Added myself under Write after Approval Maintainer.
[official-gcc.git] / gcc / ipa-inline.c
blob14bd89a67bcb9708e1268d6525a1f87844aa665a
1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Inlining decision heuristics
24 The implementation of inliner is organized as follows:
26 inlining heuristics limits
28 can_inline_edge_p allow to check that particular inlining is allowed
29 by the limits specified by user (allowed function growth, growth and so
30 on).
32 Functions are inlined when it is obvious the result is profitable (such
33 as functions called once or when inlining reduce code size).
34 In addition to that we perform inlining of small functions and recursive
35 inlining.
37 inlining heuristics
39 The inliner itself is split into two passes:
41 pass_early_inlining
43 Simple local inlining pass inlining callees into current function.
44 This pass makes no use of whole unit analysis and thus it can do only
45 very simple decisions based on local properties.
47 The strength of the pass is that it is run in topological order
48 (reverse postorder) on the callgraph. Functions are converted into SSA
49 form just before this pass and optimized subsequently. As a result, the
50 callees of the function seen by the early inliner was already optimized
51 and results of early inlining adds a lot of optimization opportunities
52 for the local optimization.
54 The pass handle the obvious inlining decisions within the compilation
55 unit - inlining auto inline functions, inlining for size and
56 flattening.
58 main strength of the pass is the ability to eliminate abstraction
59 penalty in C++ code (via combination of inlining and early
60 optimization) and thus improve quality of analysis done by real IPA
61 optimizers.
63 Because of lack of whole unit knowledge, the pass can not really make
64 good code size/performance tradeoffs. It however does very simple
65 speculative inlining allowing code size to grow by
66 EARLY_INLINING_INSNS when callee is leaf function. In this case the
67 optimizations performed later are very likely to eliminate the cost.
69 pass_ipa_inline
71 This is the real inliner able to handle inlining with whole program
72 knowledge. It performs following steps:
74 1) inlining of small functions. This is implemented by greedy
75 algorithm ordering all inlinable cgraph edges by their badness and
76 inlining them in this order as long as inline limits allows doing so.
78 This heuristics is not very good on inlining recursive calls. Recursive
79 calls can be inlined with results similar to loop unrolling. To do so,
80 special purpose recursive inliner is executed on function when
81 recursive edge is met as viable candidate.
83 2) Unreachable functions are removed from callgraph. Inlining leads
84 to devirtualization and other modification of callgraph so functions
85 may become unreachable during the process. Also functions declared as
86 extern inline or virtual functions are removed, since after inlining
87 we no longer need the offline bodies.
89 3) Functions called once and not exported from the unit are inlined.
90 This should almost always lead to reduction of code size by eliminating
91 the need for offline copy of the function. */
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "tree.h"
98 #include "tree-inline.h"
99 #include "langhooks.h"
100 #include "flags.h"
101 #include "cgraph.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
104 #include "timevar.h"
105 #include "params.h"
106 #include "fibheap.h"
107 #include "intl.h"
108 #include "tree-pass.h"
109 #include "coverage.h"
110 #include "ggc.h"
111 #include "rtl.h"
112 #include "tree-flow.h"
113 #include "ipa-prop.h"
114 #include "except.h"
115 #include "target.h"
116 #include "ipa-inline.h"
117 #include "ipa-utils.h"
119 /* Statistics we collect about inlining algorithm. */
120 static int overall_size;
121 static gcov_type max_count;
123 /* Return false when inlining edge E would lead to violating
124 limits on function unit growth or stack usage growth.
126 The relative function body growth limit is present generally
127 to avoid problems with non-linear behavior of the compiler.
128 To allow inlining huge functions into tiny wrapper, the limit
129 is always based on the bigger of the two functions considered.
131 For stack growth limits we always base the growth in stack usage
132 of the callers. We want to prevent applications from segfaulting
133 on stack overflow when functions with huge stack frames gets
134 inlined. */
136 static bool
137 caller_growth_limits (struct cgraph_edge *e)
139 struct cgraph_node *to = e->caller;
140 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
141 int newsize;
142 int limit = 0;
143 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
144 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
146 /* Look for function e->caller is inlined to. While doing
147 so work out the largest function body on the way. As
148 described above, we want to base our function growth
149 limits based on that. Not on the self size of the
150 outer function, not on the self size of inline code
151 we immediately inline to. This is the most relaxed
152 interpretation of the rule "do not grow large functions
153 too much in order to prevent compiler from exploding". */
154 while (true)
156 info = inline_summary (to);
157 if (limit < info->self_size)
158 limit = info->self_size;
159 if (stack_size_limit < info->estimated_self_stack_size)
160 stack_size_limit = info->estimated_self_stack_size;
161 if (to->global.inlined_to)
162 to = to->callers->caller;
163 else
164 break;
167 what_info = inline_summary (what);
169 if (limit < what_info->self_size)
170 limit = what_info->self_size;
172 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
174 /* Check the size after inlining against the function limits. But allow
175 the function to shrink if it went over the limits by forced inlining. */
176 newsize = estimate_size_after_inlining (to, e);
177 if (newsize >= info->size
178 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
179 && newsize > limit)
181 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
182 return false;
185 if (!what_info->estimated_stack_size)
186 return true;
188 /* FIXME: Stack size limit often prevents inlining in Fortran programs
189 due to large i/o datastructures used by the Fortran front-end.
190 We ought to ignore this limit when we know that the edge is executed
191 on every invocation of the caller (i.e. its call statement dominates
192 exit block). We do not track this information, yet. */
193 stack_size_limit += ((gcov_type)stack_size_limit
194 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
196 inlined_stack = (outer_info->stack_frame_offset
197 + outer_info->estimated_self_stack_size
198 + what_info->estimated_stack_size);
199 /* Check new stack consumption with stack consumption at the place
200 stack is used. */
201 if (inlined_stack > stack_size_limit
202 /* If function already has large stack usage from sibling
203 inline call, we can inline, too.
204 This bit overoptimistically assume that we are good at stack
205 packing. */
206 && inlined_stack > info->estimated_stack_size
207 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
209 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
210 return false;
212 return true;
215 /* Dump info about why inlining has failed. */
217 static void
218 report_inline_failed_reason (struct cgraph_edge *e)
220 if (dump_file)
222 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
223 cgraph_node_name (e->caller), e->caller->uid,
224 cgraph_node_name (e->callee), e->callee->uid,
225 cgraph_inline_failed_string (e->inline_failed));
229 /* Decide if we can inline the edge and possibly update
230 inline_failed reason.
231 We check whether inlining is possible at all and whether
232 caller growth limits allow doing so.
234 if REPORT is true, output reason to the dump file. */
236 static bool
237 can_inline_edge_p (struct cgraph_edge *e, bool report)
239 bool inlinable = true;
240 enum availability avail;
241 struct cgraph_node *callee
242 = cgraph_function_or_thunk_node (e->callee, &avail);
243 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->decl);
244 tree callee_tree
245 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
246 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->decl);
247 struct function *callee_cfun
248 = callee ? DECL_STRUCT_FUNCTION (callee->decl) : NULL;
250 if (!caller_cfun && e->caller->clone_of)
251 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->decl);
253 if (!callee_cfun && callee && callee->clone_of)
254 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->decl);
256 gcc_assert (e->inline_failed);
258 if (!callee || !callee->analyzed)
260 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
261 inlinable = false;
263 else if (!inline_summary (callee)->inlinable)
265 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
266 inlinable = false;
268 else if (avail <= AVAIL_OVERWRITABLE)
270 e->inline_failed = CIF_OVERWRITABLE;
271 return false;
273 else if (e->call_stmt_cannot_inline_p)
275 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
276 inlinable = false;
278 /* Don't inline if the functions have different EH personalities. */
279 else if (DECL_FUNCTION_PERSONALITY (e->caller->decl)
280 && DECL_FUNCTION_PERSONALITY (callee->decl)
281 && (DECL_FUNCTION_PERSONALITY (e->caller->decl)
282 != DECL_FUNCTION_PERSONALITY (callee->decl)))
284 e->inline_failed = CIF_EH_PERSONALITY;
285 inlinable = false;
287 /* TM pure functions should not get inlined if the outer function is
288 a TM safe function. */
289 else if (is_tm_pure (callee->decl)
290 && is_tm_safe (e->caller->decl))
292 e->inline_failed = CIF_UNSPECIFIED;
293 inlinable = false;
295 /* Don't inline if the callee can throw non-call exceptions but the
296 caller cannot.
297 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
298 Move the flag into cgraph node or mirror it in the inline summary. */
299 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
300 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
302 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
303 inlinable = false;
305 /* Check compatibility of target optimization options. */
306 else if (!targetm.target_option.can_inline_p (e->caller->decl,
307 callee->decl))
309 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
310 inlinable = false;
312 /* Check if caller growth allows the inlining. */
313 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
314 && !lookup_attribute ("flatten",
315 DECL_ATTRIBUTES
316 (e->caller->global.inlined_to
317 ? e->caller->global.inlined_to->decl
318 : e->caller->decl))
319 && !caller_growth_limits (e))
320 inlinable = false;
321 /* Don't inline a function with a higher optimization level than the
322 caller. FIXME: this is really just tip of iceberg of handling
323 optimization attribute. */
324 else if (caller_tree != callee_tree)
326 struct cl_optimization *caller_opt
327 = TREE_OPTIMIZATION ((caller_tree)
328 ? caller_tree
329 : optimization_default_node);
331 struct cl_optimization *callee_opt
332 = TREE_OPTIMIZATION ((callee_tree)
333 ? callee_tree
334 : optimization_default_node);
336 if (((caller_opt->x_optimize > callee_opt->x_optimize)
337 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
338 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
339 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->decl))
341 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
342 inlinable = false;
346 if (!inlinable && report)
347 report_inline_failed_reason (e);
348 return inlinable;
352 /* Return true if the edge E is inlinable during early inlining. */
354 static bool
355 can_early_inline_edge_p (struct cgraph_edge *e)
357 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
358 NULL);
359 /* Early inliner might get called at WPA stage when IPA pass adds new
360 function. In this case we can not really do any of early inlining
361 because function bodies are missing. */
362 if (!gimple_has_body_p (callee->decl))
364 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
365 return false;
367 /* In early inliner some of callees may not be in SSA form yet
368 (i.e. the callgraph is cyclic and we did not process
369 the callee by early inliner, yet). We don't have CIF code for this
370 case; later we will re-do the decision in the real inliner. */
371 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
372 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
374 if (dump_file)
375 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
376 return false;
378 if (!can_inline_edge_p (e, true))
379 return false;
380 return true;
384 /* Return true when N is leaf function. Accept cheap builtins
385 in leaf functions. */
387 static bool
388 leaf_node_p (struct cgraph_node *n)
390 struct cgraph_edge *e;
391 for (e = n->callees; e; e = e->next_callee)
392 if (!is_inexpensive_builtin (e->callee->decl))
393 return false;
394 return true;
398 /* Return true if we are interested in inlining small function. */
400 static bool
401 want_early_inline_function_p (struct cgraph_edge *e)
403 bool want_inline = true;
404 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
406 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
408 else if (!DECL_DECLARED_INLINE_P (callee->decl)
409 && !flag_inline_small_functions)
411 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
412 report_inline_failed_reason (e);
413 want_inline = false;
415 else
417 int growth = estimate_edge_growth (e);
418 if (growth <= 0)
420 else if (!cgraph_maybe_hot_edge_p (e)
421 && growth > 0)
423 if (dump_file)
424 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
425 "call is cold and code would grow by %i\n",
426 cgraph_node_name (e->caller), e->caller->uid,
427 cgraph_node_name (callee), callee->uid,
428 growth);
429 want_inline = false;
431 else if (!leaf_node_p (callee)
432 && growth > 0)
434 if (dump_file)
435 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
436 "callee is not leaf and code would grow by %i\n",
437 cgraph_node_name (e->caller), e->caller->uid,
438 cgraph_node_name (callee), callee->uid,
439 growth);
440 want_inline = false;
442 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
444 if (dump_file)
445 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
446 "growth %i exceeds --param early-inlining-insns\n",
447 cgraph_node_name (e->caller), e->caller->uid,
448 cgraph_node_name (callee), callee->uid,
449 growth);
450 want_inline = false;
453 return want_inline;
456 /* Return true if we are interested in inlining small function.
457 When REPORT is true, report reason to dump file. */
459 static bool
460 want_inline_small_function_p (struct cgraph_edge *e, bool report)
462 bool want_inline = true;
463 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
465 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
467 else if (!DECL_DECLARED_INLINE_P (callee->decl)
468 && !flag_inline_small_functions)
470 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
471 want_inline = false;
473 else
475 int growth = estimate_edge_growth (e);
477 if (growth <= 0)
479 else if (DECL_DECLARED_INLINE_P (callee->decl)
480 && growth >= MAX_INLINE_INSNS_SINGLE)
482 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
483 want_inline = false;
485 else if (!DECL_DECLARED_INLINE_P (callee->decl)
486 && !flag_inline_functions)
488 e->inline_failed = CIF_NOT_DECLARED_INLINED;
489 want_inline = false;
491 else if (!DECL_DECLARED_INLINE_P (callee->decl)
492 && growth >= MAX_INLINE_INSNS_AUTO)
494 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
495 want_inline = false;
497 /* If call is cold, do not inline when function body would grow.
498 Still inline when the overall unit size will shrink because the offline
499 copy of function being eliminated.
501 This is slightly wrong on aggressive side: it is entirely possible
502 that function is called many times with a context where inlining
503 reduces code size and few times with a context where inlining increase
504 code size. Resoluting growth estimate will be negative even if it
505 would make more sense to keep offline copy and do not inline into the
506 call sites that makes the code size grow.
508 When badness orders the calls in a way that code reducing calls come
509 first, this situation is not a problem at all: after inlining all
510 "good" calls, we will realize that keeping the function around is
511 better. */
512 else if (!cgraph_maybe_hot_edge_p (e)
513 && (DECL_EXTERNAL (callee->decl)
515 /* Unlike for functions called once, we play unsafe with
516 COMDATs. We can allow that since we know functions
517 in consideration are small (and thus risk is small) and
518 moreover grow estimates already accounts that COMDAT
519 functions may or may not disappear when eliminated from
520 current unit. With good probability making aggressive
521 choice in all units is going to make overall program
522 smaller.
524 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
525 instead of
526 cgraph_will_be_removed_from_program_if_no_direct_calls */
528 || !cgraph_can_remove_if_no_direct_calls_p (callee)
529 || estimate_growth (callee) > 0))
531 e->inline_failed = CIF_UNLIKELY_CALL;
532 want_inline = false;
535 if (!want_inline && report)
536 report_inline_failed_reason (e);
537 return want_inline;
540 /* EDGE is self recursive edge.
541 We hand two cases - when function A is inlining into itself
542 or when function A is being inlined into another inliner copy of function
543 A within function B.
545 In first case OUTER_NODE points to the toplevel copy of A, while
546 in the second case OUTER_NODE points to the outermost copy of A in B.
548 In both cases we want to be extra selective since
549 inlining the call will just introduce new recursive calls to appear. */
551 static bool
552 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
553 struct cgraph_node *outer_node,
554 bool peeling,
555 int depth)
557 char const *reason = NULL;
558 bool want_inline = true;
559 int caller_freq = CGRAPH_FREQ_BASE;
560 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
562 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
563 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
565 if (!cgraph_maybe_hot_edge_p (edge))
567 reason = "recursive call is cold";
568 want_inline = false;
570 else if (max_count && !outer_node->count)
572 reason = "not executed in profile";
573 want_inline = false;
575 else if (depth > max_depth)
577 reason = "--param max-inline-recursive-depth exceeded.";
578 want_inline = false;
581 if (outer_node->global.inlined_to)
582 caller_freq = outer_node->callers->frequency;
584 if (!want_inline)
586 /* Inlining of self recursive function into copy of itself within other function
587 is transformation similar to loop peeling.
589 Peeling is profitable if we can inline enough copies to make probability
590 of actual call to the self recursive function very small. Be sure that
591 the probability of recursion is small.
593 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
594 This way the expected number of recision is at most max_depth. */
595 else if (peeling)
597 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
598 / max_depth);
599 int i;
600 for (i = 1; i < depth; i++)
601 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
602 if (max_count
603 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
604 >= max_prob))
606 reason = "profile of recursive call is too large";
607 want_inline = false;
609 if (!max_count
610 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
611 >= max_prob))
613 reason = "frequency of recursive call is too large";
614 want_inline = false;
617 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
618 depth is large. We reduce function call overhead and increase chances that
619 things fit in hardware return predictor.
621 Recursive inlining might however increase cost of stack frame setup
622 actually slowing down functions whose recursion tree is wide rather than
623 deep.
625 Deciding reliably on when to do recursive inlining without profile feedback
626 is tricky. For now we disable recursive inlining when probability of self
627 recursion is low.
629 Recursive inlining of self recursive call within loop also results in large loop
630 depths that generally optimize badly. We may want to throttle down inlining
631 in those cases. In particular this seems to happen in one of libstdc++ rb tree
632 methods. */
633 else
635 if (max_count
636 && (edge->count * 100 / outer_node->count
637 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
639 reason = "profile of recursive call is too small";
640 want_inline = false;
642 else if (!max_count
643 && (edge->frequency * 100 / caller_freq
644 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
646 reason = "frequency of recursive call is too small";
647 want_inline = false;
650 if (!want_inline && dump_file)
651 fprintf (dump_file, " not inlining recursively: %s\n", reason);
652 return want_inline;
655 /* Return true when NODE has caller other than EDGE.
656 Worker for cgraph_for_node_and_aliases. */
658 static bool
659 check_caller_edge (struct cgraph_node *node, void *edge)
661 return (node->callers
662 && node->callers != edge);
666 /* Decide if NODE is called once inlining it would eliminate need
667 for the offline copy of function. */
669 static bool
670 want_inline_function_called_once_p (struct cgraph_node *node)
672 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
673 /* Already inlined? */
674 if (function->global.inlined_to)
675 return false;
676 /* Zero or more then one callers? */
677 if (!node->callers
678 || node->callers->next_caller)
679 return false;
680 /* Maybe other aliases has more direct calls. */
681 if (cgraph_for_node_and_aliases (node, check_caller_edge, node->callers, true))
682 return false;
683 /* Recursive call makes no sense to inline. */
684 if (cgraph_edge_recursive_p (node->callers))
685 return false;
686 /* External functions are not really in the unit, so inlining
687 them when called once would just increase the program size. */
688 if (DECL_EXTERNAL (function->decl))
689 return false;
690 /* Offline body must be optimized out. */
691 if (!cgraph_will_be_removed_from_program_if_no_direct_calls (function))
692 return false;
693 if (!can_inline_edge_p (node->callers, true))
694 return false;
695 return true;
699 /* Return relative time improvement for inlining EDGE in range
700 1...2^9. */
702 static inline int
703 relative_time_benefit (struct inline_summary *callee_info,
704 struct cgraph_edge *edge,
705 int time_growth)
707 int relbenefit;
708 gcov_type uninlined_call_time;
710 uninlined_call_time =
711 ((gcov_type)
712 (callee_info->time
713 + inline_edge_summary (edge)->call_stmt_time) * edge->frequency
714 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
715 /* Compute relative time benefit, i.e. how much the call becomes faster.
716 ??? perhaps computing how much the caller+calle together become faster
717 would lead to more realistic results. */
718 if (!uninlined_call_time)
719 uninlined_call_time = 1;
720 relbenefit =
721 (uninlined_call_time - time_growth) * 256 / (uninlined_call_time);
722 relbenefit = MIN (relbenefit, 512);
723 relbenefit = MAX (relbenefit, 1);
724 return relbenefit;
728 /* A cost model driving the inlining heuristics in a way so the edges with
729 smallest badness are inlined first. After each inlining is performed
730 the costs of all caller edges of nodes affected are recomputed so the
731 metrics may accurately depend on values such as number of inlinable callers
732 of the function or function body size. */
734 static int
735 edge_badness (struct cgraph_edge *edge, bool dump)
737 gcov_type badness;
738 int growth, time_growth;
739 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
740 NULL);
741 struct inline_summary *callee_info = inline_summary (callee);
743 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
744 return INT_MIN;
746 growth = estimate_edge_growth (edge);
747 time_growth = estimate_edge_time (edge);
749 if (dump)
751 fprintf (dump_file, " Badness calculation for %s -> %s\n",
752 cgraph_node_name (edge->caller),
753 cgraph_node_name (callee));
754 fprintf (dump_file, " size growth %i, time growth %i\n",
755 growth,
756 time_growth);
759 /* Always prefer inlining saving code size. */
760 if (growth <= 0)
762 badness = INT_MIN / 2 + growth;
763 if (dump)
764 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
765 growth);
768 /* When profiling is available, compute badness as:
770 relative_edge_count * relative_time_benefit
771 goodness = -------------------------------------------
772 edge_growth
773 badness = -goodness
775 The fraction is upside down, becuase on edge counts and time beneits
776 the bounds are known. Edge growth is essentially unlimited. */
778 else if (max_count)
780 int relbenefit = relative_time_benefit (callee_info, edge, time_growth);
781 badness =
782 ((int)
783 ((double) edge->count * INT_MIN / 2 / max_count / 512) *
784 relative_time_benefit (callee_info, edge, time_growth)) / growth;
786 /* Be sure that insanity of the profile won't lead to increasing counts
787 in the scalling and thus to overflow in the computation above. */
788 gcc_assert (max_count >= edge->count);
789 if (dump)
791 fprintf (dump_file,
792 " %i (relative %f): profile info. Relative count %f"
793 " * Relative benefit %f\n",
794 (int) badness, (double) badness / INT_MIN,
795 (double) edge->count / max_count,
796 relbenefit * 100 / 256.0);
800 /* When function local profile is available. Compute badness as:
803 growth_of_callee
804 badness = -------------------------------------- + growth_for-all
805 relative_time_benefit * edge_frequency
808 else if (flag_guess_branch_prob)
810 int div = edge->frequency * (1<<10) / CGRAPH_FREQ_MAX;
812 div = MAX (div, 1);
813 gcc_checking_assert (edge->frequency <= CGRAPH_FREQ_MAX);
814 div *= relative_time_benefit (callee_info, edge, time_growth);
816 /* frequency is normalized in range 1...2^10.
817 relbenefit in range 1...2^9
818 DIV should be in range 1....2^19. */
819 gcc_checking_assert (div >= 1 && div <= (1<<19));
821 /* Result must be integer in range 0...INT_MAX.
822 Set the base of fixed point calculation so we don't lose much of
823 precision for small bandesses (those are interesting) yet we don't
824 overflow for growths that are still in interesting range.
826 Fixed point arithmetic with point at 8th bit. */
827 badness = ((gcov_type)growth) * (1<<(19+8));
828 badness = (badness + div / 2) / div;
830 /* Overall growth of inlining all calls of function matters: we want to
831 inline so offline copy of function is no longer needed.
833 Additionally functions that can be fully inlined without much of
834 effort are better inline candidates than functions that can be fully
835 inlined only after noticeable overall unit growths. The latter
836 are better in a sense compressing of code size by factoring out common
837 code into separate function shared by multiple code paths.
839 We might mix the valud into the fraction by taking into account
840 relative growth of the unit, but for now just add the number
841 into resulting fraction. */
842 if (badness > INT_MAX / 2)
844 badness = INT_MAX / 2;
845 if (dump)
846 fprintf (dump_file, "Badness overflow\n");
848 if (dump)
850 fprintf (dump_file,
851 " %i: guessed profile. frequency %f,"
852 " benefit %f%%, divisor %i\n",
853 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
854 relative_time_benefit (callee_info, edge, time_growth) * 100 / 256.0, div);
857 /* When function local profile is not available or it does not give
858 useful information (ie frequency is zero), base the cost on
859 loop nest and overall size growth, so we optimize for overall number
860 of functions fully inlined in program. */
861 else
863 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
864 badness = growth * 256;
866 /* Decrease badness if call is nested. */
867 if (badness > 0)
868 badness >>= nest;
869 else
871 badness <<= nest;
873 if (dump)
874 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
875 nest);
878 /* Ensure that we did not overflow in all the fixed point math above. */
879 gcc_assert (badness >= INT_MIN);
880 gcc_assert (badness <= INT_MAX - 1);
881 /* Make recursive inlining happen always after other inlining is done. */
882 if (cgraph_edge_recursive_p (edge))
883 return badness + 1;
884 else
885 return badness;
888 /* Recompute badness of EDGE and update its key in HEAP if needed. */
889 static inline void
890 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
892 int badness = edge_badness (edge, false);
893 if (edge->aux)
895 fibnode_t n = (fibnode_t) edge->aux;
896 gcc_checking_assert (n->data == edge);
898 /* fibheap_replace_key only decrease the keys.
899 When we increase the key we do not update heap
900 and instead re-insert the element once it becomes
901 a minimum of heap. */
902 if (badness < n->key)
904 if (dump_file && (dump_flags & TDF_DETAILS))
906 fprintf (dump_file,
907 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
908 cgraph_node_name (edge->caller), edge->caller->uid,
909 cgraph_node_name (edge->callee), edge->callee->uid,
910 (int)n->key,
911 badness);
913 fibheap_replace_key (heap, n, badness);
914 gcc_checking_assert (n->key == badness);
917 else
919 if (dump_file && (dump_flags & TDF_DETAILS))
921 fprintf (dump_file,
922 " enqueuing call %s/%i -> %s/%i, badness %i\n",
923 cgraph_node_name (edge->caller), edge->caller->uid,
924 cgraph_node_name (edge->callee), edge->callee->uid,
925 badness);
927 edge->aux = fibheap_insert (heap, badness, edge);
932 /* NODE was inlined.
933 All caller edges needs to be resetted because
934 size estimates change. Similarly callees needs reset
935 because better context may be known. */
937 static void
938 reset_edge_caches (struct cgraph_node *node)
940 struct cgraph_edge *edge;
941 struct cgraph_edge *e = node->callees;
942 struct cgraph_node *where = node;
943 int i;
944 struct ipa_ref *ref;
946 if (where->global.inlined_to)
947 where = where->global.inlined_to;
949 /* WHERE body size has changed, the cached growth is invalid. */
950 reset_node_growth_cache (where);
952 for (edge = where->callers; edge; edge = edge->next_caller)
953 if (edge->inline_failed)
954 reset_edge_growth_cache (edge);
955 for (i = 0; ipa_ref_list_refering_iterate (&where->ref_list, i, ref); i++)
956 if (ref->use == IPA_REF_ALIAS)
957 reset_edge_caches (ipa_ref_refering_node (ref));
959 if (!e)
960 return;
962 while (true)
963 if (!e->inline_failed && e->callee->callees)
964 e = e->callee->callees;
965 else
967 if (e->inline_failed)
968 reset_edge_growth_cache (e);
969 if (e->next_callee)
970 e = e->next_callee;
971 else
975 if (e->caller == node)
976 return;
977 e = e->caller->callers;
979 while (!e->next_callee);
980 e = e->next_callee;
985 /* Recompute HEAP nodes for each of caller of NODE.
986 UPDATED_NODES track nodes we already visited, to avoid redundant work.
987 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
988 it is inlinable. Otherwise check all edges. */
990 static void
991 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
992 bitmap updated_nodes,
993 struct cgraph_edge *check_inlinablity_for)
995 struct cgraph_edge *edge;
996 int i;
997 struct ipa_ref *ref;
999 if ((!node->alias && !inline_summary (node)->inlinable)
1000 || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
1001 || node->global.inlined_to)
1002 return;
1003 if (!bitmap_set_bit (updated_nodes, node->uid))
1004 return;
1006 for (i = 0; ipa_ref_list_refering_iterate (&node->ref_list, i, ref); i++)
1007 if (ref->use == IPA_REF_ALIAS)
1009 struct cgraph_node *alias = ipa_ref_refering_node (ref);
1010 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1013 for (edge = node->callers; edge; edge = edge->next_caller)
1014 if (edge->inline_failed)
1016 if (!check_inlinablity_for
1017 || check_inlinablity_for == edge)
1019 if (can_inline_edge_p (edge, false)
1020 && want_inline_small_function_p (edge, false))
1021 update_edge_key (heap, edge);
1022 else if (edge->aux)
1024 report_inline_failed_reason (edge);
1025 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1026 edge->aux = NULL;
1029 else if (edge->aux)
1030 update_edge_key (heap, edge);
1034 /* Recompute HEAP nodes for each uninlined call in NODE.
1035 This is used when we know that edge badnesses are going only to increase
1036 (we introduced new call site) and thus all we need is to insert newly
1037 created edges into heap. */
1039 static void
1040 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1041 bitmap updated_nodes)
1043 struct cgraph_edge *e = node->callees;
1045 if (!e)
1046 return;
1047 while (true)
1048 if (!e->inline_failed && e->callee->callees)
1049 e = e->callee->callees;
1050 else
1052 enum availability avail;
1053 struct cgraph_node *callee;
1054 /* We do not reset callee growth cache here. Since we added a new call,
1055 growth chould have just increased and consequentely badness metric
1056 don't need updating. */
1057 if (e->inline_failed
1058 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1059 && inline_summary (callee)->inlinable
1060 && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE
1061 && !bitmap_bit_p (updated_nodes, callee->uid))
1063 if (can_inline_edge_p (e, false)
1064 && want_inline_small_function_p (e, false))
1065 update_edge_key (heap, e);
1066 else if (e->aux)
1068 report_inline_failed_reason (e);
1069 fibheap_delete_node (heap, (fibnode_t) e->aux);
1070 e->aux = NULL;
1073 if (e->next_callee)
1074 e = e->next_callee;
1075 else
1079 if (e->caller == node)
1080 return;
1081 e = e->caller->callers;
1083 while (!e->next_callee);
1084 e = e->next_callee;
1089 /* Recompute heap nodes for each of caller edges of each of callees.
1090 Walk recursively into all inline clones. */
1092 static void
1093 update_all_callee_keys (fibheap_t heap, struct cgraph_node *node,
1094 bitmap updated_nodes)
1096 struct cgraph_edge *e = node->callees;
1097 if (!e)
1098 return;
1099 while (true)
1100 if (!e->inline_failed && e->callee->callees)
1101 e = e->callee->callees;
1102 else
1104 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
1105 NULL);
1107 /* We inlined and thus callees might have different number of calls.
1108 Reset their caches */
1109 reset_node_growth_cache (callee);
1110 if (e->inline_failed)
1111 update_caller_keys (heap, callee, updated_nodes, e);
1112 if (e->next_callee)
1113 e = e->next_callee;
1114 else
1118 if (e->caller == node)
1119 return;
1120 e = e->caller->callers;
1122 while (!e->next_callee);
1123 e = e->next_callee;
1128 /* Enqueue all recursive calls from NODE into priority queue depending on
1129 how likely we want to recursively inline the call. */
1131 static void
1132 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1133 fibheap_t heap)
1135 struct cgraph_edge *e;
1136 enum availability avail;
1138 for (e = where->callees; e; e = e->next_callee)
1139 if (e->callee == node
1140 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1141 && avail > AVAIL_OVERWRITABLE))
1143 /* When profile feedback is available, prioritize by expected number
1144 of calls. */
1145 fibheap_insert (heap,
1146 !max_count ? -e->frequency
1147 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1150 for (e = where->callees; e; e = e->next_callee)
1151 if (!e->inline_failed)
1152 lookup_recursive_calls (node, e->callee, heap);
1155 /* Decide on recursive inlining: in the case function has recursive calls,
1156 inline until body size reaches given argument. If any new indirect edges
1157 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1158 is NULL. */
1160 static bool
1161 recursive_inlining (struct cgraph_edge *edge,
1162 VEC (cgraph_edge_p, heap) **new_edges)
1164 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1165 fibheap_t heap;
1166 struct cgraph_node *node;
1167 struct cgraph_edge *e;
1168 struct cgraph_node *master_clone = NULL, *next;
1169 int depth = 0;
1170 int n = 0;
1172 node = edge->caller;
1173 if (node->global.inlined_to)
1174 node = node->global.inlined_to;
1176 if (DECL_DECLARED_INLINE_P (node->decl))
1177 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1179 /* Make sure that function is small enough to be considered for inlining. */
1180 if (estimate_size_after_inlining (node, edge) >= limit)
1181 return false;
1182 heap = fibheap_new ();
1183 lookup_recursive_calls (node, node, heap);
1184 if (fibheap_empty (heap))
1186 fibheap_delete (heap);
1187 return false;
1190 if (dump_file)
1191 fprintf (dump_file,
1192 " Performing recursive inlining on %s\n",
1193 cgraph_node_name (node));
1195 /* Do the inlining and update list of recursive call during process. */
1196 while (!fibheap_empty (heap))
1198 struct cgraph_edge *curr
1199 = (struct cgraph_edge *) fibheap_extract_min (heap);
1200 struct cgraph_node *cnode;
1202 if (estimate_size_after_inlining (node, curr) > limit)
1203 break;
1205 if (!can_inline_edge_p (curr, true))
1206 continue;
1208 depth = 1;
1209 for (cnode = curr->caller;
1210 cnode->global.inlined_to; cnode = cnode->callers->caller)
1211 if (node->decl
1212 == cgraph_function_or_thunk_node (curr->callee, NULL)->decl)
1213 depth++;
1215 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1216 continue;
1218 if (dump_file)
1220 fprintf (dump_file,
1221 " Inlining call of depth %i", depth);
1222 if (node->count)
1224 fprintf (dump_file, " called approx. %.2f times per call",
1225 (double)curr->count / node->count);
1227 fprintf (dump_file, "\n");
1229 if (!master_clone)
1231 /* We need original clone to copy around. */
1232 master_clone = cgraph_clone_node (node, node->decl,
1233 node->count, CGRAPH_FREQ_BASE,
1234 false, NULL, true);
1235 for (e = master_clone->callees; e; e = e->next_callee)
1236 if (!e->inline_failed)
1237 clone_inlined_nodes (e, true, false, NULL);
1240 cgraph_redirect_edge_callee (curr, master_clone);
1241 inline_call (curr, false, new_edges, &overall_size);
1242 lookup_recursive_calls (node, curr->callee, heap);
1243 n++;
1246 if (!fibheap_empty (heap) && dump_file)
1247 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1248 fibheap_delete (heap);
1250 if (!master_clone)
1251 return false;
1253 if (dump_file)
1254 fprintf (dump_file,
1255 "\n Inlined %i times, "
1256 "body grown from size %i to %i, time %i to %i\n", n,
1257 inline_summary (master_clone)->size, inline_summary (node)->size,
1258 inline_summary (master_clone)->time, inline_summary (node)->time);
1260 /* Remove master clone we used for inlining. We rely that clones inlined
1261 into master clone gets queued just before master clone so we don't
1262 need recursion. */
1263 for (node = cgraph_nodes; node != master_clone;
1264 node = next)
1266 next = node->next;
1267 if (node->global.inlined_to == master_clone)
1268 cgraph_remove_node (node);
1270 cgraph_remove_node (master_clone);
1271 return true;
1275 /* Given whole compilation unit estimate of INSNS, compute how large we can
1276 allow the unit to grow. */
1278 static int
1279 compute_max_insns (int insns)
1281 int max_insns = insns;
1282 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1283 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1285 return ((HOST_WIDEST_INT) max_insns
1286 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1290 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1292 static void
1293 add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges)
1295 while (VEC_length (cgraph_edge_p, new_edges) > 0)
1297 struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges);
1299 gcc_assert (!edge->aux);
1300 if (edge->inline_failed
1301 && can_inline_edge_p (edge, true)
1302 && want_inline_small_function_p (edge, true))
1303 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1308 /* We use greedy algorithm for inlining of small functions:
1309 All inline candidates are put into prioritized heap ordered in
1310 increasing badness.
1312 The inlining of small functions is bounded by unit growth parameters. */
1314 static void
1315 inline_small_functions (void)
1317 struct cgraph_node *node;
1318 struct cgraph_edge *edge;
1319 fibheap_t heap = fibheap_new ();
1320 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1321 int min_size, max_size;
1322 VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL;
1323 int initial_size = 0;
1325 if (flag_indirect_inlining)
1326 new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8);
1328 if (dump_file)
1329 fprintf (dump_file,
1330 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1331 initial_size);
1333 /* Compute overall unit size and other global parameters used by badness
1334 metrics. */
1336 max_count = 0;
1337 initialize_growth_caches ();
1339 FOR_EACH_DEFINED_FUNCTION (node)
1340 if (!node->global.inlined_to)
1342 if (cgraph_function_with_gimple_body_p (node)
1343 || node->thunk.thunk_p)
1345 struct inline_summary *info = inline_summary (node);
1347 if (!DECL_EXTERNAL (node->decl))
1348 initial_size += info->size;
1351 for (edge = node->callers; edge; edge = edge->next_caller)
1352 if (max_count < edge->count)
1353 max_count = edge->count;
1356 overall_size = initial_size;
1357 max_size = compute_max_insns (overall_size);
1358 min_size = overall_size;
1360 /* Populate the heeap with all edges we might inline. */
1362 FOR_EACH_DEFINED_FUNCTION (node)
1363 if (!node->global.inlined_to)
1365 if (dump_file)
1366 fprintf (dump_file, "Enqueueing calls of %s/%i.\n",
1367 cgraph_node_name (node), node->uid);
1369 for (edge = node->callers; edge; edge = edge->next_caller)
1370 if (edge->inline_failed
1371 && can_inline_edge_p (edge, true)
1372 && want_inline_small_function_p (edge, true)
1373 && edge->inline_failed)
1375 gcc_assert (!edge->aux);
1376 update_edge_key (heap, edge);
1380 gcc_assert (in_lto_p
1381 || !max_count
1382 || (profile_info && flag_branch_probabilities));
1384 while (!fibheap_empty (heap))
1386 int old_size = overall_size;
1387 struct cgraph_node *where, *callee;
1388 int badness = fibheap_min_key (heap);
1389 int current_badness;
1390 int cached_badness;
1391 int growth;
1393 edge = (struct cgraph_edge *) fibheap_extract_min (heap);
1394 gcc_assert (edge->aux);
1395 edge->aux = NULL;
1396 if (!edge->inline_failed)
1397 continue;
1399 /* Be sure that caches are maintained consistent.
1400 We can not make this ENABLE_CHECKING only because it cause differnt
1401 updates of the fibheap queue. */
1402 cached_badness = edge_badness (edge, false);
1403 reset_edge_growth_cache (edge);
1404 reset_node_growth_cache (edge->callee);
1406 /* When updating the edge costs, we only decrease badness in the keys.
1407 Increases of badness are handled lazilly; when we see key with out
1408 of date value on it, we re-insert it now. */
1409 current_badness = edge_badness (edge, false);
1410 gcc_assert (cached_badness == current_badness);
1411 gcc_assert (current_badness >= badness);
1412 if (current_badness != badness)
1414 edge->aux = fibheap_insert (heap, current_badness, edge);
1415 continue;
1418 if (!can_inline_edge_p (edge, true))
1419 continue;
1421 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1422 growth = estimate_edge_growth (edge);
1423 if (dump_file)
1425 fprintf (dump_file,
1426 "\nConsidering %s with %i size\n",
1427 cgraph_node_name (callee),
1428 inline_summary (callee)->size);
1429 fprintf (dump_file,
1430 " to be inlined into %s in %s:%i\n"
1431 " Estimated growth after inlined into all is %+i insns.\n"
1432 " Estimated badness is %i, frequency %.2f.\n",
1433 cgraph_node_name (edge->caller),
1434 flag_wpa ? "unknown"
1435 : gimple_filename ((const_gimple) edge->call_stmt),
1436 flag_wpa ? -1
1437 : gimple_lineno ((const_gimple) edge->call_stmt),
1438 estimate_growth (callee),
1439 badness,
1440 edge->frequency / (double)CGRAPH_FREQ_BASE);
1441 if (edge->count)
1442 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1443 edge->count);
1444 if (dump_flags & TDF_DETAILS)
1445 edge_badness (edge, true);
1448 if (overall_size + growth > max_size
1449 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1451 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1452 report_inline_failed_reason (edge);
1453 continue;
1456 if (!want_inline_small_function_p (edge, true))
1457 continue;
1459 /* Heuristics for inlining small functions works poorly for
1460 recursive calls where we do efect similar to loop unrolling.
1461 When inliing such edge seems profitable, leave decision on
1462 specific inliner. */
1463 if (cgraph_edge_recursive_p (edge))
1465 where = edge->caller;
1466 if (where->global.inlined_to)
1467 where = where->global.inlined_to;
1468 if (!recursive_inlining (edge,
1469 flag_indirect_inlining
1470 ? &new_indirect_edges : NULL))
1472 edge->inline_failed = CIF_RECURSIVE_INLINING;
1473 continue;
1475 reset_edge_caches (where);
1476 /* Recursive inliner inlines all recursive calls of the function
1477 at once. Consequently we need to update all callee keys. */
1478 if (flag_indirect_inlining)
1479 add_new_edges_to_heap (heap, new_indirect_edges);
1480 update_all_callee_keys (heap, where, updated_nodes);
1482 else
1484 struct cgraph_node *outer_node = NULL;
1485 int depth = 0;
1487 /* Consider the case where self recursive function A is inlined into B.
1488 This is desired optimization in some cases, since it leads to effect
1489 similar of loop peeling and we might completely optimize out the
1490 recursive call. However we must be extra selective. */
1492 where = edge->caller;
1493 while (where->global.inlined_to)
1495 if (where->decl == callee->decl)
1496 outer_node = where, depth++;
1497 where = where->callers->caller;
1499 if (outer_node
1500 && !want_inline_self_recursive_call_p (edge, outer_node,
1501 true, depth))
1503 edge->inline_failed
1504 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
1505 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1506 continue;
1508 else if (depth && dump_file)
1509 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1511 gcc_checking_assert (!callee->global.inlined_to);
1512 inline_call (edge, true, &new_indirect_edges, &overall_size);
1513 if (flag_indirect_inlining)
1514 add_new_edges_to_heap (heap, new_indirect_edges);
1516 reset_edge_caches (edge->callee);
1517 reset_node_growth_cache (callee);
1519 /* We inlined last offline copy to the body. This might lead
1520 to callees of function having fewer call sites and thus they
1521 may need updating.
1523 FIXME: the callee size could also shrink because more information
1524 is propagated from caller. We don't track when this happen and
1525 thus we need to recompute everything all the time. Once this is
1526 solved, "|| 1" should go away. */
1527 if (callee->global.inlined_to || 1)
1528 update_all_callee_keys (heap, callee, updated_nodes);
1529 else
1530 update_callee_keys (heap, edge->callee, updated_nodes);
1532 where = edge->caller;
1533 if (where->global.inlined_to)
1534 where = where->global.inlined_to;
1536 /* Our profitability metric can depend on local properties
1537 such as number of inlinable calls and size of the function body.
1538 After inlining these properties might change for the function we
1539 inlined into (since it's body size changed) and for the functions
1540 called by function we inlined (since number of it inlinable callers
1541 might change). */
1542 update_caller_keys (heap, where, updated_nodes, NULL);
1544 /* We removed one call of the function we just inlined. If offline
1545 copy is still needed, be sure to update the keys. */
1546 if (callee != where && !callee->global.inlined_to)
1547 update_caller_keys (heap, callee, updated_nodes, NULL);
1548 bitmap_clear (updated_nodes);
1550 if (dump_file)
1552 fprintf (dump_file,
1553 " Inlined into %s which now has time %i and size %i,"
1554 "net change of %+i.\n",
1555 cgraph_node_name (edge->caller),
1556 inline_summary (edge->caller)->time,
1557 inline_summary (edge->caller)->size,
1558 overall_size - old_size);
1560 if (min_size > overall_size)
1562 min_size = overall_size;
1563 max_size = compute_max_insns (min_size);
1565 if (dump_file)
1566 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1570 free_growth_caches ();
1571 if (new_indirect_edges)
1572 VEC_free (cgraph_edge_p, heap, new_indirect_edges);
1573 fibheap_delete (heap);
1574 if (dump_file)
1575 fprintf (dump_file,
1576 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1577 initial_size, overall_size,
1578 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1579 BITMAP_FREE (updated_nodes);
1582 /* Flatten NODE. Performed both during early inlining and
1583 at IPA inlining time. */
1585 static void
1586 flatten_function (struct cgraph_node *node, bool early)
1588 struct cgraph_edge *e;
1590 /* We shouldn't be called recursively when we are being processed. */
1591 gcc_assert (node->aux == NULL);
1593 node->aux = (void *) node;
1595 for (e = node->callees; e; e = e->next_callee)
1597 struct cgraph_node *orig_callee;
1598 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1600 /* We've hit cycle? It is time to give up. */
1601 if (callee->aux)
1603 if (dump_file)
1604 fprintf (dump_file,
1605 "Not inlining %s into %s to avoid cycle.\n",
1606 cgraph_node_name (callee),
1607 cgraph_node_name (e->caller));
1608 e->inline_failed = CIF_RECURSIVE_INLINING;
1609 continue;
1612 /* When the edge is already inlined, we just need to recurse into
1613 it in order to fully flatten the leaves. */
1614 if (!e->inline_failed)
1616 flatten_function (callee, early);
1617 continue;
1620 /* Flatten attribute needs to be processed during late inlining. For
1621 extra code quality we however do flattening during early optimization,
1622 too. */
1623 if (!early
1624 ? !can_inline_edge_p (e, true)
1625 : !can_early_inline_edge_p (e))
1626 continue;
1628 if (cgraph_edge_recursive_p (e))
1630 if (dump_file)
1631 fprintf (dump_file, "Not inlining: recursive call.\n");
1632 continue;
1635 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
1636 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
1638 if (dump_file)
1639 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1640 continue;
1643 /* Inline the edge and flatten the inline clone. Avoid
1644 recursing through the original node if the node was cloned. */
1645 if (dump_file)
1646 fprintf (dump_file, " Inlining %s into %s.\n",
1647 cgraph_node_name (callee),
1648 cgraph_node_name (e->caller));
1649 orig_callee = callee;
1650 inline_call (e, true, NULL, NULL);
1651 if (e->callee != orig_callee)
1652 orig_callee->aux = (void *) node;
1653 flatten_function (e->callee, early);
1654 if (e->callee != orig_callee)
1655 orig_callee->aux = NULL;
1658 node->aux = NULL;
1661 /* Decide on the inlining. We do so in the topological order to avoid
1662 expenses on updating data structures. */
1664 static unsigned int
1665 ipa_inline (void)
1667 struct cgraph_node *node;
1668 int nnodes;
1669 struct cgraph_node **order =
1670 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1671 int i;
1673 if (in_lto_p && optimize)
1674 ipa_update_after_lto_read ();
1676 if (dump_file)
1677 dump_inline_summaries (dump_file);
1679 nnodes = ipa_reverse_postorder (order);
1681 for (node = cgraph_nodes; node; node = node->next)
1682 node->aux = 0;
1684 if (dump_file)
1685 fprintf (dump_file, "\nFlattening functions:\n");
1687 /* In the first pass handle functions to be flattened. Do this with
1688 a priority so none of our later choices will make this impossible. */
1689 for (i = nnodes - 1; i >= 0; i--)
1691 node = order[i];
1693 /* Handle nodes to be flattened.
1694 Ideally when processing callees we stop inlining at the
1695 entry of cycles, possibly cloning that entry point and
1696 try to flatten itself turning it into a self-recursive
1697 function. */
1698 if (lookup_attribute ("flatten",
1699 DECL_ATTRIBUTES (node->decl)) != NULL)
1701 if (dump_file)
1702 fprintf (dump_file,
1703 "Flattening %s\n", cgraph_node_name (node));
1704 flatten_function (node, false);
1708 inline_small_functions ();
1709 cgraph_remove_unreachable_nodes (true, dump_file);
1710 free (order);
1712 /* We already perform some inlining of functions called once during
1713 inlining small functions above. After unreachable nodes are removed,
1714 we still might do a quick check that nothing new is found. */
1715 if (flag_inline_functions_called_once)
1717 int cold;
1718 if (dump_file)
1719 fprintf (dump_file, "\nDeciding on functions called once:\n");
1721 /* Inlining one function called once has good chance of preventing
1722 inlining other function into the same callee. Ideally we should
1723 work in priority order, but probably inlining hot functions first
1724 is good cut without the extra pain of maintaining the queue.
1726 ??? this is not really fitting the bill perfectly: inlining function
1727 into callee often leads to better optimization of callee due to
1728 increased context for optimization.
1729 For example if main() function calls a function that outputs help
1730 and then function that does the main optmization, we should inline
1731 the second with priority even if both calls are cold by themselves.
1733 We probably want to implement new predicate replacing our use of
1734 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1735 to be hot. */
1736 for (cold = 0; cold <= 1; cold ++)
1738 for (node = cgraph_nodes; node; node = node->next)
1740 if (want_inline_function_called_once_p (node)
1741 && (cold
1742 || cgraph_maybe_hot_edge_p (node->callers)))
1744 struct cgraph_node *caller = node->callers->caller;
1746 if (dump_file)
1748 fprintf (dump_file,
1749 "\nInlining %s size %i.\n",
1750 cgraph_node_name (node), inline_summary (node)->size);
1751 fprintf (dump_file,
1752 " Called once from %s %i insns.\n",
1753 cgraph_node_name (node->callers->caller),
1754 inline_summary (node->callers->caller)->size);
1757 inline_call (node->callers, true, NULL, NULL);
1758 if (dump_file)
1759 fprintf (dump_file,
1760 " Inlined into %s which now has %i size\n",
1761 cgraph_node_name (caller),
1762 inline_summary (caller)->size);
1768 /* Free ipa-prop structures if they are no longer needed. */
1769 if (optimize)
1770 ipa_free_all_structures_after_iinln ();
1772 if (dump_file)
1773 fprintf (dump_file,
1774 "\nInlined %i calls, eliminated %i functions\n\n",
1775 ncalls_inlined, nfunctions_inlined);
1777 if (dump_file)
1778 dump_inline_summaries (dump_file);
1779 /* In WPA we use inline summaries for partitioning process. */
1780 if (!flag_wpa)
1781 inline_free_summary ();
1782 return 0;
1785 /* Inline always-inline function calls in NODE. */
1787 static bool
1788 inline_always_inline_functions (struct cgraph_node *node)
1790 struct cgraph_edge *e;
1791 bool inlined = false;
1793 for (e = node->callees; e; e = e->next_callee)
1795 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1796 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1797 continue;
1799 if (cgraph_edge_recursive_p (e))
1801 if (dump_file)
1802 fprintf (dump_file, " Not inlining recursive call to %s.\n",
1803 cgraph_node_name (e->callee));
1804 e->inline_failed = CIF_RECURSIVE_INLINING;
1805 continue;
1808 if (!can_early_inline_edge_p (e))
1809 continue;
1811 if (dump_file)
1812 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
1813 cgraph_node_name (e->callee),
1814 cgraph_node_name (e->caller));
1815 inline_call (e, true, NULL, NULL);
1816 inlined = true;
1819 return inlined;
1822 /* Decide on the inlining. We do so in the topological order to avoid
1823 expenses on updating data structures. */
1825 static bool
1826 early_inline_small_functions (struct cgraph_node *node)
1828 struct cgraph_edge *e;
1829 bool inlined = false;
1831 for (e = node->callees; e; e = e->next_callee)
1833 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1834 if (!inline_summary (callee)->inlinable
1835 || !e->inline_failed)
1836 continue;
1838 /* Do not consider functions not declared inline. */
1839 if (!DECL_DECLARED_INLINE_P (callee->decl)
1840 && !flag_inline_small_functions
1841 && !flag_inline_functions)
1842 continue;
1844 if (dump_file)
1845 fprintf (dump_file, "Considering inline candidate %s.\n",
1846 cgraph_node_name (callee));
1848 if (!can_early_inline_edge_p (e))
1849 continue;
1851 if (cgraph_edge_recursive_p (e))
1853 if (dump_file)
1854 fprintf (dump_file, " Not inlining: recursive call.\n");
1855 continue;
1858 if (!want_early_inline_function_p (e))
1859 continue;
1861 if (dump_file)
1862 fprintf (dump_file, " Inlining %s into %s.\n",
1863 cgraph_node_name (callee),
1864 cgraph_node_name (e->caller));
1865 inline_call (e, true, NULL, NULL);
1866 inlined = true;
1869 return inlined;
1872 /* Do inlining of small functions. Doing so early helps profiling and other
1873 passes to be somewhat more effective and avoids some code duplication in
1874 later real inlining pass for testcases with very many function calls. */
1875 static unsigned int
1876 early_inliner (void)
1878 struct cgraph_node *node = cgraph_get_node (current_function_decl);
1879 struct cgraph_edge *edge;
1880 unsigned int todo = 0;
1881 int iterations = 0;
1882 bool inlined = false;
1884 if (seen_error ())
1885 return 0;
1887 /* Do nothing if datastructures for ipa-inliner are already computed. This
1888 happens when some pass decides to construct new function and
1889 cgraph_add_new_function calls lowering passes and early optimization on
1890 it. This may confuse ourself when early inliner decide to inline call to
1891 function clone, because function clones don't have parameter list in
1892 ipa-prop matching their signature. */
1893 if (ipa_node_params_vector)
1894 return 0;
1896 #ifdef ENABLE_CHECKING
1897 verify_cgraph_node (node);
1898 #endif
1900 /* Even when not optimizing or not inlining inline always-inline
1901 functions. */
1902 inlined = inline_always_inline_functions (node);
1904 if (!optimize
1905 || flag_no_inline
1906 || !flag_early_inlining
1907 /* Never inline regular functions into always-inline functions
1908 during incremental inlining. This sucks as functions calling
1909 always inline functions will get less optimized, but at the
1910 same time inlining of functions calling always inline
1911 function into an always inline function might introduce
1912 cycles of edges to be always inlined in the callgraph.
1914 We might want to be smarter and just avoid this type of inlining. */
1915 || DECL_DISREGARD_INLINE_LIMITS (node->decl))
1917 else if (lookup_attribute ("flatten",
1918 DECL_ATTRIBUTES (node->decl)) != NULL)
1920 /* When the function is marked to be flattened, recursively inline
1921 all calls in it. */
1922 if (dump_file)
1923 fprintf (dump_file,
1924 "Flattening %s\n", cgraph_node_name (node));
1925 flatten_function (node, true);
1926 inlined = true;
1928 else
1930 /* We iterate incremental inlining to get trivial cases of indirect
1931 inlining. */
1932 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
1933 && early_inline_small_functions (node))
1935 timevar_push (TV_INTEGRATION);
1936 todo |= optimize_inline_calls (current_function_decl);
1938 /* Technically we ought to recompute inline parameters so the new
1939 iteration of early inliner works as expected. We however have
1940 values approximately right and thus we only need to update edge
1941 info that might be cleared out for newly discovered edges. */
1942 for (edge = node->callees; edge; edge = edge->next_callee)
1944 struct inline_edge_summary *es = inline_edge_summary (edge);
1945 es->call_stmt_size
1946 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
1947 es->call_stmt_time
1948 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
1949 if (edge->callee->decl
1950 && !gimple_check_call_matching_types (edge->call_stmt,
1951 edge->callee->decl))
1952 edge->call_stmt_cannot_inline_p = true;
1954 timevar_pop (TV_INTEGRATION);
1955 iterations++;
1956 inlined = false;
1958 if (dump_file)
1959 fprintf (dump_file, "Iterations: %i\n", iterations);
1962 if (inlined)
1964 timevar_push (TV_INTEGRATION);
1965 todo |= optimize_inline_calls (current_function_decl);
1966 timevar_pop (TV_INTEGRATION);
1969 cfun->always_inline_functions_inlined = true;
1971 return todo;
1974 struct gimple_opt_pass pass_early_inline =
1977 GIMPLE_PASS,
1978 "einline", /* name */
1979 NULL, /* gate */
1980 early_inliner, /* execute */
1981 NULL, /* sub */
1982 NULL, /* next */
1983 0, /* static_pass_number */
1984 TV_INLINE_HEURISTICS, /* tv_id */
1985 PROP_ssa, /* properties_required */
1986 0, /* properties_provided */
1987 0, /* properties_destroyed */
1988 0, /* todo_flags_start */
1989 0 /* todo_flags_finish */
1994 /* When to run IPA inlining. Inlining of always-inline functions
1995 happens during early inlining.
1997 Enable inlining unconditoinally at -flto. We need size estimates to
1998 drive partitioning. */
2000 static bool
2001 gate_ipa_inline (void)
2003 return optimize || flag_lto || flag_wpa;
2006 struct ipa_opt_pass_d pass_ipa_inline =
2009 IPA_PASS,
2010 "inline", /* name */
2011 gate_ipa_inline, /* gate */
2012 ipa_inline, /* execute */
2013 NULL, /* sub */
2014 NULL, /* next */
2015 0, /* static_pass_number */
2016 TV_INLINE_HEURISTICS, /* tv_id */
2017 0, /* properties_required */
2018 0, /* properties_provided */
2019 0, /* properties_destroyed */
2020 TODO_remove_functions, /* todo_flags_finish */
2021 TODO_dump_cgraph
2022 | TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
2024 inline_generate_summary, /* generate_summary */
2025 inline_write_summary, /* write_summary */
2026 inline_read_summary, /* read_summary */
2027 NULL, /* write_optimization_summary */
2028 NULL, /* read_optimization_summary */
2029 NULL, /* stmt_fixup */
2030 0, /* TODOs */
2031 inline_transform, /* function_transform */
2032 NULL, /* variable_transform */