should have
1776 REG_EQUIV notes and if the argument slot is used somewhere
1777 explicitly, it means address of parameter has been taken,
1778 so we should not extend the lifetime of the pseudo. */
1779 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1780 || ! MEM_P (XEXP (note
, 0))))
1782 /* Stores are never anticipatable. */
1784 /* An expression is not available if its operands are
1785 subsequently modified, including this insn. It's also not
1786 available if this is a branch, because we can't insert
1787 a set after the branch. */
1788 int avail_p
= oprs_available_p (dest
, insn
)
1791 /* Record the memory expression (DEST) in the hash table. */
1792 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
1793 antic_p
, avail_p
, table
);
1799 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1800 struct hash_table
*table ATTRIBUTE_UNUSED
)
1802 /* Currently nothing to do. */
1806 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1807 struct hash_table
*table ATTRIBUTE_UNUSED
)
1809 /* Currently nothing to do. */
1812 /* Process INSN and add hash table entries as appropriate.
1814 Only available expressions that set a single pseudo-reg are recorded.
1816 Single sets in a PARALLEL could be handled, but it's an extra complication
1817 that isn't dealt with right now. The trick is handling the CLOBBERs that
1818 are also in the PARALLEL. Later.
1820 If SET_P is nonzero, this is for the assignment hash table,
1821 otherwise it is for the expression hash table.
1822 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1823 not record any expressions. */
1826 hash_scan_insn (rtx insn
, struct hash_table
*table
, int in_libcall_block
)
1828 rtx pat
= PATTERN (insn
);
1831 if (in_libcall_block
)
1834 /* Pick out the sets of INSN and for other forms of instructions record
1835 what's been modified. */
1837 if (GET_CODE (pat
) == SET
)
1838 hash_scan_set (pat
, insn
, table
);
1839 else if (GET_CODE (pat
) == PARALLEL
)
1840 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1842 rtx x
= XVECEXP (pat
, 0, i
);
1844 if (GET_CODE (x
) == SET
)
1845 hash_scan_set (x
, insn
, table
);
1846 else if (GET_CODE (x
) == CLOBBER
)
1847 hash_scan_clobber (x
, insn
, table
);
1848 else if (GET_CODE (x
) == CALL
)
1849 hash_scan_call (x
, insn
, table
);
1852 else if (GET_CODE (pat
) == CLOBBER
)
1853 hash_scan_clobber (pat
, insn
, table
);
1854 else if (GET_CODE (pat
) == CALL
)
1855 hash_scan_call (pat
, insn
, table
);
1859 dump_hash_table (FILE *file
, const char *name
, struct hash_table
*table
)
1862 /* Flattened out table, so it's printed in proper order. */
1863 struct expr
**flat_table
;
1864 unsigned int *hash_val
;
1867 flat_table
= xcalloc (table
->n_elems
, sizeof (struct expr
*));
1868 hash_val
= xmalloc (table
->n_elems
* sizeof (unsigned int));
1870 for (i
= 0; i
< (int) table
->size
; i
++)
1871 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1873 flat_table
[expr
->bitmap_index
] = expr
;
1874 hash_val
[expr
->bitmap_index
] = i
;
1877 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
1878 name
, table
->size
, table
->n_elems
);
1880 for (i
= 0; i
< (int) table
->n_elems
; i
++)
1881 if (flat_table
[i
] != 0)
1883 expr
= flat_table
[i
];
1884 fprintf (file
, "Index %d (hash value %d)\n ",
1885 expr
->bitmap_index
, hash_val
[i
]);
1886 print_rtl (file
, expr
->expr
);
1887 fprintf (file
, "\n");
1890 fprintf (file
, "\n");
1896 /* Record register first/last/block set information for REGNO in INSN.
1898 first_set records the first place in the block where the register
1899 is set and is used to compute "anticipatability".
1901 last_set records the last place in the block where the register
1902 is set and is used to compute "availability".
1904 last_bb records the block for which first_set and last_set are
1905 valid, as a quick test to invalidate them.
1907 reg_set_in_block records whether the register is set in the block
1908 and is used to compute "transparency". */
1911 record_last_reg_set_info (rtx insn
, int regno
)
1913 struct reg_avail_info
*info
= ®_avail_info
[regno
];
1914 int cuid
= INSN_CUID (insn
);
1916 info
->last_set
= cuid
;
1917 if (info
->last_bb
!= current_bb
)
1919 info
->last_bb
= current_bb
;
1920 info
->first_set
= cuid
;
1921 SET_BIT (reg_set_in_block
[current_bb
->index
], regno
);
1926 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1927 Note we store a pair of elements in the list, so they have to be
1928 taken off pairwise. */
1931 canon_list_insert (rtx dest ATTRIBUTE_UNUSED
, const_rtx unused1 ATTRIBUTE_UNUSED
,
1934 rtx dest_addr
, insn
;
1937 while (GET_CODE (dest
) == SUBREG
1938 || GET_CODE (dest
) == ZERO_EXTRACT
1939 || GET_CODE (dest
) == STRICT_LOW_PART
)
1940 dest
= XEXP (dest
, 0);
1942 /* If DEST is not a MEM, then it will not conflict with a load. Note
1943 that function calls are assumed to clobber memory, but are handled
1949 dest_addr
= get_addr (XEXP (dest
, 0));
1950 dest_addr
= canon_rtx (dest_addr
);
1951 insn
= (rtx
) v_insn
;
1952 bb
= BLOCK_NUM (insn
);
1954 canon_modify_mem_list
[bb
] =
1955 alloc_EXPR_LIST (VOIDmode
, dest_addr
, canon_modify_mem_list
[bb
]);
1956 canon_modify_mem_list
[bb
] =
1957 alloc_EXPR_LIST (VOIDmode
, dest
, canon_modify_mem_list
[bb
]);
1960 /* Record memory modification information for INSN. We do not actually care
1961 about the memory location(s) that are set, or even how they are set (consider
1962 a CALL_INSN). We merely need to record which insns modify memory. */
1965 record_last_mem_set_info (rtx insn
)
1967 int bb
= BLOCK_NUM (insn
);
1969 /* load_killed_in_block_p will handle the case of calls clobbering
1971 modify_mem_list
[bb
] = alloc_INSN_LIST (insn
, modify_mem_list
[bb
]);
1972 bitmap_set_bit (modify_mem_list_set
, bb
);
1976 /* Note that traversals of this loop (other than for free-ing)
1977 will break after encountering a CALL_INSN. So, there's no
1978 need to insert a pair of items, as canon_list_insert does. */
1979 canon_modify_mem_list
[bb
] =
1980 alloc_INSN_LIST (insn
, canon_modify_mem_list
[bb
]);
1981 bitmap_set_bit (blocks_with_calls
, bb
);
1984 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
1987 /* Called from compute_hash_table via note_stores to handle one
1988 SET or CLOBBER in an insn. DATA is really the instruction in which
1989 the SET is taking place. */
1992 record_last_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
1994 rtx last_set_insn
= (rtx
) data
;
1996 if (GET_CODE (dest
) == SUBREG
)
1997 dest
= SUBREG_REG (dest
);
2000 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
2001 else if (MEM_P (dest
)
2002 /* Ignore pushes, they clobber nothing. */
2003 && ! push_operand (dest
, GET_MODE (dest
)))
2004 record_last_mem_set_info (last_set_insn
);
2007 /* Top level function to create an expression or assignment hash table.
2009 Expression entries are placed in the hash table if
2010 - they are of the form (set (pseudo-reg) src),
2011 - src is something we want to perform GCSE on,
2012 - none of the operands are subsequently modified in the block
2014 Assignment entries are placed in the hash table if
2015 - they are of the form (set (pseudo-reg) src),
2016 - src is something we want to perform const/copy propagation on,
2017 - none of the operands or target are subsequently modified in the block
2019 Currently src must be a pseudo-reg or a const_int.
2021 TABLE is the table computed. */
2024 compute_hash_table_work (struct hash_table
*table
)
2028 /* While we compute the hash table we also compute a bit array of which
2029 registers are set in which blocks.
2030 ??? This isn't needed during const/copy propagation, but it's cheap to
2032 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
2034 /* re-Cache any INSN_LIST nodes we have allocated. */
2035 clear_modify_mem_tables ();
2036 /* Some working arrays used to track first and last set in each block. */
2037 reg_avail_info
= gmalloc (max_gcse_regno
* sizeof (struct reg_avail_info
));
2039 for (i
= 0; i
< max_gcse_regno
; ++i
)
2040 reg_avail_info
[i
].last_bb
= NULL
;
2042 FOR_EACH_BB (current_bb
)
2046 int in_libcall_block
;
2048 /* First pass over the instructions records information used to
2049 determine when registers and memory are first and last set.
2050 ??? hard-reg reg_set_in_block computation
2051 could be moved to compute_sets since they currently don't change. */
2053 FOR_BB_INSNS (current_bb
, insn
)
2055 if (! INSN_P (insn
))
2060 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2061 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2062 record_last_reg_set_info (insn
, regno
);
2067 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
2070 /* Insert implicit sets in the hash table. */
2072 && implicit_sets
[current_bb
->index
] != NULL_RTX
)
2073 hash_scan_set (implicit_sets
[current_bb
->index
],
2074 BB_HEAD (current_bb
), table
);
2076 /* The next pass builds the hash table. */
2077 in_libcall_block
= 0;
2078 FOR_BB_INSNS (current_bb
, insn
)
2081 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
2082 in_libcall_block
= 1;
2083 else if (table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2084 in_libcall_block
= 0;
2085 hash_scan_insn (insn
, table
, in_libcall_block
);
2086 if (!table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2087 in_libcall_block
= 0;
2091 free (reg_avail_info
);
2092 reg_avail_info
= NULL
;
2095 /* Allocate space for the set/expr hash TABLE.
2096 N_INSNS is the number of instructions in the function.
2097 It is used to determine the number of buckets to use.
2098 SET_P determines whether set or expression table will
2102 alloc_hash_table (int n_insns
, struct hash_table
*table
, int set_p
)
2106 table
->size
= n_insns
/ 4;
2107 if (table
->size
< 11)
2110 /* Attempt to maintain efficient use of hash table.
2111 Making it an odd number is simplest for now.
2112 ??? Later take some measurements. */
2114 n
= table
->size
* sizeof (struct expr
*);
2115 table
->table
= gmalloc (n
);
2116 table
->set_p
= set_p
;
2119 /* Free things allocated by alloc_hash_table. */
2122 free_hash_table (struct hash_table
*table
)
2124 free (table
->table
);
2127 /* Compute the hash TABLE for doing copy/const propagation or
2128 expression hash table. */
2131 compute_hash_table (struct hash_table
*table
)
2133 /* Initialize count of number of entries in hash table. */
2135 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
2137 compute_hash_table_work (table
);
2140 /* Expression tracking support. */
2142 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2143 table entry, or NULL if not found. */
2145 static struct expr
*
2146 lookup_set (unsigned int regno
, struct hash_table
*table
)
2148 unsigned int hash
= hash_set (regno
, table
->size
);
2151 expr
= table
->table
[hash
];
2153 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
2154 expr
= expr
->next_same_hash
;
2159 /* Return the next entry for REGNO in list EXPR. */
2161 static struct expr
*
2162 next_set (unsigned int regno
, struct expr
*expr
)
2165 expr
= expr
->next_same_hash
;
2166 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
2171 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2172 types may be mixed. */
2175 free_insn_expr_list_list (rtx
*listp
)
2179 for (list
= *listp
; list
; list
= next
)
2181 next
= XEXP (list
, 1);
2182 if (GET_CODE (list
) == EXPR_LIST
)
2183 free_EXPR_LIST_node (list
);
2185 free_INSN_LIST_node (list
);
2191 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2193 clear_modify_mem_tables (void)
2198 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set
, 0, i
, bi
)
2200 free_INSN_LIST_list (modify_mem_list
+ i
);
2201 free_insn_expr_list_list (canon_modify_mem_list
+ i
);
2203 bitmap_clear (modify_mem_list_set
);
2204 bitmap_clear (blocks_with_calls
);
2207 /* Release memory used by modify_mem_list_set. */
2210 free_modify_mem_tables (void)
2212 clear_modify_mem_tables ();
2213 free (modify_mem_list
);
2214 free (canon_modify_mem_list
);
2215 modify_mem_list
= 0;
2216 canon_modify_mem_list
= 0;
2219 /* Reset tables used to keep track of what's still available [since the
2220 start of the block]. */
2223 reset_opr_set_tables (void)
2225 /* Maintain a bitmap of which regs have been set since beginning of
2227 CLEAR_REG_SET (reg_set_bitmap
);
2229 /* Also keep a record of the last instruction to modify memory.
2230 For now this is very trivial, we only record whether any memory
2231 location has been modified. */
2232 clear_modify_mem_tables ();
2235 /* Return nonzero if the operands of X are not set before INSN in
2236 INSN's basic block. */
2239 oprs_not_set_p (const_rtx x
, const_rtx insn
)
2248 code
= GET_CODE (x
);
2265 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
2266 INSN_CUID (insn
), x
, 0))
2269 return oprs_not_set_p (XEXP (x
, 0), insn
);
2272 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
2278 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2282 /* If we are about to do the last recursive call
2283 needed at this level, change it into iteration.
2284 This function is called enough to be worth it. */
2286 return oprs_not_set_p (XEXP (x
, i
), insn
);
2288 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
2291 else if (fmt
[i
] == 'E')
2292 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2293 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
2300 /* Mark things set by a CALL. */
2303 mark_call (rtx insn
)
2305 if (! CONST_OR_PURE_CALL_P (insn
))
2306 record_last_mem_set_info (insn
);
2309 /* Mark things set by a SET. */
2312 mark_set (rtx pat
, rtx insn
)
2314 rtx dest
= SET_DEST (pat
);
2316 while (GET_CODE (dest
) == SUBREG
2317 || GET_CODE (dest
) == ZERO_EXTRACT
2318 || GET_CODE (dest
) == STRICT_LOW_PART
)
2319 dest
= XEXP (dest
, 0);
2322 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (dest
));
2323 else if (MEM_P (dest
))
2324 record_last_mem_set_info (insn
);
2326 if (GET_CODE (SET_SRC (pat
)) == CALL
)
2330 /* Record things set by a CLOBBER. */
2333 mark_clobber (rtx pat
, rtx insn
)
2335 rtx clob
= XEXP (pat
, 0);
2337 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
2338 clob
= XEXP (clob
, 0);
2341 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (clob
));
2343 record_last_mem_set_info (insn
);
2346 /* Record things set by INSN.
2347 This data is used by oprs_not_set_p. */
2350 mark_oprs_set (rtx insn
)
2352 rtx pat
= PATTERN (insn
);
2355 if (GET_CODE (pat
) == SET
)
2356 mark_set (pat
, insn
);
2357 else if (GET_CODE (pat
) == PARALLEL
)
2358 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2360 rtx x
= XVECEXP (pat
, 0, i
);
2362 if (GET_CODE (x
) == SET
)
2364 else if (GET_CODE (x
) == CLOBBER
)
2365 mark_clobber (x
, insn
);
2366 else if (GET_CODE (x
) == CALL
)
2370 else if (GET_CODE (pat
) == CLOBBER
)
2371 mark_clobber (pat
, insn
);
2372 else if (GET_CODE (pat
) == CALL
)
2377 /* Compute copy/constant propagation working variables. */
2379 /* Local properties of assignments. */
2380 static sbitmap
*cprop_pavloc
;
2381 static sbitmap
*cprop_absaltered
;
2383 /* Global properties of assignments (computed from the local properties). */
2384 static sbitmap
*cprop_avin
;
2385 static sbitmap
*cprop_avout
;
2387 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2388 basic blocks. N_SETS is the number of sets. */
2391 alloc_cprop_mem (int n_blocks
, int n_sets
)
2393 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2394 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2396 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2397 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2400 /* Free vars used by copy/const propagation. */
2403 free_cprop_mem (void)
2405 sbitmap_vector_free (cprop_pavloc
);
2406 sbitmap_vector_free (cprop_absaltered
);
2407 sbitmap_vector_free (cprop_avin
);
2408 sbitmap_vector_free (cprop_avout
);
2411 /* For each block, compute whether X is transparent. X is either an
2412 expression or an assignment [though we don't care which, for this context
2413 an assignment is treated as an expression]. For each block where an
2414 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2418 compute_transp (const_rtx x
, int indx
, sbitmap
*bmap
, int set_p
)
2426 /* repeat is used to turn tail-recursion into iteration since GCC
2427 can't do it when there's no return value. */
2433 code
= GET_CODE (x
);
2439 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2442 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2443 SET_BIT (bmap
[bb
->index
], indx
);
2447 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2448 SET_BIT (bmap
[r
->bb_index
], indx
);
2453 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2456 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2457 RESET_BIT (bmap
[bb
->index
], indx
);
2461 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2462 RESET_BIT (bmap
[r
->bb_index
], indx
);
2469 if (! MEM_READONLY_P (x
))
2474 /* First handle all the blocks with calls. We don't need to
2475 do any list walking for them. */
2476 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls
, 0, bb_index
, bi
)
2479 SET_BIT (bmap
[bb_index
], indx
);
2481 RESET_BIT (bmap
[bb_index
], indx
);
2484 /* Now iterate over the blocks which have memory modifications
2485 but which do not have any calls. */
2486 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set
,
2490 rtx list_entry
= canon_modify_mem_list
[bb_index
];
2494 rtx dest
, dest_addr
;
2496 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2497 Examine each hunk of memory that is modified. */
2499 dest
= XEXP (list_entry
, 0);
2500 list_entry
= XEXP (list_entry
, 1);
2501 dest_addr
= XEXP (list_entry
, 0);
2503 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
2504 x
, rtx_addr_varies_p
))
2507 SET_BIT (bmap
[bb_index
], indx
);
2509 RESET_BIT (bmap
[bb_index
], indx
);
2512 list_entry
= XEXP (list_entry
, 1);
2537 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2541 /* If we are about to do the last recursive call
2542 needed at this level, change it into iteration.
2543 This function is called enough to be worth it. */
2550 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
2552 else if (fmt
[i
] == 'E')
2553 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2554 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
2558 /* Top level routine to do the dataflow analysis needed by copy/const
2562 compute_cprop_data (void)
2564 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, &set_hash_table
);
2565 compute_available (cprop_pavloc
, cprop_absaltered
,
2566 cprop_avout
, cprop_avin
);
2569 /* Copy/constant propagation. */
2571 /* Maximum number of register uses in an insn that we handle. */
2574 /* Table of uses found in an insn.
2575 Allocated statically to avoid alloc/free complexity and overhead. */
2576 static struct reg_use reg_use_table
[MAX_USES
];
2578 /* Index into `reg_use_table' while building it. */
2579 static int reg_use_count
;
2581 /* Set up a list of register numbers used in INSN. The found uses are stored
2582 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2583 and contains the number of uses in the table upon exit.
2585 ??? If a register appears multiple times we will record it multiple times.
2586 This doesn't hurt anything but it will slow things down. */
2589 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
2596 /* repeat is used to turn tail-recursion into iteration since GCC
2597 can't do it when there's no return value. */
2602 code
= GET_CODE (x
);
2605 if (reg_use_count
== MAX_USES
)
2608 reg_use_table
[reg_use_count
].reg_rtx
= x
;
2612 /* Recursively scan the operands of this expression. */
2614 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2618 /* If we are about to do the last recursive call
2619 needed at this level, change it into iteration.
2620 This function is called enough to be worth it. */
2627 find_used_regs (&XEXP (x
, i
), data
);
2629 else if (fmt
[i
] == 'E')
2630 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2631 find_used_regs (&XVECEXP (x
, i
, j
), data
);
2635 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2636 Returns nonzero is successful. */
2639 try_replace_reg (rtx from
, rtx to
, rtx insn
)
2641 rtx note
= find_reg_equal_equiv_note (insn
);
2644 rtx set
= single_set (insn
);
2646 /* Usually we substitute easy stuff, so we won't copy everything.
2647 We however need to take care to not duplicate non-trivial CONST
2651 validate_replace_src_group (from
, to
, insn
);
2652 if (num_changes_pending () && apply_change_group ())
2655 /* Try to simplify SET_SRC if we have substituted a constant. */
2656 if (success
&& set
&& CONSTANT_P (to
))
2658 src
= simplify_rtx (SET_SRC (set
));
2661 validate_change (insn
, &SET_SRC (set
), src
, 0);
2664 /* If there is already a REG_EQUAL note, update the expression in it
2665 with our replacement. */
2666 if (note
!= 0 && REG_NOTE_KIND (note
) == REG_EQUAL
)
2667 set_unique_reg_note (insn
, REG_EQUAL
,
2668 simplify_replace_rtx (XEXP (note
, 0), from
,
2670 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
2672 /* If above failed and this is a single set, try to simplify the source of
2673 the set given our substitution. We could perhaps try this for multiple
2674 SETs, but it probably won't buy us anything. */
2675 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
2677 if (!rtx_equal_p (src
, SET_SRC (set
))
2678 && validate_change (insn
, &SET_SRC (set
), src
, 0))
2681 /* If we've failed to do replacement, have a single SET, don't already
2682 have a note, and have no special SET, add a REG_EQUAL note to not
2683 lose information. */
2684 if (!success
&& note
== 0 && set
!= 0
2685 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
2686 && GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
)
2687 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
2690 /* REG_EQUAL may get simplified into register.
2691 We don't allow that. Remove that note. This code ought
2692 not to happen, because previous code ought to synthesize
2693 reg-reg move, but be on the safe side. */
2694 if (note
&& REG_NOTE_KIND (note
) == REG_EQUAL
&& REG_P (XEXP (note
, 0)))
2695 remove_note (insn
, note
);
2700 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2701 NULL no such set is found. */
2703 static struct expr
*
2704 find_avail_set (int regno
, rtx insn
)
2706 /* SET1 contains the last set found that can be returned to the caller for
2707 use in a substitution. */
2708 struct expr
*set1
= 0;
2710 /* Loops are not possible here. To get a loop we would need two sets
2711 available at the start of the block containing INSN. i.e. we would
2712 need two sets like this available at the start of the block:
2714 (set (reg X) (reg Y))
2715 (set (reg Y) (reg X))
2717 This can not happen since the set of (reg Y) would have killed the
2718 set of (reg X) making it unavailable at the start of this block. */
2722 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
2724 /* Find a set that is available at the start of the block
2725 which contains INSN. */
2728 if (TEST_BIT (cprop_avin
[BLOCK_NUM (insn
)], set
->bitmap_index
))
2730 set
= next_set (regno
, set
);
2733 /* If no available set was found we've reached the end of the
2734 (possibly empty) copy chain. */
2738 gcc_assert (GET_CODE (set
->expr
) == SET
);
2740 src
= SET_SRC (set
->expr
);
2742 /* We know the set is available.
2743 Now check that SRC is ANTLOC (i.e. none of the source operands
2744 have changed since the start of the block).
2746 If the source operand changed, we may still use it for the next
2747 iteration of this loop, but we may not use it for substitutions. */
2749 if (gcse_constant_p (src
) || oprs_not_set_p (src
, insn
))
2752 /* If the source of the set is anything except a register, then
2753 we have reached the end of the copy chain. */
2757 /* Follow the copy chain, i.e. start another iteration of the loop
2758 and see if we have an available copy into SRC. */
2759 regno
= REGNO (src
);
2762 /* SET1 holds the last set that was available and anticipatable at
2767 /* Subroutine of cprop_insn that tries to propagate constants into
2768 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2769 it is the instruction that immediately precedes JUMP, and must be a
2770 single SET of a register. FROM is what we will try to replace,
2771 SRC is the constant we will try to substitute for it. Returns nonzero
2772 if a change was made. */
2775 cprop_jump (basic_block bb
, rtx setcc
, rtx jump
, rtx from
, rtx src
)
2777 rtx
new, set_src
, note_src
;
2778 rtx set
= pc_set (jump
);
2779 rtx note
= find_reg_equal_equiv_note (jump
);
2783 note_src
= XEXP (note
, 0);
2784 if (GET_CODE (note_src
) == EXPR_LIST
)
2785 note_src
= NULL_RTX
;
2787 else note_src
= NULL_RTX
;
2789 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2790 set_src
= note_src
? note_src
: SET_SRC (set
);
2792 /* First substitute the SETCC condition into the JUMP instruction,
2793 then substitute that given values into this expanded JUMP. */
2794 if (setcc
!= NULL_RTX
2795 && !modified_between_p (from
, setcc
, jump
)
2796 && !modified_between_p (src
, setcc
, jump
))
2799 rtx setcc_set
= single_set (setcc
);
2800 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
2801 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
2802 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
2803 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
2809 new = simplify_replace_rtx (set_src
, from
, src
);
2811 /* If no simplification can be made, then try the next register. */
2812 if (rtx_equal_p (new, SET_SRC (set
)))
2815 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2820 /* Ensure the value computed inside the jump insn to be equivalent
2821 to one computed by setcc. */
2822 if (setcc
&& modified_in_p (new, setcc
))
2824 if (! validate_unshare_change (jump
, &SET_SRC (set
), new, 0))
2826 /* When (some) constants are not valid in a comparison, and there
2827 are two registers to be replaced by constants before the entire
2828 comparison can be folded into a constant, we need to keep
2829 intermediate information in REG_EQUAL notes. For targets with
2830 separate compare insns, such notes are added by try_replace_reg.
2831 When we have a combined compare-and-branch instruction, however,
2832 we need to attach a note to the branch itself to make this
2833 optimization work. */
2835 if (!rtx_equal_p (new, note_src
))
2836 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new));
2840 /* Remove REG_EQUAL note after simplification. */
2842 remove_note (jump
, note
);
2846 /* Delete the cc0 setter. */
2847 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
2848 delete_insn (setcc
);
2851 run_jump_opt_after_gcse
= 1;
2853 global_const_prop_count
++;
2854 if (dump_file
!= NULL
)
2857 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2858 REGNO (from
), INSN_UID (jump
));
2859 print_rtl (dump_file
, src
);
2860 fprintf (dump_file
, "\n");
2862 purge_dead_edges (bb
);
2864 /* If a conditional jump has been changed into unconditional jump, remove
2865 the jump and make the edge fallthru - this is always called in
2867 if (new != pc_rtx
&& simplejump_p (jump
))
2872 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); ei_next (&ei
))
2873 if (e
->dest
!= EXIT_BLOCK_PTR
2874 && BB_HEAD (e
->dest
) == JUMP_LABEL (jump
))
2876 e
->flags
|= EDGE_FALLTHRU
;
2886 constprop_register (rtx insn
, rtx from
, rtx to
, bool alter_jumps
)
2890 /* Check for reg or cc0 setting instructions followed by
2891 conditional branch instructions first. */
2893 && (sset
= single_set (insn
)) != NULL
2895 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
2897 rtx dest
= SET_DEST (sset
);
2898 if ((REG_P (dest
) || CC0_P (dest
))
2899 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
), from
, to
))
2903 /* Handle normal insns next. */
2904 if (NONJUMP_INSN_P (insn
)
2905 && try_replace_reg (from
, to
, insn
))
2908 /* Try to propagate a CONST_INT into a conditional jump.
2909 We're pretty specific about what we will handle in this
2910 code, we can extend this as necessary over time.
2912 Right now the insn in question must look like
2913 (set (pc) (if_then_else ...)) */
2914 else if (alter_jumps
&& any_condjump_p (insn
) && onlyjump_p (insn
))
2915 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, to
);
2919 /* Perform constant and copy propagation on INSN.
2920 The result is nonzero if a change was made. */
2923 cprop_insn (rtx insn
, int alter_jumps
)
2925 struct reg_use
*reg_used
;
2933 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
2935 note
= find_reg_equal_equiv_note (insn
);
2937 /* We may win even when propagating constants into notes. */
2939 find_used_regs (&XEXP (note
, 0), NULL
);
2941 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
2942 reg_used
++, reg_use_count
--)
2944 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
2948 /* Ignore registers created by GCSE.
2949 We do this because ... */
2950 if (regno
>= max_gcse_regno
)
2953 /* If the register has already been set in this block, there's
2954 nothing we can do. */
2955 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
2958 /* Find an assignment that sets reg_used and is available
2959 at the start of the block. */
2960 set
= find_avail_set (regno
, insn
);
2965 /* ??? We might be able to handle PARALLELs. Later. */
2966 gcc_assert (GET_CODE (pat
) == SET
);
2968 src
= SET_SRC (pat
);
2970 /* Constant propagation. */
2971 if (gcse_constant_p (src
))
2973 if (constprop_register (insn
, reg_used
->reg_rtx
, src
, alter_jumps
))
2976 global_const_prop_count
++;
2977 if (dump_file
!= NULL
)
2979 fprintf (dump_file
, "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
2980 fprintf (dump_file
, "insn %d with constant ", INSN_UID (insn
));
2981 print_rtl (dump_file
, src
);
2982 fprintf (dump_file
, "\n");
2984 if (INSN_DELETED_P (insn
))
2988 else if (REG_P (src
)
2989 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2990 && REGNO (src
) != regno
)
2992 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
2995 global_copy_prop_count
++;
2996 if (dump_file
!= NULL
)
2998 fprintf (dump_file
, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2999 regno
, INSN_UID (insn
));
3000 fprintf (dump_file
, " with reg %d\n", REGNO (src
));
3003 /* The original insn setting reg_used may or may not now be
3004 deletable. We leave the deletion to flow. */
3005 /* FIXME: If it turns out that the insn isn't deletable,
3006 then we may have unnecessarily extended register lifetimes
3007 and made things worse. */
3015 /* Like find_used_regs, but avoid recording uses that appear in
3016 input-output contexts such as zero_extract or pre_dec. This
3017 restricts the cases we consider to those for which local cprop
3018 can legitimately make replacements. */
3021 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
3028 switch (GET_CODE (x
))
3032 case STRICT_LOW_PART
:
3041 /* Can only legitimately appear this early in the context of
3042 stack pushes for function arguments, but handle all of the
3043 codes nonetheless. */
3047 /* Setting a subreg of a register larger than word_mode leaves
3048 the non-written words unchanged. */
3049 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
3057 find_used_regs (xptr
, data
);
3060 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3061 their REG_EQUAL notes need updating. */
3064 do_local_cprop (rtx x
, rtx insn
, bool alter_jumps
, rtx
*libcall_sp
)
3066 rtx newreg
= NULL
, newcnst
= NULL
;
3068 /* Rule out USE instructions and ASM statements as we don't want to
3069 change the hard registers mentioned. */
3071 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
3072 || (GET_CODE (PATTERN (insn
)) != USE
3073 && asm_noperands (PATTERN (insn
)) < 0)))
3075 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0);
3076 struct elt_loc_list
*l
;
3080 for (l
= val
->locs
; l
; l
= l
->next
)
3082 rtx this_rtx
= l
->loc
;
3085 /* Don't CSE non-constant values out of libcall blocks. */
3086 if (l
->in_libcall
&& ! CONSTANT_P (this_rtx
))
3089 if (gcse_constant_p (this_rtx
))
3091 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
3092 /* Don't copy propagate if it has attached REG_EQUIV note.
3093 At this point this only function parameters should have
3094 REG_EQUIV notes and if the argument slot is used somewhere
3095 explicitly, it means address of parameter has been taken,
3096 so we should not extend the lifetime of the pseudo. */
3097 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
3098 || ! MEM_P (XEXP (note
, 0))))
3101 if (newcnst
&& constprop_register (insn
, x
, newcnst
, alter_jumps
))
3103 /* If we find a case where we can't fix the retval REG_EQUAL notes
3104 match the new register, we either have to abandon this replacement
3105 or fix delete_trivially_dead_insns to preserve the setting insn,
3106 or make it delete the REG_EQUAL note, and fix up all passes that
3107 require the REG_EQUAL note there. */
3110 adjusted
= adjust_libcall_notes (x
, newcnst
, insn
, libcall_sp
);
3111 gcc_assert (adjusted
);
3113 if (dump_file
!= NULL
)
3115 fprintf (dump_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
3117 fprintf (dump_file
, "insn %d with constant ",
3119 print_rtl (dump_file
, newcnst
);
3120 fprintf (dump_file
, "\n");
3122 local_const_prop_count
++;
3125 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
3127 adjust_libcall_notes (x
, newreg
, insn
, libcall_sp
);
3128 if (dump_file
!= NULL
)
3131 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3132 REGNO (x
), INSN_UID (insn
));
3133 fprintf (dump_file
, " with reg %d\n", REGNO (newreg
));
3135 local_copy_prop_count
++;
3142 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3143 their REG_EQUAL notes need updating to reflect that OLDREG has been
3144 replaced with NEWVAL in INSN. Return true if all substitutions could
3147 adjust_libcall_notes (rtx oldreg
, rtx newval
, rtx insn
, rtx
*libcall_sp
)
3151 while ((end
= *libcall_sp
++))
3153 rtx note
= find_reg_equal_equiv_note (end
);
3160 if (reg_set_between_p (newval
, PREV_INSN (insn
), end
))
3164 note
= find_reg_equal_equiv_note (end
);
3167 if (reg_mentioned_p (newval
, XEXP (note
, 0)))
3170 while ((end
= *libcall_sp
++));
3174 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), oldreg
, newval
);
3175 df_notes_rescan (end
);
3181 #define MAX_NESTED_LIBCALLS 9
3183 /* Do local const/copy propagation (i.e. within each basic block).
3184 If ALTER_JUMPS is true, allow propagating into jump insns, which
3185 could modify the CFG. */
3188 local_cprop_pass (bool alter_jumps
)
3192 struct reg_use
*reg_used
;
3193 rtx libcall_stack
[MAX_NESTED_LIBCALLS
+ 1], *libcall_sp
;
3194 bool changed
= false;
3196 cselib_init (false);
3197 libcall_sp
= &libcall_stack
[MAX_NESTED_LIBCALLS
];
3201 FOR_BB_INSNS (bb
, insn
)
3205 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
3209 gcc_assert (libcall_sp
!= libcall_stack
);
3210 *--libcall_sp
= XEXP (note
, 0);
3212 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
3215 note
= find_reg_equal_equiv_note (insn
);
3219 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
,
3222 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
3224 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
3225 reg_used
++, reg_use_count
--)
3227 if (do_local_cprop (reg_used
->reg_rtx
, insn
, alter_jumps
,
3234 if (INSN_DELETED_P (insn
))
3237 while (reg_use_count
);
3239 cselib_process_insn (insn
);
3242 /* Forget everything at the end of a basic block. Make sure we are
3243 not inside a libcall, they should never cross basic blocks. */
3244 cselib_clear_table ();
3245 gcc_assert (libcall_sp
== &libcall_stack
[MAX_NESTED_LIBCALLS
]);
3250 /* Global analysis may get into infinite loops for unreachable blocks. */
3251 if (changed
&& alter_jumps
)
3253 delete_unreachable_blocks ();
3254 free_reg_set_mem ();
3255 alloc_reg_set_mem (max_reg_num ());
3260 /* Forward propagate copies. This includes copies and constants. Return
3261 nonzero if a change was made. */
3264 cprop (int alter_jumps
)
3270 /* Note we start at block 1. */
3271 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3273 if (dump_file
!= NULL
)
3274 fprintf (dump_file
, "\n");
3279 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
3281 /* Reset tables used to keep track of what's still valid [since the
3282 start of the block]. */
3283 reset_opr_set_tables ();
3285 FOR_BB_INSNS (bb
, insn
)
3288 changed
|= cprop_insn (insn
, alter_jumps
);
3290 /* Keep track of everything modified by this insn. */
3291 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3292 call mark_oprs_set if we turned the insn into a NOTE. */
3293 if (! NOTE_P (insn
))
3294 mark_oprs_set (insn
);
3298 if (dump_file
!= NULL
)
3299 fprintf (dump_file
, "\n");
3304 /* Similar to get_condition, only the resulting condition must be
3305 valid at JUMP, instead of at EARLIEST.
3307 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3308 settle for the condition variable in the jump instruction being integral.
3309 We prefer to be able to record the value of a user variable, rather than
3310 the value of a temporary used in a condition. This could be solved by
3311 recording the value of *every* register scanned by canonicalize_condition,
3312 but this would require some code reorganization. */
3315 fis_get_condition (rtx jump
)
3317 return get_condition (jump
, NULL
, false, true);
3320 /* Check the comparison COND to see if we can safely form an implicit set from
3321 it. COND is either an EQ or NE comparison. */
3324 implicit_set_cond_p (const_rtx cond
)
3326 const enum machine_mode mode
= GET_MODE (XEXP (cond
, 0));
3327 const_rtx cst
= XEXP (cond
, 1);
3329 /* We can't perform this optimization if either operand might be or might
3330 contain a signed zero. */
3331 if (HONOR_SIGNED_ZEROS (mode
))
3333 /* It is sufficient to check if CST is or contains a zero. We must
3334 handle float, complex, and vector. If any subpart is a zero, then
3335 the optimization can't be performed. */
3336 /* ??? The complex and vector checks are not implemented yet. We just
3337 always return zero for them. */
3338 if (GET_CODE (cst
) == CONST_DOUBLE
)
3341 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
3342 if (REAL_VALUES_EQUAL (d
, dconst0
))
3349 return gcse_constant_p (cst
);
3352 /* Find the implicit sets of a function. An "implicit set" is a constraint
3353 on the value of a variable, implied by a conditional jump. For example,
3354 following "if (x == 2)", the then branch may be optimized as though the
3355 conditional performed an "explicit set", in this example, "x = 2". This
3356 function records the set patterns that are implicit at the start of each
3360 find_implicit_sets (void)
3362 basic_block bb
, dest
;
3368 /* Check for more than one successor. */
3369 if (EDGE_COUNT (bb
->succs
) > 1)
3371 cond
= fis_get_condition (BB_END (bb
));
3374 && (GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
3375 && REG_P (XEXP (cond
, 0))
3376 && REGNO (XEXP (cond
, 0)) >= FIRST_PSEUDO_REGISTER
3377 && implicit_set_cond_p (cond
))
3379 dest
= GET_CODE (cond
) == EQ
? BRANCH_EDGE (bb
)->dest
3380 : FALLTHRU_EDGE (bb
)->dest
;
3382 if (dest
&& single_pred_p (dest
)
3383 && dest
!= EXIT_BLOCK_PTR
)
3385 new = gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
3387 implicit_sets
[dest
->index
] = new;
3390 fprintf(dump_file
, "Implicit set of reg %d in ",
3391 REGNO (XEXP (cond
, 0)));
3392 fprintf(dump_file
, "basic block %d\n", dest
->index
);
3400 fprintf (dump_file
, "Found %d implicit sets\n", count
);
3403 /* Perform one copy/constant propagation pass.
3404 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3405 propagation into conditional jumps. If BYPASS_JUMPS is true,
3406 perform conditional jump bypassing optimizations. */
3409 one_cprop_pass (int pass
, bool cprop_jumps
, bool bypass_jumps
)
3413 global_const_prop_count
= local_const_prop_count
= 0;
3414 global_copy_prop_count
= local_copy_prop_count
= 0;
3417 local_cprop_pass (cprop_jumps
);
3419 /* Determine implicit sets. */
3420 implicit_sets
= XCNEWVEC (rtx
, last_basic_block
);
3421 find_implicit_sets ();
3423 alloc_hash_table (max_cuid
, &set_hash_table
, 1);
3424 compute_hash_table (&set_hash_table
);
3426 /* Free implicit_sets before peak usage. */
3427 free (implicit_sets
);
3428 implicit_sets
= NULL
;
3431 dump_hash_table (dump_file
, "SET", &set_hash_table
);
3432 if (set_hash_table
.n_elems
> 0)
3434 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
3435 compute_cprop_data ();
3436 changed
= cprop (cprop_jumps
);
3438 changed
|= bypass_conditional_jumps ();
3442 free_hash_table (&set_hash_table
);
3446 fprintf (dump_file
, "CPROP of %s, pass %d: %d bytes needed, ",
3447 current_function_name (), pass
, bytes_used
);
3448 fprintf (dump_file
, "%d local const props, %d local copy props, ",
3449 local_const_prop_count
, local_copy_prop_count
);
3450 fprintf (dump_file
, "%d global const props, %d global copy props\n\n",
3451 global_const_prop_count
, global_copy_prop_count
);
3453 /* Global analysis may get into infinite loops for unreachable blocks. */
3454 if (changed
&& cprop_jumps
)
3455 delete_unreachable_blocks ();
3460 /* Bypass conditional jumps. */
3462 /* The value of last_basic_block at the beginning of the jump_bypass
3463 pass. The use of redirect_edge_and_branch_force may introduce new
3464 basic blocks, but the data flow analysis is only valid for basic
3465 block indices less than bypass_last_basic_block. */
3467 static int bypass_last_basic_block
;
3469 /* Find a set of REGNO to a constant that is available at the end of basic
3470 block BB. Returns NULL if no such set is found. Based heavily upon
3473 static struct expr
*
3474 find_bypass_set (int regno
, int bb
)
3476 struct expr
*result
= 0;
3481 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
3485 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
3487 set
= next_set (regno
, set
);
3493 gcc_assert (GET_CODE (set
->expr
) == SET
);
3495 src
= SET_SRC (set
->expr
);
3496 if (gcse_constant_p (src
))
3502 regno
= REGNO (src
);
3508 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3509 any of the instructions inserted on an edge. Jump bypassing places
3510 condition code setters on CFG edges using insert_insn_on_edge. This
3511 function is required to check that our data flow analysis is still
3512 valid prior to commit_edge_insertions. */
3515 reg_killed_on_edge (const_rtx reg
, const_edge e
)
3519 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
3520 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
3526 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3527 basic block BB which has more than one predecessor. If not NULL, SETCC
3528 is the first instruction of BB, which is immediately followed by JUMP_INSN
3529 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3530 Returns nonzero if a change was made.
3532 During the jump bypassing pass, we may place copies of SETCC instructions
3533 on CFG edges. The following routine must be careful to pay attention to
3534 these inserted insns when performing its transformations. */
3537 bypass_block (basic_block bb
, rtx setcc
, rtx jump
)
3542 int may_be_loop_header
;
3546 insn
= (setcc
!= NULL
) ? setcc
: jump
;
3548 /* Determine set of register uses in INSN. */
3550 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
3551 note
= find_reg_equal_equiv_note (insn
);
3553 find_used_regs (&XEXP (note
, 0), NULL
);
3555 may_be_loop_header
= false;
3556 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3557 if (e
->flags
& EDGE_DFS_BACK
)
3559 may_be_loop_header
= true;
3564 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
3568 if (e
->flags
& EDGE_COMPLEX
)
3574 /* We can't redirect edges from new basic blocks. */
3575 if (e
->src
->index
>= bypass_last_basic_block
)
3581 /* The irreducible loops created by redirecting of edges entering the
3582 loop from outside would decrease effectiveness of some of the following
3583 optimizations, so prevent this. */
3584 if (may_be_loop_header
3585 && !(e
->flags
& EDGE_DFS_BACK
))
3591 for (i
= 0; i
< reg_use_count
; i
++)
3593 struct reg_use
*reg_used
= ®_use_table
[i
];
3594 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
3595 basic_block dest
, old_dest
;
3599 if (regno
>= max_gcse_regno
)
3602 set
= find_bypass_set (regno
, e
->src
->index
);
3607 /* Check the data flow is valid after edge insertions. */
3608 if (e
->insns
.r
&& reg_killed_on_edge (reg_used
->reg_rtx
, e
))
3611 src
= SET_SRC (pc_set (jump
));
3614 src
= simplify_replace_rtx (src
,
3615 SET_DEST (PATTERN (setcc
)),
3616 SET_SRC (PATTERN (setcc
)));
3618 new = simplify_replace_rtx (src
, reg_used
->reg_rtx
,
3619 SET_SRC (set
->expr
));
3621 /* Jump bypassing may have already placed instructions on
3622 edges of the CFG. We can't bypass an outgoing edge that
3623 has instructions associated with it, as these insns won't
3624 get executed if the incoming edge is redirected. */
3628 edest
= FALLTHRU_EDGE (bb
);
3629 dest
= edest
->insns
.r
? NULL
: edest
->dest
;
3631 else if (GET_CODE (new) == LABEL_REF
)
3633 dest
= BLOCK_FOR_INSN (XEXP (new, 0));
3634 /* Don't bypass edges containing instructions. */
3635 edest
= find_edge (bb
, dest
);
3636 if (edest
&& edest
->insns
.r
)
3642 /* Avoid unification of the edge with other edges from original
3643 branch. We would end up emitting the instruction on "both"
3646 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
)))
3647 && find_edge (e
->src
, dest
))
3653 && dest
!= EXIT_BLOCK_PTR
)
3655 redirect_edge_and_branch_force (e
, dest
);
3657 /* Copy the register setter to the redirected edge.
3658 Don't copy CC0 setters, as CC0 is dead after jump. */
3661 rtx pat
= PATTERN (setcc
);
3662 if (!CC0_P (SET_DEST (pat
)))
3663 insert_insn_on_edge (copy_insn (pat
), e
);
3666 if (dump_file
!= NULL
)
3668 fprintf (dump_file
, "JUMP-BYPASS: Proved reg %d "
3669 "in jump_insn %d equals constant ",
3670 regno
, INSN_UID (jump
));
3671 print_rtl (dump_file
, SET_SRC (set
->expr
));
3672 fprintf (dump_file
, "\nBypass edge from %d->%d to %d\n",
3673 e
->src
->index
, old_dest
->index
, dest
->index
);
3686 /* Find basic blocks with more than one predecessor that only contain a
3687 single conditional jump. If the result of the comparison is known at
3688 compile-time from any incoming edge, redirect that edge to the
3689 appropriate target. Returns nonzero if a change was made.
3691 This function is now mis-named, because we also handle indirect jumps. */
3694 bypass_conditional_jumps (void)
3702 /* Note we start at block 1. */
3703 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3706 bypass_last_basic_block
= last_basic_block
;
3707 mark_dfs_back_edges ();
3710 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
3711 EXIT_BLOCK_PTR
, next_bb
)
3713 /* Check for more than one predecessor. */
3714 if (!single_pred_p (bb
))
3717 FOR_BB_INSNS (bb
, insn
)
3718 if (NONJUMP_INSN_P (insn
))
3722 if (GET_CODE (PATTERN (insn
)) != SET
)
3725 dest
= SET_DEST (PATTERN (insn
));
3726 if (REG_P (dest
) || CC0_P (dest
))
3731 else if (JUMP_P (insn
))
3733 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
3734 && onlyjump_p (insn
))
3735 changed
|= bypass_block (bb
, setcc
, insn
);
3738 else if (INSN_P (insn
))
3743 /* If we bypassed any register setting insns, we inserted a
3744 copy on the redirected edge. These need to be committed. */
3746 commit_edge_insertions ();
3751 /* Compute PRE+LCM working variables. */
3753 /* Local properties of expressions. */
3754 /* Nonzero for expressions that are transparent in the block. */
3755 static sbitmap
*transp
;
3757 /* Nonzero for expressions that are transparent at the end of the block.
3758 This is only zero for expressions killed by abnormal critical edge
3759 created by a calls. */
3760 static sbitmap
*transpout
;
3762 /* Nonzero for expressions that are computed (available) in the block. */
3763 static sbitmap
*comp
;
3765 /* Nonzero for expressions that are locally anticipatable in the block. */
3766 static sbitmap
*antloc
;
3768 /* Nonzero for expressions where this block is an optimal computation
3770 static sbitmap
*pre_optimal
;
3772 /* Nonzero for expressions which are redundant in a particular block. */
3773 static sbitmap
*pre_redundant
;
3775 /* Nonzero for expressions which should be inserted on a specific edge. */
3776 static sbitmap
*pre_insert_map
;
3778 /* Nonzero for expressions which should be deleted in a specific block. */
3779 static sbitmap
*pre_delete_map
;
3781 /* Contains the edge_list returned by pre_edge_lcm. */
3782 static struct edge_list
*edge_list
;
3784 /* Redundant insns. */
3785 static sbitmap pre_redundant_insns
;
3787 /* Allocate vars used for PRE analysis. */
3790 alloc_pre_mem (int n_blocks
, int n_exprs
)
3792 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3793 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3794 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3797 pre_redundant
= NULL
;
3798 pre_insert_map
= NULL
;
3799 pre_delete_map
= NULL
;
3800 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3802 /* pre_insert and pre_delete are allocated later. */
3805 /* Free vars used for PRE analysis. */
3810 sbitmap_vector_free (transp
);
3811 sbitmap_vector_free (comp
);
3813 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3816 sbitmap_vector_free (pre_optimal
);
3818 sbitmap_vector_free (pre_redundant
);
3820 sbitmap_vector_free (pre_insert_map
);
3822 sbitmap_vector_free (pre_delete_map
);
3824 transp
= comp
= NULL
;
3825 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
3828 /* Top level routine to do the dataflow analysis needed by PRE. */
3831 compute_pre_data (void)
3833 sbitmap trapping_expr
;
3837 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
3838 sbitmap_vector_zero (ae_kill
, last_basic_block
);
3840 /* Collect expressions which might trap. */
3841 trapping_expr
= sbitmap_alloc (expr_hash_table
.n_elems
);
3842 sbitmap_zero (trapping_expr
);
3843 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
3846 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
3847 if (may_trap_p (e
->expr
))
3848 SET_BIT (trapping_expr
, e
->bitmap_index
);
3851 /* Compute ae_kill for each basic block using:
3861 /* If the current block is the destination of an abnormal edge, we
3862 kill all trapping expressions because we won't be able to properly
3863 place the instruction on the edge. So make them neither
3864 anticipatable nor transparent. This is fairly conservative. */
3865 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3866 if (e
->flags
& EDGE_ABNORMAL
)
3868 sbitmap_difference (antloc
[bb
->index
], antloc
[bb
->index
], trapping_expr
);
3869 sbitmap_difference (transp
[bb
->index
], transp
[bb
->index
], trapping_expr
);
3873 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
3874 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
3877 edge_list
= pre_edge_lcm (expr_hash_table
.n_elems
, transp
, comp
, antloc
,
3878 ae_kill
, &pre_insert_map
, &pre_delete_map
);
3879 sbitmap_vector_free (antloc
);
3881 sbitmap_vector_free (ae_kill
);
3883 sbitmap_free (trapping_expr
);
3888 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3891 VISITED is a pointer to a working buffer for tracking which BB's have
3892 been visited. It is NULL for the top-level call.
3894 We treat reaching expressions that go through blocks containing the same
3895 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3896 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3897 2 as not reaching. The intent is to improve the probability of finding
3898 only one reaching expression and to reduce register lifetimes by picking
3899 the closest such expression. */
3902 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct expr
*expr
, basic_block bb
, char *visited
)
3907 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
3909 basic_block pred_bb
= pred
->src
;
3911 if (pred
->src
== ENTRY_BLOCK_PTR
3912 /* Has predecessor has already been visited? */
3913 || visited
[pred_bb
->index
])
3914 ;/* Nothing to do. */
3916 /* Does this predecessor generate this expression? */
3917 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
3919 /* Is this the occurrence we're looking for?
3920 Note that there's only one generating occurrence per block
3921 so we just need to check the block number. */
3922 if (occr_bb
== pred_bb
)
3925 visited
[pred_bb
->index
] = 1;
3927 /* Ignore this predecessor if it kills the expression. */
3928 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
3929 visited
[pred_bb
->index
] = 1;
3931 /* Neither gen nor kill. */
3934 visited
[pred_bb
->index
] = 1;
3935 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
3940 /* All paths have been checked. */
3944 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3945 memory allocated for that function is returned. */
3948 pre_expr_reaches_here_p (basic_block occr_bb
, struct expr
*expr
, basic_block bb
)
3951 char *visited
= XCNEWVEC (char, last_basic_block
);
3953 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
3960 /* Given an expr, generate RTL which we can insert at the end of a BB,
3961 or on an edge. Set the block number of any insns generated to
3965 process_insert_insn (struct expr
*expr
)
3967 rtx reg
= expr
->reaching_reg
;
3968 rtx exp
= copy_rtx (expr
->expr
);
3973 /* If the expression is something that's an operand, like a constant,
3974 just copy it to a register. */
3975 if (general_operand (exp
, GET_MODE (reg
)))
3976 emit_move_insn (reg
, exp
);
3978 /* Otherwise, make a new insn to compute this expression and make sure the
3979 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3980 expression to make sure we don't have any sharing issues. */
3983 rtx insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
));
3985 if (insn_invalid_p (insn
))
3996 /* Add EXPR to the end of basic block BB.
3998 This is used by both the PRE and code hoisting.
4000 For PRE, we want to verify that the expr is either transparent
4001 or locally anticipatable in the target block. This check makes
4002 no sense for code hoisting. */
4005 insert_insn_end_basic_block (struct expr
*expr
, basic_block bb
, int pre
)
4007 rtx insn
= BB_END (bb
);
4009 rtx reg
= expr
->reaching_reg
;
4010 int regno
= REGNO (reg
);
4013 pat
= process_insert_insn (expr
);
4014 gcc_assert (pat
&& INSN_P (pat
));
4017 while (NEXT_INSN (pat_end
) != NULL_RTX
)
4018 pat_end
= NEXT_INSN (pat_end
);
4020 /* If the last insn is a jump, insert EXPR in front [taking care to
4021 handle cc0, etc. properly]. Similarly we need to care trapping
4022 instructions in presence of non-call exceptions. */
4025 || (NONJUMP_INSN_P (insn
)
4026 && (!single_succ_p (bb
)
4027 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
)))
4032 /* It should always be the case that we can put these instructions
4033 anywhere in the basic block with performing PRE optimizations.
4035 gcc_assert (!NONJUMP_INSN_P (insn
) || !pre
4036 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4037 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4039 /* If this is a jump table, then we can't insert stuff here. Since
4040 we know the previous real insn must be the tablejump, we insert
4041 the new instruction just before the tablejump. */
4042 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
4043 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
4044 insn
= prev_real_insn (insn
);
4047 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4048 if cc0 isn't set. */
4049 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
4051 insn
= XEXP (note
, 0);
4054 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
4055 if (maybe_cc0_setter
4056 && INSN_P (maybe_cc0_setter
)
4057 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
4058 insn
= maybe_cc0_setter
;
4061 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4062 new_insn
= emit_insn_before_noloc (pat
, insn
, bb
);
4065 /* Likewise if the last insn is a call, as will happen in the presence
4066 of exception handling. */
4067 else if (CALL_P (insn
)
4068 && (!single_succ_p (bb
)
4069 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
))
4071 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4072 we search backward and place the instructions before the first
4073 parameter is loaded. Do this for everyone for consistency and a
4074 presumption that we'll get better code elsewhere as well.
4076 It should always be the case that we can put these instructions
4077 anywhere in the basic block with performing PRE optimizations.
4081 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4082 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4084 /* Since different machines initialize their parameter registers
4085 in different orders, assume nothing. Collect the set of all
4086 parameter registers. */
4087 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
4089 /* If we found all the parameter loads, then we want to insert
4090 before the first parameter load.
4092 If we did not find all the parameter loads, then we might have
4093 stopped on the head of the block, which could be a CODE_LABEL.
4094 If we inserted before the CODE_LABEL, then we would be putting
4095 the insn in the wrong basic block. In that case, put the insn
4096 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4097 while (LABEL_P (insn
)
4098 || NOTE_INSN_BASIC_BLOCK_P (insn
))
4099 insn
= NEXT_INSN (insn
);
4101 new_insn
= emit_insn_before_noloc (pat
, insn
, bb
);
4104 new_insn
= emit_insn_after_noloc (pat
, insn
, bb
);
4110 add_label_notes (PATTERN (pat
), new_insn
);
4111 note_stores (PATTERN (pat
), record_set_info
, pat
);
4115 pat
= NEXT_INSN (pat
);
4118 gcse_create_count
++;
4122 fprintf (dump_file
, "PRE/HOIST: end of bb %d, insn %d, ",
4123 bb
->index
, INSN_UID (new_insn
));
4124 fprintf (dump_file
, "copying expression %d to reg %d\n",
4125 expr
->bitmap_index
, regno
);
4129 /* Insert partially redundant expressions on edges in the CFG to make
4130 the expressions fully redundant. */
4133 pre_edge_insert (struct edge_list
*edge_list
, struct expr
**index_map
)
4135 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
4138 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4139 if it reaches any of the deleted expressions. */
4141 set_size
= pre_insert_map
[0]->size
;
4142 num_edges
= NUM_EDGES (edge_list
);
4143 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
4144 sbitmap_vector_zero (inserted
, num_edges
);
4146 for (e
= 0; e
< num_edges
; e
++)
4149 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
4151 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
4153 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
4155 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
4156 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
4158 struct expr
*expr
= index_map
[j
];
4161 /* Now look at each deleted occurrence of this expression. */
4162 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4164 if (! occr
->deleted_p
)
4167 /* Insert this expression on this edge if it would
4168 reach the deleted occurrence in BB. */
4169 if (!TEST_BIT (inserted
[e
], j
))
4172 edge eg
= INDEX_EDGE (edge_list
, e
);
4174 /* We can't insert anything on an abnormal and
4175 critical edge, so we insert the insn at the end of
4176 the previous block. There are several alternatives
4177 detailed in Morgans book P277 (sec 10.5) for
4178 handling this situation. This one is easiest for
4181 if (eg
->flags
& EDGE_ABNORMAL
)
4182 insert_insn_end_basic_block (index_map
[j
], bb
, 0);
4185 insn
= process_insert_insn (index_map
[j
]);
4186 insert_insn_on_edge (insn
, eg
);
4191 fprintf (dump_file
, "PRE/HOIST: edge (%d,%d), ",
4193 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
4194 fprintf (dump_file
, "copy expression %d\n",
4195 expr
->bitmap_index
);
4198 update_ld_motion_stores (expr
);
4199 SET_BIT (inserted
[e
], j
);
4201 gcse_create_count
++;
4208 sbitmap_vector_free (inserted
);
4212 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4213 Given "old_reg <- expr" (INSN), instead of adding after it
4214 reaching_reg <- old_reg
4215 it's better to do the following:
4216 reaching_reg <- expr
4217 old_reg <- reaching_reg
4218 because this way copy propagation can discover additional PRE
4219 opportunities. But if this fails, we try the old way.
4220 When "expr" is a store, i.e.
4221 given "MEM <- old_reg", instead of adding after it
4222 reaching_reg <- old_reg
4223 it's better to add it before as follows:
4224 reaching_reg <- old_reg
4225 MEM <- reaching_reg. */
4228 pre_insert_copy_insn (struct expr
*expr
, rtx insn
)
4230 rtx reg
= expr
->reaching_reg
;
4231 int regno
= REGNO (reg
);
4232 int indx
= expr
->bitmap_index
;
4233 rtx pat
= PATTERN (insn
);
4234 rtx set
, first_set
, new_insn
;
4238 /* This block matches the logic in hash_scan_insn. */
4239 switch (GET_CODE (pat
))
4246 /* Search through the parallel looking for the set whose
4247 source was the expression that we're interested in. */
4248 first_set
= NULL_RTX
;
4250 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4252 rtx x
= XVECEXP (pat
, 0, i
);
4253 if (GET_CODE (x
) == SET
)
4255 /* If the source was a REG_EQUAL or REG_EQUIV note, we
4256 may not find an equivalent expression, but in this
4257 case the PARALLEL will have a single set. */
4258 if (first_set
== NULL_RTX
)
4260 if (expr_equiv_p (SET_SRC (x
), expr
->expr
))
4268 gcc_assert (first_set
);
4269 if (set
== NULL_RTX
)
4277 if (REG_P (SET_DEST (set
)))
4279 old_reg
= SET_DEST (set
);
4280 /* Check if we can modify the set destination in the original insn. */
4281 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
4283 new_insn
= gen_move_insn (old_reg
, reg
);
4284 new_insn
= emit_insn_after (new_insn
, insn
);
4286 /* Keep register set table up to date. */
4287 record_one_set (regno
, insn
);
4291 new_insn
= gen_move_insn (reg
, old_reg
);
4292 new_insn
= emit_insn_after (new_insn
, insn
);
4294 /* Keep register set table up to date. */
4295 record_one_set (regno
, new_insn
);
4298 else /* This is possible only in case of a store to memory. */
4300 old_reg
= SET_SRC (set
);
4301 new_insn
= gen_move_insn (reg
, old_reg
);
4303 /* Check if we can modify the set source in the original insn. */
4304 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
4305 new_insn
= emit_insn_before (new_insn
, insn
);
4307 new_insn
= emit_insn_after (new_insn
, insn
);
4309 /* Keep register set table up to date. */
4310 record_one_set (regno
, new_insn
);
4313 gcse_create_count
++;
4317 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4318 BLOCK_NUM (insn
), INSN_UID (new_insn
), indx
,
4319 INSN_UID (insn
), regno
);
4322 /* Copy available expressions that reach the redundant expression
4323 to `reaching_reg'. */
4326 pre_insert_copies (void)
4328 unsigned int i
, added_copy
;
4333 /* For each available expression in the table, copy the result to
4334 `reaching_reg' if the expression reaches a deleted one.
4336 ??? The current algorithm is rather brute force.
4337 Need to do some profiling. */
4339 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4340 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4342 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4343 we don't want to insert a copy here because the expression may not
4344 really be redundant. So only insert an insn if the expression was
4345 deleted. This test also avoids further processing if the
4346 expression wasn't deleted anywhere. */
4347 if (expr
->reaching_reg
== NULL
)
4350 /* Set when we add a copy for that expression. */
4353 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4355 if (! occr
->deleted_p
)
4358 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
4360 rtx insn
= avail
->insn
;
4362 /* No need to handle this one if handled already. */
4363 if (avail
->copied_p
)
4366 /* Don't handle this one if it's a redundant one. */
4367 if (TEST_BIT (pre_redundant_insns
, INSN_CUID (insn
)))
4370 /* Or if the expression doesn't reach the deleted one. */
4371 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
4373 BLOCK_FOR_INSN (occr
->insn
)))
4378 /* Copy the result of avail to reaching_reg. */
4379 pre_insert_copy_insn (expr
, insn
);
4380 avail
->copied_p
= 1;
4385 update_ld_motion_stores (expr
);
4389 /* Emit move from SRC to DEST noting the equivalence with expression computed
4392 gcse_emit_move_after (rtx src
, rtx dest
, rtx insn
)
4395 rtx set
= single_set (insn
), set2
;
4399 /* This should never fail since we're creating a reg->reg copy
4400 we've verified to be valid. */
4402 new = emit_insn_after (gen_move_insn (dest
, src
), insn
);
4404 /* Note the equivalence for local CSE pass. */
4405 set2
= single_set (new);
4406 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
4408 if ((note
= find_reg_equal_equiv_note (insn
)))
4409 eqv
= XEXP (note
, 0);
4411 eqv
= SET_SRC (set
);
4413 set_unique_reg_note (new, REG_EQUAL
, copy_insn_1 (eqv
));
4418 /* Delete redundant computations.
4419 Deletion is done by changing the insn to copy the `reaching_reg' of
4420 the expression into the result of the SET. It is left to later passes
4421 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4423 Returns nonzero if a change is made. */
4434 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4435 for (expr
= expr_hash_table
.table
[i
];
4437 expr
= expr
->next_same_hash
)
4439 int indx
= expr
->bitmap_index
;
4441 /* We only need to search antic_occr since we require
4444 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4446 rtx insn
= occr
->insn
;
4448 basic_block bb
= BLOCK_FOR_INSN (insn
);
4450 /* We only delete insns that have a single_set. */
4451 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
)
4452 && (set
= single_set (insn
)) != 0
4453 && dbg_cnt (pre_insn
))
4455 /* Create a pseudo-reg to store the result of reaching
4456 expressions into. Get the mode for the new pseudo from
4457 the mode of the original destination pseudo. */
4458 if (expr
->reaching_reg
== NULL
)
4460 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4462 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4464 occr
->deleted_p
= 1;
4465 SET_BIT (pre_redundant_insns
, INSN_CUID (insn
));
4472 "PRE: redundant insn %d (expression %d) in ",
4473 INSN_UID (insn
), indx
);
4474 fprintf (dump_file
, "bb %d, reaching reg is %d\n",
4475 bb
->index
, REGNO (expr
->reaching_reg
));
4484 /* Perform GCSE optimizations using PRE.
4485 This is called by one_pre_gcse_pass after all the dataflow analysis
4488 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4489 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4490 Compiler Design and Implementation.
4492 ??? A new pseudo reg is created to hold the reaching expression. The nice
4493 thing about the classical approach is that it would try to use an existing
4494 reg. If the register can't be adequately optimized [i.e. we introduce
4495 reload problems], one could add a pass here to propagate the new register
4498 ??? We don't handle single sets in PARALLELs because we're [currently] not
4499 able to copy the rest of the parallel when we insert copies to create full
4500 redundancies from partial redundancies. However, there's no reason why we
4501 can't handle PARALLELs in the cases where there are no partial
4508 int did_insert
, changed
;
4509 struct expr
**index_map
;
4512 /* Compute a mapping from expression number (`bitmap_index') to
4513 hash table entry. */
4515 index_map
= XCNEWVEC (struct expr
*, expr_hash_table
.n_elems
);
4516 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4517 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4518 index_map
[expr
->bitmap_index
] = expr
;
4520 /* Reset bitmap used to track which insns are redundant. */
4521 pre_redundant_insns
= sbitmap_alloc (max_cuid
);
4522 sbitmap_zero (pre_redundant_insns
);
4524 /* Delete the redundant insns first so that
4525 - we know what register to use for the new insns and for the other
4526 ones with reaching expressions
4527 - we know which insns are redundant when we go to create copies */
4529 changed
= pre_delete ();
4530 did_insert
= pre_edge_insert (edge_list
, index_map
);
4532 /* In other places with reaching expressions, copy the expression to the
4533 specially allocated pseudo-reg that reaches the redundant expr. */
4534 pre_insert_copies ();
4537 commit_edge_insertions ();
4542 sbitmap_free (pre_redundant_insns
);
4546 /* Top level routine to perform one PRE GCSE pass.
4548 Return nonzero if a change was made. */
4551 one_pre_gcse_pass (int pass
)
4555 gcse_subst_count
= 0;
4556 gcse_create_count
= 0;
4558 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4559 add_noreturn_fake_exit_edges ();
4561 compute_ld_motion_mems ();
4563 compute_hash_table (&expr_hash_table
);
4564 trim_ld_motion_mems ();
4566 dump_hash_table (dump_file
, "Expression", &expr_hash_table
);
4568 if (expr_hash_table
.n_elems
> 0)
4570 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
4571 compute_pre_data ();
4572 changed
|= pre_gcse ();
4573 free_edge_list (edge_list
);
4578 remove_fake_exit_edges ();
4579 free_hash_table (&expr_hash_table
);
4583 fprintf (dump_file
, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4584 current_function_name (), pass
, bytes_used
);
4585 fprintf (dump_file
, "%d substs, %d insns created\n",
4586 gcse_subst_count
, gcse_create_count
);
4592 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
4593 to INSN. If such notes are added to an insn which references a
4594 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
4595 that note, because the following loop optimization pass requires
4598 /* ??? If there was a jump optimization pass after gcse and before loop,
4599 then we would not need to do this here, because jump would add the
4600 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
4603 add_label_notes (rtx x
, rtx insn
)
4605 enum rtx_code code
= GET_CODE (x
);
4609 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
4611 /* This code used to ignore labels that referred to dispatch tables to
4612 avoid flow generating (slightly) worse code.
4614 We no longer ignore such label references (see LABEL_REF handling in
4615 mark_jump_label for additional information). */
4617 /* There's no reason for current users to emit jump-insns with
4618 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
4620 gcc_assert (!JUMP_P (insn
));
4622 = gen_rtx_INSN_LIST (REG_LABEL_OPERAND
, XEXP (x
, 0),
4624 if (LABEL_P (XEXP (x
, 0)))
4625 LABEL_NUSES (XEXP (x
, 0))++;
4630 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
4633 add_label_notes (XEXP (x
, i
), insn
);
4634 else if (fmt
[i
] == 'E')
4635 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4636 add_label_notes (XVECEXP (x
, i
, j
), insn
);
4640 /* Compute transparent outgoing information for each block.
4642 An expression is transparent to an edge unless it is killed by
4643 the edge itself. This can only happen with abnormal control flow,
4644 when the edge is traversed through a call. This happens with
4645 non-local labels and exceptions.
4647 This would not be necessary if we split the edge. While this is
4648 normally impossible for abnormal critical edges, with some effort
4649 it should be possible with exception handling, since we still have
4650 control over which handler should be invoked. But due to increased
4651 EH table sizes, this may not be worthwhile. */
4654 compute_transpout (void)
4660 sbitmap_vector_ones (transpout
, last_basic_block
);
4664 /* Note that flow inserted a nop a the end of basic blocks that
4665 end in call instructions for reasons other than abnormal
4667 if (! CALL_P (BB_END (bb
)))
4670 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4671 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
4672 if (MEM_P (expr
->expr
))
4674 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
4675 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
4678 /* ??? Optimally, we would use interprocedural alias
4679 analysis to determine if this mem is actually killed
4681 RESET_BIT (transpout
[bb
->index
], expr
->bitmap_index
);
4686 /* Code Hoisting variables and subroutines. */
4688 /* Very busy expressions. */
4689 static sbitmap
*hoist_vbein
;
4690 static sbitmap
*hoist_vbeout
;
4692 /* Hoistable expressions. */
4693 static sbitmap
*hoist_exprs
;
4695 /* ??? We could compute post dominators and run this algorithm in
4696 reverse to perform tail merging, doing so would probably be
4697 more effective than the tail merging code in jump.c.
4699 It's unclear if tail merging could be run in parallel with
4700 code hoisting. It would be nice. */
4702 /* Allocate vars used for code hoisting analysis. */
4705 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
4707 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4708 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4709 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4711 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4712 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4713 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4714 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4717 /* Free vars used for code hoisting analysis. */
4720 free_code_hoist_mem (void)
4722 sbitmap_vector_free (antloc
);
4723 sbitmap_vector_free (transp
);
4724 sbitmap_vector_free (comp
);
4726 sbitmap_vector_free (hoist_vbein
);
4727 sbitmap_vector_free (hoist_vbeout
);
4728 sbitmap_vector_free (hoist_exprs
);
4729 sbitmap_vector_free (transpout
);
4731 free_dominance_info (CDI_DOMINATORS
);
4734 /* Compute the very busy expressions at entry/exit from each block.
4736 An expression is very busy if all paths from a given point
4737 compute the expression. */
4740 compute_code_hoist_vbeinout (void)
4742 int changed
, passes
;
4745 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
4746 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
4755 /* We scan the blocks in the reverse order to speed up
4757 FOR_EACH_BB_REVERSE (bb
)
4759 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
4760 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
],
4761 hoist_vbein
, bb
->index
);
4763 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
],
4765 hoist_vbeout
[bb
->index
],
4773 fprintf (dump_file
, "hoisting vbeinout computation: %d passes\n", passes
);
4776 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4779 compute_code_hoist_data (void)
4781 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
4782 compute_transpout ();
4783 compute_code_hoist_vbeinout ();
4784 calculate_dominance_info (CDI_DOMINATORS
);
4786 fprintf (dump_file
, "\n");
4789 /* Determine if the expression identified by EXPR_INDEX would
4790 reach BB unimpared if it was placed at the end of EXPR_BB.
4792 It's unclear exactly what Muchnick meant by "unimpared". It seems
4793 to me that the expression must either be computed or transparent in
4794 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4795 would allow the expression to be hoisted out of loops, even if
4796 the expression wasn't a loop invariant.
4798 Contrast this to reachability for PRE where an expression is
4799 considered reachable if *any* path reaches instead of *all*
4803 hoist_expr_reaches_here_p (basic_block expr_bb
, int expr_index
, basic_block bb
, char *visited
)
4807 int visited_allocated_locally
= 0;
4810 if (visited
== NULL
)
4812 visited_allocated_locally
= 1;
4813 visited
= XCNEWVEC (char, last_basic_block
);
4816 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
4818 basic_block pred_bb
= pred
->src
;
4820 if (pred
->src
== ENTRY_BLOCK_PTR
)
4822 else if (pred_bb
== expr_bb
)
4824 else if (visited
[pred_bb
->index
])
4827 /* Does this predecessor generate this expression? */
4828 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
4830 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
4836 visited
[pred_bb
->index
] = 1;
4837 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
4842 if (visited_allocated_locally
)
4845 return (pred
== NULL
);
4848 /* Actually perform code hoisting. */
4853 basic_block bb
, dominated
;
4854 VEC (basic_block
, heap
) *domby
;
4856 struct expr
**index_map
;
4859 sbitmap_vector_zero (hoist_exprs
, last_basic_block
);
4861 /* Compute a mapping from expression number (`bitmap_index') to
4862 hash table entry. */
4864 index_map
= XCNEWVEC (struct expr
*, expr_hash_table
.n_elems
);
4865 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4866 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4867 index_map
[expr
->bitmap_index
] = expr
;
4869 /* Walk over each basic block looking for potentially hoistable
4870 expressions, nothing gets hoisted from the entry block. */
4874 int insn_inserted_p
;
4876 domby
= get_dominated_by (CDI_DOMINATORS
, bb
);
4877 /* Examine each expression that is very busy at the exit of this
4878 block. These are the potentially hoistable expressions. */
4879 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
4883 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
)
4884 && TEST_BIT (transpout
[bb
->index
], i
))
4886 /* We've found a potentially hoistable expression, now
4887 we look at every block BB dominates to see if it
4888 computes the expression. */
4889 for (j
= 0; VEC_iterate (basic_block
, domby
, j
, dominated
); j
++)
4891 /* Ignore self dominance. */
4892 if (bb
== dominated
)
4894 /* We've found a dominated block, now see if it computes
4895 the busy expression and whether or not moving that
4896 expression to the "beginning" of that block is safe. */
4897 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4900 /* Note if the expression would reach the dominated block
4901 unimpared if it was placed at the end of BB.
4903 Keep track of how many times this expression is hoistable
4904 from a dominated block into BB. */
4905 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4909 /* If we found more than one hoistable occurrence of this
4910 expression, then note it in the bitmap of expressions to
4911 hoist. It makes no sense to hoist things which are computed
4912 in only one BB, and doing so tends to pessimize register
4913 allocation. One could increase this value to try harder
4914 to avoid any possible code expansion due to register
4915 allocation issues; however experiments have shown that
4916 the vast majority of hoistable expressions are only movable
4917 from two successors, so raising this threshold is likely
4918 to nullify any benefit we get from code hoisting. */
4921 SET_BIT (hoist_exprs
[bb
->index
], i
);
4926 /* If we found nothing to hoist, then quit now. */
4929 VEC_free (basic_block
, heap
, domby
);
4933 /* Loop over all the hoistable expressions. */
4934 for (i
= 0; i
< hoist_exprs
[bb
->index
]->n_bits
; i
++)
4936 /* We want to insert the expression into BB only once, so
4937 note when we've inserted it. */
4938 insn_inserted_p
= 0;
4940 /* These tests should be the same as the tests above. */
4941 if (TEST_BIT (hoist_exprs
[bb
->index
], i
))
4943 /* We've found a potentially hoistable expression, now
4944 we look at every block BB dominates to see if it
4945 computes the expression. */
4946 for (j
= 0; VEC_iterate (basic_block
, domby
, j
, dominated
); j
++)
4948 /* Ignore self dominance. */
4949 if (bb
== dominated
)
4952 /* We've found a dominated block, now see if it computes
4953 the busy expression and whether or not moving that
4954 expression to the "beginning" of that block is safe. */
4955 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4958 /* The expression is computed in the dominated block and
4959 it would be safe to compute it at the start of the
4960 dominated block. Now we have to determine if the
4961 expression would reach the dominated block if it was
4962 placed at the end of BB. */
4963 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4965 struct expr
*expr
= index_map
[i
];
4966 struct occr
*occr
= expr
->antic_occr
;
4970 /* Find the right occurrence of this expression. */
4971 while (BLOCK_FOR_INSN (occr
->insn
) != dominated
&& occr
)
4976 set
= single_set (insn
);
4979 /* Create a pseudo-reg to store the result of reaching
4980 expressions into. Get the mode for the new pseudo
4981 from the mode of the original destination pseudo. */
4982 if (expr
->reaching_reg
== NULL
)
4984 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4986 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4988 occr
->deleted_p
= 1;
4989 if (!insn_inserted_p
)
4991 insert_insn_end_basic_block (index_map
[i
], bb
, 0);
4992 insn_inserted_p
= 1;
4998 VEC_free (basic_block
, heap
, domby
);
5004 /* Top level routine to perform one code hoisting (aka unification) pass
5006 Return nonzero if a change was made. */
5009 one_code_hoisting_pass (void)
5013 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
5014 compute_hash_table (&expr_hash_table
);
5016 dump_hash_table (dump_file
, "Code Hosting Expressions", &expr_hash_table
);
5018 if (expr_hash_table
.n_elems
> 0)
5020 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
5021 compute_code_hoist_data ();
5023 free_code_hoist_mem ();
5026 free_hash_table (&expr_hash_table
);
5031 /* Here we provide the things required to do store motion towards
5032 the exit. In order for this to be effective, gcse also needed to
5033 be taught how to move a load when it is kill only by a store to itself.
5038 void foo(float scale)
5040 for (i=0; i<10; i++)
5044 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5045 the load out since its live around the loop, and stored at the bottom
5048 The 'Load Motion' referred to and implemented in this file is
5049 an enhancement to gcse which when using edge based lcm, recognizes
5050 this situation and allows gcse to move the load out of the loop.
5052 Once gcse has hoisted the load, store motion can then push this
5053 load towards the exit, and we end up with no loads or stores of 'i'
5057 pre_ldst_expr_hash (const void *p
)
5059 int do_not_record_p
= 0;
5060 const struct ls_expr
*x
= p
;
5061 return hash_rtx (x
->pattern
, GET_MODE (x
->pattern
), &do_not_record_p
, NULL
, false);
5065 pre_ldst_expr_eq (const void *p1
, const void *p2
)
5067 const struct ls_expr
*ptr1
= p1
, *ptr2
= p2
;
5068 return expr_equiv_p (ptr1
->pattern
, ptr2
->pattern
);
5071 /* This will search the ldst list for a matching expression. If it
5072 doesn't find one, we create one and initialize it. */
5074 static struct ls_expr
*
5077 int do_not_record_p
= 0;
5078 struct ls_expr
* ptr
;
5083 hash
= hash_rtx (x
, GET_MODE (x
), &do_not_record_p
,
5084 NULL
, /*have_reg_qty=*/false);
5087 slot
= htab_find_slot_with_hash (pre_ldst_table
, &e
, hash
, INSERT
);
5089 return (struct ls_expr
*)*slot
;
5091 ptr
= XNEW (struct ls_expr
);
5093 ptr
->next
= pre_ldst_mems
;
5096 ptr
->pattern_regs
= NULL_RTX
;
5097 ptr
->loads
= NULL_RTX
;
5098 ptr
->stores
= NULL_RTX
;
5099 ptr
->reaching_reg
= NULL_RTX
;
5102 ptr
->hash_index
= hash
;
5103 pre_ldst_mems
= ptr
;
5109 /* Free up an individual ldst entry. */
5112 free_ldst_entry (struct ls_expr
* ptr
)
5114 free_INSN_LIST_list (& ptr
->loads
);
5115 free_INSN_LIST_list (& ptr
->stores
);
5120 /* Free up all memory associated with the ldst list. */
5123 free_ldst_mems (void)
5126 htab_delete (pre_ldst_table
);
5127 pre_ldst_table
= NULL
;
5129 while (pre_ldst_mems
)
5131 struct ls_expr
* tmp
= pre_ldst_mems
;
5133 pre_ldst_mems
= pre_ldst_mems
->next
;
5135 free_ldst_entry (tmp
);
5138 pre_ldst_mems
= NULL
;
5141 /* Dump debugging info about the ldst list. */
5144 print_ldst_list (FILE * file
)
5146 struct ls_expr
* ptr
;
5148 fprintf (file
, "LDST list: \n");
5150 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5152 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
5154 print_rtl (file
, ptr
->pattern
);
5156 fprintf (file
, "\n Loads : ");
5159 print_rtl (file
, ptr
->loads
);
5161 fprintf (file
, "(nil)");
5163 fprintf (file
, "\n Stores : ");
5166 print_rtl (file
, ptr
->stores
);
5168 fprintf (file
, "(nil)");
5170 fprintf (file
, "\n\n");
5173 fprintf (file
, "\n");
5176 /* Returns 1 if X is in the list of ldst only expressions. */
5178 static struct ls_expr
*
5179 find_rtx_in_ldst (rtx x
)
5183 if (!pre_ldst_table
)
5186 slot
= htab_find_slot (pre_ldst_table
, &e
, NO_INSERT
);
5187 if (!slot
|| ((struct ls_expr
*)*slot
)->invalid
)
5192 /* Assign each element of the list of mems a monotonically increasing value. */
5195 enumerate_ldsts (void)
5197 struct ls_expr
* ptr
;
5200 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5206 /* Return first item in the list. */
5208 static inline struct ls_expr
*
5209 first_ls_expr (void)
5211 return pre_ldst_mems
;
5214 /* Return the next item in the list after the specified one. */
5216 static inline struct ls_expr
*
5217 next_ls_expr (struct ls_expr
* ptr
)
5222 /* Load Motion for loads which only kill themselves. */
5224 /* Return true if x is a simple MEM operation, with no registers or
5225 side effects. These are the types of loads we consider for the
5226 ld_motion list, otherwise we let the usual aliasing take care of it. */
5229 simple_mem (const_rtx x
)
5234 if (MEM_VOLATILE_P (x
))
5237 if (GET_MODE (x
) == BLKmode
)
5240 /* If we are handling exceptions, we must be careful with memory references
5241 that may trap. If we are not, the behavior is undefined, so we may just
5243 if (flag_non_call_exceptions
&& may_trap_p (x
))
5246 if (side_effects_p (x
))
5249 /* Do not consider function arguments passed on stack. */
5250 if (reg_mentioned_p (stack_pointer_rtx
, x
))
5253 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
5259 /* Make sure there isn't a buried reference in this pattern anywhere.
5260 If there is, invalidate the entry for it since we're not capable
5261 of fixing it up just yet.. We have to be sure we know about ALL
5262 loads since the aliasing code will allow all entries in the
5263 ld_motion list to not-alias itself. If we miss a load, we will get
5264 the wrong value since gcse might common it and we won't know to
5268 invalidate_any_buried_refs (rtx x
)
5272 struct ls_expr
* ptr
;
5274 /* Invalidate it in the list. */
5275 if (MEM_P (x
) && simple_mem (x
))
5277 ptr
= ldst_entry (x
);
5281 /* Recursively process the insn. */
5282 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5284 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
5287 invalidate_any_buried_refs (XEXP (x
, i
));
5288 else if (fmt
[i
] == 'E')
5289 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5290 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
5294 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5295 being defined as MEM loads and stores to symbols, with no side effects
5296 and no registers in the expression. For a MEM destination, we also
5297 check that the insn is still valid if we replace the destination with a
5298 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5299 which don't match this criteria, they are invalidated and trimmed out
5303 compute_ld_motion_mems (void)
5305 struct ls_expr
* ptr
;
5309 pre_ldst_mems
= NULL
;
5310 pre_ldst_table
= htab_create (13, pre_ldst_expr_hash
,
5311 pre_ldst_expr_eq
, NULL
);
5315 FOR_BB_INSNS (bb
, insn
)
5319 if (GET_CODE (PATTERN (insn
)) == SET
)
5321 rtx src
= SET_SRC (PATTERN (insn
));
5322 rtx dest
= SET_DEST (PATTERN (insn
));
5324 /* Check for a simple LOAD... */
5325 if (MEM_P (src
) && simple_mem (src
))
5327 ptr
= ldst_entry (src
);
5329 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
5335 /* Make sure there isn't a buried load somewhere. */
5336 invalidate_any_buried_refs (src
);
5339 /* Check for stores. Don't worry about aliased ones, they
5340 will block any movement we might do later. We only care
5341 about this exact pattern since those are the only
5342 circumstance that we will ignore the aliasing info. */
5343 if (MEM_P (dest
) && simple_mem (dest
))
5345 ptr
= ldst_entry (dest
);
5348 && GET_CODE (src
) != ASM_OPERANDS
5349 /* Check for REG manually since want_to_gcse_p
5350 returns 0 for all REGs. */
5351 && can_assign_to_reg_p (src
))
5352 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
5358 invalidate_any_buried_refs (PATTERN (insn
));
5364 /* Remove any references that have been either invalidated or are not in the
5365 expression list for pre gcse. */
5368 trim_ld_motion_mems (void)
5370 struct ls_expr
* * last
= & pre_ldst_mems
;
5371 struct ls_expr
* ptr
= pre_ldst_mems
;
5377 /* Delete if entry has been made invalid. */
5380 /* Delete if we cannot find this mem in the expression list. */
5381 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
5383 for (expr
= expr_hash_table
.table
[hash
];
5385 expr
= expr
->next_same_hash
)
5386 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
5390 expr
= (struct expr
*) 0;
5394 /* Set the expression field if we are keeping it. */
5402 htab_remove_elt_with_hash (pre_ldst_table
, ptr
, ptr
->hash_index
);
5403 free_ldst_entry (ptr
);
5408 /* Show the world what we've found. */
5409 if (dump_file
&& pre_ldst_mems
!= NULL
)
5410 print_ldst_list (dump_file
);
5413 /* This routine will take an expression which we are replacing with
5414 a reaching register, and update any stores that are needed if
5415 that expression is in the ld_motion list. Stores are updated by
5416 copying their SRC to the reaching register, and then storing
5417 the reaching register into the store location. These keeps the
5418 correct value in the reaching register for the loads. */
5421 update_ld_motion_stores (struct expr
* expr
)
5423 struct ls_expr
* mem_ptr
;
5425 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
5427 /* We can try to find just the REACHED stores, but is shouldn't
5428 matter to set the reaching reg everywhere... some might be
5429 dead and should be eliminated later. */
5431 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5432 where reg is the reaching reg used in the load. We checked in
5433 compute_ld_motion_mems that we can replace (set mem expr) with
5434 (set reg expr) in that insn. */
5435 rtx list
= mem_ptr
->stores
;
5437 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
5439 rtx insn
= XEXP (list
, 0);
5440 rtx pat
= PATTERN (insn
);
5441 rtx src
= SET_SRC (pat
);
5442 rtx reg
= expr
->reaching_reg
;
5445 /* If we've already copied it, continue. */
5446 if (expr
->reaching_reg
== src
)
5451 fprintf (dump_file
, "PRE: store updated with reaching reg ");
5452 print_rtl (dump_file
, expr
->reaching_reg
);
5453 fprintf (dump_file
, ":\n ");
5454 print_inline_rtx (dump_file
, insn
, 8);
5455 fprintf (dump_file
, "\n");
5458 copy
= gen_move_insn ( reg
, copy_rtx (SET_SRC (pat
)));
5459 new = emit_insn_before (copy
, insn
);
5460 record_one_set (REGNO (reg
), new);
5461 SET_SRC (pat
) = reg
;
5462 df_insn_rescan (insn
);
5464 /* un-recognize this pattern since it's probably different now. */
5465 INSN_CODE (insn
) = -1;
5466 gcse_create_count
++;
5471 /* Store motion code. */
5473 #define ANTIC_STORE_LIST(x) ((x)->loads)
5474 #define AVAIL_STORE_LIST(x) ((x)->stores)
5475 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5477 /* This is used to communicate the target bitvector we want to use in the
5478 reg_set_info routine when called via the note_stores mechanism. */
5479 static int * regvec
;
5481 /* And current insn, for the same routine. */
5482 static rtx compute_store_table_current_insn
;
5484 /* Used in computing the reverse edge graph bit vectors. */
5485 static sbitmap
* st_antloc
;
5487 /* Global holding the number of store expressions we are dealing with. */
5488 static int num_stores
;
5490 /* Checks to set if we need to mark a register set. Called from
5494 reg_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
5497 sbitmap bb_reg
= data
;
5499 if (GET_CODE (dest
) == SUBREG
)
5500 dest
= SUBREG_REG (dest
);
5504 regvec
[REGNO (dest
)] = INSN_UID (compute_store_table_current_insn
);
5506 SET_BIT (bb_reg
, REGNO (dest
));
5510 /* Clear any mark that says that this insn sets dest. Called from
5514 reg_clear_last_set (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
5517 int *dead_vec
= data
;
5519 if (GET_CODE (dest
) == SUBREG
)
5520 dest
= SUBREG_REG (dest
);
5523 dead_vec
[REGNO (dest
)] == INSN_UID (compute_store_table_current_insn
))
5524 dead_vec
[REGNO (dest
)] = 0;
5527 /* Return zero if some of the registers in list X are killed
5528 due to set of registers in bitmap REGS_SET. */
5531 store_ops_ok (const_rtx x
, int *regs_set
)
5535 for (; x
; x
= XEXP (x
, 1))
5538 if (regs_set
[REGNO(reg
)])
5545 /* Returns a list of registers mentioned in X. */
5547 extract_mentioned_regs (rtx x
)
5549 return extract_mentioned_regs_helper (x
, NULL_RTX
);
5552 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5555 extract_mentioned_regs_helper (rtx x
, rtx accum
)
5561 /* Repeat is used to turn tail-recursion into iteration. */
5567 code
= GET_CODE (x
);
5571 return alloc_EXPR_LIST (0, x
, accum
);
5583 /* We do not run this function with arguments having side effects. */
5603 i
= GET_RTX_LENGTH (code
) - 1;
5604 fmt
= GET_RTX_FORMAT (code
);
5610 rtx tem
= XEXP (x
, i
);
5612 /* If we are about to do the last recursive call
5613 needed at this level, change it into iteration. */
5620 accum
= extract_mentioned_regs_helper (tem
, accum
);
5622 else if (fmt
[i
] == 'E')
5626 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5627 accum
= extract_mentioned_regs_helper (XVECEXP (x
, i
, j
), accum
);
5634 /* Determine whether INSN is MEM store pattern that we will consider moving.
5635 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5636 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5637 including) the insn in this basic block. We must be passing through BB from
5638 head to end, as we are using this fact to speed things up.
5640 The results are stored this way:
5642 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5643 -- if the processed expression is not anticipatable, NULL_RTX is added
5644 there instead, so that we can use it as indicator that no further
5645 expression of this type may be anticipatable
5646 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5647 consequently, all of them but this head are dead and may be deleted.
5648 -- if the expression is not available, the insn due to that it fails to be
5649 available is stored in reaching_reg.
5651 The things are complicated a bit by fact that there already may be stores
5652 to the same MEM from other blocks; also caller must take care of the
5653 necessary cleanup of the temporary markers after end of the basic block.
5657 find_moveable_store (rtx insn
, int *regs_set_before
, int *regs_set_after
)
5659 struct ls_expr
* ptr
;
5661 int check_anticipatable
, check_available
;
5662 basic_block bb
= BLOCK_FOR_INSN (insn
);
5664 set
= single_set (insn
);
5668 dest
= SET_DEST (set
);
5670 if (! MEM_P (dest
) || MEM_VOLATILE_P (dest
)
5671 || GET_MODE (dest
) == BLKmode
)
5674 if (side_effects_p (dest
))
5677 /* If we are handling exceptions, we must be careful with memory references
5678 that may trap. If we are not, the behavior is undefined, so we may just
5680 if (flag_non_call_exceptions
&& may_trap_p (dest
))
5683 /* Even if the destination cannot trap, the source may. In this case we'd
5684 need to handle updating the REG_EH_REGION note. */
5685 if (find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
5688 /* Make sure that the SET_SRC of this store insns can be assigned to
5689 a register, or we will fail later on in replace_store_insn, which
5690 assumes that we can do this. But sometimes the target machine has
5691 oddities like MEM read-modify-write instruction. See for example
5693 if (!can_assign_to_reg_p (SET_SRC (set
)))
5696 ptr
= ldst_entry (dest
);
5697 if (!ptr
->pattern_regs
)
5698 ptr
->pattern_regs
= extract_mentioned_regs (dest
);
5700 /* Do not check for anticipatability if we either found one anticipatable
5701 store already, or tested for one and found out that it was killed. */
5702 check_anticipatable
= 0;
5703 if (!ANTIC_STORE_LIST (ptr
))
5704 check_anticipatable
= 1;
5707 tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0);
5709 && BLOCK_FOR_INSN (tmp
) != bb
)
5710 check_anticipatable
= 1;
5712 if (check_anticipatable
)
5714 if (store_killed_before (dest
, ptr
->pattern_regs
, insn
, bb
, regs_set_before
))
5718 ANTIC_STORE_LIST (ptr
) = alloc_INSN_LIST (tmp
,
5719 ANTIC_STORE_LIST (ptr
));
5722 /* It is not necessary to check whether store is available if we did
5723 it successfully before; if we failed before, do not bother to check
5724 until we reach the insn that caused us to fail. */
5725 check_available
= 0;
5726 if (!AVAIL_STORE_LIST (ptr
))
5727 check_available
= 1;
5730 tmp
= XEXP (AVAIL_STORE_LIST (ptr
), 0);
5731 if (BLOCK_FOR_INSN (tmp
) != bb
)
5732 check_available
= 1;
5734 if (check_available
)
5736 /* Check that we have already reached the insn at that the check
5737 failed last time. */
5738 if (LAST_AVAIL_CHECK_FAILURE (ptr
))
5740 for (tmp
= BB_END (bb
);
5741 tmp
!= insn
&& tmp
!= LAST_AVAIL_CHECK_FAILURE (ptr
);
5742 tmp
= PREV_INSN (tmp
))
5745 check_available
= 0;
5748 check_available
= store_killed_after (dest
, ptr
->pattern_regs
, insn
,
5750 &LAST_AVAIL_CHECK_FAILURE (ptr
));
5752 if (!check_available
)
5753 AVAIL_STORE_LIST (ptr
) = alloc_INSN_LIST (insn
, AVAIL_STORE_LIST (ptr
));
5756 /* Find available and anticipatable stores. */
5759 compute_store_table (void)
5765 int *last_set_in
, *already_set
;
5766 struct ls_expr
* ptr
, **prev_next_ptr_ptr
;
5768 max_gcse_regno
= max_reg_num ();
5770 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
,
5772 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
5774 pre_ldst_table
= htab_create (13, pre_ldst_expr_hash
,
5775 pre_ldst_expr_eq
, NULL
);
5776 last_set_in
= XCNEWVEC (int, max_gcse_regno
);
5777 already_set
= XNEWVEC (int, max_gcse_regno
);
5779 /* Find all the stores we care about. */
5782 /* First compute the registers set in this block. */
5783 regvec
= last_set_in
;
5785 FOR_BB_INSNS (bb
, insn
)
5787 if (! INSN_P (insn
))
5792 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5793 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5795 last_set_in
[regno
] = INSN_UID (insn
);
5796 SET_BIT (reg_set_in_block
[bb
->index
], regno
);
5800 pat
= PATTERN (insn
);
5801 compute_store_table_current_insn
= insn
;
5802 note_stores (pat
, reg_set_info
, reg_set_in_block
[bb
->index
]);
5805 /* Now find the stores. */
5806 memset (already_set
, 0, sizeof (int) * max_gcse_regno
);
5807 regvec
= already_set
;
5808 FOR_BB_INSNS (bb
, insn
)
5810 if (! INSN_P (insn
))
5815 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5816 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5817 already_set
[regno
] = 1;
5820 pat
= PATTERN (insn
);
5821 note_stores (pat
, reg_set_info
, NULL
);
5823 /* Now that we've marked regs, look for stores. */
5824 find_moveable_store (insn
, already_set
, last_set_in
);
5826 /* Unmark regs that are no longer set. */
5827 compute_store_table_current_insn
= insn
;
5828 note_stores (pat
, reg_clear_last_set
, last_set_in
);
5831 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5832 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
)
5833 && last_set_in
[regno
] == INSN_UID (insn
))
5834 last_set_in
[regno
] = 0;
5838 #ifdef ENABLE_CHECKING
5839 /* last_set_in should now be all-zero. */
5840 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
5841 gcc_assert (!last_set_in
[regno
]);
5844 /* Clear temporary marks. */
5845 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5847 LAST_AVAIL_CHECK_FAILURE(ptr
) = NULL_RTX
;
5848 if (ANTIC_STORE_LIST (ptr
)
5849 && (tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0)) == NULL_RTX
)
5850 ANTIC_STORE_LIST (ptr
) = XEXP (ANTIC_STORE_LIST (ptr
), 1);
5854 /* Remove the stores that are not available anywhere, as there will
5855 be no opportunity to optimize them. */
5856 for (ptr
= pre_ldst_mems
, prev_next_ptr_ptr
= &pre_ldst_mems
;
5858 ptr
= *prev_next_ptr_ptr
)
5860 if (!AVAIL_STORE_LIST (ptr
))
5862 *prev_next_ptr_ptr
= ptr
->next
;
5863 htab_remove_elt_with_hash (pre_ldst_table
, ptr
, ptr
->hash_index
);
5864 free_ldst_entry (ptr
);
5867 prev_next_ptr_ptr
= &ptr
->next
;
5870 ret
= enumerate_ldsts ();
5874 fprintf (dump_file
, "ST_avail and ST_antic (shown under loads..)\n");
5875 print_ldst_list (dump_file
);
5883 /* Check to see if the load X is aliased with STORE_PATTERN.
5884 AFTER is true if we are checking the case when STORE_PATTERN occurs
5888 load_kills_store (const_rtx x
, const_rtx store_pattern
, int after
)
5891 return anti_dependence (x
, store_pattern
);
5893 return true_dependence (store_pattern
, GET_MODE (store_pattern
), x
,
5897 /* Go through the entire insn X, looking for any loads which might alias
5898 STORE_PATTERN. Return true if found.
5899 AFTER is true if we are checking the case when STORE_PATTERN occurs
5900 after the insn X. */
5903 find_loads (const_rtx x
, const_rtx store_pattern
, int after
)
5912 if (GET_CODE (x
) == SET
)
5917 if (load_kills_store (x
, store_pattern
, after
))
5921 /* Recursively process the insn. */
5922 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5924 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0 && !ret
; i
--)
5927 ret
|= find_loads (XEXP (x
, i
), store_pattern
, after
);
5928 else if (fmt
[i
] == 'E')
5929 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5930 ret
|= find_loads (XVECEXP (x
, i
, j
), store_pattern
, after
);
5936 store_killed_in_pat (const_rtx x
, const_rtx pat
, int after
)
5938 if (GET_CODE (pat
) == SET
)
5940 rtx dest
= SET_DEST (pat
);
5942 if (GET_CODE (dest
) == ZERO_EXTRACT
)
5943 dest
= XEXP (dest
, 0);
5945 /* Check for memory stores to aliased objects. */
5947 && !expr_equiv_p (dest
, x
))
5951 if (output_dependence (dest
, x
))
5956 if (output_dependence (x
, dest
))
5962 if (find_loads (pat
, x
, after
))
5968 /* Check if INSN kills the store pattern X (is aliased with it).
5969 AFTER is true if we are checking the case when store X occurs
5970 after the insn. Return true if it does. */
5973 store_killed_in_insn (const_rtx x
, const_rtx x_regs
, const_rtx insn
, int after
)
5975 const_rtx reg
, base
, note
, pat
;
5982 /* A normal or pure call might read from pattern,
5983 but a const call will not. */
5984 if (! CONST_OR_PURE_CALL_P (insn
) || pure_call_p (insn
))
5987 /* But even a const call reads its parameters. Check whether the
5988 base of some of registers used in mem is stack pointer. */
5989 for (reg
= x_regs
; reg
; reg
= XEXP (reg
, 1))
5991 base
= find_base_term (XEXP (reg
, 0));
5993 || (GET_CODE (base
) == ADDRESS
5994 && GET_MODE (base
) == Pmode
5995 && XEXP (base
, 0) == stack_pointer_rtx
))
6002 pat
= PATTERN (insn
);
6003 if (GET_CODE (pat
) == SET
)
6005 if (store_killed_in_pat (x
, pat
, after
))
6008 else if (GET_CODE (pat
) == PARALLEL
)
6012 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
6013 if (store_killed_in_pat (x
, XVECEXP (pat
, 0, i
), after
))
6016 else if (find_loads (PATTERN (insn
), x
, after
))
6019 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
6020 location aliased with X, then this insn kills X. */
6021 note
= find_reg_equal_equiv_note (insn
);
6024 note
= XEXP (note
, 0);
6026 /* However, if the note represents a must alias rather than a may
6027 alias relationship, then it does not kill X. */
6028 if (expr_equiv_p (note
, x
))
6031 /* See if there are any aliased loads in the note. */
6032 return find_loads (note
, x
, after
);
6035 /* Returns true if the expression X is loaded or clobbered on or after INSN
6036 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
6037 or after the insn. X_REGS is list of registers mentioned in X. If the store
6038 is killed, return the last insn in that it occurs in FAIL_INSN. */
6041 store_killed_after (const_rtx x
, const_rtx x_regs
, const_rtx insn
, const_basic_block bb
,
6042 int *regs_set_after
, rtx
*fail_insn
)
6044 rtx last
= BB_END (bb
), act
;
6046 if (!store_ops_ok (x_regs
, regs_set_after
))
6048 /* We do not know where it will happen. */
6050 *fail_insn
= NULL_RTX
;
6054 /* Scan from the end, so that fail_insn is determined correctly. */
6055 for (act
= last
; act
!= PREV_INSN (insn
); act
= PREV_INSN (act
))
6056 if (store_killed_in_insn (x
, x_regs
, act
, false))
6066 /* Returns true if the expression X is loaded or clobbered on or before INSN
6067 within basic block BB. X_REGS is list of registers mentioned in X.
6068 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6070 store_killed_before (const_rtx x
, const_rtx x_regs
, const_rtx insn
, const_basic_block bb
,
6071 int *regs_set_before
)
6073 rtx first
= BB_HEAD (bb
);
6075 if (!store_ops_ok (x_regs
, regs_set_before
))
6078 for ( ; insn
!= PREV_INSN (first
); insn
= PREV_INSN (insn
))
6079 if (store_killed_in_insn (x
, x_regs
, insn
, true))
6085 /* Fill in available, anticipatable, transparent and kill vectors in
6086 STORE_DATA, based on lists of available and anticipatable stores. */
6088 build_store_vectors (void)
6091 int *regs_set_in_block
;
6093 struct ls_expr
* ptr
;
6096 /* Build the gen_vector. This is any store in the table which is not killed
6097 by aliasing later in its block. */
6098 ae_gen
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6099 sbitmap_vector_zero (ae_gen
, last_basic_block
);
6101 st_antloc
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6102 sbitmap_vector_zero (st_antloc
, last_basic_block
);
6104 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6106 for (st
= AVAIL_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
6108 insn
= XEXP (st
, 0);
6109 bb
= BLOCK_FOR_INSN (insn
);
6111 /* If we've already seen an available expression in this block,
6112 we can delete this one (It occurs earlier in the block). We'll
6113 copy the SRC expression to an unused register in case there
6114 are any side effects. */
6115 if (TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6117 rtx r
= gen_reg_rtx (GET_MODE (ptr
->pattern
));
6119 fprintf (dump_file
, "Removing redundant store:\n");
6120 replace_store_insn (r
, XEXP (st
, 0), bb
, ptr
);
6123 SET_BIT (ae_gen
[bb
->index
], ptr
->index
);
6126 for (st
= ANTIC_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
6128 insn
= XEXP (st
, 0);
6129 bb
= BLOCK_FOR_INSN (insn
);
6130 SET_BIT (st_antloc
[bb
->index
], ptr
->index
);
6134 ae_kill
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6135 sbitmap_vector_zero (ae_kill
, last_basic_block
);
6137 transp
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6138 sbitmap_vector_zero (transp
, last_basic_block
);
6139 regs_set_in_block
= XNEWVEC (int, max_gcse_regno
);
6143 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
6144 regs_set_in_block
[regno
] = TEST_BIT (reg_set_in_block
[bb
->index
], regno
);
6146 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6148 if (store_killed_after (ptr
->pattern
, ptr
->pattern_regs
, BB_HEAD (bb
),
6149 bb
, regs_set_in_block
, NULL
))
6151 /* It should not be necessary to consider the expression
6152 killed if it is both anticipatable and available. */
6153 if (!TEST_BIT (st_antloc
[bb
->index
], ptr
->index
)
6154 || !TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6155 SET_BIT (ae_kill
[bb
->index
], ptr
->index
);
6158 SET_BIT (transp
[bb
->index
], ptr
->index
);
6162 free (regs_set_in_block
);
6166 dump_sbitmap_vector (dump_file
, "st_antloc", "", st_antloc
, last_basic_block
);
6167 dump_sbitmap_vector (dump_file
, "st_kill", "", ae_kill
, last_basic_block
);
6168 dump_sbitmap_vector (dump_file
, "Transpt", "", transp
, last_basic_block
);
6169 dump_sbitmap_vector (dump_file
, "st_avloc", "", ae_gen
, last_basic_block
);
6173 /* Insert an instruction at the beginning of a basic block, and update
6174 the BB_HEAD if needed. */
6177 insert_insn_start_basic_block (rtx insn
, basic_block bb
)
6179 /* Insert at start of successor block. */
6180 rtx prev
= PREV_INSN (BB_HEAD (bb
));
6181 rtx before
= BB_HEAD (bb
);
6184 if (! LABEL_P (before
)
6185 && !NOTE_INSN_BASIC_BLOCK_P (before
))
6188 if (prev
== BB_END (bb
))
6190 before
= NEXT_INSN (before
);
6193 insn
= emit_insn_after_noloc (insn
, prev
, bb
);
6197 fprintf (dump_file
, "STORE_MOTION insert store at start of BB %d:\n",
6199 print_inline_rtx (dump_file
, insn
, 6);
6200 fprintf (dump_file
, "\n");
6204 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6205 the memory reference, and E is the edge to insert it on. Returns nonzero
6206 if an edge insertion was performed. */
6209 insert_store (struct ls_expr
* expr
, edge e
)
6216 /* We did all the deleted before this insert, so if we didn't delete a
6217 store, then we haven't set the reaching reg yet either. */
6218 if (expr
->reaching_reg
== NULL_RTX
)
6221 if (e
->flags
& EDGE_FAKE
)
6224 reg
= expr
->reaching_reg
;
6225 insn
= gen_move_insn (copy_rtx (expr
->pattern
), reg
);
6227 /* If we are inserting this expression on ALL predecessor edges of a BB,
6228 insert it at the start of the BB, and reset the insert bits on the other
6229 edges so we don't try to insert it on the other edges. */
6231 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6232 if (!(tmp
->flags
& EDGE_FAKE
))
6234 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6236 gcc_assert (index
!= EDGE_INDEX_NO_EDGE
);
6237 if (! TEST_BIT (pre_insert_map
[index
], expr
->index
))
6241 /* If tmp is NULL, we found an insertion on every edge, blank the
6242 insertion vector for these edges, and insert at the start of the BB. */
6243 if (!tmp
&& bb
!= EXIT_BLOCK_PTR
)
6245 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6247 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6248 RESET_BIT (pre_insert_map
[index
], expr
->index
);
6250 insert_insn_start_basic_block (insn
, bb
);
6254 /* We can't put stores in the front of blocks pointed to by abnormal
6255 edges since that may put a store where one didn't used to be. */
6256 gcc_assert (!(e
->flags
& EDGE_ABNORMAL
));
6258 insert_insn_on_edge (insn
, e
);
6262 fprintf (dump_file
, "STORE_MOTION insert insn on edge (%d, %d):\n",
6263 e
->src
->index
, e
->dest
->index
);
6264 print_inline_rtx (dump_file
, insn
, 6);
6265 fprintf (dump_file
, "\n");
6271 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6272 memory location in SMEXPR set in basic block BB.
6274 This could be rather expensive. */
6277 remove_reachable_equiv_notes (basic_block bb
, struct ls_expr
*smexpr
)
6279 edge_iterator
*stack
, ei
;
6282 sbitmap visited
= sbitmap_alloc (last_basic_block
);
6283 rtx last
, insn
, note
;
6284 rtx mem
= smexpr
->pattern
;
6286 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
);
6288 ei
= ei_start (bb
->succs
);
6290 sbitmap_zero (visited
);
6292 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6300 sbitmap_free (visited
);
6303 act
= ei_edge (stack
[--sp
]);
6307 if (bb
== EXIT_BLOCK_PTR
6308 || TEST_BIT (visited
, bb
->index
))
6312 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6315 SET_BIT (visited
, bb
->index
);
6317 if (TEST_BIT (st_antloc
[bb
->index
], smexpr
->index
))
6319 for (last
= ANTIC_STORE_LIST (smexpr
);
6320 BLOCK_FOR_INSN (XEXP (last
, 0)) != bb
;
6321 last
= XEXP (last
, 1))
6323 last
= XEXP (last
, 0);
6326 last
= NEXT_INSN (BB_END (bb
));
6328 for (insn
= BB_HEAD (bb
); insn
!= last
; insn
= NEXT_INSN (insn
))
6331 note
= find_reg_equal_equiv_note (insn
);
6332 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6336 fprintf (dump_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6338 remove_note (insn
, note
);
6343 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6345 if (EDGE_COUNT (bb
->succs
) > 0)
6349 ei
= ei_start (bb
->succs
);
6350 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6355 /* This routine will replace a store with a SET to a specified register. */
6358 replace_store_insn (rtx reg
, rtx del
, basic_block bb
, struct ls_expr
*smexpr
)
6360 rtx insn
, mem
, note
, set
, ptr
, pair
;
6362 mem
= smexpr
->pattern
;
6363 insn
= gen_move_insn (reg
, SET_SRC (single_set (del
)));
6365 for (ptr
= ANTIC_STORE_LIST (smexpr
); ptr
; ptr
= XEXP (ptr
, 1))
6366 if (XEXP (ptr
, 0) == del
)
6368 XEXP (ptr
, 0) = insn
;
6372 /* Move the notes from the deleted insn to its replacement, and patch
6373 up the LIBCALL notes. */
6374 REG_NOTES (insn
) = REG_NOTES (del
);
6376 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
6379 pair
= XEXP (note
, 0);
6380 note
= find_reg_note (pair
, REG_LIBCALL
, NULL_RTX
);
6381 XEXP (note
, 0) = insn
;
6383 note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
6386 pair
= XEXP (note
, 0);
6387 note
= find_reg_note (pair
, REG_RETVAL
, NULL_RTX
);
6388 XEXP (note
, 0) = insn
;
6391 /* Emit the insn AFTER all the notes are transferred.
6392 This is cheaper since we avoid df rescanning for the note change. */
6393 insn
= emit_insn_after (insn
, del
);
6398 "STORE_MOTION delete insn in BB %d:\n ", bb
->index
);
6399 print_inline_rtx (dump_file
, del
, 6);
6400 fprintf (dump_file
, "\nSTORE MOTION replaced with insn:\n ");
6401 print_inline_rtx (dump_file
, insn
, 6);
6402 fprintf (dump_file
, "\n");
6407 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6408 they are no longer accurate provided that they are reached by this
6409 definition, so drop them. */
6410 for (; insn
!= NEXT_INSN (BB_END (bb
)); insn
= NEXT_INSN (insn
))
6413 set
= single_set (insn
);
6416 if (expr_equiv_p (SET_DEST (set
), mem
))
6418 note
= find_reg_equal_equiv_note (insn
);
6419 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6423 fprintf (dump_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6425 remove_note (insn
, note
);
6427 remove_reachable_equiv_notes (bb
, smexpr
);
6431 /* Delete a store, but copy the value that would have been stored into
6432 the reaching_reg for later storing. */
6435 delete_store (struct ls_expr
* expr
, basic_block bb
)
6439 if (expr
->reaching_reg
== NULL_RTX
)
6440 expr
->reaching_reg
= gen_reg_rtx (GET_MODE (expr
->pattern
));
6442 reg
= expr
->reaching_reg
;
6444 for (i
= AVAIL_STORE_LIST (expr
); i
; i
= XEXP (i
, 1))
6447 if (BLOCK_FOR_INSN (del
) == bb
)
6449 /* We know there is only one since we deleted redundant
6450 ones during the available computation. */
6451 replace_store_insn (reg
, del
, bb
, expr
);
6457 /* Free memory used by store motion. */
6460 free_store_memory (void)
6465 sbitmap_vector_free (ae_gen
);
6467 sbitmap_vector_free (ae_kill
);
6469 sbitmap_vector_free (transp
);
6471 sbitmap_vector_free (st_antloc
);
6473 sbitmap_vector_free (pre_insert_map
);
6475 sbitmap_vector_free (pre_delete_map
);
6476 if (reg_set_in_block
)
6477 sbitmap_vector_free (reg_set_in_block
);
6479 ae_gen
= ae_kill
= transp
= st_antloc
= NULL
;
6480 pre_insert_map
= pre_delete_map
= reg_set_in_block
= NULL
;
6483 /* Perform store motion. Much like gcse, except we move expressions the
6484 other way by looking at the flowgraph in reverse. */
6491 struct ls_expr
* ptr
;
6492 int update_flow
= 0;
6496 fprintf (dump_file
, "before store motion\n");
6497 print_rtl (dump_file
, get_insns ());
6500 init_alias_analysis ();
6502 /* Find all the available and anticipatable stores. */
6503 num_stores
= compute_store_table ();
6504 if (num_stores
== 0)
6506 htab_delete (pre_ldst_table
);
6507 pre_ldst_table
= NULL
;
6508 sbitmap_vector_free (reg_set_in_block
);
6509 end_alias_analysis ();
6513 /* Now compute kill & transp vectors. */
6514 build_store_vectors ();
6515 add_noreturn_fake_exit_edges ();
6516 connect_infinite_loops_to_exit ();
6518 edge_list
= pre_edge_rev_lcm (num_stores
, transp
, ae_gen
,
6519 st_antloc
, ae_kill
, &pre_insert_map
,
6522 /* Now we want to insert the new stores which are going to be needed. */
6523 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6525 /* If any of the edges we have above are abnormal, we can't move this
6527 for (x
= NUM_EDGES (edge_list
) - 1; x
>= 0; x
--)
6528 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
)
6529 && (INDEX_EDGE (edge_list
, x
)->flags
& EDGE_ABNORMAL
))
6534 if (dump_file
!= NULL
)
6536 "Can't replace store %d: abnormal edge from %d to %d\n",
6537 ptr
->index
, INDEX_EDGE (edge_list
, x
)->src
->index
,
6538 INDEX_EDGE (edge_list
, x
)->dest
->index
);
6542 /* Now we want to insert the new stores which are going to be needed. */
6545 if (TEST_BIT (pre_delete_map
[bb
->index
], ptr
->index
))
6546 delete_store (ptr
, bb
);
6548 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
6549 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
))
6550 update_flow
|= insert_store (ptr
, INDEX_EDGE (edge_list
, x
));
6554 commit_edge_insertions ();
6556 free_store_memory ();
6557 free_edge_list (edge_list
);
6558 remove_fake_exit_edges ();
6559 end_alias_analysis ();
6563 /* Entry point for jump bypassing optimization pass. */
6570 /* We do not construct an accurate cfg in functions which call
6571 setjmp, so just punt to be safe. */
6572 if (current_function_calls_setjmp
)
6575 /* Identify the basic block information for this function, including
6576 successors and predecessors. */
6577 max_gcse_regno
= max_reg_num ();
6580 dump_flow_info (dump_file
, dump_flags
);
6582 /* Return if there's nothing to do, or it is too expensive. */
6583 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
6584 || is_too_expensive (_ ("jump bypassing disabled")))
6587 gcc_obstack_init (&gcse_obstack
);
6590 /* We need alias. */
6591 init_alias_analysis ();
6593 /* Record where pseudo-registers are set. This data is kept accurate
6594 during each pass. ??? We could also record hard-reg information here
6595 [since it's unchanging], however it is currently done during hash table
6598 It may be tempting to compute MEM set information here too, but MEM sets
6599 will be subject to code motion one day and thus we need to compute
6600 information about memory sets when we build the hash tables. */
6602 alloc_reg_set_mem (max_gcse_regno
);
6605 max_gcse_regno
= max_reg_num ();
6607 changed
= one_cprop_pass (MAX_GCSE_PASSES
+ 2, true, true);
6612 fprintf (dump_file
, "BYPASS of %s: %d basic blocks, ",
6613 current_function_name (), n_basic_blocks
);
6614 fprintf (dump_file
, "%d bytes\n\n", bytes_used
);
6617 obstack_free (&gcse_obstack
, NULL
);
6618 free_reg_set_mem ();
6620 /* We are finished with alias. */
6621 end_alias_analysis ();
6626 /* Return true if the graph is too expensive to optimize. PASS is the
6627 optimization about to be performed. */
6630 is_too_expensive (const char *pass
)
6632 /* Trying to perform global optimizations on flow graphs which have
6633 a high connectivity will take a long time and is unlikely to be
6634 particularly useful.
6636 In normal circumstances a cfg should have about twice as many
6637 edges as blocks. But we do not want to punish small functions
6638 which have a couple switch statements. Rather than simply
6639 threshold the number of blocks, uses something with a more
6640 graceful degradation. */
6641 if (n_edges
> 20000 + n_basic_blocks
* 4)
6643 warning (OPT_Wdisabled_optimization
,
6644 "%s: %d basic blocks and %d edges/basic block",
6645 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
6650 /* If allocating memory for the cprop bitmap would take up too much
6651 storage it's better just to disable the optimization. */
6653 * SBITMAP_SET_SIZE (max_reg_num ())
6654 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
6656 warning (OPT_Wdisabled_optimization
,
6657 "%s: %d basic blocks and %d registers",
6658 pass
, n_basic_blocks
, max_reg_num ());
6667 gate_handle_jump_bypass (void)
6669 return optimize
> 0 && flag_gcse
;
6672 /* Perform jump bypassing and control flow optimizations. */
6674 rest_of_handle_jump_bypass (void)
6676 delete_unreachable_blocks ();
6677 if (bypass_jumps ())
6679 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6680 rebuild_jump_labels (get_insns ());
6686 struct tree_opt_pass pass_jump_bypass
=
6688 "bypass", /* name */
6689 gate_handle_jump_bypass
, /* gate */
6690 rest_of_handle_jump_bypass
, /* execute */
6693 0, /* static_pass_number */
6694 TV_BYPASS
, /* tv_id */
6695 0, /* properties_required */
6696 0, /* properties_provided */
6697 0, /* properties_destroyed */
6698 0, /* todo_flags_start */
6700 TODO_ggc_collect
| TODO_verify_flow
, /* todo_flags_finish */
6706 gate_handle_gcse (void)
6708 return optimize
> 0 && flag_gcse
;
6713 rest_of_handle_gcse (void)
6715 int save_csb
, save_cfj
;
6717 tem
= gcse_main (get_insns ());
6718 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6719 rebuild_jump_labels (get_insns ());
6720 save_csb
= flag_cse_skip_blocks
;
6721 save_cfj
= flag_cse_follow_jumps
;
6722 flag_cse_skip_blocks
= flag_cse_follow_jumps
= 0;
6724 /* If -fexpensive-optimizations, re-run CSE to clean up things done
6726 if (flag_expensive_optimizations
)
6728 timevar_push (TV_CSE
);
6729 tem2
= cse_main (get_insns (), max_reg_num ());
6730 df_finish_pass (false);
6731 purge_all_dead_edges ();
6732 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6733 timevar_pop (TV_CSE
);
6734 cse_not_expected
= !flag_rerun_cse_after_loop
;
6737 /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6739 if (tem
|| tem2
== 2)
6741 timevar_push (TV_JUMP
);
6742 rebuild_jump_labels (get_insns ());
6744 timevar_pop (TV_JUMP
);
6749 flag_cse_skip_blocks
= save_csb
;
6750 flag_cse_follow_jumps
= save_cfj
;
6754 struct tree_opt_pass pass_gcse
=
6757 gate_handle_gcse
, /* gate */
6758 rest_of_handle_gcse
, /* execute */
6761 0, /* static_pass_number */
6762 TV_GCSE
, /* tv_id */
6763 0, /* properties_required */
6764 0, /* properties_provided */
6765 0, /* properties_destroyed */
6766 0, /* todo_flags_start */
6767 TODO_df_finish
| TODO_verify_rtl_sharing
|
6769 TODO_verify_flow
| TODO_ggc_collect
, /* todo_flags_finish */
6774 #include "gt-gcse.h"