2003-09-21 Toon Moene <toon@moene.indiv.nluug.nl>
[official-gcc.git] / gcc / stor-layout.c
blob728b70bf9c6bfdd1d11f4148e0fe836d1ee2553a
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "toplev.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
38 /* Set to one when set_sizetype has been called. */
39 static int sizetype_set;
41 /* List of types created before set_sizetype has been called. We do not
42 make this a GGC root since we want these nodes to be reclaimed. */
43 static tree early_type_list;
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment;
53 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
54 May be overridden by front-ends. */
55 unsigned int set_alignment = 0;
57 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
58 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
59 called only by a front end. */
60 static int reference_types_internal = 0;
62 static void finalize_record_size (record_layout_info);
63 static void finalize_type_size (tree);
64 static void place_union_field (record_layout_info, tree);
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
67 HOST_WIDE_INT, tree);
68 #endif
69 static unsigned int update_alignment_for_field (record_layout_info, tree,
70 unsigned int);
71 extern void debug_rli (record_layout_info);
73 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
75 static GTY(()) tree pending_sizes;
77 /* Nonzero means cannot safely call expand_expr now,
78 so put variable sizes onto `pending_sizes' instead. */
80 int immediate_size_expand;
82 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
83 by front end. */
85 void
86 internal_reference_types (void)
88 reference_types_internal = 1;
91 /* Get a list of all the objects put on the pending sizes list. */
93 tree
94 get_pending_sizes (void)
96 tree chain = pending_sizes;
97 tree t;
99 /* Put each SAVE_EXPR into the current function. */
100 for (t = chain; t; t = TREE_CHAIN (t))
101 SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;
103 pending_sizes = 0;
104 return chain;
107 /* Return nonzero if EXPR is present on the pending sizes list. */
110 is_pending_size (tree expr)
112 tree t;
114 for (t = pending_sizes; t; t = TREE_CHAIN (t))
115 if (TREE_VALUE (t) == expr)
116 return 1;
117 return 0;
120 /* Add EXPR to the pending sizes list. */
122 void
123 put_pending_size (tree expr)
125 /* Strip any simple arithmetic from EXPR to see if it has an underlying
126 SAVE_EXPR. */
127 expr = skip_simple_arithmetic (expr);
129 if (TREE_CODE (expr) == SAVE_EXPR)
130 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
133 /* Put a chain of objects into the pending sizes list, which must be
134 empty. */
136 void
137 put_pending_sizes (tree chain)
139 if (pending_sizes)
140 abort ();
142 pending_sizes = chain;
145 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
146 to serve as the actual size-expression for a type or decl. */
148 tree
149 variable_size (tree size)
151 tree save;
153 /* If the language-processor is to take responsibility for variable-sized
154 items (e.g., languages which have elaboration procedures like Ada),
155 just return SIZE unchanged. Likewise for self-referential sizes and
156 constant sizes. */
157 if (TREE_CONSTANT (size)
158 || (*lang_hooks.decls.global_bindings_p) () < 0
159 || CONTAINS_PLACEHOLDER_P (size))
160 return size;
162 if (TREE_CODE (size) == MINUS_EXPR && integer_onep (TREE_OPERAND (size, 1)))
163 /* If this is the upper bound of a C array, leave the minus 1 outside
164 the SAVE_EXPR so it can be folded away. */
165 TREE_OPERAND (size, 0) = save = save_expr (TREE_OPERAND (size, 0));
166 else
167 size = save = save_expr (size);
169 /* If an array with a variable number of elements is declared, and
170 the elements require destruction, we will emit a cleanup for the
171 array. That cleanup is run both on normal exit from the block
172 and in the exception-handler for the block. Normally, when code
173 is used in both ordinary code and in an exception handler it is
174 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
175 not wish to do that here; the array-size is the same in both
176 places. */
177 if (TREE_CODE (save) == SAVE_EXPR)
178 SAVE_EXPR_PERSISTENT_P (save) = 1;
180 if ((*lang_hooks.decls.global_bindings_p) ())
182 if (TREE_CONSTANT (size))
183 error ("type size can't be explicitly evaluated");
184 else
185 error ("variable-size type declared outside of any function");
187 return size_one_node;
190 if (immediate_size_expand)
191 expand_expr (save, const0_rtx, VOIDmode, 0);
192 else if (cfun != 0 && cfun->x_dont_save_pending_sizes_p)
193 /* The front-end doesn't want us to keep a list of the expressions
194 that determine sizes for variable size objects. */
196 else
197 put_pending_size (save);
199 return size;
202 #ifndef MAX_FIXED_MODE_SIZE
203 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
204 #endif
206 /* Return the machine mode to use for a nonscalar of SIZE bits.
207 The mode must be in class CLASS, and have exactly that many bits.
208 If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
209 be used. */
211 enum machine_mode
212 mode_for_size (unsigned int size, enum mode_class class, int limit)
214 enum machine_mode mode;
216 if (limit && size > MAX_FIXED_MODE_SIZE)
217 return BLKmode;
219 /* Get the first mode which has this size, in the specified class. */
220 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
221 mode = GET_MODE_WIDER_MODE (mode))
222 if (GET_MODE_BITSIZE (mode) == size)
223 return mode;
225 return BLKmode;
228 /* Similar, except passed a tree node. */
230 enum machine_mode
231 mode_for_size_tree (tree size, enum mode_class class, int limit)
233 if (TREE_CODE (size) != INTEGER_CST
234 || TREE_OVERFLOW (size)
235 /* What we really want to say here is that the size can fit in a
236 host integer, but we know there's no way we'd find a mode for
237 this many bits, so there's no point in doing the precise test. */
238 || compare_tree_int (size, 1000) > 0)
239 return BLKmode;
240 else
241 return mode_for_size (tree_low_cst (size, 1), class, limit);
244 /* Similar, but never return BLKmode; return the narrowest mode that
245 contains at least the requested number of bits. */
247 enum machine_mode
248 smallest_mode_for_size (unsigned int size, enum mode_class class)
250 enum machine_mode mode;
252 /* Get the first mode which has at least this size, in the
253 specified class. */
254 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
255 mode = GET_MODE_WIDER_MODE (mode))
256 if (GET_MODE_BITSIZE (mode) >= size)
257 return mode;
259 abort ();
262 /* Find an integer mode of the exact same size, or BLKmode on failure. */
264 enum machine_mode
265 int_mode_for_mode (enum machine_mode mode)
267 switch (GET_MODE_CLASS (mode))
269 case MODE_INT:
270 case MODE_PARTIAL_INT:
271 break;
273 case MODE_COMPLEX_INT:
274 case MODE_COMPLEX_FLOAT:
275 case MODE_FLOAT:
276 case MODE_VECTOR_INT:
277 case MODE_VECTOR_FLOAT:
278 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
279 break;
281 case MODE_RANDOM:
282 if (mode == BLKmode)
283 break;
285 /* ... fall through ... */
287 case MODE_CC:
288 default:
289 abort ();
292 return mode;
295 /* Return the alignment of MODE. This will be bounded by 1 and
296 BIGGEST_ALIGNMENT. */
298 unsigned int
299 get_mode_alignment (enum machine_mode mode)
301 unsigned int alignment;
303 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
304 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
305 alignment = GET_MODE_UNIT_SIZE (mode);
306 else
307 alignment = GET_MODE_SIZE (mode);
309 /* Extract the LSB of the size. */
310 alignment = alignment & -alignment;
311 alignment *= BITS_PER_UNIT;
313 alignment = MIN (BIGGEST_ALIGNMENT, MAX (1, alignment));
314 return alignment;
317 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
318 This can only be applied to objects of a sizetype. */
320 tree
321 round_up (tree value, int divisor)
323 tree arg = size_int_type (divisor, TREE_TYPE (value));
325 return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
328 /* Likewise, but round down. */
330 tree
331 round_down (tree value, int divisor)
333 tree arg = size_int_type (divisor, TREE_TYPE (value));
335 return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
338 /* Subroutine of layout_decl: Force alignment required for the data type.
339 But if the decl itself wants greater alignment, don't override that. */
341 static inline void
342 do_type_align (tree type, tree decl)
344 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
346 DECL_ALIGN (decl) = TYPE_ALIGN (type);
347 if (TREE_CODE (decl) == FIELD_DECL)
348 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
352 /* Set the size, mode and alignment of a ..._DECL node.
353 TYPE_DECL does need this for C++.
354 Note that LABEL_DECL and CONST_DECL nodes do not need this,
355 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
356 Don't call layout_decl for them.
358 KNOWN_ALIGN is the amount of alignment we can assume this
359 decl has with no special effort. It is relevant only for FIELD_DECLs
360 and depends on the previous fields.
361 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
362 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
363 the record will be aligned to suit. */
365 void
366 layout_decl (tree decl, unsigned int known_align)
368 tree type = TREE_TYPE (decl);
369 enum tree_code code = TREE_CODE (decl);
370 rtx rtl = NULL_RTX;
372 if (code == CONST_DECL)
373 return;
374 else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
375 && code != TYPE_DECL && code != FIELD_DECL)
376 abort ();
378 rtl = DECL_RTL_IF_SET (decl);
380 if (type == error_mark_node)
381 type = void_type_node;
383 /* Usually the size and mode come from the data type without change,
384 however, the front-end may set the explicit width of the field, so its
385 size may not be the same as the size of its type. This happens with
386 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
387 also happens with other fields. For example, the C++ front-end creates
388 zero-sized fields corresponding to empty base classes, and depends on
389 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
390 size in bytes from the size in bits. If we have already set the mode,
391 don't set it again since we can be called twice for FIELD_DECLs. */
393 TREE_UNSIGNED (decl) = TREE_UNSIGNED (type);
394 if (DECL_MODE (decl) == VOIDmode)
395 DECL_MODE (decl) = TYPE_MODE (type);
397 if (DECL_SIZE (decl) == 0)
399 DECL_SIZE (decl) = TYPE_SIZE (type);
400 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
402 else if (DECL_SIZE_UNIT (decl) == 0)
403 DECL_SIZE_UNIT (decl)
404 = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
405 bitsize_unit_node));
407 if (code != FIELD_DECL)
408 /* For non-fields, update the alignment from the type. */
409 do_type_align (type, decl);
410 else
411 /* For fields, it's a bit more complicated... */
413 if (DECL_BIT_FIELD (decl))
415 DECL_BIT_FIELD_TYPE (decl) = type;
417 /* A zero-length bit-field affects the alignment of the next
418 field. */
419 if (integer_zerop (DECL_SIZE (decl))
420 && ! DECL_PACKED (decl)
421 && ! (*targetm.ms_bitfield_layout_p) (DECL_FIELD_CONTEXT (decl)))
423 #ifdef PCC_BITFIELD_TYPE_MATTERS
424 if (PCC_BITFIELD_TYPE_MATTERS)
425 do_type_align (type, decl);
426 else
427 #endif
429 #ifdef EMPTY_FIELD_BOUNDARY
430 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
432 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
433 DECL_USER_ALIGN (decl) = 0;
435 #endif
439 /* See if we can use an ordinary integer mode for a bit-field.
440 Conditions are: a fixed size that is correct for another mode
441 and occupying a complete byte or bytes on proper boundary. */
442 if (TYPE_SIZE (type) != 0
443 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
444 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
446 enum machine_mode xmode
447 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
449 if (xmode != BLKmode && known_align >= GET_MODE_ALIGNMENT (xmode))
451 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
452 DECL_ALIGN (decl));
453 DECL_MODE (decl) = xmode;
454 DECL_BIT_FIELD (decl) = 0;
458 /* Turn off DECL_BIT_FIELD if we won't need it set. */
459 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
460 && known_align >= TYPE_ALIGN (type)
461 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
462 DECL_BIT_FIELD (decl) = 0;
464 else if (DECL_PACKED (decl) && DECL_USER_ALIGN (decl))
465 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
466 round up; we'll reduce it again below. */;
467 else
468 do_type_align (type, decl);
470 /* If the field is of variable size, we can't misalign it since we
471 have no way to make a temporary to align the result. But this
472 isn't an issue if the decl is not addressable. Likewise if it
473 is of unknown size. */
474 if (DECL_PACKED (decl)
475 && !DECL_USER_ALIGN (decl)
476 && (DECL_NONADDRESSABLE_P (decl)
477 || DECL_SIZE_UNIT (decl) == 0
478 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
479 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
481 /* Should this be controlled by DECL_USER_ALIGN, too? */
482 if (maximum_field_alignment != 0)
483 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
484 if (! DECL_USER_ALIGN (decl))
486 /* Some targets (i.e. i386, VMS) limit struct field alignment
487 to a lower boundary than alignment of variables unless
488 it was overridden by attribute aligned. */
489 #ifdef BIGGEST_FIELD_ALIGNMENT
490 DECL_ALIGN (decl)
491 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
492 #endif
493 #ifdef ADJUST_FIELD_ALIGN
494 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
495 #endif
499 /* Evaluate nonconstant size only once, either now or as soon as safe. */
500 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
501 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
502 if (DECL_SIZE_UNIT (decl) != 0
503 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
504 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
506 /* If requested, warn about definitions of large data objects. */
507 if (warn_larger_than
508 && (code == VAR_DECL || code == PARM_DECL)
509 && ! DECL_EXTERNAL (decl))
511 tree size = DECL_SIZE_UNIT (decl);
513 if (size != 0 && TREE_CODE (size) == INTEGER_CST
514 && compare_tree_int (size, larger_than_size) > 0)
516 int size_as_int = TREE_INT_CST_LOW (size);
518 if (compare_tree_int (size, size_as_int) == 0)
519 warning ("%Jsize of '%D' is %d bytes", decl, decl, size_as_int);
520 else
521 warning ("%Jsize of '%D' is larger than %d bytes",
522 decl, decl, larger_than_size);
526 /* If the RTL was already set, update its mode and mem attributes. */
527 if (rtl)
529 PUT_MODE (rtl, DECL_MODE (decl));
530 SET_DECL_RTL (decl, 0);
531 set_mem_attributes (rtl, decl, 1);
532 SET_DECL_RTL (decl, rtl);
536 /* Hook for a front-end function that can modify the record layout as needed
537 immediately before it is finalized. */
539 void (*lang_adjust_rli) (record_layout_info) = 0;
541 void
542 set_lang_adjust_rli (void (*f) (record_layout_info))
544 lang_adjust_rli = f;
547 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
548 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
549 is to be passed to all other layout functions for this record. It is the
550 responsibility of the caller to call `free' for the storage returned.
551 Note that garbage collection is not permitted until we finish laying
552 out the record. */
554 record_layout_info
555 start_record_layout (tree t)
557 record_layout_info rli = xmalloc (sizeof (struct record_layout_info_s));
559 rli->t = t;
561 /* If the type has a minimum specified alignment (via an attribute
562 declaration, for example) use it -- otherwise, start with a
563 one-byte alignment. */
564 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
565 rli->unpacked_align = rli->record_align;
566 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
568 #ifdef STRUCTURE_SIZE_BOUNDARY
569 /* Packed structures don't need to have minimum size. */
570 if (! TYPE_PACKED (t))
571 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
572 #endif
574 rli->offset = size_zero_node;
575 rli->bitpos = bitsize_zero_node;
576 rli->prev_field = 0;
577 rli->pending_statics = 0;
578 rli->packed_maybe_necessary = 0;
580 return rli;
583 /* These four routines perform computations that convert between
584 the offset/bitpos forms and byte and bit offsets. */
586 tree
587 bit_from_pos (tree offset, tree bitpos)
589 return size_binop (PLUS_EXPR, bitpos,
590 size_binop (MULT_EXPR, convert (bitsizetype, offset),
591 bitsize_unit_node));
594 tree
595 byte_from_pos (tree offset, tree bitpos)
597 return size_binop (PLUS_EXPR, offset,
598 convert (sizetype,
599 size_binop (TRUNC_DIV_EXPR, bitpos,
600 bitsize_unit_node)));
603 void
604 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
605 tree pos)
607 *poffset = size_binop (MULT_EXPR,
608 convert (sizetype,
609 size_binop (FLOOR_DIV_EXPR, pos,
610 bitsize_int (off_align))),
611 size_int (off_align / BITS_PER_UNIT));
612 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
615 /* Given a pointer to bit and byte offsets and an offset alignment,
616 normalize the offsets so they are within the alignment. */
618 void
619 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
621 /* If the bit position is now larger than it should be, adjust it
622 downwards. */
623 if (compare_tree_int (*pbitpos, off_align) >= 0)
625 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
626 bitsize_int (off_align));
628 *poffset
629 = size_binop (PLUS_EXPR, *poffset,
630 size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
631 size_int (off_align / BITS_PER_UNIT)));
633 *pbitpos
634 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
638 /* Print debugging information about the information in RLI. */
640 void
641 debug_rli (record_layout_info rli)
643 print_node_brief (stderr, "type", rli->t, 0);
644 print_node_brief (stderr, "\noffset", rli->offset, 0);
645 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
647 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
648 rli->record_align, rli->unpacked_align,
649 rli->offset_align);
650 if (rli->packed_maybe_necessary)
651 fprintf (stderr, "packed may be necessary\n");
653 if (rli->pending_statics)
655 fprintf (stderr, "pending statics:\n");
656 debug_tree (rli->pending_statics);
660 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
661 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
663 void
664 normalize_rli (record_layout_info rli)
666 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
669 /* Returns the size in bytes allocated so far. */
671 tree
672 rli_size_unit_so_far (record_layout_info rli)
674 return byte_from_pos (rli->offset, rli->bitpos);
677 /* Returns the size in bits allocated so far. */
679 tree
680 rli_size_so_far (record_layout_info rli)
682 return bit_from_pos (rli->offset, rli->bitpos);
685 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
686 the next available location is given by KNOWN_ALIGN. Update the
687 variable alignment fields in RLI, and return the alignment to give
688 the FIELD. */
690 static unsigned int
691 update_alignment_for_field (record_layout_info rli, tree field,
692 unsigned int known_align)
694 /* The alignment required for FIELD. */
695 unsigned int desired_align;
696 /* The type of this field. */
697 tree type = TREE_TYPE (field);
698 /* True if the field was explicitly aligned by the user. */
699 bool user_align;
700 bool is_bitfield;
702 /* Lay out the field so we know what alignment it needs. */
703 layout_decl (field, known_align);
704 desired_align = DECL_ALIGN (field);
705 user_align = DECL_USER_ALIGN (field);
707 is_bitfield = (type != error_mark_node
708 && DECL_BIT_FIELD_TYPE (field)
709 && ! integer_zerop (TYPE_SIZE (type)));
711 /* Record must have at least as much alignment as any field.
712 Otherwise, the alignment of the field within the record is
713 meaningless. */
714 if (is_bitfield && (* targetm.ms_bitfield_layout_p) (rli->t))
716 /* Here, the alignment of the underlying type of a bitfield can
717 affect the alignment of a record; even a zero-sized field
718 can do this. The alignment should be to the alignment of
719 the type, except that for zero-size bitfields this only
720 applies if there was an immediately prior, nonzero-size
721 bitfield. (That's the way it is, experimentally.) */
722 if (! integer_zerop (DECL_SIZE (field))
723 ? ! DECL_PACKED (field)
724 : (rli->prev_field
725 && DECL_BIT_FIELD_TYPE (rli->prev_field)
726 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
728 unsigned int type_align = TYPE_ALIGN (type);
729 type_align = MAX (type_align, desired_align);
730 if (maximum_field_alignment != 0)
731 type_align = MIN (type_align, maximum_field_alignment);
732 rli->record_align = MAX (rli->record_align, type_align);
733 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
736 #ifdef PCC_BITFIELD_TYPE_MATTERS
737 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
739 /* Named bit-fields cause the entire structure to have the
740 alignment implied by their type. */
741 if (DECL_NAME (field) != 0)
743 unsigned int type_align = TYPE_ALIGN (type);
745 #ifdef ADJUST_FIELD_ALIGN
746 if (! TYPE_USER_ALIGN (type))
747 type_align = ADJUST_FIELD_ALIGN (field, type_align);
748 #endif
750 if (maximum_field_alignment != 0)
751 type_align = MIN (type_align, maximum_field_alignment);
752 else if (DECL_PACKED (field))
753 type_align = MIN (type_align, BITS_PER_UNIT);
755 /* The alignment of the record is increased to the maximum
756 of the current alignment, the alignment indicated on the
757 field (i.e., the alignment specified by an __aligned__
758 attribute), and the alignment indicated by the type of
759 the field. */
760 rli->record_align = MAX (rli->record_align, desired_align);
761 rli->record_align = MAX (rli->record_align, type_align);
763 if (warn_packed)
764 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
765 user_align |= TYPE_USER_ALIGN (type);
768 #endif
769 else
771 rli->record_align = MAX (rli->record_align, desired_align);
772 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
775 TYPE_USER_ALIGN (rli->t) |= user_align;
777 return desired_align;
780 /* Called from place_field to handle unions. */
782 static void
783 place_union_field (record_layout_info rli, tree field)
785 update_alignment_for_field (rli, field, /*known_align=*/0);
787 DECL_FIELD_OFFSET (field) = size_zero_node;
788 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
789 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
791 /* We assume the union's size will be a multiple of a byte so we don't
792 bother with BITPOS. */
793 if (TREE_CODE (rli->t) == UNION_TYPE)
794 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
795 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
796 rli->offset = fold (build (COND_EXPR, sizetype,
797 DECL_QUALIFIER (field),
798 DECL_SIZE_UNIT (field), rli->offset));
801 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
802 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
803 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
804 units of alignment than the underlying TYPE. */
805 static int
806 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
807 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
809 /* Note that the calculation of OFFSET might overflow; we calculate it so
810 that we still get the right result as long as ALIGN is a power of two. */
811 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
813 offset = offset % align;
814 return ((offset + size + align - 1) / align
815 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
816 / align));
818 #endif
820 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
821 is a FIELD_DECL to be added after those fields already present in
822 T. (FIELD is not actually added to the TYPE_FIELDS list here;
823 callers that desire that behavior must manually perform that step.) */
825 void
826 place_field (record_layout_info rli, tree field)
828 /* The alignment required for FIELD. */
829 unsigned int desired_align;
830 /* The alignment FIELD would have if we just dropped it into the
831 record as it presently stands. */
832 unsigned int known_align;
833 unsigned int actual_align;
834 /* The type of this field. */
835 tree type = TREE_TYPE (field);
837 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
838 return;
840 /* If FIELD is static, then treat it like a separate variable, not
841 really like a structure field. If it is a FUNCTION_DECL, it's a
842 method. In both cases, all we do is lay out the decl, and we do
843 it *after* the record is laid out. */
844 if (TREE_CODE (field) == VAR_DECL)
846 rli->pending_statics = tree_cons (NULL_TREE, field,
847 rli->pending_statics);
848 return;
851 /* Enumerators and enum types which are local to this class need not
852 be laid out. Likewise for initialized constant fields. */
853 else if (TREE_CODE (field) != FIELD_DECL)
854 return;
856 /* Unions are laid out very differently than records, so split
857 that code off to another function. */
858 else if (TREE_CODE (rli->t) != RECORD_TYPE)
860 place_union_field (rli, field);
861 return;
864 /* Work out the known alignment so far. Note that A & (-A) is the
865 value of the least-significant bit in A that is one. */
866 if (! integer_zerop (rli->bitpos))
867 known_align = (tree_low_cst (rli->bitpos, 1)
868 & - tree_low_cst (rli->bitpos, 1));
869 else if (integer_zerop (rli->offset))
870 known_align = BIGGEST_ALIGNMENT;
871 else if (host_integerp (rli->offset, 1))
872 known_align = (BITS_PER_UNIT
873 * (tree_low_cst (rli->offset, 1)
874 & - tree_low_cst (rli->offset, 1)));
875 else
876 known_align = rli->offset_align;
878 desired_align = update_alignment_for_field (rli, field, known_align);
880 if (warn_packed && DECL_PACKED (field))
882 if (known_align >= TYPE_ALIGN (type))
884 if (TYPE_ALIGN (type) > desired_align)
886 if (STRICT_ALIGNMENT)
887 warning ("%Jpacked attribute causes inefficient alignment "
888 "for '%D'", field, field);
889 else
890 warning ("%Jpacked attribute is unnecessary for '%D'",
891 field, field);
894 else
895 rli->packed_maybe_necessary = 1;
898 /* Does this field automatically have alignment it needs by virtue
899 of the fields that precede it and the record's own alignment? */
900 if (known_align < desired_align)
902 /* No, we need to skip space before this field.
903 Bump the cumulative size to multiple of field alignment. */
905 if (warn_padded)
906 warning ("%Jpadding struct to align '%D'", field, field);
908 /* If the alignment is still within offset_align, just align
909 the bit position. */
910 if (desired_align < rli->offset_align)
911 rli->bitpos = round_up (rli->bitpos, desired_align);
912 else
914 /* First adjust OFFSET by the partial bits, then align. */
915 rli->offset
916 = size_binop (PLUS_EXPR, rli->offset,
917 convert (sizetype,
918 size_binop (CEIL_DIV_EXPR, rli->bitpos,
919 bitsize_unit_node)));
920 rli->bitpos = bitsize_zero_node;
922 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
925 if (! TREE_CONSTANT (rli->offset))
926 rli->offset_align = desired_align;
930 /* Handle compatibility with PCC. Note that if the record has any
931 variable-sized fields, we need not worry about compatibility. */
932 #ifdef PCC_BITFIELD_TYPE_MATTERS
933 if (PCC_BITFIELD_TYPE_MATTERS
934 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
935 && TREE_CODE (field) == FIELD_DECL
936 && type != error_mark_node
937 && DECL_BIT_FIELD (field)
938 && ! DECL_PACKED (field)
939 && maximum_field_alignment == 0
940 && ! integer_zerop (DECL_SIZE (field))
941 && host_integerp (DECL_SIZE (field), 1)
942 && host_integerp (rli->offset, 1)
943 && host_integerp (TYPE_SIZE (type), 1))
945 unsigned int type_align = TYPE_ALIGN (type);
946 tree dsize = DECL_SIZE (field);
947 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
948 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
949 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
951 #ifdef ADJUST_FIELD_ALIGN
952 if (! TYPE_USER_ALIGN (type))
953 type_align = ADJUST_FIELD_ALIGN (field, type_align);
954 #endif
956 /* A bit field may not span more units of alignment of its type
957 than its type itself. Advance to next boundary if necessary. */
958 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
959 rli->bitpos = round_up (rli->bitpos, type_align);
961 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
963 #endif
965 #ifdef BITFIELD_NBYTES_LIMITED
966 if (BITFIELD_NBYTES_LIMITED
967 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
968 && TREE_CODE (field) == FIELD_DECL
969 && type != error_mark_node
970 && DECL_BIT_FIELD_TYPE (field)
971 && ! DECL_PACKED (field)
972 && ! integer_zerop (DECL_SIZE (field))
973 && host_integerp (DECL_SIZE (field), 1)
974 && host_integerp (rli->offset, 1)
975 && host_integerp (TYPE_SIZE (type), 1))
977 unsigned int type_align = TYPE_ALIGN (type);
978 tree dsize = DECL_SIZE (field);
979 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
980 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
981 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
983 #ifdef ADJUST_FIELD_ALIGN
984 if (! TYPE_USER_ALIGN (type))
985 type_align = ADJUST_FIELD_ALIGN (field, type_align);
986 #endif
988 if (maximum_field_alignment != 0)
989 type_align = MIN (type_align, maximum_field_alignment);
990 /* ??? This test is opposite the test in the containing if
991 statement, so this code is unreachable currently. */
992 else if (DECL_PACKED (field))
993 type_align = MIN (type_align, BITS_PER_UNIT);
995 /* A bit field may not span the unit of alignment of its type.
996 Advance to next boundary if necessary. */
997 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
998 rli->bitpos = round_up (rli->bitpos, type_align);
1000 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1002 #endif
1004 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1005 A subtlety:
1006 When a bit field is inserted into a packed record, the whole
1007 size of the underlying type is used by one or more same-size
1008 adjacent bitfields. (That is, if its long:3, 32 bits is
1009 used in the record, and any additional adjacent long bitfields are
1010 packed into the same chunk of 32 bits. However, if the size
1011 changes, a new field of that size is allocated.) In an unpacked
1012 record, this is the same as using alignment, but not equivalent
1013 when packing.
1015 Note: for compatibility, we use the type size, not the type alignment
1016 to determine alignment, since that matches the documentation */
1018 if ((* targetm.ms_bitfield_layout_p) (rli->t)
1019 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
1020 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
1022 /* At this point, either the prior or current are bitfields,
1023 (possibly both), and we're dealing with MS packing. */
1024 tree prev_saved = rli->prev_field;
1026 /* Is the prior field a bitfield? If so, handle "runs" of same
1027 type size fields. */
1028 if (rli->prev_field /* necessarily a bitfield if it exists. */)
1030 /* If both are bitfields, nonzero, and the same size, this is
1031 the middle of a run. Zero declared size fields are special
1032 and handled as "end of run". (Note: it's nonzero declared
1033 size, but equal type sizes!) (Since we know that both
1034 the current and previous fields are bitfields by the
1035 time we check it, DECL_SIZE must be present for both.) */
1036 if (DECL_BIT_FIELD_TYPE (field)
1037 && !integer_zerop (DECL_SIZE (field))
1038 && !integer_zerop (DECL_SIZE (rli->prev_field))
1039 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1040 && host_integerp (TYPE_SIZE (type), 0)
1041 && simple_cst_equal (TYPE_SIZE (type),
1042 TYPE_SIZE (TREE_TYPE (rli->prev_field))))
1044 /* We're in the middle of a run of equal type size fields; make
1045 sure we realign if we run out of bits. (Not decl size,
1046 type size!) */
1047 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1049 if (rli->remaining_in_alignment < bitsize)
1051 /* out of bits; bump up to next 'word'. */
1052 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1053 rli->bitpos
1054 = size_binop (PLUS_EXPR, TYPE_SIZE (type),
1055 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1056 rli->prev_field = field;
1057 rli->remaining_in_alignment
1058 = tree_low_cst (TYPE_SIZE (type), 0);
1061 rli->remaining_in_alignment -= bitsize;
1063 else
1065 /* End of a run: if leaving a run of bitfields of the same type
1066 size, we have to "use up" the rest of the bits of the type
1067 size.
1069 Compute the new position as the sum of the size for the prior
1070 type and where we first started working on that type.
1071 Note: since the beginning of the field was aligned then
1072 of course the end will be too. No round needed. */
1074 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1076 tree type_size = TYPE_SIZE (TREE_TYPE (rli->prev_field));
1078 rli->bitpos
1079 = size_binop (PLUS_EXPR, type_size,
1080 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1082 else
1083 /* We "use up" size zero fields; the code below should behave
1084 as if the prior field was not a bitfield. */
1085 prev_saved = NULL;
1087 /* Cause a new bitfield to be captured, either this time (if
1088 currently a bitfield) or next time we see one. */
1089 if (!DECL_BIT_FIELD_TYPE(field)
1090 || integer_zerop (DECL_SIZE (field)))
1091 rli->prev_field = NULL;
1094 rli->offset_align = tree_low_cst (TYPE_SIZE (type), 0);
1095 normalize_rli (rli);
1098 /* If we're starting a new run of same size type bitfields
1099 (or a run of non-bitfields), set up the "first of the run"
1100 fields.
1102 That is, if the current field is not a bitfield, or if there
1103 was a prior bitfield the type sizes differ, or if there wasn't
1104 a prior bitfield the size of the current field is nonzero.
1106 Note: we must be sure to test ONLY the type size if there was
1107 a prior bitfield and ONLY for the current field being zero if
1108 there wasn't. */
1110 if (!DECL_BIT_FIELD_TYPE (field)
1111 || ( prev_saved != NULL
1112 ? !simple_cst_equal (TYPE_SIZE (type),
1113 TYPE_SIZE (TREE_TYPE (prev_saved)))
1114 : !integer_zerop (DECL_SIZE (field)) ))
1116 /* Never smaller than a byte for compatibility. */
1117 unsigned int type_align = BITS_PER_UNIT;
1119 /* (When not a bitfield), we could be seeing a flex array (with
1120 no DECL_SIZE). Since we won't be using remaining_in_alignment
1121 until we see a bitfield (and come by here again) we just skip
1122 calculating it. */
1123 if (DECL_SIZE (field) != NULL
1124 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1125 && host_integerp (DECL_SIZE (field), 0))
1126 rli->remaining_in_alignment
1127 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field)), 0)
1128 - tree_low_cst (DECL_SIZE (field), 0);
1130 /* Now align (conventionally) for the new type. */
1131 if (!DECL_PACKED(field))
1132 type_align = MAX(TYPE_ALIGN (type), type_align);
1134 if (prev_saved
1135 && DECL_BIT_FIELD_TYPE (prev_saved)
1136 /* If the previous bit-field is zero-sized, we've already
1137 accounted for its alignment needs (or ignored it, if
1138 appropriate) while placing it. */
1139 && ! integer_zerop (DECL_SIZE (prev_saved)))
1140 type_align = MAX (type_align,
1141 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1143 if (maximum_field_alignment != 0)
1144 type_align = MIN (type_align, maximum_field_alignment);
1146 rli->bitpos = round_up (rli->bitpos, type_align);
1148 /* If we really aligned, don't allow subsequent bitfields
1149 to undo that. */
1150 rli->prev_field = NULL;
1154 /* Offset so far becomes the position of this field after normalizing. */
1155 normalize_rli (rli);
1156 DECL_FIELD_OFFSET (field) = rli->offset;
1157 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1158 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1160 /* If this field ended up more aligned than we thought it would be (we
1161 approximate this by seeing if its position changed), lay out the field
1162 again; perhaps we can use an integral mode for it now. */
1163 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1164 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1165 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1166 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1167 actual_align = BIGGEST_ALIGNMENT;
1168 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1169 actual_align = (BITS_PER_UNIT
1170 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1171 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1172 else
1173 actual_align = DECL_OFFSET_ALIGN (field);
1175 if (known_align != actual_align)
1176 layout_decl (field, actual_align);
1178 /* Only the MS bitfields use this. */
1179 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE(field))
1180 rli->prev_field = field;
1182 /* Now add size of this field to the size of the record. If the size is
1183 not constant, treat the field as being a multiple of bytes and just
1184 adjust the offset, resetting the bit position. Otherwise, apportion the
1185 size amongst the bit position and offset. First handle the case of an
1186 unspecified size, which can happen when we have an invalid nested struct
1187 definition, such as struct j { struct j { int i; } }. The error message
1188 is printed in finish_struct. */
1189 if (DECL_SIZE (field) == 0)
1190 /* Do nothing. */;
1191 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1192 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1194 rli->offset
1195 = size_binop (PLUS_EXPR, rli->offset,
1196 convert (sizetype,
1197 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1198 bitsize_unit_node)));
1199 rli->offset
1200 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1201 rli->bitpos = bitsize_zero_node;
1202 rli->offset_align = MIN (rli->offset_align, desired_align);
1204 else
1206 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1207 normalize_rli (rli);
1211 /* Assuming that all the fields have been laid out, this function uses
1212 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1213 indicated by RLI. */
1215 static void
1216 finalize_record_size (record_layout_info rli)
1218 tree unpadded_size, unpadded_size_unit;
1220 /* Now we want just byte and bit offsets, so set the offset alignment
1221 to be a byte and then normalize. */
1222 rli->offset_align = BITS_PER_UNIT;
1223 normalize_rli (rli);
1225 /* Determine the desired alignment. */
1226 #ifdef ROUND_TYPE_ALIGN
1227 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1228 rli->record_align);
1229 #else
1230 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1231 #endif
1233 /* Compute the size so far. Be sure to allow for extra bits in the
1234 size in bytes. We have guaranteed above that it will be no more
1235 than a single byte. */
1236 unpadded_size = rli_size_so_far (rli);
1237 unpadded_size_unit = rli_size_unit_so_far (rli);
1238 if (! integer_zerop (rli->bitpos))
1239 unpadded_size_unit
1240 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1242 /* Round the size up to be a multiple of the required alignment. */
1243 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1244 TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
1245 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1247 if (warn_padded && TREE_CONSTANT (unpadded_size)
1248 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1249 warning ("padding struct size to alignment boundary");
1251 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1252 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1253 && TREE_CONSTANT (unpadded_size))
1255 tree unpacked_size;
1257 #ifdef ROUND_TYPE_ALIGN
1258 rli->unpacked_align
1259 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1260 #else
1261 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1262 #endif
1264 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1265 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1267 TYPE_PACKED (rli->t) = 0;
1269 if (TYPE_NAME (rli->t))
1271 const char *name;
1273 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1274 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1275 else
1276 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1278 if (STRICT_ALIGNMENT)
1279 warning ("packed attribute causes inefficient alignment for `%s'", name);
1280 else
1281 warning ("packed attribute is unnecessary for `%s'", name);
1283 else
1285 if (STRICT_ALIGNMENT)
1286 warning ("packed attribute causes inefficient alignment");
1287 else
1288 warning ("packed attribute is unnecessary");
1294 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1296 void
1297 compute_record_mode (tree type)
1299 tree field;
1300 enum machine_mode mode = VOIDmode;
1302 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1303 However, if possible, we use a mode that fits in a register
1304 instead, in order to allow for better optimization down the
1305 line. */
1306 TYPE_MODE (type) = BLKmode;
1308 if (! host_integerp (TYPE_SIZE (type), 1))
1309 return;
1311 /* A record which has any BLKmode members must itself be
1312 BLKmode; it can't go in a register. Unless the member is
1313 BLKmode only because it isn't aligned. */
1314 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1316 if (TREE_CODE (field) != FIELD_DECL)
1317 continue;
1319 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1320 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1321 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)))
1322 || ! host_integerp (bit_position (field), 1)
1323 || DECL_SIZE (field) == 0
1324 || ! host_integerp (DECL_SIZE (field), 1))
1325 return;
1327 /* If this field is the whole struct, remember its mode so
1328 that, say, we can put a double in a class into a DF
1329 register instead of forcing it to live in the stack. */
1330 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1331 mode = DECL_MODE (field);
1333 #ifdef MEMBER_TYPE_FORCES_BLK
1334 /* With some targets, eg. c4x, it is sub-optimal
1335 to access an aligned BLKmode structure as a scalar. */
1337 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1338 return;
1339 #endif /* MEMBER_TYPE_FORCES_BLK */
1342 /* If we only have one real field; use its mode. This only applies to
1343 RECORD_TYPE. This does not apply to unions. */
1344 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
1345 TYPE_MODE (type) = mode;
1346 else
1347 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1349 /* If structure's known alignment is less than what the scalar
1350 mode would need, and it matters, then stick with BLKmode. */
1351 if (TYPE_MODE (type) != BLKmode
1352 && STRICT_ALIGNMENT
1353 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1354 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1356 /* If this is the only reason this type is BLKmode, then
1357 don't force containing types to be BLKmode. */
1358 TYPE_NO_FORCE_BLK (type) = 1;
1359 TYPE_MODE (type) = BLKmode;
1363 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1364 out. */
1366 static void
1367 finalize_type_size (tree type)
1369 /* Normally, use the alignment corresponding to the mode chosen.
1370 However, where strict alignment is not required, avoid
1371 over-aligning structures, since most compilers do not do this
1372 alignment. */
1374 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1375 && (STRICT_ALIGNMENT
1376 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1377 && TREE_CODE (type) != QUAL_UNION_TYPE
1378 && TREE_CODE (type) != ARRAY_TYPE)))
1380 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1381 TYPE_USER_ALIGN (type) = 0;
1384 /* Do machine-dependent extra alignment. */
1385 #ifdef ROUND_TYPE_ALIGN
1386 TYPE_ALIGN (type)
1387 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1388 #endif
1390 /* If we failed to find a simple way to calculate the unit size
1391 of the type, find it by division. */
1392 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1393 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1394 result will fit in sizetype. We will get more efficient code using
1395 sizetype, so we force a conversion. */
1396 TYPE_SIZE_UNIT (type)
1397 = convert (sizetype,
1398 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1399 bitsize_unit_node));
1401 if (TYPE_SIZE (type) != 0)
1403 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1404 TYPE_SIZE_UNIT (type)
1405 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
1408 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1409 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1410 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1411 if (TYPE_SIZE_UNIT (type) != 0
1412 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1413 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1415 /* Also layout any other variants of the type. */
1416 if (TYPE_NEXT_VARIANT (type)
1417 || type != TYPE_MAIN_VARIANT (type))
1419 tree variant;
1420 /* Record layout info of this variant. */
1421 tree size = TYPE_SIZE (type);
1422 tree size_unit = TYPE_SIZE_UNIT (type);
1423 unsigned int align = TYPE_ALIGN (type);
1424 unsigned int user_align = TYPE_USER_ALIGN (type);
1425 enum machine_mode mode = TYPE_MODE (type);
1427 /* Copy it into all variants. */
1428 for (variant = TYPE_MAIN_VARIANT (type);
1429 variant != 0;
1430 variant = TYPE_NEXT_VARIANT (variant))
1432 TYPE_SIZE (variant) = size;
1433 TYPE_SIZE_UNIT (variant) = size_unit;
1434 TYPE_ALIGN (variant) = align;
1435 TYPE_USER_ALIGN (variant) = user_align;
1436 TYPE_MODE (variant) = mode;
1441 /* Do all of the work required to layout the type indicated by RLI,
1442 once the fields have been laid out. This function will call `free'
1443 for RLI, unless FREE_P is false. Passing a value other than false
1444 for FREE_P is bad practice; this option only exists to support the
1445 G++ 3.2 ABI. */
1447 void
1448 finish_record_layout (record_layout_info rli, int free_p)
1450 /* Compute the final size. */
1451 finalize_record_size (rli);
1453 /* Compute the TYPE_MODE for the record. */
1454 compute_record_mode (rli->t);
1456 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1457 finalize_type_size (rli->t);
1459 /* Lay out any static members. This is done now because their type
1460 may use the record's type. */
1461 while (rli->pending_statics)
1463 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1464 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1467 /* Clean up. */
1468 if (free_p)
1469 free (rli);
1473 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1474 NAME, its fields are chained in reverse on FIELDS.
1476 If ALIGN_TYPE is non-null, it is given the same alignment as
1477 ALIGN_TYPE. */
1479 void
1480 finish_builtin_struct (tree type, const char *name, tree fields,
1481 tree align_type)
1483 tree tail, next;
1485 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1487 DECL_FIELD_CONTEXT (fields) = type;
1488 next = TREE_CHAIN (fields);
1489 TREE_CHAIN (fields) = tail;
1491 TYPE_FIELDS (type) = tail;
1493 if (align_type)
1495 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1496 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1499 layout_type (type);
1500 #if 0 /* not yet, should get fixed properly later */
1501 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1502 #else
1503 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1504 #endif
1505 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1506 layout_decl (TYPE_NAME (type), 0);
1509 /* Calculate the mode, size, and alignment for TYPE.
1510 For an array type, calculate the element separation as well.
1511 Record TYPE on the chain of permanent or temporary types
1512 so that dbxout will find out about it.
1514 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1515 layout_type does nothing on such a type.
1517 If the type is incomplete, its TYPE_SIZE remains zero. */
1519 void
1520 layout_type (tree type)
1522 if (type == 0)
1523 abort ();
1525 /* Do nothing if type has been laid out before. */
1526 if (TYPE_SIZE (type))
1527 return;
1529 switch (TREE_CODE (type))
1531 case LANG_TYPE:
1532 /* This kind of type is the responsibility
1533 of the language-specific code. */
1534 abort ();
1536 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1537 if (TYPE_PRECISION (type) == 0)
1538 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1540 /* ... fall through ... */
1542 case INTEGER_TYPE:
1543 case ENUMERAL_TYPE:
1544 case CHAR_TYPE:
1545 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1546 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1547 TREE_UNSIGNED (type) = 1;
1549 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1550 MODE_INT);
1551 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1552 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1553 break;
1555 case REAL_TYPE:
1556 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1557 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1558 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1559 break;
1561 case COMPLEX_TYPE:
1562 TREE_UNSIGNED (type) = TREE_UNSIGNED (TREE_TYPE (type));
1563 TYPE_MODE (type)
1564 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1565 (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
1566 ? MODE_COMPLEX_INT : MODE_COMPLEX_FLOAT),
1568 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1569 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1570 break;
1572 case VECTOR_TYPE:
1574 tree subtype;
1576 subtype = TREE_TYPE (type);
1577 TREE_UNSIGNED (type) = TREE_UNSIGNED (subtype);
1578 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1579 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1581 break;
1583 case VOID_TYPE:
1584 /* This is an incomplete type and so doesn't have a size. */
1585 TYPE_ALIGN (type) = 1;
1586 TYPE_USER_ALIGN (type) = 0;
1587 TYPE_MODE (type) = VOIDmode;
1588 break;
1590 case OFFSET_TYPE:
1591 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1592 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1593 /* A pointer might be MODE_PARTIAL_INT,
1594 but ptrdiff_t must be integral. */
1595 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1596 break;
1598 case FUNCTION_TYPE:
1599 case METHOD_TYPE:
1600 TYPE_MODE (type) = mode_for_size (2 * POINTER_SIZE, MODE_INT, 0);
1601 TYPE_SIZE (type) = bitsize_int (2 * POINTER_SIZE);
1602 TYPE_SIZE_UNIT (type) = size_int ((2 * POINTER_SIZE) / BITS_PER_UNIT);
1603 break;
1605 case POINTER_TYPE:
1606 case REFERENCE_TYPE:
1609 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1610 && reference_types_internal)
1611 ? Pmode : TYPE_MODE (type));
1613 int nbits = GET_MODE_BITSIZE (mode);
1615 TYPE_SIZE (type) = bitsize_int (nbits);
1616 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1617 TREE_UNSIGNED (type) = 1;
1618 TYPE_PRECISION (type) = nbits;
1620 break;
1622 case ARRAY_TYPE:
1624 tree index = TYPE_DOMAIN (type);
1625 tree element = TREE_TYPE (type);
1627 build_pointer_type (element);
1629 /* We need to know both bounds in order to compute the size. */
1630 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1631 && TYPE_SIZE (element))
1633 tree ub = TYPE_MAX_VALUE (index);
1634 tree lb = TYPE_MIN_VALUE (index);
1635 tree length;
1636 tree element_size;
1638 /* The initial subtraction should happen in the original type so
1639 that (possible) negative values are handled appropriately. */
1640 length = size_binop (PLUS_EXPR, size_one_node,
1641 convert (sizetype,
1642 fold (build (MINUS_EXPR,
1643 TREE_TYPE (lb),
1644 ub, lb))));
1646 /* Special handling for arrays of bits (for Chill). */
1647 element_size = TYPE_SIZE (element);
1648 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1649 && (integer_zerop (TYPE_MAX_VALUE (element))
1650 || integer_onep (TYPE_MAX_VALUE (element)))
1651 && host_integerp (TYPE_MIN_VALUE (element), 1))
1653 HOST_WIDE_INT maxvalue
1654 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1655 HOST_WIDE_INT minvalue
1656 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1658 if (maxvalue - minvalue == 1
1659 && (maxvalue == 1 || maxvalue == 0))
1660 element_size = integer_one_node;
1663 /* If neither bound is a constant and sizetype is signed, make
1664 sure the size is never negative. We should really do this
1665 if *either* bound is non-constant, but this is the best
1666 compromise between C and Ada. */
1667 if (! TREE_UNSIGNED (sizetype)
1668 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1669 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1670 length = size_binop (MAX_EXPR, length, size_zero_node);
1672 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1673 convert (bitsizetype, length));
1675 /* If we know the size of the element, calculate the total
1676 size directly, rather than do some division thing below.
1677 This optimization helps Fortran assumed-size arrays
1678 (where the size of the array is determined at runtime)
1679 substantially.
1680 Note that we can't do this in the case where the size of
1681 the elements is one bit since TYPE_SIZE_UNIT cannot be
1682 set correctly in that case. */
1683 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1684 TYPE_SIZE_UNIT (type)
1685 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1688 /* Now round the alignment and size,
1689 using machine-dependent criteria if any. */
1691 #ifdef ROUND_TYPE_ALIGN
1692 TYPE_ALIGN (type)
1693 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1694 #else
1695 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1696 #endif
1697 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1698 TYPE_MODE (type) = BLKmode;
1699 if (TYPE_SIZE (type) != 0
1700 #ifdef MEMBER_TYPE_FORCES_BLK
1701 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1702 #endif
1703 /* BLKmode elements force BLKmode aggregate;
1704 else extract/store fields may lose. */
1705 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1706 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1708 /* One-element arrays get the component type's mode. */
1709 if (simple_cst_equal (TYPE_SIZE (type),
1710 TYPE_SIZE (TREE_TYPE (type))))
1711 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1712 else
1713 TYPE_MODE (type)
1714 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1716 if (TYPE_MODE (type) != BLKmode
1717 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1718 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1719 && TYPE_MODE (type) != BLKmode)
1721 TYPE_NO_FORCE_BLK (type) = 1;
1722 TYPE_MODE (type) = BLKmode;
1725 break;
1728 case RECORD_TYPE:
1729 case UNION_TYPE:
1730 case QUAL_UNION_TYPE:
1732 tree field;
1733 record_layout_info rli;
1735 /* Initialize the layout information. */
1736 rli = start_record_layout (type);
1738 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1739 in the reverse order in building the COND_EXPR that denotes
1740 its size. We reverse them again later. */
1741 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1742 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1744 /* Place all the fields. */
1745 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1746 place_field (rli, field);
1748 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1749 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1751 if (lang_adjust_rli)
1752 (*lang_adjust_rli) (rli);
1754 /* Finish laying out the record. */
1755 finish_record_layout (rli, /*free_p=*/true);
1757 break;
1759 case SET_TYPE: /* Used by Chill and Pascal. */
1760 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1761 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1762 abort ();
1763 else
1765 #ifndef SET_WORD_SIZE
1766 #define SET_WORD_SIZE BITS_PER_WORD
1767 #endif
1768 unsigned int alignment
1769 = set_alignment ? set_alignment : SET_WORD_SIZE;
1770 HOST_WIDE_INT size_in_bits
1771 = (tree_low_cst (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), 0)
1772 - tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0) + 1);
1773 HOST_WIDE_INT rounded_size
1774 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1776 if (rounded_size > (int) alignment)
1777 TYPE_MODE (type) = BLKmode;
1778 else
1779 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1781 TYPE_SIZE (type) = bitsize_int (rounded_size);
1782 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1783 TYPE_ALIGN (type) = alignment;
1784 TYPE_USER_ALIGN (type) = 0;
1785 TYPE_PRECISION (type) = size_in_bits;
1787 break;
1789 case FILE_TYPE:
1790 /* The size may vary in different languages, so the language front end
1791 should fill in the size. */
1792 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1793 TYPE_USER_ALIGN (type) = 0;
1794 TYPE_MODE (type) = BLKmode;
1795 break;
1797 default:
1798 abort ();
1801 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1802 records and unions, finish_record_layout already called this
1803 function. */
1804 if (TREE_CODE (type) != RECORD_TYPE
1805 && TREE_CODE (type) != UNION_TYPE
1806 && TREE_CODE (type) != QUAL_UNION_TYPE)
1807 finalize_type_size (type);
1809 /* If this type is created before sizetype has been permanently set,
1810 record it so set_sizetype can fix it up. */
1811 if (! sizetype_set)
1812 early_type_list = tree_cons (NULL_TREE, type, early_type_list);
1814 /* If an alias set has been set for this aggregate when it was incomplete,
1815 force it into alias set 0.
1816 This is too conservative, but we cannot call record_component_aliases
1817 here because some frontends still change the aggregates after
1818 layout_type. */
1819 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1820 TYPE_ALIAS_SET (type) = 0;
1823 /* Create and return a type for signed integers of PRECISION bits. */
1825 tree
1826 make_signed_type (int precision)
1828 tree type = make_node (INTEGER_TYPE);
1830 TYPE_PRECISION (type) = precision;
1832 fixup_signed_type (type);
1833 return type;
1836 /* Create and return a type for unsigned integers of PRECISION bits. */
1838 tree
1839 make_unsigned_type (int precision)
1841 tree type = make_node (INTEGER_TYPE);
1843 TYPE_PRECISION (type) = precision;
1845 fixup_unsigned_type (type);
1846 return type;
1849 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1850 value to enable integer types to be created. */
1852 void
1853 initialize_sizetypes (void)
1855 tree t = make_node (INTEGER_TYPE);
1857 /* Set this so we do something reasonable for the build_int_2 calls
1858 below. */
1859 integer_type_node = t;
1861 TYPE_MODE (t) = SImode;
1862 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1863 TYPE_USER_ALIGN (t) = 0;
1864 TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
1865 TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
1866 TREE_UNSIGNED (t) = 1;
1867 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1868 TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
1869 TYPE_IS_SIZETYPE (t) = 1;
1871 /* 1000 avoids problems with possible overflow and is certainly
1872 larger than any size value we'd want to be storing. */
1873 TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);
1875 /* These two must be different nodes because of the caching done in
1876 size_int_wide. */
1877 sizetype = t;
1878 bitsizetype = copy_node (t);
1879 integer_type_node = 0;
1882 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1883 Also update the type of any standard type's sizes made so far. */
1885 void
1886 set_sizetype (tree type)
1888 int oprecision = TYPE_PRECISION (type);
1889 /* The *bitsizetype types use a precision that avoids overflows when
1890 calculating signed sizes / offsets in bits. However, when
1891 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1892 precision. */
1893 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1894 2 * HOST_BITS_PER_WIDE_INT);
1895 unsigned int i;
1896 tree t;
1898 if (sizetype_set)
1899 abort ();
1901 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1902 sizetype = copy_node (type);
1903 TYPE_DOMAIN (sizetype) = type;
1904 TYPE_IS_SIZETYPE (sizetype) = 1;
1905 bitsizetype = make_node (INTEGER_TYPE);
1906 TYPE_NAME (bitsizetype) = TYPE_NAME (type);
1907 TYPE_PRECISION (bitsizetype) = precision;
1908 TYPE_IS_SIZETYPE (bitsizetype) = 1;
1910 if (TREE_UNSIGNED (type))
1911 fixup_unsigned_type (bitsizetype);
1912 else
1913 fixup_signed_type (bitsizetype);
1915 layout_type (bitsizetype);
1917 if (TREE_UNSIGNED (type))
1919 usizetype = sizetype;
1920 ubitsizetype = bitsizetype;
1921 ssizetype = copy_node (make_signed_type (oprecision));
1922 sbitsizetype = copy_node (make_signed_type (precision));
1924 else
1926 ssizetype = sizetype;
1927 sbitsizetype = bitsizetype;
1928 usizetype = copy_node (make_unsigned_type (oprecision));
1929 ubitsizetype = copy_node (make_unsigned_type (precision));
1932 TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");
1934 /* Show is a sizetype, is a main type, and has no pointers to it. */
1935 for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
1937 TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
1938 TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
1939 TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
1940 TYPE_POINTER_TO (sizetype_tab[i]) = 0;
1941 TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
1944 /* Go down each of the types we already made and set the proper type
1945 for the sizes in them. */
1946 for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
1948 if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE
1949 && TREE_CODE (TREE_VALUE (t)) != BOOLEAN_TYPE)
1950 abort ();
1952 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
1953 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
1956 early_type_list = 0;
1957 sizetype_set = 1;
1960 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE,
1961 BOOLEAN_TYPE, or CHAR_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
1962 for TYPE, based on the PRECISION and whether or not the TYPE
1963 IS_UNSIGNED. PRECISION need not correspond to a width supported
1964 natively by the hardware; for example, on a machine with 8-bit,
1965 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
1966 61. */
1968 void
1969 set_min_and_max_values_for_integral_type (tree type,
1970 int precision,
1971 bool is_unsigned)
1973 tree min_value;
1974 tree max_value;
1976 if (is_unsigned)
1978 min_value = build_int_2 (0, 0);
1979 max_value
1980 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
1981 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
1982 precision - HOST_BITS_PER_WIDE_INT > 0
1983 ? ((unsigned HOST_WIDE_INT) ~0
1984 >> (HOST_BITS_PER_WIDE_INT
1985 - (precision - HOST_BITS_PER_WIDE_INT)))
1986 : 0);
1988 else
1990 min_value
1991 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1992 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
1993 (((HOST_WIDE_INT) (-1)
1994 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1995 ? precision - HOST_BITS_PER_WIDE_INT - 1
1996 : 0))));
1997 max_value
1998 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1999 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2000 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2001 ? (((HOST_WIDE_INT) 1
2002 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2003 : 0));
2006 TREE_TYPE (min_value) = type;
2007 TREE_TYPE (max_value) = type;
2008 TYPE_MIN_VALUE (type) = min_value;
2009 TYPE_MAX_VALUE (type) = max_value;
2012 /* Set the extreme values of TYPE based on its precision in bits,
2013 then lay it out. Used when make_signed_type won't do
2014 because the tree code is not INTEGER_TYPE.
2015 E.g. for Pascal, when the -fsigned-char option is given. */
2017 void
2018 fixup_signed_type (tree type)
2020 int precision = TYPE_PRECISION (type);
2022 /* We can not represent properly constants greater then
2023 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2024 as they are used by i386 vector extensions and friends. */
2025 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2026 precision = HOST_BITS_PER_WIDE_INT * 2;
2028 set_min_and_max_values_for_integral_type (type, precision,
2029 /*is_unsigned=*/false);
2031 /* Lay out the type: set its alignment, size, etc. */
2032 layout_type (type);
2035 /* Set the extreme values of TYPE based on its precision in bits,
2036 then lay it out. This is used both in `make_unsigned_type'
2037 and for enumeral types. */
2039 void
2040 fixup_unsigned_type (tree type)
2042 int precision = TYPE_PRECISION (type);
2044 /* We can not represent properly constants greater then
2045 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2046 as they are used by i386 vector extensions and friends. */
2047 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2048 precision = HOST_BITS_PER_WIDE_INT * 2;
2050 set_min_and_max_values_for_integral_type (type, precision,
2051 /*is_unsigned=*/true);
2053 /* Lay out the type: set its alignment, size, etc. */
2054 layout_type (type);
2057 /* Find the best machine mode to use when referencing a bit field of length
2058 BITSIZE bits starting at BITPOS.
2060 The underlying object is known to be aligned to a boundary of ALIGN bits.
2061 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2062 larger than LARGEST_MODE (usually SImode).
2064 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2065 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2066 mode meeting these conditions.
2068 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2069 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2070 all the conditions. */
2072 enum machine_mode
2073 get_best_mode (int bitsize, int bitpos, unsigned int align,
2074 enum machine_mode largest_mode, int volatilep)
2076 enum machine_mode mode;
2077 unsigned int unit = 0;
2079 /* Find the narrowest integer mode that contains the bit field. */
2080 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2081 mode = GET_MODE_WIDER_MODE (mode))
2083 unit = GET_MODE_BITSIZE (mode);
2084 if ((bitpos % unit) + bitsize <= unit)
2085 break;
2088 if (mode == VOIDmode
2089 /* It is tempting to omit the following line
2090 if STRICT_ALIGNMENT is true.
2091 But that is incorrect, since if the bitfield uses part of 3 bytes
2092 and we use a 4-byte mode, we could get a spurious segv
2093 if the extra 4th byte is past the end of memory.
2094 (Though at least one Unix compiler ignores this problem:
2095 that on the Sequent 386 machine. */
2096 || MIN (unit, BIGGEST_ALIGNMENT) > align
2097 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2098 return VOIDmode;
2100 if (SLOW_BYTE_ACCESS && ! volatilep)
2102 enum machine_mode wide_mode = VOIDmode, tmode;
2104 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2105 tmode = GET_MODE_WIDER_MODE (tmode))
2107 unit = GET_MODE_BITSIZE (tmode);
2108 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2109 && unit <= BITS_PER_WORD
2110 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2111 && (largest_mode == VOIDmode
2112 || unit <= GET_MODE_BITSIZE (largest_mode)))
2113 wide_mode = tmode;
2116 if (wide_mode != VOIDmode)
2117 return wide_mode;
2120 return mode;
2123 #include "gt-stor-layout.h"