2006-07-04 Paolo Bonzini <bonzini@gnu.org>
[official-gcc.git] / gcc / expr.c
blobe46e3e787bd9f2dbaa5a89937ced1bd36c0cdb29
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "machmode.h"
28 #include "real.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "except.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "typeclass.h"
46 #include "toplev.h"
47 #include "ggc.h"
48 #include "langhooks.h"
49 #include "intl.h"
50 #include "tm_p.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "tree-flow.h"
54 #include "target.h"
55 #include "timevar.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
130 static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static rtx clear_storage_via_libcall (rtx, rtx, bool);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, int);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, int);
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
151 static int is_aligning_offset (tree, tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO)
180 #endif
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO)
188 #endif
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero, or
192 to "memcpy" storage when the source is a constant string. */
193 #ifndef STORE_BY_PIECES_P
194 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) MOVE_RATIO)
197 #endif
199 /* This array records the insn_code of insns to perform block moves. */
200 enum insn_code movmem_optab[NUM_MACHINE_MODES];
202 /* This array records the insn_code of insns to perform block sets. */
203 enum insn_code setmem_optab[NUM_MACHINE_MODES];
205 /* These arrays record the insn_code of three different kinds of insns
206 to perform block compares. */
207 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
208 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
209 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
211 /* Synchronization primitives. */
212 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
213 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
214 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
215 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
216 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
217 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
231 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
232 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
233 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
235 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
237 #ifndef SLOW_UNALIGNED_ACCESS
238 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
239 #endif
241 /* This is run once per compilation to set up which modes can be used
242 directly in memory and to initialize the block move optab. */
244 void
245 init_expr_once (void)
247 rtx insn, pat;
248 enum machine_mode mode;
249 int num_clobbers;
250 rtx mem, mem1;
251 rtx reg;
253 /* Try indexing by frame ptr and try by stack ptr.
254 It is known that on the Convex the stack ptr isn't a valid index.
255 With luck, one or the other is valid on any machine. */
256 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
257 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
259 /* A scratch register we can modify in-place below to avoid
260 useless RTL allocations. */
261 reg = gen_rtx_REG (VOIDmode, -1);
263 insn = rtx_alloc (INSN);
264 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
265 PATTERN (insn) = pat;
267 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
268 mode = (enum machine_mode) ((int) mode + 1))
270 int regno;
272 direct_load[(int) mode] = direct_store[(int) mode] = 0;
273 PUT_MODE (mem, mode);
274 PUT_MODE (mem1, mode);
275 PUT_MODE (reg, mode);
277 /* See if there is some register that can be used in this mode and
278 directly loaded or stored from memory. */
280 if (mode != VOIDmode && mode != BLKmode)
281 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
282 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
283 regno++)
285 if (! HARD_REGNO_MODE_OK (regno, mode))
286 continue;
288 REGNO (reg) = regno;
290 SET_SRC (pat) = mem;
291 SET_DEST (pat) = reg;
292 if (recog (pat, insn, &num_clobbers) >= 0)
293 direct_load[(int) mode] = 1;
295 SET_SRC (pat) = mem1;
296 SET_DEST (pat) = reg;
297 if (recog (pat, insn, &num_clobbers) >= 0)
298 direct_load[(int) mode] = 1;
300 SET_SRC (pat) = reg;
301 SET_DEST (pat) = mem;
302 if (recog (pat, insn, &num_clobbers) >= 0)
303 direct_store[(int) mode] = 1;
305 SET_SRC (pat) = reg;
306 SET_DEST (pat) = mem1;
307 if (recog (pat, insn, &num_clobbers) >= 0)
308 direct_store[(int) mode] = 1;
312 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
314 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
315 mode = GET_MODE_WIDER_MODE (mode))
317 enum machine_mode srcmode;
318 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
319 srcmode = GET_MODE_WIDER_MODE (srcmode))
321 enum insn_code ic;
323 ic = can_extend_p (mode, srcmode, 0);
324 if (ic == CODE_FOR_nothing)
325 continue;
327 PUT_MODE (mem, srcmode);
329 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
330 float_extend_from_mem[mode][srcmode] = true;
335 /* This is run at the start of compiling a function. */
337 void
338 init_expr (void)
340 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
343 /* Copy data from FROM to TO, where the machine modes are not the same.
344 Both modes may be integer, or both may be floating.
345 UNSIGNEDP should be nonzero if FROM is an unsigned type.
346 This causes zero-extension instead of sign-extension. */
348 void
349 convert_move (rtx to, rtx from, int unsignedp)
351 enum machine_mode to_mode = GET_MODE (to);
352 enum machine_mode from_mode = GET_MODE (from);
353 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
354 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
355 enum insn_code code;
356 rtx libcall;
358 /* rtx code for making an equivalent value. */
359 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
360 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
363 gcc_assert (to_real == from_real);
365 /* If the source and destination are already the same, then there's
366 nothing to do. */
367 if (to == from)
368 return;
370 /* If FROM is a SUBREG that indicates that we have already done at least
371 the required extension, strip it. We don't handle such SUBREGs as
372 TO here. */
374 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
375 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
376 >= GET_MODE_SIZE (to_mode))
377 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
378 from = gen_lowpart (to_mode, from), from_mode = to_mode;
380 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
382 if (to_mode == from_mode
383 || (from_mode == VOIDmode && CONSTANT_P (from)))
385 emit_move_insn (to, from);
386 return;
389 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
391 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
393 if (VECTOR_MODE_P (to_mode))
394 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
395 else
396 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
398 emit_move_insn (to, from);
399 return;
402 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
404 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
405 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
406 return;
409 if (to_real)
411 rtx value, insns;
412 convert_optab tab;
414 gcc_assert ((GET_MODE_PRECISION (from_mode)
415 != GET_MODE_PRECISION (to_mode))
416 || (DECIMAL_FLOAT_MODE_P (from_mode)
417 != DECIMAL_FLOAT_MODE_P (to_mode)));
419 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
420 /* Conversion between decimal float and binary float, same size. */
421 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
422 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
423 tab = sext_optab;
424 else
425 tab = trunc_optab;
427 /* Try converting directly if the insn is supported. */
429 code = tab->handlers[to_mode][from_mode].insn_code;
430 if (code != CODE_FOR_nothing)
432 emit_unop_insn (code, to, from,
433 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
434 return;
437 /* Otherwise use a libcall. */
438 libcall = tab->handlers[to_mode][from_mode].libfunc;
440 /* Is this conversion implemented yet? */
441 gcc_assert (libcall);
443 start_sequence ();
444 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
445 1, from, from_mode);
446 insns = get_insns ();
447 end_sequence ();
448 emit_libcall_block (insns, to, value,
449 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
450 from)
451 : gen_rtx_FLOAT_EXTEND (to_mode, from));
452 return;
455 /* Handle pointer conversion. */ /* SPEE 900220. */
456 /* Targets are expected to provide conversion insns between PxImode and
457 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
458 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
460 enum machine_mode full_mode
461 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
463 gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
464 != CODE_FOR_nothing);
466 if (full_mode != from_mode)
467 from = convert_to_mode (full_mode, from, unsignedp);
468 emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
469 to, from, UNKNOWN);
470 return;
472 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
474 rtx new_from;
475 enum machine_mode full_mode
476 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
478 gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
479 != CODE_FOR_nothing);
481 if (to_mode == full_mode)
483 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
484 to, from, UNKNOWN);
485 return;
488 new_from = gen_reg_rtx (full_mode);
489 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
490 new_from, from, UNKNOWN);
492 /* else proceed to integer conversions below. */
493 from_mode = full_mode;
494 from = new_from;
497 /* Now both modes are integers. */
499 /* Handle expanding beyond a word. */
500 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
501 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
503 rtx insns;
504 rtx lowpart;
505 rtx fill_value;
506 rtx lowfrom;
507 int i;
508 enum machine_mode lowpart_mode;
509 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
511 /* Try converting directly if the insn is supported. */
512 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
513 != CODE_FOR_nothing)
515 /* If FROM is a SUBREG, put it into a register. Do this
516 so that we always generate the same set of insns for
517 better cse'ing; if an intermediate assignment occurred,
518 we won't be doing the operation directly on the SUBREG. */
519 if (optimize > 0 && GET_CODE (from) == SUBREG)
520 from = force_reg (from_mode, from);
521 emit_unop_insn (code, to, from, equiv_code);
522 return;
524 /* Next, try converting via full word. */
525 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
526 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
527 != CODE_FOR_nothing))
529 if (REG_P (to))
531 if (reg_overlap_mentioned_p (to, from))
532 from = force_reg (from_mode, from);
533 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
535 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
536 emit_unop_insn (code, to,
537 gen_lowpart (word_mode, to), equiv_code);
538 return;
541 /* No special multiword conversion insn; do it by hand. */
542 start_sequence ();
544 /* Since we will turn this into a no conflict block, we must ensure
545 that the source does not overlap the target. */
547 if (reg_overlap_mentioned_p (to, from))
548 from = force_reg (from_mode, from);
550 /* Get a copy of FROM widened to a word, if necessary. */
551 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
552 lowpart_mode = word_mode;
553 else
554 lowpart_mode = from_mode;
556 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
558 lowpart = gen_lowpart (lowpart_mode, to);
559 emit_move_insn (lowpart, lowfrom);
561 /* Compute the value to put in each remaining word. */
562 if (unsignedp)
563 fill_value = const0_rtx;
564 else
566 #ifdef HAVE_slt
567 if (HAVE_slt
568 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
569 && STORE_FLAG_VALUE == -1)
571 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
572 lowpart_mode, 0);
573 fill_value = gen_reg_rtx (word_mode);
574 emit_insn (gen_slt (fill_value));
576 else
577 #endif
579 fill_value
580 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
581 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
582 NULL_RTX, 0);
583 fill_value = convert_to_mode (word_mode, fill_value, 1);
587 /* Fill the remaining words. */
588 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
590 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
591 rtx subword = operand_subword (to, index, 1, to_mode);
593 gcc_assert (subword);
595 if (fill_value != subword)
596 emit_move_insn (subword, fill_value);
599 insns = get_insns ();
600 end_sequence ();
602 emit_no_conflict_block (insns, to, from, NULL_RTX,
603 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
604 return;
607 /* Truncating multi-word to a word or less. */
608 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
609 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
611 if (!((MEM_P (from)
612 && ! MEM_VOLATILE_P (from)
613 && direct_load[(int) to_mode]
614 && ! mode_dependent_address_p (XEXP (from, 0)))
615 || REG_P (from)
616 || GET_CODE (from) == SUBREG))
617 from = force_reg (from_mode, from);
618 convert_move (to, gen_lowpart (word_mode, from), 0);
619 return;
622 /* Now follow all the conversions between integers
623 no more than a word long. */
625 /* For truncation, usually we can just refer to FROM in a narrower mode. */
626 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (from_mode)))
630 if (!((MEM_P (from)
631 && ! MEM_VOLATILE_P (from)
632 && direct_load[(int) to_mode]
633 && ! mode_dependent_address_p (XEXP (from, 0)))
634 || REG_P (from)
635 || GET_CODE (from) == SUBREG))
636 from = force_reg (from_mode, from);
637 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
638 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
639 from = copy_to_reg (from);
640 emit_move_insn (to, gen_lowpart (to_mode, from));
641 return;
644 /* Handle extension. */
645 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
647 /* Convert directly if that works. */
648 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
649 != CODE_FOR_nothing)
651 emit_unop_insn (code, to, from, equiv_code);
652 return;
654 else
656 enum machine_mode intermediate;
657 rtx tmp;
658 tree shift_amount;
660 /* Search for a mode to convert via. */
661 for (intermediate = from_mode; intermediate != VOIDmode;
662 intermediate = GET_MODE_WIDER_MODE (intermediate))
663 if (((can_extend_p (to_mode, intermediate, unsignedp)
664 != CODE_FOR_nothing)
665 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
666 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
667 GET_MODE_BITSIZE (intermediate))))
668 && (can_extend_p (intermediate, from_mode, unsignedp)
669 != CODE_FOR_nothing))
671 convert_move (to, convert_to_mode (intermediate, from,
672 unsignedp), unsignedp);
673 return;
676 /* No suitable intermediate mode.
677 Generate what we need with shifts. */
678 shift_amount = build_int_cst (NULL_TREE,
679 GET_MODE_BITSIZE (to_mode)
680 - GET_MODE_BITSIZE (from_mode));
681 from = gen_lowpart (to_mode, force_reg (from_mode, from));
682 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
683 to, unsignedp);
684 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
685 to, unsignedp);
686 if (tmp != to)
687 emit_move_insn (to, tmp);
688 return;
692 /* Support special truncate insns for certain modes. */
693 if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
695 emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
696 to, from, UNKNOWN);
697 return;
700 /* Handle truncation of volatile memrefs, and so on;
701 the things that couldn't be truncated directly,
702 and for which there was no special instruction.
704 ??? Code above formerly short-circuited this, for most integer
705 mode pairs, with a force_reg in from_mode followed by a recursive
706 call to this routine. Appears always to have been wrong. */
707 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
709 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
710 emit_move_insn (to, temp);
711 return;
714 /* Mode combination is not recognized. */
715 gcc_unreachable ();
718 /* Return an rtx for a value that would result
719 from converting X to mode MODE.
720 Both X and MODE may be floating, or both integer.
721 UNSIGNEDP is nonzero if X is an unsigned value.
722 This can be done by referring to a part of X in place
723 or by copying to a new temporary with conversion. */
726 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
728 return convert_modes (mode, VOIDmode, x, unsignedp);
731 /* Return an rtx for a value that would result
732 from converting X from mode OLDMODE to mode MODE.
733 Both modes may be floating, or both integer.
734 UNSIGNEDP is nonzero if X is an unsigned value.
736 This can be done by referring to a part of X in place
737 or by copying to a new temporary with conversion.
739 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
742 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
744 rtx temp;
746 /* If FROM is a SUBREG that indicates that we have already done at least
747 the required extension, strip it. */
749 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
750 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
751 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
752 x = gen_lowpart (mode, x);
754 if (GET_MODE (x) != VOIDmode)
755 oldmode = GET_MODE (x);
757 if (mode == oldmode)
758 return x;
760 /* There is one case that we must handle specially: If we are converting
761 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
762 we are to interpret the constant as unsigned, gen_lowpart will do
763 the wrong if the constant appears negative. What we want to do is
764 make the high-order word of the constant zero, not all ones. */
766 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
767 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
768 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
770 HOST_WIDE_INT val = INTVAL (x);
772 if (oldmode != VOIDmode
773 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
775 int width = GET_MODE_BITSIZE (oldmode);
777 /* We need to zero extend VAL. */
778 val &= ((HOST_WIDE_INT) 1 << width) - 1;
781 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
789 if ((GET_CODE (x) == CONST_INT
790 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
791 || (GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_CLASS (oldmode) == MODE_INT
793 && (GET_CODE (x) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
795 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
796 && direct_load[(int) mode])
797 || (REG_P (x)
798 && (! HARD_REGISTER_P (x)
799 || HARD_REGNO_MODE_OK (REGNO (x), mode))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (x)))))))))
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
807 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
809 HOST_WIDE_INT val = INTVAL (x);
810 int width = GET_MODE_BITSIZE (oldmode);
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val &= ((HOST_WIDE_INT) 1 << width) - 1;
815 if (! unsignedp
816 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
817 val |= (HOST_WIDE_INT) (-1) << width;
819 return gen_int_mode (val, mode);
822 return gen_lowpart (mode, x);
825 /* Converting from integer constant into mode is always equivalent to an
826 subreg operation. */
827 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
829 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
830 return simplify_gen_subreg (mode, x, oldmode, 0);
833 temp = gen_reg_rtx (mode);
834 convert_move (temp, x, unsignedp);
835 return temp;
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
853 return MOVE_BY_PIECES_P (len, align);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
872 struct move_by_pieces data;
873 rtx to_addr, from_addr = XEXP (from, 0);
874 unsigned int max_size = MOVE_MAX_PIECES + 1;
875 enum machine_mode mode = VOIDmode, tmode;
876 enum insn_code icode;
878 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
880 data.offset = 0;
881 data.from_addr = from_addr;
882 if (to)
884 to_addr = XEXP (to, 0);
885 data.to = to;
886 data.autinc_to
887 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
888 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
889 data.reverse
890 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
892 else
894 to_addr = NULL_RTX;
895 data.to = NULL_RTX;
896 data.autinc_to = 1;
897 #ifdef STACK_GROWS_DOWNWARD
898 data.reverse = 1;
899 #else
900 data.reverse = 0;
901 #endif
903 data.to_addr = to_addr;
904 data.from = from;
905 data.autinc_from
906 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
907 || GET_CODE (from_addr) == POST_INC
908 || GET_CODE (from_addr) == POST_DEC);
910 data.explicit_inc_from = 0;
911 data.explicit_inc_to = 0;
912 if (data.reverse) data.offset = len;
913 data.len = len;
915 /* If copying requires more than two move insns,
916 copy addresses to registers (to make displacements shorter)
917 and use post-increment if available. */
918 if (!(data.autinc_from && data.autinc_to)
919 && move_by_pieces_ninsns (len, align, max_size) > 2)
921 /* Find the mode of the largest move... */
922 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
923 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
924 if (GET_MODE_SIZE (tmode) < max_size)
925 mode = tmode;
927 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
929 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
930 data.autinc_from = 1;
931 data.explicit_inc_from = -1;
933 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
935 data.from_addr = copy_addr_to_reg (from_addr);
936 data.autinc_from = 1;
937 data.explicit_inc_from = 1;
939 if (!data.autinc_from && CONSTANT_P (from_addr))
940 data.from_addr = copy_addr_to_reg (from_addr);
941 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
943 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
944 data.autinc_to = 1;
945 data.explicit_inc_to = -1;
947 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
949 data.to_addr = copy_addr_to_reg (to_addr);
950 data.autinc_to = 1;
951 data.explicit_inc_to = 1;
953 if (!data.autinc_to && CONSTANT_P (to_addr))
954 data.to_addr = copy_addr_to_reg (to_addr);
957 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
958 if (align >= GET_MODE_ALIGNMENT (tmode))
959 align = GET_MODE_ALIGNMENT (tmode);
960 else
962 enum machine_mode xmode;
964 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
965 tmode != VOIDmode;
966 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
967 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
968 || SLOW_UNALIGNED_ACCESS (tmode, align))
969 break;
971 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
977 while (max_size > 1)
979 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
980 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
981 if (GET_MODE_SIZE (tmode) < max_size)
982 mode = tmode;
984 if (mode == VOIDmode)
985 break;
987 icode = mov_optab->handlers[(int) mode].insn_code;
988 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
989 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
991 max_size = GET_MODE_SIZE (mode);
994 /* The code above should have handled everything. */
995 gcc_assert (!data.len);
997 if (endp)
999 rtx to1;
1001 gcc_assert (!data.reverse);
1002 if (data.autinc_to)
1004 if (endp == 2)
1006 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1007 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1008 else
1009 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1010 -1));
1012 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1013 data.offset);
1015 else
1017 if (endp == 2)
1018 --data.offset;
1019 to1 = adjust_address (data.to, QImode, data.offset);
1021 return to1;
1023 else
1024 return data.to;
1027 /* Return number of insns required to move L bytes by pieces.
1028 ALIGN (in bits) is maximum alignment we can assume. */
1030 static unsigned HOST_WIDE_INT
1031 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1032 unsigned int max_size)
1034 unsigned HOST_WIDE_INT n_insns = 0;
1035 enum machine_mode tmode;
1037 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1038 if (align >= GET_MODE_ALIGNMENT (tmode))
1039 align = GET_MODE_ALIGNMENT (tmode);
1040 else
1042 enum machine_mode tmode, xmode;
1044 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1045 tmode != VOIDmode;
1046 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1047 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1048 || SLOW_UNALIGNED_ACCESS (tmode, align))
1049 break;
1051 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1054 while (max_size > 1)
1056 enum machine_mode mode = VOIDmode;
1057 enum insn_code icode;
1059 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1060 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1061 if (GET_MODE_SIZE (tmode) < max_size)
1062 mode = tmode;
1064 if (mode == VOIDmode)
1065 break;
1067 icode = mov_optab->handlers[(int) mode].insn_code;
1068 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1069 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1071 max_size = GET_MODE_SIZE (mode);
1074 gcc_assert (!l);
1075 return n_insns;
1078 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1079 with move instructions for mode MODE. GENFUN is the gen_... function
1080 to make a move insn for that mode. DATA has all the other info. */
1082 static void
1083 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1084 struct move_by_pieces *data)
1086 unsigned int size = GET_MODE_SIZE (mode);
1087 rtx to1 = NULL_RTX, from1;
1089 while (data->len >= size)
1091 if (data->reverse)
1092 data->offset -= size;
1094 if (data->to)
1096 if (data->autinc_to)
1097 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1098 data->offset);
1099 else
1100 to1 = adjust_address (data->to, mode, data->offset);
1103 if (data->autinc_from)
1104 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1105 data->offset);
1106 else
1107 from1 = adjust_address (data->from, mode, data->offset);
1109 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1110 emit_insn (gen_add2_insn (data->to_addr,
1111 GEN_INT (-(HOST_WIDE_INT)size)));
1112 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1113 emit_insn (gen_add2_insn (data->from_addr,
1114 GEN_INT (-(HOST_WIDE_INT)size)));
1116 if (data->to)
1117 emit_insn ((*genfun) (to1, from1));
1118 else
1120 #ifdef PUSH_ROUNDING
1121 emit_single_push_insn (mode, from1, NULL);
1122 #else
1123 gcc_unreachable ();
1124 #endif
1127 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1128 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1129 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1130 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1132 if (! data->reverse)
1133 data->offset += size;
1135 data->len -= size;
1139 /* Emit code to move a block Y to a block X. This may be done with
1140 string-move instructions, with multiple scalar move instructions,
1141 or with a library call.
1143 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1144 SIZE is an rtx that says how long they are.
1145 ALIGN is the maximum alignment we can assume they have.
1146 METHOD describes what kind of copy this is, and what mechanisms may be used.
1148 Return the address of the new block, if memcpy is called and returns it,
1149 0 otherwise. */
1152 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1154 bool may_use_call;
1155 rtx retval = 0;
1156 unsigned int align;
1158 switch (method)
1160 case BLOCK_OP_NORMAL:
1161 case BLOCK_OP_TAILCALL:
1162 may_use_call = true;
1163 break;
1165 case BLOCK_OP_CALL_PARM:
1166 may_use_call = block_move_libcall_safe_for_call_parm ();
1168 /* Make inhibit_defer_pop nonzero around the library call
1169 to force it to pop the arguments right away. */
1170 NO_DEFER_POP;
1171 break;
1173 case BLOCK_OP_NO_LIBCALL:
1174 may_use_call = false;
1175 break;
1177 default:
1178 gcc_unreachable ();
1181 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1183 gcc_assert (MEM_P (x));
1184 gcc_assert (MEM_P (y));
1185 gcc_assert (size);
1187 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1188 block copy is more efficient for other large modes, e.g. DCmode. */
1189 x = adjust_address (x, BLKmode, 0);
1190 y = adjust_address (y, BLKmode, 0);
1192 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1193 can be incorrect is coming from __builtin_memcpy. */
1194 if (GET_CODE (size) == CONST_INT)
1196 if (INTVAL (size) == 0)
1197 return 0;
1199 x = shallow_copy_rtx (x);
1200 y = shallow_copy_rtx (y);
1201 set_mem_size (x, size);
1202 set_mem_size (y, size);
1205 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1206 move_by_pieces (x, y, INTVAL (size), align, 0);
1207 else if (emit_block_move_via_movmem (x, y, size, align))
1209 else if (may_use_call)
1210 retval = emit_block_move_via_libcall (x, y, size,
1211 method == BLOCK_OP_TAILCALL);
1212 else
1213 emit_block_move_via_loop (x, y, size, align);
1215 if (method == BLOCK_OP_CALL_PARM)
1216 OK_DEFER_POP;
1218 return retval;
1221 /* A subroutine of emit_block_move. Returns true if calling the
1222 block move libcall will not clobber any parameters which may have
1223 already been placed on the stack. */
1225 static bool
1226 block_move_libcall_safe_for_call_parm (void)
1228 /* If arguments are pushed on the stack, then they're safe. */
1229 if (PUSH_ARGS)
1230 return true;
1232 /* If registers go on the stack anyway, any argument is sure to clobber
1233 an outgoing argument. */
1234 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1236 tree fn = emit_block_move_libcall_fn (false);
1237 (void) fn;
1238 if (REG_PARM_STACK_SPACE (fn) != 0)
1239 return false;
1241 #endif
1243 /* If any argument goes in memory, then it might clobber an outgoing
1244 argument. */
1246 CUMULATIVE_ARGS args_so_far;
1247 tree fn, arg;
1249 fn = emit_block_move_libcall_fn (false);
1250 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1252 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1253 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1255 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1256 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1257 if (!tmp || !REG_P (tmp))
1258 return false;
1259 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1260 return false;
1261 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1264 return true;
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1270 static bool
1271 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
1273 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1274 int save_volatile_ok = volatile_ok;
1275 enum machine_mode mode;
1277 /* Since this is a move insn, we don't care about volatility. */
1278 volatile_ok = 1;
1280 /* Try the most limited insn first, because there's no point
1281 including more than one in the machine description unless
1282 the more limited one has some advantage. */
1284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1285 mode = GET_MODE_WIDER_MODE (mode))
1287 enum insn_code code = movmem_optab[(int) mode];
1288 insn_operand_predicate_fn pred;
1290 if (code != CODE_FOR_nothing
1291 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1292 here because if SIZE is less than the mode mask, as it is
1293 returned by the macro, it will definitely be less than the
1294 actual mode mask. */
1295 && ((GET_CODE (size) == CONST_INT
1296 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1297 <= (GET_MODE_MASK (mode) >> 1)))
1298 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1299 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1300 || (*pred) (x, BLKmode))
1301 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1302 || (*pred) (y, BLKmode))
1303 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1304 || (*pred) (opalign, VOIDmode)))
1306 rtx op2;
1307 rtx last = get_last_insn ();
1308 rtx pat;
1310 op2 = convert_to_mode (mode, size, 1);
1311 pred = insn_data[(int) code].operand[2].predicate;
1312 if (pred != 0 && ! (*pred) (op2, mode))
1313 op2 = copy_to_mode_reg (mode, op2);
1315 /* ??? When called via emit_block_move_for_call, it'd be
1316 nice if there were some way to inform the backend, so
1317 that it doesn't fail the expansion because it thinks
1318 emitting the libcall would be more efficient. */
1320 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1321 if (pat)
1323 emit_insn (pat);
1324 volatile_ok = save_volatile_ok;
1325 return true;
1327 else
1328 delete_insns_since (last);
1332 volatile_ok = save_volatile_ok;
1333 return false;
1336 /* A subroutine of emit_block_move. Expand a call to memcpy.
1337 Return the return value from memcpy, 0 otherwise. */
1339 static rtx
1340 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1342 rtx dst_addr, src_addr;
1343 tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
1344 enum machine_mode size_mode;
1345 rtx retval;
1347 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1348 pseudos. We can then place those new pseudos into a VAR_DECL and
1349 use them later. */
1351 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1352 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1354 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1355 src_addr = convert_memory_address (ptr_mode, src_addr);
1357 dst_tree = make_tree (ptr_type_node, dst_addr);
1358 src_tree = make_tree (ptr_type_node, src_addr);
1360 size_mode = TYPE_MODE (sizetype);
1362 size = convert_to_mode (size_mode, size, 1);
1363 size = copy_to_mode_reg (size_mode, size);
1365 /* It is incorrect to use the libcall calling conventions to call
1366 memcpy in this context. This could be a user call to memcpy and
1367 the user may wish to examine the return value from memcpy. For
1368 targets where libcalls and normal calls have different conventions
1369 for returning pointers, we could end up generating incorrect code. */
1371 size_tree = make_tree (sizetype, size);
1373 fn = emit_block_move_libcall_fn (true);
1374 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
1375 arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
1376 arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
1378 /* Now we have to build up the CALL_EXPR itself. */
1379 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1380 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1381 call_expr, arg_list, NULL_TREE);
1382 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1384 retval = expand_normal (call_expr);
1386 return retval;
1389 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1390 for the function we use for block copies. The first time FOR_CALL
1391 is true, we call assemble_external. */
1393 static GTY(()) tree block_move_fn;
1395 void
1396 init_block_move_fn (const char *asmspec)
1398 if (!block_move_fn)
1400 tree args, fn;
1402 fn = get_identifier ("memcpy");
1403 args = build_function_type_list (ptr_type_node, ptr_type_node,
1404 const_ptr_type_node, sizetype,
1405 NULL_TREE);
1407 fn = build_decl (FUNCTION_DECL, fn, args);
1408 DECL_EXTERNAL (fn) = 1;
1409 TREE_PUBLIC (fn) = 1;
1410 DECL_ARTIFICIAL (fn) = 1;
1411 TREE_NOTHROW (fn) = 1;
1412 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1413 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1415 block_move_fn = fn;
1418 if (asmspec)
1419 set_user_assembler_name (block_move_fn, asmspec);
1422 static tree
1423 emit_block_move_libcall_fn (int for_call)
1425 static bool emitted_extern;
1427 if (!block_move_fn)
1428 init_block_move_fn (NULL);
1430 if (for_call && !emitted_extern)
1432 emitted_extern = true;
1433 make_decl_rtl (block_move_fn);
1434 assemble_external (block_move_fn);
1437 return block_move_fn;
1440 /* A subroutine of emit_block_move. Copy the data via an explicit
1441 loop. This is used only when libcalls are forbidden. */
1442 /* ??? It'd be nice to copy in hunks larger than QImode. */
1444 static void
1445 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1446 unsigned int align ATTRIBUTE_UNUSED)
1448 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1449 enum machine_mode iter_mode;
1451 iter_mode = GET_MODE (size);
1452 if (iter_mode == VOIDmode)
1453 iter_mode = word_mode;
1455 top_label = gen_label_rtx ();
1456 cmp_label = gen_label_rtx ();
1457 iter = gen_reg_rtx (iter_mode);
1459 emit_move_insn (iter, const0_rtx);
1461 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1462 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1463 do_pending_stack_adjust ();
1465 emit_jump (cmp_label);
1466 emit_label (top_label);
1468 tmp = convert_modes (Pmode, iter_mode, iter, true);
1469 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1470 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1471 x = change_address (x, QImode, x_addr);
1472 y = change_address (y, QImode, y_addr);
1474 emit_move_insn (x, y);
1476 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1477 true, OPTAB_LIB_WIDEN);
1478 if (tmp != iter)
1479 emit_move_insn (iter, tmp);
1481 emit_label (cmp_label);
1483 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1484 true, top_label);
1487 /* Copy all or part of a value X into registers starting at REGNO.
1488 The number of registers to be filled is NREGS. */
1490 void
1491 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1493 int i;
1494 #ifdef HAVE_load_multiple
1495 rtx pat;
1496 rtx last;
1497 #endif
1499 if (nregs == 0)
1500 return;
1502 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1503 x = validize_mem (force_const_mem (mode, x));
1505 /* See if the machine can do this with a load multiple insn. */
1506 #ifdef HAVE_load_multiple
1507 if (HAVE_load_multiple)
1509 last = get_last_insn ();
1510 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1511 GEN_INT (nregs));
1512 if (pat)
1514 emit_insn (pat);
1515 return;
1517 else
1518 delete_insns_since (last);
1520 #endif
1522 for (i = 0; i < nregs; i++)
1523 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1524 operand_subword_force (x, i, mode));
1527 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1528 The number of registers to be filled is NREGS. */
1530 void
1531 move_block_from_reg (int regno, rtx x, int nregs)
1533 int i;
1535 if (nregs == 0)
1536 return;
1538 /* See if the machine can do this with a store multiple insn. */
1539 #ifdef HAVE_store_multiple
1540 if (HAVE_store_multiple)
1542 rtx last = get_last_insn ();
1543 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1544 GEN_INT (nregs));
1545 if (pat)
1547 emit_insn (pat);
1548 return;
1550 else
1551 delete_insns_since (last);
1553 #endif
1555 for (i = 0; i < nregs; i++)
1557 rtx tem = operand_subword (x, i, 1, BLKmode);
1559 gcc_assert (tem);
1561 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1565 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1566 ORIG, where ORIG is a non-consecutive group of registers represented by
1567 a PARALLEL. The clone is identical to the original except in that the
1568 original set of registers is replaced by a new set of pseudo registers.
1569 The new set has the same modes as the original set. */
1572 gen_group_rtx (rtx orig)
1574 int i, length;
1575 rtx *tmps;
1577 gcc_assert (GET_CODE (orig) == PARALLEL);
1579 length = XVECLEN (orig, 0);
1580 tmps = alloca (sizeof (rtx) * length);
1582 /* Skip a NULL entry in first slot. */
1583 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1585 if (i)
1586 tmps[0] = 0;
1588 for (; i < length; i++)
1590 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1591 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1593 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1596 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1599 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1600 except that values are placed in TMPS[i], and must later be moved
1601 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1603 static void
1604 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1606 rtx src;
1607 int start, i;
1608 enum machine_mode m = GET_MODE (orig_src);
1610 gcc_assert (GET_CODE (dst) == PARALLEL);
1612 if (m != VOIDmode
1613 && !SCALAR_INT_MODE_P (m)
1614 && !MEM_P (orig_src)
1615 && GET_CODE (orig_src) != CONCAT)
1617 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1618 if (imode == BLKmode)
1619 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1620 else
1621 src = gen_reg_rtx (imode);
1622 if (imode != BLKmode)
1623 src = gen_lowpart (GET_MODE (orig_src), src);
1624 emit_move_insn (src, orig_src);
1625 /* ...and back again. */
1626 if (imode != BLKmode)
1627 src = gen_lowpart (imode, src);
1628 emit_group_load_1 (tmps, dst, src, type, ssize);
1629 return;
1632 /* Check for a NULL entry, used to indicate that the parameter goes
1633 both on the stack and in registers. */
1634 if (XEXP (XVECEXP (dst, 0, 0), 0))
1635 start = 0;
1636 else
1637 start = 1;
1639 /* Process the pieces. */
1640 for (i = start; i < XVECLEN (dst, 0); i++)
1642 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1643 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1644 unsigned int bytelen = GET_MODE_SIZE (mode);
1645 int shift = 0;
1647 /* Handle trailing fragments that run over the size of the struct. */
1648 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1650 /* Arrange to shift the fragment to where it belongs.
1651 extract_bit_field loads to the lsb of the reg. */
1652 if (
1653 #ifdef BLOCK_REG_PADDING
1654 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1655 == (BYTES_BIG_ENDIAN ? upward : downward)
1656 #else
1657 BYTES_BIG_ENDIAN
1658 #endif
1660 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1661 bytelen = ssize - bytepos;
1662 gcc_assert (bytelen > 0);
1665 /* If we won't be loading directly from memory, protect the real source
1666 from strange tricks we might play; but make sure that the source can
1667 be loaded directly into the destination. */
1668 src = orig_src;
1669 if (!MEM_P (orig_src)
1670 && (!CONSTANT_P (orig_src)
1671 || (GET_MODE (orig_src) != mode
1672 && GET_MODE (orig_src) != VOIDmode)))
1674 if (GET_MODE (orig_src) == VOIDmode)
1675 src = gen_reg_rtx (mode);
1676 else
1677 src = gen_reg_rtx (GET_MODE (orig_src));
1679 emit_move_insn (src, orig_src);
1682 /* Optimize the access just a bit. */
1683 if (MEM_P (src)
1684 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1685 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1686 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1687 && bytelen == GET_MODE_SIZE (mode))
1689 tmps[i] = gen_reg_rtx (mode);
1690 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1692 else if (COMPLEX_MODE_P (mode)
1693 && GET_MODE (src) == mode
1694 && bytelen == GET_MODE_SIZE (mode))
1695 /* Let emit_move_complex do the bulk of the work. */
1696 tmps[i] = src;
1697 else if (GET_CODE (src) == CONCAT)
1699 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1700 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1702 if ((bytepos == 0 && bytelen == slen0)
1703 || (bytepos != 0 && bytepos + bytelen <= slen))
1705 /* The following assumes that the concatenated objects all
1706 have the same size. In this case, a simple calculation
1707 can be used to determine the object and the bit field
1708 to be extracted. */
1709 tmps[i] = XEXP (src, bytepos / slen0);
1710 if (! CONSTANT_P (tmps[i])
1711 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1712 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1713 (bytepos % slen0) * BITS_PER_UNIT,
1714 1, NULL_RTX, mode, mode);
1716 else
1718 rtx mem;
1720 gcc_assert (!bytepos);
1721 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1722 emit_move_insn (mem, src);
1723 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1724 0, 1, NULL_RTX, mode, mode);
1727 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1728 SIMD register, which is currently broken. While we get GCC
1729 to emit proper RTL for these cases, let's dump to memory. */
1730 else if (VECTOR_MODE_P (GET_MODE (dst))
1731 && REG_P (src))
1733 int slen = GET_MODE_SIZE (GET_MODE (src));
1734 rtx mem;
1736 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1737 emit_move_insn (mem, src);
1738 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1740 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1741 && XVECLEN (dst, 0) > 1)
1742 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1743 else if (CONSTANT_P (src)
1744 || (REG_P (src) && GET_MODE (src) == mode))
1745 tmps[i] = src;
1746 else
1747 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1748 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1749 mode, mode);
1751 if (shift)
1752 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1753 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1757 /* Emit code to move a block SRC of type TYPE to a block DST,
1758 where DST is non-consecutive registers represented by a PARALLEL.
1759 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1760 if not known. */
1762 void
1763 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1765 rtx *tmps;
1766 int i;
1768 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1769 emit_group_load_1 (tmps, dst, src, type, ssize);
1771 /* Copy the extracted pieces into the proper (probable) hard regs. */
1772 for (i = 0; i < XVECLEN (dst, 0); i++)
1774 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1775 if (d == NULL)
1776 continue;
1777 emit_move_insn (d, tmps[i]);
1781 /* Similar, but load SRC into new pseudos in a format that looks like
1782 PARALLEL. This can later be fed to emit_group_move to get things
1783 in the right place. */
1786 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1788 rtvec vec;
1789 int i;
1791 vec = rtvec_alloc (XVECLEN (parallel, 0));
1792 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1794 /* Convert the vector to look just like the original PARALLEL, except
1795 with the computed values. */
1796 for (i = 0; i < XVECLEN (parallel, 0); i++)
1798 rtx e = XVECEXP (parallel, 0, i);
1799 rtx d = XEXP (e, 0);
1801 if (d)
1803 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1804 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1806 RTVEC_ELT (vec, i) = e;
1809 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1812 /* Emit code to move a block SRC to block DST, where SRC and DST are
1813 non-consecutive groups of registers, each represented by a PARALLEL. */
1815 void
1816 emit_group_move (rtx dst, rtx src)
1818 int i;
1820 gcc_assert (GET_CODE (src) == PARALLEL
1821 && GET_CODE (dst) == PARALLEL
1822 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1824 /* Skip first entry if NULL. */
1825 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1826 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1827 XEXP (XVECEXP (src, 0, i), 0));
1830 /* Move a group of registers represented by a PARALLEL into pseudos. */
1833 emit_group_move_into_temps (rtx src)
1835 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1836 int i;
1838 for (i = 0; i < XVECLEN (src, 0); i++)
1840 rtx e = XVECEXP (src, 0, i);
1841 rtx d = XEXP (e, 0);
1843 if (d)
1844 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1845 RTVEC_ELT (vec, i) = e;
1848 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1851 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1852 where SRC is non-consecutive registers represented by a PARALLEL.
1853 SSIZE represents the total size of block ORIG_DST, or -1 if not
1854 known. */
1856 void
1857 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1859 rtx *tmps, dst;
1860 int start, finish, i;
1861 enum machine_mode m = GET_MODE (orig_dst);
1863 gcc_assert (GET_CODE (src) == PARALLEL);
1865 if (!SCALAR_INT_MODE_P (m)
1866 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1868 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1869 if (imode == BLKmode)
1870 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1871 else
1872 dst = gen_reg_rtx (imode);
1873 emit_group_store (dst, src, type, ssize);
1874 if (imode != BLKmode)
1875 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1876 emit_move_insn (orig_dst, dst);
1877 return;
1880 /* Check for a NULL entry, used to indicate that the parameter goes
1881 both on the stack and in registers. */
1882 if (XEXP (XVECEXP (src, 0, 0), 0))
1883 start = 0;
1884 else
1885 start = 1;
1886 finish = XVECLEN (src, 0);
1888 tmps = alloca (sizeof (rtx) * finish);
1890 /* Copy the (probable) hard regs into pseudos. */
1891 for (i = start; i < finish; i++)
1893 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1894 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1896 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1897 emit_move_insn (tmps[i], reg);
1899 else
1900 tmps[i] = reg;
1903 /* If we won't be storing directly into memory, protect the real destination
1904 from strange tricks we might play. */
1905 dst = orig_dst;
1906 if (GET_CODE (dst) == PARALLEL)
1908 rtx temp;
1910 /* We can get a PARALLEL dst if there is a conditional expression in
1911 a return statement. In that case, the dst and src are the same,
1912 so no action is necessary. */
1913 if (rtx_equal_p (dst, src))
1914 return;
1916 /* It is unclear if we can ever reach here, but we may as well handle
1917 it. Allocate a temporary, and split this into a store/load to/from
1918 the temporary. */
1920 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1921 emit_group_store (temp, src, type, ssize);
1922 emit_group_load (dst, temp, type, ssize);
1923 return;
1925 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1927 enum machine_mode outer = GET_MODE (dst);
1928 enum machine_mode inner;
1929 HOST_WIDE_INT bytepos;
1930 bool done = false;
1931 rtx temp;
1933 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1934 dst = gen_reg_rtx (outer);
1936 /* Make life a bit easier for combine. */
1937 /* If the first element of the vector is the low part
1938 of the destination mode, use a paradoxical subreg to
1939 initialize the destination. */
1940 if (start < finish)
1942 inner = GET_MODE (tmps[start]);
1943 bytepos = subreg_lowpart_offset (inner, outer);
1944 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1946 temp = simplify_gen_subreg (outer, tmps[start],
1947 inner, 0);
1948 if (temp)
1950 emit_move_insn (dst, temp);
1951 done = true;
1952 start++;
1957 /* If the first element wasn't the low part, try the last. */
1958 if (!done
1959 && start < finish - 1)
1961 inner = GET_MODE (tmps[finish - 1]);
1962 bytepos = subreg_lowpart_offset (inner, outer);
1963 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1965 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1966 inner, 0);
1967 if (temp)
1969 emit_move_insn (dst, temp);
1970 done = true;
1971 finish--;
1976 /* Otherwise, simply initialize the result to zero. */
1977 if (!done)
1978 emit_move_insn (dst, CONST0_RTX (outer));
1981 /* Process the pieces. */
1982 for (i = start; i < finish; i++)
1984 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1985 enum machine_mode mode = GET_MODE (tmps[i]);
1986 unsigned int bytelen = GET_MODE_SIZE (mode);
1987 rtx dest = dst;
1989 /* Handle trailing fragments that run over the size of the struct. */
1990 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1992 /* store_bit_field always takes its value from the lsb.
1993 Move the fragment to the lsb if it's not already there. */
1994 if (
1995 #ifdef BLOCK_REG_PADDING
1996 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
1997 == (BYTES_BIG_ENDIAN ? upward : downward)
1998 #else
1999 BYTES_BIG_ENDIAN
2000 #endif
2003 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2004 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2005 build_int_cst (NULL_TREE, shift),
2006 tmps[i], 0);
2008 bytelen = ssize - bytepos;
2011 if (GET_CODE (dst) == CONCAT)
2013 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2014 dest = XEXP (dst, 0);
2015 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2017 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2018 dest = XEXP (dst, 1);
2020 else
2022 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2023 dest = assign_stack_temp (GET_MODE (dest),
2024 GET_MODE_SIZE (GET_MODE (dest)), 0);
2025 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
2026 tmps[i]);
2027 dst = dest;
2028 break;
2032 /* Optimize the access just a bit. */
2033 if (MEM_P (dest)
2034 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2035 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2036 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2037 && bytelen == GET_MODE_SIZE (mode))
2038 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2039 else
2040 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2041 mode, tmps[i]);
2044 /* Copy from the pseudo into the (probable) hard reg. */
2045 if (orig_dst != dst)
2046 emit_move_insn (orig_dst, dst);
2049 /* Generate code to copy a BLKmode object of TYPE out of a
2050 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2051 is null, a stack temporary is created. TGTBLK is returned.
2053 The purpose of this routine is to handle functions that return
2054 BLKmode structures in registers. Some machines (the PA for example)
2055 want to return all small structures in registers regardless of the
2056 structure's alignment. */
2059 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2061 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2062 rtx src = NULL, dst = NULL;
2063 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2064 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2066 if (tgtblk == 0)
2068 tgtblk = assign_temp (build_qualified_type (type,
2069 (TYPE_QUALS (type)
2070 | TYPE_QUAL_CONST)),
2071 0, 1, 1);
2072 preserve_temp_slots (tgtblk);
2075 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2076 into a new pseudo which is a full word. */
2078 if (GET_MODE (srcreg) != BLKmode
2079 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2080 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2082 /* If the structure doesn't take up a whole number of words, see whether
2083 SRCREG is padded on the left or on the right. If it's on the left,
2084 set PADDING_CORRECTION to the number of bits to skip.
2086 In most ABIs, the structure will be returned at the least end of
2087 the register, which translates to right padding on little-endian
2088 targets and left padding on big-endian targets. The opposite
2089 holds if the structure is returned at the most significant
2090 end of the register. */
2091 if (bytes % UNITS_PER_WORD != 0
2092 && (targetm.calls.return_in_msb (type)
2093 ? !BYTES_BIG_ENDIAN
2094 : BYTES_BIG_ENDIAN))
2095 padding_correction
2096 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2098 /* Copy the structure BITSIZE bites at a time.
2100 We could probably emit more efficient code for machines which do not use
2101 strict alignment, but it doesn't seem worth the effort at the current
2102 time. */
2103 for (bitpos = 0, xbitpos = padding_correction;
2104 bitpos < bytes * BITS_PER_UNIT;
2105 bitpos += bitsize, xbitpos += bitsize)
2107 /* We need a new source operand each time xbitpos is on a
2108 word boundary and when xbitpos == padding_correction
2109 (the first time through). */
2110 if (xbitpos % BITS_PER_WORD == 0
2111 || xbitpos == padding_correction)
2112 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2113 GET_MODE (srcreg));
2115 /* We need a new destination operand each time bitpos is on
2116 a word boundary. */
2117 if (bitpos % BITS_PER_WORD == 0)
2118 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2120 /* Use xbitpos for the source extraction (right justified) and
2121 xbitpos for the destination store (left justified). */
2122 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2123 extract_bit_field (src, bitsize,
2124 xbitpos % BITS_PER_WORD, 1,
2125 NULL_RTX, word_mode, word_mode));
2128 return tgtblk;
2131 /* Add a USE expression for REG to the (possibly empty) list pointed
2132 to by CALL_FUSAGE. REG must denote a hard register. */
2134 void
2135 use_reg (rtx *call_fusage, rtx reg)
2137 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2139 *call_fusage
2140 = gen_rtx_EXPR_LIST (VOIDmode,
2141 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2144 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2145 starting at REGNO. All of these registers must be hard registers. */
2147 void
2148 use_regs (rtx *call_fusage, int regno, int nregs)
2150 int i;
2152 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2154 for (i = 0; i < nregs; i++)
2155 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2158 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2159 PARALLEL REGS. This is for calls that pass values in multiple
2160 non-contiguous locations. The Irix 6 ABI has examples of this. */
2162 void
2163 use_group_regs (rtx *call_fusage, rtx regs)
2165 int i;
2167 for (i = 0; i < XVECLEN (regs, 0); i++)
2169 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2171 /* A NULL entry means the parameter goes both on the stack and in
2172 registers. This can also be a MEM for targets that pass values
2173 partially on the stack and partially in registers. */
2174 if (reg != 0 && REG_P (reg))
2175 use_reg (call_fusage, reg);
2180 /* Determine whether the LEN bytes generated by CONSTFUN can be
2181 stored to memory using several move instructions. CONSTFUNDATA is
2182 a pointer which will be passed as argument in every CONSTFUN call.
2183 ALIGN is maximum alignment we can assume. Return nonzero if a
2184 call to store_by_pieces should succeed. */
2187 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2188 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2189 void *constfundata, unsigned int align)
2191 unsigned HOST_WIDE_INT l;
2192 unsigned int max_size;
2193 HOST_WIDE_INT offset = 0;
2194 enum machine_mode mode, tmode;
2195 enum insn_code icode;
2196 int reverse;
2197 rtx cst;
2199 if (len == 0)
2200 return 1;
2202 if (! STORE_BY_PIECES_P (len, align))
2203 return 0;
2205 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2206 if (align >= GET_MODE_ALIGNMENT (tmode))
2207 align = GET_MODE_ALIGNMENT (tmode);
2208 else
2210 enum machine_mode xmode;
2212 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2213 tmode != VOIDmode;
2214 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2215 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2216 || SLOW_UNALIGNED_ACCESS (tmode, align))
2217 break;
2219 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2222 /* We would first store what we can in the largest integer mode, then go to
2223 successively smaller modes. */
2225 for (reverse = 0;
2226 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2227 reverse++)
2229 l = len;
2230 mode = VOIDmode;
2231 max_size = STORE_MAX_PIECES + 1;
2232 while (max_size > 1)
2234 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2235 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2236 if (GET_MODE_SIZE (tmode) < max_size)
2237 mode = tmode;
2239 if (mode == VOIDmode)
2240 break;
2242 icode = mov_optab->handlers[(int) mode].insn_code;
2243 if (icode != CODE_FOR_nothing
2244 && align >= GET_MODE_ALIGNMENT (mode))
2246 unsigned int size = GET_MODE_SIZE (mode);
2248 while (l >= size)
2250 if (reverse)
2251 offset -= size;
2253 cst = (*constfun) (constfundata, offset, mode);
2254 if (!LEGITIMATE_CONSTANT_P (cst))
2255 return 0;
2257 if (!reverse)
2258 offset += size;
2260 l -= size;
2264 max_size = GET_MODE_SIZE (mode);
2267 /* The code above should have handled everything. */
2268 gcc_assert (!l);
2271 return 1;
2274 /* Generate several move instructions to store LEN bytes generated by
2275 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2276 pointer which will be passed as argument in every CONSTFUN call.
2277 ALIGN is maximum alignment we can assume.
2278 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2279 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2280 stpcpy. */
2283 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2284 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2285 void *constfundata, unsigned int align, int endp)
2287 struct store_by_pieces data;
2289 if (len == 0)
2291 gcc_assert (endp != 2);
2292 return to;
2295 gcc_assert (STORE_BY_PIECES_P (len, align));
2296 data.constfun = constfun;
2297 data.constfundata = constfundata;
2298 data.len = len;
2299 data.to = to;
2300 store_by_pieces_1 (&data, align);
2301 if (endp)
2303 rtx to1;
2305 gcc_assert (!data.reverse);
2306 if (data.autinc_to)
2308 if (endp == 2)
2310 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2311 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2312 else
2313 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2314 -1));
2316 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2317 data.offset);
2319 else
2321 if (endp == 2)
2322 --data.offset;
2323 to1 = adjust_address (data.to, QImode, data.offset);
2325 return to1;
2327 else
2328 return data.to;
2331 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2332 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2334 static void
2335 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2337 struct store_by_pieces data;
2339 if (len == 0)
2340 return;
2342 data.constfun = clear_by_pieces_1;
2343 data.constfundata = NULL;
2344 data.len = len;
2345 data.to = to;
2346 store_by_pieces_1 (&data, align);
2349 /* Callback routine for clear_by_pieces.
2350 Return const0_rtx unconditionally. */
2352 static rtx
2353 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2354 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2355 enum machine_mode mode ATTRIBUTE_UNUSED)
2357 return const0_rtx;
2360 /* Subroutine of clear_by_pieces and store_by_pieces.
2361 Generate several move instructions to store LEN bytes of block TO. (A MEM
2362 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2364 static void
2365 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2366 unsigned int align ATTRIBUTE_UNUSED)
2368 rtx to_addr = XEXP (data->to, 0);
2369 unsigned int max_size = STORE_MAX_PIECES + 1;
2370 enum machine_mode mode = VOIDmode, tmode;
2371 enum insn_code icode;
2373 data->offset = 0;
2374 data->to_addr = to_addr;
2375 data->autinc_to
2376 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2377 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2379 data->explicit_inc_to = 0;
2380 data->reverse
2381 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2382 if (data->reverse)
2383 data->offset = data->len;
2385 /* If storing requires more than two move insns,
2386 copy addresses to registers (to make displacements shorter)
2387 and use post-increment if available. */
2388 if (!data->autinc_to
2389 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2391 /* Determine the main mode we'll be using. */
2392 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2393 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2394 if (GET_MODE_SIZE (tmode) < max_size)
2395 mode = tmode;
2397 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2399 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2400 data->autinc_to = 1;
2401 data->explicit_inc_to = -1;
2404 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2405 && ! data->autinc_to)
2407 data->to_addr = copy_addr_to_reg (to_addr);
2408 data->autinc_to = 1;
2409 data->explicit_inc_to = 1;
2412 if ( !data->autinc_to && CONSTANT_P (to_addr))
2413 data->to_addr = copy_addr_to_reg (to_addr);
2416 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2417 if (align >= GET_MODE_ALIGNMENT (tmode))
2418 align = GET_MODE_ALIGNMENT (tmode);
2419 else
2421 enum machine_mode xmode;
2423 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2424 tmode != VOIDmode;
2425 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2426 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2427 || SLOW_UNALIGNED_ACCESS (tmode, align))
2428 break;
2430 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2433 /* First store what we can in the largest integer mode, then go to
2434 successively smaller modes. */
2436 while (max_size > 1)
2438 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2439 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2440 if (GET_MODE_SIZE (tmode) < max_size)
2441 mode = tmode;
2443 if (mode == VOIDmode)
2444 break;
2446 icode = mov_optab->handlers[(int) mode].insn_code;
2447 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2448 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2450 max_size = GET_MODE_SIZE (mode);
2453 /* The code above should have handled everything. */
2454 gcc_assert (!data->len);
2457 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2458 with move instructions for mode MODE. GENFUN is the gen_... function
2459 to make a move insn for that mode. DATA has all the other info. */
2461 static void
2462 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2463 struct store_by_pieces *data)
2465 unsigned int size = GET_MODE_SIZE (mode);
2466 rtx to1, cst;
2468 while (data->len >= size)
2470 if (data->reverse)
2471 data->offset -= size;
2473 if (data->autinc_to)
2474 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2475 data->offset);
2476 else
2477 to1 = adjust_address (data->to, mode, data->offset);
2479 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2480 emit_insn (gen_add2_insn (data->to_addr,
2481 GEN_INT (-(HOST_WIDE_INT) size)));
2483 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2484 emit_insn ((*genfun) (to1, cst));
2486 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2487 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2489 if (! data->reverse)
2490 data->offset += size;
2492 data->len -= size;
2496 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2497 its length in bytes. */
2500 clear_storage (rtx object, rtx size, enum block_op_methods method)
2502 enum machine_mode mode = GET_MODE (object);
2503 unsigned int align;
2505 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2507 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2508 just move a zero. Otherwise, do this a piece at a time. */
2509 if (mode != BLKmode
2510 && GET_CODE (size) == CONST_INT
2511 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2513 rtx zero = CONST0_RTX (mode);
2514 if (zero != NULL)
2516 emit_move_insn (object, zero);
2517 return NULL;
2520 if (COMPLEX_MODE_P (mode))
2522 zero = CONST0_RTX (GET_MODE_INNER (mode));
2523 if (zero != NULL)
2525 write_complex_part (object, zero, 0);
2526 write_complex_part (object, zero, 1);
2527 return NULL;
2532 if (size == const0_rtx)
2533 return NULL;
2535 align = MEM_ALIGN (object);
2537 if (GET_CODE (size) == CONST_INT
2538 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2539 clear_by_pieces (object, INTVAL (size), align);
2540 else if (set_storage_via_setmem (object, size, const0_rtx, align))
2542 else
2543 return clear_storage_via_libcall (object, size,
2544 method == BLOCK_OP_TAILCALL);
2546 return NULL;
2549 /* A subroutine of clear_storage. Expand a call to memset.
2550 Return the return value of memset, 0 otherwise. */
2552 static rtx
2553 clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
2555 tree call_expr, arg_list, fn, object_tree, size_tree;
2556 enum machine_mode size_mode;
2557 rtx retval;
2559 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2560 place those into new pseudos into a VAR_DECL and use them later. */
2562 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2564 size_mode = TYPE_MODE (sizetype);
2565 size = convert_to_mode (size_mode, size, 1);
2566 size = copy_to_mode_reg (size_mode, size);
2568 /* It is incorrect to use the libcall calling conventions to call
2569 memset in this context. This could be a user call to memset and
2570 the user may wish to examine the return value from memset. For
2571 targets where libcalls and normal calls have different conventions
2572 for returning pointers, we could end up generating incorrect code. */
2574 object_tree = make_tree (ptr_type_node, object);
2575 size_tree = make_tree (sizetype, size);
2577 fn = clear_storage_libcall_fn (true);
2578 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
2579 arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
2580 arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
2582 /* Now we have to build up the CALL_EXPR itself. */
2583 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
2584 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2585 call_expr, arg_list, NULL_TREE);
2586 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2588 retval = expand_normal (call_expr);
2590 return retval;
2593 /* A subroutine of clear_storage_via_libcall. Create the tree node
2594 for the function we use for block clears. The first time FOR_CALL
2595 is true, we call assemble_external. */
2597 static GTY(()) tree block_clear_fn;
2599 void
2600 init_block_clear_fn (const char *asmspec)
2602 if (!block_clear_fn)
2604 tree fn, args;
2606 fn = get_identifier ("memset");
2607 args = build_function_type_list (ptr_type_node, ptr_type_node,
2608 integer_type_node, sizetype,
2609 NULL_TREE);
2611 fn = build_decl (FUNCTION_DECL, fn, args);
2612 DECL_EXTERNAL (fn) = 1;
2613 TREE_PUBLIC (fn) = 1;
2614 DECL_ARTIFICIAL (fn) = 1;
2615 TREE_NOTHROW (fn) = 1;
2616 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2617 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2619 block_clear_fn = fn;
2622 if (asmspec)
2623 set_user_assembler_name (block_clear_fn, asmspec);
2626 static tree
2627 clear_storage_libcall_fn (int for_call)
2629 static bool emitted_extern;
2631 if (!block_clear_fn)
2632 init_block_clear_fn (NULL);
2634 if (for_call && !emitted_extern)
2636 emitted_extern = true;
2637 make_decl_rtl (block_clear_fn);
2638 assemble_external (block_clear_fn);
2641 return block_clear_fn;
2644 /* Expand a setmem pattern; return true if successful. */
2646 bool
2647 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
2649 /* Try the most limited insn first, because there's no point
2650 including more than one in the machine description unless
2651 the more limited one has some advantage. */
2653 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2654 enum machine_mode mode;
2656 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2657 mode = GET_MODE_WIDER_MODE (mode))
2659 enum insn_code code = setmem_optab[(int) mode];
2660 insn_operand_predicate_fn pred;
2662 if (code != CODE_FOR_nothing
2663 /* We don't need MODE to be narrower than
2664 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2665 the mode mask, as it is returned by the macro, it will
2666 definitely be less than the actual mode mask. */
2667 && ((GET_CODE (size) == CONST_INT
2668 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2669 <= (GET_MODE_MASK (mode) >> 1)))
2670 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2671 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2672 || (*pred) (object, BLKmode))
2673 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2674 || (*pred) (opalign, VOIDmode)))
2676 rtx opsize, opchar;
2677 enum machine_mode char_mode;
2678 rtx last = get_last_insn ();
2679 rtx pat;
2681 opsize = convert_to_mode (mode, size, 1);
2682 pred = insn_data[(int) code].operand[1].predicate;
2683 if (pred != 0 && ! (*pred) (opsize, mode))
2684 opsize = copy_to_mode_reg (mode, opsize);
2686 opchar = val;
2687 char_mode = insn_data[(int) code].operand[2].mode;
2688 if (char_mode != VOIDmode)
2690 opchar = convert_to_mode (char_mode, opchar, 1);
2691 pred = insn_data[(int) code].operand[2].predicate;
2692 if (pred != 0 && ! (*pred) (opchar, char_mode))
2693 opchar = copy_to_mode_reg (char_mode, opchar);
2696 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2697 if (pat)
2699 emit_insn (pat);
2700 return true;
2702 else
2703 delete_insns_since (last);
2707 return false;
2711 /* Write to one of the components of the complex value CPLX. Write VAL to
2712 the real part if IMAG_P is false, and the imaginary part if its true. */
2714 static void
2715 write_complex_part (rtx cplx, rtx val, bool imag_p)
2717 enum machine_mode cmode;
2718 enum machine_mode imode;
2719 unsigned ibitsize;
2721 if (GET_CODE (cplx) == CONCAT)
2723 emit_move_insn (XEXP (cplx, imag_p), val);
2724 return;
2727 cmode = GET_MODE (cplx);
2728 imode = GET_MODE_INNER (cmode);
2729 ibitsize = GET_MODE_BITSIZE (imode);
2731 /* For MEMs simplify_gen_subreg may generate an invalid new address
2732 because, e.g., the original address is considered mode-dependent
2733 by the target, which restricts simplify_subreg from invoking
2734 adjust_address_nv. Instead of preparing fallback support for an
2735 invalid address, we call adjust_address_nv directly. */
2736 if (MEM_P (cplx))
2738 emit_move_insn (adjust_address_nv (cplx, imode,
2739 imag_p ? GET_MODE_SIZE (imode) : 0),
2740 val);
2741 return;
2744 /* If the sub-object is at least word sized, then we know that subregging
2745 will work. This special case is important, since store_bit_field
2746 wants to operate on integer modes, and there's rarely an OImode to
2747 correspond to TCmode. */
2748 if (ibitsize >= BITS_PER_WORD
2749 /* For hard regs we have exact predicates. Assume we can split
2750 the original object if it spans an even number of hard regs.
2751 This special case is important for SCmode on 64-bit platforms
2752 where the natural size of floating-point regs is 32-bit. */
2753 || (REG_P (cplx)
2754 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2755 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2757 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2758 imag_p ? GET_MODE_SIZE (imode) : 0);
2759 if (part)
2761 emit_move_insn (part, val);
2762 return;
2764 else
2765 /* simplify_gen_subreg may fail for sub-word MEMs. */
2766 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2769 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2772 /* Extract one of the components of the complex value CPLX. Extract the
2773 real part if IMAG_P is false, and the imaginary part if it's true. */
2775 static rtx
2776 read_complex_part (rtx cplx, bool imag_p)
2778 enum machine_mode cmode, imode;
2779 unsigned ibitsize;
2781 if (GET_CODE (cplx) == CONCAT)
2782 return XEXP (cplx, imag_p);
2784 cmode = GET_MODE (cplx);
2785 imode = GET_MODE_INNER (cmode);
2786 ibitsize = GET_MODE_BITSIZE (imode);
2788 /* Special case reads from complex constants that got spilled to memory. */
2789 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2791 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2792 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2794 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2795 if (CONSTANT_CLASS_P (part))
2796 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2800 /* For MEMs simplify_gen_subreg may generate an invalid new address
2801 because, e.g., the original address is considered mode-dependent
2802 by the target, which restricts simplify_subreg from invoking
2803 adjust_address_nv. Instead of preparing fallback support for an
2804 invalid address, we call adjust_address_nv directly. */
2805 if (MEM_P (cplx))
2806 return adjust_address_nv (cplx, imode,
2807 imag_p ? GET_MODE_SIZE (imode) : 0);
2809 /* If the sub-object is at least word sized, then we know that subregging
2810 will work. This special case is important, since extract_bit_field
2811 wants to operate on integer modes, and there's rarely an OImode to
2812 correspond to TCmode. */
2813 if (ibitsize >= BITS_PER_WORD
2814 /* For hard regs we have exact predicates. Assume we can split
2815 the original object if it spans an even number of hard regs.
2816 This special case is important for SCmode on 64-bit platforms
2817 where the natural size of floating-point regs is 32-bit. */
2818 || (REG_P (cplx)
2819 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2820 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2822 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2823 imag_p ? GET_MODE_SIZE (imode) : 0);
2824 if (ret)
2825 return ret;
2826 else
2827 /* simplify_gen_subreg may fail for sub-word MEMs. */
2828 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2831 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2832 true, NULL_RTX, imode, imode);
2835 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2836 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2837 represented in NEW_MODE. If FORCE is true, this will never happen, as
2838 we'll force-create a SUBREG if needed. */
2840 static rtx
2841 emit_move_change_mode (enum machine_mode new_mode,
2842 enum machine_mode old_mode, rtx x, bool force)
2844 rtx ret;
2846 if (MEM_P (x))
2848 /* We don't have to worry about changing the address since the
2849 size in bytes is supposed to be the same. */
2850 if (reload_in_progress)
2852 /* Copy the MEM to change the mode and move any
2853 substitutions from the old MEM to the new one. */
2854 ret = adjust_address_nv (x, new_mode, 0);
2855 copy_replacements (x, ret);
2857 else
2858 ret = adjust_address (x, new_mode, 0);
2860 else
2862 /* Note that we do want simplify_subreg's behavior of validating
2863 that the new mode is ok for a hard register. If we were to use
2864 simplify_gen_subreg, we would create the subreg, but would
2865 probably run into the target not being able to implement it. */
2866 /* Except, of course, when FORCE is true, when this is exactly what
2867 we want. Which is needed for CCmodes on some targets. */
2868 if (force)
2869 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2870 else
2871 ret = simplify_subreg (new_mode, x, old_mode, 0);
2874 return ret;
2877 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2878 an integer mode of the same size as MODE. Returns the instruction
2879 emitted, or NULL if such a move could not be generated. */
2881 static rtx
2882 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2884 enum machine_mode imode;
2885 enum insn_code code;
2887 /* There must exist a mode of the exact size we require. */
2888 imode = int_mode_for_mode (mode);
2889 if (imode == BLKmode)
2890 return NULL_RTX;
2892 /* The target must support moves in this mode. */
2893 code = mov_optab->handlers[imode].insn_code;
2894 if (code == CODE_FOR_nothing)
2895 return NULL_RTX;
2897 x = emit_move_change_mode (imode, mode, x, force);
2898 if (x == NULL_RTX)
2899 return NULL_RTX;
2900 y = emit_move_change_mode (imode, mode, y, force);
2901 if (y == NULL_RTX)
2902 return NULL_RTX;
2903 return emit_insn (GEN_FCN (code) (x, y));
2906 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2907 Return an equivalent MEM that does not use an auto-increment. */
2909 static rtx
2910 emit_move_resolve_push (enum machine_mode mode, rtx x)
2912 enum rtx_code code = GET_CODE (XEXP (x, 0));
2913 HOST_WIDE_INT adjust;
2914 rtx temp;
2916 adjust = GET_MODE_SIZE (mode);
2917 #ifdef PUSH_ROUNDING
2918 adjust = PUSH_ROUNDING (adjust);
2919 #endif
2920 if (code == PRE_DEC || code == POST_DEC)
2921 adjust = -adjust;
2922 else if (code == PRE_MODIFY || code == POST_MODIFY)
2924 rtx expr = XEXP (XEXP (x, 0), 1);
2925 HOST_WIDE_INT val;
2927 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2928 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
2929 val = INTVAL (XEXP (expr, 1));
2930 if (GET_CODE (expr) == MINUS)
2931 val = -val;
2932 gcc_assert (adjust == val || adjust == -val);
2933 adjust = val;
2936 /* Do not use anti_adjust_stack, since we don't want to update
2937 stack_pointer_delta. */
2938 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2939 GEN_INT (adjust), stack_pointer_rtx,
2940 0, OPTAB_LIB_WIDEN);
2941 if (temp != stack_pointer_rtx)
2942 emit_move_insn (stack_pointer_rtx, temp);
2944 switch (code)
2946 case PRE_INC:
2947 case PRE_DEC:
2948 case PRE_MODIFY:
2949 temp = stack_pointer_rtx;
2950 break;
2951 case POST_INC:
2952 case POST_DEC:
2953 case POST_MODIFY:
2954 temp = plus_constant (stack_pointer_rtx, -adjust);
2955 break;
2956 default:
2957 gcc_unreachable ();
2960 return replace_equiv_address (x, temp);
2963 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2964 X is known to satisfy push_operand, and MODE is known to be complex.
2965 Returns the last instruction emitted. */
2967 static rtx
2968 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
2970 enum machine_mode submode = GET_MODE_INNER (mode);
2971 bool imag_first;
2973 #ifdef PUSH_ROUNDING
2974 unsigned int submodesize = GET_MODE_SIZE (submode);
2976 /* In case we output to the stack, but the size is smaller than the
2977 machine can push exactly, we need to use move instructions. */
2978 if (PUSH_ROUNDING (submodesize) != submodesize)
2980 x = emit_move_resolve_push (mode, x);
2981 return emit_move_insn (x, y);
2983 #endif
2985 /* Note that the real part always precedes the imag part in memory
2986 regardless of machine's endianness. */
2987 switch (GET_CODE (XEXP (x, 0)))
2989 case PRE_DEC:
2990 case POST_DEC:
2991 imag_first = true;
2992 break;
2993 case PRE_INC:
2994 case POST_INC:
2995 imag_first = false;
2996 break;
2997 default:
2998 gcc_unreachable ();
3001 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3002 read_complex_part (y, imag_first));
3003 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3004 read_complex_part (y, !imag_first));
3007 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3008 MODE is known to be complex. Returns the last instruction emitted. */
3010 static rtx
3011 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3013 bool try_int;
3015 /* Need to take special care for pushes, to maintain proper ordering
3016 of the data, and possibly extra padding. */
3017 if (push_operand (x, mode))
3018 return emit_move_complex_push (mode, x, y);
3020 /* See if we can coerce the target into moving both values at once. */
3022 /* Move floating point as parts. */
3023 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3024 && mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
3025 try_int = false;
3026 /* Not possible if the values are inherently not adjacent. */
3027 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3028 try_int = false;
3029 /* Is possible if both are registers (or subregs of registers). */
3030 else if (register_operand (x, mode) && register_operand (y, mode))
3031 try_int = true;
3032 /* If one of the operands is a memory, and alignment constraints
3033 are friendly enough, we may be able to do combined memory operations.
3034 We do not attempt this if Y is a constant because that combination is
3035 usually better with the by-parts thing below. */
3036 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3037 && (!STRICT_ALIGNMENT
3038 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3039 try_int = true;
3040 else
3041 try_int = false;
3043 if (try_int)
3045 rtx ret;
3047 /* For memory to memory moves, optimal behavior can be had with the
3048 existing block move logic. */
3049 if (MEM_P (x) && MEM_P (y))
3051 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3052 BLOCK_OP_NO_LIBCALL);
3053 return get_last_insn ();
3056 ret = emit_move_via_integer (mode, x, y, true);
3057 if (ret)
3058 return ret;
3061 /* Show the output dies here. This is necessary for SUBREGs
3062 of pseudos since we cannot track their lifetimes correctly;
3063 hard regs shouldn't appear here except as return values. */
3064 if (!reload_completed && !reload_in_progress
3065 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3066 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3068 write_complex_part (x, read_complex_part (y, false), false);
3069 write_complex_part (x, read_complex_part (y, true), true);
3070 return get_last_insn ();
3073 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3074 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3076 static rtx
3077 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3079 rtx ret;
3081 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3082 if (mode != CCmode)
3084 enum insn_code code = mov_optab->handlers[CCmode].insn_code;
3085 if (code != CODE_FOR_nothing)
3087 x = emit_move_change_mode (CCmode, mode, x, true);
3088 y = emit_move_change_mode (CCmode, mode, y, true);
3089 return emit_insn (GEN_FCN (code) (x, y));
3093 /* Otherwise, find the MODE_INT mode of the same width. */
3094 ret = emit_move_via_integer (mode, x, y, false);
3095 gcc_assert (ret != NULL);
3096 return ret;
3099 /* Return true if word I of OP lies entirely in the
3100 undefined bits of a paradoxical subreg. */
3102 static bool
3103 undefined_operand_subword_p (rtx op, int i)
3105 enum machine_mode innermode, innermostmode;
3106 int offset;
3107 if (GET_CODE (op) != SUBREG)
3108 return false;
3109 innermode = GET_MODE (op);
3110 innermostmode = GET_MODE (SUBREG_REG (op));
3111 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3112 /* The SUBREG_BYTE represents offset, as if the value were stored in
3113 memory, except for a paradoxical subreg where we define
3114 SUBREG_BYTE to be 0; undo this exception as in
3115 simplify_subreg. */
3116 if (SUBREG_BYTE (op) == 0
3117 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3119 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3120 if (WORDS_BIG_ENDIAN)
3121 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3122 if (BYTES_BIG_ENDIAN)
3123 offset += difference % UNITS_PER_WORD;
3125 if (offset >= GET_MODE_SIZE (innermostmode)
3126 || offset <= -GET_MODE_SIZE (word_mode))
3127 return true;
3128 return false;
3131 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3132 MODE is any multi-word or full-word mode that lacks a move_insn
3133 pattern. Note that you will get better code if you define such
3134 patterns, even if they must turn into multiple assembler instructions. */
3136 static rtx
3137 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3139 rtx last_insn = 0;
3140 rtx seq, inner;
3141 bool need_clobber;
3142 int i;
3144 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3146 /* If X is a push on the stack, do the push now and replace
3147 X with a reference to the stack pointer. */
3148 if (push_operand (x, mode))
3149 x = emit_move_resolve_push (mode, x);
3151 /* If we are in reload, see if either operand is a MEM whose address
3152 is scheduled for replacement. */
3153 if (reload_in_progress && MEM_P (x)
3154 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3155 x = replace_equiv_address_nv (x, inner);
3156 if (reload_in_progress && MEM_P (y)
3157 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3158 y = replace_equiv_address_nv (y, inner);
3160 start_sequence ();
3162 need_clobber = false;
3163 for (i = 0;
3164 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3165 i++)
3167 rtx xpart = operand_subword (x, i, 1, mode);
3168 rtx ypart;
3170 /* Do not generate code for a move if it would come entirely
3171 from the undefined bits of a paradoxical subreg. */
3172 if (undefined_operand_subword_p (y, i))
3173 continue;
3175 ypart = operand_subword (y, i, 1, mode);
3177 /* If we can't get a part of Y, put Y into memory if it is a
3178 constant. Otherwise, force it into a register. Then we must
3179 be able to get a part of Y. */
3180 if (ypart == 0 && CONSTANT_P (y))
3182 y = use_anchored_address (force_const_mem (mode, y));
3183 ypart = operand_subword (y, i, 1, mode);
3185 else if (ypart == 0)
3186 ypart = operand_subword_force (y, i, mode);
3188 gcc_assert (xpart && ypart);
3190 need_clobber |= (GET_CODE (xpart) == SUBREG);
3192 last_insn = emit_move_insn (xpart, ypart);
3195 seq = get_insns ();
3196 end_sequence ();
3198 /* Show the output dies here. This is necessary for SUBREGs
3199 of pseudos since we cannot track their lifetimes correctly;
3200 hard regs shouldn't appear here except as return values.
3201 We never want to emit such a clobber after reload. */
3202 if (x != y
3203 && ! (reload_in_progress || reload_completed)
3204 && need_clobber != 0)
3205 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3207 emit_insn (seq);
3209 return last_insn;
3212 /* Low level part of emit_move_insn.
3213 Called just like emit_move_insn, but assumes X and Y
3214 are basically valid. */
3217 emit_move_insn_1 (rtx x, rtx y)
3219 enum machine_mode mode = GET_MODE (x);
3220 enum insn_code code;
3222 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3224 code = mov_optab->handlers[mode].insn_code;
3225 if (code != CODE_FOR_nothing)
3226 return emit_insn (GEN_FCN (code) (x, y));
3228 /* Expand complex moves by moving real part and imag part. */
3229 if (COMPLEX_MODE_P (mode))
3230 return emit_move_complex (mode, x, y);
3232 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
3234 rtx result = emit_move_via_integer (mode, x, y, true);
3236 /* If we can't find an integer mode, use multi words. */
3237 if (result)
3238 return result;
3239 else
3240 return emit_move_multi_word (mode, x, y);
3243 if (GET_MODE_CLASS (mode) == MODE_CC)
3244 return emit_move_ccmode (mode, x, y);
3246 /* Try using a move pattern for the corresponding integer mode. This is
3247 only safe when simplify_subreg can convert MODE constants into integer
3248 constants. At present, it can only do this reliably if the value
3249 fits within a HOST_WIDE_INT. */
3250 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3252 rtx ret = emit_move_via_integer (mode, x, y, false);
3253 if (ret)
3254 return ret;
3257 return emit_move_multi_word (mode, x, y);
3260 /* Generate code to copy Y into X.
3261 Both Y and X must have the same mode, except that
3262 Y can be a constant with VOIDmode.
3263 This mode cannot be BLKmode; use emit_block_move for that.
3265 Return the last instruction emitted. */
3268 emit_move_insn (rtx x, rtx y)
3270 enum machine_mode mode = GET_MODE (x);
3271 rtx y_cst = NULL_RTX;
3272 rtx last_insn, set;
3274 gcc_assert (mode != BLKmode
3275 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3277 if (CONSTANT_P (y))
3279 if (optimize
3280 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3281 && (last_insn = compress_float_constant (x, y)))
3282 return last_insn;
3284 y_cst = y;
3286 if (!LEGITIMATE_CONSTANT_P (y))
3288 y = force_const_mem (mode, y);
3290 /* If the target's cannot_force_const_mem prevented the spill,
3291 assume that the target's move expanders will also take care
3292 of the non-legitimate constant. */
3293 if (!y)
3294 y = y_cst;
3295 else
3296 y = use_anchored_address (y);
3300 /* If X or Y are memory references, verify that their addresses are valid
3301 for the machine. */
3302 if (MEM_P (x)
3303 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
3304 && ! push_operand (x, GET_MODE (x)))
3305 || (flag_force_addr
3306 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
3307 x = validize_mem (x);
3309 if (MEM_P (y)
3310 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
3311 || (flag_force_addr
3312 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
3313 y = validize_mem (y);
3315 gcc_assert (mode != BLKmode);
3317 last_insn = emit_move_insn_1 (x, y);
3319 if (y_cst && REG_P (x)
3320 && (set = single_set (last_insn)) != NULL_RTX
3321 && SET_DEST (set) == x
3322 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3323 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3325 return last_insn;
3328 /* If Y is representable exactly in a narrower mode, and the target can
3329 perform the extension directly from constant or memory, then emit the
3330 move as an extension. */
3332 static rtx
3333 compress_float_constant (rtx x, rtx y)
3335 enum machine_mode dstmode = GET_MODE (x);
3336 enum machine_mode orig_srcmode = GET_MODE (y);
3337 enum machine_mode srcmode;
3338 REAL_VALUE_TYPE r;
3339 int oldcost, newcost;
3341 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3343 if (LEGITIMATE_CONSTANT_P (y))
3344 oldcost = rtx_cost (y, SET);
3345 else
3346 oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3348 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3349 srcmode != orig_srcmode;
3350 srcmode = GET_MODE_WIDER_MODE (srcmode))
3352 enum insn_code ic;
3353 rtx trunc_y, last_insn;
3355 /* Skip if the target can't extend this way. */
3356 ic = can_extend_p (dstmode, srcmode, 0);
3357 if (ic == CODE_FOR_nothing)
3358 continue;
3360 /* Skip if the narrowed value isn't exact. */
3361 if (! exact_real_truncate (srcmode, &r))
3362 continue;
3364 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3366 if (LEGITIMATE_CONSTANT_P (trunc_y))
3368 /* Skip if the target needs extra instructions to perform
3369 the extension. */
3370 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3371 continue;
3372 /* This is valid, but may not be cheaper than the original. */
3373 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3374 if (oldcost < newcost)
3375 continue;
3377 else if (float_extend_from_mem[dstmode][srcmode])
3379 trunc_y = force_const_mem (srcmode, trunc_y);
3380 /* This is valid, but may not be cheaper than the original. */
3381 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3382 if (oldcost < newcost)
3383 continue;
3384 trunc_y = validize_mem (trunc_y);
3386 else
3387 continue;
3389 /* For CSE's benefit, force the compressed constant pool entry
3390 into a new pseudo. This constant may be used in different modes,
3391 and if not, combine will put things back together for us. */
3392 trunc_y = force_reg (srcmode, trunc_y);
3393 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3394 last_insn = get_last_insn ();
3396 if (REG_P (x))
3397 set_unique_reg_note (last_insn, REG_EQUAL, y);
3399 return last_insn;
3402 return NULL_RTX;
3405 /* Pushing data onto the stack. */
3407 /* Push a block of length SIZE (perhaps variable)
3408 and return an rtx to address the beginning of the block.
3409 The value may be virtual_outgoing_args_rtx.
3411 EXTRA is the number of bytes of padding to push in addition to SIZE.
3412 BELOW nonzero means this padding comes at low addresses;
3413 otherwise, the padding comes at high addresses. */
3416 push_block (rtx size, int extra, int below)
3418 rtx temp;
3420 size = convert_modes (Pmode, ptr_mode, size, 1);
3421 if (CONSTANT_P (size))
3422 anti_adjust_stack (plus_constant (size, extra));
3423 else if (REG_P (size) && extra == 0)
3424 anti_adjust_stack (size);
3425 else
3427 temp = copy_to_mode_reg (Pmode, size);
3428 if (extra != 0)
3429 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3430 temp, 0, OPTAB_LIB_WIDEN);
3431 anti_adjust_stack (temp);
3434 #ifndef STACK_GROWS_DOWNWARD
3435 if (0)
3436 #else
3437 if (1)
3438 #endif
3440 temp = virtual_outgoing_args_rtx;
3441 if (extra != 0 && below)
3442 temp = plus_constant (temp, extra);
3444 else
3446 if (GET_CODE (size) == CONST_INT)
3447 temp = plus_constant (virtual_outgoing_args_rtx,
3448 -INTVAL (size) - (below ? 0 : extra));
3449 else if (extra != 0 && !below)
3450 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3451 negate_rtx (Pmode, plus_constant (size, extra)));
3452 else
3453 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3454 negate_rtx (Pmode, size));
3457 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3460 #ifdef PUSH_ROUNDING
3462 /* Emit single push insn. */
3464 static void
3465 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3467 rtx dest_addr;
3468 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3469 rtx dest;
3470 enum insn_code icode;
3471 insn_operand_predicate_fn pred;
3473 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3474 /* If there is push pattern, use it. Otherwise try old way of throwing
3475 MEM representing push operation to move expander. */
3476 icode = push_optab->handlers[(int) mode].insn_code;
3477 if (icode != CODE_FOR_nothing)
3479 if (((pred = insn_data[(int) icode].operand[0].predicate)
3480 && !((*pred) (x, mode))))
3481 x = force_reg (mode, x);
3482 emit_insn (GEN_FCN (icode) (x));
3483 return;
3485 if (GET_MODE_SIZE (mode) == rounded_size)
3486 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3487 /* If we are to pad downward, adjust the stack pointer first and
3488 then store X into the stack location using an offset. This is
3489 because emit_move_insn does not know how to pad; it does not have
3490 access to type. */
3491 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3493 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3494 HOST_WIDE_INT offset;
3496 emit_move_insn (stack_pointer_rtx,
3497 expand_binop (Pmode,
3498 #ifdef STACK_GROWS_DOWNWARD
3499 sub_optab,
3500 #else
3501 add_optab,
3502 #endif
3503 stack_pointer_rtx,
3504 GEN_INT (rounded_size),
3505 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3507 offset = (HOST_WIDE_INT) padding_size;
3508 #ifdef STACK_GROWS_DOWNWARD
3509 if (STACK_PUSH_CODE == POST_DEC)
3510 /* We have already decremented the stack pointer, so get the
3511 previous value. */
3512 offset += (HOST_WIDE_INT) rounded_size;
3513 #else
3514 if (STACK_PUSH_CODE == POST_INC)
3515 /* We have already incremented the stack pointer, so get the
3516 previous value. */
3517 offset -= (HOST_WIDE_INT) rounded_size;
3518 #endif
3519 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3521 else
3523 #ifdef STACK_GROWS_DOWNWARD
3524 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3525 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3526 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3527 #else
3528 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3529 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3530 GEN_INT (rounded_size));
3531 #endif
3532 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3535 dest = gen_rtx_MEM (mode, dest_addr);
3537 if (type != 0)
3539 set_mem_attributes (dest, type, 1);
3541 if (flag_optimize_sibling_calls)
3542 /* Function incoming arguments may overlap with sibling call
3543 outgoing arguments and we cannot allow reordering of reads
3544 from function arguments with stores to outgoing arguments
3545 of sibling calls. */
3546 set_mem_alias_set (dest, 0);
3548 emit_move_insn (dest, x);
3550 #endif
3552 /* Generate code to push X onto the stack, assuming it has mode MODE and
3553 type TYPE.
3554 MODE is redundant except when X is a CONST_INT (since they don't
3555 carry mode info).
3556 SIZE is an rtx for the size of data to be copied (in bytes),
3557 needed only if X is BLKmode.
3559 ALIGN (in bits) is maximum alignment we can assume.
3561 If PARTIAL and REG are both nonzero, then copy that many of the first
3562 bytes of X into registers starting with REG, and push the rest of X.
3563 The amount of space pushed is decreased by PARTIAL bytes.
3564 REG must be a hard register in this case.
3565 If REG is zero but PARTIAL is not, take any all others actions for an
3566 argument partially in registers, but do not actually load any
3567 registers.
3569 EXTRA is the amount in bytes of extra space to leave next to this arg.
3570 This is ignored if an argument block has already been allocated.
3572 On a machine that lacks real push insns, ARGS_ADDR is the address of
3573 the bottom of the argument block for this call. We use indexing off there
3574 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3575 argument block has not been preallocated.
3577 ARGS_SO_FAR is the size of args previously pushed for this call.
3579 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3580 for arguments passed in registers. If nonzero, it will be the number
3581 of bytes required. */
3583 void
3584 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3585 unsigned int align, int partial, rtx reg, int extra,
3586 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3587 rtx alignment_pad)
3589 rtx xinner;
3590 enum direction stack_direction
3591 #ifdef STACK_GROWS_DOWNWARD
3592 = downward;
3593 #else
3594 = upward;
3595 #endif
3597 /* Decide where to pad the argument: `downward' for below,
3598 `upward' for above, or `none' for don't pad it.
3599 Default is below for small data on big-endian machines; else above. */
3600 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3602 /* Invert direction if stack is post-decrement.
3603 FIXME: why? */
3604 if (STACK_PUSH_CODE == POST_DEC)
3605 if (where_pad != none)
3606 where_pad = (where_pad == downward ? upward : downward);
3608 xinner = x;
3610 if (mode == BLKmode)
3612 /* Copy a block into the stack, entirely or partially. */
3614 rtx temp;
3615 int used;
3616 int offset;
3617 int skip;
3619 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3620 used = partial - offset;
3622 gcc_assert (size);
3624 /* USED is now the # of bytes we need not copy to the stack
3625 because registers will take care of them. */
3627 if (partial != 0)
3628 xinner = adjust_address (xinner, BLKmode, used);
3630 /* If the partial register-part of the arg counts in its stack size,
3631 skip the part of stack space corresponding to the registers.
3632 Otherwise, start copying to the beginning of the stack space,
3633 by setting SKIP to 0. */
3634 skip = (reg_parm_stack_space == 0) ? 0 : used;
3636 #ifdef PUSH_ROUNDING
3637 /* Do it with several push insns if that doesn't take lots of insns
3638 and if there is no difficulty with push insns that skip bytes
3639 on the stack for alignment purposes. */
3640 if (args_addr == 0
3641 && PUSH_ARGS
3642 && GET_CODE (size) == CONST_INT
3643 && skip == 0
3644 && MEM_ALIGN (xinner) >= align
3645 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3646 /* Here we avoid the case of a structure whose weak alignment
3647 forces many pushes of a small amount of data,
3648 and such small pushes do rounding that causes trouble. */
3649 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3650 || align >= BIGGEST_ALIGNMENT
3651 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3652 == (align / BITS_PER_UNIT)))
3653 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3655 /* Push padding now if padding above and stack grows down,
3656 or if padding below and stack grows up.
3657 But if space already allocated, this has already been done. */
3658 if (extra && args_addr == 0
3659 && where_pad != none && where_pad != stack_direction)
3660 anti_adjust_stack (GEN_INT (extra));
3662 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3664 else
3665 #endif /* PUSH_ROUNDING */
3667 rtx target;
3669 /* Otherwise make space on the stack and copy the data
3670 to the address of that space. */
3672 /* Deduct words put into registers from the size we must copy. */
3673 if (partial != 0)
3675 if (GET_CODE (size) == CONST_INT)
3676 size = GEN_INT (INTVAL (size) - used);
3677 else
3678 size = expand_binop (GET_MODE (size), sub_optab, size,
3679 GEN_INT (used), NULL_RTX, 0,
3680 OPTAB_LIB_WIDEN);
3683 /* Get the address of the stack space.
3684 In this case, we do not deal with EXTRA separately.
3685 A single stack adjust will do. */
3686 if (! args_addr)
3688 temp = push_block (size, extra, where_pad == downward);
3689 extra = 0;
3691 else if (GET_CODE (args_so_far) == CONST_INT)
3692 temp = memory_address (BLKmode,
3693 plus_constant (args_addr,
3694 skip + INTVAL (args_so_far)));
3695 else
3696 temp = memory_address (BLKmode,
3697 plus_constant (gen_rtx_PLUS (Pmode,
3698 args_addr,
3699 args_so_far),
3700 skip));
3702 if (!ACCUMULATE_OUTGOING_ARGS)
3704 /* If the source is referenced relative to the stack pointer,
3705 copy it to another register to stabilize it. We do not need
3706 to do this if we know that we won't be changing sp. */
3708 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3709 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3710 temp = copy_to_reg (temp);
3713 target = gen_rtx_MEM (BLKmode, temp);
3715 /* We do *not* set_mem_attributes here, because incoming arguments
3716 may overlap with sibling call outgoing arguments and we cannot
3717 allow reordering of reads from function arguments with stores
3718 to outgoing arguments of sibling calls. We do, however, want
3719 to record the alignment of the stack slot. */
3720 /* ALIGN may well be better aligned than TYPE, e.g. due to
3721 PARM_BOUNDARY. Assume the caller isn't lying. */
3722 set_mem_align (target, align);
3724 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3727 else if (partial > 0)
3729 /* Scalar partly in registers. */
3731 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3732 int i;
3733 int not_stack;
3734 /* # bytes of start of argument
3735 that we must make space for but need not store. */
3736 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3737 int args_offset = INTVAL (args_so_far);
3738 int skip;
3740 /* Push padding now if padding above and stack grows down,
3741 or if padding below and stack grows up.
3742 But if space already allocated, this has already been done. */
3743 if (extra && args_addr == 0
3744 && where_pad != none && where_pad != stack_direction)
3745 anti_adjust_stack (GEN_INT (extra));
3747 /* If we make space by pushing it, we might as well push
3748 the real data. Otherwise, we can leave OFFSET nonzero
3749 and leave the space uninitialized. */
3750 if (args_addr == 0)
3751 offset = 0;
3753 /* Now NOT_STACK gets the number of words that we don't need to
3754 allocate on the stack. Convert OFFSET to words too. */
3755 not_stack = (partial - offset) / UNITS_PER_WORD;
3756 offset /= UNITS_PER_WORD;
3758 /* If the partial register-part of the arg counts in its stack size,
3759 skip the part of stack space corresponding to the registers.
3760 Otherwise, start copying to the beginning of the stack space,
3761 by setting SKIP to 0. */
3762 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3764 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3765 x = validize_mem (force_const_mem (mode, x));
3767 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3768 SUBREGs of such registers are not allowed. */
3769 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3770 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3771 x = copy_to_reg (x);
3773 /* Loop over all the words allocated on the stack for this arg. */
3774 /* We can do it by words, because any scalar bigger than a word
3775 has a size a multiple of a word. */
3776 #ifndef PUSH_ARGS_REVERSED
3777 for (i = not_stack; i < size; i++)
3778 #else
3779 for (i = size - 1; i >= not_stack; i--)
3780 #endif
3781 if (i >= not_stack + offset)
3782 emit_push_insn (operand_subword_force (x, i, mode),
3783 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3784 0, args_addr,
3785 GEN_INT (args_offset + ((i - not_stack + skip)
3786 * UNITS_PER_WORD)),
3787 reg_parm_stack_space, alignment_pad);
3789 else
3791 rtx addr;
3792 rtx dest;
3794 /* Push padding now if padding above and stack grows down,
3795 or if padding below and stack grows up.
3796 But if space already allocated, this has already been done. */
3797 if (extra && args_addr == 0
3798 && where_pad != none && where_pad != stack_direction)
3799 anti_adjust_stack (GEN_INT (extra));
3801 #ifdef PUSH_ROUNDING
3802 if (args_addr == 0 && PUSH_ARGS)
3803 emit_single_push_insn (mode, x, type);
3804 else
3805 #endif
3807 if (GET_CODE (args_so_far) == CONST_INT)
3808 addr
3809 = memory_address (mode,
3810 plus_constant (args_addr,
3811 INTVAL (args_so_far)));
3812 else
3813 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3814 args_so_far));
3815 dest = gen_rtx_MEM (mode, addr);
3817 /* We do *not* set_mem_attributes here, because incoming arguments
3818 may overlap with sibling call outgoing arguments and we cannot
3819 allow reordering of reads from function arguments with stores
3820 to outgoing arguments of sibling calls. We do, however, want
3821 to record the alignment of the stack slot. */
3822 /* ALIGN may well be better aligned than TYPE, e.g. due to
3823 PARM_BOUNDARY. Assume the caller isn't lying. */
3824 set_mem_align (dest, align);
3826 emit_move_insn (dest, x);
3830 /* If part should go in registers, copy that part
3831 into the appropriate registers. Do this now, at the end,
3832 since mem-to-mem copies above may do function calls. */
3833 if (partial > 0 && reg != 0)
3835 /* Handle calls that pass values in multiple non-contiguous locations.
3836 The Irix 6 ABI has examples of this. */
3837 if (GET_CODE (reg) == PARALLEL)
3838 emit_group_load (reg, x, type, -1);
3839 else
3841 gcc_assert (partial % UNITS_PER_WORD == 0);
3842 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3846 if (extra && args_addr == 0 && where_pad == stack_direction)
3847 anti_adjust_stack (GEN_INT (extra));
3849 if (alignment_pad && args_addr == 0)
3850 anti_adjust_stack (alignment_pad);
3853 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3854 operations. */
3856 static rtx
3857 get_subtarget (rtx x)
3859 return (optimize
3860 || x == 0
3861 /* Only registers can be subtargets. */
3862 || !REG_P (x)
3863 /* Don't use hard regs to avoid extending their life. */
3864 || REGNO (x) < FIRST_PSEUDO_REGISTER
3865 ? 0 : x);
3868 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3869 FIELD is a bitfield. Returns true if the optimization was successful,
3870 and there's nothing else to do. */
3872 static bool
3873 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3874 unsigned HOST_WIDE_INT bitpos,
3875 enum machine_mode mode1, rtx str_rtx,
3876 tree to, tree src)
3878 enum machine_mode str_mode = GET_MODE (str_rtx);
3879 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3880 tree op0, op1;
3881 rtx value, result;
3882 optab binop;
3884 if (mode1 != VOIDmode
3885 || bitsize >= BITS_PER_WORD
3886 || str_bitsize > BITS_PER_WORD
3887 || TREE_SIDE_EFFECTS (to)
3888 || TREE_THIS_VOLATILE (to))
3889 return false;
3891 STRIP_NOPS (src);
3892 if (!BINARY_CLASS_P (src)
3893 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3894 return false;
3896 op0 = TREE_OPERAND (src, 0);
3897 op1 = TREE_OPERAND (src, 1);
3898 STRIP_NOPS (op0);
3900 if (!operand_equal_p (to, op0, 0))
3901 return false;
3903 if (MEM_P (str_rtx))
3905 unsigned HOST_WIDE_INT offset1;
3907 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3908 str_mode = word_mode;
3909 str_mode = get_best_mode (bitsize, bitpos,
3910 MEM_ALIGN (str_rtx), str_mode, 0);
3911 if (str_mode == VOIDmode)
3912 return false;
3913 str_bitsize = GET_MODE_BITSIZE (str_mode);
3915 offset1 = bitpos;
3916 bitpos %= str_bitsize;
3917 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
3918 str_rtx = adjust_address (str_rtx, str_mode, offset1);
3920 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
3921 return false;
3923 /* If the bit field covers the whole REG/MEM, store_field
3924 will likely generate better code. */
3925 if (bitsize >= str_bitsize)
3926 return false;
3928 /* We can't handle fields split across multiple entities. */
3929 if (bitpos + bitsize > str_bitsize)
3930 return false;
3932 if (BYTES_BIG_ENDIAN)
3933 bitpos = str_bitsize - bitpos - bitsize;
3935 switch (TREE_CODE (src))
3937 case PLUS_EXPR:
3938 case MINUS_EXPR:
3939 /* For now, just optimize the case of the topmost bitfield
3940 where we don't need to do any masking and also
3941 1 bit bitfields where xor can be used.
3942 We might win by one instruction for the other bitfields
3943 too if insv/extv instructions aren't used, so that
3944 can be added later. */
3945 if (bitpos + bitsize != str_bitsize
3946 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
3947 break;
3949 value = expand_expr (op1, NULL_RTX, str_mode, 0);
3950 value = convert_modes (str_mode,
3951 TYPE_MODE (TREE_TYPE (op1)), value,
3952 TYPE_UNSIGNED (TREE_TYPE (op1)));
3954 /* We may be accessing data outside the field, which means
3955 we can alias adjacent data. */
3956 if (MEM_P (str_rtx))
3958 str_rtx = shallow_copy_rtx (str_rtx);
3959 set_mem_alias_set (str_rtx, 0);
3960 set_mem_expr (str_rtx, 0);
3963 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
3964 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
3966 value = expand_and (str_mode, value, const1_rtx, NULL);
3967 binop = xor_optab;
3969 value = expand_shift (LSHIFT_EXPR, str_mode, value,
3970 build_int_cst (NULL_TREE, bitpos),
3971 NULL_RTX, 1);
3972 result = expand_binop (str_mode, binop, str_rtx,
3973 value, str_rtx, 1, OPTAB_WIDEN);
3974 if (result != str_rtx)
3975 emit_move_insn (str_rtx, result);
3976 return true;
3978 case BIT_IOR_EXPR:
3979 case BIT_XOR_EXPR:
3980 if (TREE_CODE (op1) != INTEGER_CST)
3981 break;
3982 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
3983 value = convert_modes (GET_MODE (str_rtx),
3984 TYPE_MODE (TREE_TYPE (op1)), value,
3985 TYPE_UNSIGNED (TREE_TYPE (op1)));
3987 /* We may be accessing data outside the field, which means
3988 we can alias adjacent data. */
3989 if (MEM_P (str_rtx))
3991 str_rtx = shallow_copy_rtx (str_rtx);
3992 set_mem_alias_set (str_rtx, 0);
3993 set_mem_expr (str_rtx, 0);
3996 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
3997 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
3999 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4000 - 1);
4001 value = expand_and (GET_MODE (str_rtx), value, mask,
4002 NULL_RTX);
4004 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4005 build_int_cst (NULL_TREE, bitpos),
4006 NULL_RTX, 1);
4007 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4008 value, str_rtx, 1, OPTAB_WIDEN);
4009 if (result != str_rtx)
4010 emit_move_insn (str_rtx, result);
4011 return true;
4013 default:
4014 break;
4017 return false;
4021 /* Expand an assignment that stores the value of FROM into TO. */
4023 void
4024 expand_assignment (tree to, tree from)
4026 rtx to_rtx = 0;
4027 rtx result;
4029 /* Don't crash if the lhs of the assignment was erroneous. */
4030 if (TREE_CODE (to) == ERROR_MARK)
4032 result = expand_normal (from);
4033 return;
4036 /* Optimize away no-op moves without side-effects. */
4037 if (operand_equal_p (to, from, 0))
4038 return;
4040 /* Assignment of a structure component needs special treatment
4041 if the structure component's rtx is not simply a MEM.
4042 Assignment of an array element at a constant index, and assignment of
4043 an array element in an unaligned packed structure field, has the same
4044 problem. */
4045 if (handled_component_p (to)
4046 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4048 enum machine_mode mode1;
4049 HOST_WIDE_INT bitsize, bitpos;
4050 tree offset;
4051 int unsignedp;
4052 int volatilep = 0;
4053 tree tem;
4055 push_temp_slots ();
4056 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4057 &unsignedp, &volatilep, true);
4059 /* If we are going to use store_bit_field and extract_bit_field,
4060 make sure to_rtx will be safe for multiple use. */
4062 to_rtx = expand_normal (tem);
4064 if (offset != 0)
4066 rtx offset_rtx;
4068 if (!MEM_P (to_rtx))
4070 /* We can get constant negative offsets into arrays with broken
4071 user code. Translate this to a trap instead of ICEing. */
4072 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4073 expand_builtin_trap ();
4074 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4077 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4078 #ifdef POINTERS_EXTEND_UNSIGNED
4079 if (GET_MODE (offset_rtx) != Pmode)
4080 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4081 #else
4082 if (GET_MODE (offset_rtx) != ptr_mode)
4083 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4084 #endif
4086 /* A constant address in TO_RTX can have VOIDmode, we must not try
4087 to call force_reg for that case. Avoid that case. */
4088 if (MEM_P (to_rtx)
4089 && GET_MODE (to_rtx) == BLKmode
4090 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4091 && bitsize > 0
4092 && (bitpos % bitsize) == 0
4093 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4094 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4096 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4097 bitpos = 0;
4100 to_rtx = offset_address (to_rtx, offset_rtx,
4101 highest_pow2_factor_for_target (to,
4102 offset));
4105 /* Handle expand_expr of a complex value returning a CONCAT. */
4106 if (GET_CODE (to_rtx) == CONCAT)
4108 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4110 gcc_assert (bitpos == 0);
4111 result = store_expr (from, to_rtx, false);
4113 else
4115 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4116 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
4119 else
4121 if (MEM_P (to_rtx))
4123 /* If the field is at offset zero, we could have been given the
4124 DECL_RTX of the parent struct. Don't munge it. */
4125 to_rtx = shallow_copy_rtx (to_rtx);
4127 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4129 /* Deal with volatile and readonly fields. The former is only
4130 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4131 if (volatilep)
4132 MEM_VOLATILE_P (to_rtx) = 1;
4133 if (component_uses_parent_alias_set (to))
4134 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4137 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4138 to_rtx, to, from))
4139 result = NULL;
4140 else
4141 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4142 TREE_TYPE (tem), get_alias_set (to));
4145 if (result)
4146 preserve_temp_slots (result);
4147 free_temp_slots ();
4148 pop_temp_slots ();
4149 return;
4152 /* If the rhs is a function call and its value is not an aggregate,
4153 call the function before we start to compute the lhs.
4154 This is needed for correct code for cases such as
4155 val = setjmp (buf) on machines where reference to val
4156 requires loading up part of an address in a separate insn.
4158 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4159 since it might be a promoted variable where the zero- or sign- extension
4160 needs to be done. Handling this in the normal way is safe because no
4161 computation is done before the call. */
4162 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4163 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4164 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4165 && REG_P (DECL_RTL (to))))
4167 rtx value;
4169 push_temp_slots ();
4170 value = expand_normal (from);
4171 if (to_rtx == 0)
4172 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4174 /* Handle calls that return values in multiple non-contiguous locations.
4175 The Irix 6 ABI has examples of this. */
4176 if (GET_CODE (to_rtx) == PARALLEL)
4177 emit_group_load (to_rtx, value, TREE_TYPE (from),
4178 int_size_in_bytes (TREE_TYPE (from)));
4179 else if (GET_MODE (to_rtx) == BLKmode)
4180 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4181 else
4183 if (POINTER_TYPE_P (TREE_TYPE (to)))
4184 value = convert_memory_address (GET_MODE (to_rtx), value);
4185 emit_move_insn (to_rtx, value);
4187 preserve_temp_slots (to_rtx);
4188 free_temp_slots ();
4189 pop_temp_slots ();
4190 return;
4193 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4194 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4196 if (to_rtx == 0)
4197 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4199 /* Don't move directly into a return register. */
4200 if (TREE_CODE (to) == RESULT_DECL
4201 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4203 rtx temp;
4205 push_temp_slots ();
4206 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
4208 if (GET_CODE (to_rtx) == PARALLEL)
4209 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4210 int_size_in_bytes (TREE_TYPE (from)));
4211 else
4212 emit_move_insn (to_rtx, temp);
4214 preserve_temp_slots (to_rtx);
4215 free_temp_slots ();
4216 pop_temp_slots ();
4217 return;
4220 /* In case we are returning the contents of an object which overlaps
4221 the place the value is being stored, use a safe function when copying
4222 a value through a pointer into a structure value return block. */
4223 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4224 && current_function_returns_struct
4225 && !current_function_returns_pcc_struct)
4227 rtx from_rtx, size;
4229 push_temp_slots ();
4230 size = expr_size (from);
4231 from_rtx = expand_normal (from);
4233 emit_library_call (memmove_libfunc, LCT_NORMAL,
4234 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4235 XEXP (from_rtx, 0), Pmode,
4236 convert_to_mode (TYPE_MODE (sizetype),
4237 size, TYPE_UNSIGNED (sizetype)),
4238 TYPE_MODE (sizetype));
4240 preserve_temp_slots (to_rtx);
4241 free_temp_slots ();
4242 pop_temp_slots ();
4243 return;
4246 /* Compute FROM and store the value in the rtx we got. */
4248 push_temp_slots ();
4249 result = store_expr (from, to_rtx, 0);
4250 preserve_temp_slots (result);
4251 free_temp_slots ();
4252 pop_temp_slots ();
4253 return;
4256 /* Generate code for computing expression EXP,
4257 and storing the value into TARGET.
4259 If the mode is BLKmode then we may return TARGET itself.
4260 It turns out that in BLKmode it doesn't cause a problem.
4261 because C has no operators that could combine two different
4262 assignments into the same BLKmode object with different values
4263 with no sequence point. Will other languages need this to
4264 be more thorough?
4266 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4267 stack, and block moves may need to be treated specially. */
4270 store_expr (tree exp, rtx target, int call_param_p)
4272 rtx temp;
4273 rtx alt_rtl = NULL_RTX;
4274 int dont_return_target = 0;
4276 if (VOID_TYPE_P (TREE_TYPE (exp)))
4278 /* C++ can generate ?: expressions with a throw expression in one
4279 branch and an rvalue in the other. Here, we resolve attempts to
4280 store the throw expression's nonexistent result. */
4281 gcc_assert (!call_param_p);
4282 expand_expr (exp, const0_rtx, VOIDmode, 0);
4283 return NULL_RTX;
4285 if (TREE_CODE (exp) == COMPOUND_EXPR)
4287 /* Perform first part of compound expression, then assign from second
4288 part. */
4289 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4290 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4291 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4293 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4295 /* For conditional expression, get safe form of the target. Then
4296 test the condition, doing the appropriate assignment on either
4297 side. This avoids the creation of unnecessary temporaries.
4298 For non-BLKmode, it is more efficient not to do this. */
4300 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4302 do_pending_stack_adjust ();
4303 NO_DEFER_POP;
4304 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4305 store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4306 emit_jump_insn (gen_jump (lab2));
4307 emit_barrier ();
4308 emit_label (lab1);
4309 store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
4310 emit_label (lab2);
4311 OK_DEFER_POP;
4313 return NULL_RTX;
4315 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4316 /* If this is a scalar in a register that is stored in a wider mode
4317 than the declared mode, compute the result into its declared mode
4318 and then convert to the wider mode. Our value is the computed
4319 expression. */
4321 rtx inner_target = 0;
4323 /* We can do the conversion inside EXP, which will often result
4324 in some optimizations. Do the conversion in two steps: first
4325 change the signedness, if needed, then the extend. But don't
4326 do this if the type of EXP is a subtype of something else
4327 since then the conversion might involve more than just
4328 converting modes. */
4329 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4330 && TREE_TYPE (TREE_TYPE (exp)) == 0
4331 && (!lang_hooks.reduce_bit_field_operations
4332 || (GET_MODE_PRECISION (GET_MODE (target))
4333 == TYPE_PRECISION (TREE_TYPE (exp)))))
4335 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4336 != SUBREG_PROMOTED_UNSIGNED_P (target))
4337 exp = fold_convert
4338 (lang_hooks.types.signed_or_unsigned_type
4339 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
4341 exp = fold_convert (lang_hooks.types.type_for_mode
4342 (GET_MODE (SUBREG_REG (target)),
4343 SUBREG_PROMOTED_UNSIGNED_P (target)),
4344 exp);
4346 inner_target = SUBREG_REG (target);
4349 temp = expand_expr (exp, inner_target, VOIDmode,
4350 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4352 /* If TEMP is a VOIDmode constant, use convert_modes to make
4353 sure that we properly convert it. */
4354 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4356 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4357 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4358 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4359 GET_MODE (target), temp,
4360 SUBREG_PROMOTED_UNSIGNED_P (target));
4363 convert_move (SUBREG_REG (target), temp,
4364 SUBREG_PROMOTED_UNSIGNED_P (target));
4366 return NULL_RTX;
4368 else
4370 temp = expand_expr_real (exp, target, GET_MODE (target),
4371 (call_param_p
4372 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4373 &alt_rtl);
4374 /* Return TARGET if it's a specified hardware register.
4375 If TARGET is a volatile mem ref, either return TARGET
4376 or return a reg copied *from* TARGET; ANSI requires this.
4378 Otherwise, if TEMP is not TARGET, return TEMP
4379 if it is constant (for efficiency),
4380 or if we really want the correct value. */
4381 if (!(target && REG_P (target)
4382 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4383 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4384 && ! rtx_equal_p (temp, target)
4385 && CONSTANT_P (temp))
4386 dont_return_target = 1;
4389 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4390 the same as that of TARGET, adjust the constant. This is needed, for
4391 example, in case it is a CONST_DOUBLE and we want only a word-sized
4392 value. */
4393 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4394 && TREE_CODE (exp) != ERROR_MARK
4395 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4396 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4397 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4399 /* If value was not generated in the target, store it there.
4400 Convert the value to TARGET's type first if necessary and emit the
4401 pending incrementations that have been queued when expanding EXP.
4402 Note that we cannot emit the whole queue blindly because this will
4403 effectively disable the POST_INC optimization later.
4405 If TEMP and TARGET compare equal according to rtx_equal_p, but
4406 one or both of them are volatile memory refs, we have to distinguish
4407 two cases:
4408 - expand_expr has used TARGET. In this case, we must not generate
4409 another copy. This can be detected by TARGET being equal according
4410 to == .
4411 - expand_expr has not used TARGET - that means that the source just
4412 happens to have the same RTX form. Since temp will have been created
4413 by expand_expr, it will compare unequal according to == .
4414 We must generate a copy in this case, to reach the correct number
4415 of volatile memory references. */
4417 if ((! rtx_equal_p (temp, target)
4418 || (temp != target && (side_effects_p (temp)
4419 || side_effects_p (target))))
4420 && TREE_CODE (exp) != ERROR_MARK
4421 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4422 but TARGET is not valid memory reference, TEMP will differ
4423 from TARGET although it is really the same location. */
4424 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4425 /* If there's nothing to copy, don't bother. Don't call
4426 expr_size unless necessary, because some front-ends (C++)
4427 expr_size-hook must not be given objects that are not
4428 supposed to be bit-copied or bit-initialized. */
4429 && expr_size (exp) != const0_rtx)
4431 if (GET_MODE (temp) != GET_MODE (target)
4432 && GET_MODE (temp) != VOIDmode)
4434 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4435 if (dont_return_target)
4437 /* In this case, we will return TEMP,
4438 so make sure it has the proper mode.
4439 But don't forget to store the value into TARGET. */
4440 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4441 emit_move_insn (target, temp);
4443 else
4444 convert_move (target, temp, unsignedp);
4447 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4449 /* Handle copying a string constant into an array. The string
4450 constant may be shorter than the array. So copy just the string's
4451 actual length, and clear the rest. First get the size of the data
4452 type of the string, which is actually the size of the target. */
4453 rtx size = expr_size (exp);
4455 if (GET_CODE (size) == CONST_INT
4456 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4457 emit_block_move (target, temp, size,
4458 (call_param_p
4459 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4460 else
4462 /* Compute the size of the data to copy from the string. */
4463 tree copy_size
4464 = size_binop (MIN_EXPR,
4465 make_tree (sizetype, size),
4466 size_int (TREE_STRING_LENGTH (exp)));
4467 rtx copy_size_rtx
4468 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4469 (call_param_p
4470 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4471 rtx label = 0;
4473 /* Copy that much. */
4474 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4475 TYPE_UNSIGNED (sizetype));
4476 emit_block_move (target, temp, copy_size_rtx,
4477 (call_param_p
4478 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4480 /* Figure out how much is left in TARGET that we have to clear.
4481 Do all calculations in ptr_mode. */
4482 if (GET_CODE (copy_size_rtx) == CONST_INT)
4484 size = plus_constant (size, -INTVAL (copy_size_rtx));
4485 target = adjust_address (target, BLKmode,
4486 INTVAL (copy_size_rtx));
4488 else
4490 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4491 copy_size_rtx, NULL_RTX, 0,
4492 OPTAB_LIB_WIDEN);
4494 #ifdef POINTERS_EXTEND_UNSIGNED
4495 if (GET_MODE (copy_size_rtx) != Pmode)
4496 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4497 TYPE_UNSIGNED (sizetype));
4498 #endif
4500 target = offset_address (target, copy_size_rtx,
4501 highest_pow2_factor (copy_size));
4502 label = gen_label_rtx ();
4503 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4504 GET_MODE (size), 0, label);
4507 if (size != const0_rtx)
4508 clear_storage (target, size, BLOCK_OP_NORMAL);
4510 if (label)
4511 emit_label (label);
4514 /* Handle calls that return values in multiple non-contiguous locations.
4515 The Irix 6 ABI has examples of this. */
4516 else if (GET_CODE (target) == PARALLEL)
4517 emit_group_load (target, temp, TREE_TYPE (exp),
4518 int_size_in_bytes (TREE_TYPE (exp)));
4519 else if (GET_MODE (temp) == BLKmode)
4520 emit_block_move (target, temp, expr_size (exp),
4521 (call_param_p
4522 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4523 else
4525 temp = force_operand (temp, target);
4526 if (temp != target)
4527 emit_move_insn (target, temp);
4531 return NULL_RTX;
4534 /* Examine CTOR to discover:
4535 * how many scalar fields are set to nonzero values,
4536 and place it in *P_NZ_ELTS;
4537 * how many scalar fields are set to non-constant values,
4538 and place it in *P_NC_ELTS; and
4539 * how many scalar fields in total are in CTOR,
4540 and place it in *P_ELT_COUNT.
4541 * if a type is a union, and the initializer from the constructor
4542 is not the largest element in the union, then set *p_must_clear. */
4544 static void
4545 categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
4546 HOST_WIDE_INT *p_nc_elts,
4547 HOST_WIDE_INT *p_elt_count,
4548 bool *p_must_clear)
4550 unsigned HOST_WIDE_INT idx;
4551 HOST_WIDE_INT nz_elts, nc_elts, elt_count;
4552 tree value, purpose;
4554 nz_elts = 0;
4555 nc_elts = 0;
4556 elt_count = 0;
4558 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4560 HOST_WIDE_INT mult;
4562 mult = 1;
4563 if (TREE_CODE (purpose) == RANGE_EXPR)
4565 tree lo_index = TREE_OPERAND (purpose, 0);
4566 tree hi_index = TREE_OPERAND (purpose, 1);
4568 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4569 mult = (tree_low_cst (hi_index, 1)
4570 - tree_low_cst (lo_index, 1) + 1);
4573 switch (TREE_CODE (value))
4575 case CONSTRUCTOR:
4577 HOST_WIDE_INT nz = 0, nc = 0, ic = 0;
4578 categorize_ctor_elements_1 (value, &nz, &nc, &ic, p_must_clear);
4579 nz_elts += mult * nz;
4580 nc_elts += mult * nc;
4581 elt_count += mult * ic;
4583 break;
4585 case INTEGER_CST:
4586 case REAL_CST:
4587 if (!initializer_zerop (value))
4588 nz_elts += mult;
4589 elt_count += mult;
4590 break;
4592 case STRING_CST:
4593 nz_elts += mult * TREE_STRING_LENGTH (value);
4594 elt_count += mult * TREE_STRING_LENGTH (value);
4595 break;
4597 case COMPLEX_CST:
4598 if (!initializer_zerop (TREE_REALPART (value)))
4599 nz_elts += mult;
4600 if (!initializer_zerop (TREE_IMAGPART (value)))
4601 nz_elts += mult;
4602 elt_count += mult;
4603 break;
4605 case VECTOR_CST:
4607 tree v;
4608 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4610 if (!initializer_zerop (TREE_VALUE (v)))
4611 nz_elts += mult;
4612 elt_count += mult;
4615 break;
4617 default:
4618 nz_elts += mult;
4619 elt_count += mult;
4620 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
4621 nc_elts += mult;
4622 break;
4626 if (!*p_must_clear
4627 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4628 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4630 tree init_sub_type;
4631 bool clear_this = true;
4633 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4635 /* We don't expect more than one element of the union to be
4636 initialized. Not sure what we should do otherwise... */
4637 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4638 == 1);
4640 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4641 CONSTRUCTOR_ELTS (ctor),
4642 0)->value);
4644 /* ??? We could look at each element of the union, and find the
4645 largest element. Which would avoid comparing the size of the
4646 initialized element against any tail padding in the union.
4647 Doesn't seem worth the effort... */
4648 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4649 TYPE_SIZE (init_sub_type)) == 1)
4651 /* And now we have to find out if the element itself is fully
4652 constructed. E.g. for union { struct { int a, b; } s; } u
4653 = { .s = { .a = 1 } }. */
4654 if (elt_count == count_type_elements (init_sub_type, false))
4655 clear_this = false;
4659 *p_must_clear = clear_this;
4662 *p_nz_elts += nz_elts;
4663 *p_nc_elts += nc_elts;
4664 *p_elt_count += elt_count;
4667 void
4668 categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
4669 HOST_WIDE_INT *p_nc_elts,
4670 HOST_WIDE_INT *p_elt_count,
4671 bool *p_must_clear)
4673 *p_nz_elts = 0;
4674 *p_nc_elts = 0;
4675 *p_elt_count = 0;
4676 *p_must_clear = false;
4677 categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts, p_elt_count,
4678 p_must_clear);
4681 /* Count the number of scalars in TYPE. Return -1 on overflow or
4682 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4683 array member at the end of the structure. */
4685 HOST_WIDE_INT
4686 count_type_elements (tree type, bool allow_flexarr)
4688 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4689 switch (TREE_CODE (type))
4691 case ARRAY_TYPE:
4693 tree telts = array_type_nelts (type);
4694 if (telts && host_integerp (telts, 1))
4696 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4697 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4698 if (n == 0)
4699 return 0;
4700 else if (max / n > m)
4701 return n * m;
4703 return -1;
4706 case RECORD_TYPE:
4708 HOST_WIDE_INT n = 0, t;
4709 tree f;
4711 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4712 if (TREE_CODE (f) == FIELD_DECL)
4714 t = count_type_elements (TREE_TYPE (f), false);
4715 if (t < 0)
4717 /* Check for structures with flexible array member. */
4718 tree tf = TREE_TYPE (f);
4719 if (allow_flexarr
4720 && TREE_CHAIN (f) == NULL
4721 && TREE_CODE (tf) == ARRAY_TYPE
4722 && TYPE_DOMAIN (tf)
4723 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4724 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4725 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4726 && int_size_in_bytes (type) >= 0)
4727 break;
4729 return -1;
4731 n += t;
4734 return n;
4737 case UNION_TYPE:
4738 case QUAL_UNION_TYPE:
4740 /* Ho hum. How in the world do we guess here? Clearly it isn't
4741 right to count the fields. Guess based on the number of words. */
4742 HOST_WIDE_INT n = int_size_in_bytes (type);
4743 if (n < 0)
4744 return -1;
4745 return n / UNITS_PER_WORD;
4748 case COMPLEX_TYPE:
4749 return 2;
4751 case VECTOR_TYPE:
4752 return TYPE_VECTOR_SUBPARTS (type);
4754 case INTEGER_TYPE:
4755 case REAL_TYPE:
4756 case ENUMERAL_TYPE:
4757 case BOOLEAN_TYPE:
4758 case POINTER_TYPE:
4759 case OFFSET_TYPE:
4760 case REFERENCE_TYPE:
4761 return 1;
4763 case VOID_TYPE:
4764 case METHOD_TYPE:
4765 case FUNCTION_TYPE:
4766 case LANG_TYPE:
4767 default:
4768 gcc_unreachable ();
4772 /* Return 1 if EXP contains mostly (3/4) zeros. */
4774 static int
4775 mostly_zeros_p (tree exp)
4777 if (TREE_CODE (exp) == CONSTRUCTOR)
4780 HOST_WIDE_INT nz_elts, nc_elts, count, elts;
4781 bool must_clear;
4783 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4784 if (must_clear)
4785 return 1;
4787 elts = count_type_elements (TREE_TYPE (exp), false);
4789 return nz_elts < elts / 4;
4792 return initializer_zerop (exp);
4795 /* Return 1 if EXP contains all zeros. */
4797 static int
4798 all_zeros_p (tree exp)
4800 if (TREE_CODE (exp) == CONSTRUCTOR)
4803 HOST_WIDE_INT nz_elts, nc_elts, count;
4804 bool must_clear;
4806 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4807 return nz_elts == 0;
4810 return initializer_zerop (exp);
4813 /* Helper function for store_constructor.
4814 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4815 TYPE is the type of the CONSTRUCTOR, not the element type.
4816 CLEARED is as for store_constructor.
4817 ALIAS_SET is the alias set to use for any stores.
4819 This provides a recursive shortcut back to store_constructor when it isn't
4820 necessary to go through store_field. This is so that we can pass through
4821 the cleared field to let store_constructor know that we may not have to
4822 clear a substructure if the outer structure has already been cleared. */
4824 static void
4825 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
4826 HOST_WIDE_INT bitpos, enum machine_mode mode,
4827 tree exp, tree type, int cleared, int alias_set)
4829 if (TREE_CODE (exp) == CONSTRUCTOR
4830 /* We can only call store_constructor recursively if the size and
4831 bit position are on a byte boundary. */
4832 && bitpos % BITS_PER_UNIT == 0
4833 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
4834 /* If we have a nonzero bitpos for a register target, then we just
4835 let store_field do the bitfield handling. This is unlikely to
4836 generate unnecessary clear instructions anyways. */
4837 && (bitpos == 0 || MEM_P (target)))
4839 if (MEM_P (target))
4840 target
4841 = adjust_address (target,
4842 GET_MODE (target) == BLKmode
4843 || 0 != (bitpos
4844 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4845 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4848 /* Update the alias set, if required. */
4849 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
4850 && MEM_ALIAS_SET (target) != 0)
4852 target = copy_rtx (target);
4853 set_mem_alias_set (target, alias_set);
4856 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4858 else
4859 store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
4862 /* Store the value of constructor EXP into the rtx TARGET.
4863 TARGET is either a REG or a MEM; we know it cannot conflict, since
4864 safe_from_p has been called.
4865 CLEARED is true if TARGET is known to have been zero'd.
4866 SIZE is the number of bytes of TARGET we are allowed to modify: this
4867 may not be the same as the size of EXP if we are assigning to a field
4868 which has been packed to exclude padding bits. */
4870 static void
4871 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
4873 tree type = TREE_TYPE (exp);
4874 #ifdef WORD_REGISTER_OPERATIONS
4875 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4876 #endif
4878 switch (TREE_CODE (type))
4880 case RECORD_TYPE:
4881 case UNION_TYPE:
4882 case QUAL_UNION_TYPE:
4884 unsigned HOST_WIDE_INT idx;
4885 tree field, value;
4887 /* If size is zero or the target is already cleared, do nothing. */
4888 if (size == 0 || cleared)
4889 cleared = 1;
4890 /* We either clear the aggregate or indicate the value is dead. */
4891 else if ((TREE_CODE (type) == UNION_TYPE
4892 || TREE_CODE (type) == QUAL_UNION_TYPE)
4893 && ! CONSTRUCTOR_ELTS (exp))
4894 /* If the constructor is empty, clear the union. */
4896 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
4897 cleared = 1;
4900 /* If we are building a static constructor into a register,
4901 set the initial value as zero so we can fold the value into
4902 a constant. But if more than one register is involved,
4903 this probably loses. */
4904 else if (REG_P (target) && TREE_STATIC (exp)
4905 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4907 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4908 cleared = 1;
4911 /* If the constructor has fewer fields than the structure or
4912 if we are initializing the structure to mostly zeros, clear
4913 the whole structure first. Don't do this if TARGET is a
4914 register whose mode size isn't equal to SIZE since
4915 clear_storage can't handle this case. */
4916 else if (size > 0
4917 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
4918 != fields_length (type))
4919 || mostly_zeros_p (exp))
4920 && (!REG_P (target)
4921 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4922 == size)))
4924 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
4925 cleared = 1;
4928 if (! cleared)
4929 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4931 /* Store each element of the constructor into the
4932 corresponding field of TARGET. */
4933 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
4935 enum machine_mode mode;
4936 HOST_WIDE_INT bitsize;
4937 HOST_WIDE_INT bitpos = 0;
4938 tree offset;
4939 rtx to_rtx = target;
4941 /* Just ignore missing fields. We cleared the whole
4942 structure, above, if any fields are missing. */
4943 if (field == 0)
4944 continue;
4946 if (cleared && initializer_zerop (value))
4947 continue;
4949 if (host_integerp (DECL_SIZE (field), 1))
4950 bitsize = tree_low_cst (DECL_SIZE (field), 1);
4951 else
4952 bitsize = -1;
4954 mode = DECL_MODE (field);
4955 if (DECL_BIT_FIELD (field))
4956 mode = VOIDmode;
4958 offset = DECL_FIELD_OFFSET (field);
4959 if (host_integerp (offset, 0)
4960 && host_integerp (bit_position (field), 0))
4962 bitpos = int_bit_position (field);
4963 offset = 0;
4965 else
4966 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4968 if (offset)
4970 rtx offset_rtx;
4972 offset
4973 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
4974 make_tree (TREE_TYPE (exp),
4975 target));
4977 offset_rtx = expand_normal (offset);
4978 gcc_assert (MEM_P (to_rtx));
4980 #ifdef POINTERS_EXTEND_UNSIGNED
4981 if (GET_MODE (offset_rtx) != Pmode)
4982 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4983 #else
4984 if (GET_MODE (offset_rtx) != ptr_mode)
4985 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4986 #endif
4988 to_rtx = offset_address (to_rtx, offset_rtx,
4989 highest_pow2_factor (offset));
4992 #ifdef WORD_REGISTER_OPERATIONS
4993 /* If this initializes a field that is smaller than a
4994 word, at the start of a word, try to widen it to a full
4995 word. This special case allows us to output C++ member
4996 function initializations in a form that the optimizers
4997 can understand. */
4998 if (REG_P (target)
4999 && bitsize < BITS_PER_WORD
5000 && bitpos % BITS_PER_WORD == 0
5001 && GET_MODE_CLASS (mode) == MODE_INT
5002 && TREE_CODE (value) == INTEGER_CST
5003 && exp_size >= 0
5004 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5006 tree type = TREE_TYPE (value);
5008 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5010 type = lang_hooks.types.type_for_size
5011 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5012 value = fold_convert (type, value);
5015 if (BYTES_BIG_ENDIAN)
5016 value
5017 = fold_build2 (LSHIFT_EXPR, type, value,
5018 build_int_cst (type,
5019 BITS_PER_WORD - bitsize));
5020 bitsize = BITS_PER_WORD;
5021 mode = word_mode;
5023 #endif
5025 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5026 && DECL_NONADDRESSABLE_P (field))
5028 to_rtx = copy_rtx (to_rtx);
5029 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5032 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5033 value, type, cleared,
5034 get_alias_set (TREE_TYPE (field)));
5036 break;
5038 case ARRAY_TYPE:
5040 tree value, index;
5041 unsigned HOST_WIDE_INT i;
5042 int need_to_clear;
5043 tree domain;
5044 tree elttype = TREE_TYPE (type);
5045 int const_bounds_p;
5046 HOST_WIDE_INT minelt = 0;
5047 HOST_WIDE_INT maxelt = 0;
5049 domain = TYPE_DOMAIN (type);
5050 const_bounds_p = (TYPE_MIN_VALUE (domain)
5051 && TYPE_MAX_VALUE (domain)
5052 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5053 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5055 /* If we have constant bounds for the range of the type, get them. */
5056 if (const_bounds_p)
5058 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5059 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5062 /* If the constructor has fewer elements than the array, clear
5063 the whole array first. Similarly if this is static
5064 constructor of a non-BLKmode object. */
5065 if (cleared)
5066 need_to_clear = 0;
5067 else if (REG_P (target) && TREE_STATIC (exp))
5068 need_to_clear = 1;
5069 else
5071 unsigned HOST_WIDE_INT idx;
5072 tree index, value;
5073 HOST_WIDE_INT count = 0, zero_count = 0;
5074 need_to_clear = ! const_bounds_p;
5076 /* This loop is a more accurate version of the loop in
5077 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5078 is also needed to check for missing elements. */
5079 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5081 HOST_WIDE_INT this_node_count;
5083 if (need_to_clear)
5084 break;
5086 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5088 tree lo_index = TREE_OPERAND (index, 0);
5089 tree hi_index = TREE_OPERAND (index, 1);
5091 if (! host_integerp (lo_index, 1)
5092 || ! host_integerp (hi_index, 1))
5094 need_to_clear = 1;
5095 break;
5098 this_node_count = (tree_low_cst (hi_index, 1)
5099 - tree_low_cst (lo_index, 1) + 1);
5101 else
5102 this_node_count = 1;
5104 count += this_node_count;
5105 if (mostly_zeros_p (value))
5106 zero_count += this_node_count;
5109 /* Clear the entire array first if there are any missing
5110 elements, or if the incidence of zero elements is >=
5111 75%. */
5112 if (! need_to_clear
5113 && (count < maxelt - minelt + 1
5114 || 4 * zero_count >= 3 * count))
5115 need_to_clear = 1;
5118 if (need_to_clear && size > 0)
5120 if (REG_P (target))
5121 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5122 else
5123 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5124 cleared = 1;
5127 if (!cleared && REG_P (target))
5128 /* Inform later passes that the old value is dead. */
5129 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5131 /* Store each element of the constructor into the
5132 corresponding element of TARGET, determined by counting the
5133 elements. */
5134 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5136 enum machine_mode mode;
5137 HOST_WIDE_INT bitsize;
5138 HOST_WIDE_INT bitpos;
5139 int unsignedp;
5140 rtx xtarget = target;
5142 if (cleared && initializer_zerop (value))
5143 continue;
5145 unsignedp = TYPE_UNSIGNED (elttype);
5146 mode = TYPE_MODE (elttype);
5147 if (mode == BLKmode)
5148 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5149 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5150 : -1);
5151 else
5152 bitsize = GET_MODE_BITSIZE (mode);
5154 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5156 tree lo_index = TREE_OPERAND (index, 0);
5157 tree hi_index = TREE_OPERAND (index, 1);
5158 rtx index_r, pos_rtx;
5159 HOST_WIDE_INT lo, hi, count;
5160 tree position;
5162 /* If the range is constant and "small", unroll the loop. */
5163 if (const_bounds_p
5164 && host_integerp (lo_index, 0)
5165 && host_integerp (hi_index, 0)
5166 && (lo = tree_low_cst (lo_index, 0),
5167 hi = tree_low_cst (hi_index, 0),
5168 count = hi - lo + 1,
5169 (!MEM_P (target)
5170 || count <= 2
5171 || (host_integerp (TYPE_SIZE (elttype), 1)
5172 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5173 <= 40 * 8)))))
5175 lo -= minelt; hi -= minelt;
5176 for (; lo <= hi; lo++)
5178 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5180 if (MEM_P (target)
5181 && !MEM_KEEP_ALIAS_SET_P (target)
5182 && TREE_CODE (type) == ARRAY_TYPE
5183 && TYPE_NONALIASED_COMPONENT (type))
5185 target = copy_rtx (target);
5186 MEM_KEEP_ALIAS_SET_P (target) = 1;
5189 store_constructor_field
5190 (target, bitsize, bitpos, mode, value, type, cleared,
5191 get_alias_set (elttype));
5194 else
5196 rtx loop_start = gen_label_rtx ();
5197 rtx loop_end = gen_label_rtx ();
5198 tree exit_cond;
5200 expand_normal (hi_index);
5201 unsignedp = TYPE_UNSIGNED (domain);
5203 index = build_decl (VAR_DECL, NULL_TREE, domain);
5205 index_r
5206 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5207 &unsignedp, 0));
5208 SET_DECL_RTL (index, index_r);
5209 store_expr (lo_index, index_r, 0);
5211 /* Build the head of the loop. */
5212 do_pending_stack_adjust ();
5213 emit_label (loop_start);
5215 /* Assign value to element index. */
5216 position =
5217 fold_convert (ssizetype,
5218 fold_build2 (MINUS_EXPR,
5219 TREE_TYPE (index),
5220 index,
5221 TYPE_MIN_VALUE (domain)));
5223 position =
5224 size_binop (MULT_EXPR, position,
5225 fold_convert (ssizetype,
5226 TYPE_SIZE_UNIT (elttype)));
5228 pos_rtx = expand_normal (position);
5229 xtarget = offset_address (target, pos_rtx,
5230 highest_pow2_factor (position));
5231 xtarget = adjust_address (xtarget, mode, 0);
5232 if (TREE_CODE (value) == CONSTRUCTOR)
5233 store_constructor (value, xtarget, cleared,
5234 bitsize / BITS_PER_UNIT);
5235 else
5236 store_expr (value, xtarget, 0);
5238 /* Generate a conditional jump to exit the loop. */
5239 exit_cond = build2 (LT_EXPR, integer_type_node,
5240 index, hi_index);
5241 jumpif (exit_cond, loop_end);
5243 /* Update the loop counter, and jump to the head of
5244 the loop. */
5245 expand_assignment (index,
5246 build2 (PLUS_EXPR, TREE_TYPE (index),
5247 index, integer_one_node));
5249 emit_jump (loop_start);
5251 /* Build the end of the loop. */
5252 emit_label (loop_end);
5255 else if ((index != 0 && ! host_integerp (index, 0))
5256 || ! host_integerp (TYPE_SIZE (elttype), 1))
5258 tree position;
5260 if (index == 0)
5261 index = ssize_int (1);
5263 if (minelt)
5264 index = fold_convert (ssizetype,
5265 fold_build2 (MINUS_EXPR,
5266 TREE_TYPE (index),
5267 index,
5268 TYPE_MIN_VALUE (domain)));
5270 position =
5271 size_binop (MULT_EXPR, index,
5272 fold_convert (ssizetype,
5273 TYPE_SIZE_UNIT (elttype)));
5274 xtarget = offset_address (target,
5275 expand_normal (position),
5276 highest_pow2_factor (position));
5277 xtarget = adjust_address (xtarget, mode, 0);
5278 store_expr (value, xtarget, 0);
5280 else
5282 if (index != 0)
5283 bitpos = ((tree_low_cst (index, 0) - minelt)
5284 * tree_low_cst (TYPE_SIZE (elttype), 1));
5285 else
5286 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5288 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5289 && TREE_CODE (type) == ARRAY_TYPE
5290 && TYPE_NONALIASED_COMPONENT (type))
5292 target = copy_rtx (target);
5293 MEM_KEEP_ALIAS_SET_P (target) = 1;
5295 store_constructor_field (target, bitsize, bitpos, mode, value,
5296 type, cleared, get_alias_set (elttype));
5299 break;
5302 case VECTOR_TYPE:
5304 unsigned HOST_WIDE_INT idx;
5305 constructor_elt *ce;
5306 int i;
5307 int need_to_clear;
5308 int icode = 0;
5309 tree elttype = TREE_TYPE (type);
5310 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5311 enum machine_mode eltmode = TYPE_MODE (elttype);
5312 HOST_WIDE_INT bitsize;
5313 HOST_WIDE_INT bitpos;
5314 rtvec vector = NULL;
5315 unsigned n_elts;
5317 gcc_assert (eltmode != BLKmode);
5319 n_elts = TYPE_VECTOR_SUBPARTS (type);
5320 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5322 enum machine_mode mode = GET_MODE (target);
5324 icode = (int) vec_init_optab->handlers[mode].insn_code;
5325 if (icode != CODE_FOR_nothing)
5327 unsigned int i;
5329 vector = rtvec_alloc (n_elts);
5330 for (i = 0; i < n_elts; i++)
5331 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5335 /* If the constructor has fewer elements than the vector,
5336 clear the whole array first. Similarly if this is static
5337 constructor of a non-BLKmode object. */
5338 if (cleared)
5339 need_to_clear = 0;
5340 else if (REG_P (target) && TREE_STATIC (exp))
5341 need_to_clear = 1;
5342 else
5344 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5345 tree value;
5347 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5349 int n_elts_here = tree_low_cst
5350 (int_const_binop (TRUNC_DIV_EXPR,
5351 TYPE_SIZE (TREE_TYPE (value)),
5352 TYPE_SIZE (elttype), 0), 1);
5354 count += n_elts_here;
5355 if (mostly_zeros_p (value))
5356 zero_count += n_elts_here;
5359 /* Clear the entire vector first if there are any missing elements,
5360 or if the incidence of zero elements is >= 75%. */
5361 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5364 if (need_to_clear && size > 0 && !vector)
5366 if (REG_P (target))
5367 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5368 else
5369 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5370 cleared = 1;
5373 /* Inform later passes that the old value is dead. */
5374 if (!cleared && !vector && REG_P (target))
5375 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5377 /* Store each element of the constructor into the corresponding
5378 element of TARGET, determined by counting the elements. */
5379 for (idx = 0, i = 0;
5380 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5381 idx++, i += bitsize / elt_size)
5383 HOST_WIDE_INT eltpos;
5384 tree value = ce->value;
5386 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5387 if (cleared && initializer_zerop (value))
5388 continue;
5390 if (ce->index)
5391 eltpos = tree_low_cst (ce->index, 1);
5392 else
5393 eltpos = i;
5395 if (vector)
5397 /* Vector CONSTRUCTORs should only be built from smaller
5398 vectors in the case of BLKmode vectors. */
5399 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5400 RTVEC_ELT (vector, eltpos)
5401 = expand_normal (value);
5403 else
5405 enum machine_mode value_mode =
5406 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5407 ? TYPE_MODE (TREE_TYPE (value))
5408 : eltmode;
5409 bitpos = eltpos * elt_size;
5410 store_constructor_field (target, bitsize, bitpos,
5411 value_mode, value, type,
5412 cleared, get_alias_set (elttype));
5416 if (vector)
5417 emit_insn (GEN_FCN (icode)
5418 (target,
5419 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5420 break;
5423 default:
5424 gcc_unreachable ();
5428 /* Store the value of EXP (an expression tree)
5429 into a subfield of TARGET which has mode MODE and occupies
5430 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5431 If MODE is VOIDmode, it means that we are storing into a bit-field.
5433 Always return const0_rtx unless we have something particular to
5434 return.
5436 TYPE is the type of the underlying object,
5438 ALIAS_SET is the alias set for the destination. This value will
5439 (in general) be different from that for TARGET, since TARGET is a
5440 reference to the containing structure. */
5442 static rtx
5443 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5444 enum machine_mode mode, tree exp, tree type, int alias_set)
5446 HOST_WIDE_INT width_mask = 0;
5448 if (TREE_CODE (exp) == ERROR_MARK)
5449 return const0_rtx;
5451 /* If we have nothing to store, do nothing unless the expression has
5452 side-effects. */
5453 if (bitsize == 0)
5454 return expand_expr (exp, const0_rtx, VOIDmode, 0);
5455 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5456 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5458 /* If we are storing into an unaligned field of an aligned union that is
5459 in a register, we may have the mode of TARGET being an integer mode but
5460 MODE == BLKmode. In that case, get an aligned object whose size and
5461 alignment are the same as TARGET and store TARGET into it (we can avoid
5462 the store if the field being stored is the entire width of TARGET). Then
5463 call ourselves recursively to store the field into a BLKmode version of
5464 that object. Finally, load from the object into TARGET. This is not
5465 very efficient in general, but should only be slightly more expensive
5466 than the otherwise-required unaligned accesses. Perhaps this can be
5467 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5468 twice, once with emit_move_insn and once via store_field. */
5470 if (mode == BLKmode
5471 && (REG_P (target) || GET_CODE (target) == SUBREG))
5473 rtx object = assign_temp (type, 0, 1, 1);
5474 rtx blk_object = adjust_address (object, BLKmode, 0);
5476 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5477 emit_move_insn (object, target);
5479 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
5481 emit_move_insn (target, object);
5483 /* We want to return the BLKmode version of the data. */
5484 return blk_object;
5487 if (GET_CODE (target) == CONCAT)
5489 /* We're storing into a struct containing a single __complex. */
5491 gcc_assert (!bitpos);
5492 return store_expr (exp, target, 0);
5495 /* If the structure is in a register or if the component
5496 is a bit field, we cannot use addressing to access it.
5497 Use bit-field techniques or SUBREG to store in it. */
5499 if (mode == VOIDmode
5500 || (mode != BLKmode && ! direct_store[(int) mode]
5501 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5502 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5503 || REG_P (target)
5504 || GET_CODE (target) == SUBREG
5505 /* If the field isn't aligned enough to store as an ordinary memref,
5506 store it as a bit field. */
5507 || (mode != BLKmode
5508 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5509 || bitpos % GET_MODE_ALIGNMENT (mode))
5510 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5511 || (bitpos % BITS_PER_UNIT != 0)))
5512 /* If the RHS and field are a constant size and the size of the
5513 RHS isn't the same size as the bitfield, we must use bitfield
5514 operations. */
5515 || (bitsize >= 0
5516 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5517 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5519 rtx temp;
5521 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5522 implies a mask operation. If the precision is the same size as
5523 the field we're storing into, that mask is redundant. This is
5524 particularly common with bit field assignments generated by the
5525 C front end. */
5526 if (TREE_CODE (exp) == NOP_EXPR)
5528 tree type = TREE_TYPE (exp);
5529 if (INTEGRAL_TYPE_P (type)
5530 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5531 && bitsize == TYPE_PRECISION (type))
5533 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5534 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5535 exp = TREE_OPERAND (exp, 0);
5539 temp = expand_normal (exp);
5541 /* If BITSIZE is narrower than the size of the type of EXP
5542 we will be narrowing TEMP. Normally, what's wanted are the
5543 low-order bits. However, if EXP's type is a record and this is
5544 big-endian machine, we want the upper BITSIZE bits. */
5545 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5546 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5547 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5548 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5549 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5550 - bitsize),
5551 NULL_RTX, 1);
5553 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5554 MODE. */
5555 if (mode != VOIDmode && mode != BLKmode
5556 && mode != TYPE_MODE (TREE_TYPE (exp)))
5557 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5559 /* If the modes of TARGET and TEMP are both BLKmode, both
5560 must be in memory and BITPOS must be aligned on a byte
5561 boundary. If so, we simply do a block copy. */
5562 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5564 gcc_assert (MEM_P (target) && MEM_P (temp)
5565 && !(bitpos % BITS_PER_UNIT));
5567 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5568 emit_block_move (target, temp,
5569 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5570 / BITS_PER_UNIT),
5571 BLOCK_OP_NORMAL);
5573 return const0_rtx;
5576 /* Store the value in the bitfield. */
5577 store_bit_field (target, bitsize, bitpos, mode, temp);
5579 return const0_rtx;
5581 else
5583 /* Now build a reference to just the desired component. */
5584 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5586 if (to_rtx == target)
5587 to_rtx = copy_rtx (to_rtx);
5589 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5590 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5591 set_mem_alias_set (to_rtx, alias_set);
5593 return store_expr (exp, to_rtx, 0);
5597 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5598 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5599 codes and find the ultimate containing object, which we return.
5601 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5602 bit position, and *PUNSIGNEDP to the signedness of the field.
5603 If the position of the field is variable, we store a tree
5604 giving the variable offset (in units) in *POFFSET.
5605 This offset is in addition to the bit position.
5606 If the position is not variable, we store 0 in *POFFSET.
5608 If any of the extraction expressions is volatile,
5609 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5611 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5612 is a mode that can be used to access the field. In that case, *PBITSIZE
5613 is redundant.
5615 If the field describes a variable-sized object, *PMODE is set to
5616 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5617 this case, but the address of the object can be found.
5619 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5620 look through nodes that serve as markers of a greater alignment than
5621 the one that can be deduced from the expression. These nodes make it
5622 possible for front-ends to prevent temporaries from being created by
5623 the middle-end on alignment considerations. For that purpose, the
5624 normal operating mode at high-level is to always pass FALSE so that
5625 the ultimate containing object is really returned; moreover, the
5626 associated predicate handled_component_p will always return TRUE
5627 on these nodes, thus indicating that they are essentially handled
5628 by get_inner_reference. TRUE should only be passed when the caller
5629 is scanning the expression in order to build another representation
5630 and specifically knows how to handle these nodes; as such, this is
5631 the normal operating mode in the RTL expanders. */
5633 tree
5634 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5635 HOST_WIDE_INT *pbitpos, tree *poffset,
5636 enum machine_mode *pmode, int *punsignedp,
5637 int *pvolatilep, bool keep_aligning)
5639 tree size_tree = 0;
5640 enum machine_mode mode = VOIDmode;
5641 tree offset = size_zero_node;
5642 tree bit_offset = bitsize_zero_node;
5643 tree tem;
5645 /* First get the mode, signedness, and size. We do this from just the
5646 outermost expression. */
5647 if (TREE_CODE (exp) == COMPONENT_REF)
5649 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5650 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5651 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5653 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5655 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5657 size_tree = TREE_OPERAND (exp, 1);
5658 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5660 else
5662 mode = TYPE_MODE (TREE_TYPE (exp));
5663 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5665 if (mode == BLKmode)
5666 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5667 else
5668 *pbitsize = GET_MODE_BITSIZE (mode);
5671 if (size_tree != 0)
5673 if (! host_integerp (size_tree, 1))
5674 mode = BLKmode, *pbitsize = -1;
5675 else
5676 *pbitsize = tree_low_cst (size_tree, 1);
5679 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5680 and find the ultimate containing object. */
5681 while (1)
5683 switch (TREE_CODE (exp))
5685 case BIT_FIELD_REF:
5686 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5687 TREE_OPERAND (exp, 2));
5688 break;
5690 case COMPONENT_REF:
5692 tree field = TREE_OPERAND (exp, 1);
5693 tree this_offset = component_ref_field_offset (exp);
5695 /* If this field hasn't been filled in yet, don't go past it.
5696 This should only happen when folding expressions made during
5697 type construction. */
5698 if (this_offset == 0)
5699 break;
5701 offset = size_binop (PLUS_EXPR, offset, this_offset);
5702 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5703 DECL_FIELD_BIT_OFFSET (field));
5705 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5707 break;
5709 case ARRAY_REF:
5710 case ARRAY_RANGE_REF:
5712 tree index = TREE_OPERAND (exp, 1);
5713 tree low_bound = array_ref_low_bound (exp);
5714 tree unit_size = array_ref_element_size (exp);
5716 /* We assume all arrays have sizes that are a multiple of a byte.
5717 First subtract the lower bound, if any, in the type of the
5718 index, then convert to sizetype and multiply by the size of
5719 the array element. */
5720 if (! integer_zerop (low_bound))
5721 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5722 index, low_bound);
5724 offset = size_binop (PLUS_EXPR, offset,
5725 size_binop (MULT_EXPR,
5726 fold_convert (sizetype, index),
5727 unit_size));
5729 break;
5731 case REALPART_EXPR:
5732 break;
5734 case IMAGPART_EXPR:
5735 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5736 bitsize_int (*pbitsize));
5737 break;
5739 case VIEW_CONVERT_EXPR:
5740 if (keep_aligning && STRICT_ALIGNMENT
5741 && (TYPE_ALIGN (TREE_TYPE (exp))
5742 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5743 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5744 < BIGGEST_ALIGNMENT)
5745 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5746 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5747 goto done;
5748 break;
5750 default:
5751 goto done;
5754 /* If any reference in the chain is volatile, the effect is volatile. */
5755 if (TREE_THIS_VOLATILE (exp))
5756 *pvolatilep = 1;
5758 exp = TREE_OPERAND (exp, 0);
5760 done:
5762 /* If OFFSET is constant, see if we can return the whole thing as a
5763 constant bit position. Otherwise, split it up. */
5764 if (host_integerp (offset, 0)
5765 && 0 != (tem = size_binop (MULT_EXPR,
5766 fold_convert (bitsizetype, offset),
5767 bitsize_unit_node))
5768 && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
5769 && host_integerp (tem, 0))
5770 *pbitpos = tree_low_cst (tem, 0), *poffset = 0;
5771 else
5772 *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
5774 *pmode = mode;
5775 return exp;
5778 /* Return a tree of sizetype representing the size, in bytes, of the element
5779 of EXP, an ARRAY_REF. */
5781 tree
5782 array_ref_element_size (tree exp)
5784 tree aligned_size = TREE_OPERAND (exp, 3);
5785 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5787 /* If a size was specified in the ARRAY_REF, it's the size measured
5788 in alignment units of the element type. So multiply by that value. */
5789 if (aligned_size)
5791 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5792 sizetype from another type of the same width and signedness. */
5793 if (TREE_TYPE (aligned_size) != sizetype)
5794 aligned_size = fold_convert (sizetype, aligned_size);
5795 return size_binop (MULT_EXPR, aligned_size,
5796 size_int (TYPE_ALIGN_UNIT (elmt_type)));
5799 /* Otherwise, take the size from that of the element type. Substitute
5800 any PLACEHOLDER_EXPR that we have. */
5801 else
5802 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
5805 /* Return a tree representing the lower bound of the array mentioned in
5806 EXP, an ARRAY_REF. */
5808 tree
5809 array_ref_low_bound (tree exp)
5811 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5813 /* If a lower bound is specified in EXP, use it. */
5814 if (TREE_OPERAND (exp, 2))
5815 return TREE_OPERAND (exp, 2);
5817 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5818 substituting for a PLACEHOLDER_EXPR as needed. */
5819 if (domain_type && TYPE_MIN_VALUE (domain_type))
5820 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
5822 /* Otherwise, return a zero of the appropriate type. */
5823 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
5826 /* Return a tree representing the upper bound of the array mentioned in
5827 EXP, an ARRAY_REF. */
5829 tree
5830 array_ref_up_bound (tree exp)
5832 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5834 /* If there is a domain type and it has an upper bound, use it, substituting
5835 for a PLACEHOLDER_EXPR as needed. */
5836 if (domain_type && TYPE_MAX_VALUE (domain_type))
5837 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
5839 /* Otherwise fail. */
5840 return NULL_TREE;
5843 /* Return a tree representing the offset, in bytes, of the field referenced
5844 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5846 tree
5847 component_ref_field_offset (tree exp)
5849 tree aligned_offset = TREE_OPERAND (exp, 2);
5850 tree field = TREE_OPERAND (exp, 1);
5852 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5853 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5854 value. */
5855 if (aligned_offset)
5857 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5858 sizetype from another type of the same width and signedness. */
5859 if (TREE_TYPE (aligned_offset) != sizetype)
5860 aligned_offset = fold_convert (sizetype, aligned_offset);
5861 return size_binop (MULT_EXPR, aligned_offset,
5862 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
5865 /* Otherwise, take the offset from that of the field. Substitute
5866 any PLACEHOLDER_EXPR that we have. */
5867 else
5868 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
5871 /* Return 1 if T is an expression that get_inner_reference handles. */
5874 handled_component_p (tree t)
5876 switch (TREE_CODE (t))
5878 case BIT_FIELD_REF:
5879 case COMPONENT_REF:
5880 case ARRAY_REF:
5881 case ARRAY_RANGE_REF:
5882 case VIEW_CONVERT_EXPR:
5883 case REALPART_EXPR:
5884 case IMAGPART_EXPR:
5885 return 1;
5887 default:
5888 return 0;
5892 /* Given an rtx VALUE that may contain additions and multiplications, return
5893 an equivalent value that just refers to a register, memory, or constant.
5894 This is done by generating instructions to perform the arithmetic and
5895 returning a pseudo-register containing the value.
5897 The returned value may be a REG, SUBREG, MEM or constant. */
5900 force_operand (rtx value, rtx target)
5902 rtx op1, op2;
5903 /* Use subtarget as the target for operand 0 of a binary operation. */
5904 rtx subtarget = get_subtarget (target);
5905 enum rtx_code code = GET_CODE (value);
5907 /* Check for subreg applied to an expression produced by loop optimizer. */
5908 if (code == SUBREG
5909 && !REG_P (SUBREG_REG (value))
5910 && !MEM_P (SUBREG_REG (value)))
5912 value = simplify_gen_subreg (GET_MODE (value),
5913 force_reg (GET_MODE (SUBREG_REG (value)),
5914 force_operand (SUBREG_REG (value),
5915 NULL_RTX)),
5916 GET_MODE (SUBREG_REG (value)),
5917 SUBREG_BYTE (value));
5918 code = GET_CODE (value);
5921 /* Check for a PIC address load. */
5922 if ((code == PLUS || code == MINUS)
5923 && XEXP (value, 0) == pic_offset_table_rtx
5924 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5925 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5926 || GET_CODE (XEXP (value, 1)) == CONST))
5928 if (!subtarget)
5929 subtarget = gen_reg_rtx (GET_MODE (value));
5930 emit_move_insn (subtarget, value);
5931 return subtarget;
5934 if (ARITHMETIC_P (value))
5936 op2 = XEXP (value, 1);
5937 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
5938 subtarget = 0;
5939 if (code == MINUS && GET_CODE (op2) == CONST_INT)
5941 code = PLUS;
5942 op2 = negate_rtx (GET_MODE (value), op2);
5945 /* Check for an addition with OP2 a constant integer and our first
5946 operand a PLUS of a virtual register and something else. In that
5947 case, we want to emit the sum of the virtual register and the
5948 constant first and then add the other value. This allows virtual
5949 register instantiation to simply modify the constant rather than
5950 creating another one around this addition. */
5951 if (code == PLUS && GET_CODE (op2) == CONST_INT
5952 && GET_CODE (XEXP (value, 0)) == PLUS
5953 && REG_P (XEXP (XEXP (value, 0), 0))
5954 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5955 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5957 rtx temp = expand_simple_binop (GET_MODE (value), code,
5958 XEXP (XEXP (value, 0), 0), op2,
5959 subtarget, 0, OPTAB_LIB_WIDEN);
5960 return expand_simple_binop (GET_MODE (value), code, temp,
5961 force_operand (XEXP (XEXP (value,
5962 0), 1), 0),
5963 target, 0, OPTAB_LIB_WIDEN);
5966 op1 = force_operand (XEXP (value, 0), subtarget);
5967 op2 = force_operand (op2, NULL_RTX);
5968 switch (code)
5970 case MULT:
5971 return expand_mult (GET_MODE (value), op1, op2, target, 1);
5972 case DIV:
5973 if (!INTEGRAL_MODE_P (GET_MODE (value)))
5974 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5975 target, 1, OPTAB_LIB_WIDEN);
5976 else
5977 return expand_divmod (0,
5978 FLOAT_MODE_P (GET_MODE (value))
5979 ? RDIV_EXPR : TRUNC_DIV_EXPR,
5980 GET_MODE (value), op1, op2, target, 0);
5981 break;
5982 case MOD:
5983 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5984 target, 0);
5985 break;
5986 case UDIV:
5987 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
5988 target, 1);
5989 break;
5990 case UMOD:
5991 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5992 target, 1);
5993 break;
5994 case ASHIFTRT:
5995 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5996 target, 0, OPTAB_LIB_WIDEN);
5997 break;
5998 default:
5999 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6000 target, 1, OPTAB_LIB_WIDEN);
6003 if (UNARY_P (value))
6005 if (!target)
6006 target = gen_reg_rtx (GET_MODE (value));
6007 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6008 switch (code)
6010 case ZERO_EXTEND:
6011 case SIGN_EXTEND:
6012 case TRUNCATE:
6013 convert_move (target, op1, code == ZERO_EXTEND);
6014 return target;
6016 case FIX:
6017 case UNSIGNED_FIX:
6018 expand_fix (target, op1, code == UNSIGNED_FIX);
6019 return target;
6021 case FLOAT:
6022 case UNSIGNED_FLOAT:
6023 expand_float (target, op1, code == UNSIGNED_FLOAT);
6024 return target;
6026 default:
6027 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6031 #ifdef INSN_SCHEDULING
6032 /* On machines that have insn scheduling, we want all memory reference to be
6033 explicit, so we need to deal with such paradoxical SUBREGs. */
6034 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6035 && (GET_MODE_SIZE (GET_MODE (value))
6036 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6037 value
6038 = simplify_gen_subreg (GET_MODE (value),
6039 force_reg (GET_MODE (SUBREG_REG (value)),
6040 force_operand (SUBREG_REG (value),
6041 NULL_RTX)),
6042 GET_MODE (SUBREG_REG (value)),
6043 SUBREG_BYTE (value));
6044 #endif
6046 return value;
6049 /* Subroutine of expand_expr: return nonzero iff there is no way that
6050 EXP can reference X, which is being modified. TOP_P is nonzero if this
6051 call is going to be used to determine whether we need a temporary
6052 for EXP, as opposed to a recursive call to this function.
6054 It is always safe for this routine to return zero since it merely
6055 searches for optimization opportunities. */
6058 safe_from_p (rtx x, tree exp, int top_p)
6060 rtx exp_rtl = 0;
6061 int i, nops;
6063 if (x == 0
6064 /* If EXP has varying size, we MUST use a target since we currently
6065 have no way of allocating temporaries of variable size
6066 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6067 So we assume here that something at a higher level has prevented a
6068 clash. This is somewhat bogus, but the best we can do. Only
6069 do this when X is BLKmode and when we are at the top level. */
6070 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6071 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6072 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6073 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6074 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6075 != INTEGER_CST)
6076 && GET_MODE (x) == BLKmode)
6077 /* If X is in the outgoing argument area, it is always safe. */
6078 || (MEM_P (x)
6079 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6080 || (GET_CODE (XEXP (x, 0)) == PLUS
6081 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6082 return 1;
6084 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6085 find the underlying pseudo. */
6086 if (GET_CODE (x) == SUBREG)
6088 x = SUBREG_REG (x);
6089 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6090 return 0;
6093 /* Now look at our tree code and possibly recurse. */
6094 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6096 case tcc_declaration:
6097 exp_rtl = DECL_RTL_IF_SET (exp);
6098 break;
6100 case tcc_constant:
6101 return 1;
6103 case tcc_exceptional:
6104 if (TREE_CODE (exp) == TREE_LIST)
6106 while (1)
6108 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6109 return 0;
6110 exp = TREE_CHAIN (exp);
6111 if (!exp)
6112 return 1;
6113 if (TREE_CODE (exp) != TREE_LIST)
6114 return safe_from_p (x, exp, 0);
6117 else if (TREE_CODE (exp) == CONSTRUCTOR)
6119 constructor_elt *ce;
6120 unsigned HOST_WIDE_INT idx;
6122 for (idx = 0;
6123 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6124 idx++)
6125 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6126 || !safe_from_p (x, ce->value, 0))
6127 return 0;
6128 return 1;
6130 else if (TREE_CODE (exp) == ERROR_MARK)
6131 return 1; /* An already-visited SAVE_EXPR? */
6132 else
6133 return 0;
6135 case tcc_statement:
6136 /* The only case we look at here is the DECL_INITIAL inside a
6137 DECL_EXPR. */
6138 return (TREE_CODE (exp) != DECL_EXPR
6139 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6140 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6141 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6143 case tcc_binary:
6144 case tcc_comparison:
6145 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6146 return 0;
6147 /* Fall through. */
6149 case tcc_unary:
6150 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6152 case tcc_expression:
6153 case tcc_reference:
6154 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6155 the expression. If it is set, we conflict iff we are that rtx or
6156 both are in memory. Otherwise, we check all operands of the
6157 expression recursively. */
6159 switch (TREE_CODE (exp))
6161 case ADDR_EXPR:
6162 /* If the operand is static or we are static, we can't conflict.
6163 Likewise if we don't conflict with the operand at all. */
6164 if (staticp (TREE_OPERAND (exp, 0))
6165 || TREE_STATIC (exp)
6166 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6167 return 1;
6169 /* Otherwise, the only way this can conflict is if we are taking
6170 the address of a DECL a that address if part of X, which is
6171 very rare. */
6172 exp = TREE_OPERAND (exp, 0);
6173 if (DECL_P (exp))
6175 if (!DECL_RTL_SET_P (exp)
6176 || !MEM_P (DECL_RTL (exp)))
6177 return 0;
6178 else
6179 exp_rtl = XEXP (DECL_RTL (exp), 0);
6181 break;
6183 case MISALIGNED_INDIRECT_REF:
6184 case ALIGN_INDIRECT_REF:
6185 case INDIRECT_REF:
6186 if (MEM_P (x)
6187 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6188 get_alias_set (exp)))
6189 return 0;
6190 break;
6192 case CALL_EXPR:
6193 /* Assume that the call will clobber all hard registers and
6194 all of memory. */
6195 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6196 || MEM_P (x))
6197 return 0;
6198 break;
6200 case WITH_CLEANUP_EXPR:
6201 case CLEANUP_POINT_EXPR:
6202 /* Lowered by gimplify.c. */
6203 gcc_unreachable ();
6205 case SAVE_EXPR:
6206 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6208 default:
6209 break;
6212 /* If we have an rtx, we do not need to scan our operands. */
6213 if (exp_rtl)
6214 break;
6216 nops = TREE_CODE_LENGTH (TREE_CODE (exp));
6217 for (i = 0; i < nops; i++)
6218 if (TREE_OPERAND (exp, i) != 0
6219 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6220 return 0;
6222 /* If this is a language-specific tree code, it may require
6223 special handling. */
6224 if ((unsigned int) TREE_CODE (exp)
6225 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6226 && !lang_hooks.safe_from_p (x, exp))
6227 return 0;
6228 break;
6230 case tcc_type:
6231 /* Should never get a type here. */
6232 gcc_unreachable ();
6235 /* If we have an rtl, find any enclosed object. Then see if we conflict
6236 with it. */
6237 if (exp_rtl)
6239 if (GET_CODE (exp_rtl) == SUBREG)
6241 exp_rtl = SUBREG_REG (exp_rtl);
6242 if (REG_P (exp_rtl)
6243 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6244 return 0;
6247 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6248 are memory and they conflict. */
6249 return ! (rtx_equal_p (x, exp_rtl)
6250 || (MEM_P (x) && MEM_P (exp_rtl)
6251 && true_dependence (exp_rtl, VOIDmode, x,
6252 rtx_addr_varies_p)));
6255 /* If we reach here, it is safe. */
6256 return 1;
6260 /* Return the highest power of two that EXP is known to be a multiple of.
6261 This is used in updating alignment of MEMs in array references. */
6263 unsigned HOST_WIDE_INT
6264 highest_pow2_factor (tree exp)
6266 unsigned HOST_WIDE_INT c0, c1;
6268 switch (TREE_CODE (exp))
6270 case INTEGER_CST:
6271 /* We can find the lowest bit that's a one. If the low
6272 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6273 We need to handle this case since we can find it in a COND_EXPR,
6274 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6275 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6276 later ICE. */
6277 if (TREE_CONSTANT_OVERFLOW (exp))
6278 return BIGGEST_ALIGNMENT;
6279 else
6281 /* Note: tree_low_cst is intentionally not used here,
6282 we don't care about the upper bits. */
6283 c0 = TREE_INT_CST_LOW (exp);
6284 c0 &= -c0;
6285 return c0 ? c0 : BIGGEST_ALIGNMENT;
6287 break;
6289 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6290 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6291 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6292 return MIN (c0, c1);
6294 case MULT_EXPR:
6295 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6296 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6297 return c0 * c1;
6299 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6300 case CEIL_DIV_EXPR:
6301 if (integer_pow2p (TREE_OPERAND (exp, 1))
6302 && host_integerp (TREE_OPERAND (exp, 1), 1))
6304 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6305 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6306 return MAX (1, c0 / c1);
6308 break;
6310 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
6311 case SAVE_EXPR:
6312 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6314 case COMPOUND_EXPR:
6315 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6317 case COND_EXPR:
6318 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6319 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6320 return MIN (c0, c1);
6322 default:
6323 break;
6326 return 1;
6329 /* Similar, except that the alignment requirements of TARGET are
6330 taken into account. Assume it is at least as aligned as its
6331 type, unless it is a COMPONENT_REF in which case the layout of
6332 the structure gives the alignment. */
6334 static unsigned HOST_WIDE_INT
6335 highest_pow2_factor_for_target (tree target, tree exp)
6337 unsigned HOST_WIDE_INT target_align, factor;
6339 factor = highest_pow2_factor (exp);
6340 if (TREE_CODE (target) == COMPONENT_REF)
6341 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6342 else
6343 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6344 return MAX (factor, target_align);
6347 /* Expands variable VAR. */
6349 void
6350 expand_var (tree var)
6352 if (DECL_EXTERNAL (var))
6353 return;
6355 if (TREE_STATIC (var))
6356 /* If this is an inlined copy of a static local variable,
6357 look up the original decl. */
6358 var = DECL_ORIGIN (var);
6360 if (TREE_STATIC (var)
6361 ? !TREE_ASM_WRITTEN (var)
6362 : !DECL_RTL_SET_P (var))
6364 if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
6365 /* Should be ignored. */;
6366 else if (lang_hooks.expand_decl (var))
6367 /* OK. */;
6368 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
6369 expand_decl (var);
6370 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
6371 rest_of_decl_compilation (var, 0, 0);
6372 else
6373 /* No expansion needed. */
6374 gcc_assert (TREE_CODE (var) == TYPE_DECL
6375 || TREE_CODE (var) == CONST_DECL
6376 || TREE_CODE (var) == FUNCTION_DECL
6377 || TREE_CODE (var) == LABEL_DECL);
6381 /* Subroutine of expand_expr. Expand the two operands of a binary
6382 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6383 The value may be stored in TARGET if TARGET is nonzero. The
6384 MODIFIER argument is as documented by expand_expr. */
6386 static void
6387 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6388 enum expand_modifier modifier)
6390 if (! safe_from_p (target, exp1, 1))
6391 target = 0;
6392 if (operand_equal_p (exp0, exp1, 0))
6394 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6395 *op1 = copy_rtx (*op0);
6397 else
6399 /* If we need to preserve evaluation order, copy exp0 into its own
6400 temporary variable so that it can't be clobbered by exp1. */
6401 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6402 exp0 = save_expr (exp0);
6403 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6404 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6409 /* Return a MEM that contains constant EXP. DEFER is as for
6410 output_constant_def and MODIFIER is as for expand_expr. */
6412 static rtx
6413 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6415 rtx mem;
6417 mem = output_constant_def (exp, defer);
6418 if (modifier != EXPAND_INITIALIZER)
6419 mem = use_anchored_address (mem);
6420 return mem;
6423 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6424 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6426 static rtx
6427 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6428 enum expand_modifier modifier)
6430 rtx result, subtarget;
6431 tree inner, offset;
6432 HOST_WIDE_INT bitsize, bitpos;
6433 int volatilep, unsignedp;
6434 enum machine_mode mode1;
6436 /* If we are taking the address of a constant and are at the top level,
6437 we have to use output_constant_def since we can't call force_const_mem
6438 at top level. */
6439 /* ??? This should be considered a front-end bug. We should not be
6440 generating ADDR_EXPR of something that isn't an LVALUE. The only
6441 exception here is STRING_CST. */
6442 if (TREE_CODE (exp) == CONSTRUCTOR
6443 || CONSTANT_CLASS_P (exp))
6444 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6446 /* Everything must be something allowed by is_gimple_addressable. */
6447 switch (TREE_CODE (exp))
6449 case INDIRECT_REF:
6450 /* This case will happen via recursion for &a->b. */
6451 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6453 case CONST_DECL:
6454 /* Recurse and make the output_constant_def clause above handle this. */
6455 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6456 tmode, modifier);
6458 case REALPART_EXPR:
6459 /* The real part of the complex number is always first, therefore
6460 the address is the same as the address of the parent object. */
6461 offset = 0;
6462 bitpos = 0;
6463 inner = TREE_OPERAND (exp, 0);
6464 break;
6466 case IMAGPART_EXPR:
6467 /* The imaginary part of the complex number is always second.
6468 The expression is therefore always offset by the size of the
6469 scalar type. */
6470 offset = 0;
6471 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6472 inner = TREE_OPERAND (exp, 0);
6473 break;
6475 default:
6476 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6477 expand_expr, as that can have various side effects; LABEL_DECLs for
6478 example, may not have their DECL_RTL set yet. Assume language
6479 specific tree nodes can be expanded in some interesting way. */
6480 if (DECL_P (exp)
6481 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6483 result = expand_expr (exp, target, tmode,
6484 modifier == EXPAND_INITIALIZER
6485 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6487 /* If the DECL isn't in memory, then the DECL wasn't properly
6488 marked TREE_ADDRESSABLE, which will be either a front-end
6489 or a tree optimizer bug. */
6490 gcc_assert (MEM_P (result));
6491 result = XEXP (result, 0);
6493 /* ??? Is this needed anymore? */
6494 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6496 assemble_external (exp);
6497 TREE_USED (exp) = 1;
6500 if (modifier != EXPAND_INITIALIZER
6501 && modifier != EXPAND_CONST_ADDRESS)
6502 result = force_operand (result, target);
6503 return result;
6506 /* Pass FALSE as the last argument to get_inner_reference although
6507 we are expanding to RTL. The rationale is that we know how to
6508 handle "aligning nodes" here: we can just bypass them because
6509 they won't change the final object whose address will be returned
6510 (they actually exist only for that purpose). */
6511 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6512 &mode1, &unsignedp, &volatilep, false);
6513 break;
6516 /* We must have made progress. */
6517 gcc_assert (inner != exp);
6519 subtarget = offset || bitpos ? NULL_RTX : target;
6520 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6522 if (offset)
6524 rtx tmp;
6526 if (modifier != EXPAND_NORMAL)
6527 result = force_operand (result, NULL);
6528 tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
6530 result = convert_memory_address (tmode, result);
6531 tmp = convert_memory_address (tmode, tmp);
6533 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6534 result = gen_rtx_PLUS (tmode, result, tmp);
6535 else
6537 subtarget = bitpos ? NULL_RTX : target;
6538 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6539 1, OPTAB_LIB_WIDEN);
6543 if (bitpos)
6545 /* Someone beforehand should have rejected taking the address
6546 of such an object. */
6547 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6549 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6550 if (modifier < EXPAND_SUM)
6551 result = force_operand (result, target);
6554 return result;
6557 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6558 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6560 static rtx
6561 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6562 enum expand_modifier modifier)
6564 enum machine_mode rmode;
6565 rtx result;
6567 /* Target mode of VOIDmode says "whatever's natural". */
6568 if (tmode == VOIDmode)
6569 tmode = TYPE_MODE (TREE_TYPE (exp));
6571 /* We can get called with some Weird Things if the user does silliness
6572 like "(short) &a". In that case, convert_memory_address won't do
6573 the right thing, so ignore the given target mode. */
6574 if (tmode != Pmode && tmode != ptr_mode)
6575 tmode = Pmode;
6577 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6578 tmode, modifier);
6580 /* Despite expand_expr claims concerning ignoring TMODE when not
6581 strictly convenient, stuff breaks if we don't honor it. Note
6582 that combined with the above, we only do this for pointer modes. */
6583 rmode = GET_MODE (result);
6584 if (rmode == VOIDmode)
6585 rmode = tmode;
6586 if (rmode != tmode)
6587 result = convert_memory_address (tmode, result);
6589 return result;
6593 /* expand_expr: generate code for computing expression EXP.
6594 An rtx for the computed value is returned. The value is never null.
6595 In the case of a void EXP, const0_rtx is returned.
6597 The value may be stored in TARGET if TARGET is nonzero.
6598 TARGET is just a suggestion; callers must assume that
6599 the rtx returned may not be the same as TARGET.
6601 If TARGET is CONST0_RTX, it means that the value will be ignored.
6603 If TMODE is not VOIDmode, it suggests generating the
6604 result in mode TMODE. But this is done only when convenient.
6605 Otherwise, TMODE is ignored and the value generated in its natural mode.
6606 TMODE is just a suggestion; callers must assume that
6607 the rtx returned may not have mode TMODE.
6609 Note that TARGET may have neither TMODE nor MODE. In that case, it
6610 probably will not be used.
6612 If MODIFIER is EXPAND_SUM then when EXP is an addition
6613 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6614 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6615 products as above, or REG or MEM, or constant.
6616 Ordinarily in such cases we would output mul or add instructions
6617 and then return a pseudo reg containing the sum.
6619 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6620 it also marks a label as absolutely required (it can't be dead).
6621 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6622 This is used for outputting expressions used in initializers.
6624 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6625 with a constant address even if that address is not normally legitimate.
6626 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6628 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6629 a call parameter. Such targets require special care as we haven't yet
6630 marked TARGET so that it's safe from being trashed by libcalls. We
6631 don't want to use TARGET for anything but the final result;
6632 Intermediate values must go elsewhere. Additionally, calls to
6633 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6635 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6636 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6637 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6638 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6639 recursively. */
6641 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
6642 enum expand_modifier, rtx *);
6645 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
6646 enum expand_modifier modifier, rtx *alt_rtl)
6648 int rn = -1;
6649 rtx ret, last = NULL;
6651 /* Handle ERROR_MARK before anybody tries to access its type. */
6652 if (TREE_CODE (exp) == ERROR_MARK
6653 || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
6655 ret = CONST0_RTX (tmode);
6656 return ret ? ret : const0_rtx;
6659 if (flag_non_call_exceptions)
6661 rn = lookup_stmt_eh_region (exp);
6662 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6663 if (rn >= 0)
6664 last = get_last_insn ();
6667 /* If this is an expression of some kind and it has an associated line
6668 number, then emit the line number before expanding the expression.
6670 We need to save and restore the file and line information so that
6671 errors discovered during expansion are emitted with the right
6672 information. It would be better of the diagnostic routines
6673 used the file/line information embedded in the tree nodes rather
6674 than globals. */
6675 if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
6677 location_t saved_location = input_location;
6678 input_location = EXPR_LOCATION (exp);
6679 emit_line_note (input_location);
6681 /* Record where the insns produced belong. */
6682 record_block_change (TREE_BLOCK (exp));
6684 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6686 input_location = saved_location;
6688 else
6690 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6693 /* If using non-call exceptions, mark all insns that may trap.
6694 expand_call() will mark CALL_INSNs before we get to this code,
6695 but it doesn't handle libcalls, and these may trap. */
6696 if (rn >= 0)
6698 rtx insn;
6699 for (insn = next_real_insn (last); insn;
6700 insn = next_real_insn (insn))
6702 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
6703 /* If we want exceptions for non-call insns, any
6704 may_trap_p instruction may throw. */
6705 && GET_CODE (PATTERN (insn)) != CLOBBER
6706 && GET_CODE (PATTERN (insn)) != USE
6707 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
6709 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
6710 REG_NOTES (insn));
6715 return ret;
6718 static rtx
6719 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
6720 enum expand_modifier modifier, rtx *alt_rtl)
6722 rtx op0, op1, temp, decl_rtl;
6723 tree type = TREE_TYPE (exp);
6724 int unsignedp;
6725 enum machine_mode mode;
6726 enum tree_code code = TREE_CODE (exp);
6727 optab this_optab;
6728 rtx subtarget, original_target;
6729 int ignore;
6730 tree context, subexp0, subexp1;
6731 bool reduce_bit_field = false;
6732 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6733 ? reduce_to_bit_field_precision ((expr), \
6734 target, \
6735 type) \
6736 : (expr))
6738 mode = TYPE_MODE (type);
6739 unsignedp = TYPE_UNSIGNED (type);
6740 if (lang_hooks.reduce_bit_field_operations
6741 && TREE_CODE (type) == INTEGER_TYPE
6742 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
6744 /* An operation in what may be a bit-field type needs the
6745 result to be reduced to the precision of the bit-field type,
6746 which is narrower than that of the type's mode. */
6747 reduce_bit_field = true;
6748 if (modifier == EXPAND_STACK_PARM)
6749 target = 0;
6752 /* Use subtarget as the target for operand 0 of a binary operation. */
6753 subtarget = get_subtarget (target);
6754 original_target = target;
6755 ignore = (target == const0_rtx
6756 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6757 || code == CONVERT_EXPR || code == COND_EXPR
6758 || code == VIEW_CONVERT_EXPR)
6759 && TREE_CODE (type) == VOID_TYPE));
6761 /* If we are going to ignore this result, we need only do something
6762 if there is a side-effect somewhere in the expression. If there
6763 is, short-circuit the most common cases here. Note that we must
6764 not call expand_expr with anything but const0_rtx in case this
6765 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6767 if (ignore)
6769 if (! TREE_SIDE_EFFECTS (exp))
6770 return const0_rtx;
6772 /* Ensure we reference a volatile object even if value is ignored, but
6773 don't do this if all we are doing is taking its address. */
6774 if (TREE_THIS_VOLATILE (exp)
6775 && TREE_CODE (exp) != FUNCTION_DECL
6776 && mode != VOIDmode && mode != BLKmode
6777 && modifier != EXPAND_CONST_ADDRESS)
6779 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6780 if (MEM_P (temp))
6781 temp = copy_to_reg (temp);
6782 return const0_rtx;
6785 if (TREE_CODE_CLASS (code) == tcc_unary
6786 || code == COMPONENT_REF || code == INDIRECT_REF)
6787 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6788 modifier);
6790 else if (TREE_CODE_CLASS (code) == tcc_binary
6791 || TREE_CODE_CLASS (code) == tcc_comparison
6792 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6794 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6795 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6796 return const0_rtx;
6798 else if (code == BIT_FIELD_REF)
6800 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6801 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6802 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6803 return const0_rtx;
6806 target = 0;
6810 switch (code)
6812 case LABEL_DECL:
6814 tree function = decl_function_context (exp);
6816 temp = label_rtx (exp);
6817 temp = gen_rtx_LABEL_REF (Pmode, temp);
6819 if (function != current_function_decl
6820 && function != 0)
6821 LABEL_REF_NONLOCAL_P (temp) = 1;
6823 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
6824 return temp;
6827 case SSA_NAME:
6828 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
6829 NULL);
6831 case PARM_DECL:
6832 case VAR_DECL:
6833 /* If a static var's type was incomplete when the decl was written,
6834 but the type is complete now, lay out the decl now. */
6835 if (DECL_SIZE (exp) == 0
6836 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
6837 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6838 layout_decl (exp, 0);
6840 /* ... fall through ... */
6842 case FUNCTION_DECL:
6843 case RESULT_DECL:
6844 decl_rtl = DECL_RTL (exp);
6845 gcc_assert (decl_rtl);
6847 /* Ensure variable marked as used even if it doesn't go through
6848 a parser. If it hasn't be used yet, write out an external
6849 definition. */
6850 if (! TREE_USED (exp))
6852 assemble_external (exp);
6853 TREE_USED (exp) = 1;
6856 /* Show we haven't gotten RTL for this yet. */
6857 temp = 0;
6859 /* Variables inherited from containing functions should have
6860 been lowered by this point. */
6861 context = decl_function_context (exp);
6862 gcc_assert (!context
6863 || context == current_function_decl
6864 || TREE_STATIC (exp)
6865 /* ??? C++ creates functions that are not TREE_STATIC. */
6866 || TREE_CODE (exp) == FUNCTION_DECL);
6868 /* This is the case of an array whose size is to be determined
6869 from its initializer, while the initializer is still being parsed.
6870 See expand_decl. */
6872 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
6873 temp = validize_mem (decl_rtl);
6875 /* If DECL_RTL is memory, we are in the normal case and either
6876 the address is not valid or it is not a register and -fforce-addr
6877 is specified, get the address into a register. */
6879 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
6881 if (alt_rtl)
6882 *alt_rtl = decl_rtl;
6883 decl_rtl = use_anchored_address (decl_rtl);
6884 if (modifier != EXPAND_CONST_ADDRESS
6885 && modifier != EXPAND_SUM
6886 && (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
6887 || (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
6888 temp = replace_equiv_address (decl_rtl,
6889 copy_rtx (XEXP (decl_rtl, 0)));
6892 /* If we got something, return it. But first, set the alignment
6893 if the address is a register. */
6894 if (temp != 0)
6896 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
6897 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6899 return temp;
6902 /* If the mode of DECL_RTL does not match that of the decl, it
6903 must be a promoted value. We return a SUBREG of the wanted mode,
6904 but mark it so that we know that it was already extended. */
6906 if (REG_P (decl_rtl)
6907 && GET_MODE (decl_rtl) != DECL_MODE (exp))
6909 enum machine_mode pmode;
6911 /* Get the signedness used for this variable. Ensure we get the
6912 same mode we got when the variable was declared. */
6913 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
6914 (TREE_CODE (exp) == RESULT_DECL
6915 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
6916 gcc_assert (GET_MODE (decl_rtl) == pmode);
6918 temp = gen_lowpart_SUBREG (mode, decl_rtl);
6919 SUBREG_PROMOTED_VAR_P (temp) = 1;
6920 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
6921 return temp;
6924 return decl_rtl;
6926 case INTEGER_CST:
6927 temp = immed_double_const (TREE_INT_CST_LOW (exp),
6928 TREE_INT_CST_HIGH (exp), mode);
6930 /* ??? If overflow is set, fold will have done an incomplete job,
6931 which can result in (plus xx (const_int 0)), which can get
6932 simplified by validate_replace_rtx during virtual register
6933 instantiation, which can result in unrecognizable insns.
6934 Avoid this by forcing all overflows into registers. */
6935 if (TREE_CONSTANT_OVERFLOW (exp)
6936 && modifier != EXPAND_INITIALIZER)
6937 temp = force_reg (mode, temp);
6939 return temp;
6941 case VECTOR_CST:
6943 tree tmp = NULL_TREE;
6944 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
6945 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
6946 return const_vector_from_tree (exp);
6947 if (GET_MODE_CLASS (mode) == MODE_INT)
6949 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
6950 if (type_for_mode)
6951 tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
6953 if (!tmp)
6954 tmp = build_constructor_from_list (type,
6955 TREE_VECTOR_CST_ELTS (exp));
6956 return expand_expr (tmp, ignore ? const0_rtx : target,
6957 tmode, modifier);
6960 case CONST_DECL:
6961 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
6963 case REAL_CST:
6964 /* If optimized, generate immediate CONST_DOUBLE
6965 which will be turned into memory by reload if necessary.
6967 We used to force a register so that loop.c could see it. But
6968 this does not allow gen_* patterns to perform optimizations with
6969 the constants. It also produces two insns in cases like "x = 1.0;".
6970 On most machines, floating-point constants are not permitted in
6971 many insns, so we'd end up copying it to a register in any case.
6973 Now, we do the copying in expand_binop, if appropriate. */
6974 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
6975 TYPE_MODE (TREE_TYPE (exp)));
6977 case COMPLEX_CST:
6978 /* Handle evaluating a complex constant in a CONCAT target. */
6979 if (original_target && GET_CODE (original_target) == CONCAT)
6981 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
6982 rtx rtarg, itarg;
6984 rtarg = XEXP (original_target, 0);
6985 itarg = XEXP (original_target, 1);
6987 /* Move the real and imaginary parts separately. */
6988 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
6989 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
6991 if (op0 != rtarg)
6992 emit_move_insn (rtarg, op0);
6993 if (op1 != itarg)
6994 emit_move_insn (itarg, op1);
6996 return original_target;
6999 /* ... fall through ... */
7001 case STRING_CST:
7002 temp = expand_expr_constant (exp, 1, modifier);
7004 /* temp contains a constant address.
7005 On RISC machines where a constant address isn't valid,
7006 make some insns to get that address into a register. */
7007 if (modifier != EXPAND_CONST_ADDRESS
7008 && modifier != EXPAND_INITIALIZER
7009 && modifier != EXPAND_SUM
7010 && (! memory_address_p (mode, XEXP (temp, 0))
7011 || flag_force_addr))
7012 return replace_equiv_address (temp,
7013 copy_rtx (XEXP (temp, 0)));
7014 return temp;
7016 case SAVE_EXPR:
7018 tree val = TREE_OPERAND (exp, 0);
7019 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
7021 if (!SAVE_EXPR_RESOLVED_P (exp))
7023 /* We can indeed still hit this case, typically via builtin
7024 expanders calling save_expr immediately before expanding
7025 something. Assume this means that we only have to deal
7026 with non-BLKmode values. */
7027 gcc_assert (GET_MODE (ret) != BLKmode);
7029 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
7030 DECL_ARTIFICIAL (val) = 1;
7031 DECL_IGNORED_P (val) = 1;
7032 TREE_OPERAND (exp, 0) = val;
7033 SAVE_EXPR_RESOLVED_P (exp) = 1;
7035 if (!CONSTANT_P (ret))
7036 ret = copy_to_reg (ret);
7037 SET_DECL_RTL (val, ret);
7040 return ret;
7043 case GOTO_EXPR:
7044 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
7045 expand_goto (TREE_OPERAND (exp, 0));
7046 else
7047 expand_computed_goto (TREE_OPERAND (exp, 0));
7048 return const0_rtx;
7050 case CONSTRUCTOR:
7051 /* If we don't need the result, just ensure we evaluate any
7052 subexpressions. */
7053 if (ignore)
7055 unsigned HOST_WIDE_INT idx;
7056 tree value;
7058 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7059 expand_expr (value, const0_rtx, VOIDmode, 0);
7061 return const0_rtx;
7064 /* Try to avoid creating a temporary at all. This is possible
7065 if all of the initializer is zero.
7066 FIXME: try to handle all [0..255] initializers we can handle
7067 with memset. */
7068 else if (TREE_STATIC (exp)
7069 && !TREE_ADDRESSABLE (exp)
7070 && target != 0 && mode == BLKmode
7071 && all_zeros_p (exp))
7073 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7074 return target;
7077 /* All elts simple constants => refer to a constant in memory. But
7078 if this is a non-BLKmode mode, let it store a field at a time
7079 since that should make a CONST_INT or CONST_DOUBLE when we
7080 fold. Likewise, if we have a target we can use, it is best to
7081 store directly into the target unless the type is large enough
7082 that memcpy will be used. If we are making an initializer and
7083 all operands are constant, put it in memory as well.
7085 FIXME: Avoid trying to fill vector constructors piece-meal.
7086 Output them with output_constant_def below unless we're sure
7087 they're zeros. This should go away when vector initializers
7088 are treated like VECTOR_CST instead of arrays.
7090 else if ((TREE_STATIC (exp)
7091 && ((mode == BLKmode
7092 && ! (target != 0 && safe_from_p (target, exp, 1)))
7093 || TREE_ADDRESSABLE (exp)
7094 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7095 && (! MOVE_BY_PIECES_P
7096 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7097 TYPE_ALIGN (type)))
7098 && ! mostly_zeros_p (exp))))
7099 || ((modifier == EXPAND_INITIALIZER
7100 || modifier == EXPAND_CONST_ADDRESS)
7101 && TREE_CONSTANT (exp)))
7103 rtx constructor = expand_expr_constant (exp, 1, modifier);
7105 if (modifier != EXPAND_CONST_ADDRESS
7106 && modifier != EXPAND_INITIALIZER
7107 && modifier != EXPAND_SUM)
7108 constructor = validize_mem (constructor);
7110 return constructor;
7112 else
7114 /* Handle calls that pass values in multiple non-contiguous
7115 locations. The Irix 6 ABI has examples of this. */
7116 if (target == 0 || ! safe_from_p (target, exp, 1)
7117 || GET_CODE (target) == PARALLEL
7118 || modifier == EXPAND_STACK_PARM)
7119 target
7120 = assign_temp (build_qualified_type (type,
7121 (TYPE_QUALS (type)
7122 | (TREE_READONLY (exp)
7123 * TYPE_QUAL_CONST))),
7124 0, TREE_ADDRESSABLE (exp), 1);
7126 store_constructor (exp, target, 0, int_expr_size (exp));
7127 return target;
7130 case MISALIGNED_INDIRECT_REF:
7131 case ALIGN_INDIRECT_REF:
7132 case INDIRECT_REF:
7134 tree exp1 = TREE_OPERAND (exp, 0);
7136 if (modifier != EXPAND_WRITE)
7138 tree t;
7140 t = fold_read_from_constant_string (exp);
7141 if (t)
7142 return expand_expr (t, target, tmode, modifier);
7145 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7146 op0 = memory_address (mode, op0);
7148 if (code == ALIGN_INDIRECT_REF)
7150 int align = TYPE_ALIGN_UNIT (type);
7151 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7152 op0 = memory_address (mode, op0);
7155 temp = gen_rtx_MEM (mode, op0);
7157 set_mem_attributes (temp, exp, 0);
7159 /* Resolve the misalignment now, so that we don't have to remember
7160 to resolve it later. Of course, this only works for reads. */
7161 /* ??? When we get around to supporting writes, we'll have to handle
7162 this in store_expr directly. The vectorizer isn't generating
7163 those yet, however. */
7164 if (code == MISALIGNED_INDIRECT_REF)
7166 int icode;
7167 rtx reg, insn;
7169 gcc_assert (modifier == EXPAND_NORMAL
7170 || modifier == EXPAND_STACK_PARM);
7172 /* The vectorizer should have already checked the mode. */
7173 icode = movmisalign_optab->handlers[mode].insn_code;
7174 gcc_assert (icode != CODE_FOR_nothing);
7176 /* We've already validated the memory, and we're creating a
7177 new pseudo destination. The predicates really can't fail. */
7178 reg = gen_reg_rtx (mode);
7180 /* Nor can the insn generator. */
7181 insn = GEN_FCN (icode) (reg, temp);
7182 emit_insn (insn);
7184 return reg;
7187 return temp;
7190 case TARGET_MEM_REF:
7192 struct mem_address addr;
7194 get_address_description (exp, &addr);
7195 op0 = addr_for_mem_ref (&addr, true);
7196 op0 = memory_address (mode, op0);
7197 temp = gen_rtx_MEM (mode, op0);
7198 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7200 return temp;
7202 case ARRAY_REF:
7205 tree array = TREE_OPERAND (exp, 0);
7206 tree index = TREE_OPERAND (exp, 1);
7208 /* Fold an expression like: "foo"[2].
7209 This is not done in fold so it won't happen inside &.
7210 Don't fold if this is for wide characters since it's too
7211 difficult to do correctly and this is a very rare case. */
7213 if (modifier != EXPAND_CONST_ADDRESS
7214 && modifier != EXPAND_INITIALIZER
7215 && modifier != EXPAND_MEMORY)
7217 tree t = fold_read_from_constant_string (exp);
7219 if (t)
7220 return expand_expr (t, target, tmode, modifier);
7223 /* If this is a constant index into a constant array,
7224 just get the value from the array. Handle both the cases when
7225 we have an explicit constructor and when our operand is a variable
7226 that was declared const. */
7228 if (modifier != EXPAND_CONST_ADDRESS
7229 && modifier != EXPAND_INITIALIZER
7230 && modifier != EXPAND_MEMORY
7231 && TREE_CODE (array) == CONSTRUCTOR
7232 && ! TREE_SIDE_EFFECTS (array)
7233 && TREE_CODE (index) == INTEGER_CST)
7235 unsigned HOST_WIDE_INT ix;
7236 tree field, value;
7238 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7239 field, value)
7240 if (tree_int_cst_equal (field, index))
7242 if (!TREE_SIDE_EFFECTS (value))
7243 return expand_expr (fold (value), target, tmode, modifier);
7244 break;
7248 else if (optimize >= 1
7249 && modifier != EXPAND_CONST_ADDRESS
7250 && modifier != EXPAND_INITIALIZER
7251 && modifier != EXPAND_MEMORY
7252 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7253 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7254 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7255 && targetm.binds_local_p (array))
7257 if (TREE_CODE (index) == INTEGER_CST)
7259 tree init = DECL_INITIAL (array);
7261 if (TREE_CODE (init) == CONSTRUCTOR)
7263 unsigned HOST_WIDE_INT ix;
7264 tree field, value;
7266 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7267 field, value)
7268 if (tree_int_cst_equal (field, index))
7270 if (!TREE_SIDE_EFFECTS (value))
7271 return expand_expr (fold (value), target, tmode,
7272 modifier);
7273 break;
7276 else if(TREE_CODE (init) == STRING_CST)
7278 tree index1 = index;
7279 tree low_bound = array_ref_low_bound (exp);
7280 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7282 /* Optimize the special-case of a zero lower bound.
7284 We convert the low_bound to sizetype to avoid some problems
7285 with constant folding. (E.g. suppose the lower bound is 1,
7286 and its mode is QI. Without the conversion,l (ARRAY
7287 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7288 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7290 if (! integer_zerop (low_bound))
7291 index1 = size_diffop (index1, fold_convert (sizetype,
7292 low_bound));
7294 if (0 > compare_tree_int (index1,
7295 TREE_STRING_LENGTH (init)))
7297 tree type = TREE_TYPE (TREE_TYPE (init));
7298 enum machine_mode mode = TYPE_MODE (type);
7300 if (GET_MODE_CLASS (mode) == MODE_INT
7301 && GET_MODE_SIZE (mode) == 1)
7302 return gen_int_mode (TREE_STRING_POINTER (init)
7303 [TREE_INT_CST_LOW (index1)],
7304 mode);
7310 goto normal_inner_ref;
7312 case COMPONENT_REF:
7313 /* If the operand is a CONSTRUCTOR, we can just extract the
7314 appropriate field if it is present. */
7315 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7317 unsigned HOST_WIDE_INT idx;
7318 tree field, value;
7320 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7321 idx, field, value)
7322 if (field == TREE_OPERAND (exp, 1)
7323 /* We can normally use the value of the field in the
7324 CONSTRUCTOR. However, if this is a bitfield in
7325 an integral mode that we can fit in a HOST_WIDE_INT,
7326 we must mask only the number of bits in the bitfield,
7327 since this is done implicitly by the constructor. If
7328 the bitfield does not meet either of those conditions,
7329 we can't do this optimization. */
7330 && (! DECL_BIT_FIELD (field)
7331 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7332 && (GET_MODE_BITSIZE (DECL_MODE (field))
7333 <= HOST_BITS_PER_WIDE_INT))))
7335 if (DECL_BIT_FIELD (field)
7336 && modifier == EXPAND_STACK_PARM)
7337 target = 0;
7338 op0 = expand_expr (value, target, tmode, modifier);
7339 if (DECL_BIT_FIELD (field))
7341 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7342 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7344 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7346 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7347 op0 = expand_and (imode, op0, op1, target);
7349 else
7351 tree count
7352 = build_int_cst (NULL_TREE,
7353 GET_MODE_BITSIZE (imode) - bitsize);
7355 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7356 target, 0);
7357 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7358 target, 0);
7362 return op0;
7365 goto normal_inner_ref;
7367 case BIT_FIELD_REF:
7368 case ARRAY_RANGE_REF:
7369 normal_inner_ref:
7371 enum machine_mode mode1;
7372 HOST_WIDE_INT bitsize, bitpos;
7373 tree offset;
7374 int volatilep = 0;
7375 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7376 &mode1, &unsignedp, &volatilep, true);
7377 rtx orig_op0;
7379 /* If we got back the original object, something is wrong. Perhaps
7380 we are evaluating an expression too early. In any event, don't
7381 infinitely recurse. */
7382 gcc_assert (tem != exp);
7384 /* If TEM's type is a union of variable size, pass TARGET to the inner
7385 computation, since it will need a temporary and TARGET is known
7386 to have to do. This occurs in unchecked conversion in Ada. */
7388 orig_op0 = op0
7389 = expand_expr (tem,
7390 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7391 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7392 != INTEGER_CST)
7393 && modifier != EXPAND_STACK_PARM
7394 ? target : NULL_RTX),
7395 VOIDmode,
7396 (modifier == EXPAND_INITIALIZER
7397 || modifier == EXPAND_CONST_ADDRESS
7398 || modifier == EXPAND_STACK_PARM)
7399 ? modifier : EXPAND_NORMAL);
7401 /* If this is a constant, put it into a register if it is a legitimate
7402 constant, OFFSET is 0, and we won't try to extract outside the
7403 register (in case we were passed a partially uninitialized object
7404 or a view_conversion to a larger size). Force the constant to
7405 memory otherwise. */
7406 if (CONSTANT_P (op0))
7408 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7409 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7410 && offset == 0
7411 && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7412 op0 = force_reg (mode, op0);
7413 else
7414 op0 = validize_mem (force_const_mem (mode, op0));
7417 /* Otherwise, if this object not in memory and we either have an
7418 offset, a BLKmode result, or a reference outside the object, put it
7419 there. Such cases can occur in Ada if we have unchecked conversion
7420 of an expression from a scalar type to an array or record type or
7421 for an ARRAY_RANGE_REF whose type is BLKmode. */
7422 else if (!MEM_P (op0)
7423 && (offset != 0
7424 || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
7425 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
7427 tree nt = build_qualified_type (TREE_TYPE (tem),
7428 (TYPE_QUALS (TREE_TYPE (tem))
7429 | TYPE_QUAL_CONST));
7430 rtx memloc = assign_temp (nt, 1, 1, 1);
7432 emit_move_insn (memloc, op0);
7433 op0 = memloc;
7436 if (offset != 0)
7438 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7439 EXPAND_SUM);
7441 gcc_assert (MEM_P (op0));
7443 #ifdef POINTERS_EXTEND_UNSIGNED
7444 if (GET_MODE (offset_rtx) != Pmode)
7445 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7446 #else
7447 if (GET_MODE (offset_rtx) != ptr_mode)
7448 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7449 #endif
7451 if (GET_MODE (op0) == BLKmode
7452 /* A constant address in OP0 can have VOIDmode, we must
7453 not try to call force_reg in that case. */
7454 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7455 && bitsize != 0
7456 && (bitpos % bitsize) == 0
7457 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7458 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7460 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7461 bitpos = 0;
7464 op0 = offset_address (op0, offset_rtx,
7465 highest_pow2_factor (offset));
7468 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7469 record its alignment as BIGGEST_ALIGNMENT. */
7470 if (MEM_P (op0) && bitpos == 0 && offset != 0
7471 && is_aligning_offset (offset, tem))
7472 set_mem_align (op0, BIGGEST_ALIGNMENT);
7474 /* Don't forget about volatility even if this is a bitfield. */
7475 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7477 if (op0 == orig_op0)
7478 op0 = copy_rtx (op0);
7480 MEM_VOLATILE_P (op0) = 1;
7483 /* The following code doesn't handle CONCAT.
7484 Assume only bitpos == 0 can be used for CONCAT, due to
7485 one element arrays having the same mode as its element. */
7486 if (GET_CODE (op0) == CONCAT)
7488 gcc_assert (bitpos == 0
7489 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7490 return op0;
7493 /* In cases where an aligned union has an unaligned object
7494 as a field, we might be extracting a BLKmode value from
7495 an integer-mode (e.g., SImode) object. Handle this case
7496 by doing the extract into an object as wide as the field
7497 (which we know to be the width of a basic mode), then
7498 storing into memory, and changing the mode to BLKmode. */
7499 if (mode1 == VOIDmode
7500 || REG_P (op0) || GET_CODE (op0) == SUBREG
7501 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7502 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7503 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7504 && modifier != EXPAND_CONST_ADDRESS
7505 && modifier != EXPAND_INITIALIZER)
7506 /* If the field isn't aligned enough to fetch as a memref,
7507 fetch it as a bit field. */
7508 || (mode1 != BLKmode
7509 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7510 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7511 || (MEM_P (op0)
7512 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7513 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7514 && ((modifier == EXPAND_CONST_ADDRESS
7515 || modifier == EXPAND_INITIALIZER)
7516 ? STRICT_ALIGNMENT
7517 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7518 || (bitpos % BITS_PER_UNIT != 0)))
7519 /* If the type and the field are a constant size and the
7520 size of the type isn't the same size as the bitfield,
7521 we must use bitfield operations. */
7522 || (bitsize >= 0
7523 && TYPE_SIZE (TREE_TYPE (exp))
7524 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7525 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7526 bitsize)))
7528 enum machine_mode ext_mode = mode;
7530 if (ext_mode == BLKmode
7531 && ! (target != 0 && MEM_P (op0)
7532 && MEM_P (target)
7533 && bitpos % BITS_PER_UNIT == 0))
7534 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7536 if (ext_mode == BLKmode)
7538 if (target == 0)
7539 target = assign_temp (type, 0, 1, 1);
7541 if (bitsize == 0)
7542 return target;
7544 /* In this case, BITPOS must start at a byte boundary and
7545 TARGET, if specified, must be a MEM. */
7546 gcc_assert (MEM_P (op0)
7547 && (!target || MEM_P (target))
7548 && !(bitpos % BITS_PER_UNIT));
7550 emit_block_move (target,
7551 adjust_address (op0, VOIDmode,
7552 bitpos / BITS_PER_UNIT),
7553 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7554 / BITS_PER_UNIT),
7555 (modifier == EXPAND_STACK_PARM
7556 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7558 return target;
7561 op0 = validize_mem (op0);
7563 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7564 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7566 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7567 (modifier == EXPAND_STACK_PARM
7568 ? NULL_RTX : target),
7569 ext_mode, ext_mode);
7571 /* If the result is a record type and BITSIZE is narrower than
7572 the mode of OP0, an integral mode, and this is a big endian
7573 machine, we must put the field into the high-order bits. */
7574 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7575 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7576 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7577 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7578 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7579 - bitsize),
7580 op0, 1);
7582 /* If the result type is BLKmode, store the data into a temporary
7583 of the appropriate type, but with the mode corresponding to the
7584 mode for the data we have (op0's mode). It's tempting to make
7585 this a constant type, since we know it's only being stored once,
7586 but that can cause problems if we are taking the address of this
7587 COMPONENT_REF because the MEM of any reference via that address
7588 will have flags corresponding to the type, which will not
7589 necessarily be constant. */
7590 if (mode == BLKmode)
7592 rtx new
7593 = assign_stack_temp_for_type
7594 (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
7596 emit_move_insn (new, op0);
7597 op0 = copy_rtx (new);
7598 PUT_MODE (op0, BLKmode);
7599 set_mem_attributes (op0, exp, 1);
7602 return op0;
7605 /* If the result is BLKmode, use that to access the object
7606 now as well. */
7607 if (mode == BLKmode)
7608 mode1 = BLKmode;
7610 /* Get a reference to just this component. */
7611 if (modifier == EXPAND_CONST_ADDRESS
7612 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7613 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7614 else
7615 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7617 if (op0 == orig_op0)
7618 op0 = copy_rtx (op0);
7620 set_mem_attributes (op0, exp, 0);
7621 if (REG_P (XEXP (op0, 0)))
7622 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7624 MEM_VOLATILE_P (op0) |= volatilep;
7625 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7626 || modifier == EXPAND_CONST_ADDRESS
7627 || modifier == EXPAND_INITIALIZER)
7628 return op0;
7629 else if (target == 0)
7630 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7632 convert_move (target, op0, unsignedp);
7633 return target;
7636 case OBJ_TYPE_REF:
7637 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7639 case CALL_EXPR:
7640 /* Check for a built-in function. */
7641 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7642 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7643 == FUNCTION_DECL)
7644 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7646 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7647 == BUILT_IN_FRONTEND)
7648 return lang_hooks.expand_expr (exp, original_target,
7649 tmode, modifier,
7650 alt_rtl);
7651 else
7652 return expand_builtin (exp, target, subtarget, tmode, ignore);
7655 return expand_call (exp, target, ignore);
7657 case NON_LVALUE_EXPR:
7658 case NOP_EXPR:
7659 case CONVERT_EXPR:
7660 if (TREE_OPERAND (exp, 0) == error_mark_node)
7661 return const0_rtx;
7663 if (TREE_CODE (type) == UNION_TYPE)
7665 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7667 /* If both input and output are BLKmode, this conversion isn't doing
7668 anything except possibly changing memory attribute. */
7669 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7671 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7672 modifier);
7674 result = copy_rtx (result);
7675 set_mem_attributes (result, exp, 0);
7676 return result;
7679 if (target == 0)
7681 if (TYPE_MODE (type) != BLKmode)
7682 target = gen_reg_rtx (TYPE_MODE (type));
7683 else
7684 target = assign_temp (type, 0, 1, 1);
7687 if (MEM_P (target))
7688 /* Store data into beginning of memory target. */
7689 store_expr (TREE_OPERAND (exp, 0),
7690 adjust_address (target, TYPE_MODE (valtype), 0),
7691 modifier == EXPAND_STACK_PARM);
7693 else
7695 gcc_assert (REG_P (target));
7697 /* Store this field into a union of the proper type. */
7698 store_field (target,
7699 MIN ((int_size_in_bytes (TREE_TYPE
7700 (TREE_OPERAND (exp, 0)))
7701 * BITS_PER_UNIT),
7702 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7703 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7704 type, 0);
7707 /* Return the entire union. */
7708 return target;
7711 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7713 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7714 modifier);
7716 /* If the signedness of the conversion differs and OP0 is
7717 a promoted SUBREG, clear that indication since we now
7718 have to do the proper extension. */
7719 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7720 && GET_CODE (op0) == SUBREG)
7721 SUBREG_PROMOTED_VAR_P (op0) = 0;
7723 return REDUCE_BIT_FIELD (op0);
7726 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7727 if (GET_MODE (op0) == mode)
7730 /* If OP0 is a constant, just convert it into the proper mode. */
7731 else if (CONSTANT_P (op0))
7733 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7734 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7736 if (modifier == EXPAND_INITIALIZER)
7737 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7738 subreg_lowpart_offset (mode,
7739 inner_mode));
7740 else
7741 op0= convert_modes (mode, inner_mode, op0,
7742 TYPE_UNSIGNED (inner_type));
7745 else if (modifier == EXPAND_INITIALIZER)
7746 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7748 else if (target == 0)
7749 op0 = convert_to_mode (mode, op0,
7750 TYPE_UNSIGNED (TREE_TYPE
7751 (TREE_OPERAND (exp, 0))));
7752 else
7754 convert_move (target, op0,
7755 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7756 op0 = target;
7759 return REDUCE_BIT_FIELD (op0);
7761 case VIEW_CONVERT_EXPR:
7762 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7764 /* If the input and output modes are both the same, we are done. */
7765 if (TYPE_MODE (type) == GET_MODE (op0))
7767 /* If neither mode is BLKmode, and both modes are the same size
7768 then we can use gen_lowpart. */
7769 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7770 && GET_MODE_SIZE (TYPE_MODE (type))
7771 == GET_MODE_SIZE (GET_MODE (op0)))
7773 if (GET_CODE (op0) == SUBREG)
7774 op0 = force_reg (GET_MODE (op0), op0);
7775 op0 = gen_lowpart (TYPE_MODE (type), op0);
7777 /* If both modes are integral, then we can convert from one to the
7778 other. */
7779 else if (SCALAR_INT_MODE_P (GET_MODE (op0))
7780 && SCALAR_INT_MODE_P (TYPE_MODE (type)))
7781 op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
7782 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7783 /* As a last resort, spill op0 to memory, and reload it in a
7784 different mode. */
7785 else if (!MEM_P (op0))
7787 /* If the operand is not a MEM, force it into memory. Since we
7788 are going to be changing the mode of the MEM, don't call
7789 force_const_mem for constants because we don't allow pool
7790 constants to change mode. */
7791 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7793 gcc_assert (!TREE_ADDRESSABLE (exp));
7795 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7796 target
7797 = assign_stack_temp_for_type
7798 (TYPE_MODE (inner_type),
7799 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7801 emit_move_insn (target, op0);
7802 op0 = target;
7805 /* At this point, OP0 is in the correct mode. If the output type is such
7806 that the operand is known to be aligned, indicate that it is.
7807 Otherwise, we need only be concerned about alignment for non-BLKmode
7808 results. */
7809 if (MEM_P (op0))
7811 op0 = copy_rtx (op0);
7813 if (TYPE_ALIGN_OK (type))
7814 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7815 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7816 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7818 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7819 HOST_WIDE_INT temp_size
7820 = MAX (int_size_in_bytes (inner_type),
7821 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7822 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7823 temp_size, 0, type);
7824 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7826 gcc_assert (!TREE_ADDRESSABLE (exp));
7828 if (GET_MODE (op0) == BLKmode)
7829 emit_block_move (new_with_op0_mode, op0,
7830 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
7831 (modifier == EXPAND_STACK_PARM
7832 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7833 else
7834 emit_move_insn (new_with_op0_mode, op0);
7836 op0 = new;
7839 op0 = adjust_address (op0, TYPE_MODE (type), 0);
7842 return op0;
7844 case PLUS_EXPR:
7845 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7846 something else, make sure we add the register to the constant and
7847 then to the other thing. This case can occur during strength
7848 reduction and doing it this way will produce better code if the
7849 frame pointer or argument pointer is eliminated.
7851 fold-const.c will ensure that the constant is always in the inner
7852 PLUS_EXPR, so the only case we need to do anything about is if
7853 sp, ap, or fp is our second argument, in which case we must swap
7854 the innermost first argument and our second argument. */
7856 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7857 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7858 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
7859 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7860 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7861 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7863 tree t = TREE_OPERAND (exp, 1);
7865 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7866 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7869 /* If the result is to be ptr_mode and we are adding an integer to
7870 something, we might be forming a constant. So try to use
7871 plus_constant. If it produces a sum and we can't accept it,
7872 use force_operand. This allows P = &ARR[const] to generate
7873 efficient code on machines where a SYMBOL_REF is not a valid
7874 address.
7876 If this is an EXPAND_SUM call, always return the sum. */
7877 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7878 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7880 if (modifier == EXPAND_STACK_PARM)
7881 target = 0;
7882 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7883 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7884 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7886 rtx constant_part;
7888 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7889 EXPAND_SUM);
7890 /* Use immed_double_const to ensure that the constant is
7891 truncated according to the mode of OP1, then sign extended
7892 to a HOST_WIDE_INT. Using the constant directly can result
7893 in non-canonical RTL in a 64x32 cross compile. */
7894 constant_part
7895 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7896 (HOST_WIDE_INT) 0,
7897 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7898 op1 = plus_constant (op1, INTVAL (constant_part));
7899 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7900 op1 = force_operand (op1, target);
7901 return REDUCE_BIT_FIELD (op1);
7904 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7905 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7906 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7908 rtx constant_part;
7910 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7911 (modifier == EXPAND_INITIALIZER
7912 ? EXPAND_INITIALIZER : EXPAND_SUM));
7913 if (! CONSTANT_P (op0))
7915 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7916 VOIDmode, modifier);
7917 /* Return a PLUS if modifier says it's OK. */
7918 if (modifier == EXPAND_SUM
7919 || modifier == EXPAND_INITIALIZER)
7920 return simplify_gen_binary (PLUS, mode, op0, op1);
7921 goto binop2;
7923 /* Use immed_double_const to ensure that the constant is
7924 truncated according to the mode of OP1, then sign extended
7925 to a HOST_WIDE_INT. Using the constant directly can result
7926 in non-canonical RTL in a 64x32 cross compile. */
7927 constant_part
7928 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7929 (HOST_WIDE_INT) 0,
7930 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7931 op0 = plus_constant (op0, INTVAL (constant_part));
7932 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7933 op0 = force_operand (op0, target);
7934 return REDUCE_BIT_FIELD (op0);
7938 /* No sense saving up arithmetic to be done
7939 if it's all in the wrong mode to form part of an address.
7940 And force_operand won't know whether to sign-extend or
7941 zero-extend. */
7942 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7943 || mode != ptr_mode)
7945 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7946 subtarget, &op0, &op1, 0);
7947 if (op0 == const0_rtx)
7948 return op1;
7949 if (op1 == const0_rtx)
7950 return op0;
7951 goto binop2;
7954 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7955 subtarget, &op0, &op1, modifier);
7956 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7958 case MINUS_EXPR:
7959 /* For initializers, we are allowed to return a MINUS of two
7960 symbolic constants. Here we handle all cases when both operands
7961 are constant. */
7962 /* Handle difference of two symbolic constants,
7963 for the sake of an initializer. */
7964 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7965 && really_constant_p (TREE_OPERAND (exp, 0))
7966 && really_constant_p (TREE_OPERAND (exp, 1)))
7968 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7969 NULL_RTX, &op0, &op1, modifier);
7971 /* If the last operand is a CONST_INT, use plus_constant of
7972 the negated constant. Else make the MINUS. */
7973 if (GET_CODE (op1) == CONST_INT)
7974 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7975 else
7976 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7979 /* No sense saving up arithmetic to be done
7980 if it's all in the wrong mode to form part of an address.
7981 And force_operand won't know whether to sign-extend or
7982 zero-extend. */
7983 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7984 || mode != ptr_mode)
7985 goto binop;
7987 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7988 subtarget, &op0, &op1, modifier);
7990 /* Convert A - const to A + (-const). */
7991 if (GET_CODE (op1) == CONST_INT)
7993 op1 = negate_rtx (mode, op1);
7994 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7997 goto binop2;
7999 case MULT_EXPR:
8000 /* If first operand is constant, swap them.
8001 Thus the following special case checks need only
8002 check the second operand. */
8003 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
8005 tree t1 = TREE_OPERAND (exp, 0);
8006 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
8007 TREE_OPERAND (exp, 1) = t1;
8010 /* Attempt to return something suitable for generating an
8011 indexed address, for machines that support that. */
8013 if (modifier == EXPAND_SUM && mode == ptr_mode
8014 && host_integerp (TREE_OPERAND (exp, 1), 0))
8016 tree exp1 = TREE_OPERAND (exp, 1);
8018 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8019 EXPAND_SUM);
8021 if (!REG_P (op0))
8022 op0 = force_operand (op0, NULL_RTX);
8023 if (!REG_P (op0))
8024 op0 = copy_to_mode_reg (mode, op0);
8026 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8027 gen_int_mode (tree_low_cst (exp1, 0),
8028 TYPE_MODE (TREE_TYPE (exp1)))));
8031 if (modifier == EXPAND_STACK_PARM)
8032 target = 0;
8034 /* Check for multiplying things that have been extended
8035 from a narrower type. If this machine supports multiplying
8036 in that narrower type with a result in the desired type,
8037 do it that way, and avoid the explicit type-conversion. */
8039 subexp0 = TREE_OPERAND (exp, 0);
8040 subexp1 = TREE_OPERAND (exp, 1);
8041 /* First, check if we have a multiplication of one signed and one
8042 unsigned operand. */
8043 if (TREE_CODE (subexp0) == NOP_EXPR
8044 && TREE_CODE (subexp1) == NOP_EXPR
8045 && TREE_CODE (type) == INTEGER_TYPE
8046 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8047 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8048 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8049 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
8050 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8051 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
8053 enum machine_mode innermode
8054 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
8055 this_optab = usmul_widen_optab;
8056 if (mode == GET_MODE_WIDER_MODE (innermode))
8058 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
8060 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
8061 expand_operands (TREE_OPERAND (subexp0, 0),
8062 TREE_OPERAND (subexp1, 0),
8063 NULL_RTX, &op0, &op1, 0);
8064 else
8065 expand_operands (TREE_OPERAND (subexp0, 0),
8066 TREE_OPERAND (subexp1, 0),
8067 NULL_RTX, &op1, &op0, 0);
8069 goto binop3;
8073 /* Check for a multiplication with matching signedness. */
8074 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
8075 && TREE_CODE (type) == INTEGER_TYPE
8076 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8077 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8078 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8079 && int_fits_type_p (TREE_OPERAND (exp, 1),
8080 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8081 /* Don't use a widening multiply if a shift will do. */
8082 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8083 > HOST_BITS_PER_WIDE_INT)
8084 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
8086 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
8087 && (TYPE_PRECISION (TREE_TYPE
8088 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8089 == TYPE_PRECISION (TREE_TYPE
8090 (TREE_OPERAND
8091 (TREE_OPERAND (exp, 0), 0))))
8092 /* If both operands are extended, they must either both
8093 be zero-extended or both be sign-extended. */
8094 && (TYPE_UNSIGNED (TREE_TYPE
8095 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8096 == TYPE_UNSIGNED (TREE_TYPE
8097 (TREE_OPERAND
8098 (TREE_OPERAND (exp, 0), 0)))))))
8100 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8101 enum machine_mode innermode = TYPE_MODE (op0type);
8102 bool zextend_p = TYPE_UNSIGNED (op0type);
8103 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8104 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8106 if (mode == GET_MODE_2XWIDER_MODE (innermode))
8108 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
8110 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8111 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8112 TREE_OPERAND (exp, 1),
8113 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8114 else
8115 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8116 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
8117 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8118 goto binop3;
8120 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
8121 && innermode == word_mode)
8123 rtx htem, hipart;
8124 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8125 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8126 op1 = convert_modes (innermode, mode,
8127 expand_normal (TREE_OPERAND (exp, 1)),
8128 unsignedp);
8129 else
8130 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8131 temp = expand_binop (mode, other_optab, op0, op1, target,
8132 unsignedp, OPTAB_LIB_WIDEN);
8133 hipart = gen_highpart (innermode, temp);
8134 htem = expand_mult_highpart_adjust (innermode, hipart,
8135 op0, op1, hipart,
8136 zextend_p);
8137 if (htem != hipart)
8138 emit_move_insn (hipart, htem);
8139 return REDUCE_BIT_FIELD (temp);
8143 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8144 subtarget, &op0, &op1, 0);
8145 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8147 case TRUNC_DIV_EXPR:
8148 case FLOOR_DIV_EXPR:
8149 case CEIL_DIV_EXPR:
8150 case ROUND_DIV_EXPR:
8151 case EXACT_DIV_EXPR:
8152 if (modifier == EXPAND_STACK_PARM)
8153 target = 0;
8154 /* Possible optimization: compute the dividend with EXPAND_SUM
8155 then if the divisor is constant can optimize the case
8156 where some terms of the dividend have coeffs divisible by it. */
8157 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8158 subtarget, &op0, &op1, 0);
8159 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8161 case RDIV_EXPR:
8162 goto binop;
8164 case TRUNC_MOD_EXPR:
8165 case FLOOR_MOD_EXPR:
8166 case CEIL_MOD_EXPR:
8167 case ROUND_MOD_EXPR:
8168 if (modifier == EXPAND_STACK_PARM)
8169 target = 0;
8170 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8171 subtarget, &op0, &op1, 0);
8172 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8174 case FIX_ROUND_EXPR:
8175 case FIX_FLOOR_EXPR:
8176 case FIX_CEIL_EXPR:
8177 gcc_unreachable (); /* Not used for C. */
8179 case FIX_TRUNC_EXPR:
8180 op0 = expand_normal (TREE_OPERAND (exp, 0));
8181 if (target == 0 || modifier == EXPAND_STACK_PARM)
8182 target = gen_reg_rtx (mode);
8183 expand_fix (target, op0, unsignedp);
8184 return target;
8186 case FLOAT_EXPR:
8187 op0 = expand_normal (TREE_OPERAND (exp, 0));
8188 if (target == 0 || modifier == EXPAND_STACK_PARM)
8189 target = gen_reg_rtx (mode);
8190 /* expand_float can't figure out what to do if FROM has VOIDmode.
8191 So give it the correct mode. With -O, cse will optimize this. */
8192 if (GET_MODE (op0) == VOIDmode)
8193 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8194 op0);
8195 expand_float (target, op0,
8196 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8197 return target;
8199 case NEGATE_EXPR:
8200 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8201 if (modifier == EXPAND_STACK_PARM)
8202 target = 0;
8203 temp = expand_unop (mode,
8204 optab_for_tree_code (NEGATE_EXPR, type),
8205 op0, target, 0);
8206 gcc_assert (temp);
8207 return REDUCE_BIT_FIELD (temp);
8209 case ABS_EXPR:
8210 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8211 if (modifier == EXPAND_STACK_PARM)
8212 target = 0;
8214 /* ABS_EXPR is not valid for complex arguments. */
8215 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8216 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8218 /* Unsigned abs is simply the operand. Testing here means we don't
8219 risk generating incorrect code below. */
8220 if (TYPE_UNSIGNED (type))
8221 return op0;
8223 return expand_abs (mode, op0, target, unsignedp,
8224 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8226 case MAX_EXPR:
8227 case MIN_EXPR:
8228 target = original_target;
8229 if (target == 0
8230 || modifier == EXPAND_STACK_PARM
8231 || (MEM_P (target) && MEM_VOLATILE_P (target))
8232 || GET_MODE (target) != mode
8233 || (REG_P (target)
8234 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8235 target = gen_reg_rtx (mode);
8236 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8237 target, &op0, &op1, 0);
8239 /* First try to do it with a special MIN or MAX instruction.
8240 If that does not win, use a conditional jump to select the proper
8241 value. */
8242 this_optab = optab_for_tree_code (code, type);
8243 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8244 OPTAB_WIDEN);
8245 if (temp != 0)
8246 return temp;
8248 /* At this point, a MEM target is no longer useful; we will get better
8249 code without it. */
8251 if (! REG_P (target))
8252 target = gen_reg_rtx (mode);
8254 /* If op1 was placed in target, swap op0 and op1. */
8255 if (target != op0 && target == op1)
8257 temp = op0;
8258 op0 = op1;
8259 op1 = temp;
8262 /* We generate better code and avoid problems with op1 mentioning
8263 target by forcing op1 into a pseudo if it isn't a constant. */
8264 if (! CONSTANT_P (op1))
8265 op1 = force_reg (mode, op1);
8268 enum rtx_code comparison_code;
8269 rtx cmpop1 = op1;
8271 if (code == MAX_EXPR)
8272 comparison_code = unsignedp ? GEU : GE;
8273 else
8274 comparison_code = unsignedp ? LEU : LE;
8276 /* Canonicalize to comparisons against 0. */
8277 if (op1 == const1_rtx)
8279 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8280 or (a != 0 ? a : 1) for unsigned.
8281 For MIN we are safe converting (a <= 1 ? a : 1)
8282 into (a <= 0 ? a : 1) */
8283 cmpop1 = const0_rtx;
8284 if (code == MAX_EXPR)
8285 comparison_code = unsignedp ? NE : GT;
8287 if (op1 == constm1_rtx && !unsignedp)
8289 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8290 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8291 cmpop1 = const0_rtx;
8292 if (code == MIN_EXPR)
8293 comparison_code = LT;
8295 #ifdef HAVE_conditional_move
8296 /* Use a conditional move if possible. */
8297 if (can_conditionally_move_p (mode))
8299 rtx insn;
8301 /* ??? Same problem as in expmed.c: emit_conditional_move
8302 forces a stack adjustment via compare_from_rtx, and we
8303 lose the stack adjustment if the sequence we are about
8304 to create is discarded. */
8305 do_pending_stack_adjust ();
8307 start_sequence ();
8309 /* Try to emit the conditional move. */
8310 insn = emit_conditional_move (target, comparison_code,
8311 op0, cmpop1, mode,
8312 op0, op1, mode,
8313 unsignedp);
8315 /* If we could do the conditional move, emit the sequence,
8316 and return. */
8317 if (insn)
8319 rtx seq = get_insns ();
8320 end_sequence ();
8321 emit_insn (seq);
8322 return target;
8325 /* Otherwise discard the sequence and fall back to code with
8326 branches. */
8327 end_sequence ();
8329 #endif
8330 if (target != op0)
8331 emit_move_insn (target, op0);
8333 temp = gen_label_rtx ();
8334 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8335 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8337 emit_move_insn (target, op1);
8338 emit_label (temp);
8339 return target;
8341 case BIT_NOT_EXPR:
8342 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8343 if (modifier == EXPAND_STACK_PARM)
8344 target = 0;
8345 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8346 gcc_assert (temp);
8347 return temp;
8349 /* ??? Can optimize bitwise operations with one arg constant.
8350 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8351 and (a bitwise1 b) bitwise2 b (etc)
8352 but that is probably not worth while. */
8354 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8355 boolean values when we want in all cases to compute both of them. In
8356 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8357 as actual zero-or-1 values and then bitwise anding. In cases where
8358 there cannot be any side effects, better code would be made by
8359 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8360 how to recognize those cases. */
8362 case TRUTH_AND_EXPR:
8363 code = BIT_AND_EXPR;
8364 case BIT_AND_EXPR:
8365 goto binop;
8367 case TRUTH_OR_EXPR:
8368 code = BIT_IOR_EXPR;
8369 case BIT_IOR_EXPR:
8370 goto binop;
8372 case TRUTH_XOR_EXPR:
8373 code = BIT_XOR_EXPR;
8374 case BIT_XOR_EXPR:
8375 goto binop;
8377 case LSHIFT_EXPR:
8378 case RSHIFT_EXPR:
8379 case LROTATE_EXPR:
8380 case RROTATE_EXPR:
8381 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8382 subtarget = 0;
8383 if (modifier == EXPAND_STACK_PARM)
8384 target = 0;
8385 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8386 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8387 unsignedp);
8389 /* Could determine the answer when only additive constants differ. Also,
8390 the addition of one can be handled by changing the condition. */
8391 case LT_EXPR:
8392 case LE_EXPR:
8393 case GT_EXPR:
8394 case GE_EXPR:
8395 case EQ_EXPR:
8396 case NE_EXPR:
8397 case UNORDERED_EXPR:
8398 case ORDERED_EXPR:
8399 case UNLT_EXPR:
8400 case UNLE_EXPR:
8401 case UNGT_EXPR:
8402 case UNGE_EXPR:
8403 case UNEQ_EXPR:
8404 case LTGT_EXPR:
8405 temp = do_store_flag (exp,
8406 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8407 tmode != VOIDmode ? tmode : mode, 0);
8408 if (temp != 0)
8409 return temp;
8411 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8412 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8413 && original_target
8414 && REG_P (original_target)
8415 && (GET_MODE (original_target)
8416 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8418 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8419 VOIDmode, 0);
8421 /* If temp is constant, we can just compute the result. */
8422 if (GET_CODE (temp) == CONST_INT)
8424 if (INTVAL (temp) != 0)
8425 emit_move_insn (target, const1_rtx);
8426 else
8427 emit_move_insn (target, const0_rtx);
8429 return target;
8432 if (temp != original_target)
8434 enum machine_mode mode1 = GET_MODE (temp);
8435 if (mode1 == VOIDmode)
8436 mode1 = tmode != VOIDmode ? tmode : mode;
8438 temp = copy_to_mode_reg (mode1, temp);
8441 op1 = gen_label_rtx ();
8442 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8443 GET_MODE (temp), unsignedp, op1);
8444 emit_move_insn (temp, const1_rtx);
8445 emit_label (op1);
8446 return temp;
8449 /* If no set-flag instruction, must generate a conditional store
8450 into a temporary variable. Drop through and handle this
8451 like && and ||. */
8453 if (! ignore
8454 && (target == 0
8455 || modifier == EXPAND_STACK_PARM
8456 || ! safe_from_p (target, exp, 1)
8457 /* Make sure we don't have a hard reg (such as function's return
8458 value) live across basic blocks, if not optimizing. */
8459 || (!optimize && REG_P (target)
8460 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8461 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8463 if (target)
8464 emit_move_insn (target, const0_rtx);
8466 op1 = gen_label_rtx ();
8467 jumpifnot (exp, op1);
8469 if (target)
8470 emit_move_insn (target, const1_rtx);
8472 emit_label (op1);
8473 return ignore ? const0_rtx : target;
8475 case TRUTH_NOT_EXPR:
8476 if (modifier == EXPAND_STACK_PARM)
8477 target = 0;
8478 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
8479 /* The parser is careful to generate TRUTH_NOT_EXPR
8480 only with operands that are always zero or one. */
8481 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8482 target, 1, OPTAB_LIB_WIDEN);
8483 gcc_assert (temp);
8484 return temp;
8486 case STATEMENT_LIST:
8488 tree_stmt_iterator iter;
8490 gcc_assert (ignore);
8492 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
8493 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
8495 return const0_rtx;
8497 case COND_EXPR:
8498 /* A COND_EXPR with its type being VOID_TYPE represents a
8499 conditional jump and is handled in
8500 expand_gimple_cond_expr. */
8501 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
8503 /* Note that COND_EXPRs whose type is a structure or union
8504 are required to be constructed to contain assignments of
8505 a temporary variable, so that we can evaluate them here
8506 for side effect only. If type is void, we must do likewise. */
8508 gcc_assert (!TREE_ADDRESSABLE (type)
8509 && !ignore
8510 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
8511 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
8513 /* If we are not to produce a result, we have no target. Otherwise,
8514 if a target was specified use it; it will not be used as an
8515 intermediate target unless it is safe. If no target, use a
8516 temporary. */
8518 if (modifier != EXPAND_STACK_PARM
8519 && original_target
8520 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
8521 && GET_MODE (original_target) == mode
8522 #ifdef HAVE_conditional_move
8523 && (! can_conditionally_move_p (mode)
8524 || REG_P (original_target))
8525 #endif
8526 && !MEM_P (original_target))
8527 temp = original_target;
8528 else
8529 temp = assign_temp (type, 0, 0, 1);
8531 do_pending_stack_adjust ();
8532 NO_DEFER_POP;
8533 op0 = gen_label_rtx ();
8534 op1 = gen_label_rtx ();
8535 jumpifnot (TREE_OPERAND (exp, 0), op0);
8536 store_expr (TREE_OPERAND (exp, 1), temp,
8537 modifier == EXPAND_STACK_PARM);
8539 emit_jump_insn (gen_jump (op1));
8540 emit_barrier ();
8541 emit_label (op0);
8542 store_expr (TREE_OPERAND (exp, 2), temp,
8543 modifier == EXPAND_STACK_PARM);
8545 emit_label (op1);
8546 OK_DEFER_POP;
8547 return temp;
8549 case VEC_COND_EXPR:
8550 target = expand_vec_cond_expr (exp, target);
8551 return target;
8553 case MODIFY_EXPR:
8555 tree lhs = TREE_OPERAND (exp, 0);
8556 tree rhs = TREE_OPERAND (exp, 1);
8558 gcc_assert (ignore);
8560 /* Check for |= or &= of a bitfield of size one into another bitfield
8561 of size 1. In this case, (unless we need the result of the
8562 assignment) we can do this more efficiently with a
8563 test followed by an assignment, if necessary.
8565 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8566 things change so we do, this code should be enhanced to
8567 support it. */
8568 if (TREE_CODE (lhs) == COMPONENT_REF
8569 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8570 || TREE_CODE (rhs) == BIT_AND_EXPR)
8571 && TREE_OPERAND (rhs, 0) == lhs
8572 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8573 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8574 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8576 rtx label = gen_label_rtx ();
8577 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
8578 do_jump (TREE_OPERAND (rhs, 1),
8579 value ? label : 0,
8580 value ? 0 : label);
8581 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value));
8582 do_pending_stack_adjust ();
8583 emit_label (label);
8584 return const0_rtx;
8587 expand_assignment (lhs, rhs);
8589 return const0_rtx;
8592 case RETURN_EXPR:
8593 if (!TREE_OPERAND (exp, 0))
8594 expand_null_return ();
8595 else
8596 expand_return (TREE_OPERAND (exp, 0));
8597 return const0_rtx;
8599 case ADDR_EXPR:
8600 return expand_expr_addr_expr (exp, target, tmode, modifier);
8602 case COMPLEX_EXPR:
8603 /* Get the rtx code of the operands. */
8604 op0 = expand_normal (TREE_OPERAND (exp, 0));
8605 op1 = expand_normal (TREE_OPERAND (exp, 1));
8607 if (!target)
8608 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8610 /* Move the real (op0) and imaginary (op1) parts to their location. */
8611 write_complex_part (target, op0, false);
8612 write_complex_part (target, op1, true);
8614 return target;
8616 case REALPART_EXPR:
8617 op0 = expand_normal (TREE_OPERAND (exp, 0));
8618 return read_complex_part (op0, false);
8620 case IMAGPART_EXPR:
8621 op0 = expand_normal (TREE_OPERAND (exp, 0));
8622 return read_complex_part (op0, true);
8624 case RESX_EXPR:
8625 expand_resx_expr (exp);
8626 return const0_rtx;
8628 case TRY_CATCH_EXPR:
8629 case CATCH_EXPR:
8630 case EH_FILTER_EXPR:
8631 case TRY_FINALLY_EXPR:
8632 /* Lowered by tree-eh.c. */
8633 gcc_unreachable ();
8635 case WITH_CLEANUP_EXPR:
8636 case CLEANUP_POINT_EXPR:
8637 case TARGET_EXPR:
8638 case CASE_LABEL_EXPR:
8639 case VA_ARG_EXPR:
8640 case BIND_EXPR:
8641 case INIT_EXPR:
8642 case CONJ_EXPR:
8643 case COMPOUND_EXPR:
8644 case PREINCREMENT_EXPR:
8645 case PREDECREMENT_EXPR:
8646 case POSTINCREMENT_EXPR:
8647 case POSTDECREMENT_EXPR:
8648 case LOOP_EXPR:
8649 case EXIT_EXPR:
8650 case TRUTH_ANDIF_EXPR:
8651 case TRUTH_ORIF_EXPR:
8652 /* Lowered by gimplify.c. */
8653 gcc_unreachable ();
8655 case EXC_PTR_EXPR:
8656 return get_exception_pointer (cfun);
8658 case FILTER_EXPR:
8659 return get_exception_filter (cfun);
8661 case FDESC_EXPR:
8662 /* Function descriptors are not valid except for as
8663 initialization constants, and should not be expanded. */
8664 gcc_unreachable ();
8666 case SWITCH_EXPR:
8667 expand_case (exp);
8668 return const0_rtx;
8670 case LABEL_EXPR:
8671 expand_label (TREE_OPERAND (exp, 0));
8672 return const0_rtx;
8674 case ASM_EXPR:
8675 expand_asm_expr (exp);
8676 return const0_rtx;
8678 case WITH_SIZE_EXPR:
8679 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8680 have pulled out the size to use in whatever context it needed. */
8681 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
8682 modifier, alt_rtl);
8684 case REALIGN_LOAD_EXPR:
8686 tree oprnd0 = TREE_OPERAND (exp, 0);
8687 tree oprnd1 = TREE_OPERAND (exp, 1);
8688 tree oprnd2 = TREE_OPERAND (exp, 2);
8689 rtx op2;
8691 this_optab = optab_for_tree_code (code, type);
8692 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8693 op2 = expand_normal (oprnd2);
8694 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8695 target, unsignedp);
8696 gcc_assert (temp);
8697 return temp;
8700 case DOT_PROD_EXPR:
8702 tree oprnd0 = TREE_OPERAND (exp, 0);
8703 tree oprnd1 = TREE_OPERAND (exp, 1);
8704 tree oprnd2 = TREE_OPERAND (exp, 2);
8705 rtx op2;
8707 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8708 op2 = expand_normal (oprnd2);
8709 target = expand_widen_pattern_expr (exp, op0, op1, op2,
8710 target, unsignedp);
8711 return target;
8714 case WIDEN_SUM_EXPR:
8716 tree oprnd0 = TREE_OPERAND (exp, 0);
8717 tree oprnd1 = TREE_OPERAND (exp, 1);
8719 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
8720 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
8721 target, unsignedp);
8722 return target;
8725 case REDUC_MAX_EXPR:
8726 case REDUC_MIN_EXPR:
8727 case REDUC_PLUS_EXPR:
8729 op0 = expand_normal (TREE_OPERAND (exp, 0));
8730 this_optab = optab_for_tree_code (code, type);
8731 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8732 gcc_assert (temp);
8733 return temp;
8736 case VEC_LSHIFT_EXPR:
8737 case VEC_RSHIFT_EXPR:
8739 target = expand_vec_shift_expr (exp, target);
8740 return target;
8743 default:
8744 return lang_hooks.expand_expr (exp, original_target, tmode,
8745 modifier, alt_rtl);
8748 /* Here to do an ordinary binary operator. */
8749 binop:
8750 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8751 subtarget, &op0, &op1, 0);
8752 binop2:
8753 this_optab = optab_for_tree_code (code, type);
8754 binop3:
8755 if (modifier == EXPAND_STACK_PARM)
8756 target = 0;
8757 temp = expand_binop (mode, this_optab, op0, op1, target,
8758 unsignedp, OPTAB_LIB_WIDEN);
8759 gcc_assert (temp);
8760 return REDUCE_BIT_FIELD (temp);
8762 #undef REDUCE_BIT_FIELD
8764 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8765 signedness of TYPE), possibly returning the result in TARGET. */
8766 static rtx
8767 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
8769 HOST_WIDE_INT prec = TYPE_PRECISION (type);
8770 if (target && GET_MODE (target) != GET_MODE (exp))
8771 target = 0;
8772 if (TYPE_UNSIGNED (type))
8774 rtx mask;
8775 if (prec < HOST_BITS_PER_WIDE_INT)
8776 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
8777 GET_MODE (exp));
8778 else
8779 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
8780 ((unsigned HOST_WIDE_INT) 1
8781 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
8782 GET_MODE (exp));
8783 return expand_and (GET_MODE (exp), exp, mask, target);
8785 else
8787 tree count = build_int_cst (NULL_TREE,
8788 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
8789 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8790 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8794 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8795 when applied to the address of EXP produces an address known to be
8796 aligned more than BIGGEST_ALIGNMENT. */
8798 static int
8799 is_aligning_offset (tree offset, tree exp)
8801 /* Strip off any conversions. */
8802 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8803 || TREE_CODE (offset) == NOP_EXPR
8804 || TREE_CODE (offset) == CONVERT_EXPR)
8805 offset = TREE_OPERAND (offset, 0);
8807 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8808 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8809 if (TREE_CODE (offset) != BIT_AND_EXPR
8810 || !host_integerp (TREE_OPERAND (offset, 1), 1)
8811 || compare_tree_int (TREE_OPERAND (offset, 1),
8812 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
8813 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
8814 return 0;
8816 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8817 It must be NEGATE_EXPR. Then strip any more conversions. */
8818 offset = TREE_OPERAND (offset, 0);
8819 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8820 || TREE_CODE (offset) == NOP_EXPR
8821 || TREE_CODE (offset) == CONVERT_EXPR)
8822 offset = TREE_OPERAND (offset, 0);
8824 if (TREE_CODE (offset) != NEGATE_EXPR)
8825 return 0;
8827 offset = TREE_OPERAND (offset, 0);
8828 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8829 || TREE_CODE (offset) == NOP_EXPR
8830 || TREE_CODE (offset) == CONVERT_EXPR)
8831 offset = TREE_OPERAND (offset, 0);
8833 /* This must now be the address of EXP. */
8834 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
8837 /* Return the tree node if an ARG corresponds to a string constant or zero
8838 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8839 in bytes within the string that ARG is accessing. The type of the
8840 offset will be `sizetype'. */
8842 tree
8843 string_constant (tree arg, tree *ptr_offset)
8845 tree array, offset;
8846 STRIP_NOPS (arg);
8848 if (TREE_CODE (arg) == ADDR_EXPR)
8850 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8852 *ptr_offset = size_zero_node;
8853 return TREE_OPERAND (arg, 0);
8855 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
8857 array = TREE_OPERAND (arg, 0);
8858 offset = size_zero_node;
8860 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
8862 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
8863 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
8864 if (TREE_CODE (array) != STRING_CST
8865 && TREE_CODE (array) != VAR_DECL)
8866 return 0;
8868 else
8869 return 0;
8871 else if (TREE_CODE (arg) == PLUS_EXPR)
8873 tree arg0 = TREE_OPERAND (arg, 0);
8874 tree arg1 = TREE_OPERAND (arg, 1);
8876 STRIP_NOPS (arg0);
8877 STRIP_NOPS (arg1);
8879 if (TREE_CODE (arg0) == ADDR_EXPR
8880 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
8881 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
8883 array = TREE_OPERAND (arg0, 0);
8884 offset = arg1;
8886 else if (TREE_CODE (arg1) == ADDR_EXPR
8887 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
8888 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
8890 array = TREE_OPERAND (arg1, 0);
8891 offset = arg0;
8893 else
8894 return 0;
8896 else
8897 return 0;
8899 if (TREE_CODE (array) == STRING_CST)
8901 *ptr_offset = fold_convert (sizetype, offset);
8902 return array;
8904 else if (TREE_CODE (array) == VAR_DECL)
8906 int length;
8908 /* Variables initialized to string literals can be handled too. */
8909 if (DECL_INITIAL (array) == NULL_TREE
8910 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
8911 return 0;
8913 /* If they are read-only, non-volatile and bind locally. */
8914 if (! TREE_READONLY (array)
8915 || TREE_SIDE_EFFECTS (array)
8916 || ! targetm.binds_local_p (array))
8917 return 0;
8919 /* Avoid const char foo[4] = "abcde"; */
8920 if (DECL_SIZE_UNIT (array) == NULL_TREE
8921 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
8922 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
8923 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
8924 return 0;
8926 /* If variable is bigger than the string literal, OFFSET must be constant
8927 and inside of the bounds of the string literal. */
8928 offset = fold_convert (sizetype, offset);
8929 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
8930 && (! host_integerp (offset, 1)
8931 || compare_tree_int (offset, length) >= 0))
8932 return 0;
8934 *ptr_offset = offset;
8935 return DECL_INITIAL (array);
8938 return 0;
8941 /* Generate code to calculate EXP using a store-flag instruction
8942 and return an rtx for the result. EXP is either a comparison
8943 or a TRUTH_NOT_EXPR whose operand is a comparison.
8945 If TARGET is nonzero, store the result there if convenient.
8947 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8948 cheap.
8950 Return zero if there is no suitable set-flag instruction
8951 available on this machine.
8953 Once expand_expr has been called on the arguments of the comparison,
8954 we are committed to doing the store flag, since it is not safe to
8955 re-evaluate the expression. We emit the store-flag insn by calling
8956 emit_store_flag, but only expand the arguments if we have a reason
8957 to believe that emit_store_flag will be successful. If we think that
8958 it will, but it isn't, we have to simulate the store-flag with a
8959 set/jump/set sequence. */
8961 static rtx
8962 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
8964 enum rtx_code code;
8965 tree arg0, arg1, type;
8966 tree tem;
8967 enum machine_mode operand_mode;
8968 int invert = 0;
8969 int unsignedp;
8970 rtx op0, op1;
8971 enum insn_code icode;
8972 rtx subtarget = target;
8973 rtx result, label;
8975 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8976 result at the end. We can't simply invert the test since it would
8977 have already been inverted if it were valid. This case occurs for
8978 some floating-point comparisons. */
8980 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
8981 invert = 1, exp = TREE_OPERAND (exp, 0);
8983 arg0 = TREE_OPERAND (exp, 0);
8984 arg1 = TREE_OPERAND (exp, 1);
8986 /* Don't crash if the comparison was erroneous. */
8987 if (arg0 == error_mark_node || arg1 == error_mark_node)
8988 return const0_rtx;
8990 type = TREE_TYPE (arg0);
8991 operand_mode = TYPE_MODE (type);
8992 unsignedp = TYPE_UNSIGNED (type);
8994 /* We won't bother with BLKmode store-flag operations because it would mean
8995 passing a lot of information to emit_store_flag. */
8996 if (operand_mode == BLKmode)
8997 return 0;
8999 /* We won't bother with store-flag operations involving function pointers
9000 when function pointers must be canonicalized before comparisons. */
9001 #ifdef HAVE_canonicalize_funcptr_for_compare
9002 if (HAVE_canonicalize_funcptr_for_compare
9003 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9004 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9005 == FUNCTION_TYPE))
9006 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9007 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9008 == FUNCTION_TYPE))))
9009 return 0;
9010 #endif
9012 STRIP_NOPS (arg0);
9013 STRIP_NOPS (arg1);
9015 /* Get the rtx comparison code to use. We know that EXP is a comparison
9016 operation of some type. Some comparisons against 1 and -1 can be
9017 converted to comparisons with zero. Do so here so that the tests
9018 below will be aware that we have a comparison with zero. These
9019 tests will not catch constants in the first operand, but constants
9020 are rarely passed as the first operand. */
9022 switch (TREE_CODE (exp))
9024 case EQ_EXPR:
9025 code = EQ;
9026 break;
9027 case NE_EXPR:
9028 code = NE;
9029 break;
9030 case LT_EXPR:
9031 if (integer_onep (arg1))
9032 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9033 else
9034 code = unsignedp ? LTU : LT;
9035 break;
9036 case LE_EXPR:
9037 if (! unsignedp && integer_all_onesp (arg1))
9038 arg1 = integer_zero_node, code = LT;
9039 else
9040 code = unsignedp ? LEU : LE;
9041 break;
9042 case GT_EXPR:
9043 if (! unsignedp && integer_all_onesp (arg1))
9044 arg1 = integer_zero_node, code = GE;
9045 else
9046 code = unsignedp ? GTU : GT;
9047 break;
9048 case GE_EXPR:
9049 if (integer_onep (arg1))
9050 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9051 else
9052 code = unsignedp ? GEU : GE;
9053 break;
9055 case UNORDERED_EXPR:
9056 code = UNORDERED;
9057 break;
9058 case ORDERED_EXPR:
9059 code = ORDERED;
9060 break;
9061 case UNLT_EXPR:
9062 code = UNLT;
9063 break;
9064 case UNLE_EXPR:
9065 code = UNLE;
9066 break;
9067 case UNGT_EXPR:
9068 code = UNGT;
9069 break;
9070 case UNGE_EXPR:
9071 code = UNGE;
9072 break;
9073 case UNEQ_EXPR:
9074 code = UNEQ;
9075 break;
9076 case LTGT_EXPR:
9077 code = LTGT;
9078 break;
9080 default:
9081 gcc_unreachable ();
9084 /* Put a constant second. */
9085 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
9087 tem = arg0; arg0 = arg1; arg1 = tem;
9088 code = swap_condition (code);
9091 /* If this is an equality or inequality test of a single bit, we can
9092 do this by shifting the bit being tested to the low-order bit and
9093 masking the result with the constant 1. If the condition was EQ,
9094 we xor it with 1. This does not require an scc insn and is faster
9095 than an scc insn even if we have it.
9097 The code to make this transformation was moved into fold_single_bit_test,
9098 so we just call into the folder and expand its result. */
9100 if ((code == NE || code == EQ)
9101 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9102 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9104 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9105 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
9106 arg0, arg1, type),
9107 target, VOIDmode, EXPAND_NORMAL);
9110 /* Now see if we are likely to be able to do this. Return if not. */
9111 if (! can_compare_p (code, operand_mode, ccp_store_flag))
9112 return 0;
9114 icode = setcc_gen_code[(int) code];
9115 if (icode == CODE_FOR_nothing
9116 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
9118 /* We can only do this if it is one of the special cases that
9119 can be handled without an scc insn. */
9120 if ((code == LT && integer_zerop (arg1))
9121 || (! only_cheap && code == GE && integer_zerop (arg1)))
9123 else if (! only_cheap && (code == NE || code == EQ)
9124 && TREE_CODE (type) != REAL_TYPE
9125 && ((abs_optab->handlers[(int) operand_mode].insn_code
9126 != CODE_FOR_nothing)
9127 || (ffs_optab->handlers[(int) operand_mode].insn_code
9128 != CODE_FOR_nothing)))
9130 else
9131 return 0;
9134 if (! get_subtarget (target)
9135 || GET_MODE (subtarget) != operand_mode)
9136 subtarget = 0;
9138 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9140 if (target == 0)
9141 target = gen_reg_rtx (mode);
9143 result = emit_store_flag (target, code, op0, op1,
9144 operand_mode, unsignedp, 1);
9146 if (result)
9148 if (invert)
9149 result = expand_binop (mode, xor_optab, result, const1_rtx,
9150 result, 0, OPTAB_LIB_WIDEN);
9151 return result;
9154 /* If this failed, we have to do this with set/compare/jump/set code. */
9155 if (!REG_P (target)
9156 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9157 target = gen_reg_rtx (GET_MODE (target));
9159 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9160 result = compare_from_rtx (op0, op1, code, unsignedp,
9161 operand_mode, NULL_RTX);
9162 if (GET_CODE (result) == CONST_INT)
9163 return (((result == const0_rtx && ! invert)
9164 || (result != const0_rtx && invert))
9165 ? const0_rtx : const1_rtx);
9167 /* The code of RESULT may not match CODE if compare_from_rtx
9168 decided to swap its operands and reverse the original code.
9170 We know that compare_from_rtx returns either a CONST_INT or
9171 a new comparison code, so it is safe to just extract the
9172 code from RESULT. */
9173 code = GET_CODE (result);
9175 label = gen_label_rtx ();
9176 gcc_assert (bcc_gen_fctn[(int) code]);
9178 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
9179 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9180 emit_label (label);
9182 return target;
9186 /* Stubs in case we haven't got a casesi insn. */
9187 #ifndef HAVE_casesi
9188 # define HAVE_casesi 0
9189 # define gen_casesi(a, b, c, d, e) (0)
9190 # define CODE_FOR_casesi CODE_FOR_nothing
9191 #endif
9193 /* If the machine does not have a case insn that compares the bounds,
9194 this means extra overhead for dispatch tables, which raises the
9195 threshold for using them. */
9196 #ifndef CASE_VALUES_THRESHOLD
9197 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9198 #endif /* CASE_VALUES_THRESHOLD */
9200 unsigned int
9201 case_values_threshold (void)
9203 return CASE_VALUES_THRESHOLD;
9206 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9207 0 otherwise (i.e. if there is no casesi instruction). */
9209 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9210 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
9212 enum machine_mode index_mode = SImode;
9213 int index_bits = GET_MODE_BITSIZE (index_mode);
9214 rtx op1, op2, index;
9215 enum machine_mode op_mode;
9217 if (! HAVE_casesi)
9218 return 0;
9220 /* Convert the index to SImode. */
9221 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9223 enum machine_mode omode = TYPE_MODE (index_type);
9224 rtx rangertx = expand_normal (range);
9226 /* We must handle the endpoints in the original mode. */
9227 index_expr = build2 (MINUS_EXPR, index_type,
9228 index_expr, minval);
9229 minval = integer_zero_node;
9230 index = expand_normal (index_expr);
9231 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9232 omode, 1, default_label);
9233 /* Now we can safely truncate. */
9234 index = convert_to_mode (index_mode, index, 0);
9236 else
9238 if (TYPE_MODE (index_type) != index_mode)
9240 index_type = lang_hooks.types.type_for_size (index_bits, 0);
9241 index_expr = fold_convert (index_type, index_expr);
9244 index = expand_normal (index_expr);
9247 do_pending_stack_adjust ();
9249 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9250 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9251 (index, op_mode))
9252 index = copy_to_mode_reg (op_mode, index);
9254 op1 = expand_normal (minval);
9256 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9257 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9258 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9259 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9260 (op1, op_mode))
9261 op1 = copy_to_mode_reg (op_mode, op1);
9263 op2 = expand_normal (range);
9265 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9266 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9267 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9268 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9269 (op2, op_mode))
9270 op2 = copy_to_mode_reg (op_mode, op2);
9272 emit_jump_insn (gen_casesi (index, op1, op2,
9273 table_label, default_label));
9274 return 1;
9277 /* Attempt to generate a tablejump instruction; same concept. */
9278 #ifndef HAVE_tablejump
9279 #define HAVE_tablejump 0
9280 #define gen_tablejump(x, y) (0)
9281 #endif
9283 /* Subroutine of the next function.
9285 INDEX is the value being switched on, with the lowest value
9286 in the table already subtracted.
9287 MODE is its expected mode (needed if INDEX is constant).
9288 RANGE is the length of the jump table.
9289 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9291 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9292 index value is out of range. */
9294 static void
9295 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9296 rtx default_label)
9298 rtx temp, vector;
9300 if (INTVAL (range) > cfun->max_jumptable_ents)
9301 cfun->max_jumptable_ents = INTVAL (range);
9303 /* Do an unsigned comparison (in the proper mode) between the index
9304 expression and the value which represents the length of the range.
9305 Since we just finished subtracting the lower bound of the range
9306 from the index expression, this comparison allows us to simultaneously
9307 check that the original index expression value is both greater than
9308 or equal to the minimum value of the range and less than or equal to
9309 the maximum value of the range. */
9311 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9312 default_label);
9314 /* If index is in range, it must fit in Pmode.
9315 Convert to Pmode so we can index with it. */
9316 if (mode != Pmode)
9317 index = convert_to_mode (Pmode, index, 1);
9319 /* Don't let a MEM slip through, because then INDEX that comes
9320 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9321 and break_out_memory_refs will go to work on it and mess it up. */
9322 #ifdef PIC_CASE_VECTOR_ADDRESS
9323 if (flag_pic && !REG_P (index))
9324 index = copy_to_mode_reg (Pmode, index);
9325 #endif
9327 /* If flag_force_addr were to affect this address
9328 it could interfere with the tricky assumptions made
9329 about addresses that contain label-refs,
9330 which may be valid only very near the tablejump itself. */
9331 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9332 GET_MODE_SIZE, because this indicates how large insns are. The other
9333 uses should all be Pmode, because they are addresses. This code
9334 could fail if addresses and insns are not the same size. */
9335 index = gen_rtx_PLUS (Pmode,
9336 gen_rtx_MULT (Pmode, index,
9337 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9338 gen_rtx_LABEL_REF (Pmode, table_label));
9339 #ifdef PIC_CASE_VECTOR_ADDRESS
9340 if (flag_pic)
9341 index = PIC_CASE_VECTOR_ADDRESS (index);
9342 else
9343 #endif
9344 index = memory_address_noforce (CASE_VECTOR_MODE, index);
9345 temp = gen_reg_rtx (CASE_VECTOR_MODE);
9346 vector = gen_const_mem (CASE_VECTOR_MODE, index);
9347 convert_move (temp, vector, 0);
9349 emit_jump_insn (gen_tablejump (temp, table_label));
9351 /* If we are generating PIC code or if the table is PC-relative, the
9352 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9353 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
9354 emit_barrier ();
9358 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
9359 rtx table_label, rtx default_label)
9361 rtx index;
9363 if (! HAVE_tablejump)
9364 return 0;
9366 index_expr = fold_build2 (MINUS_EXPR, index_type,
9367 fold_convert (index_type, index_expr),
9368 fold_convert (index_type, minval));
9369 index = expand_normal (index_expr);
9370 do_pending_stack_adjust ();
9372 do_tablejump (index, TYPE_MODE (index_type),
9373 convert_modes (TYPE_MODE (index_type),
9374 TYPE_MODE (TREE_TYPE (range)),
9375 expand_normal (range),
9376 TYPE_UNSIGNED (TREE_TYPE (range))),
9377 table_label, default_label);
9378 return 1;
9381 /* Nonzero if the mode is a valid vector mode for this architecture.
9382 This returns nonzero even if there is no hardware support for the
9383 vector mode, but we can emulate with narrower modes. */
9386 vector_mode_valid_p (enum machine_mode mode)
9388 enum mode_class class = GET_MODE_CLASS (mode);
9389 enum machine_mode innermode;
9391 /* Doh! What's going on? */
9392 if (class != MODE_VECTOR_INT
9393 && class != MODE_VECTOR_FLOAT)
9394 return 0;
9396 /* Hardware support. Woo hoo! */
9397 if (targetm.vector_mode_supported_p (mode))
9398 return 1;
9400 innermode = GET_MODE_INNER (mode);
9402 /* We should probably return 1 if requesting V4DI and we have no DI,
9403 but we have V2DI, but this is probably very unlikely. */
9405 /* If we have support for the inner mode, we can safely emulate it.
9406 We may not have V2DI, but me can emulate with a pair of DIs. */
9407 return targetm.scalar_mode_supported_p (innermode);
9410 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9411 static rtx
9412 const_vector_from_tree (tree exp)
9414 rtvec v;
9415 int units, i;
9416 tree link, elt;
9417 enum machine_mode inner, mode;
9419 mode = TYPE_MODE (TREE_TYPE (exp));
9421 if (initializer_zerop (exp))
9422 return CONST0_RTX (mode);
9424 units = GET_MODE_NUNITS (mode);
9425 inner = GET_MODE_INNER (mode);
9427 v = rtvec_alloc (units);
9429 link = TREE_VECTOR_CST_ELTS (exp);
9430 for (i = 0; link; link = TREE_CHAIN (link), ++i)
9432 elt = TREE_VALUE (link);
9434 if (TREE_CODE (elt) == REAL_CST)
9435 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
9436 inner);
9437 else
9438 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
9439 TREE_INT_CST_HIGH (elt),
9440 inner);
9443 /* Initialize remaining elements to 0. */
9444 for (; i < units; ++i)
9445 RTVEC_ELT (v, i) = CONST0_RTX (inner);
9447 return gen_rtx_CONST_VECTOR (mode, v);
9449 #include "gt-expr.h"