2008-01-26 Jerry DeLisle <jvdelisle@gcc.gnu.org>
[official-gcc.git] / gcc / expr.c
blob53cb3eb9d2cb9ddfe19b4bf8e670a5780ba8f6a8
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55 #include "df.h"
56 #include "diagnostic.h"
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
64 #ifdef PUSH_ROUNDING
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
72 #endif
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
111 struct store_by_pieces
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
162 /* Record for each mode whether we can move a register directly to or
163 from an object of that mode in memory. If we can't, we won't try
164 to use that mode directly when accessing a field of that mode. */
166 static char direct_load[NUM_MACHINE_MODES];
167 static char direct_store[NUM_MACHINE_MODES];
169 /* Record for each mode whether we can float-extend from memory. */
171 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
173 /* This macro is used to determine whether move_by_pieces should be called
174 to perform a structure copy. */
175 #ifndef MOVE_BY_PIECES_P
176 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
177 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
178 < (unsigned int) MOVE_RATIO)
179 #endif
181 /* This macro is used to determine whether clear_by_pieces should be
182 called to clear storage. */
183 #ifndef CLEAR_BY_PIECES_P
184 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
185 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
186 < (unsigned int) CLEAR_RATIO)
187 #endif
189 /* This macro is used to determine whether store_by_pieces should be
190 called to "memset" storage with byte values other than zero. */
191 #ifndef SET_BY_PIECES_P
192 #define SET_BY_PIECES_P(SIZE, ALIGN) \
193 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
194 < (unsigned int) SET_RATIO)
195 #endif
197 /* This macro is used to determine whether store_by_pieces should be
198 called to "memcpy" storage when the source is a constant string. */
199 #ifndef STORE_BY_PIECES_P
200 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
201 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
202 < (unsigned int) MOVE_RATIO)
203 #endif
205 /* This array records the insn_code of insns to perform block moves. */
206 enum insn_code movmem_optab[NUM_MACHINE_MODES];
208 /* This array records the insn_code of insns to perform block sets. */
209 enum insn_code setmem_optab[NUM_MACHINE_MODES];
211 /* These arrays record the insn_code of three different kinds of insns
212 to perform block compares. */
213 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
214 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
215 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
217 /* Synchronization primitives. */
218 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
236 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
237 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
238 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
239 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
245 #endif
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
251 void
252 init_expr_target (void)
254 rtx insn, pat;
255 enum machine_mode mode;
256 int num_clobbers;
257 rtx mem, mem1;
258 rtx reg;
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
264 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg = gen_rtx_REG (VOIDmode, -1);
270 insn = rtx_alloc (INSN);
271 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
272 PATTERN (insn) = pat;
274 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
275 mode = (enum machine_mode) ((int) mode + 1))
277 int regno;
279 direct_load[(int) mode] = direct_store[(int) mode] = 0;
280 PUT_MODE (mem, mode);
281 PUT_MODE (mem1, mode);
282 PUT_MODE (reg, mode);
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
287 if (mode != VOIDmode && mode != BLKmode)
288 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
289 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
290 regno++)
292 if (! HARD_REGNO_MODE_OK (regno, mode))
293 continue;
295 SET_REGNO (reg, regno);
297 SET_SRC (pat) = mem;
298 SET_DEST (pat) = reg;
299 if (recog (pat, insn, &num_clobbers) >= 0)
300 direct_load[(int) mode] = 1;
302 SET_SRC (pat) = mem1;
303 SET_DEST (pat) = reg;
304 if (recog (pat, insn, &num_clobbers) >= 0)
305 direct_load[(int) mode] = 1;
307 SET_SRC (pat) = reg;
308 SET_DEST (pat) = mem;
309 if (recog (pat, insn, &num_clobbers) >= 0)
310 direct_store[(int) mode] = 1;
312 SET_SRC (pat) = reg;
313 SET_DEST (pat) = mem1;
314 if (recog (pat, insn, &num_clobbers) >= 0)
315 direct_store[(int) mode] = 1;
319 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
324 enum machine_mode srcmode;
325 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
326 srcmode = GET_MODE_WIDER_MODE (srcmode))
328 enum insn_code ic;
330 ic = can_extend_p (mode, srcmode, 0);
331 if (ic == CODE_FOR_nothing)
332 continue;
334 PUT_MODE (mem, srcmode);
336 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
337 float_extend_from_mem[mode][srcmode] = true;
342 /* This is run at the start of compiling a function. */
344 void
345 init_expr (void)
347 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
352 fixed-point.
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
356 void
357 convert_move (rtx to, rtx from, int unsignedp)
359 enum machine_mode to_mode = GET_MODE (to);
360 enum machine_mode from_mode = GET_MODE (from);
361 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
362 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
363 enum insn_code code;
364 rtx libcall;
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
368 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
371 gcc_assert (to_real == from_real);
372 gcc_assert (to_mode != BLKmode);
373 gcc_assert (from_mode != BLKmode);
375 /* If the source and destination are already the same, then there's
376 nothing to do. */
377 if (to == from)
378 return;
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
382 TO here. */
384 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
386 >= GET_MODE_SIZE (to_mode))
387 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
388 from = gen_lowpart (to_mode, from), from_mode = to_mode;
390 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
392 if (to_mode == from_mode
393 || (from_mode == VOIDmode && CONSTANT_P (from)))
395 emit_move_insn (to, from);
396 return;
399 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
401 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
403 if (VECTOR_MODE_P (to_mode))
404 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
405 else
406 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
408 emit_move_insn (to, from);
409 return;
412 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
414 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
415 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
416 return;
419 if (to_real)
421 rtx value, insns;
422 convert_optab tab;
424 gcc_assert ((GET_MODE_PRECISION (from_mode)
425 != GET_MODE_PRECISION (to_mode))
426 || (DECIMAL_FLOAT_MODE_P (from_mode)
427 != DECIMAL_FLOAT_MODE_P (to_mode)));
429 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
430 /* Conversion between decimal float and binary float, same size. */
431 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
432 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
433 tab = sext_optab;
434 else
435 tab = trunc_optab;
437 /* Try converting directly if the insn is supported. */
439 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
440 if (code != CODE_FOR_nothing)
442 emit_unop_insn (code, to, from,
443 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
444 return;
447 /* Otherwise use a libcall. */
448 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall);
453 start_sequence ();
454 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
455 1, from, from_mode);
456 insns = get_insns ();
457 end_sequence ();
458 emit_libcall_block (insns, to, value,
459 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
460 from)
461 : gen_rtx_FLOAT_EXTEND (to_mode, from));
462 return;
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
473 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
474 != CODE_FOR_nothing);
476 if (full_mode != from_mode)
477 from = convert_to_mode (full_mode, from, unsignedp);
478 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
479 to, from, UNKNOWN);
480 return;
482 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
484 rtx new_from;
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
488 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
489 != CODE_FOR_nothing);
491 if (to_mode == full_mode)
493 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
494 to, from, UNKNOWN);
495 return;
498 new_from = gen_reg_rtx (full_mode);
499 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
500 new_from, from, UNKNOWN);
502 /* else proceed to integer conversions below. */
503 from_mode = full_mode;
504 from = new_from;
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
516 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
517 expand_fixed_convert (to, from, 0, 0);
518 else
519 expand_fixed_convert (to, from, 0, 1);
520 return;
523 /* Now both modes are integers. */
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
527 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
529 rtx insns;
530 rtx lowpart;
531 rtx fill_value;
532 rtx lowfrom;
533 int i;
534 enum machine_mode lowpart_mode;
535 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
537 /* Try converting directly if the insn is supported. */
538 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
539 != CODE_FOR_nothing)
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize > 0 && GET_CODE (from) == SUBREG)
546 from = force_reg (from_mode, from);
547 emit_unop_insn (code, to, from, equiv_code);
548 return;
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
552 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
553 != CODE_FOR_nothing))
555 if (REG_P (to))
557 if (reg_overlap_mentioned_p (to, from))
558 from = force_reg (from_mode, from);
559 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
561 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
562 emit_unop_insn (code, to,
563 gen_lowpart (word_mode, to), equiv_code);
564 return;
567 /* No special multiword conversion insn; do it by hand. */
568 start_sequence ();
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
573 if (reg_overlap_mentioned_p (to, from))
574 from = force_reg (from_mode, from);
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
578 lowpart_mode = word_mode;
579 else
580 lowpart_mode = from_mode;
582 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
584 lowpart = gen_lowpart (lowpart_mode, to);
585 emit_move_insn (lowpart, lowfrom);
587 /* Compute the value to put in each remaining word. */
588 if (unsignedp)
589 fill_value = const0_rtx;
590 else
592 #ifdef HAVE_slt
593 if (HAVE_slt
594 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
595 && STORE_FLAG_VALUE == -1)
597 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
598 lowpart_mode, 0);
599 fill_value = gen_reg_rtx (word_mode);
600 emit_insn (gen_slt (fill_value));
602 else
603 #endif
605 fill_value
606 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
607 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
608 NULL_RTX, 0);
609 fill_value = convert_to_mode (word_mode, fill_value, 1);
613 /* Fill the remaining words. */
614 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
616 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
617 rtx subword = operand_subword (to, index, 1, to_mode);
619 gcc_assert (subword);
621 if (fill_value != subword)
622 emit_move_insn (subword, fill_value);
625 insns = get_insns ();
626 end_sequence ();
628 emit_no_conflict_block (insns, to, from, NULL_RTX,
629 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
630 return;
633 /* Truncating multi-word to a word or less. */
634 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
635 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
637 if (!((MEM_P (from)
638 && ! MEM_VOLATILE_P (from)
639 && direct_load[(int) to_mode]
640 && ! mode_dependent_address_p (XEXP (from, 0)))
641 || REG_P (from)
642 || GET_CODE (from) == SUBREG))
643 from = force_reg (from_mode, from);
644 convert_move (to, gen_lowpart (word_mode, from), 0);
645 return;
648 /* Now follow all the conversions between integers
649 no more than a word long. */
651 /* For truncation, usually we can just refer to FROM in a narrower mode. */
652 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
653 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
654 GET_MODE_BITSIZE (from_mode)))
656 if (!((MEM_P (from)
657 && ! MEM_VOLATILE_P (from)
658 && direct_load[(int) to_mode]
659 && ! mode_dependent_address_p (XEXP (from, 0)))
660 || REG_P (from)
661 || GET_CODE (from) == SUBREG))
662 from = force_reg (from_mode, from);
663 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
664 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
665 from = copy_to_reg (from);
666 emit_move_insn (to, gen_lowpart (to_mode, from));
667 return;
670 /* Handle extension. */
671 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
673 /* Convert directly if that works. */
674 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
675 != CODE_FOR_nothing)
677 emit_unop_insn (code, to, from, equiv_code);
678 return;
680 else
682 enum machine_mode intermediate;
683 rtx tmp;
684 tree shift_amount;
686 /* Search for a mode to convert via. */
687 for (intermediate = from_mode; intermediate != VOIDmode;
688 intermediate = GET_MODE_WIDER_MODE (intermediate))
689 if (((can_extend_p (to_mode, intermediate, unsignedp)
690 != CODE_FOR_nothing)
691 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
692 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
693 GET_MODE_BITSIZE (intermediate))))
694 && (can_extend_p (intermediate, from_mode, unsignedp)
695 != CODE_FOR_nothing))
697 convert_move (to, convert_to_mode (intermediate, from,
698 unsignedp), unsignedp);
699 return;
702 /* No suitable intermediate mode.
703 Generate what we need with shifts. */
704 shift_amount = build_int_cst (NULL_TREE,
705 GET_MODE_BITSIZE (to_mode)
706 - GET_MODE_BITSIZE (from_mode));
707 from = gen_lowpart (to_mode, force_reg (from_mode, from));
708 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
709 to, unsignedp);
710 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
711 to, unsignedp);
712 if (tmp != to)
713 emit_move_insn (to, tmp);
714 return;
718 /* Support special truncate insns for certain modes. */
719 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
721 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
722 to, from, UNKNOWN);
723 return;
726 /* Handle truncation of volatile memrefs, and so on;
727 the things that couldn't be truncated directly,
728 and for which there was no special instruction.
730 ??? Code above formerly short-circuited this, for most integer
731 mode pairs, with a force_reg in from_mode followed by a recursive
732 call to this routine. Appears always to have been wrong. */
733 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
735 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
736 emit_move_insn (to, temp);
737 return;
740 /* Mode combination is not recognized. */
741 gcc_unreachable ();
744 /* Return an rtx for a value that would result
745 from converting X to mode MODE.
746 Both X and MODE may be floating, or both integer.
747 UNSIGNEDP is nonzero if X is an unsigned value.
748 This can be done by referring to a part of X in place
749 or by copying to a new temporary with conversion. */
752 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
754 return convert_modes (mode, VOIDmode, x, unsignedp);
757 /* Return an rtx for a value that would result
758 from converting X from mode OLDMODE to mode MODE.
759 Both modes may be floating, or both integer.
760 UNSIGNEDP is nonzero if X is an unsigned value.
762 This can be done by referring to a part of X in place
763 or by copying to a new temporary with conversion.
765 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
768 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
770 rtx temp;
772 /* If FROM is a SUBREG that indicates that we have already done at least
773 the required extension, strip it. */
775 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
776 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
777 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
778 x = gen_lowpart (mode, x);
780 if (GET_MODE (x) != VOIDmode)
781 oldmode = GET_MODE (x);
783 if (mode == oldmode)
784 return x;
786 /* There is one case that we must handle specially: If we are converting
787 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
788 we are to interpret the constant as unsigned, gen_lowpart will do
789 the wrong if the constant appears negative. What we want to do is
790 make the high-order word of the constant zero, not all ones. */
792 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
793 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
794 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
796 HOST_WIDE_INT val = INTVAL (x);
798 if (oldmode != VOIDmode
799 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
801 int width = GET_MODE_BITSIZE (oldmode);
803 /* We need to zero extend VAL. */
804 val &= ((HOST_WIDE_INT) 1 << width) - 1;
807 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
810 /* We can do this with a gen_lowpart if both desired and current modes
811 are integer, and this is either a constant integer, a register, or a
812 non-volatile MEM. Except for the constant case where MODE is no
813 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
815 if ((GET_CODE (x) == CONST_INT
816 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
817 || (GET_MODE_CLASS (mode) == MODE_INT
818 && GET_MODE_CLASS (oldmode) == MODE_INT
819 && (GET_CODE (x) == CONST_DOUBLE
820 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
821 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
822 && direct_load[(int) mode])
823 || (REG_P (x)
824 && (! HARD_REGISTER_P (x)
825 || HARD_REGNO_MODE_OK (REGNO (x), mode))
826 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
827 GET_MODE_BITSIZE (GET_MODE (x)))))))))
829 /* ?? If we don't know OLDMODE, we have to assume here that
830 X does not need sign- or zero-extension. This may not be
831 the case, but it's the best we can do. */
832 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
833 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
835 HOST_WIDE_INT val = INTVAL (x);
836 int width = GET_MODE_BITSIZE (oldmode);
838 /* We must sign or zero-extend in this case. Start by
839 zero-extending, then sign extend if we need to. */
840 val &= ((HOST_WIDE_INT) 1 << width) - 1;
841 if (! unsignedp
842 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
843 val |= (HOST_WIDE_INT) (-1) << width;
845 return gen_int_mode (val, mode);
848 return gen_lowpart (mode, x);
851 /* Converting from integer constant into mode is always equivalent to an
852 subreg operation. */
853 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
855 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
856 return simplify_gen_subreg (mode, x, oldmode, 0);
859 temp = gen_reg_rtx (mode);
860 convert_move (temp, x, unsignedp);
861 return temp;
864 /* STORE_MAX_PIECES is the number of bytes at a time that we can
865 store efficiently. Due to internal GCC limitations, this is
866 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
867 for an immediate constant. */
869 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
871 /* Determine whether the LEN bytes can be moved by using several move
872 instructions. Return nonzero if a call to move_by_pieces should
873 succeed. */
876 can_move_by_pieces (unsigned HOST_WIDE_INT len,
877 unsigned int align ATTRIBUTE_UNUSED)
879 return MOVE_BY_PIECES_P (len, align);
882 /* Generate several move instructions to copy LEN bytes from block FROM to
883 block TO. (These are MEM rtx's with BLKmode).
885 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
886 used to push FROM to the stack.
888 ALIGN is maximum stack alignment we can assume.
890 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
891 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
892 stpcpy. */
895 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
896 unsigned int align, int endp)
898 struct move_by_pieces data;
899 rtx to_addr, from_addr = XEXP (from, 0);
900 unsigned int max_size = MOVE_MAX_PIECES + 1;
901 enum machine_mode mode = VOIDmode, tmode;
902 enum insn_code icode;
904 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
906 data.offset = 0;
907 data.from_addr = from_addr;
908 if (to)
910 to_addr = XEXP (to, 0);
911 data.to = to;
912 data.autinc_to
913 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
914 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
915 data.reverse
916 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
918 else
920 to_addr = NULL_RTX;
921 data.to = NULL_RTX;
922 data.autinc_to = 1;
923 #ifdef STACK_GROWS_DOWNWARD
924 data.reverse = 1;
925 #else
926 data.reverse = 0;
927 #endif
929 data.to_addr = to_addr;
930 data.from = from;
931 data.autinc_from
932 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
933 || GET_CODE (from_addr) == POST_INC
934 || GET_CODE (from_addr) == POST_DEC);
936 data.explicit_inc_from = 0;
937 data.explicit_inc_to = 0;
938 if (data.reverse) data.offset = len;
939 data.len = len;
941 /* If copying requires more than two move insns,
942 copy addresses to registers (to make displacements shorter)
943 and use post-increment if available. */
944 if (!(data.autinc_from && data.autinc_to)
945 && move_by_pieces_ninsns (len, align, max_size) > 2)
947 /* Find the mode of the largest move... */
948 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
949 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
950 if (GET_MODE_SIZE (tmode) < max_size)
951 mode = tmode;
953 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
955 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
956 data.autinc_from = 1;
957 data.explicit_inc_from = -1;
959 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
961 data.from_addr = copy_addr_to_reg (from_addr);
962 data.autinc_from = 1;
963 data.explicit_inc_from = 1;
965 if (!data.autinc_from && CONSTANT_P (from_addr))
966 data.from_addr = copy_addr_to_reg (from_addr);
967 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
969 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
970 data.autinc_to = 1;
971 data.explicit_inc_to = -1;
973 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
975 data.to_addr = copy_addr_to_reg (to_addr);
976 data.autinc_to = 1;
977 data.explicit_inc_to = 1;
979 if (!data.autinc_to && CONSTANT_P (to_addr))
980 data.to_addr = copy_addr_to_reg (to_addr);
983 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
984 if (align >= GET_MODE_ALIGNMENT (tmode))
985 align = GET_MODE_ALIGNMENT (tmode);
986 else
988 enum machine_mode xmode;
990 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
991 tmode != VOIDmode;
992 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
993 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
994 || SLOW_UNALIGNED_ACCESS (tmode, align))
995 break;
997 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1000 /* First move what we can in the largest integer mode, then go to
1001 successively smaller modes. */
1003 while (max_size > 1)
1005 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1006 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1007 if (GET_MODE_SIZE (tmode) < max_size)
1008 mode = tmode;
1010 if (mode == VOIDmode)
1011 break;
1013 icode = optab_handler (mov_optab, mode)->insn_code;
1014 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1015 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1017 max_size = GET_MODE_SIZE (mode);
1020 /* The code above should have handled everything. */
1021 gcc_assert (!data.len);
1023 if (endp)
1025 rtx to1;
1027 gcc_assert (!data.reverse);
1028 if (data.autinc_to)
1030 if (endp == 2)
1032 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1033 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1034 else
1035 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1036 -1));
1038 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1039 data.offset);
1041 else
1043 if (endp == 2)
1044 --data.offset;
1045 to1 = adjust_address (data.to, QImode, data.offset);
1047 return to1;
1049 else
1050 return data.to;
1053 /* Return number of insns required to move L bytes by pieces.
1054 ALIGN (in bits) is maximum alignment we can assume. */
1056 static unsigned HOST_WIDE_INT
1057 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1058 unsigned int max_size)
1060 unsigned HOST_WIDE_INT n_insns = 0;
1061 enum machine_mode tmode;
1063 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1064 if (align >= GET_MODE_ALIGNMENT (tmode))
1065 align = GET_MODE_ALIGNMENT (tmode);
1066 else
1068 enum machine_mode tmode, xmode;
1070 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1071 tmode != VOIDmode;
1072 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1073 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1074 || SLOW_UNALIGNED_ACCESS (tmode, align))
1075 break;
1077 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1080 while (max_size > 1)
1082 enum machine_mode mode = VOIDmode;
1083 enum insn_code icode;
1085 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1086 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1087 if (GET_MODE_SIZE (tmode) < max_size)
1088 mode = tmode;
1090 if (mode == VOIDmode)
1091 break;
1093 icode = optab_handler (mov_optab, mode)->insn_code;
1094 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1095 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1097 max_size = GET_MODE_SIZE (mode);
1100 gcc_assert (!l);
1101 return n_insns;
1104 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1105 with move instructions for mode MODE. GENFUN is the gen_... function
1106 to make a move insn for that mode. DATA has all the other info. */
1108 static void
1109 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1110 struct move_by_pieces *data)
1112 unsigned int size = GET_MODE_SIZE (mode);
1113 rtx to1 = NULL_RTX, from1;
1115 while (data->len >= size)
1117 if (data->reverse)
1118 data->offset -= size;
1120 if (data->to)
1122 if (data->autinc_to)
1123 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1124 data->offset);
1125 else
1126 to1 = adjust_address (data->to, mode, data->offset);
1129 if (data->autinc_from)
1130 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1131 data->offset);
1132 else
1133 from1 = adjust_address (data->from, mode, data->offset);
1135 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1136 emit_insn (gen_add2_insn (data->to_addr,
1137 GEN_INT (-(HOST_WIDE_INT)size)));
1138 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1139 emit_insn (gen_add2_insn (data->from_addr,
1140 GEN_INT (-(HOST_WIDE_INT)size)));
1142 if (data->to)
1143 emit_insn ((*genfun) (to1, from1));
1144 else
1146 #ifdef PUSH_ROUNDING
1147 emit_single_push_insn (mode, from1, NULL);
1148 #else
1149 gcc_unreachable ();
1150 #endif
1153 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1154 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1155 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1156 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1158 if (! data->reverse)
1159 data->offset += size;
1161 data->len -= size;
1165 /* Emit code to move a block Y to a block X. This may be done with
1166 string-move instructions, with multiple scalar move instructions,
1167 or with a library call.
1169 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1170 SIZE is an rtx that says how long they are.
1171 ALIGN is the maximum alignment we can assume they have.
1172 METHOD describes what kind of copy this is, and what mechanisms may be used.
1174 Return the address of the new block, if memcpy is called and returns it,
1175 0 otherwise. */
1178 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1179 unsigned int expected_align, HOST_WIDE_INT expected_size)
1181 bool may_use_call;
1182 rtx retval = 0;
1183 unsigned int align;
1185 switch (method)
1187 case BLOCK_OP_NORMAL:
1188 case BLOCK_OP_TAILCALL:
1189 may_use_call = true;
1190 break;
1192 case BLOCK_OP_CALL_PARM:
1193 may_use_call = block_move_libcall_safe_for_call_parm ();
1195 /* Make inhibit_defer_pop nonzero around the library call
1196 to force it to pop the arguments right away. */
1197 NO_DEFER_POP;
1198 break;
1200 case BLOCK_OP_NO_LIBCALL:
1201 may_use_call = false;
1202 break;
1204 default:
1205 gcc_unreachable ();
1208 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1210 gcc_assert (MEM_P (x));
1211 gcc_assert (MEM_P (y));
1212 gcc_assert (size);
1214 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1215 block copy is more efficient for other large modes, e.g. DCmode. */
1216 x = adjust_address (x, BLKmode, 0);
1217 y = adjust_address (y, BLKmode, 0);
1219 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1220 can be incorrect is coming from __builtin_memcpy. */
1221 if (GET_CODE (size) == CONST_INT)
1223 if (INTVAL (size) == 0)
1224 return 0;
1226 x = shallow_copy_rtx (x);
1227 y = shallow_copy_rtx (y);
1228 set_mem_size (x, size);
1229 set_mem_size (y, size);
1232 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1233 move_by_pieces (x, y, INTVAL (size), align, 0);
1234 else if (emit_block_move_via_movmem (x, y, size, align,
1235 expected_align, expected_size))
1237 else if (may_use_call)
1238 retval = emit_block_move_via_libcall (x, y, size,
1239 method == BLOCK_OP_TAILCALL);
1240 else
1241 emit_block_move_via_loop (x, y, size, align);
1243 if (method == BLOCK_OP_CALL_PARM)
1244 OK_DEFER_POP;
1246 return retval;
1250 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1252 return emit_block_move_hints (x, y, size, method, 0, -1);
1255 /* A subroutine of emit_block_move. Returns true if calling the
1256 block move libcall will not clobber any parameters which may have
1257 already been placed on the stack. */
1259 static bool
1260 block_move_libcall_safe_for_call_parm (void)
1262 /* If arguments are pushed on the stack, then they're safe. */
1263 if (PUSH_ARGS)
1264 return true;
1266 /* If registers go on the stack anyway, any argument is sure to clobber
1267 an outgoing argument. */
1268 #if defined (REG_PARM_STACK_SPACE)
1269 if (OUTGOING_REG_PARM_STACK_SPACE)
1271 tree fn;
1272 fn = emit_block_move_libcall_fn (false);
1273 if (REG_PARM_STACK_SPACE (fn) != 0)
1274 return false;
1276 #endif
1278 /* If any argument goes in memory, then it might clobber an outgoing
1279 argument. */
1281 CUMULATIVE_ARGS args_so_far;
1282 tree fn, arg;
1284 fn = emit_block_move_libcall_fn (false);
1285 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1287 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1288 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1290 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1291 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1292 if (!tmp || !REG_P (tmp))
1293 return false;
1294 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1295 return false;
1296 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1299 return true;
1302 /* A subroutine of emit_block_move. Expand a movmem pattern;
1303 return true if successful. */
1305 static bool
1306 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1307 unsigned int expected_align, HOST_WIDE_INT expected_size)
1309 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1310 int save_volatile_ok = volatile_ok;
1311 enum machine_mode mode;
1313 if (expected_align < align)
1314 expected_align = align;
1316 /* Since this is a move insn, we don't care about volatility. */
1317 volatile_ok = 1;
1319 /* Try the most limited insn first, because there's no point
1320 including more than one in the machine description unless
1321 the more limited one has some advantage. */
1323 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1324 mode = GET_MODE_WIDER_MODE (mode))
1326 enum insn_code code = movmem_optab[(int) mode];
1327 insn_operand_predicate_fn pred;
1329 if (code != CODE_FOR_nothing
1330 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1331 here because if SIZE is less than the mode mask, as it is
1332 returned by the macro, it will definitely be less than the
1333 actual mode mask. */
1334 && ((GET_CODE (size) == CONST_INT
1335 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1336 <= (GET_MODE_MASK (mode) >> 1)))
1337 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1338 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1339 || (*pred) (x, BLKmode))
1340 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1341 || (*pred) (y, BLKmode))
1342 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1343 || (*pred) (opalign, VOIDmode)))
1345 rtx op2;
1346 rtx last = get_last_insn ();
1347 rtx pat;
1349 op2 = convert_to_mode (mode, size, 1);
1350 pred = insn_data[(int) code].operand[2].predicate;
1351 if (pred != 0 && ! (*pred) (op2, mode))
1352 op2 = copy_to_mode_reg (mode, op2);
1354 /* ??? When called via emit_block_move_for_call, it'd be
1355 nice if there were some way to inform the backend, so
1356 that it doesn't fail the expansion because it thinks
1357 emitting the libcall would be more efficient. */
1359 if (insn_data[(int) code].n_operands == 4)
1360 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1361 else
1362 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1363 GEN_INT (expected_align),
1364 GEN_INT (expected_size));
1365 if (pat)
1367 emit_insn (pat);
1368 volatile_ok = save_volatile_ok;
1369 return true;
1371 else
1372 delete_insns_since (last);
1376 volatile_ok = save_volatile_ok;
1377 return false;
1380 /* A subroutine of emit_block_move. Expand a call to memcpy.
1381 Return the return value from memcpy, 0 otherwise. */
1384 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1386 rtx dst_addr, src_addr;
1387 tree call_expr, fn, src_tree, dst_tree, size_tree;
1388 enum machine_mode size_mode;
1389 rtx retval;
1391 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1392 pseudos. We can then place those new pseudos into a VAR_DECL and
1393 use them later. */
1395 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1396 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1398 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1399 src_addr = convert_memory_address (ptr_mode, src_addr);
1401 dst_tree = make_tree (ptr_type_node, dst_addr);
1402 src_tree = make_tree (ptr_type_node, src_addr);
1404 size_mode = TYPE_MODE (sizetype);
1406 size = convert_to_mode (size_mode, size, 1);
1407 size = copy_to_mode_reg (size_mode, size);
1409 /* It is incorrect to use the libcall calling conventions to call
1410 memcpy in this context. This could be a user call to memcpy and
1411 the user may wish to examine the return value from memcpy. For
1412 targets where libcalls and normal calls have different conventions
1413 for returning pointers, we could end up generating incorrect code. */
1415 size_tree = make_tree (sizetype, size);
1417 fn = emit_block_move_libcall_fn (true);
1418 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1419 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1421 retval = expand_normal (call_expr);
1423 return retval;
1426 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1427 for the function we use for block copies. The first time FOR_CALL
1428 is true, we call assemble_external. */
1430 static GTY(()) tree block_move_fn;
1432 void
1433 init_block_move_fn (const char *asmspec)
1435 if (!block_move_fn)
1437 tree args, fn;
1439 fn = get_identifier ("memcpy");
1440 args = build_function_type_list (ptr_type_node, ptr_type_node,
1441 const_ptr_type_node, sizetype,
1442 NULL_TREE);
1444 fn = build_decl (FUNCTION_DECL, fn, args);
1445 DECL_EXTERNAL (fn) = 1;
1446 TREE_PUBLIC (fn) = 1;
1447 DECL_ARTIFICIAL (fn) = 1;
1448 TREE_NOTHROW (fn) = 1;
1449 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1450 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1452 block_move_fn = fn;
1455 if (asmspec)
1456 set_user_assembler_name (block_move_fn, asmspec);
1459 static tree
1460 emit_block_move_libcall_fn (int for_call)
1462 static bool emitted_extern;
1464 if (!block_move_fn)
1465 init_block_move_fn (NULL);
1467 if (for_call && !emitted_extern)
1469 emitted_extern = true;
1470 make_decl_rtl (block_move_fn);
1471 assemble_external (block_move_fn);
1474 return block_move_fn;
1477 /* A subroutine of emit_block_move. Copy the data via an explicit
1478 loop. This is used only when libcalls are forbidden. */
1479 /* ??? It'd be nice to copy in hunks larger than QImode. */
1481 static void
1482 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1483 unsigned int align ATTRIBUTE_UNUSED)
1485 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1486 enum machine_mode iter_mode;
1488 iter_mode = GET_MODE (size);
1489 if (iter_mode == VOIDmode)
1490 iter_mode = word_mode;
1492 top_label = gen_label_rtx ();
1493 cmp_label = gen_label_rtx ();
1494 iter = gen_reg_rtx (iter_mode);
1496 emit_move_insn (iter, const0_rtx);
1498 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1499 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1500 do_pending_stack_adjust ();
1502 emit_jump (cmp_label);
1503 emit_label (top_label);
1505 tmp = convert_modes (Pmode, iter_mode, iter, true);
1506 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1507 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1508 x = change_address (x, QImode, x_addr);
1509 y = change_address (y, QImode, y_addr);
1511 emit_move_insn (x, y);
1513 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1514 true, OPTAB_LIB_WIDEN);
1515 if (tmp != iter)
1516 emit_move_insn (iter, tmp);
1518 emit_label (cmp_label);
1520 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1521 true, top_label);
1524 /* Copy all or part of a value X into registers starting at REGNO.
1525 The number of registers to be filled is NREGS. */
1527 void
1528 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1530 int i;
1531 #ifdef HAVE_load_multiple
1532 rtx pat;
1533 rtx last;
1534 #endif
1536 if (nregs == 0)
1537 return;
1539 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1540 x = validize_mem (force_const_mem (mode, x));
1542 /* See if the machine can do this with a load multiple insn. */
1543 #ifdef HAVE_load_multiple
1544 if (HAVE_load_multiple)
1546 last = get_last_insn ();
1547 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1548 GEN_INT (nregs));
1549 if (pat)
1551 emit_insn (pat);
1552 return;
1554 else
1555 delete_insns_since (last);
1557 #endif
1559 for (i = 0; i < nregs; i++)
1560 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1561 operand_subword_force (x, i, mode));
1564 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1565 The number of registers to be filled is NREGS. */
1567 void
1568 move_block_from_reg (int regno, rtx x, int nregs)
1570 int i;
1572 if (nregs == 0)
1573 return;
1575 /* See if the machine can do this with a store multiple insn. */
1576 #ifdef HAVE_store_multiple
1577 if (HAVE_store_multiple)
1579 rtx last = get_last_insn ();
1580 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1581 GEN_INT (nregs));
1582 if (pat)
1584 emit_insn (pat);
1585 return;
1587 else
1588 delete_insns_since (last);
1590 #endif
1592 for (i = 0; i < nregs; i++)
1594 rtx tem = operand_subword (x, i, 1, BLKmode);
1596 gcc_assert (tem);
1598 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1602 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1603 ORIG, where ORIG is a non-consecutive group of registers represented by
1604 a PARALLEL. The clone is identical to the original except in that the
1605 original set of registers is replaced by a new set of pseudo registers.
1606 The new set has the same modes as the original set. */
1609 gen_group_rtx (rtx orig)
1611 int i, length;
1612 rtx *tmps;
1614 gcc_assert (GET_CODE (orig) == PARALLEL);
1616 length = XVECLEN (orig, 0);
1617 tmps = alloca (sizeof (rtx) * length);
1619 /* Skip a NULL entry in first slot. */
1620 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1622 if (i)
1623 tmps[0] = 0;
1625 for (; i < length; i++)
1627 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1628 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1630 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1633 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1636 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1637 except that values are placed in TMPS[i], and must later be moved
1638 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1640 static void
1641 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1643 rtx src;
1644 int start, i;
1645 enum machine_mode m = GET_MODE (orig_src);
1647 gcc_assert (GET_CODE (dst) == PARALLEL);
1649 if (m != VOIDmode
1650 && !SCALAR_INT_MODE_P (m)
1651 && !MEM_P (orig_src)
1652 && GET_CODE (orig_src) != CONCAT)
1654 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1655 if (imode == BLKmode)
1656 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1657 else
1658 src = gen_reg_rtx (imode);
1659 if (imode != BLKmode)
1660 src = gen_lowpart (GET_MODE (orig_src), src);
1661 emit_move_insn (src, orig_src);
1662 /* ...and back again. */
1663 if (imode != BLKmode)
1664 src = gen_lowpart (imode, src);
1665 emit_group_load_1 (tmps, dst, src, type, ssize);
1666 return;
1669 /* Check for a NULL entry, used to indicate that the parameter goes
1670 both on the stack and in registers. */
1671 if (XEXP (XVECEXP (dst, 0, 0), 0))
1672 start = 0;
1673 else
1674 start = 1;
1676 /* Process the pieces. */
1677 for (i = start; i < XVECLEN (dst, 0); i++)
1679 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1680 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1681 unsigned int bytelen = GET_MODE_SIZE (mode);
1682 int shift = 0;
1684 /* Handle trailing fragments that run over the size of the struct. */
1685 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1687 /* Arrange to shift the fragment to where it belongs.
1688 extract_bit_field loads to the lsb of the reg. */
1689 if (
1690 #ifdef BLOCK_REG_PADDING
1691 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1692 == (BYTES_BIG_ENDIAN ? upward : downward)
1693 #else
1694 BYTES_BIG_ENDIAN
1695 #endif
1697 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1698 bytelen = ssize - bytepos;
1699 gcc_assert (bytelen > 0);
1702 /* If we won't be loading directly from memory, protect the real source
1703 from strange tricks we might play; but make sure that the source can
1704 be loaded directly into the destination. */
1705 src = orig_src;
1706 if (!MEM_P (orig_src)
1707 && (!CONSTANT_P (orig_src)
1708 || (GET_MODE (orig_src) != mode
1709 && GET_MODE (orig_src) != VOIDmode)))
1711 if (GET_MODE (orig_src) == VOIDmode)
1712 src = gen_reg_rtx (mode);
1713 else
1714 src = gen_reg_rtx (GET_MODE (orig_src));
1716 emit_move_insn (src, orig_src);
1719 /* Optimize the access just a bit. */
1720 if (MEM_P (src)
1721 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1722 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1723 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1724 && bytelen == GET_MODE_SIZE (mode))
1726 tmps[i] = gen_reg_rtx (mode);
1727 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1729 else if (COMPLEX_MODE_P (mode)
1730 && GET_MODE (src) == mode
1731 && bytelen == GET_MODE_SIZE (mode))
1732 /* Let emit_move_complex do the bulk of the work. */
1733 tmps[i] = src;
1734 else if (GET_CODE (src) == CONCAT)
1736 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1737 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1739 if ((bytepos == 0 && bytelen == slen0)
1740 || (bytepos != 0 && bytepos + bytelen <= slen))
1742 /* The following assumes that the concatenated objects all
1743 have the same size. In this case, a simple calculation
1744 can be used to determine the object and the bit field
1745 to be extracted. */
1746 tmps[i] = XEXP (src, bytepos / slen0);
1747 if (! CONSTANT_P (tmps[i])
1748 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1749 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1750 (bytepos % slen0) * BITS_PER_UNIT,
1751 1, NULL_RTX, mode, mode);
1753 else
1755 rtx mem;
1757 gcc_assert (!bytepos);
1758 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1759 emit_move_insn (mem, src);
1760 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1761 0, 1, NULL_RTX, mode, mode);
1764 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1765 SIMD register, which is currently broken. While we get GCC
1766 to emit proper RTL for these cases, let's dump to memory. */
1767 else if (VECTOR_MODE_P (GET_MODE (dst))
1768 && REG_P (src))
1770 int slen = GET_MODE_SIZE (GET_MODE (src));
1771 rtx mem;
1773 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1774 emit_move_insn (mem, src);
1775 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1777 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1778 && XVECLEN (dst, 0) > 1)
1779 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1780 else if (CONSTANT_P (src))
1782 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1784 if (len == ssize)
1785 tmps[i] = src;
1786 else
1788 rtx first, second;
1790 gcc_assert (2 * len == ssize);
1791 split_double (src, &first, &second);
1792 if (i)
1793 tmps[i] = second;
1794 else
1795 tmps[i] = first;
1798 else if (REG_P (src) && GET_MODE (src) == mode)
1799 tmps[i] = src;
1800 else
1801 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1802 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1803 mode, mode);
1805 if (shift)
1806 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1807 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1811 /* Emit code to move a block SRC of type TYPE to a block DST,
1812 where DST is non-consecutive registers represented by a PARALLEL.
1813 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1814 if not known. */
1816 void
1817 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1819 rtx *tmps;
1820 int i;
1822 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1823 emit_group_load_1 (tmps, dst, src, type, ssize);
1825 /* Copy the extracted pieces into the proper (probable) hard regs. */
1826 for (i = 0; i < XVECLEN (dst, 0); i++)
1828 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1829 if (d == NULL)
1830 continue;
1831 emit_move_insn (d, tmps[i]);
1835 /* Similar, but load SRC into new pseudos in a format that looks like
1836 PARALLEL. This can later be fed to emit_group_move to get things
1837 in the right place. */
1840 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1842 rtvec vec;
1843 int i;
1845 vec = rtvec_alloc (XVECLEN (parallel, 0));
1846 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1848 /* Convert the vector to look just like the original PARALLEL, except
1849 with the computed values. */
1850 for (i = 0; i < XVECLEN (parallel, 0); i++)
1852 rtx e = XVECEXP (parallel, 0, i);
1853 rtx d = XEXP (e, 0);
1855 if (d)
1857 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1858 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1860 RTVEC_ELT (vec, i) = e;
1863 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1866 /* Emit code to move a block SRC to block DST, where SRC and DST are
1867 non-consecutive groups of registers, each represented by a PARALLEL. */
1869 void
1870 emit_group_move (rtx dst, rtx src)
1872 int i;
1874 gcc_assert (GET_CODE (src) == PARALLEL
1875 && GET_CODE (dst) == PARALLEL
1876 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1878 /* Skip first entry if NULL. */
1879 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1880 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1881 XEXP (XVECEXP (src, 0, i), 0));
1884 /* Move a group of registers represented by a PARALLEL into pseudos. */
1887 emit_group_move_into_temps (rtx src)
1889 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1890 int i;
1892 for (i = 0; i < XVECLEN (src, 0); i++)
1894 rtx e = XVECEXP (src, 0, i);
1895 rtx d = XEXP (e, 0);
1897 if (d)
1898 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1899 RTVEC_ELT (vec, i) = e;
1902 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1905 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1906 where SRC is non-consecutive registers represented by a PARALLEL.
1907 SSIZE represents the total size of block ORIG_DST, or -1 if not
1908 known. */
1910 void
1911 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1913 rtx *tmps, dst;
1914 int start, finish, i;
1915 enum machine_mode m = GET_MODE (orig_dst);
1917 gcc_assert (GET_CODE (src) == PARALLEL);
1919 if (!SCALAR_INT_MODE_P (m)
1920 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1922 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1923 if (imode == BLKmode)
1924 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1925 else
1926 dst = gen_reg_rtx (imode);
1927 emit_group_store (dst, src, type, ssize);
1928 if (imode != BLKmode)
1929 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1930 emit_move_insn (orig_dst, dst);
1931 return;
1934 /* Check for a NULL entry, used to indicate that the parameter goes
1935 both on the stack and in registers. */
1936 if (XEXP (XVECEXP (src, 0, 0), 0))
1937 start = 0;
1938 else
1939 start = 1;
1940 finish = XVECLEN (src, 0);
1942 tmps = alloca (sizeof (rtx) * finish);
1944 /* Copy the (probable) hard regs into pseudos. */
1945 for (i = start; i < finish; i++)
1947 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1948 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1950 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1951 emit_move_insn (tmps[i], reg);
1953 else
1954 tmps[i] = reg;
1957 /* If we won't be storing directly into memory, protect the real destination
1958 from strange tricks we might play. */
1959 dst = orig_dst;
1960 if (GET_CODE (dst) == PARALLEL)
1962 rtx temp;
1964 /* We can get a PARALLEL dst if there is a conditional expression in
1965 a return statement. In that case, the dst and src are the same,
1966 so no action is necessary. */
1967 if (rtx_equal_p (dst, src))
1968 return;
1970 /* It is unclear if we can ever reach here, but we may as well handle
1971 it. Allocate a temporary, and split this into a store/load to/from
1972 the temporary. */
1974 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1975 emit_group_store (temp, src, type, ssize);
1976 emit_group_load (dst, temp, type, ssize);
1977 return;
1979 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1981 enum machine_mode outer = GET_MODE (dst);
1982 enum machine_mode inner;
1983 HOST_WIDE_INT bytepos;
1984 bool done = false;
1985 rtx temp;
1987 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1988 dst = gen_reg_rtx (outer);
1990 /* Make life a bit easier for combine. */
1991 /* If the first element of the vector is the low part
1992 of the destination mode, use a paradoxical subreg to
1993 initialize the destination. */
1994 if (start < finish)
1996 inner = GET_MODE (tmps[start]);
1997 bytepos = subreg_lowpart_offset (inner, outer);
1998 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2000 temp = simplify_gen_subreg (outer, tmps[start],
2001 inner, 0);
2002 if (temp)
2004 emit_move_insn (dst, temp);
2005 done = true;
2006 start++;
2011 /* If the first element wasn't the low part, try the last. */
2012 if (!done
2013 && start < finish - 1)
2015 inner = GET_MODE (tmps[finish - 1]);
2016 bytepos = subreg_lowpart_offset (inner, outer);
2017 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2019 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2020 inner, 0);
2021 if (temp)
2023 emit_move_insn (dst, temp);
2024 done = true;
2025 finish--;
2030 /* Otherwise, simply initialize the result to zero. */
2031 if (!done)
2032 emit_move_insn (dst, CONST0_RTX (outer));
2035 /* Process the pieces. */
2036 for (i = start; i < finish; i++)
2038 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2039 enum machine_mode mode = GET_MODE (tmps[i]);
2040 unsigned int bytelen = GET_MODE_SIZE (mode);
2041 rtx dest = dst;
2043 /* Handle trailing fragments that run over the size of the struct. */
2044 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2046 /* store_bit_field always takes its value from the lsb.
2047 Move the fragment to the lsb if it's not already there. */
2048 if (
2049 #ifdef BLOCK_REG_PADDING
2050 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2051 == (BYTES_BIG_ENDIAN ? upward : downward)
2052 #else
2053 BYTES_BIG_ENDIAN
2054 #endif
2057 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2058 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2059 build_int_cst (NULL_TREE, shift),
2060 tmps[i], 0);
2062 bytelen = ssize - bytepos;
2065 if (GET_CODE (dst) == CONCAT)
2067 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2068 dest = XEXP (dst, 0);
2069 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2071 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2072 dest = XEXP (dst, 1);
2074 else
2076 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2077 dest = assign_stack_temp (GET_MODE (dest),
2078 GET_MODE_SIZE (GET_MODE (dest)), 0);
2079 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
2080 tmps[i]);
2081 dst = dest;
2082 break;
2086 /* Optimize the access just a bit. */
2087 if (MEM_P (dest)
2088 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2089 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2090 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2091 && bytelen == GET_MODE_SIZE (mode))
2092 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2093 else
2094 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2095 mode, tmps[i]);
2098 /* Copy from the pseudo into the (probable) hard reg. */
2099 if (orig_dst != dst)
2100 emit_move_insn (orig_dst, dst);
2103 /* Generate code to copy a BLKmode object of TYPE out of a
2104 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2105 is null, a stack temporary is created. TGTBLK is returned.
2107 The purpose of this routine is to handle functions that return
2108 BLKmode structures in registers. Some machines (the PA for example)
2109 want to return all small structures in registers regardless of the
2110 structure's alignment. */
2113 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2115 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2116 rtx src = NULL, dst = NULL;
2117 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2118 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2119 enum machine_mode copy_mode;
2121 if (tgtblk == 0)
2123 tgtblk = assign_temp (build_qualified_type (type,
2124 (TYPE_QUALS (type)
2125 | TYPE_QUAL_CONST)),
2126 0, 1, 1);
2127 preserve_temp_slots (tgtblk);
2130 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2131 into a new pseudo which is a full word. */
2133 if (GET_MODE (srcreg) != BLKmode
2134 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2135 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2137 /* If the structure doesn't take up a whole number of words, see whether
2138 SRCREG is padded on the left or on the right. If it's on the left,
2139 set PADDING_CORRECTION to the number of bits to skip.
2141 In most ABIs, the structure will be returned at the least end of
2142 the register, which translates to right padding on little-endian
2143 targets and left padding on big-endian targets. The opposite
2144 holds if the structure is returned at the most significant
2145 end of the register. */
2146 if (bytes % UNITS_PER_WORD != 0
2147 && (targetm.calls.return_in_msb (type)
2148 ? !BYTES_BIG_ENDIAN
2149 : BYTES_BIG_ENDIAN))
2150 padding_correction
2151 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2153 /* Copy the structure BITSIZE bits at a time. If the target lives in
2154 memory, take care of not reading/writing past its end by selecting
2155 a copy mode suited to BITSIZE. This should always be possible given
2156 how it is computed.
2158 We could probably emit more efficient code for machines which do not use
2159 strict alignment, but it doesn't seem worth the effort at the current
2160 time. */
2162 copy_mode = word_mode;
2163 if (MEM_P (tgtblk))
2165 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2166 if (mem_mode != BLKmode)
2167 copy_mode = mem_mode;
2170 for (bitpos = 0, xbitpos = padding_correction;
2171 bitpos < bytes * BITS_PER_UNIT;
2172 bitpos += bitsize, xbitpos += bitsize)
2174 /* We need a new source operand each time xbitpos is on a
2175 word boundary and when xbitpos == padding_correction
2176 (the first time through). */
2177 if (xbitpos % BITS_PER_WORD == 0
2178 || xbitpos == padding_correction)
2179 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2180 GET_MODE (srcreg));
2182 /* We need a new destination operand each time bitpos is on
2183 a word boundary. */
2184 if (bitpos % BITS_PER_WORD == 0)
2185 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2187 /* Use xbitpos for the source extraction (right justified) and
2188 bitpos for the destination store (left justified). */
2189 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2190 extract_bit_field (src, bitsize,
2191 xbitpos % BITS_PER_WORD, 1,
2192 NULL_RTX, copy_mode, copy_mode));
2195 return tgtblk;
2198 /* Add a USE expression for REG to the (possibly empty) list pointed
2199 to by CALL_FUSAGE. REG must denote a hard register. */
2201 void
2202 use_reg (rtx *call_fusage, rtx reg)
2204 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2206 *call_fusage
2207 = gen_rtx_EXPR_LIST (VOIDmode,
2208 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2211 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2212 starting at REGNO. All of these registers must be hard registers. */
2214 void
2215 use_regs (rtx *call_fusage, int regno, int nregs)
2217 int i;
2219 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2221 for (i = 0; i < nregs; i++)
2222 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2225 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2226 PARALLEL REGS. This is for calls that pass values in multiple
2227 non-contiguous locations. The Irix 6 ABI has examples of this. */
2229 void
2230 use_group_regs (rtx *call_fusage, rtx regs)
2232 int i;
2234 for (i = 0; i < XVECLEN (regs, 0); i++)
2236 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2238 /* A NULL entry means the parameter goes both on the stack and in
2239 registers. This can also be a MEM for targets that pass values
2240 partially on the stack and partially in registers. */
2241 if (reg != 0 && REG_P (reg))
2242 use_reg (call_fusage, reg);
2247 /* Determine whether the LEN bytes generated by CONSTFUN can be
2248 stored to memory using several move instructions. CONSTFUNDATA is
2249 a pointer which will be passed as argument in every CONSTFUN call.
2250 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2251 a memset operation and false if it's a copy of a constant string.
2252 Return nonzero if a call to store_by_pieces should succeed. */
2255 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2256 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2257 void *constfundata, unsigned int align, bool memsetp)
2259 unsigned HOST_WIDE_INT l;
2260 unsigned int max_size;
2261 HOST_WIDE_INT offset = 0;
2262 enum machine_mode mode, tmode;
2263 enum insn_code icode;
2264 int reverse;
2265 rtx cst;
2267 if (len == 0)
2268 return 1;
2270 if (! (memsetp
2271 ? SET_BY_PIECES_P (len, align)
2272 : STORE_BY_PIECES_P (len, align)))
2273 return 0;
2275 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2276 if (align >= GET_MODE_ALIGNMENT (tmode))
2277 align = GET_MODE_ALIGNMENT (tmode);
2278 else
2280 enum machine_mode xmode;
2282 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2283 tmode != VOIDmode;
2284 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2285 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2286 || SLOW_UNALIGNED_ACCESS (tmode, align))
2287 break;
2289 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2292 /* We would first store what we can in the largest integer mode, then go to
2293 successively smaller modes. */
2295 for (reverse = 0;
2296 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2297 reverse++)
2299 l = len;
2300 mode = VOIDmode;
2301 max_size = STORE_MAX_PIECES + 1;
2302 while (max_size > 1)
2304 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2305 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2306 if (GET_MODE_SIZE (tmode) < max_size)
2307 mode = tmode;
2309 if (mode == VOIDmode)
2310 break;
2312 icode = optab_handler (mov_optab, mode)->insn_code;
2313 if (icode != CODE_FOR_nothing
2314 && align >= GET_MODE_ALIGNMENT (mode))
2316 unsigned int size = GET_MODE_SIZE (mode);
2318 while (l >= size)
2320 if (reverse)
2321 offset -= size;
2323 cst = (*constfun) (constfundata, offset, mode);
2324 if (!LEGITIMATE_CONSTANT_P (cst))
2325 return 0;
2327 if (!reverse)
2328 offset += size;
2330 l -= size;
2334 max_size = GET_MODE_SIZE (mode);
2337 /* The code above should have handled everything. */
2338 gcc_assert (!l);
2341 return 1;
2344 /* Generate several move instructions to store LEN bytes generated by
2345 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2346 pointer which will be passed as argument in every CONSTFUN call.
2347 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2348 a memset operation and false if it's a copy of a constant string.
2349 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2350 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2351 stpcpy. */
2354 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2355 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2356 void *constfundata, unsigned int align, bool memsetp, int endp)
2358 struct store_by_pieces data;
2360 if (len == 0)
2362 gcc_assert (endp != 2);
2363 return to;
2366 gcc_assert (memsetp
2367 ? SET_BY_PIECES_P (len, align)
2368 : STORE_BY_PIECES_P (len, align));
2369 data.constfun = constfun;
2370 data.constfundata = constfundata;
2371 data.len = len;
2372 data.to = to;
2373 store_by_pieces_1 (&data, align);
2374 if (endp)
2376 rtx to1;
2378 gcc_assert (!data.reverse);
2379 if (data.autinc_to)
2381 if (endp == 2)
2383 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2384 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2385 else
2386 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2387 -1));
2389 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2390 data.offset);
2392 else
2394 if (endp == 2)
2395 --data.offset;
2396 to1 = adjust_address (data.to, QImode, data.offset);
2398 return to1;
2400 else
2401 return data.to;
2404 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2405 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2407 static void
2408 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2410 struct store_by_pieces data;
2412 if (len == 0)
2413 return;
2415 data.constfun = clear_by_pieces_1;
2416 data.constfundata = NULL;
2417 data.len = len;
2418 data.to = to;
2419 store_by_pieces_1 (&data, align);
2422 /* Callback routine for clear_by_pieces.
2423 Return const0_rtx unconditionally. */
2425 static rtx
2426 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2427 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2428 enum machine_mode mode ATTRIBUTE_UNUSED)
2430 return const0_rtx;
2433 /* Subroutine of clear_by_pieces and store_by_pieces.
2434 Generate several move instructions to store LEN bytes of block TO. (A MEM
2435 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2437 static void
2438 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2439 unsigned int align ATTRIBUTE_UNUSED)
2441 rtx to_addr = XEXP (data->to, 0);
2442 unsigned int max_size = STORE_MAX_PIECES + 1;
2443 enum machine_mode mode = VOIDmode, tmode;
2444 enum insn_code icode;
2446 data->offset = 0;
2447 data->to_addr = to_addr;
2448 data->autinc_to
2449 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2450 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2452 data->explicit_inc_to = 0;
2453 data->reverse
2454 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2455 if (data->reverse)
2456 data->offset = data->len;
2458 /* If storing requires more than two move insns,
2459 copy addresses to registers (to make displacements shorter)
2460 and use post-increment if available. */
2461 if (!data->autinc_to
2462 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2464 /* Determine the main mode we'll be using. */
2465 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2466 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2467 if (GET_MODE_SIZE (tmode) < max_size)
2468 mode = tmode;
2470 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2472 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2473 data->autinc_to = 1;
2474 data->explicit_inc_to = -1;
2477 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2478 && ! data->autinc_to)
2480 data->to_addr = copy_addr_to_reg (to_addr);
2481 data->autinc_to = 1;
2482 data->explicit_inc_to = 1;
2485 if ( !data->autinc_to && CONSTANT_P (to_addr))
2486 data->to_addr = copy_addr_to_reg (to_addr);
2489 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2490 if (align >= GET_MODE_ALIGNMENT (tmode))
2491 align = GET_MODE_ALIGNMENT (tmode);
2492 else
2494 enum machine_mode xmode;
2496 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2497 tmode != VOIDmode;
2498 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2499 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2500 || SLOW_UNALIGNED_ACCESS (tmode, align))
2501 break;
2503 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2506 /* First store what we can in the largest integer mode, then go to
2507 successively smaller modes. */
2509 while (max_size > 1)
2511 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2512 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2513 if (GET_MODE_SIZE (tmode) < max_size)
2514 mode = tmode;
2516 if (mode == VOIDmode)
2517 break;
2519 icode = optab_handler (mov_optab, mode)->insn_code;
2520 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2521 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2523 max_size = GET_MODE_SIZE (mode);
2526 /* The code above should have handled everything. */
2527 gcc_assert (!data->len);
2530 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2531 with move instructions for mode MODE. GENFUN is the gen_... function
2532 to make a move insn for that mode. DATA has all the other info. */
2534 static void
2535 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2536 struct store_by_pieces *data)
2538 unsigned int size = GET_MODE_SIZE (mode);
2539 rtx to1, cst;
2541 while (data->len >= size)
2543 if (data->reverse)
2544 data->offset -= size;
2546 if (data->autinc_to)
2547 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2548 data->offset);
2549 else
2550 to1 = adjust_address (data->to, mode, data->offset);
2552 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2553 emit_insn (gen_add2_insn (data->to_addr,
2554 GEN_INT (-(HOST_WIDE_INT) size)));
2556 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2557 emit_insn ((*genfun) (to1, cst));
2559 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2560 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2562 if (! data->reverse)
2563 data->offset += size;
2565 data->len -= size;
2569 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2570 its length in bytes. */
2573 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2574 unsigned int expected_align, HOST_WIDE_INT expected_size)
2576 enum machine_mode mode = GET_MODE (object);
2577 unsigned int align;
2579 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2581 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2582 just move a zero. Otherwise, do this a piece at a time. */
2583 if (mode != BLKmode
2584 && GET_CODE (size) == CONST_INT
2585 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2587 rtx zero = CONST0_RTX (mode);
2588 if (zero != NULL)
2590 emit_move_insn (object, zero);
2591 return NULL;
2594 if (COMPLEX_MODE_P (mode))
2596 zero = CONST0_RTX (GET_MODE_INNER (mode));
2597 if (zero != NULL)
2599 write_complex_part (object, zero, 0);
2600 write_complex_part (object, zero, 1);
2601 return NULL;
2606 if (size == const0_rtx)
2607 return NULL;
2609 align = MEM_ALIGN (object);
2611 if (GET_CODE (size) == CONST_INT
2612 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2613 clear_by_pieces (object, INTVAL (size), align);
2614 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2615 expected_align, expected_size))
2617 else
2618 return set_storage_via_libcall (object, size, const0_rtx,
2619 method == BLOCK_OP_TAILCALL);
2621 return NULL;
2625 clear_storage (rtx object, rtx size, enum block_op_methods method)
2627 return clear_storage_hints (object, size, method, 0, -1);
2631 /* A subroutine of clear_storage. Expand a call to memset.
2632 Return the return value of memset, 0 otherwise. */
2635 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2637 tree call_expr, fn, object_tree, size_tree, val_tree;
2638 enum machine_mode size_mode;
2639 rtx retval;
2641 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2642 place those into new pseudos into a VAR_DECL and use them later. */
2644 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2646 size_mode = TYPE_MODE (sizetype);
2647 size = convert_to_mode (size_mode, size, 1);
2648 size = copy_to_mode_reg (size_mode, size);
2650 /* It is incorrect to use the libcall calling conventions to call
2651 memset in this context. This could be a user call to memset and
2652 the user may wish to examine the return value from memset. For
2653 targets where libcalls and normal calls have different conventions
2654 for returning pointers, we could end up generating incorrect code. */
2656 object_tree = make_tree (ptr_type_node, object);
2657 if (GET_CODE (val) != CONST_INT)
2658 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2659 size_tree = make_tree (sizetype, size);
2660 val_tree = make_tree (integer_type_node, val);
2662 fn = clear_storage_libcall_fn (true);
2663 call_expr = build_call_expr (fn, 3,
2664 object_tree, integer_zero_node, size_tree);
2665 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2667 retval = expand_normal (call_expr);
2669 return retval;
2672 /* A subroutine of set_storage_via_libcall. Create the tree node
2673 for the function we use for block clears. The first time FOR_CALL
2674 is true, we call assemble_external. */
2676 static GTY(()) tree block_clear_fn;
2678 void
2679 init_block_clear_fn (const char *asmspec)
2681 if (!block_clear_fn)
2683 tree fn, args;
2685 fn = get_identifier ("memset");
2686 args = build_function_type_list (ptr_type_node, ptr_type_node,
2687 integer_type_node, sizetype,
2688 NULL_TREE);
2690 fn = build_decl (FUNCTION_DECL, fn, args);
2691 DECL_EXTERNAL (fn) = 1;
2692 TREE_PUBLIC (fn) = 1;
2693 DECL_ARTIFICIAL (fn) = 1;
2694 TREE_NOTHROW (fn) = 1;
2695 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2696 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2698 block_clear_fn = fn;
2701 if (asmspec)
2702 set_user_assembler_name (block_clear_fn, asmspec);
2705 static tree
2706 clear_storage_libcall_fn (int for_call)
2708 static bool emitted_extern;
2710 if (!block_clear_fn)
2711 init_block_clear_fn (NULL);
2713 if (for_call && !emitted_extern)
2715 emitted_extern = true;
2716 make_decl_rtl (block_clear_fn);
2717 assemble_external (block_clear_fn);
2720 return block_clear_fn;
2723 /* Expand a setmem pattern; return true if successful. */
2725 bool
2726 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2727 unsigned int expected_align, HOST_WIDE_INT expected_size)
2729 /* Try the most limited insn first, because there's no point
2730 including more than one in the machine description unless
2731 the more limited one has some advantage. */
2733 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2734 enum machine_mode mode;
2736 if (expected_align < align)
2737 expected_align = align;
2739 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2740 mode = GET_MODE_WIDER_MODE (mode))
2742 enum insn_code code = setmem_optab[(int) mode];
2743 insn_operand_predicate_fn pred;
2745 if (code != CODE_FOR_nothing
2746 /* We don't need MODE to be narrower than
2747 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2748 the mode mask, as it is returned by the macro, it will
2749 definitely be less than the actual mode mask. */
2750 && ((GET_CODE (size) == CONST_INT
2751 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2752 <= (GET_MODE_MASK (mode) >> 1)))
2753 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2754 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2755 || (*pred) (object, BLKmode))
2756 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2757 || (*pred) (opalign, VOIDmode)))
2759 rtx opsize, opchar;
2760 enum machine_mode char_mode;
2761 rtx last = get_last_insn ();
2762 rtx pat;
2764 opsize = convert_to_mode (mode, size, 1);
2765 pred = insn_data[(int) code].operand[1].predicate;
2766 if (pred != 0 && ! (*pred) (opsize, mode))
2767 opsize = copy_to_mode_reg (mode, opsize);
2769 opchar = val;
2770 char_mode = insn_data[(int) code].operand[2].mode;
2771 if (char_mode != VOIDmode)
2773 opchar = convert_to_mode (char_mode, opchar, 1);
2774 pred = insn_data[(int) code].operand[2].predicate;
2775 if (pred != 0 && ! (*pred) (opchar, char_mode))
2776 opchar = copy_to_mode_reg (char_mode, opchar);
2779 if (insn_data[(int) code].n_operands == 4)
2780 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2781 else
2782 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2783 GEN_INT (expected_align),
2784 GEN_INT (expected_size));
2785 if (pat)
2787 emit_insn (pat);
2788 return true;
2790 else
2791 delete_insns_since (last);
2795 return false;
2799 /* Write to one of the components of the complex value CPLX. Write VAL to
2800 the real part if IMAG_P is false, and the imaginary part if its true. */
2802 static void
2803 write_complex_part (rtx cplx, rtx val, bool imag_p)
2805 enum machine_mode cmode;
2806 enum machine_mode imode;
2807 unsigned ibitsize;
2809 if (GET_CODE (cplx) == CONCAT)
2811 emit_move_insn (XEXP (cplx, imag_p), val);
2812 return;
2815 cmode = GET_MODE (cplx);
2816 imode = GET_MODE_INNER (cmode);
2817 ibitsize = GET_MODE_BITSIZE (imode);
2819 /* For MEMs simplify_gen_subreg may generate an invalid new address
2820 because, e.g., the original address is considered mode-dependent
2821 by the target, which restricts simplify_subreg from invoking
2822 adjust_address_nv. Instead of preparing fallback support for an
2823 invalid address, we call adjust_address_nv directly. */
2824 if (MEM_P (cplx))
2826 emit_move_insn (adjust_address_nv (cplx, imode,
2827 imag_p ? GET_MODE_SIZE (imode) : 0),
2828 val);
2829 return;
2832 /* If the sub-object is at least word sized, then we know that subregging
2833 will work. This special case is important, since store_bit_field
2834 wants to operate on integer modes, and there's rarely an OImode to
2835 correspond to TCmode. */
2836 if (ibitsize >= BITS_PER_WORD
2837 /* For hard regs we have exact predicates. Assume we can split
2838 the original object if it spans an even number of hard regs.
2839 This special case is important for SCmode on 64-bit platforms
2840 where the natural size of floating-point regs is 32-bit. */
2841 || (REG_P (cplx)
2842 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2843 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2845 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2846 imag_p ? GET_MODE_SIZE (imode) : 0);
2847 if (part)
2849 emit_move_insn (part, val);
2850 return;
2852 else
2853 /* simplify_gen_subreg may fail for sub-word MEMs. */
2854 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2857 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2860 /* Extract one of the components of the complex value CPLX. Extract the
2861 real part if IMAG_P is false, and the imaginary part if it's true. */
2863 static rtx
2864 read_complex_part (rtx cplx, bool imag_p)
2866 enum machine_mode cmode, imode;
2867 unsigned ibitsize;
2869 if (GET_CODE (cplx) == CONCAT)
2870 return XEXP (cplx, imag_p);
2872 cmode = GET_MODE (cplx);
2873 imode = GET_MODE_INNER (cmode);
2874 ibitsize = GET_MODE_BITSIZE (imode);
2876 /* Special case reads from complex constants that got spilled to memory. */
2877 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2879 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2880 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2882 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2883 if (CONSTANT_CLASS_P (part))
2884 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2888 /* For MEMs simplify_gen_subreg may generate an invalid new address
2889 because, e.g., the original address is considered mode-dependent
2890 by the target, which restricts simplify_subreg from invoking
2891 adjust_address_nv. Instead of preparing fallback support for an
2892 invalid address, we call adjust_address_nv directly. */
2893 if (MEM_P (cplx))
2894 return adjust_address_nv (cplx, imode,
2895 imag_p ? GET_MODE_SIZE (imode) : 0);
2897 /* If the sub-object is at least word sized, then we know that subregging
2898 will work. This special case is important, since extract_bit_field
2899 wants to operate on integer modes, and there's rarely an OImode to
2900 correspond to TCmode. */
2901 if (ibitsize >= BITS_PER_WORD
2902 /* For hard regs we have exact predicates. Assume we can split
2903 the original object if it spans an even number of hard regs.
2904 This special case is important for SCmode on 64-bit platforms
2905 where the natural size of floating-point regs is 32-bit. */
2906 || (REG_P (cplx)
2907 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2908 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2910 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2911 imag_p ? GET_MODE_SIZE (imode) : 0);
2912 if (ret)
2913 return ret;
2914 else
2915 /* simplify_gen_subreg may fail for sub-word MEMs. */
2916 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2919 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2920 true, NULL_RTX, imode, imode);
2923 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2924 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2925 represented in NEW_MODE. If FORCE is true, this will never happen, as
2926 we'll force-create a SUBREG if needed. */
2928 static rtx
2929 emit_move_change_mode (enum machine_mode new_mode,
2930 enum machine_mode old_mode, rtx x, bool force)
2932 rtx ret;
2934 if (push_operand (x, GET_MODE (x)))
2936 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2937 MEM_COPY_ATTRIBUTES (ret, x);
2939 else if (MEM_P (x))
2941 /* We don't have to worry about changing the address since the
2942 size in bytes is supposed to be the same. */
2943 if (reload_in_progress)
2945 /* Copy the MEM to change the mode and move any
2946 substitutions from the old MEM to the new one. */
2947 ret = adjust_address_nv (x, new_mode, 0);
2948 copy_replacements (x, ret);
2950 else
2951 ret = adjust_address (x, new_mode, 0);
2953 else
2955 /* Note that we do want simplify_subreg's behavior of validating
2956 that the new mode is ok for a hard register. If we were to use
2957 simplify_gen_subreg, we would create the subreg, but would
2958 probably run into the target not being able to implement it. */
2959 /* Except, of course, when FORCE is true, when this is exactly what
2960 we want. Which is needed for CCmodes on some targets. */
2961 if (force)
2962 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2963 else
2964 ret = simplify_subreg (new_mode, x, old_mode, 0);
2967 return ret;
2970 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2971 an integer mode of the same size as MODE. Returns the instruction
2972 emitted, or NULL if such a move could not be generated. */
2974 static rtx
2975 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2977 enum machine_mode imode;
2978 enum insn_code code;
2980 /* There must exist a mode of the exact size we require. */
2981 imode = int_mode_for_mode (mode);
2982 if (imode == BLKmode)
2983 return NULL_RTX;
2985 /* The target must support moves in this mode. */
2986 code = optab_handler (mov_optab, imode)->insn_code;
2987 if (code == CODE_FOR_nothing)
2988 return NULL_RTX;
2990 x = emit_move_change_mode (imode, mode, x, force);
2991 if (x == NULL_RTX)
2992 return NULL_RTX;
2993 y = emit_move_change_mode (imode, mode, y, force);
2994 if (y == NULL_RTX)
2995 return NULL_RTX;
2996 return emit_insn (GEN_FCN (code) (x, y));
2999 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3000 Return an equivalent MEM that does not use an auto-increment. */
3002 static rtx
3003 emit_move_resolve_push (enum machine_mode mode, rtx x)
3005 enum rtx_code code = GET_CODE (XEXP (x, 0));
3006 HOST_WIDE_INT adjust;
3007 rtx temp;
3009 adjust = GET_MODE_SIZE (mode);
3010 #ifdef PUSH_ROUNDING
3011 adjust = PUSH_ROUNDING (adjust);
3012 #endif
3013 if (code == PRE_DEC || code == POST_DEC)
3014 adjust = -adjust;
3015 else if (code == PRE_MODIFY || code == POST_MODIFY)
3017 rtx expr = XEXP (XEXP (x, 0), 1);
3018 HOST_WIDE_INT val;
3020 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3021 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
3022 val = INTVAL (XEXP (expr, 1));
3023 if (GET_CODE (expr) == MINUS)
3024 val = -val;
3025 gcc_assert (adjust == val || adjust == -val);
3026 adjust = val;
3029 /* Do not use anti_adjust_stack, since we don't want to update
3030 stack_pointer_delta. */
3031 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3032 GEN_INT (adjust), stack_pointer_rtx,
3033 0, OPTAB_LIB_WIDEN);
3034 if (temp != stack_pointer_rtx)
3035 emit_move_insn (stack_pointer_rtx, temp);
3037 switch (code)
3039 case PRE_INC:
3040 case PRE_DEC:
3041 case PRE_MODIFY:
3042 temp = stack_pointer_rtx;
3043 break;
3044 case POST_INC:
3045 case POST_DEC:
3046 case POST_MODIFY:
3047 temp = plus_constant (stack_pointer_rtx, -adjust);
3048 break;
3049 default:
3050 gcc_unreachable ();
3053 return replace_equiv_address (x, temp);
3056 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3057 X is known to satisfy push_operand, and MODE is known to be complex.
3058 Returns the last instruction emitted. */
3061 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3063 enum machine_mode submode = GET_MODE_INNER (mode);
3064 bool imag_first;
3066 #ifdef PUSH_ROUNDING
3067 unsigned int submodesize = GET_MODE_SIZE (submode);
3069 /* In case we output to the stack, but the size is smaller than the
3070 machine can push exactly, we need to use move instructions. */
3071 if (PUSH_ROUNDING (submodesize) != submodesize)
3073 x = emit_move_resolve_push (mode, x);
3074 return emit_move_insn (x, y);
3076 #endif
3078 /* Note that the real part always precedes the imag part in memory
3079 regardless of machine's endianness. */
3080 switch (GET_CODE (XEXP (x, 0)))
3082 case PRE_DEC:
3083 case POST_DEC:
3084 imag_first = true;
3085 break;
3086 case PRE_INC:
3087 case POST_INC:
3088 imag_first = false;
3089 break;
3090 default:
3091 gcc_unreachable ();
3094 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3095 read_complex_part (y, imag_first));
3096 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3097 read_complex_part (y, !imag_first));
3100 /* A subroutine of emit_move_complex. Perform the move from Y to X
3101 via two moves of the parts. Returns the last instruction emitted. */
3104 emit_move_complex_parts (rtx x, rtx y)
3106 /* Show the output dies here. This is necessary for SUBREGs
3107 of pseudos since we cannot track their lifetimes correctly;
3108 hard regs shouldn't appear here except as return values. */
3109 if (!reload_completed && !reload_in_progress
3110 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3111 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3113 write_complex_part (x, read_complex_part (y, false), false);
3114 write_complex_part (x, read_complex_part (y, true), true);
3116 return get_last_insn ();
3119 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3120 MODE is known to be complex. Returns the last instruction emitted. */
3122 static rtx
3123 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3125 bool try_int;
3127 /* Need to take special care for pushes, to maintain proper ordering
3128 of the data, and possibly extra padding. */
3129 if (push_operand (x, mode))
3130 return emit_move_complex_push (mode, x, y);
3132 /* See if we can coerce the target into moving both values at once. */
3134 /* Move floating point as parts. */
3135 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3136 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3137 try_int = false;
3138 /* Not possible if the values are inherently not adjacent. */
3139 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3140 try_int = false;
3141 /* Is possible if both are registers (or subregs of registers). */
3142 else if (register_operand (x, mode) && register_operand (y, mode))
3143 try_int = true;
3144 /* If one of the operands is a memory, and alignment constraints
3145 are friendly enough, we may be able to do combined memory operations.
3146 We do not attempt this if Y is a constant because that combination is
3147 usually better with the by-parts thing below. */
3148 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3149 && (!STRICT_ALIGNMENT
3150 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3151 try_int = true;
3152 else
3153 try_int = false;
3155 if (try_int)
3157 rtx ret;
3159 /* For memory to memory moves, optimal behavior can be had with the
3160 existing block move logic. */
3161 if (MEM_P (x) && MEM_P (y))
3163 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3164 BLOCK_OP_NO_LIBCALL);
3165 return get_last_insn ();
3168 ret = emit_move_via_integer (mode, x, y, true);
3169 if (ret)
3170 return ret;
3173 return emit_move_complex_parts (x, y);
3176 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3177 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3179 static rtx
3180 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3182 rtx ret;
3184 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3185 if (mode != CCmode)
3187 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3188 if (code != CODE_FOR_nothing)
3190 x = emit_move_change_mode (CCmode, mode, x, true);
3191 y = emit_move_change_mode (CCmode, mode, y, true);
3192 return emit_insn (GEN_FCN (code) (x, y));
3196 /* Otherwise, find the MODE_INT mode of the same width. */
3197 ret = emit_move_via_integer (mode, x, y, false);
3198 gcc_assert (ret != NULL);
3199 return ret;
3202 /* Return true if word I of OP lies entirely in the
3203 undefined bits of a paradoxical subreg. */
3205 static bool
3206 undefined_operand_subword_p (const_rtx op, int i)
3208 enum machine_mode innermode, innermostmode;
3209 int offset;
3210 if (GET_CODE (op) != SUBREG)
3211 return false;
3212 innermode = GET_MODE (op);
3213 innermostmode = GET_MODE (SUBREG_REG (op));
3214 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3215 /* The SUBREG_BYTE represents offset, as if the value were stored in
3216 memory, except for a paradoxical subreg where we define
3217 SUBREG_BYTE to be 0; undo this exception as in
3218 simplify_subreg. */
3219 if (SUBREG_BYTE (op) == 0
3220 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3222 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3223 if (WORDS_BIG_ENDIAN)
3224 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3225 if (BYTES_BIG_ENDIAN)
3226 offset += difference % UNITS_PER_WORD;
3228 if (offset >= GET_MODE_SIZE (innermostmode)
3229 || offset <= -GET_MODE_SIZE (word_mode))
3230 return true;
3231 return false;
3234 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3235 MODE is any multi-word or full-word mode that lacks a move_insn
3236 pattern. Note that you will get better code if you define such
3237 patterns, even if they must turn into multiple assembler instructions. */
3239 static rtx
3240 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3242 rtx last_insn = 0;
3243 rtx seq, inner;
3244 bool need_clobber;
3245 int i;
3247 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3249 /* If X is a push on the stack, do the push now and replace
3250 X with a reference to the stack pointer. */
3251 if (push_operand (x, mode))
3252 x = emit_move_resolve_push (mode, x);
3254 /* If we are in reload, see if either operand is a MEM whose address
3255 is scheduled for replacement. */
3256 if (reload_in_progress && MEM_P (x)
3257 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3258 x = replace_equiv_address_nv (x, inner);
3259 if (reload_in_progress && MEM_P (y)
3260 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3261 y = replace_equiv_address_nv (y, inner);
3263 start_sequence ();
3265 need_clobber = false;
3266 for (i = 0;
3267 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3268 i++)
3270 rtx xpart = operand_subword (x, i, 1, mode);
3271 rtx ypart;
3273 /* Do not generate code for a move if it would come entirely
3274 from the undefined bits of a paradoxical subreg. */
3275 if (undefined_operand_subword_p (y, i))
3276 continue;
3278 ypart = operand_subword (y, i, 1, mode);
3280 /* If we can't get a part of Y, put Y into memory if it is a
3281 constant. Otherwise, force it into a register. Then we must
3282 be able to get a part of Y. */
3283 if (ypart == 0 && CONSTANT_P (y))
3285 y = use_anchored_address (force_const_mem (mode, y));
3286 ypart = operand_subword (y, i, 1, mode);
3288 else if (ypart == 0)
3289 ypart = operand_subword_force (y, i, mode);
3291 gcc_assert (xpart && ypart);
3293 need_clobber |= (GET_CODE (xpart) == SUBREG);
3295 last_insn = emit_move_insn (xpart, ypart);
3298 seq = get_insns ();
3299 end_sequence ();
3301 /* Show the output dies here. This is necessary for SUBREGs
3302 of pseudos since we cannot track their lifetimes correctly;
3303 hard regs shouldn't appear here except as return values.
3304 We never want to emit such a clobber after reload. */
3305 if (x != y
3306 && ! (reload_in_progress || reload_completed)
3307 && need_clobber != 0)
3308 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3310 emit_insn (seq);
3312 return last_insn;
3315 /* Low level part of emit_move_insn.
3316 Called just like emit_move_insn, but assumes X and Y
3317 are basically valid. */
3320 emit_move_insn_1 (rtx x, rtx y)
3322 enum machine_mode mode = GET_MODE (x);
3323 enum insn_code code;
3325 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3327 code = optab_handler (mov_optab, mode)->insn_code;
3328 if (code != CODE_FOR_nothing)
3329 return emit_insn (GEN_FCN (code) (x, y));
3331 /* Expand complex moves by moving real part and imag part. */
3332 if (COMPLEX_MODE_P (mode))
3333 return emit_move_complex (mode, x, y);
3335 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3336 || ALL_FIXED_POINT_MODE_P (mode))
3338 rtx result = emit_move_via_integer (mode, x, y, true);
3340 /* If we can't find an integer mode, use multi words. */
3341 if (result)
3342 return result;
3343 else
3344 return emit_move_multi_word (mode, x, y);
3347 if (GET_MODE_CLASS (mode) == MODE_CC)
3348 return emit_move_ccmode (mode, x, y);
3350 /* Try using a move pattern for the corresponding integer mode. This is
3351 only safe when simplify_subreg can convert MODE constants into integer
3352 constants. At present, it can only do this reliably if the value
3353 fits within a HOST_WIDE_INT. */
3354 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3356 rtx ret = emit_move_via_integer (mode, x, y, false);
3357 if (ret)
3358 return ret;
3361 return emit_move_multi_word (mode, x, y);
3364 /* Generate code to copy Y into X.
3365 Both Y and X must have the same mode, except that
3366 Y can be a constant with VOIDmode.
3367 This mode cannot be BLKmode; use emit_block_move for that.
3369 Return the last instruction emitted. */
3372 emit_move_insn (rtx x, rtx y)
3374 enum machine_mode mode = GET_MODE (x);
3375 rtx y_cst = NULL_RTX;
3376 rtx last_insn, set;
3378 gcc_assert (mode != BLKmode
3379 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3381 if (CONSTANT_P (y))
3383 if (optimize
3384 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3385 && (last_insn = compress_float_constant (x, y)))
3386 return last_insn;
3388 y_cst = y;
3390 if (!LEGITIMATE_CONSTANT_P (y))
3392 y = force_const_mem (mode, y);
3394 /* If the target's cannot_force_const_mem prevented the spill,
3395 assume that the target's move expanders will also take care
3396 of the non-legitimate constant. */
3397 if (!y)
3398 y = y_cst;
3399 else
3400 y = use_anchored_address (y);
3404 /* If X or Y are memory references, verify that their addresses are valid
3405 for the machine. */
3406 if (MEM_P (x)
3407 && (! memory_address_p (GET_MODE (x), XEXP (x, 0))
3408 && ! push_operand (x, GET_MODE (x))))
3409 x = validize_mem (x);
3411 if (MEM_P (y)
3412 && ! memory_address_p (GET_MODE (y), XEXP (y, 0)))
3413 y = validize_mem (y);
3415 gcc_assert (mode != BLKmode);
3417 last_insn = emit_move_insn_1 (x, y);
3419 if (y_cst && REG_P (x)
3420 && (set = single_set (last_insn)) != NULL_RTX
3421 && SET_DEST (set) == x
3422 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3423 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3425 return last_insn;
3428 /* If Y is representable exactly in a narrower mode, and the target can
3429 perform the extension directly from constant or memory, then emit the
3430 move as an extension. */
3432 static rtx
3433 compress_float_constant (rtx x, rtx y)
3435 enum machine_mode dstmode = GET_MODE (x);
3436 enum machine_mode orig_srcmode = GET_MODE (y);
3437 enum machine_mode srcmode;
3438 REAL_VALUE_TYPE r;
3439 int oldcost, newcost;
3441 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3443 if (LEGITIMATE_CONSTANT_P (y))
3444 oldcost = rtx_cost (y, SET);
3445 else
3446 oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3448 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3449 srcmode != orig_srcmode;
3450 srcmode = GET_MODE_WIDER_MODE (srcmode))
3452 enum insn_code ic;
3453 rtx trunc_y, last_insn;
3455 /* Skip if the target can't extend this way. */
3456 ic = can_extend_p (dstmode, srcmode, 0);
3457 if (ic == CODE_FOR_nothing)
3458 continue;
3460 /* Skip if the narrowed value isn't exact. */
3461 if (! exact_real_truncate (srcmode, &r))
3462 continue;
3464 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3466 if (LEGITIMATE_CONSTANT_P (trunc_y))
3468 /* Skip if the target needs extra instructions to perform
3469 the extension. */
3470 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3471 continue;
3472 /* This is valid, but may not be cheaper than the original. */
3473 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3474 if (oldcost < newcost)
3475 continue;
3477 else if (float_extend_from_mem[dstmode][srcmode])
3479 trunc_y = force_const_mem (srcmode, trunc_y);
3480 /* This is valid, but may not be cheaper than the original. */
3481 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3482 if (oldcost < newcost)
3483 continue;
3484 trunc_y = validize_mem (trunc_y);
3486 else
3487 continue;
3489 /* For CSE's benefit, force the compressed constant pool entry
3490 into a new pseudo. This constant may be used in different modes,
3491 and if not, combine will put things back together for us. */
3492 trunc_y = force_reg (srcmode, trunc_y);
3493 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3494 last_insn = get_last_insn ();
3496 if (REG_P (x))
3497 set_unique_reg_note (last_insn, REG_EQUAL, y);
3499 return last_insn;
3502 return NULL_RTX;
3505 /* Pushing data onto the stack. */
3507 /* Push a block of length SIZE (perhaps variable)
3508 and return an rtx to address the beginning of the block.
3509 The value may be virtual_outgoing_args_rtx.
3511 EXTRA is the number of bytes of padding to push in addition to SIZE.
3512 BELOW nonzero means this padding comes at low addresses;
3513 otherwise, the padding comes at high addresses. */
3516 push_block (rtx size, int extra, int below)
3518 rtx temp;
3520 size = convert_modes (Pmode, ptr_mode, size, 1);
3521 if (CONSTANT_P (size))
3522 anti_adjust_stack (plus_constant (size, extra));
3523 else if (REG_P (size) && extra == 0)
3524 anti_adjust_stack (size);
3525 else
3527 temp = copy_to_mode_reg (Pmode, size);
3528 if (extra != 0)
3529 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3530 temp, 0, OPTAB_LIB_WIDEN);
3531 anti_adjust_stack (temp);
3534 #ifndef STACK_GROWS_DOWNWARD
3535 if (0)
3536 #else
3537 if (1)
3538 #endif
3540 temp = virtual_outgoing_args_rtx;
3541 if (extra != 0 && below)
3542 temp = plus_constant (temp, extra);
3544 else
3546 if (GET_CODE (size) == CONST_INT)
3547 temp = plus_constant (virtual_outgoing_args_rtx,
3548 -INTVAL (size) - (below ? 0 : extra));
3549 else if (extra != 0 && !below)
3550 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3551 negate_rtx (Pmode, plus_constant (size, extra)));
3552 else
3553 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3554 negate_rtx (Pmode, size));
3557 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3560 #ifdef PUSH_ROUNDING
3562 /* Emit single push insn. */
3564 static void
3565 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3567 rtx dest_addr;
3568 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3569 rtx dest;
3570 enum insn_code icode;
3571 insn_operand_predicate_fn pred;
3573 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3574 /* If there is push pattern, use it. Otherwise try old way of throwing
3575 MEM representing push operation to move expander. */
3576 icode = optab_handler (push_optab, mode)->insn_code;
3577 if (icode != CODE_FOR_nothing)
3579 if (((pred = insn_data[(int) icode].operand[0].predicate)
3580 && !((*pred) (x, mode))))
3581 x = force_reg (mode, x);
3582 emit_insn (GEN_FCN (icode) (x));
3583 return;
3585 if (GET_MODE_SIZE (mode) == rounded_size)
3586 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3587 /* If we are to pad downward, adjust the stack pointer first and
3588 then store X into the stack location using an offset. This is
3589 because emit_move_insn does not know how to pad; it does not have
3590 access to type. */
3591 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3593 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3594 HOST_WIDE_INT offset;
3596 emit_move_insn (stack_pointer_rtx,
3597 expand_binop (Pmode,
3598 #ifdef STACK_GROWS_DOWNWARD
3599 sub_optab,
3600 #else
3601 add_optab,
3602 #endif
3603 stack_pointer_rtx,
3604 GEN_INT (rounded_size),
3605 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3607 offset = (HOST_WIDE_INT) padding_size;
3608 #ifdef STACK_GROWS_DOWNWARD
3609 if (STACK_PUSH_CODE == POST_DEC)
3610 /* We have already decremented the stack pointer, so get the
3611 previous value. */
3612 offset += (HOST_WIDE_INT) rounded_size;
3613 #else
3614 if (STACK_PUSH_CODE == POST_INC)
3615 /* We have already incremented the stack pointer, so get the
3616 previous value. */
3617 offset -= (HOST_WIDE_INT) rounded_size;
3618 #endif
3619 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3621 else
3623 #ifdef STACK_GROWS_DOWNWARD
3624 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3625 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3626 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3627 #else
3628 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3629 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3630 GEN_INT (rounded_size));
3631 #endif
3632 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3635 dest = gen_rtx_MEM (mode, dest_addr);
3637 if (type != 0)
3639 set_mem_attributes (dest, type, 1);
3641 if (flag_optimize_sibling_calls)
3642 /* Function incoming arguments may overlap with sibling call
3643 outgoing arguments and we cannot allow reordering of reads
3644 from function arguments with stores to outgoing arguments
3645 of sibling calls. */
3646 set_mem_alias_set (dest, 0);
3648 emit_move_insn (dest, x);
3650 #endif
3652 /* Generate code to push X onto the stack, assuming it has mode MODE and
3653 type TYPE.
3654 MODE is redundant except when X is a CONST_INT (since they don't
3655 carry mode info).
3656 SIZE is an rtx for the size of data to be copied (in bytes),
3657 needed only if X is BLKmode.
3659 ALIGN (in bits) is maximum alignment we can assume.
3661 If PARTIAL and REG are both nonzero, then copy that many of the first
3662 bytes of X into registers starting with REG, and push the rest of X.
3663 The amount of space pushed is decreased by PARTIAL bytes.
3664 REG must be a hard register in this case.
3665 If REG is zero but PARTIAL is not, take any all others actions for an
3666 argument partially in registers, but do not actually load any
3667 registers.
3669 EXTRA is the amount in bytes of extra space to leave next to this arg.
3670 This is ignored if an argument block has already been allocated.
3672 On a machine that lacks real push insns, ARGS_ADDR is the address of
3673 the bottom of the argument block for this call. We use indexing off there
3674 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3675 argument block has not been preallocated.
3677 ARGS_SO_FAR is the size of args previously pushed for this call.
3679 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3680 for arguments passed in registers. If nonzero, it will be the number
3681 of bytes required. */
3683 void
3684 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3685 unsigned int align, int partial, rtx reg, int extra,
3686 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3687 rtx alignment_pad)
3689 rtx xinner;
3690 enum direction stack_direction
3691 #ifdef STACK_GROWS_DOWNWARD
3692 = downward;
3693 #else
3694 = upward;
3695 #endif
3697 /* Decide where to pad the argument: `downward' for below,
3698 `upward' for above, or `none' for don't pad it.
3699 Default is below for small data on big-endian machines; else above. */
3700 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3702 /* Invert direction if stack is post-decrement.
3703 FIXME: why? */
3704 if (STACK_PUSH_CODE == POST_DEC)
3705 if (where_pad != none)
3706 where_pad = (where_pad == downward ? upward : downward);
3708 xinner = x;
3710 if (mode == BLKmode
3711 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3713 /* Copy a block into the stack, entirely or partially. */
3715 rtx temp;
3716 int used;
3717 int offset;
3718 int skip;
3720 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3721 used = partial - offset;
3723 if (mode != BLKmode)
3725 /* A value is to be stored in an insufficiently aligned
3726 stack slot; copy via a suitably aligned slot if
3727 necessary. */
3728 size = GEN_INT (GET_MODE_SIZE (mode));
3729 if (!MEM_P (xinner))
3731 temp = assign_temp (type, 0, 1, 1);
3732 emit_move_insn (temp, xinner);
3733 xinner = temp;
3737 gcc_assert (size);
3739 /* USED is now the # of bytes we need not copy to the stack
3740 because registers will take care of them. */
3742 if (partial != 0)
3743 xinner = adjust_address (xinner, BLKmode, used);
3745 /* If the partial register-part of the arg counts in its stack size,
3746 skip the part of stack space corresponding to the registers.
3747 Otherwise, start copying to the beginning of the stack space,
3748 by setting SKIP to 0. */
3749 skip = (reg_parm_stack_space == 0) ? 0 : used;
3751 #ifdef PUSH_ROUNDING
3752 /* Do it with several push insns if that doesn't take lots of insns
3753 and if there is no difficulty with push insns that skip bytes
3754 on the stack for alignment purposes. */
3755 if (args_addr == 0
3756 && PUSH_ARGS
3757 && GET_CODE (size) == CONST_INT
3758 && skip == 0
3759 && MEM_ALIGN (xinner) >= align
3760 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3761 /* Here we avoid the case of a structure whose weak alignment
3762 forces many pushes of a small amount of data,
3763 and such small pushes do rounding that causes trouble. */
3764 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3765 || align >= BIGGEST_ALIGNMENT
3766 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3767 == (align / BITS_PER_UNIT)))
3768 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3770 /* Push padding now if padding above and stack grows down,
3771 or if padding below and stack grows up.
3772 But if space already allocated, this has already been done. */
3773 if (extra && args_addr == 0
3774 && where_pad != none && where_pad != stack_direction)
3775 anti_adjust_stack (GEN_INT (extra));
3777 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3779 else
3780 #endif /* PUSH_ROUNDING */
3782 rtx target;
3784 /* Otherwise make space on the stack and copy the data
3785 to the address of that space. */
3787 /* Deduct words put into registers from the size we must copy. */
3788 if (partial != 0)
3790 if (GET_CODE (size) == CONST_INT)
3791 size = GEN_INT (INTVAL (size) - used);
3792 else
3793 size = expand_binop (GET_MODE (size), sub_optab, size,
3794 GEN_INT (used), NULL_RTX, 0,
3795 OPTAB_LIB_WIDEN);
3798 /* Get the address of the stack space.
3799 In this case, we do not deal with EXTRA separately.
3800 A single stack adjust will do. */
3801 if (! args_addr)
3803 temp = push_block (size, extra, where_pad == downward);
3804 extra = 0;
3806 else if (GET_CODE (args_so_far) == CONST_INT)
3807 temp = memory_address (BLKmode,
3808 plus_constant (args_addr,
3809 skip + INTVAL (args_so_far)));
3810 else
3811 temp = memory_address (BLKmode,
3812 plus_constant (gen_rtx_PLUS (Pmode,
3813 args_addr,
3814 args_so_far),
3815 skip));
3817 if (!ACCUMULATE_OUTGOING_ARGS)
3819 /* If the source is referenced relative to the stack pointer,
3820 copy it to another register to stabilize it. We do not need
3821 to do this if we know that we won't be changing sp. */
3823 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3824 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3825 temp = copy_to_reg (temp);
3828 target = gen_rtx_MEM (BLKmode, temp);
3830 /* We do *not* set_mem_attributes here, because incoming arguments
3831 may overlap with sibling call outgoing arguments and we cannot
3832 allow reordering of reads from function arguments with stores
3833 to outgoing arguments of sibling calls. We do, however, want
3834 to record the alignment of the stack slot. */
3835 /* ALIGN may well be better aligned than TYPE, e.g. due to
3836 PARM_BOUNDARY. Assume the caller isn't lying. */
3837 set_mem_align (target, align);
3839 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3842 else if (partial > 0)
3844 /* Scalar partly in registers. */
3846 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3847 int i;
3848 int not_stack;
3849 /* # bytes of start of argument
3850 that we must make space for but need not store. */
3851 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3852 int args_offset = INTVAL (args_so_far);
3853 int skip;
3855 /* Push padding now if padding above and stack grows down,
3856 or if padding below and stack grows up.
3857 But if space already allocated, this has already been done. */
3858 if (extra && args_addr == 0
3859 && where_pad != none && where_pad != stack_direction)
3860 anti_adjust_stack (GEN_INT (extra));
3862 /* If we make space by pushing it, we might as well push
3863 the real data. Otherwise, we can leave OFFSET nonzero
3864 and leave the space uninitialized. */
3865 if (args_addr == 0)
3866 offset = 0;
3868 /* Now NOT_STACK gets the number of words that we don't need to
3869 allocate on the stack. Convert OFFSET to words too. */
3870 not_stack = (partial - offset) / UNITS_PER_WORD;
3871 offset /= UNITS_PER_WORD;
3873 /* If the partial register-part of the arg counts in its stack size,
3874 skip the part of stack space corresponding to the registers.
3875 Otherwise, start copying to the beginning of the stack space,
3876 by setting SKIP to 0. */
3877 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3879 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3880 x = validize_mem (force_const_mem (mode, x));
3882 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3883 SUBREGs of such registers are not allowed. */
3884 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3885 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3886 x = copy_to_reg (x);
3888 /* Loop over all the words allocated on the stack for this arg. */
3889 /* We can do it by words, because any scalar bigger than a word
3890 has a size a multiple of a word. */
3891 #ifndef PUSH_ARGS_REVERSED
3892 for (i = not_stack; i < size; i++)
3893 #else
3894 for (i = size - 1; i >= not_stack; i--)
3895 #endif
3896 if (i >= not_stack + offset)
3897 emit_push_insn (operand_subword_force (x, i, mode),
3898 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3899 0, args_addr,
3900 GEN_INT (args_offset + ((i - not_stack + skip)
3901 * UNITS_PER_WORD)),
3902 reg_parm_stack_space, alignment_pad);
3904 else
3906 rtx addr;
3907 rtx dest;
3909 /* Push padding now if padding above and stack grows down,
3910 or if padding below and stack grows up.
3911 But if space already allocated, this has already been done. */
3912 if (extra && args_addr == 0
3913 && where_pad != none && where_pad != stack_direction)
3914 anti_adjust_stack (GEN_INT (extra));
3916 #ifdef PUSH_ROUNDING
3917 if (args_addr == 0 && PUSH_ARGS)
3918 emit_single_push_insn (mode, x, type);
3919 else
3920 #endif
3922 if (GET_CODE (args_so_far) == CONST_INT)
3923 addr
3924 = memory_address (mode,
3925 plus_constant (args_addr,
3926 INTVAL (args_so_far)));
3927 else
3928 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3929 args_so_far));
3930 dest = gen_rtx_MEM (mode, addr);
3932 /* We do *not* set_mem_attributes here, because incoming arguments
3933 may overlap with sibling call outgoing arguments and we cannot
3934 allow reordering of reads from function arguments with stores
3935 to outgoing arguments of sibling calls. We do, however, want
3936 to record the alignment of the stack slot. */
3937 /* ALIGN may well be better aligned than TYPE, e.g. due to
3938 PARM_BOUNDARY. Assume the caller isn't lying. */
3939 set_mem_align (dest, align);
3941 emit_move_insn (dest, x);
3945 /* If part should go in registers, copy that part
3946 into the appropriate registers. Do this now, at the end,
3947 since mem-to-mem copies above may do function calls. */
3948 if (partial > 0 && reg != 0)
3950 /* Handle calls that pass values in multiple non-contiguous locations.
3951 The Irix 6 ABI has examples of this. */
3952 if (GET_CODE (reg) == PARALLEL)
3953 emit_group_load (reg, x, type, -1);
3954 else
3956 gcc_assert (partial % UNITS_PER_WORD == 0);
3957 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3961 if (extra && args_addr == 0 && where_pad == stack_direction)
3962 anti_adjust_stack (GEN_INT (extra));
3964 if (alignment_pad && args_addr == 0)
3965 anti_adjust_stack (alignment_pad);
3968 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3969 operations. */
3971 static rtx
3972 get_subtarget (rtx x)
3974 return (optimize
3975 || x == 0
3976 /* Only registers can be subtargets. */
3977 || !REG_P (x)
3978 /* Don't use hard regs to avoid extending their life. */
3979 || REGNO (x) < FIRST_PSEUDO_REGISTER
3980 ? 0 : x);
3983 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3984 FIELD is a bitfield. Returns true if the optimization was successful,
3985 and there's nothing else to do. */
3987 static bool
3988 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3989 unsigned HOST_WIDE_INT bitpos,
3990 enum machine_mode mode1, rtx str_rtx,
3991 tree to, tree src)
3993 enum machine_mode str_mode = GET_MODE (str_rtx);
3994 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3995 tree op0, op1;
3996 rtx value, result;
3997 optab binop;
3999 if (mode1 != VOIDmode
4000 || bitsize >= BITS_PER_WORD
4001 || str_bitsize > BITS_PER_WORD
4002 || TREE_SIDE_EFFECTS (to)
4003 || TREE_THIS_VOLATILE (to))
4004 return false;
4006 STRIP_NOPS (src);
4007 if (!BINARY_CLASS_P (src)
4008 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4009 return false;
4011 op0 = TREE_OPERAND (src, 0);
4012 op1 = TREE_OPERAND (src, 1);
4013 STRIP_NOPS (op0);
4015 if (!operand_equal_p (to, op0, 0))
4016 return false;
4018 if (MEM_P (str_rtx))
4020 unsigned HOST_WIDE_INT offset1;
4022 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4023 str_mode = word_mode;
4024 str_mode = get_best_mode (bitsize, bitpos,
4025 MEM_ALIGN (str_rtx), str_mode, 0);
4026 if (str_mode == VOIDmode)
4027 return false;
4028 str_bitsize = GET_MODE_BITSIZE (str_mode);
4030 offset1 = bitpos;
4031 bitpos %= str_bitsize;
4032 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4033 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4035 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4036 return false;
4038 /* If the bit field covers the whole REG/MEM, store_field
4039 will likely generate better code. */
4040 if (bitsize >= str_bitsize)
4041 return false;
4043 /* We can't handle fields split across multiple entities. */
4044 if (bitpos + bitsize > str_bitsize)
4045 return false;
4047 if (BYTES_BIG_ENDIAN)
4048 bitpos = str_bitsize - bitpos - bitsize;
4050 switch (TREE_CODE (src))
4052 case PLUS_EXPR:
4053 case MINUS_EXPR:
4054 /* For now, just optimize the case of the topmost bitfield
4055 where we don't need to do any masking and also
4056 1 bit bitfields where xor can be used.
4057 We might win by one instruction for the other bitfields
4058 too if insv/extv instructions aren't used, so that
4059 can be added later. */
4060 if (bitpos + bitsize != str_bitsize
4061 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4062 break;
4064 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4065 value = convert_modes (str_mode,
4066 TYPE_MODE (TREE_TYPE (op1)), value,
4067 TYPE_UNSIGNED (TREE_TYPE (op1)));
4069 /* We may be accessing data outside the field, which means
4070 we can alias adjacent data. */
4071 if (MEM_P (str_rtx))
4073 str_rtx = shallow_copy_rtx (str_rtx);
4074 set_mem_alias_set (str_rtx, 0);
4075 set_mem_expr (str_rtx, 0);
4078 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4079 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4081 value = expand_and (str_mode, value, const1_rtx, NULL);
4082 binop = xor_optab;
4084 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4085 build_int_cst (NULL_TREE, bitpos),
4086 NULL_RTX, 1);
4087 result = expand_binop (str_mode, binop, str_rtx,
4088 value, str_rtx, 1, OPTAB_WIDEN);
4089 if (result != str_rtx)
4090 emit_move_insn (str_rtx, result);
4091 return true;
4093 case BIT_IOR_EXPR:
4094 case BIT_XOR_EXPR:
4095 if (TREE_CODE (op1) != INTEGER_CST)
4096 break;
4097 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4098 value = convert_modes (GET_MODE (str_rtx),
4099 TYPE_MODE (TREE_TYPE (op1)), value,
4100 TYPE_UNSIGNED (TREE_TYPE (op1)));
4102 /* We may be accessing data outside the field, which means
4103 we can alias adjacent data. */
4104 if (MEM_P (str_rtx))
4106 str_rtx = shallow_copy_rtx (str_rtx);
4107 set_mem_alias_set (str_rtx, 0);
4108 set_mem_expr (str_rtx, 0);
4111 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4112 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4114 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4115 - 1);
4116 value = expand_and (GET_MODE (str_rtx), value, mask,
4117 NULL_RTX);
4119 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4120 build_int_cst (NULL_TREE, bitpos),
4121 NULL_RTX, 1);
4122 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4123 value, str_rtx, 1, OPTAB_WIDEN);
4124 if (result != str_rtx)
4125 emit_move_insn (str_rtx, result);
4126 return true;
4128 default:
4129 break;
4132 return false;
4136 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4137 is true, try generating a nontemporal store. */
4139 void
4140 expand_assignment (tree to, tree from, bool nontemporal)
4142 rtx to_rtx = 0;
4143 rtx result;
4145 /* Don't crash if the lhs of the assignment was erroneous. */
4146 if (TREE_CODE (to) == ERROR_MARK)
4148 result = expand_normal (from);
4149 return;
4152 /* Optimize away no-op moves without side-effects. */
4153 if (operand_equal_p (to, from, 0))
4154 return;
4156 /* Assignment of a structure component needs special treatment
4157 if the structure component's rtx is not simply a MEM.
4158 Assignment of an array element at a constant index, and assignment of
4159 an array element in an unaligned packed structure field, has the same
4160 problem. */
4161 if (handled_component_p (to)
4162 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4164 enum machine_mode mode1;
4165 HOST_WIDE_INT bitsize, bitpos;
4166 tree offset;
4167 int unsignedp;
4168 int volatilep = 0;
4169 tree tem;
4171 push_temp_slots ();
4172 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4173 &unsignedp, &volatilep, true);
4175 /* If we are going to use store_bit_field and extract_bit_field,
4176 make sure to_rtx will be safe for multiple use. */
4178 to_rtx = expand_normal (tem);
4180 if (offset != 0)
4182 rtx offset_rtx;
4184 if (!MEM_P (to_rtx))
4186 /* We can get constant negative offsets into arrays with broken
4187 user code. Translate this to a trap instead of ICEing. */
4188 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4189 expand_builtin_trap ();
4190 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4193 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4194 #ifdef POINTERS_EXTEND_UNSIGNED
4195 if (GET_MODE (offset_rtx) != Pmode)
4196 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4197 #else
4198 if (GET_MODE (offset_rtx) != ptr_mode)
4199 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4200 #endif
4202 /* A constant address in TO_RTX can have VOIDmode, we must not try
4203 to call force_reg for that case. Avoid that case. */
4204 if (MEM_P (to_rtx)
4205 && GET_MODE (to_rtx) == BLKmode
4206 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4207 && bitsize > 0
4208 && (bitpos % bitsize) == 0
4209 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4210 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4212 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4213 bitpos = 0;
4216 to_rtx = offset_address (to_rtx, offset_rtx,
4217 highest_pow2_factor_for_target (to,
4218 offset));
4221 /* Handle expand_expr of a complex value returning a CONCAT. */
4222 if (GET_CODE (to_rtx) == CONCAT)
4224 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4226 gcc_assert (bitpos == 0);
4227 result = store_expr (from, to_rtx, false, nontemporal);
4229 else
4231 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4232 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4233 nontemporal);
4236 else
4238 if (MEM_P (to_rtx))
4240 /* If the field is at offset zero, we could have been given the
4241 DECL_RTX of the parent struct. Don't munge it. */
4242 to_rtx = shallow_copy_rtx (to_rtx);
4244 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4246 /* Deal with volatile and readonly fields. The former is only
4247 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4248 if (volatilep)
4249 MEM_VOLATILE_P (to_rtx) = 1;
4250 if (component_uses_parent_alias_set (to))
4251 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4254 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4255 to_rtx, to, from))
4256 result = NULL;
4257 else
4258 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4259 TREE_TYPE (tem), get_alias_set (to),
4260 nontemporal);
4263 if (result)
4264 preserve_temp_slots (result);
4265 free_temp_slots ();
4266 pop_temp_slots ();
4267 return;
4270 /* If the rhs is a function call and its value is not an aggregate,
4271 call the function before we start to compute the lhs.
4272 This is needed for correct code for cases such as
4273 val = setjmp (buf) on machines where reference to val
4274 requires loading up part of an address in a separate insn.
4276 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4277 since it might be a promoted variable where the zero- or sign- extension
4278 needs to be done. Handling this in the normal way is safe because no
4279 computation is done before the call. */
4280 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4281 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4282 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4283 && REG_P (DECL_RTL (to))))
4285 rtx value;
4287 push_temp_slots ();
4288 value = expand_normal (from);
4289 if (to_rtx == 0)
4290 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4292 /* Handle calls that return values in multiple non-contiguous locations.
4293 The Irix 6 ABI has examples of this. */
4294 if (GET_CODE (to_rtx) == PARALLEL)
4295 emit_group_load (to_rtx, value, TREE_TYPE (from),
4296 int_size_in_bytes (TREE_TYPE (from)));
4297 else if (GET_MODE (to_rtx) == BLKmode)
4298 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4299 else
4301 if (POINTER_TYPE_P (TREE_TYPE (to)))
4302 value = convert_memory_address (GET_MODE (to_rtx), value);
4303 emit_move_insn (to_rtx, value);
4305 preserve_temp_slots (to_rtx);
4306 free_temp_slots ();
4307 pop_temp_slots ();
4308 return;
4311 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4312 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4314 if (to_rtx == 0)
4315 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4317 /* Don't move directly into a return register. */
4318 if (TREE_CODE (to) == RESULT_DECL
4319 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4321 rtx temp;
4323 push_temp_slots ();
4324 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4326 if (GET_CODE (to_rtx) == PARALLEL)
4327 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4328 int_size_in_bytes (TREE_TYPE (from)));
4329 else
4330 emit_move_insn (to_rtx, temp);
4332 preserve_temp_slots (to_rtx);
4333 free_temp_slots ();
4334 pop_temp_slots ();
4335 return;
4338 /* In case we are returning the contents of an object which overlaps
4339 the place the value is being stored, use a safe function when copying
4340 a value through a pointer into a structure value return block. */
4341 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4342 && current_function_returns_struct
4343 && !current_function_returns_pcc_struct)
4345 rtx from_rtx, size;
4347 push_temp_slots ();
4348 size = expr_size (from);
4349 from_rtx = expand_normal (from);
4351 emit_library_call (memmove_libfunc, LCT_NORMAL,
4352 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4353 XEXP (from_rtx, 0), Pmode,
4354 convert_to_mode (TYPE_MODE (sizetype),
4355 size, TYPE_UNSIGNED (sizetype)),
4356 TYPE_MODE (sizetype));
4358 preserve_temp_slots (to_rtx);
4359 free_temp_slots ();
4360 pop_temp_slots ();
4361 return;
4364 /* Compute FROM and store the value in the rtx we got. */
4366 push_temp_slots ();
4367 result = store_expr (from, to_rtx, 0, nontemporal);
4368 preserve_temp_slots (result);
4369 free_temp_slots ();
4370 pop_temp_slots ();
4371 return;
4374 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4375 succeeded, false otherwise. */
4377 static bool
4378 emit_storent_insn (rtx to, rtx from)
4380 enum machine_mode mode = GET_MODE (to), imode;
4381 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4382 rtx pattern;
4384 if (code == CODE_FOR_nothing)
4385 return false;
4387 imode = insn_data[code].operand[0].mode;
4388 if (!insn_data[code].operand[0].predicate (to, imode))
4389 return false;
4391 imode = insn_data[code].operand[1].mode;
4392 if (!insn_data[code].operand[1].predicate (from, imode))
4394 from = copy_to_mode_reg (imode, from);
4395 if (!insn_data[code].operand[1].predicate (from, imode))
4396 return false;
4399 pattern = GEN_FCN (code) (to, from);
4400 if (pattern == NULL_RTX)
4401 return false;
4403 emit_insn (pattern);
4404 return true;
4407 /* Generate code for computing expression EXP,
4408 and storing the value into TARGET.
4410 If the mode is BLKmode then we may return TARGET itself.
4411 It turns out that in BLKmode it doesn't cause a problem.
4412 because C has no operators that could combine two different
4413 assignments into the same BLKmode object with different values
4414 with no sequence point. Will other languages need this to
4415 be more thorough?
4417 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4418 stack, and block moves may need to be treated specially.
4420 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4423 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4425 rtx temp;
4426 rtx alt_rtl = NULL_RTX;
4427 int dont_return_target = 0;
4429 if (VOID_TYPE_P (TREE_TYPE (exp)))
4431 /* C++ can generate ?: expressions with a throw expression in one
4432 branch and an rvalue in the other. Here, we resolve attempts to
4433 store the throw expression's nonexistent result. */
4434 gcc_assert (!call_param_p);
4435 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4436 return NULL_RTX;
4438 if (TREE_CODE (exp) == COMPOUND_EXPR)
4440 /* Perform first part of compound expression, then assign from second
4441 part. */
4442 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4443 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4444 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4445 nontemporal);
4447 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4449 /* For conditional expression, get safe form of the target. Then
4450 test the condition, doing the appropriate assignment on either
4451 side. This avoids the creation of unnecessary temporaries.
4452 For non-BLKmode, it is more efficient not to do this. */
4454 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4456 do_pending_stack_adjust ();
4457 NO_DEFER_POP;
4458 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4459 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4460 nontemporal);
4461 emit_jump_insn (gen_jump (lab2));
4462 emit_barrier ();
4463 emit_label (lab1);
4464 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4465 nontemporal);
4466 emit_label (lab2);
4467 OK_DEFER_POP;
4469 return NULL_RTX;
4471 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4472 /* If this is a scalar in a register that is stored in a wider mode
4473 than the declared mode, compute the result into its declared mode
4474 and then convert to the wider mode. Our value is the computed
4475 expression. */
4477 rtx inner_target = 0;
4479 /* We can do the conversion inside EXP, which will often result
4480 in some optimizations. Do the conversion in two steps: first
4481 change the signedness, if needed, then the extend. But don't
4482 do this if the type of EXP is a subtype of something else
4483 since then the conversion might involve more than just
4484 converting modes. */
4485 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4486 && TREE_TYPE (TREE_TYPE (exp)) == 0
4487 && (!lang_hooks.reduce_bit_field_operations
4488 || (GET_MODE_PRECISION (GET_MODE (target))
4489 == TYPE_PRECISION (TREE_TYPE (exp)))))
4491 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4492 != SUBREG_PROMOTED_UNSIGNED_P (target))
4494 /* Some types, e.g. Fortran's logical*4, won't have a signed
4495 version, so use the mode instead. */
4496 tree ntype
4497 = (signed_or_unsigned_type_for
4498 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4499 if (ntype == NULL)
4500 ntype = lang_hooks.types.type_for_mode
4501 (TYPE_MODE (TREE_TYPE (exp)),
4502 SUBREG_PROMOTED_UNSIGNED_P (target));
4504 exp = fold_convert (ntype, exp);
4507 exp = fold_convert (lang_hooks.types.type_for_mode
4508 (GET_MODE (SUBREG_REG (target)),
4509 SUBREG_PROMOTED_UNSIGNED_P (target)),
4510 exp);
4512 inner_target = SUBREG_REG (target);
4515 temp = expand_expr (exp, inner_target, VOIDmode,
4516 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4518 /* If TEMP is a VOIDmode constant, use convert_modes to make
4519 sure that we properly convert it. */
4520 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4522 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4523 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4524 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4525 GET_MODE (target), temp,
4526 SUBREG_PROMOTED_UNSIGNED_P (target));
4529 convert_move (SUBREG_REG (target), temp,
4530 SUBREG_PROMOTED_UNSIGNED_P (target));
4532 return NULL_RTX;
4534 else if (TREE_CODE (exp) == STRING_CST
4535 && !nontemporal && !call_param_p
4536 && TREE_STRING_LENGTH (exp) > 0
4537 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4539 /* Optimize initialization of an array with a STRING_CST. */
4540 HOST_WIDE_INT exp_len, str_copy_len;
4541 rtx dest_mem;
4543 exp_len = int_expr_size (exp);
4544 if (exp_len <= 0)
4545 goto normal_expr;
4547 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4548 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4549 goto normal_expr;
4551 str_copy_len = TREE_STRING_LENGTH (exp);
4552 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4554 str_copy_len += STORE_MAX_PIECES - 1;
4555 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4557 str_copy_len = MIN (str_copy_len, exp_len);
4558 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4559 (void *) TREE_STRING_POINTER (exp),
4560 MEM_ALIGN (target), false))
4561 goto normal_expr;
4563 dest_mem = target;
4565 dest_mem = store_by_pieces (dest_mem,
4566 str_copy_len, builtin_strncpy_read_str,
4567 (void *) TREE_STRING_POINTER (exp),
4568 MEM_ALIGN (target), false,
4569 exp_len > str_copy_len ? 1 : 0);
4570 if (exp_len > str_copy_len)
4571 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4572 GEN_INT (exp_len - str_copy_len),
4573 BLOCK_OP_NORMAL);
4574 return NULL_RTX;
4576 else
4578 rtx tmp_target;
4580 normal_expr:
4581 /* If we want to use a nontemporal store, force the value to
4582 register first. */
4583 tmp_target = nontemporal ? NULL_RTX : target;
4584 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4585 (call_param_p
4586 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4587 &alt_rtl);
4588 /* Return TARGET if it's a specified hardware register.
4589 If TARGET is a volatile mem ref, either return TARGET
4590 or return a reg copied *from* TARGET; ANSI requires this.
4592 Otherwise, if TEMP is not TARGET, return TEMP
4593 if it is constant (for efficiency),
4594 or if we really want the correct value. */
4595 if (!(target && REG_P (target)
4596 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4597 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4598 && ! rtx_equal_p (temp, target)
4599 && CONSTANT_P (temp))
4600 dont_return_target = 1;
4603 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4604 the same as that of TARGET, adjust the constant. This is needed, for
4605 example, in case it is a CONST_DOUBLE and we want only a word-sized
4606 value. */
4607 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4608 && TREE_CODE (exp) != ERROR_MARK
4609 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4610 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4611 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4613 /* If value was not generated in the target, store it there.
4614 Convert the value to TARGET's type first if necessary and emit the
4615 pending incrementations that have been queued when expanding EXP.
4616 Note that we cannot emit the whole queue blindly because this will
4617 effectively disable the POST_INC optimization later.
4619 If TEMP and TARGET compare equal according to rtx_equal_p, but
4620 one or both of them are volatile memory refs, we have to distinguish
4621 two cases:
4622 - expand_expr has used TARGET. In this case, we must not generate
4623 another copy. This can be detected by TARGET being equal according
4624 to == .
4625 - expand_expr has not used TARGET - that means that the source just
4626 happens to have the same RTX form. Since temp will have been created
4627 by expand_expr, it will compare unequal according to == .
4628 We must generate a copy in this case, to reach the correct number
4629 of volatile memory references. */
4631 if ((! rtx_equal_p (temp, target)
4632 || (temp != target && (side_effects_p (temp)
4633 || side_effects_p (target))))
4634 && TREE_CODE (exp) != ERROR_MARK
4635 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4636 but TARGET is not valid memory reference, TEMP will differ
4637 from TARGET although it is really the same location. */
4638 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4639 /* If there's nothing to copy, don't bother. Don't call
4640 expr_size unless necessary, because some front-ends (C++)
4641 expr_size-hook must not be given objects that are not
4642 supposed to be bit-copied or bit-initialized. */
4643 && expr_size (exp) != const0_rtx)
4645 if (GET_MODE (temp) != GET_MODE (target)
4646 && GET_MODE (temp) != VOIDmode)
4648 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4649 if (dont_return_target)
4651 /* In this case, we will return TEMP,
4652 so make sure it has the proper mode.
4653 But don't forget to store the value into TARGET. */
4654 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4655 emit_move_insn (target, temp);
4657 else if (GET_MODE (target) == BLKmode)
4658 emit_block_move (target, temp, expr_size (exp),
4659 (call_param_p
4660 ? BLOCK_OP_CALL_PARM
4661 : BLOCK_OP_NORMAL));
4662 else
4663 convert_move (target, temp, unsignedp);
4666 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4668 /* Handle copying a string constant into an array. The string
4669 constant may be shorter than the array. So copy just the string's
4670 actual length, and clear the rest. First get the size of the data
4671 type of the string, which is actually the size of the target. */
4672 rtx size = expr_size (exp);
4674 if (GET_CODE (size) == CONST_INT
4675 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4676 emit_block_move (target, temp, size,
4677 (call_param_p
4678 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4679 else
4681 /* Compute the size of the data to copy from the string. */
4682 tree copy_size
4683 = size_binop (MIN_EXPR,
4684 make_tree (sizetype, size),
4685 size_int (TREE_STRING_LENGTH (exp)));
4686 rtx copy_size_rtx
4687 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4688 (call_param_p
4689 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4690 rtx label = 0;
4692 /* Copy that much. */
4693 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4694 TYPE_UNSIGNED (sizetype));
4695 emit_block_move (target, temp, copy_size_rtx,
4696 (call_param_p
4697 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4699 /* Figure out how much is left in TARGET that we have to clear.
4700 Do all calculations in ptr_mode. */
4701 if (GET_CODE (copy_size_rtx) == CONST_INT)
4703 size = plus_constant (size, -INTVAL (copy_size_rtx));
4704 target = adjust_address (target, BLKmode,
4705 INTVAL (copy_size_rtx));
4707 else
4709 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4710 copy_size_rtx, NULL_RTX, 0,
4711 OPTAB_LIB_WIDEN);
4713 #ifdef POINTERS_EXTEND_UNSIGNED
4714 if (GET_MODE (copy_size_rtx) != Pmode)
4715 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4716 TYPE_UNSIGNED (sizetype));
4717 #endif
4719 target = offset_address (target, copy_size_rtx,
4720 highest_pow2_factor (copy_size));
4721 label = gen_label_rtx ();
4722 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4723 GET_MODE (size), 0, label);
4726 if (size != const0_rtx)
4727 clear_storage (target, size, BLOCK_OP_NORMAL);
4729 if (label)
4730 emit_label (label);
4733 /* Handle calls that return values in multiple non-contiguous locations.
4734 The Irix 6 ABI has examples of this. */
4735 else if (GET_CODE (target) == PARALLEL)
4736 emit_group_load (target, temp, TREE_TYPE (exp),
4737 int_size_in_bytes (TREE_TYPE (exp)));
4738 else if (GET_MODE (temp) == BLKmode)
4739 emit_block_move (target, temp, expr_size (exp),
4740 (call_param_p
4741 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4742 else if (nontemporal
4743 && emit_storent_insn (target, temp))
4744 /* If we managed to emit a nontemporal store, there is nothing else to
4745 do. */
4747 else
4749 temp = force_operand (temp, target);
4750 if (temp != target)
4751 emit_move_insn (target, temp);
4755 return NULL_RTX;
4758 /* Helper for categorize_ctor_elements. Identical interface. */
4760 static bool
4761 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4762 HOST_WIDE_INT *p_elt_count,
4763 bool *p_must_clear)
4765 unsigned HOST_WIDE_INT idx;
4766 HOST_WIDE_INT nz_elts, elt_count;
4767 tree value, purpose;
4769 /* Whether CTOR is a valid constant initializer, in accordance with what
4770 initializer_constant_valid_p does. If inferred from the constructor
4771 elements, true until proven otherwise. */
4772 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4773 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4775 nz_elts = 0;
4776 elt_count = 0;
4778 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4780 HOST_WIDE_INT mult;
4782 mult = 1;
4783 if (TREE_CODE (purpose) == RANGE_EXPR)
4785 tree lo_index = TREE_OPERAND (purpose, 0);
4786 tree hi_index = TREE_OPERAND (purpose, 1);
4788 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4789 mult = (tree_low_cst (hi_index, 1)
4790 - tree_low_cst (lo_index, 1) + 1);
4793 switch (TREE_CODE (value))
4795 case CONSTRUCTOR:
4797 HOST_WIDE_INT nz = 0, ic = 0;
4799 bool const_elt_p
4800 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4802 nz_elts += mult * nz;
4803 elt_count += mult * ic;
4805 if (const_from_elts_p && const_p)
4806 const_p = const_elt_p;
4808 break;
4810 case INTEGER_CST:
4811 case REAL_CST:
4812 case FIXED_CST:
4813 if (!initializer_zerop (value))
4814 nz_elts += mult;
4815 elt_count += mult;
4816 break;
4818 case STRING_CST:
4819 nz_elts += mult * TREE_STRING_LENGTH (value);
4820 elt_count += mult * TREE_STRING_LENGTH (value);
4821 break;
4823 case COMPLEX_CST:
4824 if (!initializer_zerop (TREE_REALPART (value)))
4825 nz_elts += mult;
4826 if (!initializer_zerop (TREE_IMAGPART (value)))
4827 nz_elts += mult;
4828 elt_count += mult;
4829 break;
4831 case VECTOR_CST:
4833 tree v;
4834 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4836 if (!initializer_zerop (TREE_VALUE (v)))
4837 nz_elts += mult;
4838 elt_count += mult;
4841 break;
4843 default:
4844 nz_elts += mult;
4845 elt_count += mult;
4847 if (const_from_elts_p && const_p)
4848 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4849 != NULL_TREE;
4850 break;
4854 if (!*p_must_clear
4855 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4856 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4858 tree init_sub_type;
4859 bool clear_this = true;
4861 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4863 /* We don't expect more than one element of the union to be
4864 initialized. Not sure what we should do otherwise... */
4865 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4866 == 1);
4868 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4869 CONSTRUCTOR_ELTS (ctor),
4870 0)->value);
4872 /* ??? We could look at each element of the union, and find the
4873 largest element. Which would avoid comparing the size of the
4874 initialized element against any tail padding in the union.
4875 Doesn't seem worth the effort... */
4876 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4877 TYPE_SIZE (init_sub_type)) == 1)
4879 /* And now we have to find out if the element itself is fully
4880 constructed. E.g. for union { struct { int a, b; } s; } u
4881 = { .s = { .a = 1 } }. */
4882 if (elt_count == count_type_elements (init_sub_type, false))
4883 clear_this = false;
4887 *p_must_clear = clear_this;
4890 *p_nz_elts += nz_elts;
4891 *p_elt_count += elt_count;
4893 return const_p;
4896 /* Examine CTOR to discover:
4897 * how many scalar fields are set to nonzero values,
4898 and place it in *P_NZ_ELTS;
4899 * how many scalar fields in total are in CTOR,
4900 and place it in *P_ELT_COUNT.
4901 * if a type is a union, and the initializer from the constructor
4902 is not the largest element in the union, then set *p_must_clear.
4904 Return whether or not CTOR is a valid static constant initializer, the same
4905 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4907 bool
4908 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4909 HOST_WIDE_INT *p_elt_count,
4910 bool *p_must_clear)
4912 *p_nz_elts = 0;
4913 *p_elt_count = 0;
4914 *p_must_clear = false;
4916 return
4917 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4920 /* Count the number of scalars in TYPE. Return -1 on overflow or
4921 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4922 array member at the end of the structure. */
4924 HOST_WIDE_INT
4925 count_type_elements (const_tree type, bool allow_flexarr)
4927 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4928 switch (TREE_CODE (type))
4930 case ARRAY_TYPE:
4932 tree telts = array_type_nelts (type);
4933 if (telts && host_integerp (telts, 1))
4935 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4936 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4937 if (n == 0)
4938 return 0;
4939 else if (max / n > m)
4940 return n * m;
4942 return -1;
4945 case RECORD_TYPE:
4947 HOST_WIDE_INT n = 0, t;
4948 tree f;
4950 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4951 if (TREE_CODE (f) == FIELD_DECL)
4953 t = count_type_elements (TREE_TYPE (f), false);
4954 if (t < 0)
4956 /* Check for structures with flexible array member. */
4957 tree tf = TREE_TYPE (f);
4958 if (allow_flexarr
4959 && TREE_CHAIN (f) == NULL
4960 && TREE_CODE (tf) == ARRAY_TYPE
4961 && TYPE_DOMAIN (tf)
4962 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4963 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4964 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4965 && int_size_in_bytes (type) >= 0)
4966 break;
4968 return -1;
4970 n += t;
4973 return n;
4976 case UNION_TYPE:
4977 case QUAL_UNION_TYPE:
4979 /* Ho hum. How in the world do we guess here? Clearly it isn't
4980 right to count the fields. Guess based on the number of words. */
4981 HOST_WIDE_INT n = int_size_in_bytes (type);
4982 if (n < 0)
4983 return -1;
4984 return n / UNITS_PER_WORD;
4987 case COMPLEX_TYPE:
4988 return 2;
4990 case VECTOR_TYPE:
4991 return TYPE_VECTOR_SUBPARTS (type);
4993 case INTEGER_TYPE:
4994 case REAL_TYPE:
4995 case FIXED_POINT_TYPE:
4996 case ENUMERAL_TYPE:
4997 case BOOLEAN_TYPE:
4998 case POINTER_TYPE:
4999 case OFFSET_TYPE:
5000 case REFERENCE_TYPE:
5001 return 1;
5003 case VOID_TYPE:
5004 case METHOD_TYPE:
5005 case FUNCTION_TYPE:
5006 case LANG_TYPE:
5007 default:
5008 gcc_unreachable ();
5012 /* Return 1 if EXP contains mostly (3/4) zeros. */
5014 static int
5015 mostly_zeros_p (const_tree exp)
5017 if (TREE_CODE (exp) == CONSTRUCTOR)
5020 HOST_WIDE_INT nz_elts, count, elts;
5021 bool must_clear;
5023 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5024 if (must_clear)
5025 return 1;
5027 elts = count_type_elements (TREE_TYPE (exp), false);
5029 return nz_elts < elts / 4;
5032 return initializer_zerop (exp);
5035 /* Return 1 if EXP contains all zeros. */
5037 static int
5038 all_zeros_p (const_tree exp)
5040 if (TREE_CODE (exp) == CONSTRUCTOR)
5043 HOST_WIDE_INT nz_elts, count;
5044 bool must_clear;
5046 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5047 return nz_elts == 0;
5050 return initializer_zerop (exp);
5053 /* Helper function for store_constructor.
5054 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5055 TYPE is the type of the CONSTRUCTOR, not the element type.
5056 CLEARED is as for store_constructor.
5057 ALIAS_SET is the alias set to use for any stores.
5059 This provides a recursive shortcut back to store_constructor when it isn't
5060 necessary to go through store_field. This is so that we can pass through
5061 the cleared field to let store_constructor know that we may not have to
5062 clear a substructure if the outer structure has already been cleared. */
5064 static void
5065 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5066 HOST_WIDE_INT bitpos, enum machine_mode mode,
5067 tree exp, tree type, int cleared,
5068 alias_set_type alias_set)
5070 if (TREE_CODE (exp) == CONSTRUCTOR
5071 /* We can only call store_constructor recursively if the size and
5072 bit position are on a byte boundary. */
5073 && bitpos % BITS_PER_UNIT == 0
5074 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5075 /* If we have a nonzero bitpos for a register target, then we just
5076 let store_field do the bitfield handling. This is unlikely to
5077 generate unnecessary clear instructions anyways. */
5078 && (bitpos == 0 || MEM_P (target)))
5080 if (MEM_P (target))
5081 target
5082 = adjust_address (target,
5083 GET_MODE (target) == BLKmode
5084 || 0 != (bitpos
5085 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5086 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5089 /* Update the alias set, if required. */
5090 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5091 && MEM_ALIAS_SET (target) != 0)
5093 target = copy_rtx (target);
5094 set_mem_alias_set (target, alias_set);
5097 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5099 else
5100 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5103 /* Store the value of constructor EXP into the rtx TARGET.
5104 TARGET is either a REG or a MEM; we know it cannot conflict, since
5105 safe_from_p has been called.
5106 CLEARED is true if TARGET is known to have been zero'd.
5107 SIZE is the number of bytes of TARGET we are allowed to modify: this
5108 may not be the same as the size of EXP if we are assigning to a field
5109 which has been packed to exclude padding bits. */
5111 static void
5112 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5114 tree type = TREE_TYPE (exp);
5115 #ifdef WORD_REGISTER_OPERATIONS
5116 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5117 #endif
5119 switch (TREE_CODE (type))
5121 case RECORD_TYPE:
5122 case UNION_TYPE:
5123 case QUAL_UNION_TYPE:
5125 unsigned HOST_WIDE_INT idx;
5126 tree field, value;
5128 /* If size is zero or the target is already cleared, do nothing. */
5129 if (size == 0 || cleared)
5130 cleared = 1;
5131 /* We either clear the aggregate or indicate the value is dead. */
5132 else if ((TREE_CODE (type) == UNION_TYPE
5133 || TREE_CODE (type) == QUAL_UNION_TYPE)
5134 && ! CONSTRUCTOR_ELTS (exp))
5135 /* If the constructor is empty, clear the union. */
5137 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5138 cleared = 1;
5141 /* If we are building a static constructor into a register,
5142 set the initial value as zero so we can fold the value into
5143 a constant. But if more than one register is involved,
5144 this probably loses. */
5145 else if (REG_P (target) && TREE_STATIC (exp)
5146 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5148 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5149 cleared = 1;
5152 /* If the constructor has fewer fields than the structure or
5153 if we are initializing the structure to mostly zeros, clear
5154 the whole structure first. Don't do this if TARGET is a
5155 register whose mode size isn't equal to SIZE since
5156 clear_storage can't handle this case. */
5157 else if (size > 0
5158 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5159 != fields_length (type))
5160 || mostly_zeros_p (exp))
5161 && (!REG_P (target)
5162 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5163 == size)))
5165 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5166 cleared = 1;
5169 if (REG_P (target) && !cleared)
5170 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5172 /* Store each element of the constructor into the
5173 corresponding field of TARGET. */
5174 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5176 enum machine_mode mode;
5177 HOST_WIDE_INT bitsize;
5178 HOST_WIDE_INT bitpos = 0;
5179 tree offset;
5180 rtx to_rtx = target;
5182 /* Just ignore missing fields. We cleared the whole
5183 structure, above, if any fields are missing. */
5184 if (field == 0)
5185 continue;
5187 if (cleared && initializer_zerop (value))
5188 continue;
5190 if (host_integerp (DECL_SIZE (field), 1))
5191 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5192 else
5193 bitsize = -1;
5195 mode = DECL_MODE (field);
5196 if (DECL_BIT_FIELD (field))
5197 mode = VOIDmode;
5199 offset = DECL_FIELD_OFFSET (field);
5200 if (host_integerp (offset, 0)
5201 && host_integerp (bit_position (field), 0))
5203 bitpos = int_bit_position (field);
5204 offset = 0;
5206 else
5207 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5209 if (offset)
5211 rtx offset_rtx;
5213 offset
5214 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5215 make_tree (TREE_TYPE (exp),
5216 target));
5218 offset_rtx = expand_normal (offset);
5219 gcc_assert (MEM_P (to_rtx));
5221 #ifdef POINTERS_EXTEND_UNSIGNED
5222 if (GET_MODE (offset_rtx) != Pmode)
5223 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
5224 #else
5225 if (GET_MODE (offset_rtx) != ptr_mode)
5226 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
5227 #endif
5229 to_rtx = offset_address (to_rtx, offset_rtx,
5230 highest_pow2_factor (offset));
5233 #ifdef WORD_REGISTER_OPERATIONS
5234 /* If this initializes a field that is smaller than a
5235 word, at the start of a word, try to widen it to a full
5236 word. This special case allows us to output C++ member
5237 function initializations in a form that the optimizers
5238 can understand. */
5239 if (REG_P (target)
5240 && bitsize < BITS_PER_WORD
5241 && bitpos % BITS_PER_WORD == 0
5242 && GET_MODE_CLASS (mode) == MODE_INT
5243 && TREE_CODE (value) == INTEGER_CST
5244 && exp_size >= 0
5245 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5247 tree type = TREE_TYPE (value);
5249 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5251 type = lang_hooks.types.type_for_size
5252 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5253 value = fold_convert (type, value);
5256 if (BYTES_BIG_ENDIAN)
5257 value
5258 = fold_build2 (LSHIFT_EXPR, type, value,
5259 build_int_cst (type,
5260 BITS_PER_WORD - bitsize));
5261 bitsize = BITS_PER_WORD;
5262 mode = word_mode;
5264 #endif
5266 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5267 && DECL_NONADDRESSABLE_P (field))
5269 to_rtx = copy_rtx (to_rtx);
5270 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5273 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5274 value, type, cleared,
5275 get_alias_set (TREE_TYPE (field)));
5277 break;
5279 case ARRAY_TYPE:
5281 tree value, index;
5282 unsigned HOST_WIDE_INT i;
5283 int need_to_clear;
5284 tree domain;
5285 tree elttype = TREE_TYPE (type);
5286 int const_bounds_p;
5287 HOST_WIDE_INT minelt = 0;
5288 HOST_WIDE_INT maxelt = 0;
5290 domain = TYPE_DOMAIN (type);
5291 const_bounds_p = (TYPE_MIN_VALUE (domain)
5292 && TYPE_MAX_VALUE (domain)
5293 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5294 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5296 /* If we have constant bounds for the range of the type, get them. */
5297 if (const_bounds_p)
5299 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5300 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5303 /* If the constructor has fewer elements than the array, clear
5304 the whole array first. Similarly if this is static
5305 constructor of a non-BLKmode object. */
5306 if (cleared)
5307 need_to_clear = 0;
5308 else if (REG_P (target) && TREE_STATIC (exp))
5309 need_to_clear = 1;
5310 else
5312 unsigned HOST_WIDE_INT idx;
5313 tree index, value;
5314 HOST_WIDE_INT count = 0, zero_count = 0;
5315 need_to_clear = ! const_bounds_p;
5317 /* This loop is a more accurate version of the loop in
5318 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5319 is also needed to check for missing elements. */
5320 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5322 HOST_WIDE_INT this_node_count;
5324 if (need_to_clear)
5325 break;
5327 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5329 tree lo_index = TREE_OPERAND (index, 0);
5330 tree hi_index = TREE_OPERAND (index, 1);
5332 if (! host_integerp (lo_index, 1)
5333 || ! host_integerp (hi_index, 1))
5335 need_to_clear = 1;
5336 break;
5339 this_node_count = (tree_low_cst (hi_index, 1)
5340 - tree_low_cst (lo_index, 1) + 1);
5342 else
5343 this_node_count = 1;
5345 count += this_node_count;
5346 if (mostly_zeros_p (value))
5347 zero_count += this_node_count;
5350 /* Clear the entire array first if there are any missing
5351 elements, or if the incidence of zero elements is >=
5352 75%. */
5353 if (! need_to_clear
5354 && (count < maxelt - minelt + 1
5355 || 4 * zero_count >= 3 * count))
5356 need_to_clear = 1;
5359 if (need_to_clear && size > 0)
5361 if (REG_P (target))
5362 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5363 else
5364 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5365 cleared = 1;
5368 if (!cleared && REG_P (target))
5369 /* Inform later passes that the old value is dead. */
5370 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5372 /* Store each element of the constructor into the
5373 corresponding element of TARGET, determined by counting the
5374 elements. */
5375 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5377 enum machine_mode mode;
5378 HOST_WIDE_INT bitsize;
5379 HOST_WIDE_INT bitpos;
5380 int unsignedp;
5381 rtx xtarget = target;
5383 if (cleared && initializer_zerop (value))
5384 continue;
5386 unsignedp = TYPE_UNSIGNED (elttype);
5387 mode = TYPE_MODE (elttype);
5388 if (mode == BLKmode)
5389 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5390 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5391 : -1);
5392 else
5393 bitsize = GET_MODE_BITSIZE (mode);
5395 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5397 tree lo_index = TREE_OPERAND (index, 0);
5398 tree hi_index = TREE_OPERAND (index, 1);
5399 rtx index_r, pos_rtx;
5400 HOST_WIDE_INT lo, hi, count;
5401 tree position;
5403 /* If the range is constant and "small", unroll the loop. */
5404 if (const_bounds_p
5405 && host_integerp (lo_index, 0)
5406 && host_integerp (hi_index, 0)
5407 && (lo = tree_low_cst (lo_index, 0),
5408 hi = tree_low_cst (hi_index, 0),
5409 count = hi - lo + 1,
5410 (!MEM_P (target)
5411 || count <= 2
5412 || (host_integerp (TYPE_SIZE (elttype), 1)
5413 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5414 <= 40 * 8)))))
5416 lo -= minelt; hi -= minelt;
5417 for (; lo <= hi; lo++)
5419 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5421 if (MEM_P (target)
5422 && !MEM_KEEP_ALIAS_SET_P (target)
5423 && TREE_CODE (type) == ARRAY_TYPE
5424 && TYPE_NONALIASED_COMPONENT (type))
5426 target = copy_rtx (target);
5427 MEM_KEEP_ALIAS_SET_P (target) = 1;
5430 store_constructor_field
5431 (target, bitsize, bitpos, mode, value, type, cleared,
5432 get_alias_set (elttype));
5435 else
5437 rtx loop_start = gen_label_rtx ();
5438 rtx loop_end = gen_label_rtx ();
5439 tree exit_cond;
5441 expand_normal (hi_index);
5442 unsignedp = TYPE_UNSIGNED (domain);
5444 index = build_decl (VAR_DECL, NULL_TREE, domain);
5446 index_r
5447 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5448 &unsignedp, 0));
5449 SET_DECL_RTL (index, index_r);
5450 store_expr (lo_index, index_r, 0, false);
5452 /* Build the head of the loop. */
5453 do_pending_stack_adjust ();
5454 emit_label (loop_start);
5456 /* Assign value to element index. */
5457 position =
5458 fold_convert (ssizetype,
5459 fold_build2 (MINUS_EXPR,
5460 TREE_TYPE (index),
5461 index,
5462 TYPE_MIN_VALUE (domain)));
5464 position =
5465 size_binop (MULT_EXPR, position,
5466 fold_convert (ssizetype,
5467 TYPE_SIZE_UNIT (elttype)));
5469 pos_rtx = expand_normal (position);
5470 xtarget = offset_address (target, pos_rtx,
5471 highest_pow2_factor (position));
5472 xtarget = adjust_address (xtarget, mode, 0);
5473 if (TREE_CODE (value) == CONSTRUCTOR)
5474 store_constructor (value, xtarget, cleared,
5475 bitsize / BITS_PER_UNIT);
5476 else
5477 store_expr (value, xtarget, 0, false);
5479 /* Generate a conditional jump to exit the loop. */
5480 exit_cond = build2 (LT_EXPR, integer_type_node,
5481 index, hi_index);
5482 jumpif (exit_cond, loop_end);
5484 /* Update the loop counter, and jump to the head of
5485 the loop. */
5486 expand_assignment (index,
5487 build2 (PLUS_EXPR, TREE_TYPE (index),
5488 index, integer_one_node),
5489 false);
5491 emit_jump (loop_start);
5493 /* Build the end of the loop. */
5494 emit_label (loop_end);
5497 else if ((index != 0 && ! host_integerp (index, 0))
5498 || ! host_integerp (TYPE_SIZE (elttype), 1))
5500 tree position;
5502 if (index == 0)
5503 index = ssize_int (1);
5505 if (minelt)
5506 index = fold_convert (ssizetype,
5507 fold_build2 (MINUS_EXPR,
5508 TREE_TYPE (index),
5509 index,
5510 TYPE_MIN_VALUE (domain)));
5512 position =
5513 size_binop (MULT_EXPR, index,
5514 fold_convert (ssizetype,
5515 TYPE_SIZE_UNIT (elttype)));
5516 xtarget = offset_address (target,
5517 expand_normal (position),
5518 highest_pow2_factor (position));
5519 xtarget = adjust_address (xtarget, mode, 0);
5520 store_expr (value, xtarget, 0, false);
5522 else
5524 if (index != 0)
5525 bitpos = ((tree_low_cst (index, 0) - minelt)
5526 * tree_low_cst (TYPE_SIZE (elttype), 1));
5527 else
5528 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5530 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5531 && TREE_CODE (type) == ARRAY_TYPE
5532 && TYPE_NONALIASED_COMPONENT (type))
5534 target = copy_rtx (target);
5535 MEM_KEEP_ALIAS_SET_P (target) = 1;
5537 store_constructor_field (target, bitsize, bitpos, mode, value,
5538 type, cleared, get_alias_set (elttype));
5541 break;
5544 case VECTOR_TYPE:
5546 unsigned HOST_WIDE_INT idx;
5547 constructor_elt *ce;
5548 int i;
5549 int need_to_clear;
5550 int icode = 0;
5551 tree elttype = TREE_TYPE (type);
5552 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5553 enum machine_mode eltmode = TYPE_MODE (elttype);
5554 HOST_WIDE_INT bitsize;
5555 HOST_WIDE_INT bitpos;
5556 rtvec vector = NULL;
5557 unsigned n_elts;
5559 gcc_assert (eltmode != BLKmode);
5561 n_elts = TYPE_VECTOR_SUBPARTS (type);
5562 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5564 enum machine_mode mode = GET_MODE (target);
5566 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5567 if (icode != CODE_FOR_nothing)
5569 unsigned int i;
5571 vector = rtvec_alloc (n_elts);
5572 for (i = 0; i < n_elts; i++)
5573 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5577 /* If the constructor has fewer elements than the vector,
5578 clear the whole array first. Similarly if this is static
5579 constructor of a non-BLKmode object. */
5580 if (cleared)
5581 need_to_clear = 0;
5582 else if (REG_P (target) && TREE_STATIC (exp))
5583 need_to_clear = 1;
5584 else
5586 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5587 tree value;
5589 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5591 int n_elts_here = tree_low_cst
5592 (int_const_binop (TRUNC_DIV_EXPR,
5593 TYPE_SIZE (TREE_TYPE (value)),
5594 TYPE_SIZE (elttype), 0), 1);
5596 count += n_elts_here;
5597 if (mostly_zeros_p (value))
5598 zero_count += n_elts_here;
5601 /* Clear the entire vector first if there are any missing elements,
5602 or if the incidence of zero elements is >= 75%. */
5603 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5606 if (need_to_clear && size > 0 && !vector)
5608 if (REG_P (target))
5609 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5610 else
5611 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5612 cleared = 1;
5615 /* Inform later passes that the old value is dead. */
5616 if (!cleared && !vector && REG_P (target))
5617 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5619 /* Store each element of the constructor into the corresponding
5620 element of TARGET, determined by counting the elements. */
5621 for (idx = 0, i = 0;
5622 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5623 idx++, i += bitsize / elt_size)
5625 HOST_WIDE_INT eltpos;
5626 tree value = ce->value;
5628 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5629 if (cleared && initializer_zerop (value))
5630 continue;
5632 if (ce->index)
5633 eltpos = tree_low_cst (ce->index, 1);
5634 else
5635 eltpos = i;
5637 if (vector)
5639 /* Vector CONSTRUCTORs should only be built from smaller
5640 vectors in the case of BLKmode vectors. */
5641 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5642 RTVEC_ELT (vector, eltpos)
5643 = expand_normal (value);
5645 else
5647 enum machine_mode value_mode =
5648 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5649 ? TYPE_MODE (TREE_TYPE (value))
5650 : eltmode;
5651 bitpos = eltpos * elt_size;
5652 store_constructor_field (target, bitsize, bitpos,
5653 value_mode, value, type,
5654 cleared, get_alias_set (elttype));
5658 if (vector)
5659 emit_insn (GEN_FCN (icode)
5660 (target,
5661 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5662 break;
5665 default:
5666 gcc_unreachable ();
5670 /* Store the value of EXP (an expression tree)
5671 into a subfield of TARGET which has mode MODE and occupies
5672 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5673 If MODE is VOIDmode, it means that we are storing into a bit-field.
5675 Always return const0_rtx unless we have something particular to
5676 return.
5678 TYPE is the type of the underlying object,
5680 ALIAS_SET is the alias set for the destination. This value will
5681 (in general) be different from that for TARGET, since TARGET is a
5682 reference to the containing structure.
5684 If NONTEMPORAL is true, try generating a nontemporal store. */
5686 static rtx
5687 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5688 enum machine_mode mode, tree exp, tree type,
5689 alias_set_type alias_set, bool nontemporal)
5691 HOST_WIDE_INT width_mask = 0;
5693 if (TREE_CODE (exp) == ERROR_MARK)
5694 return const0_rtx;
5696 /* If we have nothing to store, do nothing unless the expression has
5697 side-effects. */
5698 if (bitsize == 0)
5699 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5700 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5701 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5703 /* If we are storing into an unaligned field of an aligned union that is
5704 in a register, we may have the mode of TARGET being an integer mode but
5705 MODE == BLKmode. In that case, get an aligned object whose size and
5706 alignment are the same as TARGET and store TARGET into it (we can avoid
5707 the store if the field being stored is the entire width of TARGET). Then
5708 call ourselves recursively to store the field into a BLKmode version of
5709 that object. Finally, load from the object into TARGET. This is not
5710 very efficient in general, but should only be slightly more expensive
5711 than the otherwise-required unaligned accesses. Perhaps this can be
5712 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5713 twice, once with emit_move_insn and once via store_field. */
5715 if (mode == BLKmode
5716 && (REG_P (target) || GET_CODE (target) == SUBREG))
5718 rtx object = assign_temp (type, 0, 1, 1);
5719 rtx blk_object = adjust_address (object, BLKmode, 0);
5721 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5722 emit_move_insn (object, target);
5724 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5725 nontemporal);
5727 emit_move_insn (target, object);
5729 /* We want to return the BLKmode version of the data. */
5730 return blk_object;
5733 if (GET_CODE (target) == CONCAT)
5735 /* We're storing into a struct containing a single __complex. */
5737 gcc_assert (!bitpos);
5738 return store_expr (exp, target, 0, nontemporal);
5741 /* If the structure is in a register or if the component
5742 is a bit field, we cannot use addressing to access it.
5743 Use bit-field techniques or SUBREG to store in it. */
5745 if (mode == VOIDmode
5746 || (mode != BLKmode && ! direct_store[(int) mode]
5747 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5748 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5749 || REG_P (target)
5750 || GET_CODE (target) == SUBREG
5751 /* If the field isn't aligned enough to store as an ordinary memref,
5752 store it as a bit field. */
5753 || (mode != BLKmode
5754 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5755 || bitpos % GET_MODE_ALIGNMENT (mode))
5756 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5757 || (bitpos % BITS_PER_UNIT != 0)))
5758 /* If the RHS and field are a constant size and the size of the
5759 RHS isn't the same size as the bitfield, we must use bitfield
5760 operations. */
5761 || (bitsize >= 0
5762 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5763 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5765 rtx temp;
5767 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5768 implies a mask operation. If the precision is the same size as
5769 the field we're storing into, that mask is redundant. This is
5770 particularly common with bit field assignments generated by the
5771 C front end. */
5772 if (TREE_CODE (exp) == NOP_EXPR)
5774 tree type = TREE_TYPE (exp);
5775 if (INTEGRAL_TYPE_P (type)
5776 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5777 && bitsize == TYPE_PRECISION (type))
5779 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5780 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5781 exp = TREE_OPERAND (exp, 0);
5785 temp = expand_normal (exp);
5787 /* If BITSIZE is narrower than the size of the type of EXP
5788 we will be narrowing TEMP. Normally, what's wanted are the
5789 low-order bits. However, if EXP's type is a record and this is
5790 big-endian machine, we want the upper BITSIZE bits. */
5791 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5792 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5793 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5794 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5795 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5796 - bitsize),
5797 NULL_RTX, 1);
5799 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5800 MODE. */
5801 if (mode != VOIDmode && mode != BLKmode
5802 && mode != TYPE_MODE (TREE_TYPE (exp)))
5803 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5805 /* If the modes of TARGET and TEMP are both BLKmode, both
5806 must be in memory and BITPOS must be aligned on a byte
5807 boundary. If so, we simply do a block copy. */
5808 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5810 gcc_assert (MEM_P (target) && MEM_P (temp)
5811 && !(bitpos % BITS_PER_UNIT));
5813 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5814 emit_block_move (target, temp,
5815 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5816 / BITS_PER_UNIT),
5817 BLOCK_OP_NORMAL);
5819 return const0_rtx;
5822 /* Store the value in the bitfield. */
5823 store_bit_field (target, bitsize, bitpos, mode, temp);
5825 return const0_rtx;
5827 else
5829 /* Now build a reference to just the desired component. */
5830 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5832 if (to_rtx == target)
5833 to_rtx = copy_rtx (to_rtx);
5835 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5836 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5837 set_mem_alias_set (to_rtx, alias_set);
5839 return store_expr (exp, to_rtx, 0, nontemporal);
5843 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5844 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5845 codes and find the ultimate containing object, which we return.
5847 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5848 bit position, and *PUNSIGNEDP to the signedness of the field.
5849 If the position of the field is variable, we store a tree
5850 giving the variable offset (in units) in *POFFSET.
5851 This offset is in addition to the bit position.
5852 If the position is not variable, we store 0 in *POFFSET.
5854 If any of the extraction expressions is volatile,
5855 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5857 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5858 is a mode that can be used to access the field. In that case, *PBITSIZE
5859 is redundant.
5861 If the field describes a variable-sized object, *PMODE is set to
5862 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5863 this case, but the address of the object can be found.
5865 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5866 look through nodes that serve as markers of a greater alignment than
5867 the one that can be deduced from the expression. These nodes make it
5868 possible for front-ends to prevent temporaries from being created by
5869 the middle-end on alignment considerations. For that purpose, the
5870 normal operating mode at high-level is to always pass FALSE so that
5871 the ultimate containing object is really returned; moreover, the
5872 associated predicate handled_component_p will always return TRUE
5873 on these nodes, thus indicating that they are essentially handled
5874 by get_inner_reference. TRUE should only be passed when the caller
5875 is scanning the expression in order to build another representation
5876 and specifically knows how to handle these nodes; as such, this is
5877 the normal operating mode in the RTL expanders. */
5879 tree
5880 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5881 HOST_WIDE_INT *pbitpos, tree *poffset,
5882 enum machine_mode *pmode, int *punsignedp,
5883 int *pvolatilep, bool keep_aligning)
5885 tree size_tree = 0;
5886 enum machine_mode mode = VOIDmode;
5887 tree offset = size_zero_node;
5888 tree bit_offset = bitsize_zero_node;
5890 /* First get the mode, signedness, and size. We do this from just the
5891 outermost expression. */
5892 if (TREE_CODE (exp) == COMPONENT_REF)
5894 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5895 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5896 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5898 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5900 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5902 size_tree = TREE_OPERAND (exp, 1);
5903 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5905 /* For vector types, with the correct size of access, use the mode of
5906 inner type. */
5907 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5908 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5909 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5910 mode = TYPE_MODE (TREE_TYPE (exp));
5912 else
5914 mode = TYPE_MODE (TREE_TYPE (exp));
5915 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5917 if (mode == BLKmode)
5918 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5919 else
5920 *pbitsize = GET_MODE_BITSIZE (mode);
5923 if (size_tree != 0)
5925 if (! host_integerp (size_tree, 1))
5926 mode = BLKmode, *pbitsize = -1;
5927 else
5928 *pbitsize = tree_low_cst (size_tree, 1);
5931 *pmode = mode;
5933 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5934 and find the ultimate containing object. */
5935 while (1)
5937 switch (TREE_CODE (exp))
5939 case BIT_FIELD_REF:
5940 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5941 TREE_OPERAND (exp, 2));
5942 break;
5944 case COMPONENT_REF:
5946 tree field = TREE_OPERAND (exp, 1);
5947 tree this_offset = component_ref_field_offset (exp);
5949 /* If this field hasn't been filled in yet, don't go past it.
5950 This should only happen when folding expressions made during
5951 type construction. */
5952 if (this_offset == 0)
5953 break;
5955 offset = size_binop (PLUS_EXPR, offset, this_offset);
5956 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5957 DECL_FIELD_BIT_OFFSET (field));
5959 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5961 break;
5963 case ARRAY_REF:
5964 case ARRAY_RANGE_REF:
5966 tree index = TREE_OPERAND (exp, 1);
5967 tree low_bound = array_ref_low_bound (exp);
5968 tree unit_size = array_ref_element_size (exp);
5970 /* We assume all arrays have sizes that are a multiple of a byte.
5971 First subtract the lower bound, if any, in the type of the
5972 index, then convert to sizetype and multiply by the size of
5973 the array element. */
5974 if (! integer_zerop (low_bound))
5975 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5976 index, low_bound);
5978 offset = size_binop (PLUS_EXPR, offset,
5979 size_binop (MULT_EXPR,
5980 fold_convert (sizetype, index),
5981 unit_size));
5983 break;
5985 case REALPART_EXPR:
5986 break;
5988 case IMAGPART_EXPR:
5989 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5990 bitsize_int (*pbitsize));
5991 break;
5993 case VIEW_CONVERT_EXPR:
5994 if (keep_aligning && STRICT_ALIGNMENT
5995 && (TYPE_ALIGN (TREE_TYPE (exp))
5996 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5997 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5998 < BIGGEST_ALIGNMENT)
5999 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6000 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6001 goto done;
6002 break;
6004 default:
6005 goto done;
6008 /* If any reference in the chain is volatile, the effect is volatile. */
6009 if (TREE_THIS_VOLATILE (exp))
6010 *pvolatilep = 1;
6012 exp = TREE_OPERAND (exp, 0);
6014 done:
6016 /* If OFFSET is constant, see if we can return the whole thing as a
6017 constant bit position. Make sure to handle overflow during
6018 this conversion. */
6019 if (host_integerp (offset, 0))
6021 double_int tem = double_int_mul (tree_to_double_int (offset),
6022 uhwi_to_double_int (BITS_PER_UNIT));
6023 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6024 if (double_int_fits_in_shwi_p (tem))
6026 *pbitpos = double_int_to_shwi (tem);
6027 *poffset = NULL_TREE;
6028 return exp;
6032 /* Otherwise, split it up. */
6033 *pbitpos = tree_low_cst (bit_offset, 0);
6034 *poffset = offset;
6036 return exp;
6039 /* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
6040 look for whether EXP or any nested component-refs within EXP is marked
6041 as PACKED. */
6043 bool
6044 contains_packed_reference (const_tree exp)
6046 bool packed_p = false;
6048 while (1)
6050 switch (TREE_CODE (exp))
6052 case COMPONENT_REF:
6054 tree field = TREE_OPERAND (exp, 1);
6055 packed_p = DECL_PACKED (field)
6056 || TYPE_PACKED (TREE_TYPE (field))
6057 || TYPE_PACKED (TREE_TYPE (exp));
6058 if (packed_p)
6059 goto done;
6061 break;
6063 case BIT_FIELD_REF:
6064 case ARRAY_REF:
6065 case ARRAY_RANGE_REF:
6066 case REALPART_EXPR:
6067 case IMAGPART_EXPR:
6068 case VIEW_CONVERT_EXPR:
6069 break;
6071 default:
6072 goto done;
6074 exp = TREE_OPERAND (exp, 0);
6076 done:
6077 return packed_p;
6080 /* Return a tree of sizetype representing the size, in bytes, of the element
6081 of EXP, an ARRAY_REF. */
6083 tree
6084 array_ref_element_size (tree exp)
6086 tree aligned_size = TREE_OPERAND (exp, 3);
6087 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6089 /* If a size was specified in the ARRAY_REF, it's the size measured
6090 in alignment units of the element type. So multiply by that value. */
6091 if (aligned_size)
6093 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6094 sizetype from another type of the same width and signedness. */
6095 if (TREE_TYPE (aligned_size) != sizetype)
6096 aligned_size = fold_convert (sizetype, aligned_size);
6097 return size_binop (MULT_EXPR, aligned_size,
6098 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6101 /* Otherwise, take the size from that of the element type. Substitute
6102 any PLACEHOLDER_EXPR that we have. */
6103 else
6104 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6107 /* Return a tree representing the lower bound of the array mentioned in
6108 EXP, an ARRAY_REF. */
6110 tree
6111 array_ref_low_bound (tree exp)
6113 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6115 /* If a lower bound is specified in EXP, use it. */
6116 if (TREE_OPERAND (exp, 2))
6117 return TREE_OPERAND (exp, 2);
6119 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6120 substituting for a PLACEHOLDER_EXPR as needed. */
6121 if (domain_type && TYPE_MIN_VALUE (domain_type))
6122 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6124 /* Otherwise, return a zero of the appropriate type. */
6125 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6128 /* Return a tree representing the upper bound of the array mentioned in
6129 EXP, an ARRAY_REF. */
6131 tree
6132 array_ref_up_bound (tree exp)
6134 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6136 /* If there is a domain type and it has an upper bound, use it, substituting
6137 for a PLACEHOLDER_EXPR as needed. */
6138 if (domain_type && TYPE_MAX_VALUE (domain_type))
6139 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6141 /* Otherwise fail. */
6142 return NULL_TREE;
6145 /* Return a tree representing the offset, in bytes, of the field referenced
6146 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6148 tree
6149 component_ref_field_offset (tree exp)
6151 tree aligned_offset = TREE_OPERAND (exp, 2);
6152 tree field = TREE_OPERAND (exp, 1);
6154 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6155 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6156 value. */
6157 if (aligned_offset)
6159 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6160 sizetype from another type of the same width and signedness. */
6161 if (TREE_TYPE (aligned_offset) != sizetype)
6162 aligned_offset = fold_convert (sizetype, aligned_offset);
6163 return size_binop (MULT_EXPR, aligned_offset,
6164 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
6167 /* Otherwise, take the offset from that of the field. Substitute
6168 any PLACEHOLDER_EXPR that we have. */
6169 else
6170 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6173 /* Return 1 if T is an expression that get_inner_reference handles. */
6176 handled_component_p (const_tree t)
6178 switch (TREE_CODE (t))
6180 case BIT_FIELD_REF:
6181 case COMPONENT_REF:
6182 case ARRAY_REF:
6183 case ARRAY_RANGE_REF:
6184 case VIEW_CONVERT_EXPR:
6185 case REALPART_EXPR:
6186 case IMAGPART_EXPR:
6187 return 1;
6189 default:
6190 return 0;
6194 /* Given an rtx VALUE that may contain additions and multiplications, return
6195 an equivalent value that just refers to a register, memory, or constant.
6196 This is done by generating instructions to perform the arithmetic and
6197 returning a pseudo-register containing the value.
6199 The returned value may be a REG, SUBREG, MEM or constant. */
6202 force_operand (rtx value, rtx target)
6204 rtx op1, op2;
6205 /* Use subtarget as the target for operand 0 of a binary operation. */
6206 rtx subtarget = get_subtarget (target);
6207 enum rtx_code code = GET_CODE (value);
6209 /* Check for subreg applied to an expression produced by loop optimizer. */
6210 if (code == SUBREG
6211 && !REG_P (SUBREG_REG (value))
6212 && !MEM_P (SUBREG_REG (value)))
6214 value
6215 = simplify_gen_subreg (GET_MODE (value),
6216 force_reg (GET_MODE (SUBREG_REG (value)),
6217 force_operand (SUBREG_REG (value),
6218 NULL_RTX)),
6219 GET_MODE (SUBREG_REG (value)),
6220 SUBREG_BYTE (value));
6221 code = GET_CODE (value);
6224 /* Check for a PIC address load. */
6225 if ((code == PLUS || code == MINUS)
6226 && XEXP (value, 0) == pic_offset_table_rtx
6227 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6228 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6229 || GET_CODE (XEXP (value, 1)) == CONST))
6231 if (!subtarget)
6232 subtarget = gen_reg_rtx (GET_MODE (value));
6233 emit_move_insn (subtarget, value);
6234 return subtarget;
6237 if (ARITHMETIC_P (value))
6239 op2 = XEXP (value, 1);
6240 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6241 subtarget = 0;
6242 if (code == MINUS && GET_CODE (op2) == CONST_INT)
6244 code = PLUS;
6245 op2 = negate_rtx (GET_MODE (value), op2);
6248 /* Check for an addition with OP2 a constant integer and our first
6249 operand a PLUS of a virtual register and something else. In that
6250 case, we want to emit the sum of the virtual register and the
6251 constant first and then add the other value. This allows virtual
6252 register instantiation to simply modify the constant rather than
6253 creating another one around this addition. */
6254 if (code == PLUS && GET_CODE (op2) == CONST_INT
6255 && GET_CODE (XEXP (value, 0)) == PLUS
6256 && REG_P (XEXP (XEXP (value, 0), 0))
6257 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6258 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6260 rtx temp = expand_simple_binop (GET_MODE (value), code,
6261 XEXP (XEXP (value, 0), 0), op2,
6262 subtarget, 0, OPTAB_LIB_WIDEN);
6263 return expand_simple_binop (GET_MODE (value), code, temp,
6264 force_operand (XEXP (XEXP (value,
6265 0), 1), 0),
6266 target, 0, OPTAB_LIB_WIDEN);
6269 op1 = force_operand (XEXP (value, 0), subtarget);
6270 op2 = force_operand (op2, NULL_RTX);
6271 switch (code)
6273 case MULT:
6274 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6275 case DIV:
6276 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6277 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6278 target, 1, OPTAB_LIB_WIDEN);
6279 else
6280 return expand_divmod (0,
6281 FLOAT_MODE_P (GET_MODE (value))
6282 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6283 GET_MODE (value), op1, op2, target, 0);
6284 case MOD:
6285 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6286 target, 0);
6287 case UDIV:
6288 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6289 target, 1);
6290 case UMOD:
6291 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6292 target, 1);
6293 case ASHIFTRT:
6294 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6295 target, 0, OPTAB_LIB_WIDEN);
6296 default:
6297 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6298 target, 1, OPTAB_LIB_WIDEN);
6301 if (UNARY_P (value))
6303 if (!target)
6304 target = gen_reg_rtx (GET_MODE (value));
6305 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6306 switch (code)
6308 case ZERO_EXTEND:
6309 case SIGN_EXTEND:
6310 case TRUNCATE:
6311 case FLOAT_EXTEND:
6312 case FLOAT_TRUNCATE:
6313 convert_move (target, op1, code == ZERO_EXTEND);
6314 return target;
6316 case FIX:
6317 case UNSIGNED_FIX:
6318 expand_fix (target, op1, code == UNSIGNED_FIX);
6319 return target;
6321 case FLOAT:
6322 case UNSIGNED_FLOAT:
6323 expand_float (target, op1, code == UNSIGNED_FLOAT);
6324 return target;
6326 default:
6327 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6331 #ifdef INSN_SCHEDULING
6332 /* On machines that have insn scheduling, we want all memory reference to be
6333 explicit, so we need to deal with such paradoxical SUBREGs. */
6334 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6335 && (GET_MODE_SIZE (GET_MODE (value))
6336 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6337 value
6338 = simplify_gen_subreg (GET_MODE (value),
6339 force_reg (GET_MODE (SUBREG_REG (value)),
6340 force_operand (SUBREG_REG (value),
6341 NULL_RTX)),
6342 GET_MODE (SUBREG_REG (value)),
6343 SUBREG_BYTE (value));
6344 #endif
6346 return value;
6349 /* Subroutine of expand_expr: return nonzero iff there is no way that
6350 EXP can reference X, which is being modified. TOP_P is nonzero if this
6351 call is going to be used to determine whether we need a temporary
6352 for EXP, as opposed to a recursive call to this function.
6354 It is always safe for this routine to return zero since it merely
6355 searches for optimization opportunities. */
6358 safe_from_p (const_rtx x, tree exp, int top_p)
6360 rtx exp_rtl = 0;
6361 int i, nops;
6363 if (x == 0
6364 /* If EXP has varying size, we MUST use a target since we currently
6365 have no way of allocating temporaries of variable size
6366 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6367 So we assume here that something at a higher level has prevented a
6368 clash. This is somewhat bogus, but the best we can do. Only
6369 do this when X is BLKmode and when we are at the top level. */
6370 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6371 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6372 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6373 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6374 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6375 != INTEGER_CST)
6376 && GET_MODE (x) == BLKmode)
6377 /* If X is in the outgoing argument area, it is always safe. */
6378 || (MEM_P (x)
6379 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6380 || (GET_CODE (XEXP (x, 0)) == PLUS
6381 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6382 return 1;
6384 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6385 find the underlying pseudo. */
6386 if (GET_CODE (x) == SUBREG)
6388 x = SUBREG_REG (x);
6389 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6390 return 0;
6393 /* Now look at our tree code and possibly recurse. */
6394 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6396 case tcc_declaration:
6397 exp_rtl = DECL_RTL_IF_SET (exp);
6398 break;
6400 case tcc_constant:
6401 return 1;
6403 case tcc_exceptional:
6404 if (TREE_CODE (exp) == TREE_LIST)
6406 while (1)
6408 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6409 return 0;
6410 exp = TREE_CHAIN (exp);
6411 if (!exp)
6412 return 1;
6413 if (TREE_CODE (exp) != TREE_LIST)
6414 return safe_from_p (x, exp, 0);
6417 else if (TREE_CODE (exp) == CONSTRUCTOR)
6419 constructor_elt *ce;
6420 unsigned HOST_WIDE_INT idx;
6422 for (idx = 0;
6423 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6424 idx++)
6425 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6426 || !safe_from_p (x, ce->value, 0))
6427 return 0;
6428 return 1;
6430 else if (TREE_CODE (exp) == ERROR_MARK)
6431 return 1; /* An already-visited SAVE_EXPR? */
6432 else
6433 return 0;
6435 case tcc_statement:
6436 /* The only case we look at here is the DECL_INITIAL inside a
6437 DECL_EXPR. */
6438 return (TREE_CODE (exp) != DECL_EXPR
6439 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6440 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6441 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6443 case tcc_binary:
6444 case tcc_comparison:
6445 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6446 return 0;
6447 /* Fall through. */
6449 case tcc_unary:
6450 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6452 case tcc_expression:
6453 case tcc_reference:
6454 case tcc_vl_exp:
6455 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6456 the expression. If it is set, we conflict iff we are that rtx or
6457 both are in memory. Otherwise, we check all operands of the
6458 expression recursively. */
6460 switch (TREE_CODE (exp))
6462 case ADDR_EXPR:
6463 /* If the operand is static or we are static, we can't conflict.
6464 Likewise if we don't conflict with the operand at all. */
6465 if (staticp (TREE_OPERAND (exp, 0))
6466 || TREE_STATIC (exp)
6467 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6468 return 1;
6470 /* Otherwise, the only way this can conflict is if we are taking
6471 the address of a DECL a that address if part of X, which is
6472 very rare. */
6473 exp = TREE_OPERAND (exp, 0);
6474 if (DECL_P (exp))
6476 if (!DECL_RTL_SET_P (exp)
6477 || !MEM_P (DECL_RTL (exp)))
6478 return 0;
6479 else
6480 exp_rtl = XEXP (DECL_RTL (exp), 0);
6482 break;
6484 case MISALIGNED_INDIRECT_REF:
6485 case ALIGN_INDIRECT_REF:
6486 case INDIRECT_REF:
6487 if (MEM_P (x)
6488 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6489 get_alias_set (exp)))
6490 return 0;
6491 break;
6493 case CALL_EXPR:
6494 /* Assume that the call will clobber all hard registers and
6495 all of memory. */
6496 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6497 || MEM_P (x))
6498 return 0;
6499 break;
6501 case WITH_CLEANUP_EXPR:
6502 case CLEANUP_POINT_EXPR:
6503 /* Lowered by gimplify.c. */
6504 gcc_unreachable ();
6506 case SAVE_EXPR:
6507 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6509 default:
6510 break;
6513 /* If we have an rtx, we do not need to scan our operands. */
6514 if (exp_rtl)
6515 break;
6517 nops = TREE_OPERAND_LENGTH (exp);
6518 for (i = 0; i < nops; i++)
6519 if (TREE_OPERAND (exp, i) != 0
6520 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6521 return 0;
6523 break;
6525 case tcc_type:
6526 /* Should never get a type here. */
6527 gcc_unreachable ();
6529 case tcc_gimple_stmt:
6530 gcc_unreachable ();
6533 /* If we have an rtl, find any enclosed object. Then see if we conflict
6534 with it. */
6535 if (exp_rtl)
6537 if (GET_CODE (exp_rtl) == SUBREG)
6539 exp_rtl = SUBREG_REG (exp_rtl);
6540 if (REG_P (exp_rtl)
6541 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6542 return 0;
6545 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6546 are memory and they conflict. */
6547 return ! (rtx_equal_p (x, exp_rtl)
6548 || (MEM_P (x) && MEM_P (exp_rtl)
6549 && true_dependence (exp_rtl, VOIDmode, x,
6550 rtx_addr_varies_p)));
6553 /* If we reach here, it is safe. */
6554 return 1;
6558 /* Return the highest power of two that EXP is known to be a multiple of.
6559 This is used in updating alignment of MEMs in array references. */
6561 unsigned HOST_WIDE_INT
6562 highest_pow2_factor (const_tree exp)
6564 unsigned HOST_WIDE_INT c0, c1;
6566 switch (TREE_CODE (exp))
6568 case INTEGER_CST:
6569 /* We can find the lowest bit that's a one. If the low
6570 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6571 We need to handle this case since we can find it in a COND_EXPR,
6572 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6573 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6574 later ICE. */
6575 if (TREE_OVERFLOW (exp))
6576 return BIGGEST_ALIGNMENT;
6577 else
6579 /* Note: tree_low_cst is intentionally not used here,
6580 we don't care about the upper bits. */
6581 c0 = TREE_INT_CST_LOW (exp);
6582 c0 &= -c0;
6583 return c0 ? c0 : BIGGEST_ALIGNMENT;
6585 break;
6587 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6588 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6589 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6590 return MIN (c0, c1);
6592 case MULT_EXPR:
6593 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6594 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6595 return c0 * c1;
6597 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6598 case CEIL_DIV_EXPR:
6599 if (integer_pow2p (TREE_OPERAND (exp, 1))
6600 && host_integerp (TREE_OPERAND (exp, 1), 1))
6602 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6603 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6604 return MAX (1, c0 / c1);
6606 break;
6608 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
6609 case SAVE_EXPR:
6610 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6612 case COMPOUND_EXPR:
6613 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6615 case COND_EXPR:
6616 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6617 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6618 return MIN (c0, c1);
6620 default:
6621 break;
6624 return 1;
6627 /* Similar, except that the alignment requirements of TARGET are
6628 taken into account. Assume it is at least as aligned as its
6629 type, unless it is a COMPONENT_REF in which case the layout of
6630 the structure gives the alignment. */
6632 static unsigned HOST_WIDE_INT
6633 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6635 unsigned HOST_WIDE_INT target_align, factor;
6637 factor = highest_pow2_factor (exp);
6638 if (TREE_CODE (target) == COMPONENT_REF)
6639 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6640 else
6641 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6642 return MAX (factor, target_align);
6645 /* Return &VAR expression for emulated thread local VAR. */
6647 static tree
6648 emutls_var_address (tree var)
6650 tree emuvar = emutls_decl (var);
6651 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6652 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6653 tree arglist = build_tree_list (NULL_TREE, arg);
6654 tree call = build_function_call_expr (fn, arglist);
6655 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6658 /* Expands variable VAR. */
6660 void
6661 expand_var (tree var)
6663 if (DECL_EXTERNAL (var))
6664 return;
6666 if (TREE_STATIC (var))
6667 /* If this is an inlined copy of a static local variable,
6668 look up the original decl. */
6669 var = DECL_ORIGIN (var);
6671 if (TREE_STATIC (var)
6672 ? !TREE_ASM_WRITTEN (var)
6673 : !DECL_RTL_SET_P (var))
6675 if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
6676 /* Should be ignored. */;
6677 else if (lang_hooks.expand_decl (var))
6678 /* OK. */;
6679 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
6680 expand_decl (var);
6681 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
6682 rest_of_decl_compilation (var, 0, 0);
6683 else
6684 /* No expansion needed. */
6685 gcc_assert (TREE_CODE (var) == TYPE_DECL
6686 || TREE_CODE (var) == CONST_DECL
6687 || TREE_CODE (var) == FUNCTION_DECL
6688 || TREE_CODE (var) == LABEL_DECL);
6692 /* Subroutine of expand_expr. Expand the two operands of a binary
6693 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6694 The value may be stored in TARGET if TARGET is nonzero. The
6695 MODIFIER argument is as documented by expand_expr. */
6697 static void
6698 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6699 enum expand_modifier modifier)
6701 if (! safe_from_p (target, exp1, 1))
6702 target = 0;
6703 if (operand_equal_p (exp0, exp1, 0))
6705 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6706 *op1 = copy_rtx (*op0);
6708 else
6710 /* If we need to preserve evaluation order, copy exp0 into its own
6711 temporary variable so that it can't be clobbered by exp1. */
6712 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6713 exp0 = save_expr (exp0);
6714 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6715 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6720 /* Return a MEM that contains constant EXP. DEFER is as for
6721 output_constant_def and MODIFIER is as for expand_expr. */
6723 static rtx
6724 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6726 rtx mem;
6728 mem = output_constant_def (exp, defer);
6729 if (modifier != EXPAND_INITIALIZER)
6730 mem = use_anchored_address (mem);
6731 return mem;
6734 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6735 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6737 static rtx
6738 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6739 enum expand_modifier modifier)
6741 rtx result, subtarget;
6742 tree inner, offset;
6743 HOST_WIDE_INT bitsize, bitpos;
6744 int volatilep, unsignedp;
6745 enum machine_mode mode1;
6747 /* If we are taking the address of a constant and are at the top level,
6748 we have to use output_constant_def since we can't call force_const_mem
6749 at top level. */
6750 /* ??? This should be considered a front-end bug. We should not be
6751 generating ADDR_EXPR of something that isn't an LVALUE. The only
6752 exception here is STRING_CST. */
6753 if (CONSTANT_CLASS_P (exp))
6754 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6756 /* Everything must be something allowed by is_gimple_addressable. */
6757 switch (TREE_CODE (exp))
6759 case INDIRECT_REF:
6760 /* This case will happen via recursion for &a->b. */
6761 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6763 case CONST_DECL:
6764 /* Recurse and make the output_constant_def clause above handle this. */
6765 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6766 tmode, modifier);
6768 case REALPART_EXPR:
6769 /* The real part of the complex number is always first, therefore
6770 the address is the same as the address of the parent object. */
6771 offset = 0;
6772 bitpos = 0;
6773 inner = TREE_OPERAND (exp, 0);
6774 break;
6776 case IMAGPART_EXPR:
6777 /* The imaginary part of the complex number is always second.
6778 The expression is therefore always offset by the size of the
6779 scalar type. */
6780 offset = 0;
6781 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6782 inner = TREE_OPERAND (exp, 0);
6783 break;
6785 case VAR_DECL:
6786 /* TLS emulation hook - replace __thread VAR's &VAR with
6787 __emutls_get_address (&_emutls.VAR). */
6788 if (! targetm.have_tls
6789 && TREE_CODE (exp) == VAR_DECL
6790 && DECL_THREAD_LOCAL_P (exp))
6792 exp = emutls_var_address (exp);
6793 return expand_expr (exp, target, tmode, modifier);
6795 /* Fall through. */
6797 default:
6798 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6799 expand_expr, as that can have various side effects; LABEL_DECLs for
6800 example, may not have their DECL_RTL set yet. Expand the rtl of
6801 CONSTRUCTORs too, which should yield a memory reference for the
6802 constructor's contents. Assume language specific tree nodes can
6803 be expanded in some interesting way. */
6804 if (DECL_P (exp)
6805 || TREE_CODE (exp) == CONSTRUCTOR
6806 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6808 result = expand_expr (exp, target, tmode,
6809 modifier == EXPAND_INITIALIZER
6810 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6812 /* If the DECL isn't in memory, then the DECL wasn't properly
6813 marked TREE_ADDRESSABLE, which will be either a front-end
6814 or a tree optimizer bug. */
6815 gcc_assert (MEM_P (result));
6816 result = XEXP (result, 0);
6818 /* ??? Is this needed anymore? */
6819 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6821 assemble_external (exp);
6822 TREE_USED (exp) = 1;
6825 if (modifier != EXPAND_INITIALIZER
6826 && modifier != EXPAND_CONST_ADDRESS)
6827 result = force_operand (result, target);
6828 return result;
6831 /* Pass FALSE as the last argument to get_inner_reference although
6832 we are expanding to RTL. The rationale is that we know how to
6833 handle "aligning nodes" here: we can just bypass them because
6834 they won't change the final object whose address will be returned
6835 (they actually exist only for that purpose). */
6836 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6837 &mode1, &unsignedp, &volatilep, false);
6838 break;
6841 /* We must have made progress. */
6842 gcc_assert (inner != exp);
6844 subtarget = offset || bitpos ? NULL_RTX : target;
6845 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6847 if (offset)
6849 rtx tmp;
6851 if (modifier != EXPAND_NORMAL)
6852 result = force_operand (result, NULL);
6853 tmp = expand_expr (offset, NULL_RTX, tmode,
6854 modifier == EXPAND_INITIALIZER
6855 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6857 result = convert_memory_address (tmode, result);
6858 tmp = convert_memory_address (tmode, tmp);
6860 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6861 result = gen_rtx_PLUS (tmode, result, tmp);
6862 else
6864 subtarget = bitpos ? NULL_RTX : target;
6865 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6866 1, OPTAB_LIB_WIDEN);
6870 if (bitpos)
6872 /* Someone beforehand should have rejected taking the address
6873 of such an object. */
6874 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6876 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6877 if (modifier < EXPAND_SUM)
6878 result = force_operand (result, target);
6881 return result;
6884 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6885 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6887 static rtx
6888 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6889 enum expand_modifier modifier)
6891 enum machine_mode rmode;
6892 rtx result;
6894 /* Target mode of VOIDmode says "whatever's natural". */
6895 if (tmode == VOIDmode)
6896 tmode = TYPE_MODE (TREE_TYPE (exp));
6898 /* We can get called with some Weird Things if the user does silliness
6899 like "(short) &a". In that case, convert_memory_address won't do
6900 the right thing, so ignore the given target mode. */
6901 if (tmode != Pmode && tmode != ptr_mode)
6902 tmode = Pmode;
6904 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6905 tmode, modifier);
6907 /* Despite expand_expr claims concerning ignoring TMODE when not
6908 strictly convenient, stuff breaks if we don't honor it. Note
6909 that combined with the above, we only do this for pointer modes. */
6910 rmode = GET_MODE (result);
6911 if (rmode == VOIDmode)
6912 rmode = tmode;
6913 if (rmode != tmode)
6914 result = convert_memory_address (tmode, result);
6916 return result;
6919 /* Generate code for computing CONSTRUCTOR EXP.
6920 An rtx for the computed value is returned. If AVOID_TEMP_MEM
6921 is TRUE, instead of creating a temporary variable in memory
6922 NULL is returned and the caller needs to handle it differently. */
6924 static rtx
6925 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
6926 bool avoid_temp_mem)
6928 tree type = TREE_TYPE (exp);
6929 enum machine_mode mode = TYPE_MODE (type);
6931 /* Try to avoid creating a temporary at all. This is possible
6932 if all of the initializer is zero.
6933 FIXME: try to handle all [0..255] initializers we can handle
6934 with memset. */
6935 if (TREE_STATIC (exp)
6936 && !TREE_ADDRESSABLE (exp)
6937 && target != 0 && mode == BLKmode
6938 && all_zeros_p (exp))
6940 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6941 return target;
6944 /* All elts simple constants => refer to a constant in memory. But
6945 if this is a non-BLKmode mode, let it store a field at a time
6946 since that should make a CONST_INT or CONST_DOUBLE when we
6947 fold. Likewise, if we have a target we can use, it is best to
6948 store directly into the target unless the type is large enough
6949 that memcpy will be used. If we are making an initializer and
6950 all operands are constant, put it in memory as well.
6952 FIXME: Avoid trying to fill vector constructors piece-meal.
6953 Output them with output_constant_def below unless we're sure
6954 they're zeros. This should go away when vector initializers
6955 are treated like VECTOR_CST instead of arrays. */
6956 if ((TREE_STATIC (exp)
6957 && ((mode == BLKmode
6958 && ! (target != 0 && safe_from_p (target, exp, 1)))
6959 || TREE_ADDRESSABLE (exp)
6960 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6961 && (! MOVE_BY_PIECES_P
6962 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6963 TYPE_ALIGN (type)))
6964 && ! mostly_zeros_p (exp))))
6965 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
6966 && TREE_CONSTANT (exp)))
6968 rtx constructor;
6970 if (avoid_temp_mem)
6971 return NULL_RTX;
6973 constructor = expand_expr_constant (exp, 1, modifier);
6975 if (modifier != EXPAND_CONST_ADDRESS
6976 && modifier != EXPAND_INITIALIZER
6977 && modifier != EXPAND_SUM)
6978 constructor = validize_mem (constructor);
6980 return constructor;
6983 /* Handle calls that pass values in multiple non-contiguous
6984 locations. The Irix 6 ABI has examples of this. */
6985 if (target == 0 || ! safe_from_p (target, exp, 1)
6986 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
6988 if (avoid_temp_mem)
6989 return NULL_RTX;
6991 target
6992 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
6993 | (TREE_READONLY (exp)
6994 * TYPE_QUAL_CONST))),
6995 0, TREE_ADDRESSABLE (exp), 1);
6998 store_constructor (exp, target, 0, int_expr_size (exp));
6999 return target;
7003 /* expand_expr: generate code for computing expression EXP.
7004 An rtx for the computed value is returned. The value is never null.
7005 In the case of a void EXP, const0_rtx is returned.
7007 The value may be stored in TARGET if TARGET is nonzero.
7008 TARGET is just a suggestion; callers must assume that
7009 the rtx returned may not be the same as TARGET.
7011 If TARGET is CONST0_RTX, it means that the value will be ignored.
7013 If TMODE is not VOIDmode, it suggests generating the
7014 result in mode TMODE. But this is done only when convenient.
7015 Otherwise, TMODE is ignored and the value generated in its natural mode.
7016 TMODE is just a suggestion; callers must assume that
7017 the rtx returned may not have mode TMODE.
7019 Note that TARGET may have neither TMODE nor MODE. In that case, it
7020 probably will not be used.
7022 If MODIFIER is EXPAND_SUM then when EXP is an addition
7023 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7024 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7025 products as above, or REG or MEM, or constant.
7026 Ordinarily in such cases we would output mul or add instructions
7027 and then return a pseudo reg containing the sum.
7029 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7030 it also marks a label as absolutely required (it can't be dead).
7031 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7032 This is used for outputting expressions used in initializers.
7034 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7035 with a constant address even if that address is not normally legitimate.
7036 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7038 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7039 a call parameter. Such targets require special care as we haven't yet
7040 marked TARGET so that it's safe from being trashed by libcalls. We
7041 don't want to use TARGET for anything but the final result;
7042 Intermediate values must go elsewhere. Additionally, calls to
7043 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7045 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7046 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7047 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7048 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7049 recursively. */
7051 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
7052 enum expand_modifier, rtx *);
7055 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7056 enum expand_modifier modifier, rtx *alt_rtl)
7058 int rn = -1;
7059 rtx ret, last = NULL;
7061 /* Handle ERROR_MARK before anybody tries to access its type. */
7062 if (TREE_CODE (exp) == ERROR_MARK
7063 || (!GIMPLE_TUPLE_P (exp) && TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7065 ret = CONST0_RTX (tmode);
7066 return ret ? ret : const0_rtx;
7069 if (flag_non_call_exceptions)
7071 rn = lookup_stmt_eh_region (exp);
7072 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7073 if (rn >= 0)
7074 last = get_last_insn ();
7077 /* If this is an expression of some kind and it has an associated line
7078 number, then emit the line number before expanding the expression.
7080 We need to save and restore the file and line information so that
7081 errors discovered during expansion are emitted with the right
7082 information. It would be better of the diagnostic routines
7083 used the file/line information embedded in the tree nodes rather
7084 than globals. */
7085 if (cfun && EXPR_HAS_LOCATION (exp))
7087 location_t saved_location = input_location;
7088 input_location = EXPR_LOCATION (exp);
7089 set_curr_insn_source_location (input_location);
7091 /* Record where the insns produced belong. */
7092 set_curr_insn_block (TREE_BLOCK (exp));
7094 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7096 input_location = saved_location;
7098 else
7100 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7103 /* If using non-call exceptions, mark all insns that may trap.
7104 expand_call() will mark CALL_INSNs before we get to this code,
7105 but it doesn't handle libcalls, and these may trap. */
7106 if (rn >= 0)
7108 rtx insn;
7109 for (insn = next_real_insn (last); insn;
7110 insn = next_real_insn (insn))
7112 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7113 /* If we want exceptions for non-call insns, any
7114 may_trap_p instruction may throw. */
7115 && GET_CODE (PATTERN (insn)) != CLOBBER
7116 && GET_CODE (PATTERN (insn)) != USE
7117 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
7119 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
7120 REG_NOTES (insn));
7125 return ret;
7128 static rtx
7129 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
7130 enum expand_modifier modifier, rtx *alt_rtl)
7132 rtx op0, op1, op2, temp, decl_rtl;
7133 tree type;
7134 int unsignedp;
7135 enum machine_mode mode;
7136 enum tree_code code = TREE_CODE (exp);
7137 optab this_optab;
7138 rtx subtarget, original_target;
7139 int ignore;
7140 tree context, subexp0, subexp1;
7141 bool reduce_bit_field = false;
7142 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
7143 ? reduce_to_bit_field_precision ((expr), \
7144 target, \
7145 type) \
7146 : (expr))
7148 if (GIMPLE_STMT_P (exp))
7150 type = void_type_node;
7151 mode = VOIDmode;
7152 unsignedp = 0;
7154 else
7156 type = TREE_TYPE (exp);
7157 mode = TYPE_MODE (type);
7158 unsignedp = TYPE_UNSIGNED (type);
7160 if (lang_hooks.reduce_bit_field_operations
7161 && TREE_CODE (type) == INTEGER_TYPE
7162 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
7164 /* An operation in what may be a bit-field type needs the
7165 result to be reduced to the precision of the bit-field type,
7166 which is narrower than that of the type's mode. */
7167 reduce_bit_field = true;
7168 if (modifier == EXPAND_STACK_PARM)
7169 target = 0;
7172 /* Use subtarget as the target for operand 0 of a binary operation. */
7173 subtarget = get_subtarget (target);
7174 original_target = target;
7175 ignore = (target == const0_rtx
7176 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
7177 || code == CONVERT_EXPR || code == COND_EXPR
7178 || code == VIEW_CONVERT_EXPR)
7179 && TREE_CODE (type) == VOID_TYPE));
7181 /* If we are going to ignore this result, we need only do something
7182 if there is a side-effect somewhere in the expression. If there
7183 is, short-circuit the most common cases here. Note that we must
7184 not call expand_expr with anything but const0_rtx in case this
7185 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
7187 if (ignore)
7189 if (! TREE_SIDE_EFFECTS (exp))
7190 return const0_rtx;
7192 /* Ensure we reference a volatile object even if value is ignored, but
7193 don't do this if all we are doing is taking its address. */
7194 if (TREE_THIS_VOLATILE (exp)
7195 && TREE_CODE (exp) != FUNCTION_DECL
7196 && mode != VOIDmode && mode != BLKmode
7197 && modifier != EXPAND_CONST_ADDRESS)
7199 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
7200 if (MEM_P (temp))
7201 temp = copy_to_reg (temp);
7202 return const0_rtx;
7205 if (TREE_CODE_CLASS (code) == tcc_unary
7206 || code == COMPONENT_REF || code == INDIRECT_REF)
7207 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
7208 modifier);
7210 else if (TREE_CODE_CLASS (code) == tcc_binary
7211 || TREE_CODE_CLASS (code) == tcc_comparison
7212 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
7214 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7215 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7216 return const0_rtx;
7218 else if (code == BIT_FIELD_REF)
7220 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7221 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7222 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
7223 return const0_rtx;
7226 target = 0;
7230 switch (code)
7232 case LABEL_DECL:
7234 tree function = decl_function_context (exp);
7236 temp = label_rtx (exp);
7237 temp = gen_rtx_LABEL_REF (Pmode, temp);
7239 if (function != current_function_decl
7240 && function != 0)
7241 LABEL_REF_NONLOCAL_P (temp) = 1;
7243 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
7244 return temp;
7247 case SSA_NAME:
7248 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
7249 NULL);
7251 case PARM_DECL:
7252 case VAR_DECL:
7253 /* If a static var's type was incomplete when the decl was written,
7254 but the type is complete now, lay out the decl now. */
7255 if (DECL_SIZE (exp) == 0
7256 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
7257 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
7258 layout_decl (exp, 0);
7260 /* TLS emulation hook - replace __thread vars with
7261 *__emutls_get_address (&_emutls.var). */
7262 if (! targetm.have_tls
7263 && TREE_CODE (exp) == VAR_DECL
7264 && DECL_THREAD_LOCAL_P (exp))
7266 exp = build_fold_indirect_ref (emutls_var_address (exp));
7267 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
7270 /* ... fall through ... */
7272 case FUNCTION_DECL:
7273 case RESULT_DECL:
7274 decl_rtl = DECL_RTL (exp);
7275 gcc_assert (decl_rtl);
7276 decl_rtl = copy_rtx (decl_rtl);
7278 /* Ensure variable marked as used even if it doesn't go through
7279 a parser. If it hasn't be used yet, write out an external
7280 definition. */
7281 if (! TREE_USED (exp))
7283 assemble_external (exp);
7284 TREE_USED (exp) = 1;
7287 /* Show we haven't gotten RTL for this yet. */
7288 temp = 0;
7290 /* Variables inherited from containing functions should have
7291 been lowered by this point. */
7292 context = decl_function_context (exp);
7293 gcc_assert (!context
7294 || context == current_function_decl
7295 || TREE_STATIC (exp)
7296 /* ??? C++ creates functions that are not TREE_STATIC. */
7297 || TREE_CODE (exp) == FUNCTION_DECL);
7299 /* This is the case of an array whose size is to be determined
7300 from its initializer, while the initializer is still being parsed.
7301 See expand_decl. */
7303 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
7304 temp = validize_mem (decl_rtl);
7306 /* If DECL_RTL is memory, we are in the normal case and the
7307 address is not valid, get the address into a register. */
7309 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
7311 if (alt_rtl)
7312 *alt_rtl = decl_rtl;
7313 decl_rtl = use_anchored_address (decl_rtl);
7314 if (modifier != EXPAND_CONST_ADDRESS
7315 && modifier != EXPAND_SUM
7316 && !memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0)))
7317 temp = replace_equiv_address (decl_rtl,
7318 copy_rtx (XEXP (decl_rtl, 0)));
7321 /* If we got something, return it. But first, set the alignment
7322 if the address is a register. */
7323 if (temp != 0)
7325 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
7326 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
7328 return temp;
7331 /* If the mode of DECL_RTL does not match that of the decl, it
7332 must be a promoted value. We return a SUBREG of the wanted mode,
7333 but mark it so that we know that it was already extended. */
7335 if (REG_P (decl_rtl)
7336 && GET_MODE (decl_rtl) != DECL_MODE (exp))
7338 enum machine_mode pmode;
7340 /* Get the signedness used for this variable. Ensure we get the
7341 same mode we got when the variable was declared. */
7342 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
7343 (TREE_CODE (exp) == RESULT_DECL
7344 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
7345 gcc_assert (GET_MODE (decl_rtl) == pmode);
7347 temp = gen_lowpart_SUBREG (mode, decl_rtl);
7348 SUBREG_PROMOTED_VAR_P (temp) = 1;
7349 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
7350 return temp;
7353 return decl_rtl;
7355 case INTEGER_CST:
7356 temp = immed_double_const (TREE_INT_CST_LOW (exp),
7357 TREE_INT_CST_HIGH (exp), mode);
7359 return temp;
7361 case VECTOR_CST:
7363 tree tmp = NULL_TREE;
7364 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
7365 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
7366 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
7367 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
7368 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
7369 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
7370 return const_vector_from_tree (exp);
7371 if (GET_MODE_CLASS (mode) == MODE_INT)
7373 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
7374 if (type_for_mode)
7375 tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
7377 if (!tmp)
7378 tmp = build_constructor_from_list (type,
7379 TREE_VECTOR_CST_ELTS (exp));
7380 return expand_expr (tmp, ignore ? const0_rtx : target,
7381 tmode, modifier);
7384 case CONST_DECL:
7385 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
7387 case REAL_CST:
7388 /* If optimized, generate immediate CONST_DOUBLE
7389 which will be turned into memory by reload if necessary.
7391 We used to force a register so that loop.c could see it. But
7392 this does not allow gen_* patterns to perform optimizations with
7393 the constants. It also produces two insns in cases like "x = 1.0;".
7394 On most machines, floating-point constants are not permitted in
7395 many insns, so we'd end up copying it to a register in any case.
7397 Now, we do the copying in expand_binop, if appropriate. */
7398 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
7399 TYPE_MODE (TREE_TYPE (exp)));
7401 case FIXED_CST:
7402 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
7403 TYPE_MODE (TREE_TYPE (exp)));
7405 case COMPLEX_CST:
7406 /* Handle evaluating a complex constant in a CONCAT target. */
7407 if (original_target && GET_CODE (original_target) == CONCAT)
7409 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
7410 rtx rtarg, itarg;
7412 rtarg = XEXP (original_target, 0);
7413 itarg = XEXP (original_target, 1);
7415 /* Move the real and imaginary parts separately. */
7416 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
7417 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
7419 if (op0 != rtarg)
7420 emit_move_insn (rtarg, op0);
7421 if (op1 != itarg)
7422 emit_move_insn (itarg, op1);
7424 return original_target;
7427 /* ... fall through ... */
7429 case STRING_CST:
7430 temp = expand_expr_constant (exp, 1, modifier);
7432 /* temp contains a constant address.
7433 On RISC machines where a constant address isn't valid,
7434 make some insns to get that address into a register. */
7435 if (modifier != EXPAND_CONST_ADDRESS
7436 && modifier != EXPAND_INITIALIZER
7437 && modifier != EXPAND_SUM
7438 && ! memory_address_p (mode, XEXP (temp, 0)))
7439 return replace_equiv_address (temp,
7440 copy_rtx (XEXP (temp, 0)));
7441 return temp;
7443 case SAVE_EXPR:
7445 tree val = TREE_OPERAND (exp, 0);
7446 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
7448 if (!SAVE_EXPR_RESOLVED_P (exp))
7450 /* We can indeed still hit this case, typically via builtin
7451 expanders calling save_expr immediately before expanding
7452 something. Assume this means that we only have to deal
7453 with non-BLKmode values. */
7454 gcc_assert (GET_MODE (ret) != BLKmode);
7456 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
7457 DECL_ARTIFICIAL (val) = 1;
7458 DECL_IGNORED_P (val) = 1;
7459 TREE_OPERAND (exp, 0) = val;
7460 SAVE_EXPR_RESOLVED_P (exp) = 1;
7462 if (!CONSTANT_P (ret))
7463 ret = copy_to_reg (ret);
7464 SET_DECL_RTL (val, ret);
7467 return ret;
7470 case GOTO_EXPR:
7471 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
7472 expand_goto (TREE_OPERAND (exp, 0));
7473 else
7474 expand_computed_goto (TREE_OPERAND (exp, 0));
7475 return const0_rtx;
7477 case CONSTRUCTOR:
7478 /* If we don't need the result, just ensure we evaluate any
7479 subexpressions. */
7480 if (ignore)
7482 unsigned HOST_WIDE_INT idx;
7483 tree value;
7485 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7486 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
7488 return const0_rtx;
7491 return expand_constructor (exp, target, modifier, false);
7493 case MISALIGNED_INDIRECT_REF:
7494 case ALIGN_INDIRECT_REF:
7495 case INDIRECT_REF:
7497 tree exp1 = TREE_OPERAND (exp, 0);
7499 if (modifier != EXPAND_WRITE)
7501 tree t;
7503 t = fold_read_from_constant_string (exp);
7504 if (t)
7505 return expand_expr (t, target, tmode, modifier);
7508 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7509 op0 = memory_address (mode, op0);
7511 if (code == ALIGN_INDIRECT_REF)
7513 int align = TYPE_ALIGN_UNIT (type);
7514 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7515 op0 = memory_address (mode, op0);
7518 temp = gen_rtx_MEM (mode, op0);
7520 set_mem_attributes (temp, exp, 0);
7522 /* Resolve the misalignment now, so that we don't have to remember
7523 to resolve it later. Of course, this only works for reads. */
7524 /* ??? When we get around to supporting writes, we'll have to handle
7525 this in store_expr directly. The vectorizer isn't generating
7526 those yet, however. */
7527 if (code == MISALIGNED_INDIRECT_REF)
7529 int icode;
7530 rtx reg, insn;
7532 gcc_assert (modifier == EXPAND_NORMAL
7533 || modifier == EXPAND_STACK_PARM);
7535 /* The vectorizer should have already checked the mode. */
7536 icode = optab_handler (movmisalign_optab, mode)->insn_code;
7537 gcc_assert (icode != CODE_FOR_nothing);
7539 /* We've already validated the memory, and we're creating a
7540 new pseudo destination. The predicates really can't fail. */
7541 reg = gen_reg_rtx (mode);
7543 /* Nor can the insn generator. */
7544 insn = GEN_FCN (icode) (reg, temp);
7545 emit_insn (insn);
7547 return reg;
7550 return temp;
7553 case TARGET_MEM_REF:
7555 struct mem_address addr;
7557 get_address_description (exp, &addr);
7558 op0 = addr_for_mem_ref (&addr, true);
7559 op0 = memory_address (mode, op0);
7560 temp = gen_rtx_MEM (mode, op0);
7561 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7563 return temp;
7565 case ARRAY_REF:
7568 tree array = TREE_OPERAND (exp, 0);
7569 tree index = TREE_OPERAND (exp, 1);
7571 /* Fold an expression like: "foo"[2].
7572 This is not done in fold so it won't happen inside &.
7573 Don't fold if this is for wide characters since it's too
7574 difficult to do correctly and this is a very rare case. */
7576 if (modifier != EXPAND_CONST_ADDRESS
7577 && modifier != EXPAND_INITIALIZER
7578 && modifier != EXPAND_MEMORY)
7580 tree t = fold_read_from_constant_string (exp);
7582 if (t)
7583 return expand_expr (t, target, tmode, modifier);
7586 /* If this is a constant index into a constant array,
7587 just get the value from the array. Handle both the cases when
7588 we have an explicit constructor and when our operand is a variable
7589 that was declared const. */
7591 if (modifier != EXPAND_CONST_ADDRESS
7592 && modifier != EXPAND_INITIALIZER
7593 && modifier != EXPAND_MEMORY
7594 && TREE_CODE (array) == CONSTRUCTOR
7595 && ! TREE_SIDE_EFFECTS (array)
7596 && TREE_CODE (index) == INTEGER_CST)
7598 unsigned HOST_WIDE_INT ix;
7599 tree field, value;
7601 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7602 field, value)
7603 if (tree_int_cst_equal (field, index))
7605 if (!TREE_SIDE_EFFECTS (value))
7606 return expand_expr (fold (value), target, tmode, modifier);
7607 break;
7611 else if (optimize >= 1
7612 && modifier != EXPAND_CONST_ADDRESS
7613 && modifier != EXPAND_INITIALIZER
7614 && modifier != EXPAND_MEMORY
7615 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7616 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7617 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7618 && targetm.binds_local_p (array))
7620 if (TREE_CODE (index) == INTEGER_CST)
7622 tree init = DECL_INITIAL (array);
7624 if (TREE_CODE (init) == CONSTRUCTOR)
7626 unsigned HOST_WIDE_INT ix;
7627 tree field, value;
7629 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7630 field, value)
7631 if (tree_int_cst_equal (field, index))
7633 if (TREE_SIDE_EFFECTS (value))
7634 break;
7636 if (TREE_CODE (value) == CONSTRUCTOR)
7638 /* If VALUE is a CONSTRUCTOR, this
7639 optimization is only useful if
7640 this doesn't store the CONSTRUCTOR
7641 into memory. If it does, it is more
7642 efficient to just load the data from
7643 the array directly. */
7644 rtx ret = expand_constructor (value, target,
7645 modifier, true);
7646 if (ret == NULL_RTX)
7647 break;
7650 return expand_expr (fold (value), target, tmode,
7651 modifier);
7654 else if(TREE_CODE (init) == STRING_CST)
7656 tree index1 = index;
7657 tree low_bound = array_ref_low_bound (exp);
7658 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7660 /* Optimize the special-case of a zero lower bound.
7662 We convert the low_bound to sizetype to avoid some problems
7663 with constant folding. (E.g. suppose the lower bound is 1,
7664 and its mode is QI. Without the conversion,l (ARRAY
7665 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7666 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7668 if (! integer_zerop (low_bound))
7669 index1 = size_diffop (index1, fold_convert (sizetype,
7670 low_bound));
7672 if (0 > compare_tree_int (index1,
7673 TREE_STRING_LENGTH (init)))
7675 tree type = TREE_TYPE (TREE_TYPE (init));
7676 enum machine_mode mode = TYPE_MODE (type);
7678 if (GET_MODE_CLASS (mode) == MODE_INT
7679 && GET_MODE_SIZE (mode) == 1)
7680 return gen_int_mode (TREE_STRING_POINTER (init)
7681 [TREE_INT_CST_LOW (index1)],
7682 mode);
7688 goto normal_inner_ref;
7690 case COMPONENT_REF:
7691 /* If the operand is a CONSTRUCTOR, we can just extract the
7692 appropriate field if it is present. */
7693 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7695 unsigned HOST_WIDE_INT idx;
7696 tree field, value;
7698 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7699 idx, field, value)
7700 if (field == TREE_OPERAND (exp, 1)
7701 /* We can normally use the value of the field in the
7702 CONSTRUCTOR. However, if this is a bitfield in
7703 an integral mode that we can fit in a HOST_WIDE_INT,
7704 we must mask only the number of bits in the bitfield,
7705 since this is done implicitly by the constructor. If
7706 the bitfield does not meet either of those conditions,
7707 we can't do this optimization. */
7708 && (! DECL_BIT_FIELD (field)
7709 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7710 && (GET_MODE_BITSIZE (DECL_MODE (field))
7711 <= HOST_BITS_PER_WIDE_INT))))
7713 if (DECL_BIT_FIELD (field)
7714 && modifier == EXPAND_STACK_PARM)
7715 target = 0;
7716 op0 = expand_expr (value, target, tmode, modifier);
7717 if (DECL_BIT_FIELD (field))
7719 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7720 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7722 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7724 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7725 op0 = expand_and (imode, op0, op1, target);
7727 else
7729 tree count
7730 = build_int_cst (NULL_TREE,
7731 GET_MODE_BITSIZE (imode) - bitsize);
7733 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7734 target, 0);
7735 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7736 target, 0);
7740 return op0;
7743 goto normal_inner_ref;
7745 case BIT_FIELD_REF:
7746 case ARRAY_RANGE_REF:
7747 normal_inner_ref:
7749 enum machine_mode mode1;
7750 HOST_WIDE_INT bitsize, bitpos;
7751 tree offset;
7752 int volatilep = 0;
7753 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7754 &mode1, &unsignedp, &volatilep, true);
7755 rtx orig_op0;
7757 /* If we got back the original object, something is wrong. Perhaps
7758 we are evaluating an expression too early. In any event, don't
7759 infinitely recurse. */
7760 gcc_assert (tem != exp);
7762 /* If TEM's type is a union of variable size, pass TARGET to the inner
7763 computation, since it will need a temporary and TARGET is known
7764 to have to do. This occurs in unchecked conversion in Ada. */
7766 orig_op0 = op0
7767 = expand_expr (tem,
7768 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7769 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7770 != INTEGER_CST)
7771 && modifier != EXPAND_STACK_PARM
7772 ? target : NULL_RTX),
7773 VOIDmode,
7774 (modifier == EXPAND_INITIALIZER
7775 || modifier == EXPAND_CONST_ADDRESS
7776 || modifier == EXPAND_STACK_PARM)
7777 ? modifier : EXPAND_NORMAL);
7779 /* If this is a constant, put it into a register if it is a legitimate
7780 constant, OFFSET is 0, and we won't try to extract outside the
7781 register (in case we were passed a partially uninitialized object
7782 or a view_conversion to a larger size). Force the constant to
7783 memory otherwise. */
7784 if (CONSTANT_P (op0))
7786 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7787 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7788 && offset == 0
7789 && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7790 op0 = force_reg (mode, op0);
7791 else
7792 op0 = validize_mem (force_const_mem (mode, op0));
7795 /* Otherwise, if this object not in memory and we either have an
7796 offset, a BLKmode result, or a reference outside the object, put it
7797 there. Such cases can occur in Ada if we have unchecked conversion
7798 of an expression from a scalar type to an array or record type or
7799 for an ARRAY_RANGE_REF whose type is BLKmode. */
7800 else if (!MEM_P (op0)
7801 && (offset != 0
7802 || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
7803 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
7805 tree nt = build_qualified_type (TREE_TYPE (tem),
7806 (TYPE_QUALS (TREE_TYPE (tem))
7807 | TYPE_QUAL_CONST));
7808 rtx memloc = assign_temp (nt, 1, 1, 1);
7810 emit_move_insn (memloc, op0);
7811 op0 = memloc;
7814 if (offset != 0)
7816 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7817 EXPAND_SUM);
7819 gcc_assert (MEM_P (op0));
7821 #ifdef POINTERS_EXTEND_UNSIGNED
7822 if (GET_MODE (offset_rtx) != Pmode)
7823 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7824 #else
7825 if (GET_MODE (offset_rtx) != ptr_mode)
7826 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7827 #endif
7829 if (GET_MODE (op0) == BLKmode
7830 /* A constant address in OP0 can have VOIDmode, we must
7831 not try to call force_reg in that case. */
7832 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7833 && bitsize != 0
7834 && (bitpos % bitsize) == 0
7835 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7836 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7838 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7839 bitpos = 0;
7842 op0 = offset_address (op0, offset_rtx,
7843 highest_pow2_factor (offset));
7846 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7847 record its alignment as BIGGEST_ALIGNMENT. */
7848 if (MEM_P (op0) && bitpos == 0 && offset != 0
7849 && is_aligning_offset (offset, tem))
7850 set_mem_align (op0, BIGGEST_ALIGNMENT);
7852 /* Don't forget about volatility even if this is a bitfield. */
7853 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7855 if (op0 == orig_op0)
7856 op0 = copy_rtx (op0);
7858 MEM_VOLATILE_P (op0) = 1;
7861 /* The following code doesn't handle CONCAT.
7862 Assume only bitpos == 0 can be used for CONCAT, due to
7863 one element arrays having the same mode as its element. */
7864 if (GET_CODE (op0) == CONCAT)
7866 gcc_assert (bitpos == 0
7867 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7868 return op0;
7871 /* In cases where an aligned union has an unaligned object
7872 as a field, we might be extracting a BLKmode value from
7873 an integer-mode (e.g., SImode) object. Handle this case
7874 by doing the extract into an object as wide as the field
7875 (which we know to be the width of a basic mode), then
7876 storing into memory, and changing the mode to BLKmode. */
7877 if (mode1 == VOIDmode
7878 || REG_P (op0) || GET_CODE (op0) == SUBREG
7879 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7880 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7881 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7882 && modifier != EXPAND_CONST_ADDRESS
7883 && modifier != EXPAND_INITIALIZER)
7884 /* If the field isn't aligned enough to fetch as a memref,
7885 fetch it as a bit field. */
7886 || (mode1 != BLKmode
7887 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7888 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7889 || (MEM_P (op0)
7890 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7891 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7892 && ((modifier == EXPAND_CONST_ADDRESS
7893 || modifier == EXPAND_INITIALIZER)
7894 ? STRICT_ALIGNMENT
7895 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7896 || (bitpos % BITS_PER_UNIT != 0)))
7897 /* If the type and the field are a constant size and the
7898 size of the type isn't the same size as the bitfield,
7899 we must use bitfield operations. */
7900 || (bitsize >= 0
7901 && TYPE_SIZE (TREE_TYPE (exp))
7902 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7903 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7904 bitsize)))
7906 enum machine_mode ext_mode = mode;
7908 if (ext_mode == BLKmode
7909 && ! (target != 0 && MEM_P (op0)
7910 && MEM_P (target)
7911 && bitpos % BITS_PER_UNIT == 0))
7912 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7914 if (ext_mode == BLKmode)
7916 if (target == 0)
7917 target = assign_temp (type, 0, 1, 1);
7919 if (bitsize == 0)
7920 return target;
7922 /* In this case, BITPOS must start at a byte boundary and
7923 TARGET, if specified, must be a MEM. */
7924 gcc_assert (MEM_P (op0)
7925 && (!target || MEM_P (target))
7926 && !(bitpos % BITS_PER_UNIT));
7928 emit_block_move (target,
7929 adjust_address (op0, VOIDmode,
7930 bitpos / BITS_PER_UNIT),
7931 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7932 / BITS_PER_UNIT),
7933 (modifier == EXPAND_STACK_PARM
7934 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7936 return target;
7939 op0 = validize_mem (op0);
7941 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7942 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7944 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7945 (modifier == EXPAND_STACK_PARM
7946 ? NULL_RTX : target),
7947 ext_mode, ext_mode);
7949 /* If the result is a record type and BITSIZE is narrower than
7950 the mode of OP0, an integral mode, and this is a big endian
7951 machine, we must put the field into the high-order bits. */
7952 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7953 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7954 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7955 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7956 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7957 - bitsize),
7958 op0, 1);
7960 /* If the result type is BLKmode, store the data into a temporary
7961 of the appropriate type, but with the mode corresponding to the
7962 mode for the data we have (op0's mode). It's tempting to make
7963 this a constant type, since we know it's only being stored once,
7964 but that can cause problems if we are taking the address of this
7965 COMPONENT_REF because the MEM of any reference via that address
7966 will have flags corresponding to the type, which will not
7967 necessarily be constant. */
7968 if (mode == BLKmode)
7970 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
7971 rtx new;
7973 /* If the reference doesn't use the alias set of its type,
7974 we cannot create the temporary using that type. */
7975 if (component_uses_parent_alias_set (exp))
7977 new = assign_stack_local (ext_mode, size, 0);
7978 set_mem_alias_set (new, get_alias_set (exp));
7980 else
7981 new = assign_stack_temp_for_type (ext_mode, size, 0, type);
7983 emit_move_insn (new, op0);
7984 op0 = copy_rtx (new);
7985 PUT_MODE (op0, BLKmode);
7986 set_mem_attributes (op0, exp, 1);
7989 return op0;
7992 /* If the result is BLKmode, use that to access the object
7993 now as well. */
7994 if (mode == BLKmode)
7995 mode1 = BLKmode;
7997 /* Get a reference to just this component. */
7998 if (modifier == EXPAND_CONST_ADDRESS
7999 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8000 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
8001 else
8002 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
8004 if (op0 == orig_op0)
8005 op0 = copy_rtx (op0);
8007 set_mem_attributes (op0, exp, 0);
8008 if (REG_P (XEXP (op0, 0)))
8009 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
8011 MEM_VOLATILE_P (op0) |= volatilep;
8012 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
8013 || modifier == EXPAND_CONST_ADDRESS
8014 || modifier == EXPAND_INITIALIZER)
8015 return op0;
8016 else if (target == 0)
8017 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8019 convert_move (target, op0, unsignedp);
8020 return target;
8023 case OBJ_TYPE_REF:
8024 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
8026 case CALL_EXPR:
8027 /* All valid uses of __builtin_va_arg_pack () are removed during
8028 inlining. */
8029 if (CALL_EXPR_VA_ARG_PACK (exp))
8030 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
8032 tree fndecl = get_callee_fndecl (exp), attr;
8034 if (fndecl
8035 && (attr = lookup_attribute ("error",
8036 DECL_ATTRIBUTES (fndecl))) != NULL)
8037 error ("%Kcall to %qs declared with attribute error: %s",
8038 exp, lang_hooks.decl_printable_name (fndecl, 1),
8039 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8040 if (fndecl
8041 && (attr = lookup_attribute ("warning",
8042 DECL_ATTRIBUTES (fndecl))) != NULL)
8043 warning (0, "%Kcall to %qs declared with attribute warning: %s",
8044 exp, lang_hooks.decl_printable_name (fndecl, 1),
8045 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8047 /* Check for a built-in function. */
8048 if (fndecl && DECL_BUILT_IN (fndecl))
8050 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_FRONTEND)
8051 return lang_hooks.expand_expr (exp, original_target,
8052 tmode, modifier, alt_rtl);
8053 else
8054 return expand_builtin (exp, target, subtarget, tmode, ignore);
8057 return expand_call (exp, target, ignore);
8059 case NON_LVALUE_EXPR:
8060 case NOP_EXPR:
8061 case CONVERT_EXPR:
8062 if (TREE_OPERAND (exp, 0) == error_mark_node)
8063 return const0_rtx;
8065 if (TREE_CODE (type) == UNION_TYPE)
8067 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
8069 /* If both input and output are BLKmode, this conversion isn't doing
8070 anything except possibly changing memory attribute. */
8071 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8073 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
8074 modifier);
8076 result = copy_rtx (result);
8077 set_mem_attributes (result, exp, 0);
8078 return result;
8081 if (target == 0)
8083 if (TYPE_MODE (type) != BLKmode)
8084 target = gen_reg_rtx (TYPE_MODE (type));
8085 else
8086 target = assign_temp (type, 0, 1, 1);
8089 if (MEM_P (target))
8090 /* Store data into beginning of memory target. */
8091 store_expr (TREE_OPERAND (exp, 0),
8092 adjust_address (target, TYPE_MODE (valtype), 0),
8093 modifier == EXPAND_STACK_PARM,
8094 false);
8096 else
8098 gcc_assert (REG_P (target));
8100 /* Store this field into a union of the proper type. */
8101 store_field (target,
8102 MIN ((int_size_in_bytes (TREE_TYPE
8103 (TREE_OPERAND (exp, 0)))
8104 * BITS_PER_UNIT),
8105 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8106 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
8107 type, 0, false);
8110 /* Return the entire union. */
8111 return target;
8114 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8116 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
8117 modifier);
8119 /* If the signedness of the conversion differs and OP0 is
8120 a promoted SUBREG, clear that indication since we now
8121 have to do the proper extension. */
8122 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
8123 && GET_CODE (op0) == SUBREG)
8124 SUBREG_PROMOTED_VAR_P (op0) = 0;
8126 return REDUCE_BIT_FIELD (op0);
8129 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
8130 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8131 if (GET_MODE (op0) == mode)
8134 /* If OP0 is a constant, just convert it into the proper mode. */
8135 else if (CONSTANT_P (op0))
8137 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8138 enum machine_mode inner_mode = TYPE_MODE (inner_type);
8140 if (modifier == EXPAND_INITIALIZER)
8141 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8142 subreg_lowpart_offset (mode,
8143 inner_mode));
8144 else
8145 op0= convert_modes (mode, inner_mode, op0,
8146 TYPE_UNSIGNED (inner_type));
8149 else if (modifier == EXPAND_INITIALIZER)
8150 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8152 else if (target == 0)
8153 op0 = convert_to_mode (mode, op0,
8154 TYPE_UNSIGNED (TREE_TYPE
8155 (TREE_OPERAND (exp, 0))));
8156 else
8158 convert_move (target, op0,
8159 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8160 op0 = target;
8163 return REDUCE_BIT_FIELD (op0);
8165 case VIEW_CONVERT_EXPR:
8166 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
8168 /* If the input and output modes are both the same, we are done. */
8169 if (TYPE_MODE (type) == GET_MODE (op0))
8171 /* If neither mode is BLKmode, and both modes are the same size
8172 then we can use gen_lowpart. */
8173 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
8174 && GET_MODE_SIZE (TYPE_MODE (type))
8175 == GET_MODE_SIZE (GET_MODE (op0)))
8177 if (GET_CODE (op0) == SUBREG)
8178 op0 = force_reg (GET_MODE (op0), op0);
8179 op0 = gen_lowpart (TYPE_MODE (type), op0);
8181 /* If both modes are integral, then we can convert from one to the
8182 other. */
8183 else if (SCALAR_INT_MODE_P (GET_MODE (op0))
8184 && SCALAR_INT_MODE_P (TYPE_MODE (type)))
8185 op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
8186 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8187 /* As a last resort, spill op0 to memory, and reload it in a
8188 different mode. */
8189 else if (!MEM_P (op0))
8191 /* If the operand is not a MEM, force it into memory. Since we
8192 are going to be changing the mode of the MEM, don't call
8193 force_const_mem for constants because we don't allow pool
8194 constants to change mode. */
8195 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8197 gcc_assert (!TREE_ADDRESSABLE (exp));
8199 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
8200 target
8201 = assign_stack_temp_for_type
8202 (TYPE_MODE (inner_type),
8203 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
8205 emit_move_insn (target, op0);
8206 op0 = target;
8209 /* At this point, OP0 is in the correct mode. If the output type is such
8210 that the operand is known to be aligned, indicate that it is.
8211 Otherwise, we need only be concerned about alignment for non-BLKmode
8212 results. */
8213 if (MEM_P (op0))
8215 op0 = copy_rtx (op0);
8217 if (TYPE_ALIGN_OK (type))
8218 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
8219 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
8220 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
8222 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8223 HOST_WIDE_INT temp_size
8224 = MAX (int_size_in_bytes (inner_type),
8225 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
8226 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
8227 temp_size, 0, type);
8228 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
8230 gcc_assert (!TREE_ADDRESSABLE (exp));
8232 if (GET_MODE (op0) == BLKmode)
8233 emit_block_move (new_with_op0_mode, op0,
8234 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
8235 (modifier == EXPAND_STACK_PARM
8236 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
8237 else
8238 emit_move_insn (new_with_op0_mode, op0);
8240 op0 = new;
8243 op0 = adjust_address (op0, TYPE_MODE (type), 0);
8246 return op0;
8248 case POINTER_PLUS_EXPR:
8249 /* Even though the sizetype mode and the pointer's mode can be different
8250 expand is able to handle this correctly and get the correct result out
8251 of the PLUS_EXPR code. */
8252 case PLUS_EXPR:
8254 /* Check if this is a case for multiplication and addition. */
8255 if ((TREE_CODE (type) == INTEGER_TYPE
8256 || TREE_CODE (type) == FIXED_POINT_TYPE)
8257 && TREE_CODE (TREE_OPERAND (exp, 0)) == MULT_EXPR)
8259 tree subsubexp0, subsubexp1;
8260 enum tree_code code0, code1, this_code;
8262 subexp0 = TREE_OPERAND (exp, 0);
8263 subsubexp0 = TREE_OPERAND (subexp0, 0);
8264 subsubexp1 = TREE_OPERAND (subexp0, 1);
8265 code0 = TREE_CODE (subsubexp0);
8266 code1 = TREE_CODE (subsubexp1);
8267 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8268 : FIXED_CONVERT_EXPR;
8269 if (code0 == this_code && code1 == this_code
8270 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8271 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8272 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8273 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8274 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8275 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8277 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8278 enum machine_mode innermode = TYPE_MODE (op0type);
8279 bool zextend_p = TYPE_UNSIGNED (op0type);
8280 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8281 if (sat_p == 0)
8282 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
8283 else
8284 this_optab = zextend_p ? usmadd_widen_optab
8285 : ssmadd_widen_optab;
8286 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8287 && (optab_handler (this_optab, mode)->insn_code
8288 != CODE_FOR_nothing))
8290 expand_operands (TREE_OPERAND (subsubexp0, 0),
8291 TREE_OPERAND (subsubexp1, 0),
8292 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8293 op2 = expand_expr (TREE_OPERAND (exp, 1), subtarget,
8294 VOIDmode, EXPAND_NORMAL);
8295 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8296 target, unsignedp);
8297 gcc_assert (temp);
8298 return REDUCE_BIT_FIELD (temp);
8303 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8304 something else, make sure we add the register to the constant and
8305 then to the other thing. This case can occur during strength
8306 reduction and doing it this way will produce better code if the
8307 frame pointer or argument pointer is eliminated.
8309 fold-const.c will ensure that the constant is always in the inner
8310 PLUS_EXPR, so the only case we need to do anything about is if
8311 sp, ap, or fp is our second argument, in which case we must swap
8312 the innermost first argument and our second argument. */
8314 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
8315 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
8316 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
8317 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
8318 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
8319 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
8321 tree t = TREE_OPERAND (exp, 1);
8323 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8324 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
8327 /* If the result is to be ptr_mode and we are adding an integer to
8328 something, we might be forming a constant. So try to use
8329 plus_constant. If it produces a sum and we can't accept it,
8330 use force_operand. This allows P = &ARR[const] to generate
8331 efficient code on machines where a SYMBOL_REF is not a valid
8332 address.
8334 If this is an EXPAND_SUM call, always return the sum. */
8335 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8336 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8338 if (modifier == EXPAND_STACK_PARM)
8339 target = 0;
8340 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
8341 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8342 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
8344 rtx constant_part;
8346 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
8347 EXPAND_SUM);
8348 /* Use immed_double_const to ensure that the constant is
8349 truncated according to the mode of OP1, then sign extended
8350 to a HOST_WIDE_INT. Using the constant directly can result
8351 in non-canonical RTL in a 64x32 cross compile. */
8352 constant_part
8353 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
8354 (HOST_WIDE_INT) 0,
8355 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8356 op1 = plus_constant (op1, INTVAL (constant_part));
8357 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8358 op1 = force_operand (op1, target);
8359 return REDUCE_BIT_FIELD (op1);
8362 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8363 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8364 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
8366 rtx constant_part;
8368 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8369 (modifier == EXPAND_INITIALIZER
8370 ? EXPAND_INITIALIZER : EXPAND_SUM));
8371 if (! CONSTANT_P (op0))
8373 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
8374 VOIDmode, modifier);
8375 /* Return a PLUS if modifier says it's OK. */
8376 if (modifier == EXPAND_SUM
8377 || modifier == EXPAND_INITIALIZER)
8378 return simplify_gen_binary (PLUS, mode, op0, op1);
8379 goto binop2;
8381 /* Use immed_double_const to ensure that the constant is
8382 truncated according to the mode of OP1, then sign extended
8383 to a HOST_WIDE_INT. Using the constant directly can result
8384 in non-canonical RTL in a 64x32 cross compile. */
8385 constant_part
8386 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
8387 (HOST_WIDE_INT) 0,
8388 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
8389 op0 = plus_constant (op0, INTVAL (constant_part));
8390 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8391 op0 = force_operand (op0, target);
8392 return REDUCE_BIT_FIELD (op0);
8396 /* No sense saving up arithmetic to be done
8397 if it's all in the wrong mode to form part of an address.
8398 And force_operand won't know whether to sign-extend or
8399 zero-extend. */
8400 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8401 || mode != ptr_mode)
8403 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8404 subtarget, &op0, &op1, 0);
8405 if (op0 == const0_rtx)
8406 return op1;
8407 if (op1 == const0_rtx)
8408 return op0;
8409 goto binop2;
8412 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8413 subtarget, &op0, &op1, modifier);
8414 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8416 case MINUS_EXPR:
8417 /* Check if this is a case for multiplication and subtraction. */
8418 if ((TREE_CODE (type) == INTEGER_TYPE
8419 || TREE_CODE (type) == FIXED_POINT_TYPE)
8420 && TREE_CODE (TREE_OPERAND (exp, 1)) == MULT_EXPR)
8422 tree subsubexp0, subsubexp1;
8423 enum tree_code code0, code1, this_code;
8425 subexp1 = TREE_OPERAND (exp, 1);
8426 subsubexp0 = TREE_OPERAND (subexp1, 0);
8427 subsubexp1 = TREE_OPERAND (subexp1, 1);
8428 code0 = TREE_CODE (subsubexp0);
8429 code1 = TREE_CODE (subsubexp1);
8430 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8431 : FIXED_CONVERT_EXPR;
8432 if (code0 == this_code && code1 == this_code
8433 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8434 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8435 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8436 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8437 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8438 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8440 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8441 enum machine_mode innermode = TYPE_MODE (op0type);
8442 bool zextend_p = TYPE_UNSIGNED (op0type);
8443 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8444 if (sat_p == 0)
8445 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
8446 else
8447 this_optab = zextend_p ? usmsub_widen_optab
8448 : ssmsub_widen_optab;
8449 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8450 && (optab_handler (this_optab, mode)->insn_code
8451 != CODE_FOR_nothing))
8453 expand_operands (TREE_OPERAND (subsubexp0, 0),
8454 TREE_OPERAND (subsubexp1, 0),
8455 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8456 op2 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8457 VOIDmode, EXPAND_NORMAL);
8458 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8459 target, unsignedp);
8460 gcc_assert (temp);
8461 return REDUCE_BIT_FIELD (temp);
8466 /* For initializers, we are allowed to return a MINUS of two
8467 symbolic constants. Here we handle all cases when both operands
8468 are constant. */
8469 /* Handle difference of two symbolic constants,
8470 for the sake of an initializer. */
8471 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8472 && really_constant_p (TREE_OPERAND (exp, 0))
8473 && really_constant_p (TREE_OPERAND (exp, 1)))
8475 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8476 NULL_RTX, &op0, &op1, modifier);
8478 /* If the last operand is a CONST_INT, use plus_constant of
8479 the negated constant. Else make the MINUS. */
8480 if (GET_CODE (op1) == CONST_INT)
8481 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
8482 else
8483 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8486 /* No sense saving up arithmetic to be done
8487 if it's all in the wrong mode to form part of an address.
8488 And force_operand won't know whether to sign-extend or
8489 zero-extend. */
8490 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8491 || mode != ptr_mode)
8492 goto binop;
8494 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8495 subtarget, &op0, &op1, modifier);
8497 /* Convert A - const to A + (-const). */
8498 if (GET_CODE (op1) == CONST_INT)
8500 op1 = negate_rtx (mode, op1);
8501 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8504 goto binop2;
8506 case MULT_EXPR:
8507 /* If this is a fixed-point operation, then we cannot use the code
8508 below because "expand_mult" doesn't support sat/no-sat fixed-point
8509 multiplications. */
8510 if (ALL_FIXED_POINT_MODE_P (mode))
8511 goto binop;
8513 /* If first operand is constant, swap them.
8514 Thus the following special case checks need only
8515 check the second operand. */
8516 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
8518 tree t1 = TREE_OPERAND (exp, 0);
8519 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
8520 TREE_OPERAND (exp, 1) = t1;
8523 /* Attempt to return something suitable for generating an
8524 indexed address, for machines that support that. */
8526 if (modifier == EXPAND_SUM && mode == ptr_mode
8527 && host_integerp (TREE_OPERAND (exp, 1), 0))
8529 tree exp1 = TREE_OPERAND (exp, 1);
8531 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8532 EXPAND_SUM);
8534 if (!REG_P (op0))
8535 op0 = force_operand (op0, NULL_RTX);
8536 if (!REG_P (op0))
8537 op0 = copy_to_mode_reg (mode, op0);
8539 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8540 gen_int_mode (tree_low_cst (exp1, 0),
8541 TYPE_MODE (TREE_TYPE (exp1)))));
8544 if (modifier == EXPAND_STACK_PARM)
8545 target = 0;
8547 /* Check for multiplying things that have been extended
8548 from a narrower type. If this machine supports multiplying
8549 in that narrower type with a result in the desired type,
8550 do it that way, and avoid the explicit type-conversion. */
8552 subexp0 = TREE_OPERAND (exp, 0);
8553 subexp1 = TREE_OPERAND (exp, 1);
8554 /* First, check if we have a multiplication of one signed and one
8555 unsigned operand. */
8556 if (TREE_CODE (subexp0) == NOP_EXPR
8557 && TREE_CODE (subexp1) == NOP_EXPR
8558 && TREE_CODE (type) == INTEGER_TYPE
8559 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8560 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8561 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8562 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
8563 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8564 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
8566 enum machine_mode innermode
8567 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
8568 this_optab = usmul_widen_optab;
8569 if (mode == GET_MODE_WIDER_MODE (innermode))
8571 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8573 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
8574 expand_operands (TREE_OPERAND (subexp0, 0),
8575 TREE_OPERAND (subexp1, 0),
8576 NULL_RTX, &op0, &op1, 0);
8577 else
8578 expand_operands (TREE_OPERAND (subexp0, 0),
8579 TREE_OPERAND (subexp1, 0),
8580 NULL_RTX, &op1, &op0, 0);
8582 goto binop3;
8586 /* Check for a multiplication with matching signedness. */
8587 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
8588 && TREE_CODE (type) == INTEGER_TYPE
8589 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8590 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8591 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8592 && int_fits_type_p (TREE_OPERAND (exp, 1),
8593 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8594 /* Don't use a widening multiply if a shift will do. */
8595 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8596 > HOST_BITS_PER_WIDE_INT)
8597 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
8599 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
8600 && (TYPE_PRECISION (TREE_TYPE
8601 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8602 == TYPE_PRECISION (TREE_TYPE
8603 (TREE_OPERAND
8604 (TREE_OPERAND (exp, 0), 0))))
8605 /* If both operands are extended, they must either both
8606 be zero-extended or both be sign-extended. */
8607 && (TYPE_UNSIGNED (TREE_TYPE
8608 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8609 == TYPE_UNSIGNED (TREE_TYPE
8610 (TREE_OPERAND
8611 (TREE_OPERAND (exp, 0), 0)))))))
8613 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8614 enum machine_mode innermode = TYPE_MODE (op0type);
8615 bool zextend_p = TYPE_UNSIGNED (op0type);
8616 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8617 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8619 if (mode == GET_MODE_2XWIDER_MODE (innermode))
8621 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8623 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8624 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8625 TREE_OPERAND (exp, 1),
8626 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8627 else
8628 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8629 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
8630 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8631 goto binop3;
8633 else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
8634 && innermode == word_mode)
8636 rtx htem, hipart;
8637 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8638 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8639 op1 = convert_modes (innermode, mode,
8640 expand_normal (TREE_OPERAND (exp, 1)),
8641 unsignedp);
8642 else
8643 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8644 temp = expand_binop (mode, other_optab, op0, op1, target,
8645 unsignedp, OPTAB_LIB_WIDEN);
8646 hipart = gen_highpart (innermode, temp);
8647 htem = expand_mult_highpart_adjust (innermode, hipart,
8648 op0, op1, hipart,
8649 zextend_p);
8650 if (htem != hipart)
8651 emit_move_insn (hipart, htem);
8652 return REDUCE_BIT_FIELD (temp);
8656 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8657 subtarget, &op0, &op1, 0);
8658 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8660 case TRUNC_DIV_EXPR:
8661 case FLOOR_DIV_EXPR:
8662 case CEIL_DIV_EXPR:
8663 case ROUND_DIV_EXPR:
8664 case EXACT_DIV_EXPR:
8665 /* If this is a fixed-point operation, then we cannot use the code
8666 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8667 divisions. */
8668 if (ALL_FIXED_POINT_MODE_P (mode))
8669 goto binop;
8671 if (modifier == EXPAND_STACK_PARM)
8672 target = 0;
8673 /* Possible optimization: compute the dividend with EXPAND_SUM
8674 then if the divisor is constant can optimize the case
8675 where some terms of the dividend have coeffs divisible by it. */
8676 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8677 subtarget, &op0, &op1, 0);
8678 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8680 case RDIV_EXPR:
8681 goto binop;
8683 case TRUNC_MOD_EXPR:
8684 case FLOOR_MOD_EXPR:
8685 case CEIL_MOD_EXPR:
8686 case ROUND_MOD_EXPR:
8687 if (modifier == EXPAND_STACK_PARM)
8688 target = 0;
8689 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8690 subtarget, &op0, &op1, 0);
8691 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8693 case FIXED_CONVERT_EXPR:
8694 op0 = expand_normal (TREE_OPERAND (exp, 0));
8695 if (target == 0 || modifier == EXPAND_STACK_PARM)
8696 target = gen_reg_rtx (mode);
8698 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == INTEGER_TYPE
8699 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
8700 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8701 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8702 else
8703 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8704 return target;
8706 case FIX_TRUNC_EXPR:
8707 op0 = expand_normal (TREE_OPERAND (exp, 0));
8708 if (target == 0 || modifier == EXPAND_STACK_PARM)
8709 target = gen_reg_rtx (mode);
8710 expand_fix (target, op0, unsignedp);
8711 return target;
8713 case FLOAT_EXPR:
8714 op0 = expand_normal (TREE_OPERAND (exp, 0));
8715 if (target == 0 || modifier == EXPAND_STACK_PARM)
8716 target = gen_reg_rtx (mode);
8717 /* expand_float can't figure out what to do if FROM has VOIDmode.
8718 So give it the correct mode. With -O, cse will optimize this. */
8719 if (GET_MODE (op0) == VOIDmode)
8720 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8721 op0);
8722 expand_float (target, op0,
8723 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8724 return target;
8726 case NEGATE_EXPR:
8727 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8728 VOIDmode, EXPAND_NORMAL);
8729 if (modifier == EXPAND_STACK_PARM)
8730 target = 0;
8731 temp = expand_unop (mode,
8732 optab_for_tree_code (NEGATE_EXPR, type),
8733 op0, target, 0);
8734 gcc_assert (temp);
8735 return REDUCE_BIT_FIELD (temp);
8737 case ABS_EXPR:
8738 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8739 VOIDmode, EXPAND_NORMAL);
8740 if (modifier == EXPAND_STACK_PARM)
8741 target = 0;
8743 /* ABS_EXPR is not valid for complex arguments. */
8744 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8745 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8747 /* Unsigned abs is simply the operand. Testing here means we don't
8748 risk generating incorrect code below. */
8749 if (TYPE_UNSIGNED (type))
8750 return op0;
8752 return expand_abs (mode, op0, target, unsignedp,
8753 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8755 case MAX_EXPR:
8756 case MIN_EXPR:
8757 target = original_target;
8758 if (target == 0
8759 || modifier == EXPAND_STACK_PARM
8760 || (MEM_P (target) && MEM_VOLATILE_P (target))
8761 || GET_MODE (target) != mode
8762 || (REG_P (target)
8763 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8764 target = gen_reg_rtx (mode);
8765 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8766 target, &op0, &op1, 0);
8768 /* First try to do it with a special MIN or MAX instruction.
8769 If that does not win, use a conditional jump to select the proper
8770 value. */
8771 this_optab = optab_for_tree_code (code, type);
8772 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8773 OPTAB_WIDEN);
8774 if (temp != 0)
8775 return temp;
8777 /* At this point, a MEM target is no longer useful; we will get better
8778 code without it. */
8780 if (! REG_P (target))
8781 target = gen_reg_rtx (mode);
8783 /* If op1 was placed in target, swap op0 and op1. */
8784 if (target != op0 && target == op1)
8786 temp = op0;
8787 op0 = op1;
8788 op1 = temp;
8791 /* We generate better code and avoid problems with op1 mentioning
8792 target by forcing op1 into a pseudo if it isn't a constant. */
8793 if (! CONSTANT_P (op1))
8794 op1 = force_reg (mode, op1);
8797 enum rtx_code comparison_code;
8798 rtx cmpop1 = op1;
8800 if (code == MAX_EXPR)
8801 comparison_code = unsignedp ? GEU : GE;
8802 else
8803 comparison_code = unsignedp ? LEU : LE;
8805 /* Canonicalize to comparisons against 0. */
8806 if (op1 == const1_rtx)
8808 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8809 or (a != 0 ? a : 1) for unsigned.
8810 For MIN we are safe converting (a <= 1 ? a : 1)
8811 into (a <= 0 ? a : 1) */
8812 cmpop1 = const0_rtx;
8813 if (code == MAX_EXPR)
8814 comparison_code = unsignedp ? NE : GT;
8816 if (op1 == constm1_rtx && !unsignedp)
8818 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8819 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8820 cmpop1 = const0_rtx;
8821 if (code == MIN_EXPR)
8822 comparison_code = LT;
8824 #ifdef HAVE_conditional_move
8825 /* Use a conditional move if possible. */
8826 if (can_conditionally_move_p (mode))
8828 rtx insn;
8830 /* ??? Same problem as in expmed.c: emit_conditional_move
8831 forces a stack adjustment via compare_from_rtx, and we
8832 lose the stack adjustment if the sequence we are about
8833 to create is discarded. */
8834 do_pending_stack_adjust ();
8836 start_sequence ();
8838 /* Try to emit the conditional move. */
8839 insn = emit_conditional_move (target, comparison_code,
8840 op0, cmpop1, mode,
8841 op0, op1, mode,
8842 unsignedp);
8844 /* If we could do the conditional move, emit the sequence,
8845 and return. */
8846 if (insn)
8848 rtx seq = get_insns ();
8849 end_sequence ();
8850 emit_insn (seq);
8851 return target;
8854 /* Otherwise discard the sequence and fall back to code with
8855 branches. */
8856 end_sequence ();
8858 #endif
8859 if (target != op0)
8860 emit_move_insn (target, op0);
8862 temp = gen_label_rtx ();
8863 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8864 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8866 emit_move_insn (target, op1);
8867 emit_label (temp);
8868 return target;
8870 case BIT_NOT_EXPR:
8871 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8872 VOIDmode, EXPAND_NORMAL);
8873 if (modifier == EXPAND_STACK_PARM)
8874 target = 0;
8875 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8876 gcc_assert (temp);
8877 return temp;
8879 /* ??? Can optimize bitwise operations with one arg constant.
8880 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8881 and (a bitwise1 b) bitwise2 b (etc)
8882 but that is probably not worth while. */
8884 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8885 boolean values when we want in all cases to compute both of them. In
8886 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8887 as actual zero-or-1 values and then bitwise anding. In cases where
8888 there cannot be any side effects, better code would be made by
8889 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8890 how to recognize those cases. */
8892 case TRUTH_AND_EXPR:
8893 code = BIT_AND_EXPR;
8894 case BIT_AND_EXPR:
8895 goto binop;
8897 case TRUTH_OR_EXPR:
8898 code = BIT_IOR_EXPR;
8899 case BIT_IOR_EXPR:
8900 goto binop;
8902 case TRUTH_XOR_EXPR:
8903 code = BIT_XOR_EXPR;
8904 case BIT_XOR_EXPR:
8905 goto binop;
8907 case LSHIFT_EXPR:
8908 case RSHIFT_EXPR:
8909 case LROTATE_EXPR:
8910 case RROTATE_EXPR:
8911 /* If this is a fixed-point operation, then we cannot use the code
8912 below because "expand_shift" doesn't support sat/no-sat fixed-point
8913 shifts. */
8914 if (ALL_FIXED_POINT_MODE_P (mode))
8915 goto binop;
8917 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8918 subtarget = 0;
8919 if (modifier == EXPAND_STACK_PARM)
8920 target = 0;
8921 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8922 VOIDmode, EXPAND_NORMAL);
8923 temp = expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8924 unsignedp);
8925 if (code == LSHIFT_EXPR)
8926 temp = REDUCE_BIT_FIELD (temp);
8927 return temp;
8929 /* Could determine the answer when only additive constants differ. Also,
8930 the addition of one can be handled by changing the condition. */
8931 case LT_EXPR:
8932 case LE_EXPR:
8933 case GT_EXPR:
8934 case GE_EXPR:
8935 case EQ_EXPR:
8936 case NE_EXPR:
8937 case UNORDERED_EXPR:
8938 case ORDERED_EXPR:
8939 case UNLT_EXPR:
8940 case UNLE_EXPR:
8941 case UNGT_EXPR:
8942 case UNGE_EXPR:
8943 case UNEQ_EXPR:
8944 case LTGT_EXPR:
8945 temp = do_store_flag (exp,
8946 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8947 tmode != VOIDmode ? tmode : mode, 0);
8948 if (temp != 0)
8949 return temp;
8951 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8952 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8953 && original_target
8954 && REG_P (original_target)
8955 && (GET_MODE (original_target)
8956 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8958 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8959 VOIDmode, EXPAND_NORMAL);
8961 /* If temp is constant, we can just compute the result. */
8962 if (GET_CODE (temp) == CONST_INT)
8964 if (INTVAL (temp) != 0)
8965 emit_move_insn (target, const1_rtx);
8966 else
8967 emit_move_insn (target, const0_rtx);
8969 return target;
8972 if (temp != original_target)
8974 enum machine_mode mode1 = GET_MODE (temp);
8975 if (mode1 == VOIDmode)
8976 mode1 = tmode != VOIDmode ? tmode : mode;
8978 temp = copy_to_mode_reg (mode1, temp);
8981 op1 = gen_label_rtx ();
8982 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8983 GET_MODE (temp), unsignedp, op1);
8984 emit_move_insn (temp, const1_rtx);
8985 emit_label (op1);
8986 return temp;
8989 /* If no set-flag instruction, must generate a conditional store
8990 into a temporary variable. Drop through and handle this
8991 like && and ||. */
8993 if (! ignore
8994 && (target == 0
8995 || modifier == EXPAND_STACK_PARM
8996 || ! safe_from_p (target, exp, 1)
8997 /* Make sure we don't have a hard reg (such as function's return
8998 value) live across basic blocks, if not optimizing. */
8999 || (!optimize && REG_P (target)
9000 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9001 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9003 if (target)
9004 emit_move_insn (target, const0_rtx);
9006 op1 = gen_label_rtx ();
9007 jumpifnot (exp, op1);
9009 if (target)
9010 emit_move_insn (target, const1_rtx);
9012 emit_label (op1);
9013 return ignore ? const0_rtx : target;
9015 case TRUTH_NOT_EXPR:
9016 if (modifier == EXPAND_STACK_PARM)
9017 target = 0;
9018 op0 = expand_expr (TREE_OPERAND (exp, 0), target,
9019 VOIDmode, EXPAND_NORMAL);
9020 /* The parser is careful to generate TRUTH_NOT_EXPR
9021 only with operands that are always zero or one. */
9022 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
9023 target, 1, OPTAB_LIB_WIDEN);
9024 gcc_assert (temp);
9025 return temp;
9027 case STATEMENT_LIST:
9029 tree_stmt_iterator iter;
9031 gcc_assert (ignore);
9033 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9034 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9036 return const0_rtx;
9038 case COND_EXPR:
9039 /* A COND_EXPR with its type being VOID_TYPE represents a
9040 conditional jump and is handled in
9041 expand_gimple_cond_expr. */
9042 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
9044 /* Note that COND_EXPRs whose type is a structure or union
9045 are required to be constructed to contain assignments of
9046 a temporary variable, so that we can evaluate them here
9047 for side effect only. If type is void, we must do likewise. */
9049 gcc_assert (!TREE_ADDRESSABLE (type)
9050 && !ignore
9051 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
9052 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
9054 /* If we are not to produce a result, we have no target. Otherwise,
9055 if a target was specified use it; it will not be used as an
9056 intermediate target unless it is safe. If no target, use a
9057 temporary. */
9059 if (modifier != EXPAND_STACK_PARM
9060 && original_target
9061 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
9062 && GET_MODE (original_target) == mode
9063 #ifdef HAVE_conditional_move
9064 && (! can_conditionally_move_p (mode)
9065 || REG_P (original_target))
9066 #endif
9067 && !MEM_P (original_target))
9068 temp = original_target;
9069 else
9070 temp = assign_temp (type, 0, 0, 1);
9072 do_pending_stack_adjust ();
9073 NO_DEFER_POP;
9074 op0 = gen_label_rtx ();
9075 op1 = gen_label_rtx ();
9076 jumpifnot (TREE_OPERAND (exp, 0), op0);
9077 store_expr (TREE_OPERAND (exp, 1), temp,
9078 modifier == EXPAND_STACK_PARM,
9079 false);
9081 emit_jump_insn (gen_jump (op1));
9082 emit_barrier ();
9083 emit_label (op0);
9084 store_expr (TREE_OPERAND (exp, 2), temp,
9085 modifier == EXPAND_STACK_PARM,
9086 false);
9088 emit_label (op1);
9089 OK_DEFER_POP;
9090 return temp;
9092 case VEC_COND_EXPR:
9093 target = expand_vec_cond_expr (exp, target);
9094 return target;
9096 case MODIFY_EXPR:
9098 tree lhs = TREE_OPERAND (exp, 0);
9099 tree rhs = TREE_OPERAND (exp, 1);
9100 gcc_assert (ignore);
9101 expand_assignment (lhs, rhs, false);
9102 return const0_rtx;
9105 case GIMPLE_MODIFY_STMT:
9107 tree lhs = GIMPLE_STMT_OPERAND (exp, 0);
9108 tree rhs = GIMPLE_STMT_OPERAND (exp, 1);
9110 gcc_assert (ignore);
9112 /* Check for |= or &= of a bitfield of size one into another bitfield
9113 of size 1. In this case, (unless we need the result of the
9114 assignment) we can do this more efficiently with a
9115 test followed by an assignment, if necessary.
9117 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9118 things change so we do, this code should be enhanced to
9119 support it. */
9120 if (TREE_CODE (lhs) == COMPONENT_REF
9121 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9122 || TREE_CODE (rhs) == BIT_AND_EXPR)
9123 && TREE_OPERAND (rhs, 0) == lhs
9124 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9125 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9126 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9128 rtx label = gen_label_rtx ();
9129 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9130 do_jump (TREE_OPERAND (rhs, 1),
9131 value ? label : 0,
9132 value ? 0 : label);
9133 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9134 MOVE_NONTEMPORAL (exp));
9135 do_pending_stack_adjust ();
9136 emit_label (label);
9137 return const0_rtx;
9140 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9141 return const0_rtx;
9144 case RETURN_EXPR:
9145 if (!TREE_OPERAND (exp, 0))
9146 expand_null_return ();
9147 else
9148 expand_return (TREE_OPERAND (exp, 0));
9149 return const0_rtx;
9151 case ADDR_EXPR:
9152 return expand_expr_addr_expr (exp, target, tmode, modifier);
9154 case COMPLEX_EXPR:
9155 /* Get the rtx code of the operands. */
9156 op0 = expand_normal (TREE_OPERAND (exp, 0));
9157 op1 = expand_normal (TREE_OPERAND (exp, 1));
9159 if (!target)
9160 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
9162 /* Move the real (op0) and imaginary (op1) parts to their location. */
9163 write_complex_part (target, op0, false);
9164 write_complex_part (target, op1, true);
9166 return target;
9168 case REALPART_EXPR:
9169 op0 = expand_normal (TREE_OPERAND (exp, 0));
9170 return read_complex_part (op0, false);
9172 case IMAGPART_EXPR:
9173 op0 = expand_normal (TREE_OPERAND (exp, 0));
9174 return read_complex_part (op0, true);
9176 case RESX_EXPR:
9177 expand_resx_expr (exp);
9178 return const0_rtx;
9180 case TRY_CATCH_EXPR:
9181 case CATCH_EXPR:
9182 case EH_FILTER_EXPR:
9183 case TRY_FINALLY_EXPR:
9184 /* Lowered by tree-eh.c. */
9185 gcc_unreachable ();
9187 case WITH_CLEANUP_EXPR:
9188 case CLEANUP_POINT_EXPR:
9189 case TARGET_EXPR:
9190 case CASE_LABEL_EXPR:
9191 case VA_ARG_EXPR:
9192 case BIND_EXPR:
9193 case INIT_EXPR:
9194 case CONJ_EXPR:
9195 case COMPOUND_EXPR:
9196 case PREINCREMENT_EXPR:
9197 case PREDECREMENT_EXPR:
9198 case POSTINCREMENT_EXPR:
9199 case POSTDECREMENT_EXPR:
9200 case LOOP_EXPR:
9201 case EXIT_EXPR:
9202 case TRUTH_ANDIF_EXPR:
9203 case TRUTH_ORIF_EXPR:
9204 /* Lowered by gimplify.c. */
9205 gcc_unreachable ();
9207 case CHANGE_DYNAMIC_TYPE_EXPR:
9208 /* This is ignored at the RTL level. The tree level set
9209 DECL_POINTER_ALIAS_SET of any variable to be 0, which is
9210 overkill for the RTL layer but is all that we can
9211 represent. */
9212 return const0_rtx;
9214 case EXC_PTR_EXPR:
9215 return get_exception_pointer (cfun);
9217 case FILTER_EXPR:
9218 return get_exception_filter (cfun);
9220 case FDESC_EXPR:
9221 /* Function descriptors are not valid except for as
9222 initialization constants, and should not be expanded. */
9223 gcc_unreachable ();
9225 case SWITCH_EXPR:
9226 expand_case (exp);
9227 return const0_rtx;
9229 case LABEL_EXPR:
9230 expand_label (TREE_OPERAND (exp, 0));
9231 return const0_rtx;
9233 case ASM_EXPR:
9234 expand_asm_expr (exp);
9235 return const0_rtx;
9237 case WITH_SIZE_EXPR:
9238 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9239 have pulled out the size to use in whatever context it needed. */
9240 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
9241 modifier, alt_rtl);
9243 case REALIGN_LOAD_EXPR:
9245 tree oprnd0 = TREE_OPERAND (exp, 0);
9246 tree oprnd1 = TREE_OPERAND (exp, 1);
9247 tree oprnd2 = TREE_OPERAND (exp, 2);
9248 rtx op2;
9250 this_optab = optab_for_tree_code (code, type);
9251 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9252 op2 = expand_normal (oprnd2);
9253 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9254 target, unsignedp);
9255 gcc_assert (temp);
9256 return temp;
9259 case DOT_PROD_EXPR:
9261 tree oprnd0 = TREE_OPERAND (exp, 0);
9262 tree oprnd1 = TREE_OPERAND (exp, 1);
9263 tree oprnd2 = TREE_OPERAND (exp, 2);
9264 rtx op2;
9266 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9267 op2 = expand_normal (oprnd2);
9268 target = expand_widen_pattern_expr (exp, op0, op1, op2,
9269 target, unsignedp);
9270 return target;
9273 case WIDEN_SUM_EXPR:
9275 tree oprnd0 = TREE_OPERAND (exp, 0);
9276 tree oprnd1 = TREE_OPERAND (exp, 1);
9278 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9279 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
9280 target, unsignedp);
9281 return target;
9284 case REDUC_MAX_EXPR:
9285 case REDUC_MIN_EXPR:
9286 case REDUC_PLUS_EXPR:
9288 op0 = expand_normal (TREE_OPERAND (exp, 0));
9289 this_optab = optab_for_tree_code (code, type);
9290 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9291 gcc_assert (temp);
9292 return temp;
9295 case VEC_EXTRACT_EVEN_EXPR:
9296 case VEC_EXTRACT_ODD_EXPR:
9298 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9299 NULL_RTX, &op0, &op1, 0);
9300 this_optab = optab_for_tree_code (code, type);
9301 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9302 OPTAB_WIDEN);
9303 gcc_assert (temp);
9304 return temp;
9307 case VEC_INTERLEAVE_HIGH_EXPR:
9308 case VEC_INTERLEAVE_LOW_EXPR:
9310 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9311 NULL_RTX, &op0, &op1, 0);
9312 this_optab = optab_for_tree_code (code, type);
9313 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9314 OPTAB_WIDEN);
9315 gcc_assert (temp);
9316 return temp;
9319 case VEC_LSHIFT_EXPR:
9320 case VEC_RSHIFT_EXPR:
9322 target = expand_vec_shift_expr (exp, target);
9323 return target;
9326 case VEC_UNPACK_HI_EXPR:
9327 case VEC_UNPACK_LO_EXPR:
9329 op0 = expand_normal (TREE_OPERAND (exp, 0));
9330 this_optab = optab_for_tree_code (code, type);
9331 temp = expand_widen_pattern_expr (exp, op0, NULL_RTX, NULL_RTX,
9332 target, unsignedp);
9333 gcc_assert (temp);
9334 return temp;
9337 case VEC_UNPACK_FLOAT_HI_EXPR:
9338 case VEC_UNPACK_FLOAT_LO_EXPR:
9340 op0 = expand_normal (TREE_OPERAND (exp, 0));
9341 /* The signedness is determined from input operand. */
9342 this_optab = optab_for_tree_code (code,
9343 TREE_TYPE (TREE_OPERAND (exp, 0)));
9344 temp = expand_widen_pattern_expr
9345 (exp, op0, NULL_RTX, NULL_RTX,
9346 target, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
9348 gcc_assert (temp);
9349 return temp;
9352 case VEC_WIDEN_MULT_HI_EXPR:
9353 case VEC_WIDEN_MULT_LO_EXPR:
9355 tree oprnd0 = TREE_OPERAND (exp, 0);
9356 tree oprnd1 = TREE_OPERAND (exp, 1);
9358 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9359 target = expand_widen_pattern_expr (exp, op0, op1, NULL_RTX,
9360 target, unsignedp);
9361 gcc_assert (target);
9362 return target;
9365 case VEC_PACK_TRUNC_EXPR:
9366 case VEC_PACK_SAT_EXPR:
9367 case VEC_PACK_FIX_TRUNC_EXPR:
9369 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9370 goto binop;
9373 case OMP_ATOMIC_LOAD:
9374 case OMP_ATOMIC_STORE:
9375 /* OMP expansion is not run when there were errors, so these codes
9376 can get here. */
9377 gcc_assert (errorcount != 0);
9378 return NULL_RTX;
9380 default:
9381 return lang_hooks.expand_expr (exp, original_target, tmode,
9382 modifier, alt_rtl);
9385 /* Here to do an ordinary binary operator. */
9386 binop:
9387 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9388 subtarget, &op0, &op1, 0);
9389 binop2:
9390 this_optab = optab_for_tree_code (code, type);
9391 binop3:
9392 if (modifier == EXPAND_STACK_PARM)
9393 target = 0;
9394 temp = expand_binop (mode, this_optab, op0, op1, target,
9395 unsignedp, OPTAB_LIB_WIDEN);
9396 gcc_assert (temp);
9397 return REDUCE_BIT_FIELD (temp);
9399 #undef REDUCE_BIT_FIELD
9401 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9402 signedness of TYPE), possibly returning the result in TARGET. */
9403 static rtx
9404 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9406 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9407 if (target && GET_MODE (target) != GET_MODE (exp))
9408 target = 0;
9409 /* For constant values, reduce using build_int_cst_type. */
9410 if (GET_CODE (exp) == CONST_INT)
9412 HOST_WIDE_INT value = INTVAL (exp);
9413 tree t = build_int_cst_type (type, value);
9414 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9416 else if (TYPE_UNSIGNED (type))
9418 rtx mask;
9419 if (prec < HOST_BITS_PER_WIDE_INT)
9420 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
9421 GET_MODE (exp));
9422 else
9423 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
9424 ((unsigned HOST_WIDE_INT) 1
9425 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
9426 GET_MODE (exp));
9427 return expand_and (GET_MODE (exp), exp, mask, target);
9429 else
9431 tree count = build_int_cst (NULL_TREE,
9432 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9433 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9434 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9438 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9439 when applied to the address of EXP produces an address known to be
9440 aligned more than BIGGEST_ALIGNMENT. */
9442 static int
9443 is_aligning_offset (const_tree offset, const_tree exp)
9445 /* Strip off any conversions. */
9446 while (TREE_CODE (offset) == NON_LVALUE_EXPR
9447 || TREE_CODE (offset) == NOP_EXPR
9448 || TREE_CODE (offset) == CONVERT_EXPR)
9449 offset = TREE_OPERAND (offset, 0);
9451 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9452 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9453 if (TREE_CODE (offset) != BIT_AND_EXPR
9454 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9455 || compare_tree_int (TREE_OPERAND (offset, 1),
9456 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9457 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9458 return 0;
9460 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9461 It must be NEGATE_EXPR. Then strip any more conversions. */
9462 offset = TREE_OPERAND (offset, 0);
9463 while (TREE_CODE (offset) == NON_LVALUE_EXPR
9464 || TREE_CODE (offset) == NOP_EXPR
9465 || TREE_CODE (offset) == CONVERT_EXPR)
9466 offset = TREE_OPERAND (offset, 0);
9468 if (TREE_CODE (offset) != NEGATE_EXPR)
9469 return 0;
9471 offset = TREE_OPERAND (offset, 0);
9472 while (TREE_CODE (offset) == NON_LVALUE_EXPR
9473 || TREE_CODE (offset) == NOP_EXPR
9474 || TREE_CODE (offset) == CONVERT_EXPR)
9475 offset = TREE_OPERAND (offset, 0);
9477 /* This must now be the address of EXP. */
9478 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9481 /* Return the tree node if an ARG corresponds to a string constant or zero
9482 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9483 in bytes within the string that ARG is accessing. The type of the
9484 offset will be `sizetype'. */
9486 tree
9487 string_constant (tree arg, tree *ptr_offset)
9489 tree array, offset, lower_bound;
9490 STRIP_NOPS (arg);
9492 if (TREE_CODE (arg) == ADDR_EXPR)
9494 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9496 *ptr_offset = size_zero_node;
9497 return TREE_OPERAND (arg, 0);
9499 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9501 array = TREE_OPERAND (arg, 0);
9502 offset = size_zero_node;
9504 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9506 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9507 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9508 if (TREE_CODE (array) != STRING_CST
9509 && TREE_CODE (array) != VAR_DECL)
9510 return 0;
9512 /* Check if the array has a nonzero lower bound. */
9513 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9514 if (!integer_zerop (lower_bound))
9516 /* If the offset and base aren't both constants, return 0. */
9517 if (TREE_CODE (lower_bound) != INTEGER_CST)
9518 return 0;
9519 if (TREE_CODE (offset) != INTEGER_CST)
9520 return 0;
9521 /* Adjust offset by the lower bound. */
9522 offset = size_diffop (fold_convert (sizetype, offset),
9523 fold_convert (sizetype, lower_bound));
9526 else
9527 return 0;
9529 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9531 tree arg0 = TREE_OPERAND (arg, 0);
9532 tree arg1 = TREE_OPERAND (arg, 1);
9534 STRIP_NOPS (arg0);
9535 STRIP_NOPS (arg1);
9537 if (TREE_CODE (arg0) == ADDR_EXPR
9538 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9539 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9541 array = TREE_OPERAND (arg0, 0);
9542 offset = arg1;
9544 else if (TREE_CODE (arg1) == ADDR_EXPR
9545 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9546 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9548 array = TREE_OPERAND (arg1, 0);
9549 offset = arg0;
9551 else
9552 return 0;
9554 else
9555 return 0;
9557 if (TREE_CODE (array) == STRING_CST)
9559 *ptr_offset = fold_convert (sizetype, offset);
9560 return array;
9562 else if (TREE_CODE (array) == VAR_DECL)
9564 int length;
9566 /* Variables initialized to string literals can be handled too. */
9567 if (DECL_INITIAL (array) == NULL_TREE
9568 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9569 return 0;
9571 /* If they are read-only, non-volatile and bind locally. */
9572 if (! TREE_READONLY (array)
9573 || TREE_SIDE_EFFECTS (array)
9574 || ! targetm.binds_local_p (array))
9575 return 0;
9577 /* Avoid const char foo[4] = "abcde"; */
9578 if (DECL_SIZE_UNIT (array) == NULL_TREE
9579 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9580 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9581 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9582 return 0;
9584 /* If variable is bigger than the string literal, OFFSET must be constant
9585 and inside of the bounds of the string literal. */
9586 offset = fold_convert (sizetype, offset);
9587 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9588 && (! host_integerp (offset, 1)
9589 || compare_tree_int (offset, length) >= 0))
9590 return 0;
9592 *ptr_offset = offset;
9593 return DECL_INITIAL (array);
9596 return 0;
9599 /* Generate code to calculate EXP using a store-flag instruction
9600 and return an rtx for the result. EXP is either a comparison
9601 or a TRUTH_NOT_EXPR whose operand is a comparison.
9603 If TARGET is nonzero, store the result there if convenient.
9605 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9606 cheap.
9608 Return zero if there is no suitable set-flag instruction
9609 available on this machine.
9611 Once expand_expr has been called on the arguments of the comparison,
9612 we are committed to doing the store flag, since it is not safe to
9613 re-evaluate the expression. We emit the store-flag insn by calling
9614 emit_store_flag, but only expand the arguments if we have a reason
9615 to believe that emit_store_flag will be successful. If we think that
9616 it will, but it isn't, we have to simulate the store-flag with a
9617 set/jump/set sequence. */
9619 static rtx
9620 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
9622 enum rtx_code code;
9623 tree arg0, arg1, type;
9624 tree tem;
9625 enum machine_mode operand_mode;
9626 int invert = 0;
9627 int unsignedp;
9628 rtx op0, op1;
9629 enum insn_code icode;
9630 rtx subtarget = target;
9631 rtx result, label;
9633 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9634 result at the end. We can't simply invert the test since it would
9635 have already been inverted if it were valid. This case occurs for
9636 some floating-point comparisons. */
9638 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
9639 invert = 1, exp = TREE_OPERAND (exp, 0);
9641 arg0 = TREE_OPERAND (exp, 0);
9642 arg1 = TREE_OPERAND (exp, 1);
9644 /* Don't crash if the comparison was erroneous. */
9645 if (arg0 == error_mark_node || arg1 == error_mark_node)
9646 return const0_rtx;
9648 type = TREE_TYPE (arg0);
9649 operand_mode = TYPE_MODE (type);
9650 unsignedp = TYPE_UNSIGNED (type);
9652 /* We won't bother with BLKmode store-flag operations because it would mean
9653 passing a lot of information to emit_store_flag. */
9654 if (operand_mode == BLKmode)
9655 return 0;
9657 /* We won't bother with store-flag operations involving function pointers
9658 when function pointers must be canonicalized before comparisons. */
9659 #ifdef HAVE_canonicalize_funcptr_for_compare
9660 if (HAVE_canonicalize_funcptr_for_compare
9661 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9662 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9663 == FUNCTION_TYPE))
9664 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9665 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9666 == FUNCTION_TYPE))))
9667 return 0;
9668 #endif
9670 STRIP_NOPS (arg0);
9671 STRIP_NOPS (arg1);
9673 /* Get the rtx comparison code to use. We know that EXP is a comparison
9674 operation of some type. Some comparisons against 1 and -1 can be
9675 converted to comparisons with zero. Do so here so that the tests
9676 below will be aware that we have a comparison with zero. These
9677 tests will not catch constants in the first operand, but constants
9678 are rarely passed as the first operand. */
9680 switch (TREE_CODE (exp))
9682 case EQ_EXPR:
9683 code = EQ;
9684 break;
9685 case NE_EXPR:
9686 code = NE;
9687 break;
9688 case LT_EXPR:
9689 if (integer_onep (arg1))
9690 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9691 else
9692 code = unsignedp ? LTU : LT;
9693 break;
9694 case LE_EXPR:
9695 if (! unsignedp && integer_all_onesp (arg1))
9696 arg1 = integer_zero_node, code = LT;
9697 else
9698 code = unsignedp ? LEU : LE;
9699 break;
9700 case GT_EXPR:
9701 if (! unsignedp && integer_all_onesp (arg1))
9702 arg1 = integer_zero_node, code = GE;
9703 else
9704 code = unsignedp ? GTU : GT;
9705 break;
9706 case GE_EXPR:
9707 if (integer_onep (arg1))
9708 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9709 else
9710 code = unsignedp ? GEU : GE;
9711 break;
9713 case UNORDERED_EXPR:
9714 code = UNORDERED;
9715 break;
9716 case ORDERED_EXPR:
9717 code = ORDERED;
9718 break;
9719 case UNLT_EXPR:
9720 code = UNLT;
9721 break;
9722 case UNLE_EXPR:
9723 code = UNLE;
9724 break;
9725 case UNGT_EXPR:
9726 code = UNGT;
9727 break;
9728 case UNGE_EXPR:
9729 code = UNGE;
9730 break;
9731 case UNEQ_EXPR:
9732 code = UNEQ;
9733 break;
9734 case LTGT_EXPR:
9735 code = LTGT;
9736 break;
9738 default:
9739 gcc_unreachable ();
9742 /* Put a constant second. */
9743 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9744 || TREE_CODE (arg0) == FIXED_CST)
9746 tem = arg0; arg0 = arg1; arg1 = tem;
9747 code = swap_condition (code);
9750 /* If this is an equality or inequality test of a single bit, we can
9751 do this by shifting the bit being tested to the low-order bit and
9752 masking the result with the constant 1. If the condition was EQ,
9753 we xor it with 1. This does not require an scc insn and is faster
9754 than an scc insn even if we have it.
9756 The code to make this transformation was moved into fold_single_bit_test,
9757 so we just call into the folder and expand its result. */
9759 if ((code == NE || code == EQ)
9760 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9761 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9763 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9764 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
9765 arg0, arg1, type),
9766 target, VOIDmode, EXPAND_NORMAL);
9769 /* Now see if we are likely to be able to do this. Return if not. */
9770 if (! can_compare_p (code, operand_mode, ccp_store_flag))
9771 return 0;
9773 icode = setcc_gen_code[(int) code];
9775 if (icode == CODE_FOR_nothing)
9777 enum machine_mode wmode;
9779 for (wmode = operand_mode;
9780 icode == CODE_FOR_nothing && wmode != VOIDmode;
9781 wmode = GET_MODE_WIDER_MODE (wmode))
9782 icode = optab_handler (cstore_optab, wmode)->insn_code;
9785 if (icode == CODE_FOR_nothing
9786 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
9788 /* We can only do this if it is one of the special cases that
9789 can be handled without an scc insn. */
9790 if ((code == LT && integer_zerop (arg1))
9791 || (! only_cheap && code == GE && integer_zerop (arg1)))
9793 else if (! only_cheap && (code == NE || code == EQ)
9794 && TREE_CODE (type) != REAL_TYPE
9795 && ((optab_handler (abs_optab, operand_mode)->insn_code
9796 != CODE_FOR_nothing)
9797 || (optab_handler (ffs_optab, operand_mode)->insn_code
9798 != CODE_FOR_nothing)))
9800 else
9801 return 0;
9804 if (! get_subtarget (target)
9805 || GET_MODE (subtarget) != operand_mode)
9806 subtarget = 0;
9808 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9810 if (target == 0)
9811 target = gen_reg_rtx (mode);
9813 result = emit_store_flag (target, code, op0, op1,
9814 operand_mode, unsignedp, 1);
9816 if (result)
9818 if (invert)
9819 result = expand_binop (mode, xor_optab, result, const1_rtx,
9820 result, 0, OPTAB_LIB_WIDEN);
9821 return result;
9824 /* If this failed, we have to do this with set/compare/jump/set code. */
9825 if (!REG_P (target)
9826 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9827 target = gen_reg_rtx (GET_MODE (target));
9829 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9830 label = gen_label_rtx ();
9831 do_compare_rtx_and_jump (op0, op1, code, unsignedp, operand_mode, NULL_RTX,
9832 NULL_RTX, label);
9834 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9835 emit_label (label);
9837 return target;
9841 /* Stubs in case we haven't got a casesi insn. */
9842 #ifndef HAVE_casesi
9843 # define HAVE_casesi 0
9844 # define gen_casesi(a, b, c, d, e) (0)
9845 # define CODE_FOR_casesi CODE_FOR_nothing
9846 #endif
9848 /* If the machine does not have a case insn that compares the bounds,
9849 this means extra overhead for dispatch tables, which raises the
9850 threshold for using them. */
9851 #ifndef CASE_VALUES_THRESHOLD
9852 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9853 #endif /* CASE_VALUES_THRESHOLD */
9855 unsigned int
9856 case_values_threshold (void)
9858 return CASE_VALUES_THRESHOLD;
9861 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9862 0 otherwise (i.e. if there is no casesi instruction). */
9864 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9865 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
9867 enum machine_mode index_mode = SImode;
9868 int index_bits = GET_MODE_BITSIZE (index_mode);
9869 rtx op1, op2, index;
9870 enum machine_mode op_mode;
9872 if (! HAVE_casesi)
9873 return 0;
9875 /* Convert the index to SImode. */
9876 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9878 enum machine_mode omode = TYPE_MODE (index_type);
9879 rtx rangertx = expand_normal (range);
9881 /* We must handle the endpoints in the original mode. */
9882 index_expr = build2 (MINUS_EXPR, index_type,
9883 index_expr, minval);
9884 minval = integer_zero_node;
9885 index = expand_normal (index_expr);
9886 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9887 omode, 1, default_label);
9888 /* Now we can safely truncate. */
9889 index = convert_to_mode (index_mode, index, 0);
9891 else
9893 if (TYPE_MODE (index_type) != index_mode)
9895 index_type = lang_hooks.types.type_for_size (index_bits, 0);
9896 index_expr = fold_convert (index_type, index_expr);
9899 index = expand_normal (index_expr);
9902 do_pending_stack_adjust ();
9904 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9905 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9906 (index, op_mode))
9907 index = copy_to_mode_reg (op_mode, index);
9909 op1 = expand_normal (minval);
9911 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9912 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9913 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9914 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9915 (op1, op_mode))
9916 op1 = copy_to_mode_reg (op_mode, op1);
9918 op2 = expand_normal (range);
9920 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9921 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9922 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9923 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9924 (op2, op_mode))
9925 op2 = copy_to_mode_reg (op_mode, op2);
9927 emit_jump_insn (gen_casesi (index, op1, op2,
9928 table_label, default_label));
9929 return 1;
9932 /* Attempt to generate a tablejump instruction; same concept. */
9933 #ifndef HAVE_tablejump
9934 #define HAVE_tablejump 0
9935 #define gen_tablejump(x, y) (0)
9936 #endif
9938 /* Subroutine of the next function.
9940 INDEX is the value being switched on, with the lowest value
9941 in the table already subtracted.
9942 MODE is its expected mode (needed if INDEX is constant).
9943 RANGE is the length of the jump table.
9944 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9946 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9947 index value is out of range. */
9949 static void
9950 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9951 rtx default_label)
9953 rtx temp, vector;
9955 if (INTVAL (range) > cfun->max_jumptable_ents)
9956 cfun->max_jumptable_ents = INTVAL (range);
9958 /* Do an unsigned comparison (in the proper mode) between the index
9959 expression and the value which represents the length of the range.
9960 Since we just finished subtracting the lower bound of the range
9961 from the index expression, this comparison allows us to simultaneously
9962 check that the original index expression value is both greater than
9963 or equal to the minimum value of the range and less than or equal to
9964 the maximum value of the range. */
9966 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9967 default_label);
9969 /* If index is in range, it must fit in Pmode.
9970 Convert to Pmode so we can index with it. */
9971 if (mode != Pmode)
9972 index = convert_to_mode (Pmode, index, 1);
9974 /* Don't let a MEM slip through, because then INDEX that comes
9975 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9976 and break_out_memory_refs will go to work on it and mess it up. */
9977 #ifdef PIC_CASE_VECTOR_ADDRESS
9978 if (flag_pic && !REG_P (index))
9979 index = copy_to_mode_reg (Pmode, index);
9980 #endif
9982 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9983 GET_MODE_SIZE, because this indicates how large insns are. The other
9984 uses should all be Pmode, because they are addresses. This code
9985 could fail if addresses and insns are not the same size. */
9986 index = gen_rtx_PLUS (Pmode,
9987 gen_rtx_MULT (Pmode, index,
9988 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9989 gen_rtx_LABEL_REF (Pmode, table_label));
9990 #ifdef PIC_CASE_VECTOR_ADDRESS
9991 if (flag_pic)
9992 index = PIC_CASE_VECTOR_ADDRESS (index);
9993 else
9994 #endif
9995 index = memory_address (CASE_VECTOR_MODE, index);
9996 temp = gen_reg_rtx (CASE_VECTOR_MODE);
9997 vector = gen_const_mem (CASE_VECTOR_MODE, index);
9998 convert_move (temp, vector, 0);
10000 emit_jump_insn (gen_tablejump (temp, table_label));
10002 /* If we are generating PIC code or if the table is PC-relative, the
10003 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10004 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10005 emit_barrier ();
10009 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10010 rtx table_label, rtx default_label)
10012 rtx index;
10014 if (! HAVE_tablejump)
10015 return 0;
10017 index_expr = fold_build2 (MINUS_EXPR, index_type,
10018 fold_convert (index_type, index_expr),
10019 fold_convert (index_type, minval));
10020 index = expand_normal (index_expr);
10021 do_pending_stack_adjust ();
10023 do_tablejump (index, TYPE_MODE (index_type),
10024 convert_modes (TYPE_MODE (index_type),
10025 TYPE_MODE (TREE_TYPE (range)),
10026 expand_normal (range),
10027 TYPE_UNSIGNED (TREE_TYPE (range))),
10028 table_label, default_label);
10029 return 1;
10032 /* Nonzero if the mode is a valid vector mode for this architecture.
10033 This returns nonzero even if there is no hardware support for the
10034 vector mode, but we can emulate with narrower modes. */
10037 vector_mode_valid_p (enum machine_mode mode)
10039 enum mode_class class = GET_MODE_CLASS (mode);
10040 enum machine_mode innermode;
10042 /* Doh! What's going on? */
10043 if (class != MODE_VECTOR_INT
10044 && class != MODE_VECTOR_FLOAT
10045 && class != MODE_VECTOR_FRACT
10046 && class != MODE_VECTOR_UFRACT
10047 && class != MODE_VECTOR_ACCUM
10048 && class != MODE_VECTOR_UACCUM)
10049 return 0;
10051 /* Hardware support. Woo hoo! */
10052 if (targetm.vector_mode_supported_p (mode))
10053 return 1;
10055 innermode = GET_MODE_INNER (mode);
10057 /* We should probably return 1 if requesting V4DI and we have no DI,
10058 but we have V2DI, but this is probably very unlikely. */
10060 /* If we have support for the inner mode, we can safely emulate it.
10061 We may not have V2DI, but me can emulate with a pair of DIs. */
10062 return targetm.scalar_mode_supported_p (innermode);
10065 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10066 static rtx
10067 const_vector_from_tree (tree exp)
10069 rtvec v;
10070 int units, i;
10071 tree link, elt;
10072 enum machine_mode inner, mode;
10074 mode = TYPE_MODE (TREE_TYPE (exp));
10076 if (initializer_zerop (exp))
10077 return CONST0_RTX (mode);
10079 units = GET_MODE_NUNITS (mode);
10080 inner = GET_MODE_INNER (mode);
10082 v = rtvec_alloc (units);
10084 link = TREE_VECTOR_CST_ELTS (exp);
10085 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10087 elt = TREE_VALUE (link);
10089 if (TREE_CODE (elt) == REAL_CST)
10090 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10091 inner);
10092 else if (TREE_CODE (elt) == FIXED_CST)
10093 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10094 inner);
10095 else
10096 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
10097 TREE_INT_CST_HIGH (elt),
10098 inner);
10101 /* Initialize remaining elements to 0. */
10102 for (; i < units; ++i)
10103 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10105 return gen_rtx_CONST_VECTOR (mode, v);
10107 #include "gt-expr.h"