tree-vect-data-refs.c (vect_find_stmt_data_reference): Handle even zero DR_OFFSET...
[official-gcc.git] / gcc / reload1.c
blob3ad6f1d9c1f7a72c4c39ddbaa3e3caf3e903557e
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
100 /* Widest mode in which each pseudo reg is referred to (via subreg). */
101 static machine_mode *reg_max_ref_mode;
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
202 /* Width allocated so far for that stack slot. */
203 static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
260 struct elim_table
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 poly_int64_pod initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 poly_int64_pod offset; /* Current offset between the two regs. */
270 poly_int64_pod previous_offset; /* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
280 static struct elim_table *reg_eliminate = 0;
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
290 ELIMINABLE_REGS;
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
314 static int first_label_num;
315 static char *offsets_known_at;
316 static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];
318 vec<reg_equivs_t, va_gc> *reg_equivs;
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
333 /* Number of labels in the current function. */
335 static int num_labels;
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, poly_int64);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
412 void
413 init_reload (void)
415 int i;
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
429 while (memory_address_p (QImode, tem))
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
440 /* See if reg+reg is a valid (and offsettable) address. */
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
476 struct insn_chain *c;
478 if (unused_insn_chains == 0)
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
484 else
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
502 unsigned int regno;
503 reg_set_iterator rsi;
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
507 int r = reg_renumber[regno];
509 if (r < 0)
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
533 if (! x)
534 return;
536 code = GET_CODE (x);
537 if (code == REG)
539 unsigned int regno = REGNO (x);
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
567 return;
569 else if (code == MEM)
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
588 static bool
589 has_nonexceptional_receiver (void)
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
612 bb = *--tos;
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
617 basic_block src = e->src;
619 if (!(src->flags & BB_REACHABLE))
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
626 free (worklist);
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
657 /* Global variables used by reload and its subroutines. */
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
719 if (can_throw_internal (insn))
720 return false;
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
731 return false;
734 /* Main entry point for the reload pass.
736 FIRST is the first insn of the function being compiled.
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
748 bool
749 reload (rtx_insn *first, int global)
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
760 failure = 0;
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
771 /* Initialize the secondary memory table. */
772 clear_secondary_mem ();
774 /* We don't have a stack slot for any spill reg yet. */
775 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
776 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
778 /* Initialize the save area information for caller-save, in case some
779 are needed. */
780 init_save_areas ();
782 /* Compute which hard registers are now in use
783 as homes for pseudo registers.
784 This is done here rather than (eg) in global_alloc
785 because this point is reached even if not optimizing. */
786 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
787 mark_home_live (i);
789 /* A function that has a nonlocal label that can reach the exit
790 block via non-exceptional paths must save all call-saved
791 registers. */
792 if (cfun->has_nonlocal_label
793 && has_nonexceptional_receiver ())
794 crtl->saves_all_registers = 1;
796 if (crtl->saves_all_registers)
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
799 df_set_regs_ever_live (i, true);
801 /* Find all the pseudo registers that didn't get hard regs
802 but do have known equivalent constants or memory slots.
803 These include parameters (known equivalent to parameter slots)
804 and cse'd or loop-moved constant memory addresses.
806 Record constant equivalents in reg_equiv_constant
807 so they will be substituted by find_reloads.
808 Record memory equivalents in reg_mem_equiv so they can
809 be substituted eventually by altering the REG-rtx's. */
811 grow_reg_equivs ();
812 reg_old_renumber = XCNEWVEC (short, max_regno);
813 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
814 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
815 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
817 CLEAR_HARD_REG_SET (bad_spill_regs_global);
819 init_eliminable_invariants (first, true);
820 init_elim_table ();
822 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
823 stack slots to the pseudos that lack hard regs or equivalents.
824 Do not touch virtual registers. */
826 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
827 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
828 temp_pseudo_reg_arr[n++] = i;
830 if (ira_conflicts_p)
831 /* Ask IRA to order pseudo-registers for better stack slot
832 sharing. */
833 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
835 for (i = 0; i < n; i++)
836 alter_reg (temp_pseudo_reg_arr[i], -1, false);
838 /* If we have some registers we think can be eliminated, scan all insns to
839 see if there is an insn that sets one of these registers to something
840 other than itself plus a constant. If so, the register cannot be
841 eliminated. Doing this scan here eliminates an extra pass through the
842 main reload loop in the most common case where register elimination
843 cannot be done. */
844 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
845 if (INSN_P (insn))
846 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
848 maybe_fix_stack_asms ();
850 insns_need_reload = 0;
851 something_needs_elimination = 0;
853 /* Initialize to -1, which means take the first spill register. */
854 last_spill_reg = -1;
856 /* Spill any hard regs that we know we can't eliminate. */
857 CLEAR_HARD_REG_SET (used_spill_regs);
858 /* There can be multiple ways to eliminate a register;
859 they should be listed adjacently.
860 Elimination for any register fails only if all possible ways fail. */
861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
863 int from = ep->from;
864 int can_eliminate = 0;
867 can_eliminate |= ep->can_eliminate;
868 ep++;
870 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
871 if (! can_eliminate)
872 spill_hard_reg (from, 1);
875 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
878 finish_spills (global);
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
889 int something_changed;
890 poly_int64 starting_frame_size;
892 starting_frame_size = get_frame_size ();
893 something_was_spilled = false;
895 set_initial_elim_offsets ();
896 set_initial_label_offsets ();
898 /* For each pseudo register that has an equivalent location defined,
899 try to eliminate any eliminable registers (such as the frame pointer)
900 assuming initial offsets for the replacement register, which
901 is the normal case.
903 If the resulting location is directly addressable, substitute
904 the MEM we just got directly for the old REG.
906 If it is not addressable but is a constant or the sum of a hard reg
907 and constant, it is probably not addressable because the constant is
908 out of range, in that case record the address; we will generate
909 hairy code to compute the address in a register each time it is
910 needed. Similarly if it is a hard register, but one that is not
911 valid as an address register.
913 If the location is not addressable, but does not have one of the
914 above forms, assign a stack slot. We have to do this to avoid the
915 potential of producing lots of reloads if, e.g., a location involves
916 a pseudo that didn't get a hard register and has an equivalent memory
917 location that also involves a pseudo that didn't get a hard register.
919 Perhaps at some point we will improve reload_when_needed handling
920 so this problem goes away. But that's very hairy. */
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
923 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
925 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
926 NULL_RTX);
928 if (strict_memory_address_addr_space_p
929 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
930 MEM_ADDR_SPACE (x)))
931 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
932 else if (CONSTANT_P (XEXP (x, 0))
933 || (REG_P (XEXP (x, 0))
934 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
935 || (GET_CODE (XEXP (x, 0)) == PLUS
936 && REG_P (XEXP (XEXP (x, 0), 0))
937 && (REGNO (XEXP (XEXP (x, 0), 0))
938 < FIRST_PSEUDO_REGISTER)
939 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
940 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
941 else
943 /* Make a new stack slot. Then indicate that something
944 changed so we go back and recompute offsets for
945 eliminable registers because the allocation of memory
946 below might change some offset. reg_equiv_{mem,address}
947 will be set up for this pseudo on the next pass around
948 the loop. */
949 reg_equiv_memory_loc (i) = 0;
950 reg_equiv_init (i) = 0;
951 alter_reg (i, -1, true);
955 if (caller_save_needed)
956 setup_save_areas ();
958 if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
960 /* If we have a stack frame, we must align it now. The
961 stack size may be a part of the offset computation for
962 register elimination. So if this changes the stack size,
963 then repeat the elimination bookkeeping. We don't
964 realign when there is no stack, as that will cause a
965 stack frame when none is needed should
966 TARGET_STARTING_FRAME_OFFSET not be already aligned to
967 STACK_BOUNDARY. */
968 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
970 /* If we allocated another stack slot, redo elimination bookkeeping. */
971 if (something_was_spilled
972 || maybe_ne (starting_frame_size, get_frame_size ()))
974 if (update_eliminables_and_spill ())
975 finish_spills (0);
976 continue;
979 if (caller_save_needed)
981 save_call_clobbered_regs ();
982 /* That might have allocated new insn_chain structures. */
983 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
986 calculate_needs_all_insns (global);
988 if (! ira_conflicts_p)
989 /* Don't do it for IRA. We need this info because we don't
990 change live_throughout and dead_or_set for chains when IRA
991 is used. */
992 CLEAR_REG_SET (&spilled_pseudos);
994 something_changed = 0;
996 /* If we allocated any new memory locations, make another pass
997 since it might have changed elimination offsets. */
998 if (something_was_spilled
999 || maybe_ne (starting_frame_size, get_frame_size ()))
1000 something_changed = 1;
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1009 if (update_eliminables_and_spill ())
1011 finish_spills (0);
1012 something_changed = 1;
1014 else
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1023 if (! something_changed)
1024 break;
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1029 obstack_free (&reload_obstack, reload_firstobj);
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1039 remove_init_insns ();
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1048 poly_int64 old_frame_size = get_frame_size ();
1050 reload_as_needed (global);
1052 gcc_assert (known_eq (old_frame_size, get_frame_size ()));
1054 gcc_assert (verify_initial_elim_offsets ());
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1087 rtx addr = 0;
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1095 if (addr)
1097 if (reg_renumber[i] < 0)
1099 rtx reg = regno_reg_rtx[i];
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1132 if (equiv == reg)
1133 continue;
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1137 insn = DF_REF_INSN (use);
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1145 if (DEBUG_BIND_INSN_P (insn))
1147 if (!equiv)
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1177 rtx *pnote;
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1196 delete_insn (insn);
1197 continue;
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1216 delete_insn (insn);
1217 continue;
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1252 free (temp_pseudo_reg_arr);
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1257 free (reg_max_ref_mode);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1270 inserted = fixup_abnormal_edges ();
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1280 if (inserted)
1281 commit_edge_insertions ();
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1296 substitute_stack.release ();
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1300 reload_completed = !failure;
1302 return need_dce;
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1312 static void
1313 maybe_fix_stack_asms (void)
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 struct insn_chain *chain;
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1342 /* CLOBBER_HIGH is only supported for LRA. */
1343 gcc_assert (GET_CODE (t) != CLOBBER_HIGH);
1346 /* Get the operand values and constraints out of the insn. */
1347 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1348 constraints, operand_mode, NULL);
1350 /* For every operand, see what registers are allowed. */
1351 for (i = 0; i < noperands; i++)
1353 const char *p = constraints[i];
1354 /* For every alternative, we compute the class of registers allowed
1355 for reloading in CLS, and merge its contents into the reg set
1356 ALLOWED. */
1357 int cls = (int) NO_REGS;
1359 for (;;)
1361 char c = *p;
1363 if (c == '\0' || c == ',' || c == '#')
1365 /* End of one alternative - mark the regs in the current
1366 class, and reset the class. */
1367 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1368 cls = NO_REGS;
1369 p++;
1370 if (c == '#')
1371 do {
1372 c = *p++;
1373 } while (c != '\0' && c != ',');
1374 if (c == '\0')
1375 break;
1376 continue;
1379 switch (c)
1381 case 'g':
1382 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1383 break;
1385 default:
1386 enum constraint_num cn = lookup_constraint (p);
1387 if (insn_extra_address_constraint (cn))
1388 cls = (int) reg_class_subunion[cls]
1389 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1390 ADDRESS, SCRATCH)];
1391 else
1392 cls = (int) reg_class_subunion[cls]
1393 [reg_class_for_constraint (cn)];
1394 break;
1396 p += CONSTRAINT_LEN (c, p);
1399 /* Those of the registers which are clobbered, but allowed by the
1400 constraints, must be usable as reload registers. So clear them
1401 out of the life information. */
1402 AND_HARD_REG_SET (allowed, clobbered);
1403 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1404 if (TEST_HARD_REG_BIT (allowed, i))
1406 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1407 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1411 #endif
1414 /* Copy the global variables n_reloads and rld into the corresponding elts
1415 of CHAIN. */
1416 static void
1417 copy_reloads (struct insn_chain *chain)
1419 chain->n_reloads = n_reloads;
1420 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1421 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1422 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1425 /* Walk the chain of insns, and determine for each whether it needs reloads
1426 and/or eliminations. Build the corresponding insns_need_reload list, and
1427 set something_needs_elimination as appropriate. */
1428 static void
1429 calculate_needs_all_insns (int global)
1431 struct insn_chain **pprev_reload = &insns_need_reload;
1432 struct insn_chain *chain, *next = 0;
1434 something_needs_elimination = 0;
1436 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1437 for (chain = reload_insn_chain; chain != 0; chain = next)
1439 rtx_insn *insn = chain->insn;
1441 next = chain->next;
1443 /* Clear out the shortcuts. */
1444 chain->n_reloads = 0;
1445 chain->need_elim = 0;
1446 chain->need_reload = 0;
1447 chain->need_operand_change = 0;
1449 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1450 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1451 what effects this has on the known offsets at labels. */
1453 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1454 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1455 set_label_offsets (insn, insn, 0);
1457 if (INSN_P (insn))
1459 rtx old_body = PATTERN (insn);
1460 int old_code = INSN_CODE (insn);
1461 rtx old_notes = REG_NOTES (insn);
1462 int did_elimination = 0;
1463 int operands_changed = 0;
1465 /* Skip insns that only set an equivalence. */
1466 if (will_delete_init_insn_p (insn))
1467 continue;
1469 /* If needed, eliminate any eliminable registers. */
1470 if (num_eliminable || num_eliminable_invariants)
1471 did_elimination = eliminate_regs_in_insn (insn, 0);
1473 /* Analyze the instruction. */
1474 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1475 global, spill_reg_order);
1477 /* If a no-op set needs more than one reload, this is likely
1478 to be something that needs input address reloads. We
1479 can't get rid of this cleanly later, and it is of no use
1480 anyway, so discard it now.
1481 We only do this when expensive_optimizations is enabled,
1482 since this complements reload inheritance / output
1483 reload deletion, and it can make debugging harder. */
1484 if (flag_expensive_optimizations && n_reloads > 1)
1486 rtx set = single_set (insn);
1487 if (set
1489 ((SET_SRC (set) == SET_DEST (set)
1490 && REG_P (SET_SRC (set))
1491 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1492 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1493 && reg_renumber[REGNO (SET_SRC (set))] < 0
1494 && reg_renumber[REGNO (SET_DEST (set))] < 0
1495 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1496 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1497 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1498 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1500 if (ira_conflicts_p)
1501 /* Inform IRA about the insn deletion. */
1502 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1503 REGNO (SET_SRC (set)));
1504 delete_insn (insn);
1505 /* Delete it from the reload chain. */
1506 if (chain->prev)
1507 chain->prev->next = next;
1508 else
1509 reload_insn_chain = next;
1510 if (next)
1511 next->prev = chain->prev;
1512 chain->next = unused_insn_chains;
1513 unused_insn_chains = chain;
1514 continue;
1517 if (num_eliminable)
1518 update_eliminable_offsets ();
1520 /* Remember for later shortcuts which insns had any reloads or
1521 register eliminations. */
1522 chain->need_elim = did_elimination;
1523 chain->need_reload = n_reloads > 0;
1524 chain->need_operand_change = operands_changed;
1526 /* Discard any register replacements done. */
1527 if (did_elimination)
1529 obstack_free (&reload_obstack, reload_insn_firstobj);
1530 PATTERN (insn) = old_body;
1531 INSN_CODE (insn) = old_code;
1532 REG_NOTES (insn) = old_notes;
1533 something_needs_elimination = 1;
1536 something_needs_operands_changed |= operands_changed;
1538 if (n_reloads != 0)
1540 copy_reloads (chain);
1541 *pprev_reload = chain;
1542 pprev_reload = &chain->next_need_reload;
1546 *pprev_reload = 0;
1549 /* This function is called from the register allocator to set up estimates
1550 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1551 an invariant. The structure is similar to calculate_needs_all_insns. */
1553 void
1554 calculate_elim_costs_all_insns (void)
1556 int *reg_equiv_init_cost;
1557 basic_block bb;
1558 int i;
1560 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1561 init_elim_table ();
1562 init_eliminable_invariants (get_insns (), false);
1564 set_initial_elim_offsets ();
1565 set_initial_label_offsets ();
1567 FOR_EACH_BB_FN (bb, cfun)
1569 rtx_insn *insn;
1570 elim_bb = bb;
1572 FOR_BB_INSNS (bb, insn)
1574 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1575 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1576 what effects this has on the known offsets at labels. */
1578 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1579 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1580 set_label_offsets (insn, insn, 0);
1582 if (INSN_P (insn))
1584 rtx set = single_set (insn);
1586 /* Skip insns that only set an equivalence. */
1587 if (set && REG_P (SET_DEST (set))
1588 && reg_renumber[REGNO (SET_DEST (set))] < 0
1589 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1590 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1592 unsigned regno = REGNO (SET_DEST (set));
1593 rtx_insn_list *init = reg_equiv_init (regno);
1594 if (init)
1596 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1597 false, true);
1598 machine_mode mode = GET_MODE (SET_DEST (set));
1599 int cost = set_src_cost (t, mode,
1600 optimize_bb_for_speed_p (bb));
1601 int freq = REG_FREQ_FROM_BB (bb);
1603 reg_equiv_init_cost[regno] = cost * freq;
1604 continue;
1607 /* If needed, eliminate any eliminable registers. */
1608 if (num_eliminable || num_eliminable_invariants)
1609 elimination_costs_in_insn (insn);
1611 if (num_eliminable)
1612 update_eliminable_offsets ();
1616 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1618 if (reg_equiv_invariant (i))
1620 if (reg_equiv_init (i))
1622 int cost = reg_equiv_init_cost[i];
1623 if (dump_file)
1624 fprintf (dump_file,
1625 "Reg %d has equivalence, initial gains %d\n", i, cost);
1626 if (cost != 0)
1627 ira_adjust_equiv_reg_cost (i, cost);
1629 else
1631 if (dump_file)
1632 fprintf (dump_file,
1633 "Reg %d had equivalence, but can't be eliminated\n",
1635 ira_adjust_equiv_reg_cost (i, 0);
1640 free (reg_equiv_init_cost);
1641 free (offsets_known_at);
1642 free (offsets_at);
1643 offsets_at = NULL;
1644 offsets_known_at = NULL;
1647 /* Comparison function for qsort to decide which of two reloads
1648 should be handled first. *P1 and *P2 are the reload numbers. */
1650 static int
1651 reload_reg_class_lower (const void *r1p, const void *r2p)
1653 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1654 int t;
1656 /* Consider required reloads before optional ones. */
1657 t = rld[r1].optional - rld[r2].optional;
1658 if (t != 0)
1659 return t;
1661 /* Count all solitary classes before non-solitary ones. */
1662 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1663 - (reg_class_size[(int) rld[r1].rclass] == 1));
1664 if (t != 0)
1665 return t;
1667 /* Aside from solitaires, consider all multi-reg groups first. */
1668 t = rld[r2].nregs - rld[r1].nregs;
1669 if (t != 0)
1670 return t;
1672 /* Consider reloads in order of increasing reg-class number. */
1673 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1674 if (t != 0)
1675 return t;
1677 /* If reloads are equally urgent, sort by reload number,
1678 so that the results of qsort leave nothing to chance. */
1679 return r1 - r2;
1682 /* The cost of spilling each hard reg. */
1683 static int spill_cost[FIRST_PSEUDO_REGISTER];
1685 /* When spilling multiple hard registers, we use SPILL_COST for the first
1686 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1687 only the first hard reg for a multi-reg pseudo. */
1688 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1690 /* Map of hard regno to pseudo regno currently occupying the hard
1691 reg. */
1692 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1694 /* Update the spill cost arrays, considering that pseudo REG is live. */
1696 static void
1697 count_pseudo (int reg)
1699 int freq = REG_FREQ (reg);
1700 int r = reg_renumber[reg];
1701 int nregs;
1703 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1704 if (ira_conflicts_p && r < 0)
1705 return;
1707 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1708 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1709 return;
1711 SET_REGNO_REG_SET (&pseudos_counted, reg);
1713 gcc_assert (r >= 0);
1715 spill_add_cost[r] += freq;
1716 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1717 while (nregs-- > 0)
1719 hard_regno_to_pseudo_regno[r + nregs] = reg;
1720 spill_cost[r + nregs] += freq;
1724 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1725 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1727 static void
1728 order_regs_for_reload (struct insn_chain *chain)
1730 unsigned i;
1731 HARD_REG_SET used_by_pseudos;
1732 HARD_REG_SET used_by_pseudos2;
1733 reg_set_iterator rsi;
1735 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1737 memset (spill_cost, 0, sizeof spill_cost);
1738 memset (spill_add_cost, 0, sizeof spill_add_cost);
1739 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1740 hard_regno_to_pseudo_regno[i] = -1;
1742 /* Count number of uses of each hard reg by pseudo regs allocated to it
1743 and then order them by decreasing use. First exclude hard registers
1744 that are live in or across this insn. */
1746 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1747 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1748 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1749 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1751 /* Now find out which pseudos are allocated to it, and update
1752 hard_reg_n_uses. */
1753 CLEAR_REG_SET (&pseudos_counted);
1755 EXECUTE_IF_SET_IN_REG_SET
1756 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1758 count_pseudo (i);
1760 EXECUTE_IF_SET_IN_REG_SET
1761 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1763 count_pseudo (i);
1765 CLEAR_REG_SET (&pseudos_counted);
1768 /* Vector of reload-numbers showing the order in which the reloads should
1769 be processed. */
1770 static short reload_order[MAX_RELOADS];
1772 /* This is used to keep track of the spill regs used in one insn. */
1773 static HARD_REG_SET used_spill_regs_local;
1775 /* We decided to spill hard register SPILLED, which has a size of
1776 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1777 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1778 update SPILL_COST/SPILL_ADD_COST. */
1780 static void
1781 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1783 int freq = REG_FREQ (reg);
1784 int r = reg_renumber[reg];
1785 int nregs;
1787 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1788 if (ira_conflicts_p && r < 0)
1789 return;
1791 gcc_assert (r >= 0);
1793 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1795 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1796 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1797 return;
1799 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1801 spill_add_cost[r] -= freq;
1802 while (nregs-- > 0)
1804 hard_regno_to_pseudo_regno[r + nregs] = -1;
1805 spill_cost[r + nregs] -= freq;
1809 /* Find reload register to use for reload number ORDER. */
1811 static int
1812 find_reg (struct insn_chain *chain, int order)
1814 int rnum = reload_order[order];
1815 struct reload *rl = rld + rnum;
1816 int best_cost = INT_MAX;
1817 int best_reg = -1;
1818 unsigned int i, j, n;
1819 int k;
1820 HARD_REG_SET not_usable;
1821 HARD_REG_SET used_by_other_reload;
1822 reg_set_iterator rsi;
1823 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1824 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1826 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1827 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1828 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1830 CLEAR_HARD_REG_SET (used_by_other_reload);
1831 for (k = 0; k < order; k++)
1833 int other = reload_order[k];
1835 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1836 for (j = 0; j < rld[other].nregs; j++)
1837 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1840 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1842 #ifdef REG_ALLOC_ORDER
1843 unsigned int regno = reg_alloc_order[i];
1844 #else
1845 unsigned int regno = i;
1846 #endif
1848 if (! TEST_HARD_REG_BIT (not_usable, regno)
1849 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1850 && targetm.hard_regno_mode_ok (regno, rl->mode))
1852 int this_cost = spill_cost[regno];
1853 int ok = 1;
1854 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1856 for (j = 1; j < this_nregs; j++)
1858 this_cost += spill_add_cost[regno + j];
1859 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1860 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1861 ok = 0;
1863 if (! ok)
1864 continue;
1866 if (ira_conflicts_p)
1868 /* Ask IRA to find a better pseudo-register for
1869 spilling. */
1870 for (n = j = 0; j < this_nregs; j++)
1872 int r = hard_regno_to_pseudo_regno[regno + j];
1874 if (r < 0)
1875 continue;
1876 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1877 regno_pseudo_regs[n++] = r;
1879 regno_pseudo_regs[n++] = -1;
1880 if (best_reg < 0
1881 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1882 best_regno_pseudo_regs,
1883 rl->in, rl->out,
1884 chain->insn))
1886 best_reg = regno;
1887 for (j = 0;; j++)
1889 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1890 if (regno_pseudo_regs[j] < 0)
1891 break;
1894 continue;
1897 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1898 this_cost--;
1899 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1900 this_cost--;
1901 if (this_cost < best_cost
1902 /* Among registers with equal cost, prefer caller-saved ones, or
1903 use REG_ALLOC_ORDER if it is defined. */
1904 || (this_cost == best_cost
1905 #ifdef REG_ALLOC_ORDER
1906 && (inv_reg_alloc_order[regno]
1907 < inv_reg_alloc_order[best_reg])
1908 #else
1909 && call_used_regs[regno]
1910 && ! call_used_regs[best_reg]
1911 #endif
1914 best_reg = regno;
1915 best_cost = this_cost;
1919 if (best_reg == -1)
1920 return 0;
1922 if (dump_file)
1923 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1925 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1926 rl->regno = best_reg;
1928 EXECUTE_IF_SET_IN_REG_SET
1929 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1931 count_spilled_pseudo (best_reg, rl->nregs, j);
1934 EXECUTE_IF_SET_IN_REG_SET
1935 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1937 count_spilled_pseudo (best_reg, rl->nregs, j);
1940 for (i = 0; i < rl->nregs; i++)
1942 gcc_assert (spill_cost[best_reg + i] == 0);
1943 gcc_assert (spill_add_cost[best_reg + i] == 0);
1944 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1945 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1947 return 1;
1950 /* Find more reload regs to satisfy the remaining need of an insn, which
1951 is given by CHAIN.
1952 Do it by ascending class number, since otherwise a reg
1953 might be spilled for a big class and might fail to count
1954 for a smaller class even though it belongs to that class. */
1956 static void
1957 find_reload_regs (struct insn_chain *chain)
1959 int i;
1961 /* In order to be certain of getting the registers we need,
1962 we must sort the reloads into order of increasing register class.
1963 Then our grabbing of reload registers will parallel the process
1964 that provided the reload registers. */
1965 for (i = 0; i < chain->n_reloads; i++)
1967 /* Show whether this reload already has a hard reg. */
1968 if (chain->rld[i].reg_rtx)
1970 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1971 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1973 else
1974 chain->rld[i].regno = -1;
1975 reload_order[i] = i;
1978 n_reloads = chain->n_reloads;
1979 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1981 CLEAR_HARD_REG_SET (used_spill_regs_local);
1983 if (dump_file)
1984 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1986 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1988 /* Compute the order of preference for hard registers to spill. */
1990 order_regs_for_reload (chain);
1992 for (i = 0; i < n_reloads; i++)
1994 int r = reload_order[i];
1996 /* Ignore reloads that got marked inoperative. */
1997 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1998 && ! rld[r].optional
1999 && rld[r].regno == -1)
2000 if (! find_reg (chain, i))
2002 if (dump_file)
2003 fprintf (dump_file, "reload failure for reload %d\n", r);
2004 spill_failure (chain->insn, rld[r].rclass);
2005 failure = 1;
2006 return;
2010 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2011 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2013 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2016 static void
2017 select_reload_regs (void)
2019 struct insn_chain *chain;
2021 /* Try to satisfy the needs for each insn. */
2022 for (chain = insns_need_reload; chain != 0;
2023 chain = chain->next_need_reload)
2024 find_reload_regs (chain);
2027 /* Delete all insns that were inserted by emit_caller_save_insns during
2028 this iteration. */
2029 static void
2030 delete_caller_save_insns (void)
2032 struct insn_chain *c = reload_insn_chain;
2034 while (c != 0)
2036 while (c != 0 && c->is_caller_save_insn)
2038 struct insn_chain *next = c->next;
2039 rtx_insn *insn = c->insn;
2041 if (c == reload_insn_chain)
2042 reload_insn_chain = next;
2043 delete_insn (insn);
2045 if (next)
2046 next->prev = c->prev;
2047 if (c->prev)
2048 c->prev->next = next;
2049 c->next = unused_insn_chains;
2050 unused_insn_chains = c;
2051 c = next;
2053 if (c != 0)
2054 c = c->next;
2058 /* Handle the failure to find a register to spill.
2059 INSN should be one of the insns which needed this particular spill reg. */
2061 static void
2062 spill_failure (rtx_insn *insn, enum reg_class rclass)
2064 if (asm_noperands (PATTERN (insn)) >= 0)
2065 error_for_asm (insn, "cannot find a register in class %qs while "
2066 "reloading %<asm%>",
2067 reg_class_names[rclass]);
2068 else
2070 error ("unable to find a register to spill in class %qs",
2071 reg_class_names[rclass]);
2073 if (dump_file)
2075 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2076 debug_reload_to_stream (dump_file);
2078 fatal_insn ("this is the insn:", insn);
2082 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2083 data that is dead in INSN. */
2085 static void
2086 delete_dead_insn (rtx_insn *insn)
2088 rtx_insn *prev = prev_active_insn (insn);
2089 rtx prev_dest;
2091 /* If the previous insn sets a register that dies in our insn make
2092 a note that we want to run DCE immediately after reload.
2094 We used to delete the previous insn & recurse, but that's wrong for
2095 block local equivalences. Instead of trying to figure out the exact
2096 circumstances where we can delete the potentially dead insns, just
2097 let DCE do the job. */
2098 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2099 && GET_CODE (PATTERN (prev)) == SET
2100 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2101 && reg_mentioned_p (prev_dest, PATTERN (insn))
2102 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2103 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2104 need_dce = 1;
2106 SET_INSN_DELETED (insn);
2109 /* Modify the home of pseudo-reg I.
2110 The new home is present in reg_renumber[I].
2112 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2113 or it may be -1, meaning there is none or it is not relevant.
2114 This is used so that all pseudos spilled from a given hard reg
2115 can share one stack slot. */
2117 static void
2118 alter_reg (int i, int from_reg, bool dont_share_p)
2120 /* When outputting an inline function, this can happen
2121 for a reg that isn't actually used. */
2122 if (regno_reg_rtx[i] == 0)
2123 return;
2125 /* If the reg got changed to a MEM at rtl-generation time,
2126 ignore it. */
2127 if (!REG_P (regno_reg_rtx[i]))
2128 return;
2130 /* Modify the reg-rtx to contain the new hard reg
2131 number or else to contain its pseudo reg number. */
2132 SET_REGNO (regno_reg_rtx[i],
2133 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2135 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2136 allocate a stack slot for it. */
2138 if (reg_renumber[i] < 0
2139 && REG_N_REFS (i) > 0
2140 && reg_equiv_constant (i) == 0
2141 && (reg_equiv_invariant (i) == 0
2142 || reg_equiv_init (i) == 0)
2143 && reg_equiv_memory_loc (i) == 0)
2145 rtx x = NULL_RTX;
2146 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2147 poly_uint64 inherent_size = GET_MODE_SIZE (mode);
2148 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2149 machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2150 poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
2151 /* ??? Seems strange to derive the minimum alignment from the size,
2152 but that's the traditional behavior. For polynomial-size modes,
2153 the natural extension is to use the minimum possible size. */
2154 unsigned int min_align
2155 = constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i]));
2156 poly_int64 adjust = 0;
2158 something_was_spilled = true;
2160 if (ira_conflicts_p)
2162 /* Mark the spill for IRA. */
2163 SET_REGNO_REG_SET (&spilled_pseudos, i);
2164 if (!dont_share_p)
2165 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2168 if (x)
2171 /* Each pseudo reg has an inherent size which comes from its own mode,
2172 and a total size which provides room for paradoxical subregs
2173 which refer to the pseudo reg in wider modes.
2175 We can use a slot already allocated if it provides both
2176 enough inherent space and enough total space.
2177 Otherwise, we allocate a new slot, making sure that it has no less
2178 inherent space, and no less total space, then the previous slot. */
2179 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2181 rtx stack_slot;
2183 /* The sizes are taken from a subreg operation, which guarantees
2184 that they're ordered. */
2185 gcc_checking_assert (ordered_p (total_size, inherent_size));
2187 /* No known place to spill from => no slot to reuse. */
2188 x = assign_stack_local (mode, total_size,
2189 min_align > inherent_align
2190 || maybe_gt (total_size, inherent_size)
2191 ? -1 : 0);
2193 stack_slot = x;
2195 /* Cancel the big-endian correction done in assign_stack_local.
2196 Get the address of the beginning of the slot. This is so we
2197 can do a big-endian correction unconditionally below. */
2198 if (BYTES_BIG_ENDIAN)
2200 adjust = inherent_size - total_size;
2201 if (maybe_ne (adjust, 0))
2203 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2204 machine_mode mem_mode
2205 = int_mode_for_size (total_bits, 1).else_blk ();
2206 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2210 if (! dont_share_p && ira_conflicts_p)
2211 /* Inform IRA about allocation a new stack slot. */
2212 ira_mark_new_stack_slot (stack_slot, i, total_size);
2215 /* Reuse a stack slot if possible. */
2216 else if (spill_stack_slot[from_reg] != 0
2217 && known_ge (spill_stack_slot_width[from_reg], total_size)
2218 && known_ge (GET_MODE_SIZE
2219 (GET_MODE (spill_stack_slot[from_reg])),
2220 inherent_size)
2221 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2222 x = spill_stack_slot[from_reg];
2224 /* Allocate a bigger slot. */
2225 else
2227 /* Compute maximum size needed, both for inherent size
2228 and for total size. */
2229 rtx stack_slot;
2231 if (spill_stack_slot[from_reg])
2233 if (partial_subreg_p (mode,
2234 GET_MODE (spill_stack_slot[from_reg])))
2235 mode = GET_MODE (spill_stack_slot[from_reg]);
2236 total_size = ordered_max (total_size,
2237 spill_stack_slot_width[from_reg]);
2238 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2239 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2242 /* The sizes are taken from a subreg operation, which guarantees
2243 that they're ordered. */
2244 gcc_checking_assert (ordered_p (total_size, inherent_size));
2246 /* Make a slot with that size. */
2247 x = assign_stack_local (mode, total_size,
2248 min_align > inherent_align
2249 || maybe_gt (total_size, inherent_size)
2250 ? -1 : 0);
2251 stack_slot = x;
2253 /* Cancel the big-endian correction done in assign_stack_local.
2254 Get the address of the beginning of the slot. This is so we
2255 can do a big-endian correction unconditionally below. */
2256 if (BYTES_BIG_ENDIAN)
2258 adjust = GET_MODE_SIZE (mode) - total_size;
2259 if (maybe_ne (adjust, 0))
2261 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2262 machine_mode mem_mode
2263 = int_mode_for_size (total_bits, 1).else_blk ();
2264 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2268 spill_stack_slot[from_reg] = stack_slot;
2269 spill_stack_slot_width[from_reg] = total_size;
2272 /* On a big endian machine, the "address" of the slot
2273 is the address of the low part that fits its inherent mode. */
2274 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2276 /* If we have any adjustment to make, or if the stack slot is the
2277 wrong mode, make a new stack slot. */
2278 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2280 /* Set all of the memory attributes as appropriate for a spill. */
2281 set_mem_attrs_for_spill (x);
2283 /* Save the stack slot for later. */
2284 reg_equiv_memory_loc (i) = x;
2288 /* Mark the slots in regs_ever_live for the hard regs used by
2289 pseudo-reg number REGNO, accessed in MODE. */
2291 static void
2292 mark_home_live_1 (int regno, machine_mode mode)
2294 int i, lim;
2296 i = reg_renumber[regno];
2297 if (i < 0)
2298 return;
2299 lim = end_hard_regno (mode, i);
2300 while (i < lim)
2301 df_set_regs_ever_live (i++, true);
2304 /* Mark the slots in regs_ever_live for the hard regs
2305 used by pseudo-reg number REGNO. */
2307 void
2308 mark_home_live (int regno)
2310 if (reg_renumber[regno] >= 0)
2311 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2314 /* This function handles the tracking of elimination offsets around branches.
2316 X is a piece of RTL being scanned.
2318 INSN is the insn that it came from, if any.
2320 INITIAL_P is nonzero if we are to set the offset to be the initial
2321 offset and zero if we are setting the offset of the label to be the
2322 current offset. */
2324 static void
2325 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2327 enum rtx_code code = GET_CODE (x);
2328 rtx tem;
2329 unsigned int i;
2330 struct elim_table *p;
2332 switch (code)
2334 case LABEL_REF:
2335 if (LABEL_REF_NONLOCAL_P (x))
2336 return;
2338 x = label_ref_label (x);
2340 /* fall through */
2342 case CODE_LABEL:
2343 /* If we know nothing about this label, set the desired offsets. Note
2344 that this sets the offset at a label to be the offset before a label
2345 if we don't know anything about the label. This is not correct for
2346 the label after a BARRIER, but is the best guess we can make. If
2347 we guessed wrong, we will suppress an elimination that might have
2348 been possible had we been able to guess correctly. */
2350 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2352 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2353 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2354 = (initial_p ? reg_eliminate[i].initial_offset
2355 : reg_eliminate[i].offset);
2356 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2359 /* Otherwise, if this is the definition of a label and it is
2360 preceded by a BARRIER, set our offsets to the known offset of
2361 that label. */
2363 else if (x == insn
2364 && (tem = prev_nonnote_insn (insn)) != 0
2365 && BARRIER_P (tem))
2366 set_offsets_for_label (insn);
2367 else
2368 /* If neither of the above cases is true, compare each offset
2369 with those previously recorded and suppress any eliminations
2370 where the offsets disagree. */
2372 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2373 if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
2374 (initial_p ? reg_eliminate[i].initial_offset
2375 : reg_eliminate[i].offset)))
2376 reg_eliminate[i].can_eliminate = 0;
2378 return;
2380 case JUMP_TABLE_DATA:
2381 set_label_offsets (PATTERN (insn), insn, initial_p);
2382 return;
2384 case JUMP_INSN:
2385 set_label_offsets (PATTERN (insn), insn, initial_p);
2387 /* fall through */
2389 case INSN:
2390 case CALL_INSN:
2391 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2392 to indirectly and hence must have all eliminations at their
2393 initial offsets. */
2394 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2395 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2396 set_label_offsets (XEXP (tem, 0), insn, 1);
2397 return;
2399 case PARALLEL:
2400 case ADDR_VEC:
2401 case ADDR_DIFF_VEC:
2402 /* Each of the labels in the parallel or address vector must be
2403 at their initial offsets. We want the first field for PARALLEL
2404 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2406 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2407 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2408 insn, initial_p);
2409 return;
2411 case SET:
2412 /* We only care about setting PC. If the source is not RETURN,
2413 IF_THEN_ELSE, or a label, disable any eliminations not at
2414 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2415 isn't one of those possibilities. For branches to a label,
2416 call ourselves recursively.
2418 Note that this can disable elimination unnecessarily when we have
2419 a non-local goto since it will look like a non-constant jump to
2420 someplace in the current function. This isn't a significant
2421 problem since such jumps will normally be when all elimination
2422 pairs are back to their initial offsets. */
2424 if (SET_DEST (x) != pc_rtx)
2425 return;
2427 switch (GET_CODE (SET_SRC (x)))
2429 case PC:
2430 case RETURN:
2431 return;
2433 case LABEL_REF:
2434 set_label_offsets (SET_SRC (x), insn, initial_p);
2435 return;
2437 case IF_THEN_ELSE:
2438 tem = XEXP (SET_SRC (x), 1);
2439 if (GET_CODE (tem) == LABEL_REF)
2440 set_label_offsets (label_ref_label (tem), insn, initial_p);
2441 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2442 break;
2444 tem = XEXP (SET_SRC (x), 2);
2445 if (GET_CODE (tem) == LABEL_REF)
2446 set_label_offsets (label_ref_label (tem), insn, initial_p);
2447 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2448 break;
2449 return;
2451 default:
2452 break;
2455 /* If we reach here, all eliminations must be at their initial
2456 offset because we are doing a jump to a variable address. */
2457 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2458 if (maybe_ne (p->offset, p->initial_offset))
2459 p->can_eliminate = 0;
2460 break;
2462 default:
2463 break;
2467 /* This function examines every reg that occurs in X and adjusts the
2468 costs for its elimination which are gathered by IRA. INSN is the
2469 insn in which X occurs. We do not recurse into MEM expressions. */
2471 static void
2472 note_reg_elim_costly (const_rtx x, rtx insn)
2474 subrtx_iterator::array_type array;
2475 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2477 const_rtx x = *iter;
2478 if (MEM_P (x))
2479 iter.skip_subrtxes ();
2480 else if (REG_P (x)
2481 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2482 && reg_equiv_init (REGNO (x))
2483 && reg_equiv_invariant (REGNO (x)))
2485 rtx t = reg_equiv_invariant (REGNO (x));
2486 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2487 int cost = set_src_cost (new_rtx, Pmode,
2488 optimize_bb_for_speed_p (elim_bb));
2489 int freq = REG_FREQ_FROM_BB (elim_bb);
2491 if (cost != 0)
2492 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2497 /* Scan X and replace any eliminable registers (such as fp) with a
2498 replacement (such as sp), plus an offset.
2500 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2501 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2502 MEM, we are allowed to replace a sum of a register and the constant zero
2503 with the register, which we cannot do outside a MEM. In addition, we need
2504 to record the fact that a register is referenced outside a MEM.
2506 If INSN is an insn, it is the insn containing X. If we replace a REG
2507 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2508 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2509 the REG is being modified.
2511 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2512 That's used when we eliminate in expressions stored in notes.
2513 This means, do not set ref_outside_mem even if the reference
2514 is outside of MEMs.
2516 If FOR_COSTS is true, we are being called before reload in order to
2517 estimate the costs of keeping registers with an equivalence unallocated.
2519 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2520 replacements done assuming all offsets are at their initial values. If
2521 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2522 encounter, return the actual location so that find_reloads will do
2523 the proper thing. */
2525 static rtx
2526 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2527 bool may_use_invariant, bool for_costs)
2529 enum rtx_code code = GET_CODE (x);
2530 struct elim_table *ep;
2531 int regno;
2532 rtx new_rtx;
2533 int i, j;
2534 const char *fmt;
2535 int copied = 0;
2537 if (! current_function_decl)
2538 return x;
2540 switch (code)
2542 CASE_CONST_ANY:
2543 case CONST:
2544 case SYMBOL_REF:
2545 case CODE_LABEL:
2546 case PC:
2547 case CC0:
2548 case ASM_INPUT:
2549 case ADDR_VEC:
2550 case ADDR_DIFF_VEC:
2551 case RETURN:
2552 return x;
2554 case REG:
2555 regno = REGNO (x);
2557 /* First handle the case where we encounter a bare register that
2558 is eliminable. Replace it with a PLUS. */
2559 if (regno < FIRST_PSEUDO_REGISTER)
2561 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2562 ep++)
2563 if (ep->from_rtx == x && ep->can_eliminate)
2564 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2567 else if (reg_renumber && reg_renumber[regno] < 0
2568 && reg_equivs
2569 && reg_equiv_invariant (regno))
2571 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2572 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2573 mem_mode, insn, true, for_costs);
2574 /* There exists at least one use of REGNO that cannot be
2575 eliminated. Prevent the defining insn from being deleted. */
2576 reg_equiv_init (regno) = NULL;
2577 if (!for_costs)
2578 alter_reg (regno, -1, true);
2580 return x;
2582 /* You might think handling MINUS in a manner similar to PLUS is a
2583 good idea. It is not. It has been tried multiple times and every
2584 time the change has had to have been reverted.
2586 Other parts of reload know a PLUS is special (gen_reload for example)
2587 and require special code to handle code a reloaded PLUS operand.
2589 Also consider backends where the flags register is clobbered by a
2590 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2591 lea instruction comes to mind). If we try to reload a MINUS, we
2592 may kill the flags register that was holding a useful value.
2594 So, please before trying to handle MINUS, consider reload as a
2595 whole instead of this little section as well as the backend issues. */
2596 case PLUS:
2597 /* If this is the sum of an eliminable register and a constant, rework
2598 the sum. */
2599 if (REG_P (XEXP (x, 0))
2600 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2601 && CONSTANT_P (XEXP (x, 1)))
2603 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2604 ep++)
2605 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2607 /* The only time we want to replace a PLUS with a REG (this
2608 occurs when the constant operand of the PLUS is the negative
2609 of the offset) is when we are inside a MEM. We won't want
2610 to do so at other times because that would change the
2611 structure of the insn in a way that reload can't handle.
2612 We special-case the commonest situation in
2613 eliminate_regs_in_insn, so just replace a PLUS with a
2614 PLUS here, unless inside a MEM. */
2615 if (mem_mode != 0
2616 && CONST_INT_P (XEXP (x, 1))
2617 && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
2618 return ep->to_rtx;
2619 else
2620 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2621 plus_constant (Pmode, XEXP (x, 1),
2622 ep->previous_offset));
2625 /* If the register is not eliminable, we are done since the other
2626 operand is a constant. */
2627 return x;
2630 /* If this is part of an address, we want to bring any constant to the
2631 outermost PLUS. We will do this by doing register replacement in
2632 our operands and seeing if a constant shows up in one of them.
2634 Note that there is no risk of modifying the structure of the insn,
2635 since we only get called for its operands, thus we are either
2636 modifying the address inside a MEM, or something like an address
2637 operand of a load-address insn. */
2640 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2641 for_costs);
2642 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2643 for_costs);
2645 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2647 /* If one side is a PLUS and the other side is a pseudo that
2648 didn't get a hard register but has a reg_equiv_constant,
2649 we must replace the constant here since it may no longer
2650 be in the position of any operand. */
2651 if (GET_CODE (new0) == PLUS && REG_P (new1)
2652 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2653 && reg_renumber[REGNO (new1)] < 0
2654 && reg_equivs
2655 && reg_equiv_constant (REGNO (new1)) != 0)
2656 new1 = reg_equiv_constant (REGNO (new1));
2657 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2658 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2659 && reg_renumber[REGNO (new0)] < 0
2660 && reg_equiv_constant (REGNO (new0)) != 0)
2661 new0 = reg_equiv_constant (REGNO (new0));
2663 new_rtx = form_sum (GET_MODE (x), new0, new1);
2665 /* As above, if we are not inside a MEM we do not want to
2666 turn a PLUS into something else. We might try to do so here
2667 for an addition of 0 if we aren't optimizing. */
2668 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2669 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2670 else
2671 return new_rtx;
2674 return x;
2676 case MULT:
2677 /* If this is the product of an eliminable register and a
2678 constant, apply the distribute law and move the constant out
2679 so that we have (plus (mult ..) ..). This is needed in order
2680 to keep load-address insns valid. This case is pathological.
2681 We ignore the possibility of overflow here. */
2682 if (REG_P (XEXP (x, 0))
2683 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2684 && CONST_INT_P (XEXP (x, 1)))
2685 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2686 ep++)
2687 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2689 if (! mem_mode
2690 /* Refs inside notes or in DEBUG_INSNs don't count for
2691 this purpose. */
2692 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2693 || GET_CODE (insn) == INSN_LIST
2694 || DEBUG_INSN_P (insn))))
2695 ep->ref_outside_mem = 1;
2697 return
2698 plus_constant (Pmode,
2699 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2700 ep->previous_offset * INTVAL (XEXP (x, 1)));
2703 /* fall through */
2705 case CALL:
2706 case COMPARE:
2707 /* See comments before PLUS about handling MINUS. */
2708 case MINUS:
2709 case DIV: case UDIV:
2710 case MOD: case UMOD:
2711 case AND: case IOR: case XOR:
2712 case ROTATERT: case ROTATE:
2713 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2714 case NE: case EQ:
2715 case GE: case GT: case GEU: case GTU:
2716 case LE: case LT: case LEU: case LTU:
2718 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2719 for_costs);
2720 rtx new1 = XEXP (x, 1)
2721 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2722 for_costs) : 0;
2724 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2725 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2727 return x;
2729 case EXPR_LIST:
2730 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2731 if (XEXP (x, 0))
2733 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2734 for_costs);
2735 if (new_rtx != XEXP (x, 0))
2737 /* If this is a REG_DEAD note, it is not valid anymore.
2738 Using the eliminated version could result in creating a
2739 REG_DEAD note for the stack or frame pointer. */
2740 if (REG_NOTE_KIND (x) == REG_DEAD)
2741 return (XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2743 for_costs)
2744 : NULL_RTX);
2746 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2750 /* fall through */
2752 case INSN_LIST:
2753 case INT_LIST:
2754 /* Now do eliminations in the rest of the chain. If this was
2755 an EXPR_LIST, this might result in allocating more memory than is
2756 strictly needed, but it simplifies the code. */
2757 if (XEXP (x, 1))
2759 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2760 for_costs);
2761 if (new_rtx != XEXP (x, 1))
2762 return
2763 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2765 return x;
2767 case PRE_INC:
2768 case POST_INC:
2769 case PRE_DEC:
2770 case POST_DEC:
2771 /* We do not support elimination of a register that is modified.
2772 elimination_effects has already make sure that this does not
2773 happen. */
2774 return x;
2776 case PRE_MODIFY:
2777 case POST_MODIFY:
2778 /* We do not support elimination of a register that is modified.
2779 elimination_effects has already make sure that this does not
2780 happen. The only remaining case we need to consider here is
2781 that the increment value may be an eliminable register. */
2782 if (GET_CODE (XEXP (x, 1)) == PLUS
2783 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2785 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2786 insn, true, for_costs);
2788 if (new_rtx != XEXP (XEXP (x, 1), 1))
2789 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2790 gen_rtx_PLUS (GET_MODE (x),
2791 XEXP (x, 0), new_rtx));
2793 return x;
2795 case STRICT_LOW_PART:
2796 case NEG: case NOT:
2797 case SIGN_EXTEND: case ZERO_EXTEND:
2798 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2799 case FLOAT: case FIX:
2800 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2801 case ABS:
2802 case SQRT:
2803 case FFS:
2804 case CLZ:
2805 case CTZ:
2806 case POPCOUNT:
2807 case PARITY:
2808 case BSWAP:
2809 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2810 for_costs);
2811 if (new_rtx != XEXP (x, 0))
2812 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2813 return x;
2815 case SUBREG:
2816 /* Similar to above processing, but preserve SUBREG_BYTE.
2817 Convert (subreg (mem)) to (mem) if not paradoxical.
2818 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2819 pseudo didn't get a hard reg, we must replace this with the
2820 eliminated version of the memory location because push_reload
2821 may do the replacement in certain circumstances. */
2822 if (REG_P (SUBREG_REG (x))
2823 && !paradoxical_subreg_p (x)
2824 && reg_equivs
2825 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2827 new_rtx = SUBREG_REG (x);
2829 else
2830 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2832 if (new_rtx != SUBREG_REG (x))
2834 poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x));
2835 poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2837 if (MEM_P (new_rtx)
2838 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2839 /* On RISC machines, combine can create rtl of the form
2840 (set (subreg:m1 (reg:m2 R) 0) ...)
2841 where m1 < m2, and expects something interesting to
2842 happen to the entire word. Moreover, it will use the
2843 (reg:m2 R) later, expecting all bits to be preserved.
2844 So if the number of words is the same, preserve the
2845 subreg so that push_reload can see it. */
2846 && !(WORD_REGISTER_OPERATIONS
2847 && known_equal_after_align_down (x_size - 1,
2848 new_size - 1,
2849 UNITS_PER_WORD)))
2850 || known_eq (x_size, new_size))
2852 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2853 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2854 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2855 else
2856 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2859 return x;
2861 case MEM:
2862 /* Our only special processing is to pass the mode of the MEM to our
2863 recursive call and copy the flags. While we are here, handle this
2864 case more efficiently. */
2866 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2867 for_costs);
2868 if (for_costs
2869 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2870 && !memory_address_p (GET_MODE (x), new_rtx))
2871 note_reg_elim_costly (XEXP (x, 0), insn);
2873 return replace_equiv_address_nv (x, new_rtx);
2875 case USE:
2876 /* Handle insn_list USE that a call to a pure function may generate. */
2877 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2878 for_costs);
2879 if (new_rtx != XEXP (x, 0))
2880 return gen_rtx_USE (GET_MODE (x), new_rtx);
2881 return x;
2883 case CLOBBER:
2884 case CLOBBER_HIGH:
2885 case ASM_OPERANDS:
2886 gcc_assert (insn && DEBUG_INSN_P (insn));
2887 break;
2889 case SET:
2890 gcc_unreachable ();
2892 default:
2893 break;
2896 /* Process each of our operands recursively. If any have changed, make a
2897 copy of the rtx. */
2898 fmt = GET_RTX_FORMAT (code);
2899 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2901 if (*fmt == 'e')
2903 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2904 for_costs);
2905 if (new_rtx != XEXP (x, i) && ! copied)
2907 x = shallow_copy_rtx (x);
2908 copied = 1;
2910 XEXP (x, i) = new_rtx;
2912 else if (*fmt == 'E')
2914 int copied_vec = 0;
2915 for (j = 0; j < XVECLEN (x, i); j++)
2917 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2918 for_costs);
2919 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2921 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2922 XVEC (x, i)->elem);
2923 if (! copied)
2925 x = shallow_copy_rtx (x);
2926 copied = 1;
2928 XVEC (x, i) = new_v;
2929 copied_vec = 1;
2931 XVECEXP (x, i, j) = new_rtx;
2936 return x;
2940 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2942 if (reg_eliminate == NULL)
2944 gcc_assert (targetm.no_register_allocation);
2945 return x;
2947 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2950 /* Scan rtx X for modifications of elimination target registers. Update
2951 the table of eliminables to reflect the changed state. MEM_MODE is
2952 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2954 static void
2955 elimination_effects (rtx x, machine_mode mem_mode)
2957 enum rtx_code code = GET_CODE (x);
2958 struct elim_table *ep;
2959 int regno;
2960 int i, j;
2961 const char *fmt;
2963 switch (code)
2965 CASE_CONST_ANY:
2966 case CONST:
2967 case SYMBOL_REF:
2968 case CODE_LABEL:
2969 case PC:
2970 case CC0:
2971 case ASM_INPUT:
2972 case ADDR_VEC:
2973 case ADDR_DIFF_VEC:
2974 case RETURN:
2975 return;
2977 case REG:
2978 regno = REGNO (x);
2980 /* First handle the case where we encounter a bare register that
2981 is eliminable. Replace it with a PLUS. */
2982 if (regno < FIRST_PSEUDO_REGISTER)
2984 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2985 ep++)
2986 if (ep->from_rtx == x && ep->can_eliminate)
2988 if (! mem_mode)
2989 ep->ref_outside_mem = 1;
2990 return;
2994 else if (reg_renumber[regno] < 0
2995 && reg_equivs
2996 && reg_equiv_constant (regno)
2997 && ! function_invariant_p (reg_equiv_constant (regno)))
2998 elimination_effects (reg_equiv_constant (regno), mem_mode);
2999 return;
3001 case PRE_INC:
3002 case POST_INC:
3003 case PRE_DEC:
3004 case POST_DEC:
3005 case POST_MODIFY:
3006 case PRE_MODIFY:
3007 /* If we modify the source of an elimination rule, disable it. */
3008 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3009 if (ep->from_rtx == XEXP (x, 0))
3010 ep->can_eliminate = 0;
3012 /* If we modify the target of an elimination rule by adding a constant,
3013 update its offset. If we modify the target in any other way, we'll
3014 have to disable the rule as well. */
3015 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3016 if (ep->to_rtx == XEXP (x, 0))
3018 poly_int64 size = GET_MODE_SIZE (mem_mode);
3020 /* If more bytes than MEM_MODE are pushed, account for them. */
3021 #ifdef PUSH_ROUNDING
3022 if (ep->to_rtx == stack_pointer_rtx)
3023 size = PUSH_ROUNDING (size);
3024 #endif
3025 if (code == PRE_DEC || code == POST_DEC)
3026 ep->offset += size;
3027 else if (code == PRE_INC || code == POST_INC)
3028 ep->offset -= size;
3029 else if (code == PRE_MODIFY || code == POST_MODIFY)
3031 if (GET_CODE (XEXP (x, 1)) == PLUS
3032 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3033 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3034 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3035 else
3036 ep->can_eliminate = 0;
3040 /* These two aren't unary operators. */
3041 if (code == POST_MODIFY || code == PRE_MODIFY)
3042 break;
3044 /* Fall through to generic unary operation case. */
3045 gcc_fallthrough ();
3046 case STRICT_LOW_PART:
3047 case NEG: case NOT:
3048 case SIGN_EXTEND: case ZERO_EXTEND:
3049 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3050 case FLOAT: case FIX:
3051 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3052 case ABS:
3053 case SQRT:
3054 case FFS:
3055 case CLZ:
3056 case CTZ:
3057 case POPCOUNT:
3058 case PARITY:
3059 case BSWAP:
3060 elimination_effects (XEXP (x, 0), mem_mode);
3061 return;
3063 case SUBREG:
3064 if (REG_P (SUBREG_REG (x))
3065 && !paradoxical_subreg_p (x)
3066 && reg_equivs
3067 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3068 return;
3070 elimination_effects (SUBREG_REG (x), mem_mode);
3071 return;
3073 case USE:
3074 /* If using a register that is the source of an eliminate we still
3075 think can be performed, note it cannot be performed since we don't
3076 know how this register is used. */
3077 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3078 if (ep->from_rtx == XEXP (x, 0))
3079 ep->can_eliminate = 0;
3081 elimination_effects (XEXP (x, 0), mem_mode);
3082 return;
3084 case CLOBBER:
3085 /* If clobbering a register that is the replacement register for an
3086 elimination we still think can be performed, note that it cannot
3087 be performed. Otherwise, we need not be concerned about it. */
3088 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3089 if (ep->to_rtx == XEXP (x, 0))
3090 ep->can_eliminate = 0;
3092 elimination_effects (XEXP (x, 0), mem_mode);
3093 return;
3095 case CLOBBER_HIGH:
3096 /* CLOBBER_HIGH is only supported for LRA. */
3097 return;
3099 case SET:
3100 /* Check for setting a register that we know about. */
3101 if (REG_P (SET_DEST (x)))
3103 /* See if this is setting the replacement register for an
3104 elimination.
3106 If DEST is the hard frame pointer, we do nothing because we
3107 assume that all assignments to the frame pointer are for
3108 non-local gotos and are being done at a time when they are valid
3109 and do not disturb anything else. Some machines want to
3110 eliminate a fake argument pointer (or even a fake frame pointer)
3111 with either the real frame or the stack pointer. Assignments to
3112 the hard frame pointer must not prevent this elimination. */
3114 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3115 ep++)
3116 if (ep->to_rtx == SET_DEST (x)
3117 && SET_DEST (x) != hard_frame_pointer_rtx)
3119 /* If it is being incremented, adjust the offset. Otherwise,
3120 this elimination can't be done. */
3121 rtx src = SET_SRC (x);
3123 if (GET_CODE (src) == PLUS
3124 && XEXP (src, 0) == SET_DEST (x)
3125 && CONST_INT_P (XEXP (src, 1)))
3126 ep->offset -= INTVAL (XEXP (src, 1));
3127 else
3128 ep->can_eliminate = 0;
3132 elimination_effects (SET_DEST (x), VOIDmode);
3133 elimination_effects (SET_SRC (x), VOIDmode);
3134 return;
3136 case MEM:
3137 /* Our only special processing is to pass the mode of the MEM to our
3138 recursive call. */
3139 elimination_effects (XEXP (x, 0), GET_MODE (x));
3140 return;
3142 default:
3143 break;
3146 fmt = GET_RTX_FORMAT (code);
3147 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3149 if (*fmt == 'e')
3150 elimination_effects (XEXP (x, i), mem_mode);
3151 else if (*fmt == 'E')
3152 for (j = 0; j < XVECLEN (x, i); j++)
3153 elimination_effects (XVECEXP (x, i, j), mem_mode);
3157 /* Descend through rtx X and verify that no references to eliminable registers
3158 remain. If any do remain, mark the involved register as not
3159 eliminable. */
3161 static void
3162 check_eliminable_occurrences (rtx x)
3164 const char *fmt;
3165 int i;
3166 enum rtx_code code;
3168 if (x == 0)
3169 return;
3171 code = GET_CODE (x);
3173 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3175 struct elim_table *ep;
3177 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3178 if (ep->from_rtx == x)
3179 ep->can_eliminate = 0;
3180 return;
3183 fmt = GET_RTX_FORMAT (code);
3184 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3186 if (*fmt == 'e')
3187 check_eliminable_occurrences (XEXP (x, i));
3188 else if (*fmt == 'E')
3190 int j;
3191 for (j = 0; j < XVECLEN (x, i); j++)
3192 check_eliminable_occurrences (XVECEXP (x, i, j));
3197 /* Scan INSN and eliminate all eliminable registers in it.
3199 If REPLACE is nonzero, do the replacement destructively. Also
3200 delete the insn as dead it if it is setting an eliminable register.
3202 If REPLACE is zero, do all our allocations in reload_obstack.
3204 If no eliminations were done and this insn doesn't require any elimination
3205 processing (these are not identical conditions: it might be updating sp,
3206 but not referencing fp; this needs to be seen during reload_as_needed so
3207 that the offset between fp and sp can be taken into consideration), zero
3208 is returned. Otherwise, 1 is returned. */
3210 static int
3211 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3213 int icode = recog_memoized (insn);
3214 rtx old_body = PATTERN (insn);
3215 int insn_is_asm = asm_noperands (old_body) >= 0;
3216 rtx old_set = single_set (insn);
3217 rtx new_body;
3218 int val = 0;
3219 int i;
3220 rtx substed_operand[MAX_RECOG_OPERANDS];
3221 rtx orig_operand[MAX_RECOG_OPERANDS];
3222 struct elim_table *ep;
3223 rtx plus_src, plus_cst_src;
3225 if (! insn_is_asm && icode < 0)
3227 gcc_assert (DEBUG_INSN_P (insn)
3228 || GET_CODE (PATTERN (insn)) == USE
3229 || GET_CODE (PATTERN (insn)) == CLOBBER
3230 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3231 if (DEBUG_BIND_INSN_P (insn))
3232 INSN_VAR_LOCATION_LOC (insn)
3233 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3234 return 0;
3237 /* We allow one special case which happens to work on all machines we
3238 currently support: a single set with the source or a REG_EQUAL
3239 note being a PLUS of an eliminable register and a constant. */
3240 plus_src = plus_cst_src = 0;
3241 if (old_set && REG_P (SET_DEST (old_set)))
3243 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3244 plus_src = SET_SRC (old_set);
3245 /* First see if the source is of the form (plus (...) CST). */
3246 if (plus_src
3247 && CONST_INT_P (XEXP (plus_src, 1)))
3248 plus_cst_src = plus_src;
3249 else if (REG_P (SET_SRC (old_set))
3250 || plus_src)
3252 /* Otherwise, see if we have a REG_EQUAL note of the form
3253 (plus (...) CST). */
3254 rtx links;
3255 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3257 if ((REG_NOTE_KIND (links) == REG_EQUAL
3258 || REG_NOTE_KIND (links) == REG_EQUIV)
3259 && GET_CODE (XEXP (links, 0)) == PLUS
3260 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3262 plus_cst_src = XEXP (links, 0);
3263 break;
3268 /* Check that the first operand of the PLUS is a hard reg or
3269 the lowpart subreg of one. */
3270 if (plus_cst_src)
3272 rtx reg = XEXP (plus_cst_src, 0);
3273 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3274 reg = SUBREG_REG (reg);
3276 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3277 plus_cst_src = 0;
3280 if (plus_cst_src)
3282 rtx reg = XEXP (plus_cst_src, 0);
3283 poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));
3285 if (GET_CODE (reg) == SUBREG)
3286 reg = SUBREG_REG (reg);
3288 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3289 if (ep->from_rtx == reg && ep->can_eliminate)
3291 rtx to_rtx = ep->to_rtx;
3292 offset += ep->offset;
3293 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3295 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3296 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3297 to_rtx);
3298 /* If we have a nonzero offset, and the source is already
3299 a simple REG, the following transformation would
3300 increase the cost of the insn by replacing a simple REG
3301 with (plus (reg sp) CST). So try only when we already
3302 had a PLUS before. */
3303 if (known_eq (offset, 0) || plus_src)
3305 rtx new_src = plus_constant (GET_MODE (to_rtx),
3306 to_rtx, offset);
3308 new_body = old_body;
3309 if (! replace)
3311 new_body = copy_insn (old_body);
3312 if (REG_NOTES (insn))
3313 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3315 PATTERN (insn) = new_body;
3316 old_set = single_set (insn);
3318 /* First see if this insn remains valid when we make the
3319 change. If not, try to replace the whole pattern with
3320 a simple set (this may help if the original insn was a
3321 PARALLEL that was only recognized as single_set due to
3322 REG_UNUSED notes). If this isn't valid either, keep
3323 the INSN_CODE the same and let reload fix it up. */
3324 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3326 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3328 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3329 SET_SRC (old_set) = new_src;
3332 else
3333 break;
3335 val = 1;
3336 /* This can't have an effect on elimination offsets, so skip right
3337 to the end. */
3338 goto done;
3342 /* Determine the effects of this insn on elimination offsets. */
3343 elimination_effects (old_body, VOIDmode);
3345 /* Eliminate all eliminable registers occurring in operands that
3346 can be handled by reload. */
3347 extract_insn (insn);
3348 for (i = 0; i < recog_data.n_operands; i++)
3350 orig_operand[i] = recog_data.operand[i];
3351 substed_operand[i] = recog_data.operand[i];
3353 /* For an asm statement, every operand is eliminable. */
3354 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3356 bool is_set_src, in_plus;
3358 /* Check for setting a register that we know about. */
3359 if (recog_data.operand_type[i] != OP_IN
3360 && REG_P (orig_operand[i]))
3362 /* If we are assigning to a register that can be eliminated, it
3363 must be as part of a PARALLEL, since the code above handles
3364 single SETs. We must indicate that we can no longer
3365 eliminate this reg. */
3366 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3367 ep++)
3368 if (ep->from_rtx == orig_operand[i])
3369 ep->can_eliminate = 0;
3372 /* Companion to the above plus substitution, we can allow
3373 invariants as the source of a plain move. */
3374 is_set_src = false;
3375 if (old_set
3376 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3377 is_set_src = true;
3378 in_plus = false;
3379 if (plus_src
3380 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3381 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3382 in_plus = true;
3384 substed_operand[i]
3385 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3386 replace ? insn : NULL_RTX,
3387 is_set_src || in_plus, false);
3388 if (substed_operand[i] != orig_operand[i])
3389 val = 1;
3390 /* Terminate the search in check_eliminable_occurrences at
3391 this point. */
3392 *recog_data.operand_loc[i] = 0;
3394 /* If an output operand changed from a REG to a MEM and INSN is an
3395 insn, write a CLOBBER insn. */
3396 if (recog_data.operand_type[i] != OP_IN
3397 && REG_P (orig_operand[i])
3398 && MEM_P (substed_operand[i])
3399 && replace)
3400 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3404 for (i = 0; i < recog_data.n_dups; i++)
3405 *recog_data.dup_loc[i]
3406 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3408 /* If any eliminable remain, they aren't eliminable anymore. */
3409 check_eliminable_occurrences (old_body);
3411 /* Substitute the operands; the new values are in the substed_operand
3412 array. */
3413 for (i = 0; i < recog_data.n_operands; i++)
3414 *recog_data.operand_loc[i] = substed_operand[i];
3415 for (i = 0; i < recog_data.n_dups; i++)
3416 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3418 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3419 re-recognize the insn. We do this in case we had a simple addition
3420 but now can do this as a load-address. This saves an insn in this
3421 common case.
3422 If re-recognition fails, the old insn code number will still be used,
3423 and some register operands may have changed into PLUS expressions.
3424 These will be handled by find_reloads by loading them into a register
3425 again. */
3427 if (val)
3429 /* If we aren't replacing things permanently and we changed something,
3430 make another copy to ensure that all the RTL is new. Otherwise
3431 things can go wrong if find_reload swaps commutative operands
3432 and one is inside RTL that has been copied while the other is not. */
3433 new_body = old_body;
3434 if (! replace)
3436 new_body = copy_insn (old_body);
3437 if (REG_NOTES (insn))
3438 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3440 PATTERN (insn) = new_body;
3442 /* If we had a move insn but now we don't, rerecognize it. This will
3443 cause spurious re-recognition if the old move had a PARALLEL since
3444 the new one still will, but we can't call single_set without
3445 having put NEW_BODY into the insn and the re-recognition won't
3446 hurt in this rare case. */
3447 /* ??? Why this huge if statement - why don't we just rerecognize the
3448 thing always? */
3449 if (! insn_is_asm
3450 && old_set != 0
3451 && ((REG_P (SET_SRC (old_set))
3452 && (GET_CODE (new_body) != SET
3453 || !REG_P (SET_SRC (new_body))))
3454 /* If this was a load from or store to memory, compare
3455 the MEM in recog_data.operand to the one in the insn.
3456 If they are not equal, then rerecognize the insn. */
3457 || (old_set != 0
3458 && ((MEM_P (SET_SRC (old_set))
3459 && SET_SRC (old_set) != recog_data.operand[1])
3460 || (MEM_P (SET_DEST (old_set))
3461 && SET_DEST (old_set) != recog_data.operand[0])))
3462 /* If this was an add insn before, rerecognize. */
3463 || GET_CODE (SET_SRC (old_set)) == PLUS))
3465 int new_icode = recog (PATTERN (insn), insn, 0);
3466 if (new_icode >= 0)
3467 INSN_CODE (insn) = new_icode;
3471 /* Restore the old body. If there were any changes to it, we made a copy
3472 of it while the changes were still in place, so we'll correctly return
3473 a modified insn below. */
3474 if (! replace)
3476 /* Restore the old body. */
3477 for (i = 0; i < recog_data.n_operands; i++)
3478 /* Restoring a top-level match_parallel would clobber the new_body
3479 we installed in the insn. */
3480 if (recog_data.operand_loc[i] != &PATTERN (insn))
3481 *recog_data.operand_loc[i] = orig_operand[i];
3482 for (i = 0; i < recog_data.n_dups; i++)
3483 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3486 /* Update all elimination pairs to reflect the status after the current
3487 insn. The changes we make were determined by the earlier call to
3488 elimination_effects.
3490 We also detect cases where register elimination cannot be done,
3491 namely, if a register would be both changed and referenced outside a MEM
3492 in the resulting insn since such an insn is often undefined and, even if
3493 not, we cannot know what meaning will be given to it. Note that it is
3494 valid to have a register used in an address in an insn that changes it
3495 (presumably with a pre- or post-increment or decrement).
3497 If anything changes, return nonzero. */
3499 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3501 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3502 ep->can_eliminate = 0;
3504 ep->ref_outside_mem = 0;
3506 if (maybe_ne (ep->previous_offset, ep->offset))
3507 val = 1;
3510 done:
3511 /* If we changed something, perform elimination in REG_NOTES. This is
3512 needed even when REPLACE is zero because a REG_DEAD note might refer
3513 to a register that we eliminate and could cause a different number
3514 of spill registers to be needed in the final reload pass than in
3515 the pre-passes. */
3516 if (val && REG_NOTES (insn) != 0)
3517 REG_NOTES (insn)
3518 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3519 false);
3521 return val;
3524 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3525 register allocator. INSN is the instruction we need to examine, we perform
3526 eliminations in its operands and record cases where eliminating a reg with
3527 an invariant equivalence would add extra cost. */
3529 #pragma GCC diagnostic push
3530 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3531 static void
3532 elimination_costs_in_insn (rtx_insn *insn)
3534 int icode = recog_memoized (insn);
3535 rtx old_body = PATTERN (insn);
3536 int insn_is_asm = asm_noperands (old_body) >= 0;
3537 rtx old_set = single_set (insn);
3538 int i;
3539 rtx orig_operand[MAX_RECOG_OPERANDS];
3540 rtx orig_dup[MAX_RECOG_OPERANDS];
3541 struct elim_table *ep;
3542 rtx plus_src, plus_cst_src;
3543 bool sets_reg_p;
3545 if (! insn_is_asm && icode < 0)
3547 gcc_assert (DEBUG_INSN_P (insn)
3548 || GET_CODE (PATTERN (insn)) == USE
3549 || GET_CODE (PATTERN (insn)) == CLOBBER
3550 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3551 return;
3554 if (old_set != 0 && REG_P (SET_DEST (old_set))
3555 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3557 /* Check for setting an eliminable register. */
3558 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3559 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3560 return;
3563 /* We allow one special case which happens to work on all machines we
3564 currently support: a single set with the source or a REG_EQUAL
3565 note being a PLUS of an eliminable register and a constant. */
3566 plus_src = plus_cst_src = 0;
3567 sets_reg_p = false;
3568 if (old_set && REG_P (SET_DEST (old_set)))
3570 sets_reg_p = true;
3571 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3572 plus_src = SET_SRC (old_set);
3573 /* First see if the source is of the form (plus (...) CST). */
3574 if (plus_src
3575 && CONST_INT_P (XEXP (plus_src, 1)))
3576 plus_cst_src = plus_src;
3577 else if (REG_P (SET_SRC (old_set))
3578 || plus_src)
3580 /* Otherwise, see if we have a REG_EQUAL note of the form
3581 (plus (...) CST). */
3582 rtx links;
3583 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3585 if ((REG_NOTE_KIND (links) == REG_EQUAL
3586 || REG_NOTE_KIND (links) == REG_EQUIV)
3587 && GET_CODE (XEXP (links, 0)) == PLUS
3588 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3590 plus_cst_src = XEXP (links, 0);
3591 break;
3597 /* Determine the effects of this insn on elimination offsets. */
3598 elimination_effects (old_body, VOIDmode);
3600 /* Eliminate all eliminable registers occurring in operands that
3601 can be handled by reload. */
3602 extract_insn (insn);
3603 int n_dups = recog_data.n_dups;
3604 for (i = 0; i < n_dups; i++)
3605 orig_dup[i] = *recog_data.dup_loc[i];
3607 int n_operands = recog_data.n_operands;
3608 for (i = 0; i < n_operands; i++)
3610 orig_operand[i] = recog_data.operand[i];
3612 /* For an asm statement, every operand is eliminable. */
3613 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3615 bool is_set_src, in_plus;
3617 /* Check for setting a register that we know about. */
3618 if (recog_data.operand_type[i] != OP_IN
3619 && REG_P (orig_operand[i]))
3621 /* If we are assigning to a register that can be eliminated, it
3622 must be as part of a PARALLEL, since the code above handles
3623 single SETs. We must indicate that we can no longer
3624 eliminate this reg. */
3625 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3626 ep++)
3627 if (ep->from_rtx == orig_operand[i])
3628 ep->can_eliminate = 0;
3631 /* Companion to the above plus substitution, we can allow
3632 invariants as the source of a plain move. */
3633 is_set_src = false;
3634 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3635 is_set_src = true;
3636 if (is_set_src && !sets_reg_p)
3637 note_reg_elim_costly (SET_SRC (old_set), insn);
3638 in_plus = false;
3639 if (plus_src && sets_reg_p
3640 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3641 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3642 in_plus = true;
3644 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3645 NULL_RTX,
3646 is_set_src || in_plus, true);
3647 /* Terminate the search in check_eliminable_occurrences at
3648 this point. */
3649 *recog_data.operand_loc[i] = 0;
3653 for (i = 0; i < n_dups; i++)
3654 *recog_data.dup_loc[i]
3655 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3657 /* If any eliminable remain, they aren't eliminable anymore. */
3658 check_eliminable_occurrences (old_body);
3660 /* Restore the old body. */
3661 for (i = 0; i < n_operands; i++)
3662 *recog_data.operand_loc[i] = orig_operand[i];
3663 for (i = 0; i < n_dups; i++)
3664 *recog_data.dup_loc[i] = orig_dup[i];
3666 /* Update all elimination pairs to reflect the status after the current
3667 insn. The changes we make were determined by the earlier call to
3668 elimination_effects. */
3670 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3672 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3673 ep->can_eliminate = 0;
3675 ep->ref_outside_mem = 0;
3678 return;
3680 #pragma GCC diagnostic pop
3682 /* Loop through all elimination pairs.
3683 Recalculate the number not at initial offset.
3685 Compute the maximum offset (minimum offset if the stack does not
3686 grow downward) for each elimination pair. */
3688 static void
3689 update_eliminable_offsets (void)
3691 struct elim_table *ep;
3693 num_not_at_initial_offset = 0;
3694 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3696 ep->previous_offset = ep->offset;
3697 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3698 num_not_at_initial_offset++;
3702 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3703 replacement we currently believe is valid, mark it as not eliminable if X
3704 modifies DEST in any way other than by adding a constant integer to it.
3706 If DEST is the frame pointer, we do nothing because we assume that
3707 all assignments to the hard frame pointer are nonlocal gotos and are being
3708 done at a time when they are valid and do not disturb anything else.
3709 Some machines want to eliminate a fake argument pointer with either the
3710 frame or stack pointer. Assignments to the hard frame pointer must not
3711 prevent this elimination.
3713 Called via note_stores from reload before starting its passes to scan
3714 the insns of the function. */
3716 static void
3717 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3719 unsigned int i;
3721 /* A SUBREG of a hard register here is just changing its mode. We should
3722 not see a SUBREG of an eliminable hard register, but check just in
3723 case. */
3724 if (GET_CODE (dest) == SUBREG)
3725 dest = SUBREG_REG (dest);
3727 if (dest == hard_frame_pointer_rtx)
3728 return;
3730 /* CLOBBER_HIGH is only supported for LRA. */
3731 gcc_assert (GET_CODE (x) != CLOBBER_HIGH);
3733 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3734 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3735 && (GET_CODE (x) != SET
3736 || GET_CODE (SET_SRC (x)) != PLUS
3737 || XEXP (SET_SRC (x), 0) != dest
3738 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3740 reg_eliminate[i].can_eliminate_previous
3741 = reg_eliminate[i].can_eliminate = 0;
3742 num_eliminable--;
3746 /* Verify that the initial elimination offsets did not change since the
3747 last call to set_initial_elim_offsets. This is used to catch cases
3748 where something illegal happened during reload_as_needed that could
3749 cause incorrect code to be generated if we did not check for it. */
3751 static bool
3752 verify_initial_elim_offsets (void)
3754 poly_int64 t;
3755 struct elim_table *ep;
3757 if (!num_eliminable)
3758 return true;
3760 targetm.compute_frame_layout ();
3761 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3763 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3764 if (maybe_ne (t, ep->initial_offset))
3765 return false;
3768 return true;
3771 /* Reset all offsets on eliminable registers to their initial values. */
3773 static void
3774 set_initial_elim_offsets (void)
3776 struct elim_table *ep = reg_eliminate;
3778 targetm.compute_frame_layout ();
3779 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3781 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3782 ep->previous_offset = ep->offset = ep->initial_offset;
3785 num_not_at_initial_offset = 0;
3788 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3790 static void
3791 set_initial_eh_label_offset (rtx label)
3793 set_label_offsets (label, NULL, 1);
3796 /* Initialize the known label offsets.
3797 Set a known offset for each forced label to be at the initial offset
3798 of each elimination. We do this because we assume that all
3799 computed jumps occur from a location where each elimination is
3800 at its initial offset.
3801 For all other labels, show that we don't know the offsets. */
3803 static void
3804 set_initial_label_offsets (void)
3806 memset (offsets_known_at, 0, num_labels);
3808 unsigned int i;
3809 rtx_insn *insn;
3810 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3811 set_label_offsets (insn, NULL, 1);
3813 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3814 if (x->insn ())
3815 set_label_offsets (x->insn (), NULL, 1);
3817 for_each_eh_label (set_initial_eh_label_offset);
3820 /* Set all elimination offsets to the known values for the code label given
3821 by INSN. */
3823 static void
3824 set_offsets_for_label (rtx_insn *insn)
3826 unsigned int i;
3827 int label_nr = CODE_LABEL_NUMBER (insn);
3828 struct elim_table *ep;
3830 num_not_at_initial_offset = 0;
3831 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3833 ep->offset = ep->previous_offset
3834 = offsets_at[label_nr - first_label_num][i];
3835 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3836 num_not_at_initial_offset++;
3840 /* See if anything that happened changes which eliminations are valid.
3841 For example, on the SPARC, whether or not the frame pointer can
3842 be eliminated can depend on what registers have been used. We need
3843 not check some conditions again (such as flag_omit_frame_pointer)
3844 since they can't have changed. */
3846 static void
3847 update_eliminables (HARD_REG_SET *pset)
3849 int previous_frame_pointer_needed = frame_pointer_needed;
3850 struct elim_table *ep;
3852 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3853 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3854 && targetm.frame_pointer_required ())
3855 || ! targetm.can_eliminate (ep->from, ep->to)
3857 ep->can_eliminate = 0;
3859 /* Look for the case where we have discovered that we can't replace
3860 register A with register B and that means that we will now be
3861 trying to replace register A with register C. This means we can
3862 no longer replace register C with register B and we need to disable
3863 such an elimination, if it exists. This occurs often with A == ap,
3864 B == sp, and C == fp. */
3866 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3868 struct elim_table *op;
3869 int new_to = -1;
3871 if (! ep->can_eliminate && ep->can_eliminate_previous)
3873 /* Find the current elimination for ep->from, if there is a
3874 new one. */
3875 for (op = reg_eliminate;
3876 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3877 if (op->from == ep->from && op->can_eliminate)
3879 new_to = op->to;
3880 break;
3883 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3884 disable it. */
3885 for (op = reg_eliminate;
3886 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3887 if (op->from == new_to && op->to == ep->to)
3888 op->can_eliminate = 0;
3892 /* See if any registers that we thought we could eliminate the previous
3893 time are no longer eliminable. If so, something has changed and we
3894 must spill the register. Also, recompute the number of eliminable
3895 registers and see if the frame pointer is needed; it is if there is
3896 no elimination of the frame pointer that we can perform. */
3898 frame_pointer_needed = 1;
3899 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3901 if (ep->can_eliminate
3902 && ep->from == FRAME_POINTER_REGNUM
3903 && ep->to != HARD_FRAME_POINTER_REGNUM
3904 && (! SUPPORTS_STACK_ALIGNMENT
3905 || ! crtl->stack_realign_needed))
3906 frame_pointer_needed = 0;
3908 if (! ep->can_eliminate && ep->can_eliminate_previous)
3910 ep->can_eliminate_previous = 0;
3911 SET_HARD_REG_BIT (*pset, ep->from);
3912 num_eliminable--;
3916 /* If we didn't need a frame pointer last time, but we do now, spill
3917 the hard frame pointer. */
3918 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3919 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3922 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3923 Return true iff a register was spilled. */
3925 static bool
3926 update_eliminables_and_spill (void)
3928 int i;
3929 bool did_spill = false;
3930 HARD_REG_SET to_spill;
3931 CLEAR_HARD_REG_SET (to_spill);
3932 update_eliminables (&to_spill);
3933 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3935 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3936 if (TEST_HARD_REG_BIT (to_spill, i))
3938 spill_hard_reg (i, 1);
3939 did_spill = true;
3941 /* Regardless of the state of spills, if we previously had
3942 a register that we thought we could eliminate, but now
3943 cannot eliminate, we must run another pass.
3945 Consider pseudos which have an entry in reg_equiv_* which
3946 reference an eliminable register. We must make another pass
3947 to update reg_equiv_* so that we do not substitute in the
3948 old value from when we thought the elimination could be
3949 performed. */
3951 return did_spill;
3954 /* Return true if X is used as the target register of an elimination. */
3956 bool
3957 elimination_target_reg_p (rtx x)
3959 struct elim_table *ep;
3961 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3962 if (ep->to_rtx == x && ep->can_eliminate)
3963 return true;
3965 return false;
3968 /* Initialize the table of registers to eliminate.
3969 Pre-condition: global flag frame_pointer_needed has been set before
3970 calling this function. */
3972 static void
3973 init_elim_table (void)
3975 struct elim_table *ep;
3976 const struct elim_table_1 *ep1;
3978 if (!reg_eliminate)
3979 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3981 num_eliminable = 0;
3983 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3984 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3986 ep->from = ep1->from;
3987 ep->to = ep1->to;
3988 ep->can_eliminate = ep->can_eliminate_previous
3989 = (targetm.can_eliminate (ep->from, ep->to)
3990 && ! (ep->to == STACK_POINTER_REGNUM
3991 && frame_pointer_needed
3992 && (! SUPPORTS_STACK_ALIGNMENT
3993 || ! stack_realign_fp)));
3996 /* Count the number of eliminable registers and build the FROM and TO
3997 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3998 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3999 We depend on this. */
4000 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4002 num_eliminable += ep->can_eliminate;
4003 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4004 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4008 /* Find all the pseudo registers that didn't get hard regs
4009 but do have known equivalent constants or memory slots.
4010 These include parameters (known equivalent to parameter slots)
4011 and cse'd or loop-moved constant memory addresses.
4013 Record constant equivalents in reg_equiv_constant
4014 so they will be substituted by find_reloads.
4015 Record memory equivalents in reg_mem_equiv so they can
4016 be substituted eventually by altering the REG-rtx's. */
4018 static void
4019 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4021 int i;
4022 rtx_insn *insn;
4024 grow_reg_equivs ();
4025 if (do_subregs)
4026 reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4027 else
4028 reg_max_ref_mode = NULL;
4030 num_eliminable_invariants = 0;
4032 first_label_num = get_first_label_num ();
4033 num_labels = max_label_num () - first_label_num;
4035 /* Allocate the tables used to store offset information at labels. */
4036 offsets_known_at = XNEWVEC (char, num_labels);
4037 offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
4038 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));
4040 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4041 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4042 find largest such for each pseudo. FIRST is the head of the insn
4043 list. */
4045 for (insn = first; insn; insn = NEXT_INSN (insn))
4047 rtx set = single_set (insn);
4049 /* We may introduce USEs that we want to remove at the end, so
4050 we'll mark them with QImode. Make sure there are no
4051 previously-marked insns left by say regmove. */
4052 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4053 && GET_MODE (insn) != VOIDmode)
4054 PUT_MODE (insn, VOIDmode);
4056 if (do_subregs && NONDEBUG_INSN_P (insn))
4057 scan_paradoxical_subregs (PATTERN (insn));
4059 if (set != 0 && REG_P (SET_DEST (set)))
4061 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4062 rtx x;
4064 if (! note)
4065 continue;
4067 i = REGNO (SET_DEST (set));
4068 x = XEXP (note, 0);
4070 if (i <= LAST_VIRTUAL_REGISTER)
4071 continue;
4073 /* If flag_pic and we have constant, verify it's legitimate. */
4074 if (!CONSTANT_P (x)
4075 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4077 /* It can happen that a REG_EQUIV note contains a MEM
4078 that is not a legitimate memory operand. As later
4079 stages of reload assume that all addresses found
4080 in the reg_equiv_* arrays were originally legitimate,
4081 we ignore such REG_EQUIV notes. */
4082 if (memory_operand (x, VOIDmode))
4084 /* Always unshare the equivalence, so we can
4085 substitute into this insn without touching the
4086 equivalence. */
4087 reg_equiv_memory_loc (i) = copy_rtx (x);
4089 else if (function_invariant_p (x))
4091 machine_mode mode;
4093 mode = GET_MODE (SET_DEST (set));
4094 if (GET_CODE (x) == PLUS)
4096 /* This is PLUS of frame pointer and a constant,
4097 and might be shared. Unshare it. */
4098 reg_equiv_invariant (i) = copy_rtx (x);
4099 num_eliminable_invariants++;
4101 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4103 reg_equiv_invariant (i) = x;
4104 num_eliminable_invariants++;
4106 else if (targetm.legitimate_constant_p (mode, x))
4107 reg_equiv_constant (i) = x;
4108 else
4110 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4111 if (! reg_equiv_memory_loc (i))
4112 reg_equiv_init (i) = NULL;
4115 else
4117 reg_equiv_init (i) = NULL;
4118 continue;
4121 else
4122 reg_equiv_init (i) = NULL;
4126 if (dump_file)
4127 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4128 if (reg_equiv_init (i))
4130 fprintf (dump_file, "init_insns for %u: ", i);
4131 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4132 fprintf (dump_file, "\n");
4136 /* Indicate that we no longer have known memory locations or constants.
4137 Free all data involved in tracking these. */
4139 static void
4140 free_reg_equiv (void)
4142 int i;
4144 free (offsets_known_at);
4145 free (offsets_at);
4146 offsets_at = 0;
4147 offsets_known_at = 0;
4149 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4150 if (reg_equiv_alt_mem_list (i))
4151 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4152 vec_free (reg_equivs);
4155 /* Kick all pseudos out of hard register REGNO.
4157 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4158 because we found we can't eliminate some register. In the case, no pseudos
4159 are allowed to be in the register, even if they are only in a block that
4160 doesn't require spill registers, unlike the case when we are spilling this
4161 hard reg to produce another spill register.
4163 Return nonzero if any pseudos needed to be kicked out. */
4165 static void
4166 spill_hard_reg (unsigned int regno, int cant_eliminate)
4168 int i;
4170 if (cant_eliminate)
4172 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4173 df_set_regs_ever_live (regno, true);
4176 /* Spill every pseudo reg that was allocated to this reg
4177 or to something that overlaps this reg. */
4179 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4180 if (reg_renumber[i] >= 0
4181 && (unsigned int) reg_renumber[i] <= regno
4182 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4183 SET_REGNO_REG_SET (&spilled_pseudos, i);
4186 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4187 insns that need reloads, this function is used to actually spill pseudo
4188 registers and try to reallocate them. It also sets up the spill_regs
4189 array for use by choose_reload_regs.
4191 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4192 that we displace from hard registers. */
4194 static int
4195 finish_spills (int global)
4197 struct insn_chain *chain;
4198 int something_changed = 0;
4199 unsigned i;
4200 reg_set_iterator rsi;
4202 /* Build the spill_regs array for the function. */
4203 /* If there are some registers still to eliminate and one of the spill regs
4204 wasn't ever used before, additional stack space may have to be
4205 allocated to store this register. Thus, we may have changed the offset
4206 between the stack and frame pointers, so mark that something has changed.
4208 One might think that we need only set VAL to 1 if this is a call-used
4209 register. However, the set of registers that must be saved by the
4210 prologue is not identical to the call-used set. For example, the
4211 register used by the call insn for the return PC is a call-used register,
4212 but must be saved by the prologue. */
4214 n_spills = 0;
4215 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4216 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4218 spill_reg_order[i] = n_spills;
4219 spill_regs[n_spills++] = i;
4220 if (num_eliminable && ! df_regs_ever_live_p (i))
4221 something_changed = 1;
4222 df_set_regs_ever_live (i, true);
4224 else
4225 spill_reg_order[i] = -1;
4227 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4228 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4230 /* Record the current hard register the pseudo is allocated to
4231 in pseudo_previous_regs so we avoid reallocating it to the
4232 same hard reg in a later pass. */
4233 gcc_assert (reg_renumber[i] >= 0);
4235 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4236 /* Mark it as no longer having a hard register home. */
4237 reg_renumber[i] = -1;
4238 if (ira_conflicts_p)
4239 /* Inform IRA about the change. */
4240 ira_mark_allocation_change (i);
4241 /* We will need to scan everything again. */
4242 something_changed = 1;
4245 /* Retry global register allocation if possible. */
4246 if (global && ira_conflicts_p)
4248 unsigned int n;
4250 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4251 /* For every insn that needs reloads, set the registers used as spill
4252 regs in pseudo_forbidden_regs for every pseudo live across the
4253 insn. */
4254 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4256 EXECUTE_IF_SET_IN_REG_SET
4257 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4259 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4260 chain->used_spill_regs);
4262 EXECUTE_IF_SET_IN_REG_SET
4263 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4265 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4266 chain->used_spill_regs);
4270 /* Retry allocating the pseudos spilled in IRA and the
4271 reload. For each reg, merge the various reg sets that
4272 indicate which hard regs can't be used, and call
4273 ira_reassign_pseudos. */
4274 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4275 if (reg_old_renumber[i] != reg_renumber[i])
4277 if (reg_renumber[i] < 0)
4278 temp_pseudo_reg_arr[n++] = i;
4279 else
4280 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4282 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4283 bad_spill_regs_global,
4284 pseudo_forbidden_regs, pseudo_previous_regs,
4285 &spilled_pseudos))
4286 something_changed = 1;
4288 /* Fix up the register information in the insn chain.
4289 This involves deleting those of the spilled pseudos which did not get
4290 a new hard register home from the live_{before,after} sets. */
4291 for (chain = reload_insn_chain; chain; chain = chain->next)
4293 HARD_REG_SET used_by_pseudos;
4294 HARD_REG_SET used_by_pseudos2;
4296 if (! ira_conflicts_p)
4298 /* Don't do it for IRA because IRA and the reload still can
4299 assign hard registers to the spilled pseudos on next
4300 reload iterations. */
4301 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4302 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4304 /* Mark any unallocated hard regs as available for spills. That
4305 makes inheritance work somewhat better. */
4306 if (chain->need_reload)
4308 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4309 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4310 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4312 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4313 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4314 /* Value of chain->used_spill_regs from previous iteration
4315 may be not included in the value calculated here because
4316 of possible removing caller-saves insns (see function
4317 delete_caller_save_insns. */
4318 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4319 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4323 CLEAR_REG_SET (&changed_allocation_pseudos);
4324 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4325 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4327 int regno = reg_renumber[i];
4328 if (reg_old_renumber[i] == regno)
4329 continue;
4331 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4333 alter_reg (i, reg_old_renumber[i], false);
4334 reg_old_renumber[i] = regno;
4335 if (dump_file)
4337 if (regno == -1)
4338 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4339 else
4340 fprintf (dump_file, " Register %d now in %d.\n\n",
4341 i, reg_renumber[i]);
4345 return something_changed;
4348 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4350 static void
4351 scan_paradoxical_subregs (rtx x)
4353 int i;
4354 const char *fmt;
4355 enum rtx_code code = GET_CODE (x);
4357 switch (code)
4359 case REG:
4360 case CONST:
4361 case SYMBOL_REF:
4362 case LABEL_REF:
4363 CASE_CONST_ANY:
4364 case CC0:
4365 case PC:
4366 case USE:
4367 case CLOBBER:
4368 case CLOBBER_HIGH:
4369 return;
4371 case SUBREG:
4372 if (REG_P (SUBREG_REG (x)))
4374 unsigned int regno = REGNO (SUBREG_REG (x));
4375 if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4377 reg_max_ref_mode[regno] = GET_MODE (x);
4378 mark_home_live_1 (regno, GET_MODE (x));
4381 return;
4383 default:
4384 break;
4387 fmt = GET_RTX_FORMAT (code);
4388 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4390 if (fmt[i] == 'e')
4391 scan_paradoxical_subregs (XEXP (x, i));
4392 else if (fmt[i] == 'E')
4394 int j;
4395 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4396 scan_paradoxical_subregs (XVECEXP (x, i, j));
4401 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4402 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4403 and apply the corresponding narrowing subreg to *OTHER_PTR.
4404 Return true if the operands were changed, false otherwise. */
4406 static bool
4407 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4409 rtx op, inner, other, tem;
4411 op = *op_ptr;
4412 if (!paradoxical_subreg_p (op))
4413 return false;
4414 inner = SUBREG_REG (op);
4416 other = *other_ptr;
4417 tem = gen_lowpart_common (GET_MODE (inner), other);
4418 if (!tem)
4419 return false;
4421 /* If the lowpart operation turned a hard register into a subreg,
4422 rather than simplifying it to another hard register, then the
4423 mode change cannot be properly represented. For example, OTHER
4424 might be valid in its current mode, but not in the new one. */
4425 if (GET_CODE (tem) == SUBREG
4426 && REG_P (other)
4427 && HARD_REGISTER_P (other))
4428 return false;
4430 *op_ptr = inner;
4431 *other_ptr = tem;
4432 return true;
4435 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4436 examine all of the reload insns between PREV and NEXT exclusive, and
4437 annotate all that may trap. */
4439 static void
4440 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4442 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4443 if (note == NULL)
4444 return;
4445 if (!insn_could_throw_p (insn))
4446 remove_note (insn, note);
4447 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4450 /* Reload pseudo-registers into hard regs around each insn as needed.
4451 Additional register load insns are output before the insn that needs it
4452 and perhaps store insns after insns that modify the reloaded pseudo reg.
4454 reg_last_reload_reg and reg_reloaded_contents keep track of
4455 which registers are already available in reload registers.
4456 We update these for the reloads that we perform,
4457 as the insns are scanned. */
4459 static void
4460 reload_as_needed (int live_known)
4462 struct insn_chain *chain;
4463 #if AUTO_INC_DEC
4464 int i;
4465 #endif
4466 rtx_note *marker;
4468 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4469 memset (spill_reg_store, 0, sizeof spill_reg_store);
4470 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4471 INIT_REG_SET (&reg_has_output_reload);
4472 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4473 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4475 set_initial_elim_offsets ();
4477 /* Generate a marker insn that we will move around. */
4478 marker = emit_note (NOTE_INSN_DELETED);
4479 unlink_insn_chain (marker, marker);
4481 for (chain = reload_insn_chain; chain; chain = chain->next)
4483 rtx_insn *prev = 0;
4484 rtx_insn *insn = chain->insn;
4485 rtx_insn *old_next = NEXT_INSN (insn);
4486 #if AUTO_INC_DEC
4487 rtx_insn *old_prev = PREV_INSN (insn);
4488 #endif
4490 if (will_delete_init_insn_p (insn))
4491 continue;
4493 /* If we pass a label, copy the offsets from the label information
4494 into the current offsets of each elimination. */
4495 if (LABEL_P (insn))
4496 set_offsets_for_label (insn);
4498 else if (INSN_P (insn))
4500 regset_head regs_to_forget;
4501 INIT_REG_SET (&regs_to_forget);
4502 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4504 /* If this is a USE and CLOBBER of a MEM, ensure that any
4505 references to eliminable registers have been removed. */
4507 if ((GET_CODE (PATTERN (insn)) == USE
4508 || GET_CODE (PATTERN (insn)) == CLOBBER)
4509 && MEM_P (XEXP (PATTERN (insn), 0)))
4510 XEXP (XEXP (PATTERN (insn), 0), 0)
4511 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4512 GET_MODE (XEXP (PATTERN (insn), 0)),
4513 NULL_RTX);
4515 /* If we need to do register elimination processing, do so.
4516 This might delete the insn, in which case we are done. */
4517 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4519 eliminate_regs_in_insn (insn, 1);
4520 if (NOTE_P (insn))
4522 update_eliminable_offsets ();
4523 CLEAR_REG_SET (&regs_to_forget);
4524 continue;
4528 /* If need_elim is nonzero but need_reload is zero, one might think
4529 that we could simply set n_reloads to 0. However, find_reloads
4530 could have done some manipulation of the insn (such as swapping
4531 commutative operands), and these manipulations are lost during
4532 the first pass for every insn that needs register elimination.
4533 So the actions of find_reloads must be redone here. */
4535 if (! chain->need_elim && ! chain->need_reload
4536 && ! chain->need_operand_change)
4537 n_reloads = 0;
4538 /* First find the pseudo regs that must be reloaded for this insn.
4539 This info is returned in the tables reload_... (see reload.h).
4540 Also modify the body of INSN by substituting RELOAD
4541 rtx's for those pseudo regs. */
4542 else
4544 CLEAR_REG_SET (&reg_has_output_reload);
4545 CLEAR_HARD_REG_SET (reg_is_output_reload);
4547 find_reloads (insn, 1, spill_indirect_levels, live_known,
4548 spill_reg_order);
4551 if (n_reloads > 0)
4553 rtx_insn *next = NEXT_INSN (insn);
4555 /* ??? PREV can get deleted by reload inheritance.
4556 Work around this by emitting a marker note. */
4557 prev = PREV_INSN (insn);
4558 reorder_insns_nobb (marker, marker, prev);
4560 /* Now compute which reload regs to reload them into. Perhaps
4561 reusing reload regs from previous insns, or else output
4562 load insns to reload them. Maybe output store insns too.
4563 Record the choices of reload reg in reload_reg_rtx. */
4564 choose_reload_regs (chain);
4566 /* Generate the insns to reload operands into or out of
4567 their reload regs. */
4568 emit_reload_insns (chain);
4570 /* Substitute the chosen reload regs from reload_reg_rtx
4571 into the insn's body (or perhaps into the bodies of other
4572 load and store insn that we just made for reloading
4573 and that we moved the structure into). */
4574 subst_reloads (insn);
4576 prev = PREV_INSN (marker);
4577 unlink_insn_chain (marker, marker);
4579 /* Adjust the exception region notes for loads and stores. */
4580 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4581 fixup_eh_region_note (insn, prev, next);
4583 /* Adjust the location of REG_ARGS_SIZE. */
4584 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4585 if (p)
4587 remove_note (insn, p);
4588 fixup_args_size_notes (prev, PREV_INSN (next),
4589 get_args_size (p));
4592 /* If this was an ASM, make sure that all the reload insns
4593 we have generated are valid. If not, give an error
4594 and delete them. */
4595 if (asm_noperands (PATTERN (insn)) >= 0)
4596 for (rtx_insn *p = NEXT_INSN (prev);
4597 p != next;
4598 p = NEXT_INSN (p))
4599 if (p != insn && INSN_P (p)
4600 && GET_CODE (PATTERN (p)) != USE
4601 && (recog_memoized (p) < 0
4602 || (extract_insn (p),
4603 !(constrain_operands (1,
4604 get_enabled_alternatives (p))))))
4606 error_for_asm (insn,
4607 "%<asm%> operand requires "
4608 "impossible reload");
4609 delete_insn (p);
4613 if (num_eliminable && chain->need_elim)
4614 update_eliminable_offsets ();
4616 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4617 is no longer validly lying around to save a future reload.
4618 Note that this does not detect pseudos that were reloaded
4619 for this insn in order to be stored in
4620 (obeying register constraints). That is correct; such reload
4621 registers ARE still valid. */
4622 forget_marked_reloads (&regs_to_forget);
4623 CLEAR_REG_SET (&regs_to_forget);
4625 /* There may have been CLOBBER insns placed after INSN. So scan
4626 between INSN and NEXT and use them to forget old reloads. */
4627 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4628 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4629 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4631 #if AUTO_INC_DEC
4632 /* Likewise for regs altered by auto-increment in this insn.
4633 REG_INC notes have been changed by reloading:
4634 find_reloads_address_1 records substitutions for them,
4635 which have been performed by subst_reloads above. */
4636 for (i = n_reloads - 1; i >= 0; i--)
4638 rtx in_reg = rld[i].in_reg;
4639 if (in_reg)
4641 enum rtx_code code = GET_CODE (in_reg);
4642 /* PRE_INC / PRE_DEC will have the reload register ending up
4643 with the same value as the stack slot, but that doesn't
4644 hold true for POST_INC / POST_DEC. Either we have to
4645 convert the memory access to a true POST_INC / POST_DEC,
4646 or we can't use the reload register for inheritance. */
4647 if ((code == POST_INC || code == POST_DEC)
4648 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4649 REGNO (rld[i].reg_rtx))
4650 /* Make sure it is the inc/dec pseudo, and not
4651 some other (e.g. output operand) pseudo. */
4652 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4653 == REGNO (XEXP (in_reg, 0))))
4656 rtx reload_reg = rld[i].reg_rtx;
4657 machine_mode mode = GET_MODE (reload_reg);
4658 int n = 0;
4659 rtx_insn *p;
4661 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4663 /* We really want to ignore REG_INC notes here, so
4664 use PATTERN (p) as argument to reg_set_p . */
4665 if (reg_set_p (reload_reg, PATTERN (p)))
4666 break;
4667 n = count_occurrences (PATTERN (p), reload_reg, 0);
4668 if (! n)
4669 continue;
4670 if (n == 1)
4672 rtx replace_reg
4673 = gen_rtx_fmt_e (code, mode, reload_reg);
4675 validate_replace_rtx_group (reload_reg,
4676 replace_reg, p);
4677 n = verify_changes (0);
4679 /* We must also verify that the constraints
4680 are met after the replacement. Make sure
4681 extract_insn is only called for an insn
4682 where the replacements were found to be
4683 valid so far. */
4684 if (n)
4686 extract_insn (p);
4687 n = constrain_operands (1,
4688 get_enabled_alternatives (p));
4691 /* If the constraints were not met, then
4692 undo the replacement, else confirm it. */
4693 if (!n)
4694 cancel_changes (0);
4695 else
4696 confirm_change_group ();
4698 break;
4700 if (n == 1)
4702 add_reg_note (p, REG_INC, reload_reg);
4703 /* Mark this as having an output reload so that the
4704 REG_INC processing code below won't invalidate
4705 the reload for inheritance. */
4706 SET_HARD_REG_BIT (reg_is_output_reload,
4707 REGNO (reload_reg));
4708 SET_REGNO_REG_SET (&reg_has_output_reload,
4709 REGNO (XEXP (in_reg, 0)));
4711 else
4712 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4713 NULL);
4715 else if ((code == PRE_INC || code == PRE_DEC)
4716 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4717 REGNO (rld[i].reg_rtx))
4718 /* Make sure it is the inc/dec pseudo, and not
4719 some other (e.g. output operand) pseudo. */
4720 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4721 == REGNO (XEXP (in_reg, 0))))
4723 SET_HARD_REG_BIT (reg_is_output_reload,
4724 REGNO (rld[i].reg_rtx));
4725 SET_REGNO_REG_SET (&reg_has_output_reload,
4726 REGNO (XEXP (in_reg, 0)));
4728 else if (code == PRE_INC || code == PRE_DEC
4729 || code == POST_INC || code == POST_DEC)
4731 int in_regno = REGNO (XEXP (in_reg, 0));
4733 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4735 int in_hard_regno;
4736 bool forget_p = true;
4738 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4739 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4740 in_hard_regno))
4742 for (rtx_insn *x = (old_prev ?
4743 NEXT_INSN (old_prev) : insn);
4744 x != old_next;
4745 x = NEXT_INSN (x))
4746 if (x == reg_reloaded_insn[in_hard_regno])
4748 forget_p = false;
4749 break;
4752 /* If for some reasons, we didn't set up
4753 reg_last_reload_reg in this insn,
4754 invalidate inheritance from previous
4755 insns for the incremented/decremented
4756 register. Such registers will be not in
4757 reg_has_output_reload. Invalidate it
4758 also if the corresponding element in
4759 reg_reloaded_insn is also
4760 invalidated. */
4761 if (forget_p)
4762 forget_old_reloads_1 (XEXP (in_reg, 0),
4763 NULL_RTX, NULL);
4768 /* If a pseudo that got a hard register is auto-incremented,
4769 we must purge records of copying it into pseudos without
4770 hard registers. */
4771 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4772 if (REG_NOTE_KIND (x) == REG_INC)
4774 /* See if this pseudo reg was reloaded in this insn.
4775 If so, its last-reload info is still valid
4776 because it is based on this insn's reload. */
4777 for (i = 0; i < n_reloads; i++)
4778 if (rld[i].out == XEXP (x, 0))
4779 break;
4781 if (i == n_reloads)
4782 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4784 #endif
4786 /* A reload reg's contents are unknown after a label. */
4787 if (LABEL_P (insn))
4788 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4790 /* Don't assume a reload reg is still good after a call insn
4791 if it is a call-used reg, or if it contains a value that will
4792 be partially clobbered by the call. */
4793 else if (CALL_P (insn))
4795 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4796 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4798 /* If this is a call to a setjmp-type function, we must not
4799 reuse any reload reg contents across the call; that will
4800 just be clobbered by other uses of the register in later
4801 code, before the longjmp. */
4802 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4803 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4807 /* Clean up. */
4808 free (reg_last_reload_reg);
4809 CLEAR_REG_SET (&reg_has_output_reload);
4812 /* Discard all record of any value reloaded from X,
4813 or reloaded in X from someplace else;
4814 unless X is an output reload reg of the current insn.
4816 X may be a hard reg (the reload reg)
4817 or it may be a pseudo reg that was reloaded from.
4819 When DATA is non-NULL just mark the registers in regset
4820 to be forgotten later. */
4822 static void
4823 forget_old_reloads_1 (rtx x, const_rtx setter,
4824 void *data)
4826 unsigned int regno;
4827 unsigned int nr;
4828 regset regs = (regset) data;
4830 /* note_stores does give us subregs of hard regs,
4831 subreg_regno_offset requires a hard reg. */
4832 while (GET_CODE (x) == SUBREG)
4834 /* We ignore the subreg offset when calculating the regno,
4835 because we are using the entire underlying hard register
4836 below. */
4837 x = SUBREG_REG (x);
4840 if (!REG_P (x))
4841 return;
4843 /* CLOBBER_HIGH is only supported for LRA. */
4844 gcc_assert (setter == NULL_RTX || GET_CODE (setter) != CLOBBER_HIGH);
4846 regno = REGNO (x);
4848 if (regno >= FIRST_PSEUDO_REGISTER)
4849 nr = 1;
4850 else
4852 unsigned int i;
4854 nr = REG_NREGS (x);
4855 /* Storing into a spilled-reg invalidates its contents.
4856 This can happen if a block-local pseudo is allocated to that reg
4857 and it wasn't spilled because this block's total need is 0.
4858 Then some insn might have an optional reload and use this reg. */
4859 if (!regs)
4860 for (i = 0; i < nr; i++)
4861 /* But don't do this if the reg actually serves as an output
4862 reload reg in the current instruction. */
4863 if (n_reloads == 0
4864 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4866 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4867 spill_reg_store[regno + i] = 0;
4871 if (regs)
4872 while (nr-- > 0)
4873 SET_REGNO_REG_SET (regs, regno + nr);
4874 else
4876 /* Since value of X has changed,
4877 forget any value previously copied from it. */
4879 while (nr-- > 0)
4880 /* But don't forget a copy if this is the output reload
4881 that establishes the copy's validity. */
4882 if (n_reloads == 0
4883 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4884 reg_last_reload_reg[regno + nr] = 0;
4888 /* Forget the reloads marked in regset by previous function. */
4889 static void
4890 forget_marked_reloads (regset regs)
4892 unsigned int reg;
4893 reg_set_iterator rsi;
4894 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4896 if (reg < FIRST_PSEUDO_REGISTER
4897 /* But don't do this if the reg actually serves as an output
4898 reload reg in the current instruction. */
4899 && (n_reloads == 0
4900 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4902 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4903 spill_reg_store[reg] = 0;
4905 if (n_reloads == 0
4906 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4907 reg_last_reload_reg[reg] = 0;
4911 /* The following HARD_REG_SETs indicate when each hard register is
4912 used for a reload of various parts of the current insn. */
4914 /* If reg is unavailable for all reloads. */
4915 static HARD_REG_SET reload_reg_unavailable;
4916 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4917 static HARD_REG_SET reload_reg_used;
4918 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4919 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4920 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4921 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4922 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4923 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4924 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4925 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4926 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4927 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4928 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4929 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4930 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4931 static HARD_REG_SET reload_reg_used_in_op_addr;
4932 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4933 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4934 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4935 static HARD_REG_SET reload_reg_used_in_insn;
4936 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4937 static HARD_REG_SET reload_reg_used_in_other_addr;
4939 /* If reg is in use as a reload reg for any sort of reload. */
4940 static HARD_REG_SET reload_reg_used_at_all;
4942 /* If reg is use as an inherited reload. We just mark the first register
4943 in the group. */
4944 static HARD_REG_SET reload_reg_used_for_inherit;
4946 /* Records which hard regs are used in any way, either as explicit use or
4947 by being allocated to a pseudo during any point of the current insn. */
4948 static HARD_REG_SET reg_used_in_insn;
4950 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4951 TYPE. MODE is used to indicate how many consecutive regs are
4952 actually used. */
4954 static void
4955 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4956 machine_mode mode)
4958 switch (type)
4960 case RELOAD_OTHER:
4961 add_to_hard_reg_set (&reload_reg_used, mode, regno);
4962 break;
4964 case RELOAD_FOR_INPUT_ADDRESS:
4965 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
4966 break;
4968 case RELOAD_FOR_INPADDR_ADDRESS:
4969 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
4970 break;
4972 case RELOAD_FOR_OUTPUT_ADDRESS:
4973 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
4974 break;
4976 case RELOAD_FOR_OUTADDR_ADDRESS:
4977 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
4978 break;
4980 case RELOAD_FOR_OPERAND_ADDRESS:
4981 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
4982 break;
4984 case RELOAD_FOR_OPADDR_ADDR:
4985 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
4986 break;
4988 case RELOAD_FOR_OTHER_ADDRESS:
4989 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
4990 break;
4992 case RELOAD_FOR_INPUT:
4993 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
4994 break;
4996 case RELOAD_FOR_OUTPUT:
4997 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
4998 break;
5000 case RELOAD_FOR_INSN:
5001 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5002 break;
5005 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5008 /* Similarly, but show REGNO is no longer in use for a reload. */
5010 static void
5011 clear_reload_reg_in_use (unsigned int regno, int opnum,
5012 enum reload_type type, machine_mode mode)
5014 unsigned int nregs = hard_regno_nregs (regno, mode);
5015 unsigned int start_regno, end_regno, r;
5016 int i;
5017 /* A complication is that for some reload types, inheritance might
5018 allow multiple reloads of the same types to share a reload register.
5019 We set check_opnum if we have to check only reloads with the same
5020 operand number, and check_any if we have to check all reloads. */
5021 int check_opnum = 0;
5022 int check_any = 0;
5023 HARD_REG_SET *used_in_set;
5025 switch (type)
5027 case RELOAD_OTHER:
5028 used_in_set = &reload_reg_used;
5029 break;
5031 case RELOAD_FOR_INPUT_ADDRESS:
5032 used_in_set = &reload_reg_used_in_input_addr[opnum];
5033 break;
5035 case RELOAD_FOR_INPADDR_ADDRESS:
5036 check_opnum = 1;
5037 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5038 break;
5040 case RELOAD_FOR_OUTPUT_ADDRESS:
5041 used_in_set = &reload_reg_used_in_output_addr[opnum];
5042 break;
5044 case RELOAD_FOR_OUTADDR_ADDRESS:
5045 check_opnum = 1;
5046 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5047 break;
5049 case RELOAD_FOR_OPERAND_ADDRESS:
5050 used_in_set = &reload_reg_used_in_op_addr;
5051 break;
5053 case RELOAD_FOR_OPADDR_ADDR:
5054 check_any = 1;
5055 used_in_set = &reload_reg_used_in_op_addr_reload;
5056 break;
5058 case RELOAD_FOR_OTHER_ADDRESS:
5059 used_in_set = &reload_reg_used_in_other_addr;
5060 check_any = 1;
5061 break;
5063 case RELOAD_FOR_INPUT:
5064 used_in_set = &reload_reg_used_in_input[opnum];
5065 break;
5067 case RELOAD_FOR_OUTPUT:
5068 used_in_set = &reload_reg_used_in_output[opnum];
5069 break;
5071 case RELOAD_FOR_INSN:
5072 used_in_set = &reload_reg_used_in_insn;
5073 break;
5074 default:
5075 gcc_unreachable ();
5077 /* We resolve conflicts with remaining reloads of the same type by
5078 excluding the intervals of reload registers by them from the
5079 interval of freed reload registers. Since we only keep track of
5080 one set of interval bounds, we might have to exclude somewhat
5081 more than what would be necessary if we used a HARD_REG_SET here.
5082 But this should only happen very infrequently, so there should
5083 be no reason to worry about it. */
5085 start_regno = regno;
5086 end_regno = regno + nregs;
5087 if (check_opnum || check_any)
5089 for (i = n_reloads - 1; i >= 0; i--)
5091 if (rld[i].when_needed == type
5092 && (check_any || rld[i].opnum == opnum)
5093 && rld[i].reg_rtx)
5095 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5096 unsigned int conflict_end
5097 = end_hard_regno (rld[i].mode, conflict_start);
5099 /* If there is an overlap with the first to-be-freed register,
5100 adjust the interval start. */
5101 if (conflict_start <= start_regno && conflict_end > start_regno)
5102 start_regno = conflict_end;
5103 /* Otherwise, if there is a conflict with one of the other
5104 to-be-freed registers, adjust the interval end. */
5105 if (conflict_start > start_regno && conflict_start < end_regno)
5106 end_regno = conflict_start;
5111 for (r = start_regno; r < end_regno; r++)
5112 CLEAR_HARD_REG_BIT (*used_in_set, r);
5115 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5116 specified by OPNUM and TYPE. */
5118 static int
5119 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5121 int i;
5123 /* In use for a RELOAD_OTHER means it's not available for anything. */
5124 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5125 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5126 return 0;
5128 switch (type)
5130 case RELOAD_OTHER:
5131 /* In use for anything means we can't use it for RELOAD_OTHER. */
5132 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5133 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5134 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5135 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5136 return 0;
5138 for (i = 0; i < reload_n_operands; i++)
5139 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5140 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5141 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5142 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5143 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5144 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5145 return 0;
5147 return 1;
5149 case RELOAD_FOR_INPUT:
5150 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5151 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5152 return 0;
5154 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5155 return 0;
5157 /* If it is used for some other input, can't use it. */
5158 for (i = 0; i < reload_n_operands; i++)
5159 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5160 return 0;
5162 /* If it is used in a later operand's address, can't use it. */
5163 for (i = opnum + 1; i < reload_n_operands; i++)
5164 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5165 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5166 return 0;
5168 return 1;
5170 case RELOAD_FOR_INPUT_ADDRESS:
5171 /* Can't use a register if it is used for an input address for this
5172 operand or used as an input in an earlier one. */
5173 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5174 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5175 return 0;
5177 for (i = 0; i < opnum; i++)
5178 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5179 return 0;
5181 return 1;
5183 case RELOAD_FOR_INPADDR_ADDRESS:
5184 /* Can't use a register if it is used for an input address
5185 for this operand or used as an input in an earlier
5186 one. */
5187 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5188 return 0;
5190 for (i = 0; i < opnum; i++)
5191 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5192 return 0;
5194 return 1;
5196 case RELOAD_FOR_OUTPUT_ADDRESS:
5197 /* Can't use a register if it is used for an output address for this
5198 operand or used as an output in this or a later operand. Note
5199 that multiple output operands are emitted in reverse order, so
5200 the conflicting ones are those with lower indices. */
5201 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5202 return 0;
5204 for (i = 0; i <= opnum; i++)
5205 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5206 return 0;
5208 return 1;
5210 case RELOAD_FOR_OUTADDR_ADDRESS:
5211 /* Can't use a register if it is used for an output address
5212 for this operand or used as an output in this or a
5213 later operand. Note that multiple output operands are
5214 emitted in reverse order, so the conflicting ones are
5215 those with lower indices. */
5216 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5217 return 0;
5219 for (i = 0; i <= opnum; i++)
5220 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5221 return 0;
5223 return 1;
5225 case RELOAD_FOR_OPERAND_ADDRESS:
5226 for (i = 0; i < reload_n_operands; i++)
5227 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5228 return 0;
5230 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5231 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5233 case RELOAD_FOR_OPADDR_ADDR:
5234 for (i = 0; i < reload_n_operands; i++)
5235 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5236 return 0;
5238 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5240 case RELOAD_FOR_OUTPUT:
5241 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5242 outputs, or an operand address for this or an earlier output.
5243 Note that multiple output operands are emitted in reverse order,
5244 so the conflicting ones are those with higher indices. */
5245 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5246 return 0;
5248 for (i = 0; i < reload_n_operands; i++)
5249 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5250 return 0;
5252 for (i = opnum; i < reload_n_operands; i++)
5253 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5254 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5255 return 0;
5257 return 1;
5259 case RELOAD_FOR_INSN:
5260 for (i = 0; i < reload_n_operands; i++)
5261 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5262 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5263 return 0;
5265 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5266 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5268 case RELOAD_FOR_OTHER_ADDRESS:
5269 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5271 default:
5272 gcc_unreachable ();
5276 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5277 the number RELOADNUM, is still available in REGNO at the end of the insn.
5279 We can assume that the reload reg was already tested for availability
5280 at the time it is needed, and we should not check this again,
5281 in case the reg has already been marked in use. */
5283 static int
5284 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5286 int opnum = rld[reloadnum].opnum;
5287 enum reload_type type = rld[reloadnum].when_needed;
5288 int i;
5290 /* See if there is a reload with the same type for this operand, using
5291 the same register. This case is not handled by the code below. */
5292 for (i = reloadnum + 1; i < n_reloads; i++)
5294 rtx reg;
5296 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5297 continue;
5298 reg = rld[i].reg_rtx;
5299 if (reg == NULL_RTX)
5300 continue;
5301 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5302 return 0;
5305 switch (type)
5307 case RELOAD_OTHER:
5308 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5309 its value must reach the end. */
5310 return 1;
5312 /* If this use is for part of the insn,
5313 its value reaches if no subsequent part uses the same register.
5314 Just like the above function, don't try to do this with lots
5315 of fallthroughs. */
5317 case RELOAD_FOR_OTHER_ADDRESS:
5318 /* Here we check for everything else, since these don't conflict
5319 with anything else and everything comes later. */
5321 for (i = 0; i < reload_n_operands; i++)
5322 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5323 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5324 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5325 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5326 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5327 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5328 return 0;
5330 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5331 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5332 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5333 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5335 case RELOAD_FOR_INPUT_ADDRESS:
5336 case RELOAD_FOR_INPADDR_ADDRESS:
5337 /* Similar, except that we check only for this and subsequent inputs
5338 and the address of only subsequent inputs and we do not need
5339 to check for RELOAD_OTHER objects since they are known not to
5340 conflict. */
5342 for (i = opnum; i < reload_n_operands; i++)
5343 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5344 return 0;
5346 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5347 could be killed if the register is also used by reload with type
5348 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5349 if (type == RELOAD_FOR_INPADDR_ADDRESS
5350 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5351 return 0;
5353 for (i = opnum + 1; i < reload_n_operands; i++)
5354 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5355 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5356 return 0;
5358 for (i = 0; i < reload_n_operands; i++)
5359 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5360 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5361 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5362 return 0;
5364 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5365 return 0;
5367 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5368 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5369 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5371 case RELOAD_FOR_INPUT:
5372 /* Similar to input address, except we start at the next operand for
5373 both input and input address and we do not check for
5374 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5375 would conflict. */
5377 for (i = opnum + 1; i < reload_n_operands; i++)
5378 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5379 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5380 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5381 return 0;
5383 /* ... fall through ... */
5385 case RELOAD_FOR_OPERAND_ADDRESS:
5386 /* Check outputs and their addresses. */
5388 for (i = 0; i < reload_n_operands; i++)
5389 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5390 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5391 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5392 return 0;
5394 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5396 case RELOAD_FOR_OPADDR_ADDR:
5397 for (i = 0; i < reload_n_operands; i++)
5398 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5399 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5400 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5401 return 0;
5403 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5404 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5405 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5407 case RELOAD_FOR_INSN:
5408 /* These conflict with other outputs with RELOAD_OTHER. So
5409 we need only check for output addresses. */
5411 opnum = reload_n_operands;
5413 /* fall through */
5415 case RELOAD_FOR_OUTPUT:
5416 case RELOAD_FOR_OUTPUT_ADDRESS:
5417 case RELOAD_FOR_OUTADDR_ADDRESS:
5418 /* We already know these can't conflict with a later output. So the
5419 only thing to check are later output addresses.
5420 Note that multiple output operands are emitted in reverse order,
5421 so the conflicting ones are those with lower indices. */
5422 for (i = 0; i < opnum; i++)
5423 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5424 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5425 return 0;
5427 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5428 could be killed if the register is also used by reload with type
5429 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5430 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5431 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5432 return 0;
5434 return 1;
5436 default:
5437 gcc_unreachable ();
5441 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5442 every register in REG. */
5444 static bool
5445 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5447 unsigned int i;
5449 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5450 if (!reload_reg_reaches_end_p (i, reloadnum))
5451 return false;
5452 return true;
5456 /* Returns whether R1 and R2 are uniquely chained: the value of one
5457 is used by the other, and that value is not used by any other
5458 reload for this insn. This is used to partially undo the decision
5459 made in find_reloads when in the case of multiple
5460 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5461 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5462 reloads. This code tries to avoid the conflict created by that
5463 change. It might be cleaner to explicitly keep track of which
5464 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5465 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5466 this after the fact. */
5467 static bool
5468 reloads_unique_chain_p (int r1, int r2)
5470 int i;
5472 /* We only check input reloads. */
5473 if (! rld[r1].in || ! rld[r2].in)
5474 return false;
5476 /* Avoid anything with output reloads. */
5477 if (rld[r1].out || rld[r2].out)
5478 return false;
5480 /* "chained" means one reload is a component of the other reload,
5481 not the same as the other reload. */
5482 if (rld[r1].opnum != rld[r2].opnum
5483 || rtx_equal_p (rld[r1].in, rld[r2].in)
5484 || rld[r1].optional || rld[r2].optional
5485 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5486 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5487 return false;
5489 /* The following loop assumes that r1 is the reload that feeds r2. */
5490 if (r1 > r2)
5491 std::swap (r1, r2);
5493 for (i = 0; i < n_reloads; i ++)
5494 /* Look for input reloads that aren't our two */
5495 if (i != r1 && i != r2 && rld[i].in)
5497 /* If our reload is mentioned at all, it isn't a simple chain. */
5498 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5499 return false;
5501 return true;
5504 /* The recursive function change all occurrences of WHAT in *WHERE
5505 to REPL. */
5506 static void
5507 substitute (rtx *where, const_rtx what, rtx repl)
5509 const char *fmt;
5510 int i;
5511 enum rtx_code code;
5513 if (*where == 0)
5514 return;
5516 if (*where == what || rtx_equal_p (*where, what))
5518 /* Record the location of the changed rtx. */
5519 substitute_stack.safe_push (where);
5520 *where = repl;
5521 return;
5524 code = GET_CODE (*where);
5525 fmt = GET_RTX_FORMAT (code);
5526 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5528 if (fmt[i] == 'E')
5530 int j;
5532 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5533 substitute (&XVECEXP (*where, i, j), what, repl);
5535 else if (fmt[i] == 'e')
5536 substitute (&XEXP (*where, i), what, repl);
5540 /* The function returns TRUE if chain of reload R1 and R2 (in any
5541 order) can be evaluated without usage of intermediate register for
5542 the reload containing another reload. It is important to see
5543 gen_reload to understand what the function is trying to do. As an
5544 example, let us have reload chain
5546 r2: const
5547 r1: <something> + const
5549 and reload R2 got reload reg HR. The function returns true if
5550 there is a correct insn HR = HR + <something>. Otherwise,
5551 gen_reload will use intermediate register (and this is the reload
5552 reg for R1) to reload <something>.
5554 We need this function to find a conflict for chain reloads. In our
5555 example, if HR = HR + <something> is incorrect insn, then we cannot
5556 use HR as a reload register for R2. If we do use it then we get a
5557 wrong code:
5559 HR = const
5560 HR = <something>
5561 HR = HR + HR
5564 static bool
5565 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5567 /* Assume other cases in gen_reload are not possible for
5568 chain reloads or do need an intermediate hard registers. */
5569 bool result = true;
5570 int regno, code;
5571 rtx out, in;
5572 rtx_insn *insn;
5573 rtx_insn *last = get_last_insn ();
5575 /* Make r2 a component of r1. */
5576 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5577 std::swap (r1, r2);
5579 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5580 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5581 gcc_assert (regno >= 0);
5582 out = gen_rtx_REG (rld[r1].mode, regno);
5583 in = rld[r1].in;
5584 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5586 /* If IN is a paradoxical SUBREG, remove it and try to put the
5587 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5588 strip_paradoxical_subreg (&in, &out);
5590 if (GET_CODE (in) == PLUS
5591 && (REG_P (XEXP (in, 0))
5592 || GET_CODE (XEXP (in, 0)) == SUBREG
5593 || MEM_P (XEXP (in, 0)))
5594 && (REG_P (XEXP (in, 1))
5595 || GET_CODE (XEXP (in, 1)) == SUBREG
5596 || CONSTANT_P (XEXP (in, 1))
5597 || MEM_P (XEXP (in, 1))))
5599 insn = emit_insn (gen_rtx_SET (out, in));
5600 code = recog_memoized (insn);
5601 result = false;
5603 if (code >= 0)
5605 extract_insn (insn);
5606 /* We want constrain operands to treat this insn strictly in
5607 its validity determination, i.e., the way it would after
5608 reload has completed. */
5609 result = constrain_operands (1, get_enabled_alternatives (insn));
5612 delete_insns_since (last);
5615 /* Restore the original value at each changed address within R1. */
5616 while (!substitute_stack.is_empty ())
5618 rtx *where = substitute_stack.pop ();
5619 *where = rld[r2].in;
5622 return result;
5625 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5626 Return 0 otherwise.
5628 This function uses the same algorithm as reload_reg_free_p above. */
5630 static int
5631 reloads_conflict (int r1, int r2)
5633 enum reload_type r1_type = rld[r1].when_needed;
5634 enum reload_type r2_type = rld[r2].when_needed;
5635 int r1_opnum = rld[r1].opnum;
5636 int r2_opnum = rld[r2].opnum;
5638 /* RELOAD_OTHER conflicts with everything. */
5639 if (r2_type == RELOAD_OTHER)
5640 return 1;
5642 /* Otherwise, check conflicts differently for each type. */
5644 switch (r1_type)
5646 case RELOAD_FOR_INPUT:
5647 return (r2_type == RELOAD_FOR_INSN
5648 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5649 || r2_type == RELOAD_FOR_OPADDR_ADDR
5650 || r2_type == RELOAD_FOR_INPUT
5651 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5652 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5653 && r2_opnum > r1_opnum));
5655 case RELOAD_FOR_INPUT_ADDRESS:
5656 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5657 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5659 case RELOAD_FOR_INPADDR_ADDRESS:
5660 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5661 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5663 case RELOAD_FOR_OUTPUT_ADDRESS:
5664 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5665 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5667 case RELOAD_FOR_OUTADDR_ADDRESS:
5668 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5669 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5671 case RELOAD_FOR_OPERAND_ADDRESS:
5672 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5673 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5674 && (!reloads_unique_chain_p (r1, r2)
5675 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5677 case RELOAD_FOR_OPADDR_ADDR:
5678 return (r2_type == RELOAD_FOR_INPUT
5679 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5681 case RELOAD_FOR_OUTPUT:
5682 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5683 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5684 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5685 && r2_opnum >= r1_opnum));
5687 case RELOAD_FOR_INSN:
5688 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5689 || r2_type == RELOAD_FOR_INSN
5690 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5692 case RELOAD_FOR_OTHER_ADDRESS:
5693 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5695 case RELOAD_OTHER:
5696 return 1;
5698 default:
5699 gcc_unreachable ();
5703 /* Indexed by reload number, 1 if incoming value
5704 inherited from previous insns. */
5705 static char reload_inherited[MAX_RELOADS];
5707 /* For an inherited reload, this is the insn the reload was inherited from,
5708 if we know it. Otherwise, this is 0. */
5709 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5711 /* If nonzero, this is a place to get the value of the reload,
5712 rather than using reload_in. */
5713 static rtx reload_override_in[MAX_RELOADS];
5715 /* For each reload, the hard register number of the register used,
5716 or -1 if we did not need a register for this reload. */
5717 static int reload_spill_index[MAX_RELOADS];
5719 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5720 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5722 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5723 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5725 /* Subroutine of free_for_value_p, used to check a single register.
5726 START_REGNO is the starting regno of the full reload register
5727 (possibly comprising multiple hard registers) that we are considering. */
5729 static int
5730 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5731 enum reload_type type, rtx value, rtx out,
5732 int reloadnum, int ignore_address_reloads)
5734 int time1;
5735 /* Set if we see an input reload that must not share its reload register
5736 with any new earlyclobber, but might otherwise share the reload
5737 register with an output or input-output reload. */
5738 int check_earlyclobber = 0;
5739 int i;
5740 int copy = 0;
5742 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5743 return 0;
5745 if (out == const0_rtx)
5747 copy = 1;
5748 out = NULL_RTX;
5751 /* We use some pseudo 'time' value to check if the lifetimes of the
5752 new register use would overlap with the one of a previous reload
5753 that is not read-only or uses a different value.
5754 The 'time' used doesn't have to be linear in any shape or form, just
5755 monotonic.
5756 Some reload types use different 'buckets' for each operand.
5757 So there are MAX_RECOG_OPERANDS different time values for each
5758 such reload type.
5759 We compute TIME1 as the time when the register for the prospective
5760 new reload ceases to be live, and TIME2 for each existing
5761 reload as the time when that the reload register of that reload
5762 becomes live.
5763 Where there is little to be gained by exact lifetime calculations,
5764 we just make conservative assumptions, i.e. a longer lifetime;
5765 this is done in the 'default:' cases. */
5766 switch (type)
5768 case RELOAD_FOR_OTHER_ADDRESS:
5769 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5770 time1 = copy ? 0 : 1;
5771 break;
5772 case RELOAD_OTHER:
5773 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5774 break;
5775 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5776 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5777 respectively, to the time values for these, we get distinct time
5778 values. To get distinct time values for each operand, we have to
5779 multiply opnum by at least three. We round that up to four because
5780 multiply by four is often cheaper. */
5781 case RELOAD_FOR_INPADDR_ADDRESS:
5782 time1 = opnum * 4 + 2;
5783 break;
5784 case RELOAD_FOR_INPUT_ADDRESS:
5785 time1 = opnum * 4 + 3;
5786 break;
5787 case RELOAD_FOR_INPUT:
5788 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5789 executes (inclusive). */
5790 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5791 break;
5792 case RELOAD_FOR_OPADDR_ADDR:
5793 /* opnum * 4 + 4
5794 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5795 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5796 break;
5797 case RELOAD_FOR_OPERAND_ADDRESS:
5798 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5799 is executed. */
5800 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5801 break;
5802 case RELOAD_FOR_OUTADDR_ADDRESS:
5803 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5804 break;
5805 case RELOAD_FOR_OUTPUT_ADDRESS:
5806 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5807 break;
5808 default:
5809 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5812 for (i = 0; i < n_reloads; i++)
5814 rtx reg = rld[i].reg_rtx;
5815 if (reg && REG_P (reg)
5816 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5817 && i != reloadnum)
5819 rtx other_input = rld[i].in;
5821 /* If the other reload loads the same input value, that
5822 will not cause a conflict only if it's loading it into
5823 the same register. */
5824 if (true_regnum (reg) != start_regno)
5825 other_input = NULL_RTX;
5826 if (! other_input || ! rtx_equal_p (other_input, value)
5827 || rld[i].out || out)
5829 int time2;
5830 switch (rld[i].when_needed)
5832 case RELOAD_FOR_OTHER_ADDRESS:
5833 time2 = 0;
5834 break;
5835 case RELOAD_FOR_INPADDR_ADDRESS:
5836 /* find_reloads makes sure that a
5837 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5838 by at most one - the first -
5839 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5840 address reload is inherited, the address address reload
5841 goes away, so we can ignore this conflict. */
5842 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5843 && ignore_address_reloads
5844 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5845 Then the address address is still needed to store
5846 back the new address. */
5847 && ! rld[reloadnum].out)
5848 continue;
5849 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5850 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5851 reloads go away. */
5852 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5853 && ignore_address_reloads
5854 /* Unless we are reloading an auto_inc expression. */
5855 && ! rld[reloadnum].out)
5856 continue;
5857 time2 = rld[i].opnum * 4 + 2;
5858 break;
5859 case RELOAD_FOR_INPUT_ADDRESS:
5860 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5861 && ignore_address_reloads
5862 && ! rld[reloadnum].out)
5863 continue;
5864 time2 = rld[i].opnum * 4 + 3;
5865 break;
5866 case RELOAD_FOR_INPUT:
5867 time2 = rld[i].opnum * 4 + 4;
5868 check_earlyclobber = 1;
5869 break;
5870 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5871 == MAX_RECOG_OPERAND * 4 */
5872 case RELOAD_FOR_OPADDR_ADDR:
5873 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5874 && ignore_address_reloads
5875 && ! rld[reloadnum].out)
5876 continue;
5877 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5878 break;
5879 case RELOAD_FOR_OPERAND_ADDRESS:
5880 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5881 check_earlyclobber = 1;
5882 break;
5883 case RELOAD_FOR_INSN:
5884 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5885 break;
5886 case RELOAD_FOR_OUTPUT:
5887 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5888 instruction is executed. */
5889 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5890 break;
5891 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5892 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5893 value. */
5894 case RELOAD_FOR_OUTADDR_ADDRESS:
5895 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5896 && ignore_address_reloads
5897 && ! rld[reloadnum].out)
5898 continue;
5899 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5900 break;
5901 case RELOAD_FOR_OUTPUT_ADDRESS:
5902 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5903 break;
5904 case RELOAD_OTHER:
5905 /* If there is no conflict in the input part, handle this
5906 like an output reload. */
5907 if (! rld[i].in || rtx_equal_p (other_input, value))
5909 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5910 /* Earlyclobbered outputs must conflict with inputs. */
5911 if (earlyclobber_operand_p (rld[i].out))
5912 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5914 break;
5916 time2 = 1;
5917 /* RELOAD_OTHER might be live beyond instruction execution,
5918 but this is not obvious when we set time2 = 1. So check
5919 here if there might be a problem with the new reload
5920 clobbering the register used by the RELOAD_OTHER. */
5921 if (out)
5922 return 0;
5923 break;
5924 default:
5925 return 0;
5927 if ((time1 >= time2
5928 && (! rld[i].in || rld[i].out
5929 || ! rtx_equal_p (other_input, value)))
5930 || (out && rld[reloadnum].out_reg
5931 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5932 return 0;
5937 /* Earlyclobbered outputs must conflict with inputs. */
5938 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5939 return 0;
5941 return 1;
5944 /* Return 1 if the value in reload reg REGNO, as used by a reload
5945 needed for the part of the insn specified by OPNUM and TYPE,
5946 may be used to load VALUE into it.
5948 MODE is the mode in which the register is used, this is needed to
5949 determine how many hard regs to test.
5951 Other read-only reloads with the same value do not conflict
5952 unless OUT is nonzero and these other reloads have to live while
5953 output reloads live.
5954 If OUT is CONST0_RTX, this is a special case: it means that the
5955 test should not be for using register REGNO as reload register, but
5956 for copying from register REGNO into the reload register.
5958 RELOADNUM is the number of the reload we want to load this value for;
5959 a reload does not conflict with itself.
5961 When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with
5962 reloads that load an address for the very reload we are considering.
5964 The caller has to make sure that there is no conflict with the return
5965 register. */
5967 static int
5968 free_for_value_p (int regno, machine_mode mode, int opnum,
5969 enum reload_type type, rtx value, rtx out, int reloadnum,
5970 int ignore_address_reloads)
5972 int nregs = hard_regno_nregs (regno, mode);
5973 while (nregs-- > 0)
5974 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5975 value, out, reloadnum,
5976 ignore_address_reloads))
5977 return 0;
5978 return 1;
5981 /* Return nonzero if the rtx X is invariant over the current function. */
5982 /* ??? Actually, the places where we use this expect exactly what is
5983 tested here, and not everything that is function invariant. In
5984 particular, the frame pointer and arg pointer are special cased;
5985 pic_offset_table_rtx is not, and we must not spill these things to
5986 memory. */
5989 function_invariant_p (const_rtx x)
5991 if (CONSTANT_P (x))
5992 return 1;
5993 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5994 return 1;
5995 if (GET_CODE (x) == PLUS
5996 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5997 && GET_CODE (XEXP (x, 1)) == CONST_INT)
5998 return 1;
5999 return 0;
6002 /* Determine whether the reload reg X overlaps any rtx'es used for
6003 overriding inheritance. Return nonzero if so. */
6005 static int
6006 conflicts_with_override (rtx x)
6008 int i;
6009 for (i = 0; i < n_reloads; i++)
6010 if (reload_override_in[i]
6011 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6012 return 1;
6013 return 0;
6016 /* Give an error message saying we failed to find a reload for INSN,
6017 and clear out reload R. */
6018 static void
6019 failed_reload (rtx_insn *insn, int r)
6021 if (asm_noperands (PATTERN (insn)) < 0)
6022 /* It's the compiler's fault. */
6023 fatal_insn ("could not find a spill register", insn);
6025 /* It's the user's fault; the operand's mode and constraint
6026 don't match. Disable this reload so we don't crash in final. */
6027 error_for_asm (insn,
6028 "%<asm%> operand constraint incompatible with operand size");
6029 rld[r].in = 0;
6030 rld[r].out = 0;
6031 rld[r].reg_rtx = 0;
6032 rld[r].optional = 1;
6033 rld[r].secondary_p = 1;
6036 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6037 for reload R. If it's valid, get an rtx for it. Return nonzero if
6038 successful. */
6039 static int
6040 set_reload_reg (int i, int r)
6042 int regno;
6043 rtx reg = spill_reg_rtx[i];
6045 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6046 spill_reg_rtx[i] = reg
6047 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6049 regno = true_regnum (reg);
6051 /* Detect when the reload reg can't hold the reload mode.
6052 This used to be one `if', but Sequent compiler can't handle that. */
6053 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6055 machine_mode test_mode = VOIDmode;
6056 if (rld[r].in)
6057 test_mode = GET_MODE (rld[r].in);
6058 /* If rld[r].in has VOIDmode, it means we will load it
6059 in whatever mode the reload reg has: to wit, rld[r].mode.
6060 We have already tested that for validity. */
6061 /* Aside from that, we need to test that the expressions
6062 to reload from or into have modes which are valid for this
6063 reload register. Otherwise the reload insns would be invalid. */
6064 if (! (rld[r].in != 0 && test_mode != VOIDmode
6065 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6066 if (! (rld[r].out != 0
6067 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6069 /* The reg is OK. */
6070 last_spill_reg = i;
6072 /* Mark as in use for this insn the reload regs we use
6073 for this. */
6074 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6075 rld[r].when_needed, rld[r].mode);
6077 rld[r].reg_rtx = reg;
6078 reload_spill_index[r] = spill_regs[i];
6079 return 1;
6082 return 0;
6085 /* Find a spill register to use as a reload register for reload R.
6086 LAST_RELOAD is nonzero if this is the last reload for the insn being
6087 processed.
6089 Set rld[R].reg_rtx to the register allocated.
6091 We return 1 if successful, or 0 if we couldn't find a spill reg and
6092 we didn't change anything. */
6094 static int
6095 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6096 int last_reload)
6098 int i, pass, count;
6100 /* If we put this reload ahead, thinking it is a group,
6101 then insist on finding a group. Otherwise we can grab a
6102 reg that some other reload needs.
6103 (That can happen when we have a 68000 DATA_OR_FP_REG
6104 which is a group of data regs or one fp reg.)
6105 We need not be so restrictive if there are no more reloads
6106 for this insn.
6108 ??? Really it would be nicer to have smarter handling
6109 for that kind of reg class, where a problem like this is normal.
6110 Perhaps those classes should be avoided for reloading
6111 by use of more alternatives. */
6113 int force_group = rld[r].nregs > 1 && ! last_reload;
6115 /* If we want a single register and haven't yet found one,
6116 take any reg in the right class and not in use.
6117 If we want a consecutive group, here is where we look for it.
6119 We use three passes so we can first look for reload regs to
6120 reuse, which are already in use for other reloads in this insn,
6121 and only then use additional registers which are not "bad", then
6122 finally any register.
6124 I think that maximizing reuse is needed to make sure we don't
6125 run out of reload regs. Suppose we have three reloads, and
6126 reloads A and B can share regs. These need two regs.
6127 Suppose A and B are given different regs.
6128 That leaves none for C. */
6129 for (pass = 0; pass < 3; pass++)
6131 /* I is the index in spill_regs.
6132 We advance it round-robin between insns to use all spill regs
6133 equally, so that inherited reloads have a chance
6134 of leapfrogging each other. */
6136 i = last_spill_reg;
6138 for (count = 0; count < n_spills; count++)
6140 int rclass = (int) rld[r].rclass;
6141 int regnum;
6143 i++;
6144 if (i >= n_spills)
6145 i -= n_spills;
6146 regnum = spill_regs[i];
6148 if ((reload_reg_free_p (regnum, rld[r].opnum,
6149 rld[r].when_needed)
6150 || (rld[r].in
6151 /* We check reload_reg_used to make sure we
6152 don't clobber the return register. */
6153 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6154 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6155 rld[r].when_needed, rld[r].in,
6156 rld[r].out, r, 1)))
6157 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6158 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6159 /* Look first for regs to share, then for unshared. But
6160 don't share regs used for inherited reloads; they are
6161 the ones we want to preserve. */
6162 && (pass
6163 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6164 regnum)
6165 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6166 regnum))))
6168 int nr = hard_regno_nregs (regnum, rld[r].mode);
6170 /* During the second pass we want to avoid reload registers
6171 which are "bad" for this reload. */
6172 if (pass == 1
6173 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6174 continue;
6176 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6177 (on 68000) got us two FP regs. If NR is 1,
6178 we would reject both of them. */
6179 if (force_group)
6180 nr = rld[r].nregs;
6181 /* If we need only one reg, we have already won. */
6182 if (nr == 1)
6184 /* But reject a single reg if we demand a group. */
6185 if (force_group)
6186 continue;
6187 break;
6189 /* Otherwise check that as many consecutive regs as we need
6190 are available here. */
6191 while (nr > 1)
6193 int regno = regnum + nr - 1;
6194 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6195 && spill_reg_order[regno] >= 0
6196 && reload_reg_free_p (regno, rld[r].opnum,
6197 rld[r].when_needed)))
6198 break;
6199 nr--;
6201 if (nr == 1)
6202 break;
6206 /* If we found something on the current pass, omit later passes. */
6207 if (count < n_spills)
6208 break;
6211 /* We should have found a spill register by now. */
6212 if (count >= n_spills)
6213 return 0;
6215 /* I is the index in SPILL_REG_RTX of the reload register we are to
6216 allocate. Get an rtx for it and find its register number. */
6218 return set_reload_reg (i, r);
6221 /* Initialize all the tables needed to allocate reload registers.
6222 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6223 is the array we use to restore the reg_rtx field for every reload. */
6225 static void
6226 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6228 int i;
6230 for (i = 0; i < n_reloads; i++)
6231 rld[i].reg_rtx = save_reload_reg_rtx[i];
6233 memset (reload_inherited, 0, MAX_RELOADS);
6234 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6235 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6237 CLEAR_HARD_REG_SET (reload_reg_used);
6238 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6239 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6240 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6241 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6242 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6244 CLEAR_HARD_REG_SET (reg_used_in_insn);
6246 HARD_REG_SET tmp;
6247 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6248 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6249 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6250 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6251 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6252 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6255 for (i = 0; i < reload_n_operands; i++)
6257 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6258 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6259 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6260 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6261 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6262 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6265 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6267 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6269 for (i = 0; i < n_reloads; i++)
6270 /* If we have already decided to use a certain register,
6271 don't use it in another way. */
6272 if (rld[i].reg_rtx)
6273 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6274 rld[i].when_needed, rld[i].mode);
6277 /* If X is not a subreg, return it unmodified. If it is a subreg,
6278 look up whether we made a replacement for the SUBREG_REG. Return
6279 either the replacement or the SUBREG_REG. */
6281 static rtx
6282 replaced_subreg (rtx x)
6284 if (GET_CODE (x) == SUBREG)
6285 return find_replacement (&SUBREG_REG (x));
6286 return x;
6289 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6290 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6291 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6292 otherwise it is NULL. */
6294 static poly_int64
6295 compute_reload_subreg_offset (machine_mode outermode,
6296 rtx subreg,
6297 machine_mode innermode)
6299 poly_int64 outer_offset;
6300 machine_mode middlemode;
6302 if (!subreg)
6303 return subreg_lowpart_offset (outermode, innermode);
6305 outer_offset = SUBREG_BYTE (subreg);
6306 middlemode = GET_MODE (SUBREG_REG (subreg));
6308 /* If SUBREG is paradoxical then return the normal lowpart offset
6309 for OUTERMODE and INNERMODE. Our caller has already checked
6310 that OUTERMODE fits in INNERMODE. */
6311 if (paradoxical_subreg_p (outermode, middlemode))
6312 return subreg_lowpart_offset (outermode, innermode);
6314 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6315 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6316 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6319 /* Assign hard reg targets for the pseudo-registers we must reload
6320 into hard regs for this insn.
6321 Also output the instructions to copy them in and out of the hard regs.
6323 For machines with register classes, we are responsible for
6324 finding a reload reg in the proper class. */
6326 static void
6327 choose_reload_regs (struct insn_chain *chain)
6329 rtx_insn *insn = chain->insn;
6330 int i, j;
6331 unsigned int max_group_size = 1;
6332 enum reg_class group_class = NO_REGS;
6333 int pass, win, inheritance;
6335 rtx save_reload_reg_rtx[MAX_RELOADS];
6337 /* In order to be certain of getting the registers we need,
6338 we must sort the reloads into order of increasing register class.
6339 Then our grabbing of reload registers will parallel the process
6340 that provided the reload registers.
6342 Also note whether any of the reloads wants a consecutive group of regs.
6343 If so, record the maximum size of the group desired and what
6344 register class contains all the groups needed by this insn. */
6346 for (j = 0; j < n_reloads; j++)
6348 reload_order[j] = j;
6349 if (rld[j].reg_rtx != NULL_RTX)
6351 gcc_assert (REG_P (rld[j].reg_rtx)
6352 && HARD_REGISTER_P (rld[j].reg_rtx));
6353 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6355 else
6356 reload_spill_index[j] = -1;
6358 if (rld[j].nregs > 1)
6360 max_group_size = MAX (rld[j].nregs, max_group_size);
6361 group_class
6362 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6365 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6368 if (n_reloads > 1)
6369 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6371 /* If -O, try first with inheritance, then turning it off.
6372 If not -O, don't do inheritance.
6373 Using inheritance when not optimizing leads to paradoxes
6374 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6375 because one side of the comparison might be inherited. */
6376 win = 0;
6377 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6379 choose_reload_regs_init (chain, save_reload_reg_rtx);
6381 /* Process the reloads in order of preference just found.
6382 Beyond this point, subregs can be found in reload_reg_rtx.
6384 This used to look for an existing reloaded home for all of the
6385 reloads, and only then perform any new reloads. But that could lose
6386 if the reloads were done out of reg-class order because a later
6387 reload with a looser constraint might have an old home in a register
6388 needed by an earlier reload with a tighter constraint.
6390 To solve this, we make two passes over the reloads, in the order
6391 described above. In the first pass we try to inherit a reload
6392 from a previous insn. If there is a later reload that needs a
6393 class that is a proper subset of the class being processed, we must
6394 also allocate a spill register during the first pass.
6396 Then make a second pass over the reloads to allocate any reloads
6397 that haven't been given registers yet. */
6399 for (j = 0; j < n_reloads; j++)
6401 int r = reload_order[j];
6402 rtx search_equiv = NULL_RTX;
6404 /* Ignore reloads that got marked inoperative. */
6405 if (rld[r].out == 0 && rld[r].in == 0
6406 && ! rld[r].secondary_p)
6407 continue;
6409 /* If find_reloads chose to use reload_in or reload_out as a reload
6410 register, we don't need to chose one. Otherwise, try even if it
6411 found one since we might save an insn if we find the value lying
6412 around.
6413 Try also when reload_in is a pseudo without a hard reg. */
6414 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6415 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6416 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6417 && !MEM_P (rld[r].in)
6418 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6419 continue;
6421 #if 0 /* No longer needed for correct operation.
6422 It might give better code, or might not; worth an experiment? */
6423 /* If this is an optional reload, we can't inherit from earlier insns
6424 until we are sure that any non-optional reloads have been allocated.
6425 The following code takes advantage of the fact that optional reloads
6426 are at the end of reload_order. */
6427 if (rld[r].optional != 0)
6428 for (i = 0; i < j; i++)
6429 if ((rld[reload_order[i]].out != 0
6430 || rld[reload_order[i]].in != 0
6431 || rld[reload_order[i]].secondary_p)
6432 && ! rld[reload_order[i]].optional
6433 && rld[reload_order[i]].reg_rtx == 0)
6434 allocate_reload_reg (chain, reload_order[i], 0);
6435 #endif
6437 /* First see if this pseudo is already available as reloaded
6438 for a previous insn. We cannot try to inherit for reloads
6439 that are smaller than the maximum number of registers needed
6440 for groups unless the register we would allocate cannot be used
6441 for the groups.
6443 We could check here to see if this is a secondary reload for
6444 an object that is already in a register of the desired class.
6445 This would avoid the need for the secondary reload register.
6446 But this is complex because we can't easily determine what
6447 objects might want to be loaded via this reload. So let a
6448 register be allocated here. In `emit_reload_insns' we suppress
6449 one of the loads in the case described above. */
6451 if (inheritance)
6453 poly_int64 byte = 0;
6454 int regno = -1;
6455 machine_mode mode = VOIDmode;
6456 rtx subreg = NULL_RTX;
6458 if (rld[r].in == 0)
6460 else if (REG_P (rld[r].in))
6462 regno = REGNO (rld[r].in);
6463 mode = GET_MODE (rld[r].in);
6465 else if (REG_P (rld[r].in_reg))
6467 regno = REGNO (rld[r].in_reg);
6468 mode = GET_MODE (rld[r].in_reg);
6470 else if (GET_CODE (rld[r].in_reg) == SUBREG
6471 && REG_P (SUBREG_REG (rld[r].in_reg)))
6473 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6474 if (regno < FIRST_PSEUDO_REGISTER)
6475 regno = subreg_regno (rld[r].in_reg);
6476 else
6478 subreg = rld[r].in_reg;
6479 byte = SUBREG_BYTE (subreg);
6481 mode = GET_MODE (rld[r].in_reg);
6483 #if AUTO_INC_DEC
6484 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6485 && REG_P (XEXP (rld[r].in_reg, 0)))
6487 regno = REGNO (XEXP (rld[r].in_reg, 0));
6488 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6489 rld[r].out = rld[r].in;
6491 #endif
6492 #if 0
6493 /* This won't work, since REGNO can be a pseudo reg number.
6494 Also, it takes much more hair to keep track of all the things
6495 that can invalidate an inherited reload of part of a pseudoreg. */
6496 else if (GET_CODE (rld[r].in) == SUBREG
6497 && REG_P (SUBREG_REG (rld[r].in)))
6498 regno = subreg_regno (rld[r].in);
6499 #endif
6501 if (regno >= 0
6502 && reg_last_reload_reg[regno] != 0
6503 && (known_ge
6504 (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
6505 GET_MODE_SIZE (mode) + byte))
6506 /* Verify that the register it's in can be used in
6507 mode MODE. */
6508 && (REG_CAN_CHANGE_MODE_P
6509 (REGNO (reg_last_reload_reg[regno]),
6510 GET_MODE (reg_last_reload_reg[regno]),
6511 mode)))
6513 enum reg_class rclass = rld[r].rclass, last_class;
6514 rtx last_reg = reg_last_reload_reg[regno];
6516 i = REGNO (last_reg);
6517 byte = compute_reload_subreg_offset (mode,
6518 subreg,
6519 GET_MODE (last_reg));
6520 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6521 last_class = REGNO_REG_CLASS (i);
6523 if (reg_reloaded_contents[i] == regno
6524 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6525 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6526 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6527 /* Even if we can't use this register as a reload
6528 register, we might use it for reload_override_in,
6529 if copying it to the desired class is cheap
6530 enough. */
6531 || ((register_move_cost (mode, last_class, rclass)
6532 < memory_move_cost (mode, rclass, true))
6533 && (secondary_reload_class (1, rclass, mode,
6534 last_reg)
6535 == NO_REGS)
6536 && !(targetm.secondary_memory_needed
6537 (mode, last_class, rclass))))
6538 && (rld[r].nregs == max_group_size
6539 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6541 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6542 rld[r].when_needed, rld[r].in,
6543 const0_rtx, r, 1))
6545 /* If a group is needed, verify that all the subsequent
6546 registers still have their values intact. */
6547 int nr = hard_regno_nregs (i, rld[r].mode);
6548 int k;
6550 for (k = 1; k < nr; k++)
6551 if (reg_reloaded_contents[i + k] != regno
6552 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6553 break;
6555 if (k == nr)
6557 int i1;
6558 int bad_for_class;
6560 last_reg = (GET_MODE (last_reg) == mode
6561 ? last_reg : gen_rtx_REG (mode, i));
6563 bad_for_class = 0;
6564 for (k = 0; k < nr; k++)
6565 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6566 i+k);
6568 /* We found a register that contains the
6569 value we need. If this register is the
6570 same as an `earlyclobber' operand of the
6571 current insn, just mark it as a place to
6572 reload from since we can't use it as the
6573 reload register itself. */
6575 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6576 if (reg_overlap_mentioned_for_reload_p
6577 (reg_last_reload_reg[regno],
6578 reload_earlyclobbers[i1]))
6579 break;
6581 if (i1 != n_earlyclobbers
6582 || ! (free_for_value_p (i, rld[r].mode,
6583 rld[r].opnum,
6584 rld[r].when_needed, rld[r].in,
6585 rld[r].out, r, 1))
6586 /* Don't use it if we'd clobber a pseudo reg. */
6587 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6588 && rld[r].out
6589 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6590 /* Don't clobber the frame pointer. */
6591 || (i == HARD_FRAME_POINTER_REGNUM
6592 && frame_pointer_needed
6593 && rld[r].out)
6594 /* Don't really use the inherited spill reg
6595 if we need it wider than we've got it. */
6596 || paradoxical_subreg_p (rld[r].mode, mode)
6597 || bad_for_class
6599 /* If find_reloads chose reload_out as reload
6600 register, stay with it - that leaves the
6601 inherited register for subsequent reloads. */
6602 || (rld[r].out && rld[r].reg_rtx
6603 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6605 if (! rld[r].optional)
6607 reload_override_in[r] = last_reg;
6608 reload_inheritance_insn[r]
6609 = reg_reloaded_insn[i];
6612 else
6614 int k;
6615 /* We can use this as a reload reg. */
6616 /* Mark the register as in use for this part of
6617 the insn. */
6618 mark_reload_reg_in_use (i,
6619 rld[r].opnum,
6620 rld[r].when_needed,
6621 rld[r].mode);
6622 rld[r].reg_rtx = last_reg;
6623 reload_inherited[r] = 1;
6624 reload_inheritance_insn[r]
6625 = reg_reloaded_insn[i];
6626 reload_spill_index[r] = i;
6627 for (k = 0; k < nr; k++)
6628 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6629 i + k);
6636 /* Here's another way to see if the value is already lying around. */
6637 if (inheritance
6638 && rld[r].in != 0
6639 && ! reload_inherited[r]
6640 && rld[r].out == 0
6641 && (CONSTANT_P (rld[r].in)
6642 || GET_CODE (rld[r].in) == PLUS
6643 || REG_P (rld[r].in)
6644 || MEM_P (rld[r].in))
6645 && (rld[r].nregs == max_group_size
6646 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6647 search_equiv = rld[r].in;
6649 if (search_equiv)
6651 rtx equiv
6652 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6653 -1, NULL, 0, rld[r].mode);
6654 int regno = 0;
6656 if (equiv != 0)
6658 if (REG_P (equiv))
6659 regno = REGNO (equiv);
6660 else
6662 /* This must be a SUBREG of a hard register.
6663 Make a new REG since this might be used in an
6664 address and not all machines support SUBREGs
6665 there. */
6666 gcc_assert (GET_CODE (equiv) == SUBREG);
6667 regno = subreg_regno (equiv);
6668 equiv = gen_rtx_REG (rld[r].mode, regno);
6669 /* If we choose EQUIV as the reload register, but the
6670 loop below decides to cancel the inheritance, we'll
6671 end up reloading EQUIV in rld[r].mode, not the mode
6672 it had originally. That isn't safe when EQUIV isn't
6673 available as a spill register since its value might
6674 still be live at this point. */
6675 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6676 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6677 equiv = 0;
6681 /* If we found a spill reg, reject it unless it is free
6682 and of the desired class. */
6683 if (equiv != 0)
6685 int regs_used = 0;
6686 int bad_for_class = 0;
6687 int max_regno = regno + rld[r].nregs;
6689 for (i = regno; i < max_regno; i++)
6691 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6693 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6697 if ((regs_used
6698 && ! free_for_value_p (regno, rld[r].mode,
6699 rld[r].opnum, rld[r].when_needed,
6700 rld[r].in, rld[r].out, r, 1))
6701 || bad_for_class)
6702 equiv = 0;
6705 if (equiv != 0
6706 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6707 equiv = 0;
6709 /* We found a register that contains the value we need.
6710 If this register is the same as an `earlyclobber' operand
6711 of the current insn, just mark it as a place to reload from
6712 since we can't use it as the reload register itself. */
6714 if (equiv != 0)
6715 for (i = 0; i < n_earlyclobbers; i++)
6716 if (reg_overlap_mentioned_for_reload_p (equiv,
6717 reload_earlyclobbers[i]))
6719 if (! rld[r].optional)
6720 reload_override_in[r] = equiv;
6721 equiv = 0;
6722 break;
6725 /* If the equiv register we have found is explicitly clobbered
6726 in the current insn, it depends on the reload type if we
6727 can use it, use it for reload_override_in, or not at all.
6728 In particular, we then can't use EQUIV for a
6729 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6731 if (equiv != 0)
6733 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6734 switch (rld[r].when_needed)
6736 case RELOAD_FOR_OTHER_ADDRESS:
6737 case RELOAD_FOR_INPADDR_ADDRESS:
6738 case RELOAD_FOR_INPUT_ADDRESS:
6739 case RELOAD_FOR_OPADDR_ADDR:
6740 break;
6741 case RELOAD_OTHER:
6742 case RELOAD_FOR_INPUT:
6743 case RELOAD_FOR_OPERAND_ADDRESS:
6744 if (! rld[r].optional)
6745 reload_override_in[r] = equiv;
6746 /* Fall through. */
6747 default:
6748 equiv = 0;
6749 break;
6751 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6752 switch (rld[r].when_needed)
6754 case RELOAD_FOR_OTHER_ADDRESS:
6755 case RELOAD_FOR_INPADDR_ADDRESS:
6756 case RELOAD_FOR_INPUT_ADDRESS:
6757 case RELOAD_FOR_OPADDR_ADDR:
6758 case RELOAD_FOR_OPERAND_ADDRESS:
6759 case RELOAD_FOR_INPUT:
6760 break;
6761 case RELOAD_OTHER:
6762 if (! rld[r].optional)
6763 reload_override_in[r] = equiv;
6764 /* Fall through. */
6765 default:
6766 equiv = 0;
6767 break;
6771 /* If we found an equivalent reg, say no code need be generated
6772 to load it, and use it as our reload reg. */
6773 if (equiv != 0
6774 && (regno != HARD_FRAME_POINTER_REGNUM
6775 || !frame_pointer_needed))
6777 int nr = hard_regno_nregs (regno, rld[r].mode);
6778 int k;
6779 rld[r].reg_rtx = equiv;
6780 reload_spill_index[r] = regno;
6781 reload_inherited[r] = 1;
6783 /* If reg_reloaded_valid is not set for this register,
6784 there might be a stale spill_reg_store lying around.
6785 We must clear it, since otherwise emit_reload_insns
6786 might delete the store. */
6787 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6788 spill_reg_store[regno] = NULL;
6789 /* If any of the hard registers in EQUIV are spill
6790 registers, mark them as in use for this insn. */
6791 for (k = 0; k < nr; k++)
6793 i = spill_reg_order[regno + k];
6794 if (i >= 0)
6796 mark_reload_reg_in_use (regno, rld[r].opnum,
6797 rld[r].when_needed,
6798 rld[r].mode);
6799 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6800 regno + k);
6806 /* If we found a register to use already, or if this is an optional
6807 reload, we are done. */
6808 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6809 continue;
6811 #if 0
6812 /* No longer needed for correct operation. Might or might
6813 not give better code on the average. Want to experiment? */
6815 /* See if there is a later reload that has a class different from our
6816 class that intersects our class or that requires less register
6817 than our reload. If so, we must allocate a register to this
6818 reload now, since that reload might inherit a previous reload
6819 and take the only available register in our class. Don't do this
6820 for optional reloads since they will force all previous reloads
6821 to be allocated. Also don't do this for reloads that have been
6822 turned off. */
6824 for (i = j + 1; i < n_reloads; i++)
6826 int s = reload_order[i];
6828 if ((rld[s].in == 0 && rld[s].out == 0
6829 && ! rld[s].secondary_p)
6830 || rld[s].optional)
6831 continue;
6833 if ((rld[s].rclass != rld[r].rclass
6834 && reg_classes_intersect_p (rld[r].rclass,
6835 rld[s].rclass))
6836 || rld[s].nregs < rld[r].nregs)
6837 break;
6840 if (i == n_reloads)
6841 continue;
6843 allocate_reload_reg (chain, r, j == n_reloads - 1);
6844 #endif
6847 /* Now allocate reload registers for anything non-optional that
6848 didn't get one yet. */
6849 for (j = 0; j < n_reloads; j++)
6851 int r = reload_order[j];
6853 /* Ignore reloads that got marked inoperative. */
6854 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6855 continue;
6857 /* Skip reloads that already have a register allocated or are
6858 optional. */
6859 if (rld[r].reg_rtx != 0 || rld[r].optional)
6860 continue;
6862 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6863 break;
6866 /* If that loop got all the way, we have won. */
6867 if (j == n_reloads)
6869 win = 1;
6870 break;
6873 /* Loop around and try without any inheritance. */
6876 if (! win)
6878 /* First undo everything done by the failed attempt
6879 to allocate with inheritance. */
6880 choose_reload_regs_init (chain, save_reload_reg_rtx);
6882 /* Some sanity tests to verify that the reloads found in the first
6883 pass are identical to the ones we have now. */
6884 gcc_assert (chain->n_reloads == n_reloads);
6886 for (i = 0; i < n_reloads; i++)
6888 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6889 continue;
6890 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6891 for (j = 0; j < n_spills; j++)
6892 if (spill_regs[j] == chain->rld[i].regno)
6893 if (! set_reload_reg (j, i))
6894 failed_reload (chain->insn, i);
6898 /* If we thought we could inherit a reload, because it seemed that
6899 nothing else wanted the same reload register earlier in the insn,
6900 verify that assumption, now that all reloads have been assigned.
6901 Likewise for reloads where reload_override_in has been set. */
6903 /* If doing expensive optimizations, do one preliminary pass that doesn't
6904 cancel any inheritance, but removes reloads that have been needed only
6905 for reloads that we know can be inherited. */
6906 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6908 for (j = 0; j < n_reloads; j++)
6910 int r = reload_order[j];
6911 rtx check_reg;
6912 rtx tem;
6913 if (reload_inherited[r] && rld[r].reg_rtx)
6914 check_reg = rld[r].reg_rtx;
6915 else if (reload_override_in[r]
6916 && (REG_P (reload_override_in[r])
6917 || GET_CODE (reload_override_in[r]) == SUBREG))
6918 check_reg = reload_override_in[r];
6919 else
6920 continue;
6921 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6922 rld[r].opnum, rld[r].when_needed, rld[r].in,
6923 (reload_inherited[r]
6924 ? rld[r].out : const0_rtx),
6925 r, 1))
6927 if (pass)
6928 continue;
6929 reload_inherited[r] = 0;
6930 reload_override_in[r] = 0;
6932 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6933 reload_override_in, then we do not need its related
6934 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6935 likewise for other reload types.
6936 We handle this by removing a reload when its only replacement
6937 is mentioned in reload_in of the reload we are going to inherit.
6938 A special case are auto_inc expressions; even if the input is
6939 inherited, we still need the address for the output. We can
6940 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6941 If we succeeded removing some reload and we are doing a preliminary
6942 pass just to remove such reloads, make another pass, since the
6943 removal of one reload might allow us to inherit another one. */
6944 else if (rld[r].in
6945 && rld[r].out != rld[r].in
6946 && remove_address_replacements (rld[r].in))
6948 if (pass)
6949 pass = 2;
6951 /* If we needed a memory location for the reload, we also have to
6952 remove its related reloads. */
6953 else if (rld[r].in
6954 && rld[r].out != rld[r].in
6955 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
6956 && REGNO (tem) < FIRST_PSEUDO_REGISTER
6957 && (targetm.secondary_memory_needed
6958 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
6959 rld[r].rclass))
6960 && remove_address_replacements
6961 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
6962 rld[r].when_needed)))
6964 if (pass)
6965 pass = 2;
6970 /* Now that reload_override_in is known valid,
6971 actually override reload_in. */
6972 for (j = 0; j < n_reloads; j++)
6973 if (reload_override_in[j])
6974 rld[j].in = reload_override_in[j];
6976 /* If this reload won't be done because it has been canceled or is
6977 optional and not inherited, clear reload_reg_rtx so other
6978 routines (such as subst_reloads) don't get confused. */
6979 for (j = 0; j < n_reloads; j++)
6980 if (rld[j].reg_rtx != 0
6981 && ((rld[j].optional && ! reload_inherited[j])
6982 || (rld[j].in == 0 && rld[j].out == 0
6983 && ! rld[j].secondary_p)))
6985 int regno = true_regnum (rld[j].reg_rtx);
6987 if (spill_reg_order[regno] >= 0)
6988 clear_reload_reg_in_use (regno, rld[j].opnum,
6989 rld[j].when_needed, rld[j].mode);
6990 rld[j].reg_rtx = 0;
6991 reload_spill_index[j] = -1;
6994 /* Record which pseudos and which spill regs have output reloads. */
6995 for (j = 0; j < n_reloads; j++)
6997 int r = reload_order[j];
6999 i = reload_spill_index[r];
7001 /* I is nonneg if this reload uses a register.
7002 If rld[r].reg_rtx is 0, this is an optional reload
7003 that we opted to ignore. */
7004 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7005 && rld[r].reg_rtx != 0)
7007 int nregno = REGNO (rld[r].out_reg);
7008 int nr = 1;
7010 if (nregno < FIRST_PSEUDO_REGISTER)
7011 nr = hard_regno_nregs (nregno, rld[r].mode);
7013 while (--nr >= 0)
7014 SET_REGNO_REG_SET (&reg_has_output_reload,
7015 nregno + nr);
7017 if (i >= 0)
7018 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7020 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7021 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7022 || rld[r].when_needed == RELOAD_FOR_INSN);
7027 /* Deallocate the reload register for reload R. This is called from
7028 remove_address_replacements. */
7030 void
7031 deallocate_reload_reg (int r)
7033 int regno;
7035 if (! rld[r].reg_rtx)
7036 return;
7037 regno = true_regnum (rld[r].reg_rtx);
7038 rld[r].reg_rtx = 0;
7039 if (spill_reg_order[regno] >= 0)
7040 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7041 rld[r].mode);
7042 reload_spill_index[r] = -1;
7045 /* These arrays are filled by emit_reload_insns and its subroutines. */
7046 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7047 static rtx_insn *other_input_address_reload_insns = 0;
7048 static rtx_insn *other_input_reload_insns = 0;
7049 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7050 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7051 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7052 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7053 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7054 static rtx_insn *operand_reload_insns = 0;
7055 static rtx_insn *other_operand_reload_insns = 0;
7056 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7058 /* Values to be put in spill_reg_store are put here first. Instructions
7059 must only be placed here if the associated reload register reaches
7060 the end of the instruction's reload sequence. */
7061 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7062 static HARD_REG_SET reg_reloaded_died;
7064 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7065 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7066 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7067 adjusted register, and return true. Otherwise, return false. */
7068 static bool
7069 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7070 enum reg_class new_class,
7071 machine_mode new_mode)
7074 rtx reg;
7076 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7078 unsigned regno = REGNO (reg);
7080 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7081 continue;
7082 if (GET_MODE (reg) != new_mode)
7084 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7085 continue;
7086 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7087 continue;
7088 reg = reload_adjust_reg_for_mode (reg, new_mode);
7090 *reload_reg = reg;
7091 return true;
7093 return false;
7096 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7097 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7098 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7099 adjusted register, and return true. Otherwise, return false. */
7100 static bool
7101 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7102 enum insn_code icode)
7105 enum reg_class new_class = scratch_reload_class (icode);
7106 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7108 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7109 new_class, new_mode);
7112 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7113 has the number J. OLD contains the value to be used as input. */
7115 static void
7116 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7117 rtx old, int j)
7119 rtx_insn *insn = chain->insn;
7120 rtx reloadreg;
7121 rtx oldequiv_reg = 0;
7122 rtx oldequiv = 0;
7123 int special = 0;
7124 machine_mode mode;
7125 rtx_insn **where;
7127 /* delete_output_reload is only invoked properly if old contains
7128 the original pseudo register. Since this is replaced with a
7129 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7130 find the pseudo in RELOAD_IN_REG. This is also used to
7131 determine whether a secondary reload is needed. */
7132 if (reload_override_in[j]
7133 && (REG_P (rl->in_reg)
7134 || (GET_CODE (rl->in_reg) == SUBREG
7135 && REG_P (SUBREG_REG (rl->in_reg)))))
7137 oldequiv = old;
7138 old = rl->in_reg;
7140 if (oldequiv == 0)
7141 oldequiv = old;
7142 else if (REG_P (oldequiv))
7143 oldequiv_reg = oldequiv;
7144 else if (GET_CODE (oldequiv) == SUBREG)
7145 oldequiv_reg = SUBREG_REG (oldequiv);
7147 reloadreg = reload_reg_rtx_for_input[j];
7148 mode = GET_MODE (reloadreg);
7150 /* If we are reloading from a register that was recently stored in
7151 with an output-reload, see if we can prove there was
7152 actually no need to store the old value in it. */
7154 if (optimize && REG_P (oldequiv)
7155 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7156 && spill_reg_store[REGNO (oldequiv)]
7157 && REG_P (old)
7158 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7159 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7160 rl->out_reg)))
7161 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7163 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7164 OLDEQUIV. */
7166 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7167 oldequiv = SUBREG_REG (oldequiv);
7168 if (GET_MODE (oldequiv) != VOIDmode
7169 && mode != GET_MODE (oldequiv))
7170 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7172 /* Switch to the right place to emit the reload insns. */
7173 switch (rl->when_needed)
7175 case RELOAD_OTHER:
7176 where = &other_input_reload_insns;
7177 break;
7178 case RELOAD_FOR_INPUT:
7179 where = &input_reload_insns[rl->opnum];
7180 break;
7181 case RELOAD_FOR_INPUT_ADDRESS:
7182 where = &input_address_reload_insns[rl->opnum];
7183 break;
7184 case RELOAD_FOR_INPADDR_ADDRESS:
7185 where = &inpaddr_address_reload_insns[rl->opnum];
7186 break;
7187 case RELOAD_FOR_OUTPUT_ADDRESS:
7188 where = &output_address_reload_insns[rl->opnum];
7189 break;
7190 case RELOAD_FOR_OUTADDR_ADDRESS:
7191 where = &outaddr_address_reload_insns[rl->opnum];
7192 break;
7193 case RELOAD_FOR_OPERAND_ADDRESS:
7194 where = &operand_reload_insns;
7195 break;
7196 case RELOAD_FOR_OPADDR_ADDR:
7197 where = &other_operand_reload_insns;
7198 break;
7199 case RELOAD_FOR_OTHER_ADDRESS:
7200 where = &other_input_address_reload_insns;
7201 break;
7202 default:
7203 gcc_unreachable ();
7206 push_to_sequence (*where);
7208 /* Auto-increment addresses must be reloaded in a special way. */
7209 if (rl->out && ! rl->out_reg)
7211 /* We are not going to bother supporting the case where a
7212 incremented register can't be copied directly from
7213 OLDEQUIV since this seems highly unlikely. */
7214 gcc_assert (rl->secondary_in_reload < 0);
7216 if (reload_inherited[j])
7217 oldequiv = reloadreg;
7219 old = XEXP (rl->in_reg, 0);
7221 /* Prevent normal processing of this reload. */
7222 special = 1;
7223 /* Output a special code sequence for this case. */
7224 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7227 /* If we are reloading a pseudo-register that was set by the previous
7228 insn, see if we can get rid of that pseudo-register entirely
7229 by redirecting the previous insn into our reload register. */
7231 else if (optimize && REG_P (old)
7232 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7233 && dead_or_set_p (insn, old)
7234 /* This is unsafe if some other reload
7235 uses the same reg first. */
7236 && ! conflicts_with_override (reloadreg)
7237 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7238 rl->when_needed, old, rl->out, j, 0))
7240 rtx_insn *temp = PREV_INSN (insn);
7241 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7242 temp = PREV_INSN (temp);
7243 if (temp
7244 && NONJUMP_INSN_P (temp)
7245 && GET_CODE (PATTERN (temp)) == SET
7246 && SET_DEST (PATTERN (temp)) == old
7247 /* Make sure we can access insn_operand_constraint. */
7248 && asm_noperands (PATTERN (temp)) < 0
7249 /* This is unsafe if operand occurs more than once in current
7250 insn. Perhaps some occurrences aren't reloaded. */
7251 && count_occurrences (PATTERN (insn), old, 0) == 1)
7253 rtx old = SET_DEST (PATTERN (temp));
7254 /* Store into the reload register instead of the pseudo. */
7255 SET_DEST (PATTERN (temp)) = reloadreg;
7257 /* Verify that resulting insn is valid.
7259 Note that we have replaced the destination of TEMP with
7260 RELOADREG. If TEMP references RELOADREG within an
7261 autoincrement addressing mode, then the resulting insn
7262 is ill-formed and we must reject this optimization. */
7263 extract_insn (temp);
7264 if (constrain_operands (1, get_enabled_alternatives (temp))
7265 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7267 /* If the previous insn is an output reload, the source is
7268 a reload register, and its spill_reg_store entry will
7269 contain the previous destination. This is now
7270 invalid. */
7271 if (REG_P (SET_SRC (PATTERN (temp)))
7272 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7274 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7275 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7278 /* If these are the only uses of the pseudo reg,
7279 pretend for GDB it lives in the reload reg we used. */
7280 if (REG_N_DEATHS (REGNO (old)) == 1
7281 && REG_N_SETS (REGNO (old)) == 1)
7283 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7284 if (ira_conflicts_p)
7285 /* Inform IRA about the change. */
7286 ira_mark_allocation_change (REGNO (old));
7287 alter_reg (REGNO (old), -1, false);
7289 special = 1;
7291 /* Adjust any debug insns between temp and insn. */
7292 while ((temp = NEXT_INSN (temp)) != insn)
7293 if (DEBUG_BIND_INSN_P (temp))
7294 INSN_VAR_LOCATION_LOC (temp)
7295 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7296 old, reloadreg);
7297 else
7298 gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7300 else
7302 SET_DEST (PATTERN (temp)) = old;
7307 /* We can't do that, so output an insn to load RELOADREG. */
7309 /* If we have a secondary reload, pick up the secondary register
7310 and icode, if any. If OLDEQUIV and OLD are different or
7311 if this is an in-out reload, recompute whether or not we
7312 still need a secondary register and what the icode should
7313 be. If we still need a secondary register and the class or
7314 icode is different, go back to reloading from OLD if using
7315 OLDEQUIV means that we got the wrong type of register. We
7316 cannot have different class or icode due to an in-out reload
7317 because we don't make such reloads when both the input and
7318 output need secondary reload registers. */
7320 if (! special && rl->secondary_in_reload >= 0)
7322 rtx second_reload_reg = 0;
7323 rtx third_reload_reg = 0;
7324 int secondary_reload = rl->secondary_in_reload;
7325 rtx real_oldequiv = oldequiv;
7326 rtx real_old = old;
7327 rtx tmp;
7328 enum insn_code icode;
7329 enum insn_code tertiary_icode = CODE_FOR_nothing;
7331 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7332 and similarly for OLD.
7333 See comments in get_secondary_reload in reload.c. */
7334 /* If it is a pseudo that cannot be replaced with its
7335 equivalent MEM, we must fall back to reload_in, which
7336 will have all the necessary substitutions registered.
7337 Likewise for a pseudo that can't be replaced with its
7338 equivalent constant.
7340 Take extra care for subregs of such pseudos. Note that
7341 we cannot use reg_equiv_mem in this case because it is
7342 not in the right mode. */
7344 tmp = oldequiv;
7345 if (GET_CODE (tmp) == SUBREG)
7346 tmp = SUBREG_REG (tmp);
7347 if (REG_P (tmp)
7348 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7349 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7350 || reg_equiv_constant (REGNO (tmp)) != 0))
7352 if (! reg_equiv_mem (REGNO (tmp))
7353 || num_not_at_initial_offset
7354 || GET_CODE (oldequiv) == SUBREG)
7355 real_oldequiv = rl->in;
7356 else
7357 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7360 tmp = old;
7361 if (GET_CODE (tmp) == SUBREG)
7362 tmp = SUBREG_REG (tmp);
7363 if (REG_P (tmp)
7364 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7365 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7366 || reg_equiv_constant (REGNO (tmp)) != 0))
7368 if (! reg_equiv_mem (REGNO (tmp))
7369 || num_not_at_initial_offset
7370 || GET_CODE (old) == SUBREG)
7371 real_old = rl->in;
7372 else
7373 real_old = reg_equiv_mem (REGNO (tmp));
7376 second_reload_reg = rld[secondary_reload].reg_rtx;
7377 if (rld[secondary_reload].secondary_in_reload >= 0)
7379 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7381 third_reload_reg = rld[tertiary_reload].reg_rtx;
7382 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7383 /* We'd have to add more code for quartary reloads. */
7384 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7386 icode = rl->secondary_in_icode;
7388 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7389 || (rl->in != 0 && rl->out != 0))
7391 secondary_reload_info sri, sri2;
7392 enum reg_class new_class, new_t_class;
7394 sri.icode = CODE_FOR_nothing;
7395 sri.prev_sri = NULL;
7396 new_class
7397 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7398 rl->rclass, mode,
7399 &sri);
7401 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7402 second_reload_reg = 0;
7403 else if (new_class == NO_REGS)
7405 if (reload_adjust_reg_for_icode (&second_reload_reg,
7406 third_reload_reg,
7407 (enum insn_code) sri.icode))
7409 icode = (enum insn_code) sri.icode;
7410 third_reload_reg = 0;
7412 else
7414 oldequiv = old;
7415 real_oldequiv = real_old;
7418 else if (sri.icode != CODE_FOR_nothing)
7419 /* We currently lack a way to express this in reloads. */
7420 gcc_unreachable ();
7421 else
7423 sri2.icode = CODE_FOR_nothing;
7424 sri2.prev_sri = &sri;
7425 new_t_class
7426 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7427 new_class, mode,
7428 &sri);
7429 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7431 if (reload_adjust_reg_for_temp (&second_reload_reg,
7432 third_reload_reg,
7433 new_class, mode))
7435 third_reload_reg = 0;
7436 tertiary_icode = (enum insn_code) sri2.icode;
7438 else
7440 oldequiv = old;
7441 real_oldequiv = real_old;
7444 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7446 rtx intermediate = second_reload_reg;
7448 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7449 new_class, mode)
7450 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7451 ((enum insn_code)
7452 sri2.icode)))
7454 second_reload_reg = intermediate;
7455 tertiary_icode = (enum insn_code) sri2.icode;
7457 else
7459 oldequiv = old;
7460 real_oldequiv = real_old;
7463 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7465 rtx intermediate = second_reload_reg;
7467 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7468 new_class, mode)
7469 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7470 new_t_class, mode))
7472 second_reload_reg = intermediate;
7473 tertiary_icode = (enum insn_code) sri2.icode;
7475 else
7477 oldequiv = old;
7478 real_oldequiv = real_old;
7481 else
7483 /* This could be handled more intelligently too. */
7484 oldequiv = old;
7485 real_oldequiv = real_old;
7490 /* If we still need a secondary reload register, check
7491 to see if it is being used as a scratch or intermediate
7492 register and generate code appropriately. If we need
7493 a scratch register, use REAL_OLDEQUIV since the form of
7494 the insn may depend on the actual address if it is
7495 a MEM. */
7497 if (second_reload_reg)
7499 if (icode != CODE_FOR_nothing)
7501 /* We'd have to add extra code to handle this case. */
7502 gcc_assert (!third_reload_reg);
7504 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7505 second_reload_reg));
7506 special = 1;
7508 else
7510 /* See if we need a scratch register to load the
7511 intermediate register (a tertiary reload). */
7512 if (tertiary_icode != CODE_FOR_nothing)
7514 emit_insn ((GEN_FCN (tertiary_icode)
7515 (second_reload_reg, real_oldequiv,
7516 third_reload_reg)));
7518 else if (third_reload_reg)
7520 gen_reload (third_reload_reg, real_oldequiv,
7521 rl->opnum,
7522 rl->when_needed);
7523 gen_reload (second_reload_reg, third_reload_reg,
7524 rl->opnum,
7525 rl->when_needed);
7527 else
7528 gen_reload (second_reload_reg, real_oldequiv,
7529 rl->opnum,
7530 rl->when_needed);
7532 oldequiv = second_reload_reg;
7537 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7539 rtx real_oldequiv = oldequiv;
7541 if ((REG_P (oldequiv)
7542 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7543 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7544 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7545 || (GET_CODE (oldequiv) == SUBREG
7546 && REG_P (SUBREG_REG (oldequiv))
7547 && (REGNO (SUBREG_REG (oldequiv))
7548 >= FIRST_PSEUDO_REGISTER)
7549 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7550 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7551 || (CONSTANT_P (oldequiv)
7552 && (targetm.preferred_reload_class (oldequiv,
7553 REGNO_REG_CLASS (REGNO (reloadreg)))
7554 == NO_REGS)))
7555 real_oldequiv = rl->in;
7556 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7557 rl->when_needed);
7560 if (cfun->can_throw_non_call_exceptions)
7561 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7563 /* End this sequence. */
7564 *where = get_insns ();
7565 end_sequence ();
7567 /* Update reload_override_in so that delete_address_reloads_1
7568 can see the actual register usage. */
7569 if (oldequiv_reg)
7570 reload_override_in[j] = oldequiv;
7573 /* Generate insns to for the output reload RL, which is for the insn described
7574 by CHAIN and has the number J. */
7575 static void
7576 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7577 int j)
7579 rtx reloadreg;
7580 rtx_insn *insn = chain->insn;
7581 int special = 0;
7582 rtx old = rl->out;
7583 machine_mode mode;
7584 rtx_insn *p;
7585 rtx rl_reg_rtx;
7587 if (rl->when_needed == RELOAD_OTHER)
7588 start_sequence ();
7589 else
7590 push_to_sequence (output_reload_insns[rl->opnum]);
7592 rl_reg_rtx = reload_reg_rtx_for_output[j];
7593 mode = GET_MODE (rl_reg_rtx);
7595 reloadreg = rl_reg_rtx;
7597 /* If we need two reload regs, set RELOADREG to the intermediate
7598 one, since it will be stored into OLD. We might need a secondary
7599 register only for an input reload, so check again here. */
7601 if (rl->secondary_out_reload >= 0)
7603 rtx real_old = old;
7604 int secondary_reload = rl->secondary_out_reload;
7605 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7607 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7608 && reg_equiv_mem (REGNO (old)) != 0)
7609 real_old = reg_equiv_mem (REGNO (old));
7611 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7613 rtx second_reloadreg = reloadreg;
7614 reloadreg = rld[secondary_reload].reg_rtx;
7616 /* See if RELOADREG is to be used as a scratch register
7617 or as an intermediate register. */
7618 if (rl->secondary_out_icode != CODE_FOR_nothing)
7620 /* We'd have to add extra code to handle this case. */
7621 gcc_assert (tertiary_reload < 0);
7623 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7624 (real_old, second_reloadreg, reloadreg)));
7625 special = 1;
7627 else
7629 /* See if we need both a scratch and intermediate reload
7630 register. */
7632 enum insn_code tertiary_icode
7633 = rld[secondary_reload].secondary_out_icode;
7635 /* We'd have to add more code for quartary reloads. */
7636 gcc_assert (tertiary_reload < 0
7637 || rld[tertiary_reload].secondary_out_reload < 0);
7639 if (GET_MODE (reloadreg) != mode)
7640 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7642 if (tertiary_icode != CODE_FOR_nothing)
7644 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7646 /* Copy primary reload reg to secondary reload reg.
7647 (Note that these have been swapped above, then
7648 secondary reload reg to OLD using our insn.) */
7650 /* If REAL_OLD is a paradoxical SUBREG, remove it
7651 and try to put the opposite SUBREG on
7652 RELOADREG. */
7653 strip_paradoxical_subreg (&real_old, &reloadreg);
7655 gen_reload (reloadreg, second_reloadreg,
7656 rl->opnum, rl->when_needed);
7657 emit_insn ((GEN_FCN (tertiary_icode)
7658 (real_old, reloadreg, third_reloadreg)));
7659 special = 1;
7662 else
7664 /* Copy between the reload regs here and then to
7665 OUT later. */
7667 gen_reload (reloadreg, second_reloadreg,
7668 rl->opnum, rl->when_needed);
7669 if (tertiary_reload >= 0)
7671 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7673 gen_reload (third_reloadreg, reloadreg,
7674 rl->opnum, rl->when_needed);
7675 reloadreg = third_reloadreg;
7682 /* Output the last reload insn. */
7683 if (! special)
7685 rtx set;
7687 /* Don't output the last reload if OLD is not the dest of
7688 INSN and is in the src and is clobbered by INSN. */
7689 if (! flag_expensive_optimizations
7690 || !REG_P (old)
7691 || !(set = single_set (insn))
7692 || rtx_equal_p (old, SET_DEST (set))
7693 || !reg_mentioned_p (old, SET_SRC (set))
7694 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7695 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7696 gen_reload (old, reloadreg, rl->opnum,
7697 rl->when_needed);
7700 /* Look at all insns we emitted, just to be safe. */
7701 for (p = get_insns (); p; p = NEXT_INSN (p))
7702 if (INSN_P (p))
7704 rtx pat = PATTERN (p);
7706 /* If this output reload doesn't come from a spill reg,
7707 clear any memory of reloaded copies of the pseudo reg.
7708 If this output reload comes from a spill reg,
7709 reg_has_output_reload will make this do nothing. */
7710 note_stores (pat, forget_old_reloads_1, NULL);
7712 if (reg_mentioned_p (rl_reg_rtx, pat))
7714 rtx set = single_set (insn);
7715 if (reload_spill_index[j] < 0
7716 && set
7717 && SET_SRC (set) == rl_reg_rtx)
7719 int src = REGNO (SET_SRC (set));
7721 reload_spill_index[j] = src;
7722 SET_HARD_REG_BIT (reg_is_output_reload, src);
7723 if (find_regno_note (insn, REG_DEAD, src))
7724 SET_HARD_REG_BIT (reg_reloaded_died, src);
7726 if (HARD_REGISTER_P (rl_reg_rtx))
7728 int s = rl->secondary_out_reload;
7729 set = single_set (p);
7730 /* If this reload copies only to the secondary reload
7731 register, the secondary reload does the actual
7732 store. */
7733 if (s >= 0 && set == NULL_RTX)
7734 /* We can't tell what function the secondary reload
7735 has and where the actual store to the pseudo is
7736 made; leave new_spill_reg_store alone. */
7738 else if (s >= 0
7739 && SET_SRC (set) == rl_reg_rtx
7740 && SET_DEST (set) == rld[s].reg_rtx)
7742 /* Usually the next instruction will be the
7743 secondary reload insn; if we can confirm
7744 that it is, setting new_spill_reg_store to
7745 that insn will allow an extra optimization. */
7746 rtx s_reg = rld[s].reg_rtx;
7747 rtx_insn *next = NEXT_INSN (p);
7748 rld[s].out = rl->out;
7749 rld[s].out_reg = rl->out_reg;
7750 set = single_set (next);
7751 if (set && SET_SRC (set) == s_reg
7752 && reload_reg_rtx_reaches_end_p (s_reg, s))
7754 SET_HARD_REG_BIT (reg_is_output_reload,
7755 REGNO (s_reg));
7756 new_spill_reg_store[REGNO (s_reg)] = next;
7759 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7760 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7765 if (rl->when_needed == RELOAD_OTHER)
7767 emit_insn (other_output_reload_insns[rl->opnum]);
7768 other_output_reload_insns[rl->opnum] = get_insns ();
7770 else
7771 output_reload_insns[rl->opnum] = get_insns ();
7773 if (cfun->can_throw_non_call_exceptions)
7774 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7776 end_sequence ();
7779 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7780 and has the number J. */
7781 static void
7782 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7784 rtx_insn *insn = chain->insn;
7785 rtx old = (rl->in && MEM_P (rl->in)
7786 ? rl->in_reg : rl->in);
7787 rtx reg_rtx = rl->reg_rtx;
7789 if (old && reg_rtx)
7791 machine_mode mode;
7793 /* Determine the mode to reload in.
7794 This is very tricky because we have three to choose from.
7795 There is the mode the insn operand wants (rl->inmode).
7796 There is the mode of the reload register RELOADREG.
7797 There is the intrinsic mode of the operand, which we could find
7798 by stripping some SUBREGs.
7799 It turns out that RELOADREG's mode is irrelevant:
7800 we can change that arbitrarily.
7802 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7803 then the reload reg may not support QImode moves, so use SImode.
7804 If foo is in memory due to spilling a pseudo reg, this is safe,
7805 because the QImode value is in the least significant part of a
7806 slot big enough for a SImode. If foo is some other sort of
7807 memory reference, then it is impossible to reload this case,
7808 so previous passes had better make sure this never happens.
7810 Then consider a one-word union which has SImode and one of its
7811 members is a float, being fetched as (SUBREG:SF union:SI).
7812 We must fetch that as SFmode because we could be loading into
7813 a float-only register. In this case OLD's mode is correct.
7815 Consider an immediate integer: it has VOIDmode. Here we need
7816 to get a mode from something else.
7818 In some cases, there is a fourth mode, the operand's
7819 containing mode. If the insn specifies a containing mode for
7820 this operand, it overrides all others.
7822 I am not sure whether the algorithm here is always right,
7823 but it does the right things in those cases. */
7825 mode = GET_MODE (old);
7826 if (mode == VOIDmode)
7827 mode = rl->inmode;
7829 /* We cannot use gen_lowpart_common since it can do the wrong thing
7830 when REG_RTX has a multi-word mode. Note that REG_RTX must
7831 always be a REG here. */
7832 if (GET_MODE (reg_rtx) != mode)
7833 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7835 reload_reg_rtx_for_input[j] = reg_rtx;
7837 if (old != 0
7838 /* AUTO_INC reloads need to be handled even if inherited. We got an
7839 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7840 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7841 && ! rtx_equal_p (reg_rtx, old)
7842 && reg_rtx != 0)
7843 emit_input_reload_insns (chain, rld + j, old, j);
7845 /* When inheriting a wider reload, we have a MEM in rl->in,
7846 e.g. inheriting a SImode output reload for
7847 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7848 if (optimize && reload_inherited[j] && rl->in
7849 && MEM_P (rl->in)
7850 && MEM_P (rl->in_reg)
7851 && reload_spill_index[j] >= 0
7852 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7853 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7855 /* If we are reloading a register that was recently stored in with an
7856 output-reload, see if we can prove there was
7857 actually no need to store the old value in it. */
7859 if (optimize
7860 && (reload_inherited[j] || reload_override_in[j])
7861 && reg_rtx
7862 && REG_P (reg_rtx)
7863 && spill_reg_store[REGNO (reg_rtx)] != 0
7864 #if 0
7865 /* There doesn't seem to be any reason to restrict this to pseudos
7866 and doing so loses in the case where we are copying from a
7867 register of the wrong class. */
7868 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7869 #endif
7870 /* The insn might have already some references to stackslots
7871 replaced by MEMs, while reload_out_reg still names the
7872 original pseudo. */
7873 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7874 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7875 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7878 /* Do output reloading for reload RL, which is for the insn described by
7879 CHAIN and has the number J.
7880 ??? At some point we need to support handling output reloads of
7881 JUMP_INSNs or insns that set cc0. */
7882 static void
7883 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7885 rtx note, old;
7886 rtx_insn *insn = chain->insn;
7887 /* If this is an output reload that stores something that is
7888 not loaded in this same reload, see if we can eliminate a previous
7889 store. */
7890 rtx pseudo = rl->out_reg;
7891 rtx reg_rtx = rl->reg_rtx;
7893 if (rl->out && reg_rtx)
7895 machine_mode mode;
7897 /* Determine the mode to reload in.
7898 See comments above (for input reloading). */
7899 mode = GET_MODE (rl->out);
7900 if (mode == VOIDmode)
7902 /* VOIDmode should never happen for an output. */
7903 if (asm_noperands (PATTERN (insn)) < 0)
7904 /* It's the compiler's fault. */
7905 fatal_insn ("VOIDmode on an output", insn);
7906 error_for_asm (insn, "output operand is constant in %<asm%>");
7907 /* Prevent crash--use something we know is valid. */
7908 mode = word_mode;
7909 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7911 if (GET_MODE (reg_rtx) != mode)
7912 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7914 reload_reg_rtx_for_output[j] = reg_rtx;
7916 if (pseudo
7917 && optimize
7918 && REG_P (pseudo)
7919 && ! rtx_equal_p (rl->in_reg, pseudo)
7920 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7921 && reg_last_reload_reg[REGNO (pseudo)])
7923 int pseudo_no = REGNO (pseudo);
7924 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7926 /* We don't need to test full validity of last_regno for
7927 inherit here; we only want to know if the store actually
7928 matches the pseudo. */
7929 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7930 && reg_reloaded_contents[last_regno] == pseudo_no
7931 && spill_reg_store[last_regno]
7932 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7933 delete_output_reload (insn, j, last_regno, reg_rtx);
7936 old = rl->out_reg;
7937 if (old == 0
7938 || reg_rtx == 0
7939 || rtx_equal_p (old, reg_rtx))
7940 return;
7942 /* An output operand that dies right away does need a reload,
7943 but need not be copied from it. Show the new location in the
7944 REG_UNUSED note. */
7945 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7946 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7948 XEXP (note, 0) = reg_rtx;
7949 return;
7951 /* Likewise for a SUBREG of an operand that dies. */
7952 else if (GET_CODE (old) == SUBREG
7953 && REG_P (SUBREG_REG (old))
7954 && (note = find_reg_note (insn, REG_UNUSED,
7955 SUBREG_REG (old))) != 0)
7957 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7958 return;
7960 else if (GET_CODE (old) == SCRATCH)
7961 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7962 but we don't want to make an output reload. */
7963 return;
7965 /* If is a JUMP_INSN, we can't support output reloads yet. */
7966 gcc_assert (NONJUMP_INSN_P (insn));
7968 emit_output_reload_insns (chain, rld + j, j);
7971 /* A reload copies values of MODE from register SRC to register DEST.
7972 Return true if it can be treated for inheritance purposes like a
7973 group of reloads, each one reloading a single hard register. The
7974 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7975 occupy the same number of hard registers. */
7977 static bool
7978 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7979 int src ATTRIBUTE_UNUSED,
7980 machine_mode mode ATTRIBUTE_UNUSED)
7982 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7983 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7986 /* Output insns to reload values in and out of the chosen reload regs. */
7988 static void
7989 emit_reload_insns (struct insn_chain *chain)
7991 rtx_insn *insn = chain->insn;
7993 int j;
7995 CLEAR_HARD_REG_SET (reg_reloaded_died);
7997 for (j = 0; j < reload_n_operands; j++)
7998 input_reload_insns[j] = input_address_reload_insns[j]
7999 = inpaddr_address_reload_insns[j]
8000 = output_reload_insns[j] = output_address_reload_insns[j]
8001 = outaddr_address_reload_insns[j]
8002 = other_output_reload_insns[j] = 0;
8003 other_input_address_reload_insns = 0;
8004 other_input_reload_insns = 0;
8005 operand_reload_insns = 0;
8006 other_operand_reload_insns = 0;
8008 /* Dump reloads into the dump file. */
8009 if (dump_file)
8011 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8012 debug_reload_to_stream (dump_file);
8015 for (j = 0; j < n_reloads; j++)
8016 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8018 unsigned int i;
8020 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8021 new_spill_reg_store[i] = 0;
8024 /* Now output the instructions to copy the data into and out of the
8025 reload registers. Do these in the order that the reloads were reported,
8026 since reloads of base and index registers precede reloads of operands
8027 and the operands may need the base and index registers reloaded. */
8029 for (j = 0; j < n_reloads; j++)
8031 do_input_reload (chain, rld + j, j);
8032 do_output_reload (chain, rld + j, j);
8035 /* Now write all the insns we made for reloads in the order expected by
8036 the allocation functions. Prior to the insn being reloaded, we write
8037 the following reloads:
8039 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8041 RELOAD_OTHER reloads.
8043 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8044 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8045 RELOAD_FOR_INPUT reload for the operand.
8047 RELOAD_FOR_OPADDR_ADDRS reloads.
8049 RELOAD_FOR_OPERAND_ADDRESS reloads.
8051 After the insn being reloaded, we write the following:
8053 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8054 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8055 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8056 reloads for the operand. The RELOAD_OTHER output reloads are
8057 output in descending order by reload number. */
8059 emit_insn_before (other_input_address_reload_insns, insn);
8060 emit_insn_before (other_input_reload_insns, insn);
8062 for (j = 0; j < reload_n_operands; j++)
8064 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8065 emit_insn_before (input_address_reload_insns[j], insn);
8066 emit_insn_before (input_reload_insns[j], insn);
8069 emit_insn_before (other_operand_reload_insns, insn);
8070 emit_insn_before (operand_reload_insns, insn);
8072 for (j = 0; j < reload_n_operands; j++)
8074 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8075 x = emit_insn_after (output_address_reload_insns[j], x);
8076 x = emit_insn_after (output_reload_insns[j], x);
8077 emit_insn_after (other_output_reload_insns[j], x);
8080 /* For all the spill regs newly reloaded in this instruction,
8081 record what they were reloaded from, so subsequent instructions
8082 can inherit the reloads.
8084 Update spill_reg_store for the reloads of this insn.
8085 Copy the elements that were updated in the loop above. */
8087 for (j = 0; j < n_reloads; j++)
8089 int r = reload_order[j];
8090 int i = reload_spill_index[r];
8092 /* If this is a non-inherited input reload from a pseudo, we must
8093 clear any memory of a previous store to the same pseudo. Only do
8094 something if there will not be an output reload for the pseudo
8095 being reloaded. */
8096 if (rld[r].in_reg != 0
8097 && ! (reload_inherited[r] || reload_override_in[r]))
8099 rtx reg = rld[r].in_reg;
8101 if (GET_CODE (reg) == SUBREG)
8102 reg = SUBREG_REG (reg);
8104 if (REG_P (reg)
8105 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8106 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8108 int nregno = REGNO (reg);
8110 if (reg_last_reload_reg[nregno])
8112 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8114 if (reg_reloaded_contents[last_regno] == nregno)
8115 spill_reg_store[last_regno] = 0;
8120 /* I is nonneg if this reload used a register.
8121 If rld[r].reg_rtx is 0, this is an optional reload
8122 that we opted to ignore. */
8124 if (i >= 0 && rld[r].reg_rtx != 0)
8126 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8127 int k;
8129 /* For a multi register reload, we need to check if all or part
8130 of the value lives to the end. */
8131 for (k = 0; k < nr; k++)
8132 if (reload_reg_reaches_end_p (i + k, r))
8133 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8135 /* Maybe the spill reg contains a copy of reload_out. */
8136 if (rld[r].out != 0
8137 && (REG_P (rld[r].out)
8138 || (rld[r].out_reg
8139 ? REG_P (rld[r].out_reg)
8140 /* The reload value is an auto-modification of
8141 some kind. For PRE_INC, POST_INC, PRE_DEC
8142 and POST_DEC, we record an equivalence
8143 between the reload register and the operand
8144 on the optimistic assumption that we can make
8145 the equivalence hold. reload_as_needed must
8146 then either make it hold or invalidate the
8147 equivalence.
8149 PRE_MODIFY and POST_MODIFY addresses are reloaded
8150 somewhat differently, and allowing them here leads
8151 to problems. */
8152 : (GET_CODE (rld[r].out) != POST_MODIFY
8153 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8155 rtx reg;
8157 reg = reload_reg_rtx_for_output[r];
8158 if (reload_reg_rtx_reaches_end_p (reg, r))
8160 machine_mode mode = GET_MODE (reg);
8161 int regno = REGNO (reg);
8162 int nregs = REG_NREGS (reg);
8163 rtx out = (REG_P (rld[r].out)
8164 ? rld[r].out
8165 : rld[r].out_reg
8166 ? rld[r].out_reg
8167 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8168 int out_regno = REGNO (out);
8169 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8170 : hard_regno_nregs (out_regno, mode));
8171 bool piecemeal;
8173 spill_reg_store[regno] = new_spill_reg_store[regno];
8174 spill_reg_stored_to[regno] = out;
8175 reg_last_reload_reg[out_regno] = reg;
8177 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8178 && nregs == out_nregs
8179 && inherit_piecemeal_p (out_regno, regno, mode));
8181 /* If OUT_REGNO is a hard register, it may occupy more than
8182 one register. If it does, say what is in the
8183 rest of the registers assuming that both registers
8184 agree on how many words the object takes. If not,
8185 invalidate the subsequent registers. */
8187 if (HARD_REGISTER_NUM_P (out_regno))
8188 for (k = 1; k < out_nregs; k++)
8189 reg_last_reload_reg[out_regno + k]
8190 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8192 /* Now do the inverse operation. */
8193 for (k = 0; k < nregs; k++)
8195 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8196 reg_reloaded_contents[regno + k]
8197 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8198 ? out_regno
8199 : out_regno + k);
8200 reg_reloaded_insn[regno + k] = insn;
8201 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8202 if (targetm.hard_regno_call_part_clobbered (NULL,
8203 regno + k,
8204 mode))
8205 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8206 regno + k);
8207 else
8208 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8209 regno + k);
8213 /* Maybe the spill reg contains a copy of reload_in. Only do
8214 something if there will not be an output reload for
8215 the register being reloaded. */
8216 else if (rld[r].out_reg == 0
8217 && rld[r].in != 0
8218 && ((REG_P (rld[r].in)
8219 && !HARD_REGISTER_P (rld[r].in)
8220 && !REGNO_REG_SET_P (&reg_has_output_reload,
8221 REGNO (rld[r].in)))
8222 || (REG_P (rld[r].in_reg)
8223 && !REGNO_REG_SET_P (&reg_has_output_reload,
8224 REGNO (rld[r].in_reg))))
8225 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8227 rtx reg;
8229 reg = reload_reg_rtx_for_input[r];
8230 if (reload_reg_rtx_reaches_end_p (reg, r))
8232 machine_mode mode;
8233 int regno;
8234 int nregs;
8235 int in_regno;
8236 int in_nregs;
8237 rtx in;
8238 bool piecemeal;
8240 mode = GET_MODE (reg);
8241 regno = REGNO (reg);
8242 nregs = REG_NREGS (reg);
8243 if (REG_P (rld[r].in)
8244 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8245 in = rld[r].in;
8246 else if (REG_P (rld[r].in_reg))
8247 in = rld[r].in_reg;
8248 else
8249 in = XEXP (rld[r].in_reg, 0);
8250 in_regno = REGNO (in);
8252 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8253 : hard_regno_nregs (in_regno, mode));
8255 reg_last_reload_reg[in_regno] = reg;
8257 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8258 && nregs == in_nregs
8259 && inherit_piecemeal_p (regno, in_regno, mode));
8261 if (HARD_REGISTER_NUM_P (in_regno))
8262 for (k = 1; k < in_nregs; k++)
8263 reg_last_reload_reg[in_regno + k]
8264 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8266 /* Unless we inherited this reload, show we haven't
8267 recently done a store.
8268 Previous stores of inherited auto_inc expressions
8269 also have to be discarded. */
8270 if (! reload_inherited[r]
8271 || (rld[r].out && ! rld[r].out_reg))
8272 spill_reg_store[regno] = 0;
8274 for (k = 0; k < nregs; k++)
8276 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8277 reg_reloaded_contents[regno + k]
8278 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8279 ? in_regno
8280 : in_regno + k);
8281 reg_reloaded_insn[regno + k] = insn;
8282 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8283 if (targetm.hard_regno_call_part_clobbered (NULL,
8284 regno + k,
8285 mode))
8286 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8287 regno + k);
8288 else
8289 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8290 regno + k);
8296 /* The following if-statement was #if 0'd in 1.34 (or before...).
8297 It's reenabled in 1.35 because supposedly nothing else
8298 deals with this problem. */
8300 /* If a register gets output-reloaded from a non-spill register,
8301 that invalidates any previous reloaded copy of it.
8302 But forget_old_reloads_1 won't get to see it, because
8303 it thinks only about the original insn. So invalidate it here.
8304 Also do the same thing for RELOAD_OTHER constraints where the
8305 output is discarded. */
8306 if (i < 0
8307 && ((rld[r].out != 0
8308 && (REG_P (rld[r].out)
8309 || (MEM_P (rld[r].out)
8310 && REG_P (rld[r].out_reg))))
8311 || (rld[r].out == 0 && rld[r].out_reg
8312 && REG_P (rld[r].out_reg))))
8314 rtx out = ((rld[r].out && REG_P (rld[r].out))
8315 ? rld[r].out : rld[r].out_reg);
8316 int out_regno = REGNO (out);
8317 machine_mode mode = GET_MODE (out);
8319 /* REG_RTX is now set or clobbered by the main instruction.
8320 As the comment above explains, forget_old_reloads_1 only
8321 sees the original instruction, and there is no guarantee
8322 that the original instruction also clobbered REG_RTX.
8323 For example, if find_reloads sees that the input side of
8324 a matched operand pair dies in this instruction, it may
8325 use the input register as the reload register.
8327 Calling forget_old_reloads_1 is a waste of effort if
8328 REG_RTX is also the output register.
8330 If we know that REG_RTX holds the value of a pseudo
8331 register, the code after the call will record that fact. */
8332 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8333 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8335 if (!HARD_REGISTER_NUM_P (out_regno))
8337 rtx src_reg;
8338 rtx_insn *store_insn = NULL;
8340 reg_last_reload_reg[out_regno] = 0;
8342 /* If we can find a hard register that is stored, record
8343 the storing insn so that we may delete this insn with
8344 delete_output_reload. */
8345 src_reg = reload_reg_rtx_for_output[r];
8347 if (src_reg)
8349 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8350 store_insn = new_spill_reg_store[REGNO (src_reg)];
8351 else
8352 src_reg = NULL_RTX;
8354 else
8356 /* If this is an optional reload, try to find the
8357 source reg from an input reload. */
8358 rtx set = single_set (insn);
8359 if (set && SET_DEST (set) == rld[r].out)
8361 int k;
8363 src_reg = SET_SRC (set);
8364 store_insn = insn;
8365 for (k = 0; k < n_reloads; k++)
8367 if (rld[k].in == src_reg)
8369 src_reg = reload_reg_rtx_for_input[k];
8370 break;
8375 if (src_reg && REG_P (src_reg)
8376 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8378 int src_regno, src_nregs, k;
8379 rtx note;
8381 gcc_assert (GET_MODE (src_reg) == mode);
8382 src_regno = REGNO (src_reg);
8383 src_nregs = hard_regno_nregs (src_regno, mode);
8384 /* The place where to find a death note varies with
8385 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8386 necessarily checked exactly in the code that moves
8387 notes, so just check both locations. */
8388 note = find_regno_note (insn, REG_DEAD, src_regno);
8389 if (! note && store_insn)
8390 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8391 for (k = 0; k < src_nregs; k++)
8393 spill_reg_store[src_regno + k] = store_insn;
8394 spill_reg_stored_to[src_regno + k] = out;
8395 reg_reloaded_contents[src_regno + k] = out_regno;
8396 reg_reloaded_insn[src_regno + k] = store_insn;
8397 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8398 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8399 if (targetm.hard_regno_call_part_clobbered
8400 (NULL, src_regno + k, mode))
8401 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8402 src_regno + k);
8403 else
8404 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8405 src_regno + k);
8406 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8407 if (note)
8408 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8409 else
8410 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8412 reg_last_reload_reg[out_regno] = src_reg;
8413 /* We have to set reg_has_output_reload here, or else
8414 forget_old_reloads_1 will clear reg_last_reload_reg
8415 right away. */
8416 SET_REGNO_REG_SET (&reg_has_output_reload,
8417 out_regno);
8420 else
8422 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8424 for (k = 0; k < out_nregs; k++)
8425 reg_last_reload_reg[out_regno + k] = 0;
8429 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8432 /* Go through the motions to emit INSN and test if it is strictly valid.
8433 Return the emitted insn if valid, else return NULL. */
8435 static rtx_insn *
8436 emit_insn_if_valid_for_reload (rtx pat)
8438 rtx_insn *last = get_last_insn ();
8439 int code;
8441 rtx_insn *insn = emit_insn (pat);
8442 code = recog_memoized (insn);
8444 if (code >= 0)
8446 extract_insn (insn);
8447 /* We want constrain operands to treat this insn strictly in its
8448 validity determination, i.e., the way it would after reload has
8449 completed. */
8450 if (constrain_operands (1, get_enabled_alternatives (insn)))
8451 return insn;
8454 delete_insns_since (last);
8455 return NULL;
8458 /* Emit code to perform a reload from IN (which may be a reload register) to
8459 OUT (which may also be a reload register). IN or OUT is from operand
8460 OPNUM with reload type TYPE.
8462 Returns first insn emitted. */
8464 static rtx_insn *
8465 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8467 rtx_insn *last = get_last_insn ();
8468 rtx_insn *tem;
8469 rtx tem1, tem2;
8471 /* If IN is a paradoxical SUBREG, remove it and try to put the
8472 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8473 if (!strip_paradoxical_subreg (&in, &out))
8474 strip_paradoxical_subreg (&out, &in);
8476 /* How to do this reload can get quite tricky. Normally, we are being
8477 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8478 register that didn't get a hard register. In that case we can just
8479 call emit_move_insn.
8481 We can also be asked to reload a PLUS that adds a register or a MEM to
8482 another register, constant or MEM. This can occur during frame pointer
8483 elimination and while reloading addresses. This case is handled by
8484 trying to emit a single insn to perform the add. If it is not valid,
8485 we use a two insn sequence.
8487 Or we can be asked to reload an unary operand that was a fragment of
8488 an addressing mode, into a register. If it isn't recognized as-is,
8489 we try making the unop operand and the reload-register the same:
8490 (set reg:X (unop:X expr:Y))
8491 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8493 Finally, we could be called to handle an 'o' constraint by putting
8494 an address into a register. In that case, we first try to do this
8495 with a named pattern of "reload_load_address". If no such pattern
8496 exists, we just emit a SET insn and hope for the best (it will normally
8497 be valid on machines that use 'o').
8499 This entire process is made complex because reload will never
8500 process the insns we generate here and so we must ensure that
8501 they will fit their constraints and also by the fact that parts of
8502 IN might be being reloaded separately and replaced with spill registers.
8503 Because of this, we are, in some sense, just guessing the right approach
8504 here. The one listed above seems to work.
8506 ??? At some point, this whole thing needs to be rethought. */
8508 if (GET_CODE (in) == PLUS
8509 && (REG_P (XEXP (in, 0))
8510 || GET_CODE (XEXP (in, 0)) == SUBREG
8511 || MEM_P (XEXP (in, 0)))
8512 && (REG_P (XEXP (in, 1))
8513 || GET_CODE (XEXP (in, 1)) == SUBREG
8514 || CONSTANT_P (XEXP (in, 1))
8515 || MEM_P (XEXP (in, 1))))
8517 /* We need to compute the sum of a register or a MEM and another
8518 register, constant, or MEM, and put it into the reload
8519 register. The best possible way of doing this is if the machine
8520 has a three-operand ADD insn that accepts the required operands.
8522 The simplest approach is to try to generate such an insn and see if it
8523 is recognized and matches its constraints. If so, it can be used.
8525 It might be better not to actually emit the insn unless it is valid,
8526 but we need to pass the insn as an operand to `recog' and
8527 `extract_insn' and it is simpler to emit and then delete the insn if
8528 not valid than to dummy things up. */
8530 rtx op0, op1, tem;
8531 rtx_insn *insn;
8532 enum insn_code code;
8534 op0 = find_replacement (&XEXP (in, 0));
8535 op1 = find_replacement (&XEXP (in, 1));
8537 /* Since constraint checking is strict, commutativity won't be
8538 checked, so we need to do that here to avoid spurious failure
8539 if the add instruction is two-address and the second operand
8540 of the add is the same as the reload reg, which is frequently
8541 the case. If the insn would be A = B + A, rearrange it so
8542 it will be A = A + B as constrain_operands expects. */
8544 if (REG_P (XEXP (in, 1))
8545 && REGNO (out) == REGNO (XEXP (in, 1)))
8546 tem = op0, op0 = op1, op1 = tem;
8548 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8549 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8551 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8552 if (insn)
8553 return insn;
8555 /* If that failed, we must use a conservative two-insn sequence.
8557 Use a move to copy one operand into the reload register. Prefer
8558 to reload a constant, MEM or pseudo since the move patterns can
8559 handle an arbitrary operand. If OP1 is not a constant, MEM or
8560 pseudo and OP1 is not a valid operand for an add instruction, then
8561 reload OP1.
8563 After reloading one of the operands into the reload register, add
8564 the reload register to the output register.
8566 If there is another way to do this for a specific machine, a
8567 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8568 we emit below. */
8570 code = optab_handler (add_optab, GET_MODE (out));
8572 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8573 || (REG_P (op1)
8574 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8575 || (code != CODE_FOR_nothing
8576 && !insn_operand_matches (code, 2, op1)))
8577 tem = op0, op0 = op1, op1 = tem;
8579 gen_reload (out, op0, opnum, type);
8581 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8582 This fixes a problem on the 32K where the stack pointer cannot
8583 be used as an operand of an add insn. */
8585 if (rtx_equal_p (op0, op1))
8586 op1 = out;
8588 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8589 if (insn)
8591 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8592 set_dst_reg_note (insn, REG_EQUIV, in, out);
8593 return insn;
8596 /* If that failed, copy the address register to the reload register.
8597 Then add the constant to the reload register. */
8599 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8600 gen_reload (out, op1, opnum, type);
8601 insn = emit_insn (gen_add2_insn (out, op0));
8602 set_dst_reg_note (insn, REG_EQUIV, in, out);
8605 /* If we need a memory location to do the move, do it that way. */
8606 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8607 (REG_P (tem1) && REG_P (tem2)))
8608 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8609 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8610 && targetm.secondary_memory_needed (GET_MODE (out),
8611 REGNO_REG_CLASS (REGNO (tem1)),
8612 REGNO_REG_CLASS (REGNO (tem2))))
8614 /* Get the memory to use and rewrite both registers to its mode. */
8615 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8617 if (GET_MODE (loc) != GET_MODE (out))
8618 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8620 if (GET_MODE (loc) != GET_MODE (in))
8621 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8623 gen_reload (loc, in, opnum, type);
8624 gen_reload (out, loc, opnum, type);
8626 else if (REG_P (out) && UNARY_P (in))
8628 rtx op1;
8629 rtx out_moded;
8630 rtx_insn *set;
8632 op1 = find_replacement (&XEXP (in, 0));
8633 if (op1 != XEXP (in, 0))
8634 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8636 /* First, try a plain SET. */
8637 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8638 if (set)
8639 return set;
8641 /* If that failed, move the inner operand to the reload
8642 register, and try the same unop with the inner expression
8643 replaced with the reload register. */
8645 if (GET_MODE (op1) != GET_MODE (out))
8646 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8647 else
8648 out_moded = out;
8650 gen_reload (out_moded, op1, opnum, type);
8652 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8653 out_moded));
8654 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8655 if (insn)
8657 set_unique_reg_note (insn, REG_EQUIV, in);
8658 return insn;
8661 fatal_insn ("failure trying to reload:", set);
8663 /* If IN is a simple operand, use gen_move_insn. */
8664 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8666 tem = emit_insn (gen_move_insn (out, in));
8667 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8668 mark_jump_label (in, tem, 0);
8671 else if (targetm.have_reload_load_address ())
8672 emit_insn (targetm.gen_reload_load_address (out, in));
8674 /* Otherwise, just write (set OUT IN) and hope for the best. */
8675 else
8676 emit_insn (gen_rtx_SET (out, in));
8678 /* Return the first insn emitted.
8679 We cannot just return get_last_insn, because there may have
8680 been multiple instructions emitted. Also note that gen_move_insn may
8681 emit more than one insn itself, so we cannot assume that there is one
8682 insn emitted per emit_insn_before call. */
8684 return last ? NEXT_INSN (last) : get_insns ();
8687 /* Delete a previously made output-reload whose result we now believe
8688 is not needed. First we double-check.
8690 INSN is the insn now being processed.
8691 LAST_RELOAD_REG is the hard register number for which we want to delete
8692 the last output reload.
8693 J is the reload-number that originally used REG. The caller has made
8694 certain that reload J doesn't use REG any longer for input.
8695 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8697 static void
8698 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8699 rtx new_reload_reg)
8701 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8702 rtx reg = spill_reg_stored_to[last_reload_reg];
8703 int k;
8704 int n_occurrences;
8705 int n_inherited = 0;
8706 rtx substed;
8707 unsigned regno;
8708 int nregs;
8710 /* It is possible that this reload has been only used to set another reload
8711 we eliminated earlier and thus deleted this instruction too. */
8712 if (output_reload_insn->deleted ())
8713 return;
8715 /* Get the raw pseudo-register referred to. */
8717 while (GET_CODE (reg) == SUBREG)
8718 reg = SUBREG_REG (reg);
8719 substed = reg_equiv_memory_loc (REGNO (reg));
8721 /* This is unsafe if the operand occurs more often in the current
8722 insn than it is inherited. */
8723 for (k = n_reloads - 1; k >= 0; k--)
8725 rtx reg2 = rld[k].in;
8726 if (! reg2)
8727 continue;
8728 if (MEM_P (reg2) || reload_override_in[k])
8729 reg2 = rld[k].in_reg;
8731 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8732 reg2 = XEXP (rld[k].in_reg, 0);
8734 while (GET_CODE (reg2) == SUBREG)
8735 reg2 = SUBREG_REG (reg2);
8736 if (rtx_equal_p (reg2, reg))
8738 if (reload_inherited[k] || reload_override_in[k] || k == j)
8739 n_inherited++;
8740 else
8741 return;
8744 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8745 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8746 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8747 reg, 0);
8748 if (substed)
8749 n_occurrences += count_occurrences (PATTERN (insn),
8750 eliminate_regs (substed, VOIDmode,
8751 NULL_RTX), 0);
8752 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8754 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8755 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8757 if (n_occurrences > n_inherited)
8758 return;
8760 regno = REGNO (reg);
8761 nregs = REG_NREGS (reg);
8763 /* If the pseudo-reg we are reloading is no longer referenced
8764 anywhere between the store into it and here,
8765 and we're within the same basic block, then the value can only
8766 pass through the reload reg and end up here.
8767 Otherwise, give up--return. */
8768 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8769 i1 != insn; i1 = NEXT_INSN (i1))
8771 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8772 return;
8773 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8774 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8776 /* If this is USE in front of INSN, we only have to check that
8777 there are no more references than accounted for by inheritance. */
8778 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8780 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8781 i1 = NEXT_INSN (i1);
8783 if (n_occurrences <= n_inherited && i1 == insn)
8784 break;
8785 return;
8789 /* We will be deleting the insn. Remove the spill reg information. */
8790 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8792 spill_reg_store[last_reload_reg + k] = 0;
8793 spill_reg_stored_to[last_reload_reg + k] = 0;
8796 /* The caller has already checked that REG dies or is set in INSN.
8797 It has also checked that we are optimizing, and thus some
8798 inaccuracies in the debugging information are acceptable.
8799 So we could just delete output_reload_insn. But in some cases
8800 we can improve the debugging information without sacrificing
8801 optimization - maybe even improving the code: See if the pseudo
8802 reg has been completely replaced with reload regs. If so, delete
8803 the store insn and forget we had a stack slot for the pseudo. */
8804 if (rld[j].out != rld[j].in
8805 && REG_N_DEATHS (REGNO (reg)) == 1
8806 && REG_N_SETS (REGNO (reg)) == 1
8807 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8808 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8810 rtx_insn *i2;
8812 /* We know that it was used only between here and the beginning of
8813 the current basic block. (We also know that the last use before
8814 INSN was the output reload we are thinking of deleting, but never
8815 mind that.) Search that range; see if any ref remains. */
8816 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8818 rtx set = single_set (i2);
8820 /* Uses which just store in the pseudo don't count,
8821 since if they are the only uses, they are dead. */
8822 if (set != 0 && SET_DEST (set) == reg)
8823 continue;
8824 if (LABEL_P (i2) || JUMP_P (i2))
8825 break;
8826 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8827 && reg_mentioned_p (reg, PATTERN (i2)))
8829 /* Some other ref remains; just delete the output reload we
8830 know to be dead. */
8831 delete_address_reloads (output_reload_insn, insn);
8832 delete_insn (output_reload_insn);
8833 return;
8837 /* Delete the now-dead stores into this pseudo. Note that this
8838 loop also takes care of deleting output_reload_insn. */
8839 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8841 rtx set = single_set (i2);
8843 if (set != 0 && SET_DEST (set) == reg)
8845 delete_address_reloads (i2, insn);
8846 delete_insn (i2);
8848 if (LABEL_P (i2) || JUMP_P (i2))
8849 break;
8852 /* For the debugging info, say the pseudo lives in this reload reg. */
8853 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8854 if (ira_conflicts_p)
8855 /* Inform IRA about the change. */
8856 ira_mark_allocation_change (REGNO (reg));
8857 alter_reg (REGNO (reg), -1, false);
8859 else
8861 delete_address_reloads (output_reload_insn, insn);
8862 delete_insn (output_reload_insn);
8866 /* We are going to delete DEAD_INSN. Recursively delete loads of
8867 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8868 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8869 static void
8870 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8872 rtx set = single_set (dead_insn);
8873 rtx set2, dst;
8874 rtx_insn *prev, *next;
8875 if (set)
8877 rtx dst = SET_DEST (set);
8878 if (MEM_P (dst))
8879 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8881 /* If we deleted the store from a reloaded post_{in,de}c expression,
8882 we can delete the matching adds. */
8883 prev = PREV_INSN (dead_insn);
8884 next = NEXT_INSN (dead_insn);
8885 if (! prev || ! next)
8886 return;
8887 set = single_set (next);
8888 set2 = single_set (prev);
8889 if (! set || ! set2
8890 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8891 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8892 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8893 return;
8894 dst = SET_DEST (set);
8895 if (! rtx_equal_p (dst, SET_DEST (set2))
8896 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8897 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8898 || (INTVAL (XEXP (SET_SRC (set), 1))
8899 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8900 return;
8901 delete_related_insns (prev);
8902 delete_related_insns (next);
8905 /* Subfunction of delete_address_reloads: process registers found in X. */
8906 static void
8907 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8909 rtx_insn *prev, *i2;
8910 rtx set, dst;
8911 int i, j;
8912 enum rtx_code code = GET_CODE (x);
8914 if (code != REG)
8916 const char *fmt = GET_RTX_FORMAT (code);
8917 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8919 if (fmt[i] == 'e')
8920 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8921 else if (fmt[i] == 'E')
8923 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8924 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8925 current_insn);
8928 return;
8931 if (spill_reg_order[REGNO (x)] < 0)
8932 return;
8934 /* Scan backwards for the insn that sets x. This might be a way back due
8935 to inheritance. */
8936 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8938 code = GET_CODE (prev);
8939 if (code == CODE_LABEL || code == JUMP_INSN)
8940 return;
8941 if (!INSN_P (prev))
8942 continue;
8943 if (reg_set_p (x, PATTERN (prev)))
8944 break;
8945 if (reg_referenced_p (x, PATTERN (prev)))
8946 return;
8948 if (! prev || INSN_UID (prev) < reload_first_uid)
8949 return;
8950 /* Check that PREV only sets the reload register. */
8951 set = single_set (prev);
8952 if (! set)
8953 return;
8954 dst = SET_DEST (set);
8955 if (!REG_P (dst)
8956 || ! rtx_equal_p (dst, x))
8957 return;
8958 if (! reg_set_p (dst, PATTERN (dead_insn)))
8960 /* Check if DST was used in a later insn -
8961 it might have been inherited. */
8962 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8964 if (LABEL_P (i2))
8965 break;
8966 if (! INSN_P (i2))
8967 continue;
8968 if (reg_referenced_p (dst, PATTERN (i2)))
8970 /* If there is a reference to the register in the current insn,
8971 it might be loaded in a non-inherited reload. If no other
8972 reload uses it, that means the register is set before
8973 referenced. */
8974 if (i2 == current_insn)
8976 for (j = n_reloads - 1; j >= 0; j--)
8977 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8978 || reload_override_in[j] == dst)
8979 return;
8980 for (j = n_reloads - 1; j >= 0; j--)
8981 if (rld[j].in && rld[j].reg_rtx == dst)
8982 break;
8983 if (j >= 0)
8984 break;
8986 return;
8988 if (JUMP_P (i2))
8989 break;
8990 /* If DST is still live at CURRENT_INSN, check if it is used for
8991 any reload. Note that even if CURRENT_INSN sets DST, we still
8992 have to check the reloads. */
8993 if (i2 == current_insn)
8995 for (j = n_reloads - 1; j >= 0; j--)
8996 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8997 || reload_override_in[j] == dst)
8998 return;
8999 /* ??? We can't finish the loop here, because dst might be
9000 allocated to a pseudo in this block if no reload in this
9001 block needs any of the classes containing DST - see
9002 spill_hard_reg. There is no easy way to tell this, so we
9003 have to scan till the end of the basic block. */
9005 if (reg_set_p (dst, PATTERN (i2)))
9006 break;
9009 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9010 reg_reloaded_contents[REGNO (dst)] = -1;
9011 delete_insn (prev);
9014 /* Output reload-insns to reload VALUE into RELOADREG.
9015 VALUE is an autoincrement or autodecrement RTX whose operand
9016 is a register or memory location;
9017 so reloading involves incrementing that location.
9018 IN is either identical to VALUE, or some cheaper place to reload from.
9020 INC_AMOUNT is the number to increment or decrement by (always positive).
9021 This cannot be deduced from VALUE. */
9023 static void
9024 inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount)
9026 /* REG or MEM to be copied and incremented. */
9027 rtx incloc = find_replacement (&XEXP (value, 0));
9028 /* Nonzero if increment after copying. */
9029 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9030 || GET_CODE (value) == POST_MODIFY);
9031 rtx_insn *last;
9032 rtx inc;
9033 rtx_insn *add_insn;
9034 int code;
9035 rtx real_in = in == value ? incloc : in;
9037 /* No hard register is equivalent to this register after
9038 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9039 we could inc/dec that register as well (maybe even using it for
9040 the source), but I'm not sure it's worth worrying about. */
9041 if (REG_P (incloc))
9042 reg_last_reload_reg[REGNO (incloc)] = 0;
9044 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9046 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9047 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9049 else
9051 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9052 inc_amount = -inc_amount;
9054 inc = gen_int_mode (inc_amount, Pmode);
9057 /* If this is post-increment, first copy the location to the reload reg. */
9058 if (post && real_in != reloadreg)
9059 emit_insn (gen_move_insn (reloadreg, real_in));
9061 if (in == value)
9063 /* See if we can directly increment INCLOC. Use a method similar to
9064 that in gen_reload. */
9066 last = get_last_insn ();
9067 add_insn = emit_insn (gen_rtx_SET (incloc,
9068 gen_rtx_PLUS (GET_MODE (incloc),
9069 incloc, inc)));
9071 code = recog_memoized (add_insn);
9072 if (code >= 0)
9074 extract_insn (add_insn);
9075 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9077 /* If this is a pre-increment and we have incremented the value
9078 where it lives, copy the incremented value to RELOADREG to
9079 be used as an address. */
9081 if (! post)
9082 emit_insn (gen_move_insn (reloadreg, incloc));
9083 return;
9086 delete_insns_since (last);
9089 /* If couldn't do the increment directly, must increment in RELOADREG.
9090 The way we do this depends on whether this is pre- or post-increment.
9091 For pre-increment, copy INCLOC to the reload register, increment it
9092 there, then save back. */
9094 if (! post)
9096 if (in != reloadreg)
9097 emit_insn (gen_move_insn (reloadreg, real_in));
9098 emit_insn (gen_add2_insn (reloadreg, inc));
9099 emit_insn (gen_move_insn (incloc, reloadreg));
9101 else
9103 /* Postincrement.
9104 Because this might be a jump insn or a compare, and because RELOADREG
9105 may not be available after the insn in an input reload, we must do
9106 the incrementation before the insn being reloaded for.
9108 We have already copied IN to RELOADREG. Increment the copy in
9109 RELOADREG, save that back, then decrement RELOADREG so it has
9110 the original value. */
9112 emit_insn (gen_add2_insn (reloadreg, inc));
9113 emit_insn (gen_move_insn (incloc, reloadreg));
9114 if (CONST_INT_P (inc))
9115 emit_insn (gen_add2_insn (reloadreg,
9116 gen_int_mode (-INTVAL (inc),
9117 GET_MODE (reloadreg))));
9118 else
9119 emit_insn (gen_sub2_insn (reloadreg, inc));
9123 static void
9124 add_auto_inc_notes (rtx_insn *insn, rtx x)
9126 enum rtx_code code = GET_CODE (x);
9127 const char *fmt;
9128 int i, j;
9130 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9132 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9133 return;
9136 /* Scan all the operand sub-expressions. */
9137 fmt = GET_RTX_FORMAT (code);
9138 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9140 if (fmt[i] == 'e')
9141 add_auto_inc_notes (insn, XEXP (x, i));
9142 else if (fmt[i] == 'E')
9143 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9144 add_auto_inc_notes (insn, XVECEXP (x, i, j));