tree-vect-data-refs.c (vect_find_stmt_data_reference): Handle even zero DR_OFFSET...
[official-gcc.git] / gcc / tree-ssa-alias.c
blob111f375bb4a66bc46c11d36743cdcce351ad1485
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
42 /* Broad overview of how alias analysis on gimple works:
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
61 The main alias-oracle entry-points are
63 bool stmt_may_clobber_ref_p (gimple *, tree)
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
77 bool refs_may_alias_p (tree, tree)
79 This function tries to disambiguate two reference trees.
81 bool ptr_deref_may_alias_global_p (tree)
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
91 /* Query statistics for the different low-level disambiguators.
92 A high-level query may trigger multiple of them. */
94 static struct {
95 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
96 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
97 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
98 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
99 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
100 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
101 unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
102 unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
103 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_may_alias;
104 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_no_alias;
105 unsigned HOST_WIDE_INT nonoverlapping_component_refs_of_decl_p_may_alias;
106 unsigned HOST_WIDE_INT nonoverlapping_component_refs_of_decl_p_no_alias;
107 } alias_stats;
109 void
110 dump_alias_stats (FILE *s)
112 fprintf (s, "\nAlias oracle query stats:\n");
113 fprintf (s, " refs_may_alias_p: "
114 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
115 HOST_WIDE_INT_PRINT_DEC" queries\n",
116 alias_stats.refs_may_alias_p_no_alias,
117 alias_stats.refs_may_alias_p_no_alias
118 + alias_stats.refs_may_alias_p_may_alias);
119 fprintf (s, " ref_maybe_used_by_call_p: "
120 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
121 HOST_WIDE_INT_PRINT_DEC" queries\n",
122 alias_stats.ref_maybe_used_by_call_p_no_alias,
123 alias_stats.refs_may_alias_p_no_alias
124 + alias_stats.ref_maybe_used_by_call_p_may_alias);
125 fprintf (s, " call_may_clobber_ref_p: "
126 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
127 HOST_WIDE_INT_PRINT_DEC" queries\n",
128 alias_stats.call_may_clobber_ref_p_no_alias,
129 alias_stats.call_may_clobber_ref_p_no_alias
130 + alias_stats.call_may_clobber_ref_p_may_alias);
131 fprintf (s, " nonoverlapping_component_refs_p: "
132 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
133 HOST_WIDE_INT_PRINT_DEC" queries\n",
134 alias_stats.nonoverlapping_component_refs_p_no_alias,
135 alias_stats.nonoverlapping_component_refs_p_no_alias
136 + alias_stats.nonoverlapping_component_refs_p_may_alias);
137 fprintf (s, " nonoverlapping_component_refs_of_decl_p: "
138 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
139 HOST_WIDE_INT_PRINT_DEC" queries\n",
140 alias_stats.nonoverlapping_component_refs_of_decl_p_no_alias,
141 alias_stats.nonoverlapping_component_refs_of_decl_p_no_alias
142 + alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias);
143 fprintf (s, " aliasing_component_refs_p: "
144 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
145 HOST_WIDE_INT_PRINT_DEC" queries\n",
146 alias_stats.aliasing_component_refs_p_no_alias,
147 alias_stats.aliasing_component_refs_p_no_alias
148 + alias_stats.aliasing_component_refs_p_may_alias);
149 dump_alias_stats_in_alias_c (s);
153 /* Return true, if dereferencing PTR may alias with a global variable. */
155 bool
156 ptr_deref_may_alias_global_p (tree ptr)
158 struct ptr_info_def *pi;
160 /* If we end up with a pointer constant here that may point
161 to global memory. */
162 if (TREE_CODE (ptr) != SSA_NAME)
163 return true;
165 pi = SSA_NAME_PTR_INFO (ptr);
167 /* If we do not have points-to information for this variable,
168 we have to punt. */
169 if (!pi)
170 return true;
172 /* ??? This does not use TBAA to prune globals ptr may not access. */
173 return pt_solution_includes_global (&pi->pt);
176 /* Return true if dereferencing PTR may alias DECL.
177 The caller is responsible for applying TBAA to see if PTR
178 may access DECL at all. */
180 static bool
181 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
183 struct ptr_info_def *pi;
185 /* Conversions are irrelevant for points-to information and
186 data-dependence analysis can feed us those. */
187 STRIP_NOPS (ptr);
189 /* Anything we do not explicilty handle aliases. */
190 if ((TREE_CODE (ptr) != SSA_NAME
191 && TREE_CODE (ptr) != ADDR_EXPR
192 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
193 || !POINTER_TYPE_P (TREE_TYPE (ptr))
194 || (!VAR_P (decl)
195 && TREE_CODE (decl) != PARM_DECL
196 && TREE_CODE (decl) != RESULT_DECL))
197 return true;
199 /* Disregard pointer offsetting. */
200 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
204 ptr = TREE_OPERAND (ptr, 0);
206 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
207 return ptr_deref_may_alias_decl_p (ptr, decl);
210 /* ADDR_EXPR pointers either just offset another pointer or directly
211 specify the pointed-to set. */
212 if (TREE_CODE (ptr) == ADDR_EXPR)
214 tree base = get_base_address (TREE_OPERAND (ptr, 0));
215 if (base
216 && (TREE_CODE (base) == MEM_REF
217 || TREE_CODE (base) == TARGET_MEM_REF))
218 ptr = TREE_OPERAND (base, 0);
219 else if (base
220 && DECL_P (base))
221 return compare_base_decls (base, decl) != 0;
222 else if (base
223 && CONSTANT_CLASS_P (base))
224 return false;
225 else
226 return true;
229 /* Non-aliased variables cannot be pointed to. */
230 if (!may_be_aliased (decl))
231 return false;
233 /* If we do not have useful points-to information for this pointer
234 we cannot disambiguate anything else. */
235 pi = SSA_NAME_PTR_INFO (ptr);
236 if (!pi)
237 return true;
239 return pt_solution_includes (&pi->pt, decl);
242 /* Return true if dereferenced PTR1 and PTR2 may alias.
243 The caller is responsible for applying TBAA to see if accesses
244 through PTR1 and PTR2 may conflict at all. */
246 bool
247 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
249 struct ptr_info_def *pi1, *pi2;
251 /* Conversions are irrelevant for points-to information and
252 data-dependence analysis can feed us those. */
253 STRIP_NOPS (ptr1);
254 STRIP_NOPS (ptr2);
256 /* Disregard pointer offsetting. */
257 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
261 ptr1 = TREE_OPERAND (ptr1, 0);
263 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
264 return ptr_derefs_may_alias_p (ptr1, ptr2);
266 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
270 ptr2 = TREE_OPERAND (ptr2, 0);
272 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
273 return ptr_derefs_may_alias_p (ptr1, ptr2);
276 /* ADDR_EXPR pointers either just offset another pointer or directly
277 specify the pointed-to set. */
278 if (TREE_CODE (ptr1) == ADDR_EXPR)
280 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
281 if (base
282 && (TREE_CODE (base) == MEM_REF
283 || TREE_CODE (base) == TARGET_MEM_REF))
284 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
285 else if (base
286 && DECL_P (base))
287 return ptr_deref_may_alias_decl_p (ptr2, base);
288 else
289 return true;
291 if (TREE_CODE (ptr2) == ADDR_EXPR)
293 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
294 if (base
295 && (TREE_CODE (base) == MEM_REF
296 || TREE_CODE (base) == TARGET_MEM_REF))
297 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
298 else if (base
299 && DECL_P (base))
300 return ptr_deref_may_alias_decl_p (ptr1, base);
301 else
302 return true;
305 /* From here we require SSA name pointers. Anything else aliases. */
306 if (TREE_CODE (ptr1) != SSA_NAME
307 || TREE_CODE (ptr2) != SSA_NAME
308 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
309 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
310 return true;
312 /* We may end up with two empty points-to solutions for two same pointers.
313 In this case we still want to say both pointers alias, so shortcut
314 that here. */
315 if (ptr1 == ptr2)
316 return true;
318 /* If we do not have useful points-to information for either pointer
319 we cannot disambiguate anything else. */
320 pi1 = SSA_NAME_PTR_INFO (ptr1);
321 pi2 = SSA_NAME_PTR_INFO (ptr2);
322 if (!pi1 || !pi2)
323 return true;
325 /* ??? This does not use TBAA to prune decls from the intersection
326 that not both pointers may access. */
327 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
330 /* Return true if dereferencing PTR may alias *REF.
331 The caller is responsible for applying TBAA to see if PTR
332 may access *REF at all. */
334 static bool
335 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
337 tree base = ao_ref_base (ref);
339 if (TREE_CODE (base) == MEM_REF
340 || TREE_CODE (base) == TARGET_MEM_REF)
341 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
342 else if (DECL_P (base))
343 return ptr_deref_may_alias_decl_p (ptr, base);
345 return true;
348 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
350 bool
351 ptrs_compare_unequal (tree ptr1, tree ptr2)
353 /* First resolve the pointers down to a SSA name pointer base or
354 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
355 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
356 or STRING_CSTs which needs points-to adjustments to track them
357 in the points-to sets. */
358 tree obj1 = NULL_TREE;
359 tree obj2 = NULL_TREE;
360 if (TREE_CODE (ptr1) == ADDR_EXPR)
362 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
363 if (! tem)
364 return false;
365 if (VAR_P (tem)
366 || TREE_CODE (tem) == PARM_DECL
367 || TREE_CODE (tem) == RESULT_DECL)
368 obj1 = tem;
369 else if (TREE_CODE (tem) == MEM_REF)
370 ptr1 = TREE_OPERAND (tem, 0);
372 if (TREE_CODE (ptr2) == ADDR_EXPR)
374 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
375 if (! tem)
376 return false;
377 if (VAR_P (tem)
378 || TREE_CODE (tem) == PARM_DECL
379 || TREE_CODE (tem) == RESULT_DECL)
380 obj2 = tem;
381 else if (TREE_CODE (tem) == MEM_REF)
382 ptr2 = TREE_OPERAND (tem, 0);
385 /* Canonicalize ptr vs. object. */
386 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
388 std::swap (ptr1, ptr2);
389 std::swap (obj1, obj2);
392 if (obj1 && obj2)
393 /* Other code handles this correctly, no need to duplicate it here. */;
394 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
396 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
397 /* We may not use restrict to optimize pointer comparisons.
398 See PR71062. So we have to assume that restrict-pointed-to
399 may be in fact obj1. */
400 if (!pi
401 || pi->pt.vars_contains_restrict
402 || pi->pt.vars_contains_interposable)
403 return false;
404 if (VAR_P (obj1)
405 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
407 varpool_node *node = varpool_node::get (obj1);
408 /* If obj1 may bind to NULL give up (see below). */
409 if (! node
410 || ! node->nonzero_address ()
411 || ! decl_binds_to_current_def_p (obj1))
412 return false;
414 return !pt_solution_includes (&pi->pt, obj1);
417 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
418 but those require pt.null to be conservatively correct. */
420 return false;
423 /* Returns whether reference REF to BASE may refer to global memory. */
425 static bool
426 ref_may_alias_global_p_1 (tree base)
428 if (DECL_P (base))
429 return is_global_var (base);
430 else if (TREE_CODE (base) == MEM_REF
431 || TREE_CODE (base) == TARGET_MEM_REF)
432 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
433 return true;
436 bool
437 ref_may_alias_global_p (ao_ref *ref)
439 tree base = ao_ref_base (ref);
440 return ref_may_alias_global_p_1 (base);
443 bool
444 ref_may_alias_global_p (tree ref)
446 tree base = get_base_address (ref);
447 return ref_may_alias_global_p_1 (base);
450 /* Return true whether STMT may clobber global memory. */
452 bool
453 stmt_may_clobber_global_p (gimple *stmt)
455 tree lhs;
457 if (!gimple_vdef (stmt))
458 return false;
460 /* ??? We can ask the oracle whether an artificial pointer
461 dereference with a pointer with points-to information covering
462 all global memory (what about non-address taken memory?) maybe
463 clobbered by this call. As there is at the moment no convenient
464 way of doing that without generating garbage do some manual
465 checking instead.
466 ??? We could make a NULL ao_ref argument to the various
467 predicates special, meaning any global memory. */
469 switch (gimple_code (stmt))
471 case GIMPLE_ASSIGN:
472 lhs = gimple_assign_lhs (stmt);
473 return (TREE_CODE (lhs) != SSA_NAME
474 && ref_may_alias_global_p (lhs));
475 case GIMPLE_CALL:
476 return true;
477 default:
478 return true;
483 /* Dump alias information on FILE. */
485 void
486 dump_alias_info (FILE *file)
488 unsigned i;
489 tree ptr;
490 const char *funcname
491 = lang_hooks.decl_printable_name (current_function_decl, 2);
492 tree var;
494 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
496 fprintf (file, "Aliased symbols\n\n");
498 FOR_EACH_LOCAL_DECL (cfun, i, var)
500 if (may_be_aliased (var))
501 dump_variable (file, var);
504 fprintf (file, "\nCall clobber information\n");
506 fprintf (file, "\nESCAPED");
507 dump_points_to_solution (file, &cfun->gimple_df->escaped);
509 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
511 FOR_EACH_SSA_NAME (i, ptr, cfun)
513 struct ptr_info_def *pi;
515 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
516 || SSA_NAME_IN_FREE_LIST (ptr))
517 continue;
519 pi = SSA_NAME_PTR_INFO (ptr);
520 if (pi)
521 dump_points_to_info_for (file, ptr);
524 fprintf (file, "\n");
528 /* Dump alias information on stderr. */
530 DEBUG_FUNCTION void
531 debug_alias_info (void)
533 dump_alias_info (stderr);
537 /* Dump the points-to set *PT into FILE. */
539 void
540 dump_points_to_solution (FILE *file, struct pt_solution *pt)
542 if (pt->anything)
543 fprintf (file, ", points-to anything");
545 if (pt->nonlocal)
546 fprintf (file, ", points-to non-local");
548 if (pt->escaped)
549 fprintf (file, ", points-to escaped");
551 if (pt->ipa_escaped)
552 fprintf (file, ", points-to unit escaped");
554 if (pt->null)
555 fprintf (file, ", points-to NULL");
557 if (pt->vars)
559 fprintf (file, ", points-to vars: ");
560 dump_decl_set (file, pt->vars);
561 if (pt->vars_contains_nonlocal
562 || pt->vars_contains_escaped
563 || pt->vars_contains_escaped_heap
564 || pt->vars_contains_restrict)
566 const char *comma = "";
567 fprintf (file, " (");
568 if (pt->vars_contains_nonlocal)
570 fprintf (file, "nonlocal");
571 comma = ", ";
573 if (pt->vars_contains_escaped)
575 fprintf (file, "%sescaped", comma);
576 comma = ", ";
578 if (pt->vars_contains_escaped_heap)
580 fprintf (file, "%sescaped heap", comma);
581 comma = ", ";
583 if (pt->vars_contains_restrict)
585 fprintf (file, "%srestrict", comma);
586 comma = ", ";
588 if (pt->vars_contains_interposable)
589 fprintf (file, "%sinterposable", comma);
590 fprintf (file, ")");
596 /* Unified dump function for pt_solution. */
598 DEBUG_FUNCTION void
599 debug (pt_solution &ref)
601 dump_points_to_solution (stderr, &ref);
604 DEBUG_FUNCTION void
605 debug (pt_solution *ptr)
607 if (ptr)
608 debug (*ptr);
609 else
610 fprintf (stderr, "<nil>\n");
614 /* Dump points-to information for SSA_NAME PTR into FILE. */
616 void
617 dump_points_to_info_for (FILE *file, tree ptr)
619 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
621 print_generic_expr (file, ptr, dump_flags);
623 if (pi)
624 dump_points_to_solution (file, &pi->pt);
625 else
626 fprintf (file, ", points-to anything");
628 fprintf (file, "\n");
632 /* Dump points-to information for VAR into stderr. */
634 DEBUG_FUNCTION void
635 debug_points_to_info_for (tree var)
637 dump_points_to_info_for (stderr, var);
641 /* Initializes the alias-oracle reference representation *R from REF. */
643 void
644 ao_ref_init (ao_ref *r, tree ref)
646 r->ref = ref;
647 r->base = NULL_TREE;
648 r->offset = 0;
649 r->size = -1;
650 r->max_size = -1;
651 r->ref_alias_set = -1;
652 r->base_alias_set = -1;
653 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
656 /* Returns the base object of the memory reference *REF. */
658 tree
659 ao_ref_base (ao_ref *ref)
661 bool reverse;
663 if (ref->base)
664 return ref->base;
665 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
666 &ref->max_size, &reverse);
667 return ref->base;
670 /* Returns the base object alias set of the memory reference *REF. */
672 alias_set_type
673 ao_ref_base_alias_set (ao_ref *ref)
675 tree base_ref;
676 if (ref->base_alias_set != -1)
677 return ref->base_alias_set;
678 if (!ref->ref)
679 return 0;
680 base_ref = ref->ref;
681 while (handled_component_p (base_ref))
682 base_ref = TREE_OPERAND (base_ref, 0);
683 ref->base_alias_set = get_alias_set (base_ref);
684 return ref->base_alias_set;
687 /* Returns the reference alias set of the memory reference *REF. */
689 alias_set_type
690 ao_ref_alias_set (ao_ref *ref)
692 if (ref->ref_alias_set != -1)
693 return ref->ref_alias_set;
694 ref->ref_alias_set = get_alias_set (ref->ref);
695 return ref->ref_alias_set;
698 /* Init an alias-oracle reference representation from a gimple pointer
699 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
700 size is assumed to be unknown. The access is assumed to be only
701 to or after of the pointer target, not before it. */
703 void
704 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
706 poly_int64 t, size_hwi, extra_offset = 0;
707 ref->ref = NULL_TREE;
708 if (TREE_CODE (ptr) == SSA_NAME)
710 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
711 if (gimple_assign_single_p (stmt)
712 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
713 ptr = gimple_assign_rhs1 (stmt);
714 else if (is_gimple_assign (stmt)
715 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
716 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
718 ptr = gimple_assign_rhs1 (stmt);
719 extra_offset *= BITS_PER_UNIT;
723 if (TREE_CODE (ptr) == ADDR_EXPR)
725 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
726 if (ref->base)
727 ref->offset = BITS_PER_UNIT * t;
728 else
730 size = NULL_TREE;
731 ref->offset = 0;
732 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
735 else
737 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
738 ref->base = build2 (MEM_REF, char_type_node,
739 ptr, null_pointer_node);
740 ref->offset = 0;
742 ref->offset += extra_offset;
743 if (size
744 && poly_int_tree_p (size, &size_hwi)
745 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
746 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
747 else
748 ref->max_size = ref->size = -1;
749 ref->ref_alias_set = 0;
750 ref->base_alias_set = 0;
751 ref->volatile_p = false;
754 /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
755 Return -1 if S1 < S2
756 Return 1 if S1 > S2
757 Return 0 if equal or incomparable. */
759 static int
760 compare_sizes (tree s1, tree s2)
762 if (!s1 || !s2)
763 return 0;
765 poly_uint64 size1;
766 poly_uint64 size2;
768 if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
769 return 0;
770 if (known_lt (size1, size2))
771 return -1;
772 if (known_lt (size2, size1))
773 return 1;
774 return 0;
777 /* Compare TYPE1 and TYPE2 by its size.
778 Return -1 if size of TYPE1 < size of TYPE2
779 Return 1 if size of TYPE1 > size of TYPE2
780 Return 0 if types are of equal sizes or we can not compare them. */
782 static int
783 compare_type_sizes (tree type1, tree type2)
785 /* Be conservative for arrays and vectors. We want to support partial
786 overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
787 while (TREE_CODE (type1) == ARRAY_TYPE
788 || TREE_CODE (type1) == VECTOR_TYPE)
789 type1 = TREE_TYPE (type1);
790 while (TREE_CODE (type2) == ARRAY_TYPE
791 || TREE_CODE (type2) == VECTOR_TYPE)
792 type2 = TREE_TYPE (type2);
793 return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
796 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
797 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
798 decide. */
800 static inline int
801 same_type_for_tbaa (tree type1, tree type2)
803 type1 = TYPE_MAIN_VARIANT (type1);
804 type2 = TYPE_MAIN_VARIANT (type2);
806 /* Handle the most common case first. */
807 if (type1 == type2)
808 return 1;
810 /* If we would have to do structural comparison bail out. */
811 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
812 || TYPE_STRUCTURAL_EQUALITY_P (type2))
813 return -1;
815 /* Compare the canonical types. */
816 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
817 return 1;
819 /* ??? Array types are not properly unified in all cases as we have
820 spurious changes in the index types for example. Removing this
821 causes all sorts of problems with the Fortran frontend. */
822 if (TREE_CODE (type1) == ARRAY_TYPE
823 && TREE_CODE (type2) == ARRAY_TYPE)
824 return -1;
826 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
827 object of one of its constrained subtypes, e.g. when a function with an
828 unconstrained parameter passed by reference is called on an object and
829 inlined. But, even in the case of a fixed size, type and subtypes are
830 not equivalent enough as to share the same TYPE_CANONICAL, since this
831 would mean that conversions between them are useless, whereas they are
832 not (e.g. type and subtypes can have different modes). So, in the end,
833 they are only guaranteed to have the same alias set. */
834 if (get_alias_set (type1) == get_alias_set (type2))
835 return -1;
837 /* The types are known to be not equal. */
838 return 0;
841 /* Return true if TYPE is a composite type (i.e. we may apply one of handled
842 components on it). */
844 static bool
845 type_has_components_p (tree type)
847 return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
848 || TREE_CODE (type) == COMPLEX_TYPE;
851 /* Determine if the two component references REF1 and REF2 which are
852 based on access types TYPE1 and TYPE2 and of which at least one is based
853 on an indirect reference may alias.
854 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
855 are the respective alias sets. */
857 static bool
858 aliasing_component_refs_p (tree ref1,
859 alias_set_type ref1_alias_set,
860 alias_set_type base1_alias_set,
861 poly_int64 offset1, poly_int64 max_size1,
862 tree ref2,
863 alias_set_type ref2_alias_set,
864 alias_set_type base2_alias_set,
865 poly_int64 offset2, poly_int64 max_size2)
867 /* If one reference is a component references through pointers try to find a
868 common base and apply offset based disambiguation. This handles
869 for example
870 struct A { int i; int j; } *q;
871 struct B { struct A a; int k; } *p;
872 disambiguating q->i and p->a.j. */
873 tree base1, base2;
874 tree type1, type2;
875 int same_p1 = 0, same_p2 = 0;
876 bool maybe_match = false;
877 tree end_struct_ref1 = NULL, end_struct_ref2 = NULL;
879 /* Choose bases and base types to search for. */
880 base1 = ref1;
881 while (handled_component_p (base1))
883 /* Generally access paths are monotous in the size of object. The
884 exception are trailing arrays of structures. I.e.
885 struct a {int array[0];};
887 struct a {int array1[0]; int array[];};
888 Such struct has size 0 but accesses to a.array may have non-zero size.
889 In this case the size of TREE_TYPE (base1) is smaller than
890 size of TREE_TYPE (TREE_OPERNAD (base1, 0)).
892 Because we compare sizes of arrays just by sizes of their elements,
893 we only need to care about zero sized array fields here. */
894 if (TREE_CODE (base1) == COMPONENT_REF
895 && TREE_CODE (TREE_TYPE (TREE_OPERAND (base1, 1))) == ARRAY_TYPE
896 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base1, 1)))
897 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base1, 1)))))
898 && array_at_struct_end_p (base1))
900 gcc_checking_assert (!end_struct_ref1);
901 end_struct_ref1 = base1;
903 if (TREE_CODE (base1) == VIEW_CONVERT_EXPR
904 || TREE_CODE (base1) == BIT_FIELD_REF)
905 ref1 = TREE_OPERAND (base1, 0);
906 base1 = TREE_OPERAND (base1, 0);
908 type1 = TREE_TYPE (base1);
909 base2 = ref2;
910 while (handled_component_p (base2))
912 if (TREE_CODE (base2) == COMPONENT_REF
913 && TREE_CODE (TREE_TYPE (TREE_OPERAND (base2, 1))) == ARRAY_TYPE
914 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base2, 1)))
915 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (base2, 1)))))
916 && array_at_struct_end_p (base2))
918 gcc_checking_assert (!end_struct_ref2);
919 end_struct_ref2 = base2;
921 if (TREE_CODE (base2) == VIEW_CONVERT_EXPR
922 || TREE_CODE (base2) == BIT_FIELD_REF)
923 ref2 = TREE_OPERAND (base2, 0);
924 base2 = TREE_OPERAND (base2, 0);
926 type2 = TREE_TYPE (base2);
928 /* Now search for the type1 in the access path of ref2. This
929 would be a common base for doing offset based disambiguation on.
930 This however only makes sense if type2 is big enough to hold type1. */
931 int cmp_outer = compare_type_sizes (type2, type1);
933 /* If type2 is big enough to contain type1 walk its access path.
934 We also need to care of arrays at the end of structs that may extend
935 beyond the end of structure. */
936 if (cmp_outer >= 0
937 || (end_struct_ref2
938 && compare_type_sizes (TREE_TYPE (end_struct_ref2), type1) >= 0))
940 tree ref = ref2;
941 while (true)
943 /* We walk from inner type to the outer types. If type we see is
944 already too large to be part of type1, terminate the search. */
945 int cmp = compare_type_sizes (type1, TREE_TYPE (ref));
947 if (cmp < 0
948 && (!end_struct_ref1
949 || compare_type_sizes (TREE_TYPE (end_struct_ref1),
950 TREE_TYPE (ref)) < 0))
951 break;
952 /* If types may be of same size, see if we can decide about their
953 equality. */
954 if (cmp == 0)
956 same_p2 = same_type_for_tbaa (TREE_TYPE (ref), type1);
957 if (same_p2 == 1)
958 break;
959 /* In case we can't decide whether types are same try to
960 continue looking for the exact match.
961 Remember however that we possibly saw a match
962 to bypass the access path continuations tests we do later. */
963 if (same_p2 == -1)
964 maybe_match = true;
966 if (!handled_component_p (ref))
967 break;
968 ref = TREE_OPERAND (ref, 0);
970 if (same_p2 == 1)
972 poly_int64 offadj, sztmp, msztmp;
973 bool reverse;
975 /* We assume that arrays can overlap by multiple of their elements
976 size as tested in gcc.dg/torture/alias-2.c.
977 This partial overlap happen only when both arrays are bases of
978 the access and not contained within another component ref.
979 To be safe we also assume partial overlap for VLAs. */
980 if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
981 && (!TYPE_SIZE (TREE_TYPE (base1))
982 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
983 || ref == base2))
985 ++alias_stats.aliasing_component_refs_p_may_alias;
986 return true;
989 get_ref_base_and_extent (ref, &offadj, &sztmp, &msztmp, &reverse);
990 offset2 -= offadj;
991 get_ref_base_and_extent (base1, &offadj, &sztmp, &msztmp, &reverse);
992 offset1 -= offadj;
993 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
995 ++alias_stats.aliasing_component_refs_p_may_alias;
996 return true;
998 else
1000 ++alias_stats.aliasing_component_refs_p_no_alias;
1001 return false;
1006 /* If we didn't find a common base, try the other way around. */
1007 if (cmp_outer <= 0
1008 || (end_struct_ref1
1009 && compare_type_sizes (TREE_TYPE (end_struct_ref1), type1) <= 0))
1011 tree ref = ref1;
1012 while (true)
1014 int cmp = compare_type_sizes (type2, TREE_TYPE (ref));
1015 if (cmp < 0
1016 && (!end_struct_ref2
1017 || compare_type_sizes (TREE_TYPE (end_struct_ref2),
1018 TREE_TYPE (ref)) < 0))
1019 break;
1020 /* If types may be of same size, see if we can decide about their
1021 equality. */
1022 if (cmp == 0)
1024 same_p1 = same_type_for_tbaa (TREE_TYPE (ref), type2);
1025 if (same_p1 == 1)
1026 break;
1027 if (same_p1 == -1)
1028 maybe_match = true;
1030 if (!handled_component_p (ref))
1031 break;
1032 ref = TREE_OPERAND (ref, 0);
1034 if (same_p1 == 1)
1036 poly_int64 offadj, sztmp, msztmp;
1037 bool reverse;
1039 if (TREE_CODE (TREE_TYPE (base2)) == ARRAY_TYPE
1040 && (!TYPE_SIZE (TREE_TYPE (base2))
1041 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base2))) != INTEGER_CST
1042 || ref == base1))
1044 ++alias_stats.aliasing_component_refs_p_may_alias;
1045 return true;
1048 get_ref_base_and_extent (ref, &offadj, &sztmp, &msztmp, &reverse);
1049 offset1 -= offadj;
1050 get_ref_base_and_extent (base2, &offadj, &sztmp, &msztmp, &reverse);
1051 offset2 -= offadj;
1052 if (ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1054 ++alias_stats.aliasing_component_refs_p_may_alias;
1055 return true;
1057 else
1059 ++alias_stats.aliasing_component_refs_p_no_alias;
1060 return false;
1065 /* In the following code we make an assumption that the types in access
1066 paths do not overlap and thus accesses alias only if one path can be
1067 continuation of another. If we was not able to decide about equivalence,
1068 we need to give up. */
1069 if (maybe_match)
1070 return true;
1072 /* If we have two type access paths B1.path1 and B2.path2 they may
1073 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
1074 But we can still have a path that goes B1.path1...B2.path2 with
1075 a part that we do not see. So we can only disambiguate now
1076 if there is no B2 in the tail of path1 and no B1 on the
1077 tail of path2. */
1078 if (compare_type_sizes (TREE_TYPE (ref2), type1) >= 0
1079 && (!end_struct_ref1
1080 || compare_type_sizes (TREE_TYPE (ref2),
1081 TREE_TYPE (end_struct_ref1)) >= 0)
1082 && type_has_components_p (TREE_TYPE (ref2))
1083 && (base1_alias_set == ref2_alias_set
1084 || alias_set_subset_of (base1_alias_set, ref2_alias_set)))
1086 ++alias_stats.aliasing_component_refs_p_may_alias;
1087 return true;
1089 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
1090 if (compare_type_sizes (TREE_TYPE (ref1), type2) >= 0
1091 && (!end_struct_ref2
1092 || compare_type_sizes (TREE_TYPE (ref1),
1093 TREE_TYPE (end_struct_ref2)) >= 0)
1094 && type_has_components_p (TREE_TYPE (ref1))
1095 && (base2_alias_set == ref1_alias_set
1096 || alias_set_subset_of (base2_alias_set, ref1_alias_set)))
1098 ++alias_stats.aliasing_component_refs_p_may_alias;
1099 return true;
1101 ++alias_stats.aliasing_component_refs_p_no_alias;
1102 return false;
1105 /* Return true if we can determine that component references REF1 and REF2,
1106 that are within a common DECL, cannot overlap. */
1108 static bool
1109 nonoverlapping_component_refs_of_decl_p (tree ref1, tree ref2)
1111 auto_vec<tree, 16> component_refs1;
1112 auto_vec<tree, 16> component_refs2;
1114 /* Create the stack of handled components for REF1. */
1115 while (handled_component_p (ref1))
1117 component_refs1.safe_push (ref1);
1118 ref1 = TREE_OPERAND (ref1, 0);
1120 if (TREE_CODE (ref1) == MEM_REF)
1122 if (!integer_zerop (TREE_OPERAND (ref1, 1)))
1124 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1125 return false;
1127 ref1 = TREE_OPERAND (TREE_OPERAND (ref1, 0), 0);
1130 /* Create the stack of handled components for REF2. */
1131 while (handled_component_p (ref2))
1133 component_refs2.safe_push (ref2);
1134 ref2 = TREE_OPERAND (ref2, 0);
1136 if (TREE_CODE (ref2) == MEM_REF)
1138 if (!integer_zerop (TREE_OPERAND (ref2, 1)))
1140 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1141 return false;
1143 ref2 = TREE_OPERAND (TREE_OPERAND (ref2, 0), 0);
1146 /* Bases must be either same or uncomparable. */
1147 gcc_checking_assert (ref1 == ref2
1148 || (DECL_P (ref1) && DECL_P (ref2)
1149 && compare_base_decls (ref1, ref2) != 0));
1151 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
1152 rank. This is sufficient because we start from the same DECL and you
1153 cannot reference several fields at a time with COMPONENT_REFs (unlike
1154 with ARRAY_RANGE_REFs for arrays) so you always need the same number
1155 of them to access a sub-component, unless you're in a union, in which
1156 case the return value will precisely be false. */
1157 while (true)
1161 if (component_refs1.is_empty ())
1163 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1164 return false;
1166 ref1 = component_refs1.pop ();
1168 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
1172 if (component_refs2.is_empty ())
1174 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1175 return false;
1177 ref2 = component_refs2.pop ();
1179 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
1181 /* Beware of BIT_FIELD_REF. */
1182 if (TREE_CODE (ref1) != COMPONENT_REF
1183 || TREE_CODE (ref2) != COMPONENT_REF)
1185 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1186 return false;
1189 tree field1 = TREE_OPERAND (ref1, 1);
1190 tree field2 = TREE_OPERAND (ref2, 1);
1192 /* ??? We cannot simply use the type of operand #0 of the refs here
1193 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1194 for common blocks instead of using unions like everyone else. */
1195 tree type1 = DECL_CONTEXT (field1);
1196 tree type2 = DECL_CONTEXT (field2);
1198 /* We cannot disambiguate fields in a union or qualified union. */
1199 if (type1 != type2 || TREE_CODE (type1) != RECORD_TYPE)
1201 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1202 return false;
1205 if (field1 != field2)
1207 /* A field and its representative need to be considered the
1208 same. */
1209 if (DECL_BIT_FIELD_REPRESENTATIVE (field1) == field2
1210 || DECL_BIT_FIELD_REPRESENTATIVE (field2) == field1)
1212 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1213 return false;
1215 /* Different fields of the same record type cannot overlap.
1216 ??? Bitfields can overlap at RTL level so punt on them. */
1217 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
1219 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1220 return false;
1222 ++alias_stats.nonoverlapping_component_refs_of_decl_p_no_alias;
1223 return true;
1227 ++alias_stats.nonoverlapping_component_refs_of_decl_p_may_alias;
1228 return false;
1231 /* qsort compare function to sort FIELD_DECLs after their
1232 DECL_FIELD_CONTEXT TYPE_UID. */
1234 static inline int
1235 ncr_compar (const void *field1_, const void *field2_)
1237 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
1238 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
1239 unsigned int uid1 = TYPE_UID (DECL_FIELD_CONTEXT (field1));
1240 unsigned int uid2 = TYPE_UID (DECL_FIELD_CONTEXT (field2));
1241 if (uid1 < uid2)
1242 return -1;
1243 else if (uid1 > uid2)
1244 return 1;
1245 return 0;
1248 /* Return true if we can determine that the fields referenced cannot
1249 overlap for any pair of objects. */
1251 static bool
1252 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1254 if (!flag_strict_aliasing
1255 || !x || !y
1256 || !handled_component_p (x)
1257 || !handled_component_p (y))
1259 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1260 return false;
1263 auto_vec<const_tree, 16> fieldsx;
1264 while (handled_component_p (x))
1266 if (TREE_CODE (x) == COMPONENT_REF)
1268 tree field = TREE_OPERAND (x, 1);
1269 tree type = DECL_FIELD_CONTEXT (field);
1270 if (TREE_CODE (type) == RECORD_TYPE)
1271 fieldsx.safe_push (field);
1273 else if (TREE_CODE (x) == VIEW_CONVERT_EXPR
1274 || TREE_CODE (x) == BIT_FIELD_REF)
1275 fieldsx.truncate (0);
1276 x = TREE_OPERAND (x, 0);
1278 if (fieldsx.length () == 0)
1279 return false;
1280 auto_vec<const_tree, 16> fieldsy;
1281 while (handled_component_p (y))
1283 if (TREE_CODE (y) == COMPONENT_REF)
1285 tree field = TREE_OPERAND (y, 1);
1286 tree type = DECL_FIELD_CONTEXT (field);
1287 if (TREE_CODE (type) == RECORD_TYPE)
1288 fieldsy.safe_push (TREE_OPERAND (y, 1));
1290 else if (TREE_CODE (y) == VIEW_CONVERT_EXPR
1291 || TREE_CODE (y) == BIT_FIELD_REF)
1292 fieldsy.truncate (0);
1293 y = TREE_OPERAND (y, 0);
1295 if (fieldsy.length () == 0)
1297 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1298 return false;
1301 /* Most common case first. */
1302 if (fieldsx.length () == 1
1303 && fieldsy.length () == 1)
1305 if ((DECL_FIELD_CONTEXT (fieldsx[0])
1306 == DECL_FIELD_CONTEXT (fieldsy[0]))
1307 && fieldsx[0] != fieldsy[0]
1308 && !(DECL_BIT_FIELD (fieldsx[0]) && DECL_BIT_FIELD (fieldsy[0])))
1310 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1311 return true;
1313 else
1315 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1316 return false;
1320 if (fieldsx.length () == 2)
1322 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1323 std::swap (fieldsx[0], fieldsx[1]);
1325 else
1326 fieldsx.qsort (ncr_compar);
1328 if (fieldsy.length () == 2)
1330 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1331 std::swap (fieldsy[0], fieldsy[1]);
1333 else
1334 fieldsy.qsort (ncr_compar);
1336 unsigned i = 0, j = 0;
1339 const_tree fieldx = fieldsx[i];
1340 const_tree fieldy = fieldsy[j];
1341 tree typex = DECL_FIELD_CONTEXT (fieldx);
1342 tree typey = DECL_FIELD_CONTEXT (fieldy);
1343 if (typex == typey)
1345 /* We're left with accessing different fields of a structure,
1346 no possible overlap. */
1347 if (fieldx != fieldy)
1349 /* A field and its representative need to be considered the
1350 same. */
1351 if (DECL_BIT_FIELD_REPRESENTATIVE (fieldx) == fieldy
1352 || DECL_BIT_FIELD_REPRESENTATIVE (fieldy) == fieldx)
1354 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1355 return false;
1357 /* Different fields of the same record type cannot overlap.
1358 ??? Bitfields can overlap at RTL level so punt on them. */
1359 if (DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy))
1361 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1362 return false;
1364 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1365 return true;
1368 if (TYPE_UID (typex) < TYPE_UID (typey))
1370 i++;
1371 if (i == fieldsx.length ())
1372 break;
1374 else
1376 j++;
1377 if (j == fieldsy.length ())
1378 break;
1381 while (1);
1383 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1384 return false;
1388 /* Return true if two memory references based on the variables BASE1
1389 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1390 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1391 if non-NULL are the complete memory reference trees. */
1393 static bool
1394 decl_refs_may_alias_p (tree ref1, tree base1,
1395 poly_int64 offset1, poly_int64 max_size1,
1396 tree ref2, tree base2,
1397 poly_int64 offset2, poly_int64 max_size2)
1399 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1401 /* If both references are based on different variables, they cannot alias. */
1402 if (compare_base_decls (base1, base2) == 0)
1403 return false;
1405 /* If both references are based on the same variable, they cannot alias if
1406 the accesses do not overlap. */
1407 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1408 return false;
1410 /* For components with variable position, the above test isn't sufficient,
1411 so we disambiguate component references manually. */
1412 if (ref1 && ref2
1413 && handled_component_p (ref1) && handled_component_p (ref2)
1414 && nonoverlapping_component_refs_of_decl_p (ref1, ref2))
1415 return false;
1417 return true;
1420 /* Return true if an indirect reference based on *PTR1 constrained
1421 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1422 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1423 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1424 in which case they are computed on-demand. REF1 and REF2
1425 if non-NULL are the complete memory reference trees. */
1427 static bool
1428 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1429 poly_int64 offset1, poly_int64 max_size1,
1430 alias_set_type ref1_alias_set,
1431 alias_set_type base1_alias_set,
1432 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1433 poly_int64 offset2, poly_int64 max_size2,
1434 alias_set_type ref2_alias_set,
1435 alias_set_type base2_alias_set, bool tbaa_p)
1437 tree ptr1;
1438 tree ptrtype1, dbase2;
1440 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1441 || TREE_CODE (base1) == TARGET_MEM_REF)
1442 && DECL_P (base2));
1444 ptr1 = TREE_OPERAND (base1, 0);
1445 poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1447 /* If only one reference is based on a variable, they cannot alias if
1448 the pointer access is beyond the extent of the variable access.
1449 (the pointer base cannot validly point to an offset less than zero
1450 of the variable).
1451 ??? IVOPTs creates bases that do not honor this restriction,
1452 so do not apply this optimization for TARGET_MEM_REFs. */
1453 if (TREE_CODE (base1) != TARGET_MEM_REF
1454 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1455 return false;
1456 /* They also cannot alias if the pointer may not point to the decl. */
1457 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1458 return false;
1460 /* Disambiguations that rely on strict aliasing rules follow. */
1461 if (!flag_strict_aliasing || !tbaa_p)
1462 return true;
1464 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1466 /* If the alias set for a pointer access is zero all bets are off. */
1467 if (base1_alias_set == 0)
1468 return true;
1470 /* When we are trying to disambiguate an access with a pointer dereference
1471 as base versus one with a decl as base we can use both the size
1472 of the decl and its dynamic type for extra disambiguation.
1473 ??? We do not know anything about the dynamic type of the decl
1474 other than that its alias-set contains base2_alias_set as a subset
1475 which does not help us here. */
1476 /* As we know nothing useful about the dynamic type of the decl just
1477 use the usual conflict check rather than a subset test.
1478 ??? We could introduce -fvery-strict-aliasing when the language
1479 does not allow decls to have a dynamic type that differs from their
1480 static type. Then we can check
1481 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1482 if (base1_alias_set != base2_alias_set
1483 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1484 return false;
1485 /* If the size of the access relevant for TBAA through the pointer
1486 is bigger than the size of the decl we can't possibly access the
1487 decl via that pointer. */
1488 if (/* ??? This in turn may run afoul when a decl of type T which is
1489 a member of union type U is accessed through a pointer to
1490 type U and sizeof T is smaller than sizeof U. */
1491 TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1492 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1493 && compare_sizes (DECL_SIZE (base2),
1494 TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
1495 return false;
1497 if (!ref2)
1498 return true;
1500 /* If the decl is accessed via a MEM_REF, reconstruct the base
1501 we can use for TBAA and an appropriately adjusted offset. */
1502 dbase2 = ref2;
1503 while (handled_component_p (dbase2))
1504 dbase2 = TREE_OPERAND (dbase2, 0);
1505 poly_int64 doffset1 = offset1;
1506 poly_offset_int doffset2 = offset2;
1507 if (TREE_CODE (dbase2) == MEM_REF
1508 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1510 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1511 tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1));
1512 /* If second reference is view-converted, give up now. */
1513 if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1)
1514 return true;
1517 /* If first reference is view-converted, give up now. */
1518 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1)
1519 return true;
1521 /* If both references are through the same type, they do not alias
1522 if the accesses do not overlap. This does extra disambiguation
1523 for mixed/pointer accesses but requires strict aliasing.
1524 For MEM_REFs we require that the component-ref offset we computed
1525 is relative to the start of the type which we ensure by
1526 comparing rvalue and access type and disregarding the constant
1527 pointer offset.
1529 But avoid treating variable length arrays as "objects", instead assume they
1530 can overlap by an exact multiple of their element size.
1531 See gcc.dg/torture/alias-2.c. */
1532 if (((TREE_CODE (base1) != TARGET_MEM_REF
1533 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1534 && (TREE_CODE (dbase2) != TARGET_MEM_REF
1535 || (!TMR_INDEX (dbase2) && !TMR_INDEX2 (dbase2))))
1536 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1
1537 && (TREE_CODE (TREE_TYPE (base1)) != ARRAY_TYPE
1538 || (TYPE_SIZE (TREE_TYPE (base1))
1539 && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) == INTEGER_CST)))
1540 return ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2);
1542 if (ref1 && ref2
1543 && nonoverlapping_component_refs_p (ref1, ref2))
1544 return false;
1546 /* Do access-path based disambiguation. */
1547 if (ref1 && ref2
1548 && (handled_component_p (ref1) || handled_component_p (ref2)))
1549 return aliasing_component_refs_p (ref1,
1550 ref1_alias_set, base1_alias_set,
1551 offset1, max_size1,
1552 ref2,
1553 ref2_alias_set, base2_alias_set,
1554 offset2, max_size2);
1556 return true;
1559 /* Return true if two indirect references based on *PTR1
1560 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1561 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1562 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1563 in which case they are computed on-demand. REF1 and REF2
1564 if non-NULL are the complete memory reference trees. */
1566 static bool
1567 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1568 poly_int64 offset1, poly_int64 max_size1,
1569 alias_set_type ref1_alias_set,
1570 alias_set_type base1_alias_set,
1571 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1572 poly_int64 offset2, poly_int64 max_size2,
1573 alias_set_type ref2_alias_set,
1574 alias_set_type base2_alias_set, bool tbaa_p)
1576 tree ptr1;
1577 tree ptr2;
1578 tree ptrtype1, ptrtype2;
1580 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1581 || TREE_CODE (base1) == TARGET_MEM_REF)
1582 && (TREE_CODE (base2) == MEM_REF
1583 || TREE_CODE (base2) == TARGET_MEM_REF));
1585 ptr1 = TREE_OPERAND (base1, 0);
1586 ptr2 = TREE_OPERAND (base2, 0);
1588 /* If both bases are based on pointers they cannot alias if they may not
1589 point to the same memory object or if they point to the same object
1590 and the accesses do not overlap. */
1591 if ((!cfun || gimple_in_ssa_p (cfun))
1592 && operand_equal_p (ptr1, ptr2, 0)
1593 && (((TREE_CODE (base1) != TARGET_MEM_REF
1594 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1595 && (TREE_CODE (base2) != TARGET_MEM_REF
1596 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1597 || (TREE_CODE (base1) == TARGET_MEM_REF
1598 && TREE_CODE (base2) == TARGET_MEM_REF
1599 && (TMR_STEP (base1) == TMR_STEP (base2)
1600 || (TMR_STEP (base1) && TMR_STEP (base2)
1601 && operand_equal_p (TMR_STEP (base1),
1602 TMR_STEP (base2), 0)))
1603 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1604 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1605 && operand_equal_p (TMR_INDEX (base1),
1606 TMR_INDEX (base2), 0)))
1607 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1608 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1609 && operand_equal_p (TMR_INDEX2 (base1),
1610 TMR_INDEX2 (base2), 0))))))
1612 poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1613 poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1614 return ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1615 offset2 + moff2, max_size2);
1617 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1618 return false;
1620 /* Disambiguations that rely on strict aliasing rules follow. */
1621 if (!flag_strict_aliasing || !tbaa_p)
1622 return true;
1624 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1625 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
1627 /* If the alias set for a pointer access is zero all bets are off. */
1628 if (base1_alias_set == 0
1629 || base2_alias_set == 0)
1630 return true;
1632 /* Do type-based disambiguation. */
1633 if (base1_alias_set != base2_alias_set
1634 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1635 return false;
1637 /* If either reference is view-converted, give up now. */
1638 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1639 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
1640 return true;
1642 /* If both references are through the same type, they do not alias
1643 if the accesses do not overlap. This does extra disambiguation
1644 for mixed/pointer accesses but requires strict aliasing. */
1645 if ((TREE_CODE (base1) != TARGET_MEM_REF
1646 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1647 && (TREE_CODE (base2) != TARGET_MEM_REF
1648 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
1649 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
1650 TREE_TYPE (ptrtype2)) == 1
1651 /* But avoid treating arrays as "objects", instead assume they
1652 can overlap by an exact multiple of their element size.
1653 See gcc.dg/torture/alias-2.c. */
1654 && TREE_CODE (TREE_TYPE (ptrtype1)) != ARRAY_TYPE)
1655 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
1657 if (ref1 && ref2
1658 && nonoverlapping_component_refs_p (ref1, ref2))
1659 return false;
1661 /* Do access-path based disambiguation. */
1662 if (ref1 && ref2
1663 && (handled_component_p (ref1) || handled_component_p (ref2)))
1664 return aliasing_component_refs_p (ref1,
1665 ref1_alias_set, base1_alias_set,
1666 offset1, max_size1,
1667 ref2,
1668 ref2_alias_set, base2_alias_set,
1669 offset2, max_size2);
1671 return true;
1674 /* Return true, if the two memory references REF1 and REF2 may alias. */
1676 static bool
1677 refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1679 tree base1, base2;
1680 poly_int64 offset1 = 0, offset2 = 0;
1681 poly_int64 max_size1 = -1, max_size2 = -1;
1682 bool var1_p, var2_p, ind1_p, ind2_p;
1684 gcc_checking_assert ((!ref1->ref
1685 || TREE_CODE (ref1->ref) == SSA_NAME
1686 || DECL_P (ref1->ref)
1687 || TREE_CODE (ref1->ref) == STRING_CST
1688 || handled_component_p (ref1->ref)
1689 || TREE_CODE (ref1->ref) == MEM_REF
1690 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
1691 && (!ref2->ref
1692 || TREE_CODE (ref2->ref) == SSA_NAME
1693 || DECL_P (ref2->ref)
1694 || TREE_CODE (ref2->ref) == STRING_CST
1695 || handled_component_p (ref2->ref)
1696 || TREE_CODE (ref2->ref) == MEM_REF
1697 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
1699 /* Decompose the references into their base objects and the access. */
1700 base1 = ao_ref_base (ref1);
1701 offset1 = ref1->offset;
1702 max_size1 = ref1->max_size;
1703 base2 = ao_ref_base (ref2);
1704 offset2 = ref2->offset;
1705 max_size2 = ref2->max_size;
1707 /* We can end up with registers or constants as bases for example from
1708 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
1709 which is seen as a struct copy. */
1710 if (TREE_CODE (base1) == SSA_NAME
1711 || TREE_CODE (base1) == CONST_DECL
1712 || TREE_CODE (base1) == CONSTRUCTOR
1713 || TREE_CODE (base1) == ADDR_EXPR
1714 || CONSTANT_CLASS_P (base1)
1715 || TREE_CODE (base2) == SSA_NAME
1716 || TREE_CODE (base2) == CONST_DECL
1717 || TREE_CODE (base2) == CONSTRUCTOR
1718 || TREE_CODE (base2) == ADDR_EXPR
1719 || CONSTANT_CLASS_P (base2))
1720 return false;
1722 /* We can end up referring to code via function and label decls.
1723 As we likely do not properly track code aliases conservatively
1724 bail out. */
1725 if (TREE_CODE (base1) == FUNCTION_DECL
1726 || TREE_CODE (base1) == LABEL_DECL
1727 || TREE_CODE (base2) == FUNCTION_DECL
1728 || TREE_CODE (base2) == LABEL_DECL)
1729 return true;
1731 /* Two volatile accesses always conflict. */
1732 if (ref1->volatile_p
1733 && ref2->volatile_p)
1734 return true;
1736 /* Defer to simple offset based disambiguation if we have
1737 references based on two decls. Do this before defering to
1738 TBAA to handle must-alias cases in conformance with the
1739 GCC extension of allowing type-punning through unions. */
1740 var1_p = DECL_P (base1);
1741 var2_p = DECL_P (base2);
1742 if (var1_p && var2_p)
1743 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
1744 ref2->ref, base2, offset2, max_size2);
1746 /* Handle restrict based accesses.
1747 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
1748 here. */
1749 tree rbase1 = base1;
1750 tree rbase2 = base2;
1751 if (var1_p)
1753 rbase1 = ref1->ref;
1754 if (rbase1)
1755 while (handled_component_p (rbase1))
1756 rbase1 = TREE_OPERAND (rbase1, 0);
1758 if (var2_p)
1760 rbase2 = ref2->ref;
1761 if (rbase2)
1762 while (handled_component_p (rbase2))
1763 rbase2 = TREE_OPERAND (rbase2, 0);
1765 if (rbase1 && rbase2
1766 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
1767 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
1768 /* If the accesses are in the same restrict clique... */
1769 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
1770 /* But based on different pointers they do not alias. */
1771 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
1772 return false;
1774 ind1_p = (TREE_CODE (base1) == MEM_REF
1775 || TREE_CODE (base1) == TARGET_MEM_REF);
1776 ind2_p = (TREE_CODE (base2) == MEM_REF
1777 || TREE_CODE (base2) == TARGET_MEM_REF);
1779 /* Canonicalize the pointer-vs-decl case. */
1780 if (ind1_p && var2_p)
1782 std::swap (offset1, offset2);
1783 std::swap (max_size1, max_size2);
1784 std::swap (base1, base2);
1785 std::swap (ref1, ref2);
1786 var1_p = true;
1787 ind1_p = false;
1788 var2_p = false;
1789 ind2_p = true;
1792 /* First defer to TBAA if possible. */
1793 if (tbaa_p
1794 && flag_strict_aliasing
1795 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
1796 ao_ref_alias_set (ref2)))
1797 return false;
1799 /* If the reference is based on a pointer that points to memory
1800 that may not be written to then the other reference cannot possibly
1801 clobber it. */
1802 if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
1803 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
1804 || (ind1_p
1805 && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
1806 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
1807 return false;
1809 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
1810 if (var1_p && ind2_p)
1811 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
1812 offset2, max_size2,
1813 ao_ref_alias_set (ref2),
1814 ao_ref_base_alias_set (ref2),
1815 ref1->ref, base1,
1816 offset1, max_size1,
1817 ao_ref_alias_set (ref1),
1818 ao_ref_base_alias_set (ref1),
1819 tbaa_p);
1820 else if (ind1_p && ind2_p)
1821 return indirect_refs_may_alias_p (ref1->ref, base1,
1822 offset1, max_size1,
1823 ao_ref_alias_set (ref1),
1824 ao_ref_base_alias_set (ref1),
1825 ref2->ref, base2,
1826 offset2, max_size2,
1827 ao_ref_alias_set (ref2),
1828 ao_ref_base_alias_set (ref2),
1829 tbaa_p);
1831 gcc_unreachable ();
1834 /* Return true, if the two memory references REF1 and REF2 may alias
1835 and update statistics. */
1837 bool
1838 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1840 bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
1841 if (res)
1842 ++alias_stats.refs_may_alias_p_may_alias;
1843 else
1844 ++alias_stats.refs_may_alias_p_no_alias;
1845 return res;
1848 static bool
1849 refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
1851 ao_ref r1;
1852 ao_ref_init (&r1, ref1);
1853 return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
1856 bool
1857 refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
1859 ao_ref r1, r2;
1860 ao_ref_init (&r1, ref1);
1861 ao_ref_init (&r2, ref2);
1862 return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
1865 /* Returns true if there is a anti-dependence for the STORE that
1866 executes after the LOAD. */
1868 bool
1869 refs_anti_dependent_p (tree load, tree store)
1871 ao_ref r1, r2;
1872 ao_ref_init (&r1, load);
1873 ao_ref_init (&r2, store);
1874 return refs_may_alias_p_1 (&r1, &r2, false);
1877 /* Returns true if there is a output dependence for the stores
1878 STORE1 and STORE2. */
1880 bool
1881 refs_output_dependent_p (tree store1, tree store2)
1883 ao_ref r1, r2;
1884 ao_ref_init (&r1, store1);
1885 ao_ref_init (&r2, store2);
1886 return refs_may_alias_p_1 (&r1, &r2, false);
1889 /* If the call CALL may use the memory reference REF return true,
1890 otherwise return false. */
1892 static bool
1893 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
1895 tree base, callee;
1896 unsigned i;
1897 int flags = gimple_call_flags (call);
1899 /* Const functions without a static chain do not implicitly use memory. */
1900 if (!gimple_call_chain (call)
1901 && (flags & (ECF_CONST|ECF_NOVOPS)))
1902 goto process_args;
1904 base = ao_ref_base (ref);
1905 if (!base)
1906 return true;
1908 /* A call that is not without side-effects might involve volatile
1909 accesses and thus conflicts with all other volatile accesses. */
1910 if (ref->volatile_p)
1911 return true;
1913 /* If the reference is based on a decl that is not aliased the call
1914 cannot possibly use it. */
1915 if (DECL_P (base)
1916 && !may_be_aliased (base)
1917 /* But local statics can be used through recursion. */
1918 && !is_global_var (base))
1919 goto process_args;
1921 callee = gimple_call_fndecl (call);
1923 /* Handle those builtin functions explicitly that do not act as
1924 escape points. See tree-ssa-structalias.c:find_func_aliases
1925 for the list of builtins we might need to handle here. */
1926 if (callee != NULL_TREE
1927 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
1928 switch (DECL_FUNCTION_CODE (callee))
1930 /* All the following functions read memory pointed to by
1931 their second argument. strcat/strncat additionally
1932 reads memory pointed to by the first argument. */
1933 case BUILT_IN_STRCAT:
1934 case BUILT_IN_STRNCAT:
1936 ao_ref dref;
1937 ao_ref_init_from_ptr_and_size (&dref,
1938 gimple_call_arg (call, 0),
1939 NULL_TREE);
1940 if (refs_may_alias_p_1 (&dref, ref, false))
1941 return true;
1943 /* FALLTHRU */
1944 case BUILT_IN_STRCPY:
1945 case BUILT_IN_STRNCPY:
1946 case BUILT_IN_MEMCPY:
1947 case BUILT_IN_MEMMOVE:
1948 case BUILT_IN_MEMPCPY:
1949 case BUILT_IN_STPCPY:
1950 case BUILT_IN_STPNCPY:
1951 case BUILT_IN_TM_MEMCPY:
1952 case BUILT_IN_TM_MEMMOVE:
1954 ao_ref dref;
1955 tree size = NULL_TREE;
1956 if (gimple_call_num_args (call) == 3)
1957 size = gimple_call_arg (call, 2);
1958 ao_ref_init_from_ptr_and_size (&dref,
1959 gimple_call_arg (call, 1),
1960 size);
1961 return refs_may_alias_p_1 (&dref, ref, false);
1963 case BUILT_IN_STRCAT_CHK:
1964 case BUILT_IN_STRNCAT_CHK:
1966 ao_ref dref;
1967 ao_ref_init_from_ptr_and_size (&dref,
1968 gimple_call_arg (call, 0),
1969 NULL_TREE);
1970 if (refs_may_alias_p_1 (&dref, ref, false))
1971 return true;
1973 /* FALLTHRU */
1974 case BUILT_IN_STRCPY_CHK:
1975 case BUILT_IN_STRNCPY_CHK:
1976 case BUILT_IN_MEMCPY_CHK:
1977 case BUILT_IN_MEMMOVE_CHK:
1978 case BUILT_IN_MEMPCPY_CHK:
1979 case BUILT_IN_STPCPY_CHK:
1980 case BUILT_IN_STPNCPY_CHK:
1982 ao_ref dref;
1983 tree size = NULL_TREE;
1984 if (gimple_call_num_args (call) == 4)
1985 size = gimple_call_arg (call, 2);
1986 ao_ref_init_from_ptr_and_size (&dref,
1987 gimple_call_arg (call, 1),
1988 size);
1989 return refs_may_alias_p_1 (&dref, ref, false);
1991 case BUILT_IN_BCOPY:
1993 ao_ref dref;
1994 tree size = gimple_call_arg (call, 2);
1995 ao_ref_init_from_ptr_and_size (&dref,
1996 gimple_call_arg (call, 0),
1997 size);
1998 return refs_may_alias_p_1 (&dref, ref, false);
2001 /* The following functions read memory pointed to by their
2002 first argument. */
2003 CASE_BUILT_IN_TM_LOAD (1):
2004 CASE_BUILT_IN_TM_LOAD (2):
2005 CASE_BUILT_IN_TM_LOAD (4):
2006 CASE_BUILT_IN_TM_LOAD (8):
2007 CASE_BUILT_IN_TM_LOAD (FLOAT):
2008 CASE_BUILT_IN_TM_LOAD (DOUBLE):
2009 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
2010 CASE_BUILT_IN_TM_LOAD (M64):
2011 CASE_BUILT_IN_TM_LOAD (M128):
2012 CASE_BUILT_IN_TM_LOAD (M256):
2013 case BUILT_IN_TM_LOG:
2014 case BUILT_IN_TM_LOG_1:
2015 case BUILT_IN_TM_LOG_2:
2016 case BUILT_IN_TM_LOG_4:
2017 case BUILT_IN_TM_LOG_8:
2018 case BUILT_IN_TM_LOG_FLOAT:
2019 case BUILT_IN_TM_LOG_DOUBLE:
2020 case BUILT_IN_TM_LOG_LDOUBLE:
2021 case BUILT_IN_TM_LOG_M64:
2022 case BUILT_IN_TM_LOG_M128:
2023 case BUILT_IN_TM_LOG_M256:
2024 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
2026 /* These read memory pointed to by the first argument. */
2027 case BUILT_IN_STRDUP:
2028 case BUILT_IN_STRNDUP:
2029 case BUILT_IN_REALLOC:
2031 ao_ref dref;
2032 tree size = NULL_TREE;
2033 if (gimple_call_num_args (call) == 2)
2034 size = gimple_call_arg (call, 1);
2035 ao_ref_init_from_ptr_and_size (&dref,
2036 gimple_call_arg (call, 0),
2037 size);
2038 return refs_may_alias_p_1 (&dref, ref, false);
2040 /* These read memory pointed to by the first argument. */
2041 case BUILT_IN_INDEX:
2042 case BUILT_IN_STRCHR:
2043 case BUILT_IN_STRRCHR:
2045 ao_ref dref;
2046 ao_ref_init_from_ptr_and_size (&dref,
2047 gimple_call_arg (call, 0),
2048 NULL_TREE);
2049 return refs_may_alias_p_1 (&dref, ref, false);
2051 /* These read memory pointed to by the first argument with size
2052 in the third argument. */
2053 case BUILT_IN_MEMCHR:
2055 ao_ref dref;
2056 ao_ref_init_from_ptr_and_size (&dref,
2057 gimple_call_arg (call, 0),
2058 gimple_call_arg (call, 2));
2059 return refs_may_alias_p_1 (&dref, ref, false);
2061 /* These read memory pointed to by the first and second arguments. */
2062 case BUILT_IN_STRSTR:
2063 case BUILT_IN_STRPBRK:
2065 ao_ref dref;
2066 ao_ref_init_from_ptr_and_size (&dref,
2067 gimple_call_arg (call, 0),
2068 NULL_TREE);
2069 if (refs_may_alias_p_1 (&dref, ref, false))
2070 return true;
2071 ao_ref_init_from_ptr_and_size (&dref,
2072 gimple_call_arg (call, 1),
2073 NULL_TREE);
2074 return refs_may_alias_p_1 (&dref, ref, false);
2077 /* The following builtins do not read from memory. */
2078 case BUILT_IN_FREE:
2079 case BUILT_IN_MALLOC:
2080 case BUILT_IN_POSIX_MEMALIGN:
2081 case BUILT_IN_ALIGNED_ALLOC:
2082 case BUILT_IN_CALLOC:
2083 CASE_BUILT_IN_ALLOCA:
2084 case BUILT_IN_STACK_SAVE:
2085 case BUILT_IN_STACK_RESTORE:
2086 case BUILT_IN_MEMSET:
2087 case BUILT_IN_TM_MEMSET:
2088 case BUILT_IN_MEMSET_CHK:
2089 case BUILT_IN_FREXP:
2090 case BUILT_IN_FREXPF:
2091 case BUILT_IN_FREXPL:
2092 case BUILT_IN_GAMMA_R:
2093 case BUILT_IN_GAMMAF_R:
2094 case BUILT_IN_GAMMAL_R:
2095 case BUILT_IN_LGAMMA_R:
2096 case BUILT_IN_LGAMMAF_R:
2097 case BUILT_IN_LGAMMAL_R:
2098 case BUILT_IN_MODF:
2099 case BUILT_IN_MODFF:
2100 case BUILT_IN_MODFL:
2101 case BUILT_IN_REMQUO:
2102 case BUILT_IN_REMQUOF:
2103 case BUILT_IN_REMQUOL:
2104 case BUILT_IN_SINCOS:
2105 case BUILT_IN_SINCOSF:
2106 case BUILT_IN_SINCOSL:
2107 case BUILT_IN_ASSUME_ALIGNED:
2108 case BUILT_IN_VA_END:
2109 return false;
2110 /* __sync_* builtins and some OpenMP builtins act as threading
2111 barriers. */
2112 #undef DEF_SYNC_BUILTIN
2113 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2114 #include "sync-builtins.def"
2115 #undef DEF_SYNC_BUILTIN
2116 case BUILT_IN_GOMP_ATOMIC_START:
2117 case BUILT_IN_GOMP_ATOMIC_END:
2118 case BUILT_IN_GOMP_BARRIER:
2119 case BUILT_IN_GOMP_BARRIER_CANCEL:
2120 case BUILT_IN_GOMP_TASKWAIT:
2121 case BUILT_IN_GOMP_TASKGROUP_END:
2122 case BUILT_IN_GOMP_CRITICAL_START:
2123 case BUILT_IN_GOMP_CRITICAL_END:
2124 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2125 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2126 case BUILT_IN_GOMP_LOOP_END:
2127 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2128 case BUILT_IN_GOMP_ORDERED_START:
2129 case BUILT_IN_GOMP_ORDERED_END:
2130 case BUILT_IN_GOMP_SECTIONS_END:
2131 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2132 case BUILT_IN_GOMP_SINGLE_COPY_START:
2133 case BUILT_IN_GOMP_SINGLE_COPY_END:
2134 return true;
2136 default:
2137 /* Fallthru to general call handling. */;
2140 /* Check if base is a global static variable that is not read
2141 by the function. */
2142 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2144 struct cgraph_node *node = cgraph_node::get (callee);
2145 bitmap not_read;
2147 /* FIXME: Callee can be an OMP builtin that does not have a call graph
2148 node yet. We should enforce that there are nodes for all decls in the
2149 IL and remove this check instead. */
2150 if (node
2151 && (not_read = ipa_reference_get_not_read_global (node))
2152 && bitmap_bit_p (not_read, ipa_reference_var_uid (base)))
2153 goto process_args;
2156 /* Check if the base variable is call-used. */
2157 if (DECL_P (base))
2159 if (pt_solution_includes (gimple_call_use_set (call), base))
2160 return true;
2162 else if ((TREE_CODE (base) == MEM_REF
2163 || TREE_CODE (base) == TARGET_MEM_REF)
2164 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2166 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2167 if (!pi)
2168 return true;
2170 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
2171 return true;
2173 else
2174 return true;
2176 /* Inspect call arguments for passed-by-value aliases. */
2177 process_args:
2178 for (i = 0; i < gimple_call_num_args (call); ++i)
2180 tree op = gimple_call_arg (call, i);
2181 int flags = gimple_call_arg_flags (call, i);
2183 if (flags & EAF_UNUSED)
2184 continue;
2186 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2187 op = TREE_OPERAND (op, 0);
2189 if (TREE_CODE (op) != SSA_NAME
2190 && !is_gimple_min_invariant (op))
2192 ao_ref r;
2193 ao_ref_init (&r, op);
2194 if (refs_may_alias_p_1 (&r, ref, tbaa_p))
2195 return true;
2199 return false;
2202 static bool
2203 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
2205 bool res;
2206 res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
2207 if (res)
2208 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
2209 else
2210 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
2211 return res;
2215 /* If the statement STMT may use the memory reference REF return
2216 true, otherwise return false. */
2218 bool
2219 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
2221 if (is_gimple_assign (stmt))
2223 tree rhs;
2225 /* All memory assign statements are single. */
2226 if (!gimple_assign_single_p (stmt))
2227 return false;
2229 rhs = gimple_assign_rhs1 (stmt);
2230 if (is_gimple_reg (rhs)
2231 || is_gimple_min_invariant (rhs)
2232 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
2233 return false;
2235 return refs_may_alias_p (rhs, ref, tbaa_p);
2237 else if (is_gimple_call (stmt))
2238 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
2239 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2241 tree retval = gimple_return_retval (return_stmt);
2242 if (retval
2243 && TREE_CODE (retval) != SSA_NAME
2244 && !is_gimple_min_invariant (retval)
2245 && refs_may_alias_p (retval, ref, tbaa_p))
2246 return true;
2247 /* If ref escapes the function then the return acts as a use. */
2248 tree base = ao_ref_base (ref);
2249 if (!base)
2251 else if (DECL_P (base))
2252 return is_global_var (base);
2253 else if (TREE_CODE (base) == MEM_REF
2254 || TREE_CODE (base) == TARGET_MEM_REF)
2255 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
2256 return false;
2259 return true;
2262 bool
2263 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
2265 ao_ref r;
2266 ao_ref_init (&r, ref);
2267 return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
2270 /* If the call in statement CALL may clobber the memory reference REF
2271 return true, otherwise return false. */
2273 bool
2274 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
2276 tree base;
2277 tree callee;
2279 /* If the call is pure or const it cannot clobber anything. */
2280 if (gimple_call_flags (call)
2281 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
2282 return false;
2283 if (gimple_call_internal_p (call))
2284 switch (gimple_call_internal_fn (call))
2286 /* Treat these internal calls like ECF_PURE for aliasing,
2287 they don't write to any memory the program should care about.
2288 They have important other side-effects, and read memory,
2289 so can't be ECF_NOVOPS. */
2290 case IFN_UBSAN_NULL:
2291 case IFN_UBSAN_BOUNDS:
2292 case IFN_UBSAN_VPTR:
2293 case IFN_UBSAN_OBJECT_SIZE:
2294 case IFN_UBSAN_PTR:
2295 case IFN_ASAN_CHECK:
2296 return false;
2297 default:
2298 break;
2301 base = ao_ref_base (ref);
2302 if (!base)
2303 return true;
2305 if (TREE_CODE (base) == SSA_NAME
2306 || CONSTANT_CLASS_P (base))
2307 return false;
2309 /* A call that is not without side-effects might involve volatile
2310 accesses and thus conflicts with all other volatile accesses. */
2311 if (ref->volatile_p)
2312 return true;
2314 /* If the reference is based on a decl that is not aliased the call
2315 cannot possibly clobber it. */
2316 if (DECL_P (base)
2317 && !may_be_aliased (base)
2318 /* But local non-readonly statics can be modified through recursion
2319 or the call may implement a threading barrier which we must
2320 treat as may-def. */
2321 && (TREE_READONLY (base)
2322 || !is_global_var (base)))
2323 return false;
2325 /* If the reference is based on a pointer that points to memory
2326 that may not be written to then the call cannot possibly clobber it. */
2327 if ((TREE_CODE (base) == MEM_REF
2328 || TREE_CODE (base) == TARGET_MEM_REF)
2329 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2330 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
2331 return false;
2333 callee = gimple_call_fndecl (call);
2335 /* Handle those builtin functions explicitly that do not act as
2336 escape points. See tree-ssa-structalias.c:find_func_aliases
2337 for the list of builtins we might need to handle here. */
2338 if (callee != NULL_TREE
2339 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2340 switch (DECL_FUNCTION_CODE (callee))
2342 /* All the following functions clobber memory pointed to by
2343 their first argument. */
2344 case BUILT_IN_STRCPY:
2345 case BUILT_IN_STRNCPY:
2346 case BUILT_IN_MEMCPY:
2347 case BUILT_IN_MEMMOVE:
2348 case BUILT_IN_MEMPCPY:
2349 case BUILT_IN_STPCPY:
2350 case BUILT_IN_STPNCPY:
2351 case BUILT_IN_STRCAT:
2352 case BUILT_IN_STRNCAT:
2353 case BUILT_IN_MEMSET:
2354 case BUILT_IN_TM_MEMSET:
2355 CASE_BUILT_IN_TM_STORE (1):
2356 CASE_BUILT_IN_TM_STORE (2):
2357 CASE_BUILT_IN_TM_STORE (4):
2358 CASE_BUILT_IN_TM_STORE (8):
2359 CASE_BUILT_IN_TM_STORE (FLOAT):
2360 CASE_BUILT_IN_TM_STORE (DOUBLE):
2361 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2362 CASE_BUILT_IN_TM_STORE (M64):
2363 CASE_BUILT_IN_TM_STORE (M128):
2364 CASE_BUILT_IN_TM_STORE (M256):
2365 case BUILT_IN_TM_MEMCPY:
2366 case BUILT_IN_TM_MEMMOVE:
2368 ao_ref dref;
2369 tree size = NULL_TREE;
2370 /* Don't pass in size for strncat, as the maximum size
2371 is strlen (dest) + n + 1 instead of n, resp.
2372 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2373 known. */
2374 if (gimple_call_num_args (call) == 3
2375 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2376 size = gimple_call_arg (call, 2);
2377 ao_ref_init_from_ptr_and_size (&dref,
2378 gimple_call_arg (call, 0),
2379 size);
2380 return refs_may_alias_p_1 (&dref, ref, false);
2382 case BUILT_IN_STRCPY_CHK:
2383 case BUILT_IN_STRNCPY_CHK:
2384 case BUILT_IN_MEMCPY_CHK:
2385 case BUILT_IN_MEMMOVE_CHK:
2386 case BUILT_IN_MEMPCPY_CHK:
2387 case BUILT_IN_STPCPY_CHK:
2388 case BUILT_IN_STPNCPY_CHK:
2389 case BUILT_IN_STRCAT_CHK:
2390 case BUILT_IN_STRNCAT_CHK:
2391 case BUILT_IN_MEMSET_CHK:
2393 ao_ref dref;
2394 tree size = NULL_TREE;
2395 /* Don't pass in size for __strncat_chk, as the maximum size
2396 is strlen (dest) + n + 1 instead of n, resp.
2397 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2398 known. */
2399 if (gimple_call_num_args (call) == 4
2400 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2401 size = gimple_call_arg (call, 2);
2402 ao_ref_init_from_ptr_and_size (&dref,
2403 gimple_call_arg (call, 0),
2404 size);
2405 return refs_may_alias_p_1 (&dref, ref, false);
2407 case BUILT_IN_BCOPY:
2409 ao_ref dref;
2410 tree size = gimple_call_arg (call, 2);
2411 ao_ref_init_from_ptr_and_size (&dref,
2412 gimple_call_arg (call, 1),
2413 size);
2414 return refs_may_alias_p_1 (&dref, ref, false);
2416 /* Allocating memory does not have any side-effects apart from
2417 being the definition point for the pointer. */
2418 case BUILT_IN_MALLOC:
2419 case BUILT_IN_ALIGNED_ALLOC:
2420 case BUILT_IN_CALLOC:
2421 case BUILT_IN_STRDUP:
2422 case BUILT_IN_STRNDUP:
2423 /* Unix98 specifies that errno is set on allocation failure. */
2424 if (flag_errno_math
2425 && targetm.ref_may_alias_errno (ref))
2426 return true;
2427 return false;
2428 case BUILT_IN_STACK_SAVE:
2429 CASE_BUILT_IN_ALLOCA:
2430 case BUILT_IN_ASSUME_ALIGNED:
2431 return false;
2432 /* But posix_memalign stores a pointer into the memory pointed to
2433 by its first argument. */
2434 case BUILT_IN_POSIX_MEMALIGN:
2436 tree ptrptr = gimple_call_arg (call, 0);
2437 ao_ref dref;
2438 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2439 TYPE_SIZE_UNIT (ptr_type_node));
2440 return (refs_may_alias_p_1 (&dref, ref, false)
2441 || (flag_errno_math
2442 && targetm.ref_may_alias_errno (ref)));
2444 /* Freeing memory kills the pointed-to memory. More importantly
2445 the call has to serve as a barrier for moving loads and stores
2446 across it. */
2447 case BUILT_IN_FREE:
2448 case BUILT_IN_VA_END:
2450 tree ptr = gimple_call_arg (call, 0);
2451 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2453 /* Realloc serves both as allocation point and deallocation point. */
2454 case BUILT_IN_REALLOC:
2456 tree ptr = gimple_call_arg (call, 0);
2457 /* Unix98 specifies that errno is set on allocation failure. */
2458 return ((flag_errno_math
2459 && targetm.ref_may_alias_errno (ref))
2460 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2462 case BUILT_IN_GAMMA_R:
2463 case BUILT_IN_GAMMAF_R:
2464 case BUILT_IN_GAMMAL_R:
2465 case BUILT_IN_LGAMMA_R:
2466 case BUILT_IN_LGAMMAF_R:
2467 case BUILT_IN_LGAMMAL_R:
2469 tree out = gimple_call_arg (call, 1);
2470 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2471 return true;
2472 if (flag_errno_math)
2473 break;
2474 return false;
2476 case BUILT_IN_FREXP:
2477 case BUILT_IN_FREXPF:
2478 case BUILT_IN_FREXPL:
2479 case BUILT_IN_MODF:
2480 case BUILT_IN_MODFF:
2481 case BUILT_IN_MODFL:
2483 tree out = gimple_call_arg (call, 1);
2484 return ptr_deref_may_alias_ref_p_1 (out, ref);
2486 case BUILT_IN_REMQUO:
2487 case BUILT_IN_REMQUOF:
2488 case BUILT_IN_REMQUOL:
2490 tree out = gimple_call_arg (call, 2);
2491 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2492 return true;
2493 if (flag_errno_math)
2494 break;
2495 return false;
2497 case BUILT_IN_SINCOS:
2498 case BUILT_IN_SINCOSF:
2499 case BUILT_IN_SINCOSL:
2501 tree sin = gimple_call_arg (call, 1);
2502 tree cos = gimple_call_arg (call, 2);
2503 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2504 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2506 /* __sync_* builtins and some OpenMP builtins act as threading
2507 barriers. */
2508 #undef DEF_SYNC_BUILTIN
2509 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2510 #include "sync-builtins.def"
2511 #undef DEF_SYNC_BUILTIN
2512 case BUILT_IN_GOMP_ATOMIC_START:
2513 case BUILT_IN_GOMP_ATOMIC_END:
2514 case BUILT_IN_GOMP_BARRIER:
2515 case BUILT_IN_GOMP_BARRIER_CANCEL:
2516 case BUILT_IN_GOMP_TASKWAIT:
2517 case BUILT_IN_GOMP_TASKGROUP_END:
2518 case BUILT_IN_GOMP_CRITICAL_START:
2519 case BUILT_IN_GOMP_CRITICAL_END:
2520 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2521 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2522 case BUILT_IN_GOMP_LOOP_END:
2523 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2524 case BUILT_IN_GOMP_ORDERED_START:
2525 case BUILT_IN_GOMP_ORDERED_END:
2526 case BUILT_IN_GOMP_SECTIONS_END:
2527 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2528 case BUILT_IN_GOMP_SINGLE_COPY_START:
2529 case BUILT_IN_GOMP_SINGLE_COPY_END:
2530 return true;
2531 default:
2532 /* Fallthru to general call handling. */;
2535 /* Check if base is a global static variable that is not written
2536 by the function. */
2537 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2539 struct cgraph_node *node = cgraph_node::get (callee);
2540 bitmap not_written;
2542 if (node
2543 && (not_written = ipa_reference_get_not_written_global (node))
2544 && bitmap_bit_p (not_written, ipa_reference_var_uid (base)))
2545 return false;
2548 /* Check if the base variable is call-clobbered. */
2549 if (DECL_P (base))
2550 return pt_solution_includes (gimple_call_clobber_set (call), base);
2551 else if ((TREE_CODE (base) == MEM_REF
2552 || TREE_CODE (base) == TARGET_MEM_REF)
2553 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2555 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2556 if (!pi)
2557 return true;
2559 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2562 return true;
2565 /* If the call in statement CALL may clobber the memory reference REF
2566 return true, otherwise return false. */
2568 bool
2569 call_may_clobber_ref_p (gcall *call, tree ref)
2571 bool res;
2572 ao_ref r;
2573 ao_ref_init (&r, ref);
2574 res = call_may_clobber_ref_p_1 (call, &r);
2575 if (res)
2576 ++alias_stats.call_may_clobber_ref_p_may_alias;
2577 else
2578 ++alias_stats.call_may_clobber_ref_p_no_alias;
2579 return res;
2583 /* If the statement STMT may clobber the memory reference REF return true,
2584 otherwise return false. */
2586 bool
2587 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
2589 if (is_gimple_call (stmt))
2591 tree lhs = gimple_call_lhs (stmt);
2592 if (lhs
2593 && TREE_CODE (lhs) != SSA_NAME)
2595 ao_ref r;
2596 ao_ref_init (&r, lhs);
2597 if (refs_may_alias_p_1 (ref, &r, tbaa_p))
2598 return true;
2601 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2603 else if (gimple_assign_single_p (stmt))
2605 tree lhs = gimple_assign_lhs (stmt);
2606 if (TREE_CODE (lhs) != SSA_NAME)
2608 ao_ref r;
2609 ao_ref_init (&r, lhs);
2610 return refs_may_alias_p_1 (ref, &r, tbaa_p);
2613 else if (gimple_code (stmt) == GIMPLE_ASM)
2614 return true;
2616 return false;
2619 bool
2620 stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
2622 ao_ref r;
2623 ao_ref_init (&r, ref);
2624 return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
2627 /* Return true if store1 and store2 described by corresponding tuples
2628 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
2629 address. */
2631 static bool
2632 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
2633 poly_int64 max_size1,
2634 tree base2, poly_int64 offset2, poly_int64 size2,
2635 poly_int64 max_size2)
2637 /* Offsets need to be 0. */
2638 if (maybe_ne (offset1, 0)
2639 || maybe_ne (offset2, 0))
2640 return false;
2642 bool base1_obj_p = SSA_VAR_P (base1);
2643 bool base2_obj_p = SSA_VAR_P (base2);
2645 /* We need one object. */
2646 if (base1_obj_p == base2_obj_p)
2647 return false;
2648 tree obj = base1_obj_p ? base1 : base2;
2650 /* And we need one MEM_REF. */
2651 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
2652 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
2653 if (base1_memref_p == base2_memref_p)
2654 return false;
2655 tree memref = base1_memref_p ? base1 : base2;
2657 /* Sizes need to be valid. */
2658 if (!known_size_p (max_size1)
2659 || !known_size_p (max_size2)
2660 || !known_size_p (size1)
2661 || !known_size_p (size2))
2662 return false;
2664 /* Max_size needs to match size. */
2665 if (maybe_ne (max_size1, size1)
2666 || maybe_ne (max_size2, size2))
2667 return false;
2669 /* Sizes need to match. */
2670 if (maybe_ne (size1, size2))
2671 return false;
2674 /* Check that memref is a store to pointer with singleton points-to info. */
2675 if (!integer_zerop (TREE_OPERAND (memref, 1)))
2676 return false;
2677 tree ptr = TREE_OPERAND (memref, 0);
2678 if (TREE_CODE (ptr) != SSA_NAME)
2679 return false;
2680 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2681 unsigned int pt_uid;
2682 if (pi == NULL
2683 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
2684 return false;
2686 /* Be conservative with non-call exceptions when the address might
2687 be NULL. */
2688 if (cfun->can_throw_non_call_exceptions && pi->pt.null)
2689 return false;
2691 /* Check that ptr points relative to obj. */
2692 unsigned int obj_uid = DECL_PT_UID (obj);
2693 if (obj_uid != pt_uid)
2694 return false;
2696 /* Check that the object size is the same as the store size. That ensures us
2697 that ptr points to the start of obj. */
2698 return (DECL_SIZE (obj)
2699 && poly_int_tree_p (DECL_SIZE (obj))
2700 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
2703 /* If STMT kills the memory reference REF return true, otherwise
2704 return false. */
2706 bool
2707 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
2709 if (!ao_ref_base (ref))
2710 return false;
2712 if (gimple_has_lhs (stmt)
2713 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
2714 /* The assignment is not necessarily carried out if it can throw
2715 and we can catch it in the current function where we could inspect
2716 the previous value.
2717 ??? We only need to care about the RHS throwing. For aggregate
2718 assignments or similar calls and non-call exceptions the LHS
2719 might throw as well. */
2720 && !stmt_can_throw_internal (cfun, stmt))
2722 tree lhs = gimple_get_lhs (stmt);
2723 /* If LHS is literally a base of the access we are done. */
2724 if (ref->ref)
2726 tree base = ref->ref;
2727 tree innermost_dropped_array_ref = NULL_TREE;
2728 if (handled_component_p (base))
2730 tree saved_lhs0 = NULL_TREE;
2731 if (handled_component_p (lhs))
2733 saved_lhs0 = TREE_OPERAND (lhs, 0);
2734 TREE_OPERAND (lhs, 0) = integer_zero_node;
2738 /* Just compare the outermost handled component, if
2739 they are equal we have found a possible common
2740 base. */
2741 tree saved_base0 = TREE_OPERAND (base, 0);
2742 TREE_OPERAND (base, 0) = integer_zero_node;
2743 bool res = operand_equal_p (lhs, base, 0);
2744 TREE_OPERAND (base, 0) = saved_base0;
2745 if (res)
2746 break;
2747 /* Remember if we drop an array-ref that we need to
2748 double-check not being at struct end. */
2749 if (TREE_CODE (base) == ARRAY_REF
2750 || TREE_CODE (base) == ARRAY_RANGE_REF)
2751 innermost_dropped_array_ref = base;
2752 /* Otherwise drop handled components of the access. */
2753 base = saved_base0;
2755 while (handled_component_p (base));
2756 if (saved_lhs0)
2757 TREE_OPERAND (lhs, 0) = saved_lhs0;
2759 /* Finally check if the lhs has the same address and size as the
2760 base candidate of the access. Watch out if we have dropped
2761 an array-ref that was at struct end, this means ref->ref may
2762 be outside of the TYPE_SIZE of its base. */
2763 if ((! innermost_dropped_array_ref
2764 || ! array_at_struct_end_p (innermost_dropped_array_ref))
2765 && (lhs == base
2766 || (((TYPE_SIZE (TREE_TYPE (lhs))
2767 == TYPE_SIZE (TREE_TYPE (base)))
2768 || (TYPE_SIZE (TREE_TYPE (lhs))
2769 && TYPE_SIZE (TREE_TYPE (base))
2770 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
2771 TYPE_SIZE (TREE_TYPE (base)),
2772 0)))
2773 && operand_equal_p (lhs, base,
2774 OEP_ADDRESS_OF
2775 | OEP_MATCH_SIDE_EFFECTS))))
2776 return true;
2779 /* Now look for non-literal equal bases with the restriction of
2780 handling constant offset and size. */
2781 /* For a must-alias check we need to be able to constrain
2782 the access properly. */
2783 if (!ref->max_size_known_p ())
2784 return false;
2785 poly_int64 size, offset, max_size, ref_offset = ref->offset;
2786 bool reverse;
2787 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
2788 &reverse);
2789 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
2790 so base == ref->base does not always hold. */
2791 if (base != ref->base)
2793 /* Try using points-to info. */
2794 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
2795 ref->offset, ref->size, ref->max_size))
2796 return true;
2798 /* If both base and ref->base are MEM_REFs, only compare the
2799 first operand, and if the second operand isn't equal constant,
2800 try to add the offsets into offset and ref_offset. */
2801 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
2802 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
2804 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
2805 TREE_OPERAND (ref->base, 1)))
2807 poly_offset_int off1 = mem_ref_offset (base);
2808 off1 <<= LOG2_BITS_PER_UNIT;
2809 off1 += offset;
2810 poly_offset_int off2 = mem_ref_offset (ref->base);
2811 off2 <<= LOG2_BITS_PER_UNIT;
2812 off2 += ref_offset;
2813 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
2814 size = -1;
2817 else
2818 size = -1;
2820 /* For a must-alias check we need to be able to constrain
2821 the access properly. */
2822 if (known_eq (size, max_size)
2823 && known_subrange_p (ref_offset, ref->max_size, offset, size))
2824 return true;
2827 if (is_gimple_call (stmt))
2829 tree callee = gimple_call_fndecl (stmt);
2830 if (callee != NULL_TREE
2831 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
2832 switch (DECL_FUNCTION_CODE (callee))
2834 case BUILT_IN_FREE:
2836 tree ptr = gimple_call_arg (stmt, 0);
2837 tree base = ao_ref_base (ref);
2838 if (base && TREE_CODE (base) == MEM_REF
2839 && TREE_OPERAND (base, 0) == ptr)
2840 return true;
2841 break;
2844 case BUILT_IN_MEMCPY:
2845 case BUILT_IN_MEMPCPY:
2846 case BUILT_IN_MEMMOVE:
2847 case BUILT_IN_MEMSET:
2848 case BUILT_IN_MEMCPY_CHK:
2849 case BUILT_IN_MEMPCPY_CHK:
2850 case BUILT_IN_MEMMOVE_CHK:
2851 case BUILT_IN_MEMSET_CHK:
2852 case BUILT_IN_STRNCPY:
2853 case BUILT_IN_STPNCPY:
2855 /* For a must-alias check we need to be able to constrain
2856 the access properly. */
2857 if (!ref->max_size_known_p ())
2858 return false;
2859 tree dest = gimple_call_arg (stmt, 0);
2860 tree len = gimple_call_arg (stmt, 2);
2861 if (!poly_int_tree_p (len))
2862 return false;
2863 tree rbase = ref->base;
2864 poly_offset_int roffset = ref->offset;
2865 ao_ref dref;
2866 ao_ref_init_from_ptr_and_size (&dref, dest, len);
2867 tree base = ao_ref_base (&dref);
2868 poly_offset_int offset = dref.offset;
2869 if (!base || !known_size_p (dref.size))
2870 return false;
2871 if (TREE_CODE (base) == MEM_REF)
2873 if (TREE_CODE (rbase) != MEM_REF)
2874 return false;
2875 // Compare pointers.
2876 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
2877 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
2878 base = TREE_OPERAND (base, 0);
2879 rbase = TREE_OPERAND (rbase, 0);
2881 if (base == rbase
2882 && known_subrange_p (roffset, ref->max_size, offset,
2883 wi::to_poly_offset (len)
2884 << LOG2_BITS_PER_UNIT))
2885 return true;
2886 break;
2889 case BUILT_IN_VA_END:
2891 tree ptr = gimple_call_arg (stmt, 0);
2892 if (TREE_CODE (ptr) == ADDR_EXPR)
2894 tree base = ao_ref_base (ref);
2895 if (TREE_OPERAND (ptr, 0) == base)
2896 return true;
2898 break;
2901 default:;
2904 return false;
2907 bool
2908 stmt_kills_ref_p (gimple *stmt, tree ref)
2910 ao_ref r;
2911 ao_ref_init (&r, ref);
2912 return stmt_kills_ref_p (stmt, &r);
2916 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
2917 TARGET or a statement clobbering the memory reference REF in which
2918 case false is returned. The walk starts with VUSE, one argument of PHI. */
2920 static bool
2921 maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
2922 ao_ref *ref, tree vuse, unsigned int &limit, bitmap *visited,
2923 bool abort_on_visited,
2924 void *(*translate)(ao_ref *, tree, void *, bool *),
2925 void *data)
2927 basic_block bb = gimple_bb (phi);
2929 if (!*visited)
2930 *visited = BITMAP_ALLOC (NULL);
2932 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
2934 /* Walk until we hit the target. */
2935 while (vuse != target)
2937 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
2938 /* If we are searching for the target VUSE by walking up to
2939 TARGET_BB dominating the original PHI we are finished once
2940 we reach a default def or a definition in a block dominating
2941 that block. Update TARGET and return. */
2942 if (!target
2943 && (gimple_nop_p (def_stmt)
2944 || dominated_by_p (CDI_DOMINATORS,
2945 target_bb, gimple_bb (def_stmt))))
2947 target = vuse;
2948 return true;
2951 /* Recurse for PHI nodes. */
2952 if (gimple_code (def_stmt) == GIMPLE_PHI)
2954 /* An already visited PHI node ends the walk successfully. */
2955 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
2956 return !abort_on_visited;
2957 vuse = get_continuation_for_phi (def_stmt, ref, limit,
2958 visited, abort_on_visited,
2959 translate, data);
2960 if (!vuse)
2961 return false;
2962 continue;
2964 else if (gimple_nop_p (def_stmt))
2965 return false;
2966 else
2968 /* A clobbering statement or the end of the IL ends it failing. */
2969 if ((int)limit <= 0)
2970 return false;
2971 --limit;
2972 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2974 bool disambiguate_only = true;
2975 if (translate
2976 && (*translate) (ref, vuse, data, &disambiguate_only) == NULL)
2978 else
2979 return false;
2982 /* If we reach a new basic-block see if we already skipped it
2983 in a previous walk that ended successfully. */
2984 if (gimple_bb (def_stmt) != bb)
2986 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
2987 return !abort_on_visited;
2988 bb = gimple_bb (def_stmt);
2990 vuse = gimple_vuse (def_stmt);
2992 return true;
2996 /* Starting from a PHI node for the virtual operand of the memory reference
2997 REF find a continuation virtual operand that allows to continue walking
2998 statements dominating PHI skipping only statements that cannot possibly
2999 clobber REF. Decrements LIMIT for each alias disambiguation done
3000 and aborts the walk, returning NULL_TREE if it reaches zero.
3001 Returns NULL_TREE if no suitable virtual operand can be found. */
3003 tree
3004 get_continuation_for_phi (gimple *phi, ao_ref *ref,
3005 unsigned int &limit, bitmap *visited,
3006 bool abort_on_visited,
3007 void *(*translate)(ao_ref *, tree, void *, bool *),
3008 void *data)
3010 unsigned nargs = gimple_phi_num_args (phi);
3012 /* Through a single-argument PHI we can simply look through. */
3013 if (nargs == 1)
3014 return PHI_ARG_DEF (phi, 0);
3016 /* For two or more arguments try to pairwise skip non-aliasing code
3017 until we hit the phi argument definition that dominates the other one. */
3018 basic_block phi_bb = gimple_bb (phi);
3019 tree arg0, arg1;
3020 unsigned i;
3022 /* Find a candidate for the virtual operand which definition
3023 dominates those of all others. */
3024 /* First look if any of the args themselves satisfy this. */
3025 for (i = 0; i < nargs; ++i)
3027 arg0 = PHI_ARG_DEF (phi, i);
3028 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
3029 break;
3030 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
3031 if (def_bb != phi_bb
3032 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
3033 break;
3034 arg0 = NULL_TREE;
3036 /* If not, look if we can reach such candidate by walking defs
3037 until we hit the immediate dominator. maybe_skip_until will
3038 do that for us. */
3039 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
3041 /* Then check against the (to be) found candidate. */
3042 for (i = 0; i < nargs; ++i)
3044 arg1 = PHI_ARG_DEF (phi, i);
3045 if (arg1 == arg0)
3047 else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, limit, visited,
3048 abort_on_visited,
3049 /* Do not translate when walking over
3050 backedges. */
3051 dominated_by_p
3052 (CDI_DOMINATORS,
3053 gimple_bb (SSA_NAME_DEF_STMT (arg1)),
3054 phi_bb)
3055 ? NULL : translate, data))
3056 return NULL_TREE;
3059 return arg0;
3062 /* Based on the memory reference REF and its virtual use VUSE call
3063 WALKER for each virtual use that is equivalent to VUSE, including VUSE
3064 itself. That is, for each virtual use for which its defining statement
3065 does not clobber REF.
3067 WALKER is called with REF, the current virtual use and DATA. If
3068 WALKER returns non-NULL the walk stops and its result is returned.
3069 At the end of a non-successful walk NULL is returned.
3071 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
3072 use which definition is a statement that may clobber REF and DATA.
3073 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
3074 If TRANSLATE returns non-NULL the walk stops and its result is returned.
3075 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
3076 to adjust REF and *DATA to make that valid.
3078 VALUEIZE if non-NULL is called with the next VUSE that is considered
3079 and return value is substituted for that. This can be used to
3080 implement optimistic value-numbering for example. Note that the
3081 VUSE argument is assumed to be valueized already.
3083 LIMIT specifies the number of alias queries we are allowed to do,
3084 the walk stops when it reaches zero and NULL is returned. LIMIT
3085 is decremented by the number of alias queries (plus adjustments
3086 done by the callbacks) upon return.
3088 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
3090 void *
3091 walk_non_aliased_vuses (ao_ref *ref, tree vuse,
3092 void *(*walker)(ao_ref *, tree, void *),
3093 void *(*translate)(ao_ref *, tree, void *, bool *),
3094 tree (*valueize)(tree),
3095 unsigned &limit, void *data)
3097 bitmap visited = NULL;
3098 void *res;
3099 bool translated = false;
3101 timevar_push (TV_ALIAS_STMT_WALK);
3105 gimple *def_stmt;
3107 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3108 res = (*walker) (ref, vuse, data);
3109 /* Abort walk. */
3110 if (res == (void *)-1)
3112 res = NULL;
3113 break;
3115 /* Lookup succeeded. */
3116 else if (res != NULL)
3117 break;
3119 if (valueize)
3121 vuse = valueize (vuse);
3122 if (!vuse)
3124 res = NULL;
3125 break;
3128 def_stmt = SSA_NAME_DEF_STMT (vuse);
3129 if (gimple_nop_p (def_stmt))
3130 break;
3131 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3132 vuse = get_continuation_for_phi (def_stmt, ref, limit,
3133 &visited, translated, translate, data);
3134 else
3136 if ((int)limit <= 0)
3138 res = NULL;
3139 break;
3141 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
3143 if (!translate)
3144 break;
3145 bool disambiguate_only = false;
3146 res = (*translate) (ref, vuse, data, &disambiguate_only);
3147 /* Failed lookup and translation. */
3148 if (res == (void *)-1)
3150 res = NULL;
3151 break;
3153 /* Lookup succeeded. */
3154 else if (res != NULL)
3155 break;
3156 /* Translation succeeded, continue walking. */
3157 translated = translated || !disambiguate_only;
3159 vuse = gimple_vuse (def_stmt);
3162 while (vuse);
3164 if (visited)
3165 BITMAP_FREE (visited);
3167 timevar_pop (TV_ALIAS_STMT_WALK);
3169 return res;
3173 /* Based on the memory reference REF call WALKER for each vdef which
3174 defining statement may clobber REF, starting with VDEF. If REF
3175 is NULL_TREE, each defining statement is visited.
3177 WALKER is called with REF, the current vdef and DATA. If WALKER
3178 returns true the walk is stopped, otherwise it continues.
3180 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
3181 The pointer may be NULL and then we do not track this information.
3183 At PHI nodes walk_aliased_vdefs forks into one walk for reach
3184 PHI argument (but only one walk continues on merge points), the
3185 return value is true if any of the walks was successful.
3187 The function returns the number of statements walked or -1 if
3188 LIMIT stmts were walked and the walk was aborted at this point.
3189 If LIMIT is zero the walk is not aborted. */
3191 static int
3192 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
3193 bool (*walker)(ao_ref *, tree, void *), void *data,
3194 bitmap *visited, unsigned int cnt,
3195 bool *function_entry_reached, unsigned limit)
3199 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
3201 if (*visited
3202 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
3203 return cnt;
3205 if (gimple_nop_p (def_stmt))
3207 if (function_entry_reached)
3208 *function_entry_reached = true;
3209 return cnt;
3211 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3213 unsigned i;
3214 if (!*visited)
3215 *visited = BITMAP_ALLOC (NULL);
3216 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
3218 int res = walk_aliased_vdefs_1 (ref,
3219 gimple_phi_arg_def (def_stmt, i),
3220 walker, data, visited, cnt,
3221 function_entry_reached, limit);
3222 if (res == -1)
3223 return -1;
3224 cnt = res;
3226 return cnt;
3229 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3230 cnt++;
3231 if (cnt == limit)
3232 return -1;
3233 if ((!ref
3234 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
3235 && (*walker) (ref, vdef, data))
3236 return cnt;
3238 vdef = gimple_vuse (def_stmt);
3240 while (1);
3244 walk_aliased_vdefs (ao_ref *ref, tree vdef,
3245 bool (*walker)(ao_ref *, tree, void *), void *data,
3246 bitmap *visited,
3247 bool *function_entry_reached, unsigned int limit)
3249 bitmap local_visited = NULL;
3250 int ret;
3252 timevar_push (TV_ALIAS_STMT_WALK);
3254 if (function_entry_reached)
3255 *function_entry_reached = false;
3257 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
3258 visited ? visited : &local_visited, 0,
3259 function_entry_reached, limit);
3260 if (local_visited)
3261 BITMAP_FREE (local_visited);
3263 timevar_pop (TV_ALIAS_STMT_WALK);
3265 return ret;