* ggc-page.c (struct page_entry): Remove save_num_free_objects.
[official-gcc.git] / gcc / local-alloc.c
blob6b0732695d7903cfc97517f35f692e02644ea2a5
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "basic-block.h"
68 #include "regs.h"
69 #include "function.h"
70 #include "hard-reg-set.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
77 /* Next quantity number available for allocation. */
79 static int next_qty;
81 /* In all the following vectors indexed by quantity number. */
83 /* Element Q is the hard reg number chosen for quantity Q,
84 or -1 if none was found. */
86 static short *qty_phys_reg;
88 /* We maintain two hard register sets that indicate suggested hard registers
89 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
90 that are tied to the quantity by a simple copy. The second contains all
91 hard registers that are tied to the quantity via an arithmetic operation.
93 The former register set is given priority for allocation. This tends to
94 eliminate copy insns. */
96 /* Element Q is a set of hard registers that are suggested for quantity Q by
97 copy insns. */
99 static HARD_REG_SET *qty_phys_copy_sugg;
101 /* Element Q is a set of hard registers that are suggested for quantity Q by
102 arithmetic insns. */
104 static HARD_REG_SET *qty_phys_sugg;
106 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
108 static short *qty_phys_num_copy_sugg;
110 /* Element Q is the number of suggested registers in qty_phys_sugg. */
112 static short *qty_phys_num_sugg;
114 /* Element Q is the number of refs to quantity Q. */
116 static int *qty_n_refs;
118 /* Element Q is a reg class contained in (smaller than) the
119 preferred classes of all the pseudo regs that are tied in quantity Q.
120 This is the preferred class for allocating that quantity. */
122 static enum reg_class *qty_min_class;
124 /* Insn number (counting from head of basic block)
125 where quantity Q was born. -1 if birth has not been recorded. */
127 static int *qty_birth;
129 /* Insn number (counting from head of basic block)
130 where quantity Q died. Due to the way tying is done,
131 and the fact that we consider in this pass only regs that die but once,
132 a quantity can die only once. Each quantity's life span
133 is a set of consecutive insns. -1 if death has not been recorded. */
135 static int *qty_death;
137 /* Number of words needed to hold the data in quantity Q.
138 This depends on its machine mode. It is used for these purposes:
139 1. It is used in computing the relative importances of qtys,
140 which determines the order in which we look for regs for them.
141 2. It is used in rules that prevent tying several registers of
142 different sizes in a way that is geometrically impossible
143 (see combine_regs). */
145 static int *qty_size;
147 /* This holds the mode of the registers that are tied to qty Q,
148 or VOIDmode if registers with differing modes are tied together. */
150 static enum machine_mode *qty_mode;
152 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
154 static int *qty_n_calls_crossed;
156 /* Register class within which we allocate qty Q if we can't get
157 its preferred class. */
159 static enum reg_class *qty_alternate_class;
161 /* Element Q is nonzero if this quantity has been used in a SUBREG
162 that changes its size. */
164 static char *qty_changes_size;
166 /* Element Q is the register number of one pseudo register whose
167 reg_qty value is Q. This register should be the head of the chain
168 maintained in reg_next_in_qty. */
170 static int *qty_first_reg;
172 /* If (REG N) has been assigned a quantity number, is a register number
173 of another register assigned the same quantity number, or -1 for the
174 end of the chain. qty_first_reg point to the head of this chain. */
176 static int *reg_next_in_qty;
178 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
179 if it is >= 0,
180 of -1 if this register cannot be allocated by local-alloc,
181 or -2 if not known yet.
183 Note that if we see a use or death of pseudo register N with
184 reg_qty[N] == -2, register N must be local to the current block. If
185 it were used in more than one block, we would have reg_qty[N] == -1.
186 This relies on the fact that if reg_basic_block[N] is >= 0, register N
187 will not appear in any other block. We save a considerable number of
188 tests by exploiting this.
190 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
191 be referenced. */
193 static int *reg_qty;
195 /* The offset (in words) of register N within its quantity.
196 This can be nonzero if register N is SImode, and has been tied
197 to a subreg of a DImode register. */
199 static char *reg_offset;
201 /* Vector of substitutions of register numbers,
202 used to map pseudo regs into hardware regs.
203 This is set up as a result of register allocation.
204 Element N is the hard reg assigned to pseudo reg N,
205 or is -1 if no hard reg was assigned.
206 If N is a hard reg number, element N is N. */
208 short *reg_renumber;
210 /* Set of hard registers live at the current point in the scan
211 of the instructions in a basic block. */
213 static HARD_REG_SET regs_live;
215 /* Each set of hard registers indicates registers live at a particular
216 point in the basic block. For N even, regs_live_at[N] says which
217 hard registers are needed *after* insn N/2 (i.e., they may not
218 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
220 If an object is to conflict with the inputs of insn J but not the
221 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
222 if it is to conflict with the outputs of insn J but not the inputs of
223 insn J + 1, it is said to die at index J*2 + 1. */
225 static HARD_REG_SET *regs_live_at;
227 /* Communicate local vars `insn_number' and `insn'
228 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
229 static int this_insn_number;
230 static rtx this_insn;
232 /* Used to communicate changes made by update_equiv_regs to
233 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
234 found or created, so that we can keep track of what memory accesses might
235 be created later, e.g. by reload. */
237 static rtx *reg_equiv_replacement;
239 /* Used for communication between update_equiv_regs and no_equiv. */
240 static rtx *reg_equiv_init_insns;
242 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
243 static int recorded_label_ref;
245 static void alloc_qty PROTO((int, enum machine_mode, int, int));
246 static void validate_equiv_mem_from_store PROTO((rtx, rtx, void *));
247 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
248 static int contains_replace_regs PROTO((rtx, char *));
249 static int memref_referenced_p PROTO((rtx, rtx));
250 static int memref_used_between_p PROTO((rtx, rtx, rtx));
251 static void update_equiv_regs PROTO((void));
252 static void no_equiv PROTO((rtx, rtx, void *));
253 static void block_alloc PROTO((int));
254 static int qty_sugg_compare PROTO((int, int));
255 static int qty_sugg_compare_1 PROTO((const PTR, const PTR));
256 static int qty_compare PROTO((int, int));
257 static int qty_compare_1 PROTO((const PTR, const PTR));
258 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
259 static int reg_meets_class_p PROTO((int, enum reg_class));
260 static void update_qty_class PROTO((int, int));
261 static void reg_is_set PROTO((rtx, rtx, void *));
262 static void reg_is_born PROTO((rtx, int));
263 static void wipe_dead_reg PROTO((rtx, int));
264 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
265 int, int, int, int, int));
266 static void mark_life PROTO((int, enum machine_mode, int));
267 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
268 static int no_conflict_p PROTO((rtx, rtx, rtx));
269 static int requires_inout PROTO((const char *));
271 /* Allocate a new quantity (new within current basic block)
272 for register number REGNO which is born at index BIRTH
273 within the block. MODE and SIZE are info on reg REGNO. */
275 static void
276 alloc_qty (regno, mode, size, birth)
277 int regno;
278 enum machine_mode mode;
279 int size, birth;
281 register int qty = next_qty++;
283 reg_qty[regno] = qty;
284 reg_offset[regno] = 0;
285 reg_next_in_qty[regno] = -1;
287 qty_first_reg[qty] = regno;
288 qty_size[qty] = size;
289 qty_mode[qty] = mode;
290 qty_birth[qty] = birth;
291 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
292 qty_min_class[qty] = reg_preferred_class (regno);
293 qty_alternate_class[qty] = reg_alternate_class (regno);
294 qty_n_refs[qty] = REG_N_REFS (regno);
295 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
298 /* Main entry point of this file. */
301 local_alloc ()
303 register int b, i;
304 int max_qty;
306 /* We need to keep track of whether or not we recorded a LABEL_REF so
307 that we know if the jump optimizer needs to be rerun. */
308 recorded_label_ref = 0;
310 /* Leaf functions and non-leaf functions have different needs.
311 If defined, let the machine say what kind of ordering we
312 should use. */
313 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
314 ORDER_REGS_FOR_LOCAL_ALLOC;
315 #endif
317 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
318 registers. */
319 update_equiv_regs ();
321 /* This sets the maximum number of quantities we can have. Quantity
322 numbers start at zero and we can have one for each pseudo. */
323 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
325 /* Allocate vectors of temporary data.
326 See the declarations of these variables, above,
327 for what they mean. */
329 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
330 qty_phys_copy_sugg
331 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
332 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
333 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
334 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
335 qty_birth = (int *) alloca (max_qty * sizeof (int));
336 qty_death = (int *) alloca (max_qty * sizeof (int));
337 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
338 qty_size = (int *) alloca (max_qty * sizeof (int));
339 qty_mode
340 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
341 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
342 qty_min_class
343 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
344 qty_alternate_class
345 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
346 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
347 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
349 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
350 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
351 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
353 /* Allocate the reg_renumber array */
354 allocate_reg_info (max_regno, FALSE, TRUE);
356 /* Determine which pseudo-registers can be allocated by local-alloc.
357 In general, these are the registers used only in a single block and
358 which only die once. However, if a register's preferred class has only
359 a few entries, don't allocate this register here unless it is preferred
360 or nothing since retry_global_alloc won't be able to move it to
361 GENERAL_REGS if a reload register of this class is needed.
363 We need not be concerned with which block actually uses the register
364 since we will never see it outside that block. */
366 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
368 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
369 && (reg_alternate_class (i) == NO_REGS
370 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
371 reg_qty[i] = -2;
372 else
373 reg_qty[i] = -1;
376 /* Force loop below to initialize entire quantity array. */
377 next_qty = max_qty;
379 /* Allocate each block's local registers, block by block. */
381 for (b = 0; b < n_basic_blocks; b++)
383 /* NEXT_QTY indicates which elements of the `qty_...'
384 vectors might need to be initialized because they were used
385 for the previous block; it is set to the entire array before
386 block 0. Initialize those, with explicit loop if there are few,
387 else with bzero and bcopy. Do not initialize vectors that are
388 explicit set by `alloc_qty'. */
390 if (next_qty < 6)
392 for (i = 0; i < next_qty; i++)
394 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
395 qty_phys_num_copy_sugg[i] = 0;
396 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
397 qty_phys_num_sugg[i] = 0;
400 else
402 #define CLEAR(vector) \
403 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
405 CLEAR (qty_phys_copy_sugg);
406 CLEAR (qty_phys_num_copy_sugg);
407 CLEAR (qty_phys_sugg);
408 CLEAR (qty_phys_num_sugg);
411 next_qty = 0;
413 block_alloc (b);
414 #ifdef USE_C_ALLOCA
415 alloca (0);
416 #endif
419 free (reg_qty);
420 free (reg_offset);
421 free (reg_next_in_qty);
422 return recorded_label_ref;
425 /* Depth of loops we are in while in update_equiv_regs. */
426 static int loop_depth;
428 /* Used for communication between the following two functions: contains
429 a MEM that we wish to ensure remains unchanged. */
430 static rtx equiv_mem;
432 /* Set nonzero if EQUIV_MEM is modified. */
433 static int equiv_mem_modified;
435 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
436 Called via note_stores. */
438 static void
439 validate_equiv_mem_from_store (dest, set, data)
440 rtx dest;
441 rtx set ATTRIBUTE_UNUSED;
442 void *data ATTRIBUTE_UNUSED;
444 if ((GET_CODE (dest) == REG
445 && reg_overlap_mentioned_p (dest, equiv_mem))
446 || (GET_CODE (dest) == MEM
447 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
448 equiv_mem_modified = 1;
451 /* Verify that no store between START and the death of REG invalidates
452 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
453 by storing into an overlapping memory location, or with a non-const
454 CALL_INSN.
456 Return 1 if MEMREF remains valid. */
458 static int
459 validate_equiv_mem (start, reg, memref)
460 rtx start;
461 rtx reg;
462 rtx memref;
464 rtx insn;
465 rtx note;
467 equiv_mem = memref;
468 equiv_mem_modified = 0;
470 /* If the memory reference has side effects or is volatile, it isn't a
471 valid equivalence. */
472 if (side_effects_p (memref))
473 return 0;
475 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
477 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
478 continue;
480 if (find_reg_note (insn, REG_DEAD, reg))
481 return 1;
483 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
484 && ! CONST_CALL_P (insn))
485 return 0;
487 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
489 /* If a register mentioned in MEMREF is modified via an
490 auto-increment, we lose the equivalence. Do the same if one
491 dies; although we could extend the life, it doesn't seem worth
492 the trouble. */
494 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
495 if ((REG_NOTE_KIND (note) == REG_INC
496 || REG_NOTE_KIND (note) == REG_DEAD)
497 && GET_CODE (XEXP (note, 0)) == REG
498 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
499 return 0;
502 return 0;
505 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
507 static int
508 contains_replace_regs (x, reg_equiv_replace)
509 rtx x;
510 char *reg_equiv_replace;
512 int i, j;
513 const char *fmt;
514 enum rtx_code code = GET_CODE (x);
516 switch (code)
518 case CONST_INT:
519 case CONST:
520 case LABEL_REF:
521 case SYMBOL_REF:
522 case CONST_DOUBLE:
523 case PC:
524 case CC0:
525 case HIGH:
526 case LO_SUM:
527 return 0;
529 case REG:
530 return reg_equiv_replace[REGNO (x)];
532 default:
533 break;
536 fmt = GET_RTX_FORMAT (code);
537 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
538 switch (fmt[i])
540 case 'e':
541 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
542 return 1;
543 break;
544 case 'E':
545 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
546 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
547 return 1;
548 break;
551 return 0;
554 /* TRUE if X references a memory location that would be affected by a store
555 to MEMREF. */
557 static int
558 memref_referenced_p (memref, x)
559 rtx x;
560 rtx memref;
562 int i, j;
563 const char *fmt;
564 enum rtx_code code = GET_CODE (x);
566 switch (code)
568 case CONST_INT:
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 case CONST_DOUBLE:
573 case PC:
574 case CC0:
575 case HIGH:
576 case LO_SUM:
577 return 0;
579 case REG:
580 return (reg_equiv_replacement[REGNO (x)]
581 && memref_referenced_p (memref,
582 reg_equiv_replacement[REGNO (x)]));
584 case MEM:
585 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
586 return 1;
587 break;
589 case SET:
590 /* If we are setting a MEM, it doesn't count (its address does), but any
591 other SET_DEST that has a MEM in it is referencing the MEM. */
592 if (GET_CODE (SET_DEST (x)) == MEM)
594 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
595 return 1;
597 else if (memref_referenced_p (memref, SET_DEST (x)))
598 return 1;
600 return memref_referenced_p (memref, SET_SRC (x));
602 default:
603 break;
606 fmt = GET_RTX_FORMAT (code);
607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
608 switch (fmt[i])
610 case 'e':
611 if (memref_referenced_p (memref, XEXP (x, i)))
612 return 1;
613 break;
614 case 'E':
615 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
616 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
617 return 1;
618 break;
621 return 0;
624 /* TRUE if some insn in the range (START, END] references a memory location
625 that would be affected by a store to MEMREF. */
627 static int
628 memref_used_between_p (memref, start, end)
629 rtx memref;
630 rtx start;
631 rtx end;
633 rtx insn;
635 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
636 insn = NEXT_INSN (insn))
637 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
638 && memref_referenced_p (memref, PATTERN (insn)))
639 return 1;
641 return 0;
644 /* Return nonzero if the rtx X is invariant over the current function. */
646 function_invariant_p (x)
647 rtx x;
649 if (CONSTANT_P (x))
650 return 1;
651 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
652 return 1;
653 if (GET_CODE (x) == PLUS
654 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
655 && CONSTANT_P (XEXP (x, 1)))
656 return 1;
657 return 0;
660 /* Find registers that are equivalent to a single value throughout the
661 compilation (either because they can be referenced in memory or are set once
662 from a single constant). Lower their priority for a register.
664 If such a register is only referenced once, try substituting its value
665 into the using insn. If it succeeds, we can eliminate the register
666 completely. */
668 static void
669 update_equiv_regs ()
671 /* Set when an attempt should be made to replace a register with the
672 associated reg_equiv_replacement entry at the end of this function. */
673 char *reg_equiv_replace
674 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
675 rtx insn;
676 int block, depth;
678 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
679 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
681 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
682 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
683 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
685 init_alias_analysis ();
687 loop_depth = 1;
689 /* Scan the insns and find which registers have equivalences. Do this
690 in a separate scan of the insns because (due to -fcse-follow-jumps)
691 a register can be set below its use. */
692 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
694 rtx note;
695 rtx set;
696 rtx dest, src;
697 int regno;
699 if (GET_CODE (insn) == NOTE)
701 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
702 loop_depth++;
703 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
704 loop_depth--;
707 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
708 continue;
710 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
711 if (REG_NOTE_KIND (note) == REG_INC)
712 no_equiv (XEXP (note, 0), note, NULL);
714 set = single_set (insn);
716 /* If this insn contains more (or less) than a single SET,
717 only mark all destinations as having no known equivalence. */
718 if (set == 0)
720 note_stores (PATTERN (insn), no_equiv, NULL);
721 continue;
723 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
725 int i;
727 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
729 rtx part = XVECEXP (PATTERN (insn), 0, i);
730 if (part != set)
731 note_stores (part, no_equiv, NULL);
735 dest = SET_DEST (set);
736 src = SET_SRC (set);
738 /* If this sets a MEM to the contents of a REG that is only used
739 in a single basic block, see if the register is always equivalent
740 to that memory location and if moving the store from INSN to the
741 insn that set REG is safe. If so, put a REG_EQUIV note on the
742 initializing insn.
744 Don't add a REG_EQUIV note if the insn already has one. The existing
745 REG_EQUIV is likely more useful than the one we are adding.
747 If one of the regs in the address is marked as reg_equiv_replace,
748 then we can't add this REG_EQUIV note. The reg_equiv_replace
749 optimization may move the set of this register immediately before
750 insn, which puts it after reg_equiv_init_insns[regno], and hence
751 the mention in the REG_EQUIV note would be to an uninitialized
752 pseudo. */
753 /* ????? This test isn't good enough; we might see a MEM with a use of
754 a pseudo register before we see its setting insn that will cause
755 reg_equiv_replace for that pseudo to be set.
756 Equivalences to MEMs should be made in another pass, after the
757 reg_equiv_replace information has been gathered. */
759 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
760 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
761 && REG_BASIC_BLOCK (regno) >= 0
762 && REG_N_SETS (regno) == 1
763 && reg_equiv_init_insns[regno] != 0
764 && reg_equiv_init_insns[regno] != const0_rtx
765 && ! find_reg_note (XEXP (reg_equiv_init_insns[regno], 0),
766 REG_EQUIV, NULL_RTX)
767 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
769 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
770 if (validate_equiv_mem (init_insn, src, dest)
771 && ! memref_used_between_p (dest, init_insn, insn))
772 REG_NOTES (init_insn)
773 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
776 /* We only handle the case of a pseudo register being set
777 once, or always to the same value. */
778 /* ??? The mn10200 port breaks if we add equivalences for
779 values that need an ADDRESS_REGS register and set them equivalent
780 to a MEM of a pseudo. The actual problem is in the over-conservative
781 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
782 calculate_needs, but we traditionally work around this problem
783 here by rejecting equivalences when the destination is in a register
784 that's likely spilled. This is fragile, of course, since the
785 preferred class of a pseudo depends on all instructions that set
786 or use it. */
788 if (GET_CODE (dest) != REG
789 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
790 || reg_equiv_init_insns[regno] == const0_rtx
791 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
792 && GET_CODE (src) == MEM))
794 /* This might be seting a SUBREG of a pseudo, a pseudo that is
795 also set somewhere else to a constant. */
796 note_stores (set, no_equiv, NULL);
797 continue;
799 /* Don't handle the equivalence if the source is in a register
800 class that's likely to be spilled. */
801 if (GET_CODE (src) == REG
802 && REGNO (src) >= FIRST_PSEUDO_REGISTER
803 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
805 no_equiv (dest, set, NULL);
806 continue;
809 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
811 if (REG_N_SETS (regno) != 1
812 && (! note
813 || ! function_invariant_p (XEXP (note, 0))
814 || (reg_equiv_replacement[regno]
815 && ! rtx_equal_p (XEXP (note, 0),
816 reg_equiv_replacement[regno]))))
818 no_equiv (dest, set, NULL);
819 continue;
821 /* Record this insn as initializing this register. */
822 reg_equiv_init_insns[regno]
823 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
825 /* If this register is known to be equal to a constant, record that
826 it is always equivalent to the constant. */
827 if (note && function_invariant_p (XEXP (note, 0)))
828 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
830 /* If this insn introduces a "constant" register, decrease the priority
831 of that register. Record this insn if the register is only used once
832 more and the equivalence value is the same as our source.
834 The latter condition is checked for two reasons: First, it is an
835 indication that it may be more efficient to actually emit the insn
836 as written (if no registers are available, reload will substitute
837 the equivalence). Secondly, it avoids problems with any registers
838 dying in this insn whose death notes would be missed.
840 If we don't have a REG_EQUIV note, see if this insn is loading
841 a register used only in one basic block from a MEM. If so, and the
842 MEM remains unchanged for the life of the register, add a REG_EQUIV
843 note. */
845 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
847 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
848 && GET_CODE (SET_SRC (set)) == MEM
849 && validate_equiv_mem (insn, dest, SET_SRC (set)))
850 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
851 REG_NOTES (insn));
853 if (note)
855 int regno = REGNO (dest);
857 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
858 We might end up substituting the LABEL_REF for uses of the
859 pseudo here or later. That kind of transformation may turn an
860 indirect jump into a direct jump, in which case we must rerun the
861 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
862 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
863 || (GET_CODE (XEXP (note, 0)) == CONST
864 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
865 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
866 == LABEL_REF)))
867 recorded_label_ref = 1;
870 reg_equiv_replacement[regno] = XEXP (note, 0);
872 /* Don't mess with things live during setjmp. */
873 if (REG_LIVE_LENGTH (regno) >= 0)
875 /* Note that the statement below does not affect the priority
876 in local-alloc! */
877 REG_LIVE_LENGTH (regno) *= 2;
880 /* If the register is referenced exactly twice, meaning it is
881 set once and used once, indicate that the reference may be
882 replaced by the equivalence we computed above. If the
883 register is only used in one basic block, this can't succeed
884 or combine would have done it.
886 It would be nice to use "loop_depth * 2" in the compare
887 below. Unfortunately, LOOP_DEPTH need not be constant within
888 a basic block so this would be too complicated.
890 This case normally occurs when a parameter is read from
891 memory and then used exactly once, not in a loop. */
893 if (REG_N_REFS (regno) == 2
894 && REG_BASIC_BLOCK (regno) < 0
895 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
896 reg_equiv_replace[regno] = 1;
901 /* Now scan all regs killed in an insn to see if any of them are
902 registers only used that once. If so, see if we can replace the
903 reference with the equivalent from. If we can, delete the
904 initializing reference and this register will go away. If we
905 can't replace the reference, and the instruction is not in a
906 loop, then move the register initialization just before the use,
907 so that they are in the same basic block. */
908 block = -1;
909 depth = 0;
910 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
912 rtx link;
914 /* Keep track of which basic block we are in. */
915 if (block + 1 < n_basic_blocks
916 && BLOCK_HEAD (block + 1) == insn)
917 ++block;
919 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
921 if (GET_CODE (insn) == NOTE)
923 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
924 ++depth;
925 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
927 --depth;
928 if (depth < 0)
929 abort ();
933 continue;
936 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
938 if (REG_NOTE_KIND (link) == REG_DEAD
939 /* Make sure this insn still refers to the register. */
940 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
942 int regno = REGNO (XEXP (link, 0));
943 rtx equiv_insn;
945 if (! reg_equiv_replace[regno])
946 continue;
948 /* reg_equiv_replace[REGNO] gets set only when
949 REG_N_REFS[REGNO] is 2, i.e. the register is set
950 once and used once. (If it were only set, but not used,
951 flow would have deleted the setting insns.) Hence
952 there can only be one insn in reg_equiv_init_insns. */
953 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
955 if (validate_replace_rtx (regno_reg_rtx[regno],
956 reg_equiv_replacement[regno], insn))
958 remove_death (regno, insn);
959 REG_N_REFS (regno) = 0;
960 PUT_CODE (equiv_insn, NOTE);
961 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
962 NOTE_SOURCE_FILE (equiv_insn) = 0;
964 /* If we aren't in a loop, and there are no calls in
965 INSN or in the initialization of the register, then
966 move the initialization of the register to just
967 before INSN. Update the flow information. */
968 else if (depth == 0
969 && GET_CODE (equiv_insn) == INSN
970 && GET_CODE (insn) == INSN
971 && REG_BASIC_BLOCK (regno) < 0)
973 int l;
975 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
976 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
977 REG_NOTES (equiv_insn) = 0;
979 PUT_CODE (equiv_insn, NOTE);
980 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
981 NOTE_SOURCE_FILE (equiv_insn) = 0;
983 if (block < 0)
984 REG_BASIC_BLOCK (regno) = 0;
985 else
986 REG_BASIC_BLOCK (regno) = block;
987 REG_N_CALLS_CROSSED (regno) = 0;
988 REG_LIVE_LENGTH (regno) = 2;
990 if (block >= 0 && insn == BLOCK_HEAD (block))
991 BLOCK_HEAD (block) = PREV_INSN (insn);
993 for (l = 0; l < n_basic_blocks; l++)
994 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
995 regno);
1001 /* Clean up. */
1002 end_alias_analysis ();
1005 /* Mark REG as having no known equivalence.
1006 Some instructions might have been proceessed before and furnished
1007 with REG_EQUIV notes for this register; these notes will have to be
1008 removed.
1009 STORE is the piece of RTL that does the non-constant / conflicting
1010 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1011 but needs to be there because this function is called from note_stores. */
1012 static void
1013 no_equiv (reg, store, data)
1014 rtx reg, store ATTRIBUTE_UNUSED;
1015 void *data ATTRIBUTE_UNUSED;
1017 int regno;
1018 rtx list;
1020 if (GET_CODE (reg) != REG)
1021 return;
1022 regno = REGNO (reg);
1023 list = reg_equiv_init_insns[regno];
1024 if (list == const0_rtx)
1025 return;
1026 for (; list; list = XEXP (list, 1))
1028 rtx insn = XEXP (list, 0);
1029 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1031 reg_equiv_init_insns[regno] = const0_rtx;
1032 reg_equiv_replacement[regno] = NULL_RTX;
1035 /* Allocate hard regs to the pseudo regs used only within block number B.
1036 Only the pseudos that die but once can be handled. */
1038 static void
1039 block_alloc (b)
1040 int b;
1042 register int i, q;
1043 register rtx insn;
1044 rtx note;
1045 int insn_number = 0;
1046 int insn_count = 0;
1047 int max_uid = get_max_uid ();
1048 int *qty_order;
1049 int no_conflict_combined_regno = -1;
1051 /* Count the instructions in the basic block. */
1053 insn = BLOCK_END (b);
1054 while (1)
1056 if (GET_CODE (insn) != NOTE)
1057 if (++insn_count > max_uid)
1058 abort ();
1059 if (insn == BLOCK_HEAD (b))
1060 break;
1061 insn = PREV_INSN (insn);
1064 /* +2 to leave room for a post_mark_life at the last insn and for
1065 the birth of a CLOBBER in the first insn. */
1066 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1067 * sizeof (HARD_REG_SET));
1068 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1070 /* Initialize table of hardware registers currently live. */
1072 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1074 /* This loop scans the instructions of the basic block
1075 and assigns quantities to registers.
1076 It computes which registers to tie. */
1078 insn = BLOCK_HEAD (b);
1079 while (1)
1081 if (GET_CODE (insn) != NOTE)
1082 insn_number++;
1084 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1086 register rtx link, set;
1087 register int win = 0;
1088 register rtx r0, r1;
1089 int combined_regno = -1;
1090 int i;
1092 this_insn_number = insn_number;
1093 this_insn = insn;
1095 extract_insn (insn);
1096 which_alternative = -1;
1098 /* Is this insn suitable for tying two registers?
1099 If so, try doing that.
1100 Suitable insns are those with at least two operands and where
1101 operand 0 is an output that is a register that is not
1102 earlyclobber.
1104 We can tie operand 0 with some operand that dies in this insn.
1105 First look for operands that are required to be in the same
1106 register as operand 0. If we find such, only try tying that
1107 operand or one that can be put into that operand if the
1108 operation is commutative. If we don't find an operand
1109 that is required to be in the same register as operand 0,
1110 we can tie with any operand.
1112 Subregs in place of regs are also ok.
1114 If tying is done, WIN is set nonzero. */
1116 if (recog_data.n_operands > 1
1117 && recog_data.constraints[0][0] == '='
1118 && recog_data.constraints[0][1] != '&')
1120 /* If non-negative, is an operand that must match operand 0. */
1121 int must_match_0 = -1;
1122 /* Counts number of alternatives that require a match with
1123 operand 0. */
1124 int n_matching_alts = 0;
1126 for (i = 1; i < recog_data.n_operands; i++)
1128 const char *p = recog_data.constraints[i];
1129 int this_match = (requires_inout (p));
1131 n_matching_alts += this_match;
1132 if (this_match == recog_data.n_alternatives)
1133 must_match_0 = i;
1136 r0 = recog_data.operand[0];
1137 for (i = 1; i < recog_data.n_operands; i++)
1139 /* Skip this operand if we found an operand that
1140 must match operand 0 and this operand isn't it
1141 and can't be made to be it by commutativity. */
1143 if (must_match_0 >= 0 && i != must_match_0
1144 && ! (i == must_match_0 + 1
1145 && recog_data.constraints[i-1][0] == '%')
1146 && ! (i == must_match_0 - 1
1147 && recog_data.constraints[i][0] == '%'))
1148 continue;
1150 /* Likewise if each alternative has some operand that
1151 must match operand zero. In that case, skip any
1152 operand that doesn't list operand 0 since we know that
1153 the operand always conflicts with operand 0. We
1154 ignore commutatity in this case to keep things simple. */
1155 if (n_matching_alts == recog_data.n_alternatives
1156 && 0 == requires_inout (recog_data.constraints[i]))
1157 continue;
1159 r1 = recog_data.operand[i];
1161 /* If the operand is an address, find a register in it.
1162 There may be more than one register, but we only try one
1163 of them. */
1164 if (recog_data.constraints[i][0] == 'p')
1165 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1166 r1 = XEXP (r1, 0);
1168 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1170 /* We have two priorities for hard register preferences.
1171 If we have a move insn or an insn whose first input
1172 can only be in the same register as the output, give
1173 priority to an equivalence found from that insn. */
1174 int may_save_copy
1175 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1177 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1178 win = combine_regs (r1, r0, may_save_copy,
1179 insn_number, insn, 0);
1181 if (win)
1182 break;
1186 /* Recognize an insn sequence with an ultimate result
1187 which can safely overlap one of the inputs.
1188 The sequence begins with a CLOBBER of its result,
1189 and ends with an insn that copies the result to itself
1190 and has a REG_EQUAL note for an equivalent formula.
1191 That note indicates what the inputs are.
1192 The result and the input can overlap if each insn in
1193 the sequence either doesn't mention the input
1194 or has a REG_NO_CONFLICT note to inhibit the conflict.
1196 We do the combining test at the CLOBBER so that the
1197 destination register won't have had a quantity number
1198 assigned, since that would prevent combining. */
1200 if (GET_CODE (PATTERN (insn)) == CLOBBER
1201 && (r0 = XEXP (PATTERN (insn), 0),
1202 GET_CODE (r0) == REG)
1203 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1204 && XEXP (link, 0) != 0
1205 && GET_CODE (XEXP (link, 0)) == INSN
1206 && (set = single_set (XEXP (link, 0))) != 0
1207 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1208 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1209 NULL_RTX)) != 0)
1211 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1212 /* Check that we have such a sequence. */
1213 && no_conflict_p (insn, r0, r1))
1214 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1215 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1216 && (r1 = XEXP (XEXP (note, 0), 0),
1217 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1218 && no_conflict_p (insn, r0, r1))
1219 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1221 /* Here we care if the operation to be computed is
1222 commutative. */
1223 else if ((GET_CODE (XEXP (note, 0)) == EQ
1224 || GET_CODE (XEXP (note, 0)) == NE
1225 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1226 && (r1 = XEXP (XEXP (note, 0), 1),
1227 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1228 && no_conflict_p (insn, r0, r1))
1229 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1231 /* If we did combine something, show the register number
1232 in question so that we know to ignore its death. */
1233 if (win)
1234 no_conflict_combined_regno = REGNO (r1);
1237 /* If registers were just tied, set COMBINED_REGNO
1238 to the number of the register used in this insn
1239 that was tied to the register set in this insn.
1240 This register's qty should not be "killed". */
1242 if (win)
1244 while (GET_CODE (r1) == SUBREG)
1245 r1 = SUBREG_REG (r1);
1246 combined_regno = REGNO (r1);
1249 /* Mark the death of everything that dies in this instruction,
1250 except for anything that was just combined. */
1252 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1253 if (REG_NOTE_KIND (link) == REG_DEAD
1254 && GET_CODE (XEXP (link, 0)) == REG
1255 && combined_regno != REGNO (XEXP (link, 0))
1256 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1257 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1258 wipe_dead_reg (XEXP (link, 0), 0);
1260 /* Allocate qty numbers for all registers local to this block
1261 that are born (set) in this instruction.
1262 A pseudo that already has a qty is not changed. */
1264 note_stores (PATTERN (insn), reg_is_set, NULL);
1266 /* If anything is set in this insn and then unused, mark it as dying
1267 after this insn, so it will conflict with our outputs. This
1268 can't match with something that combined, and it doesn't matter
1269 if it did. Do this after the calls to reg_is_set since these
1270 die after, not during, the current insn. */
1272 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1273 if (REG_NOTE_KIND (link) == REG_UNUSED
1274 && GET_CODE (XEXP (link, 0)) == REG)
1275 wipe_dead_reg (XEXP (link, 0), 1);
1277 /* If this is an insn that has a REG_RETVAL note pointing at a
1278 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1279 block, so clear any register number that combined within it. */
1280 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1281 && GET_CODE (XEXP (note, 0)) == INSN
1282 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1283 no_conflict_combined_regno = -1;
1286 /* Set the registers live after INSN_NUMBER. Note that we never
1287 record the registers live before the block's first insn, since no
1288 pseudos we care about are live before that insn. */
1290 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1291 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1293 if (insn == BLOCK_END (b))
1294 break;
1296 insn = NEXT_INSN (insn);
1299 /* Now every register that is local to this basic block
1300 should have been given a quantity, or else -1 meaning ignore it.
1301 Every quantity should have a known birth and death.
1303 Order the qtys so we assign them registers in order of the
1304 number of suggested registers they need so we allocate those with
1305 the most restrictive needs first. */
1307 qty_order = (int *) alloca (next_qty * sizeof (int));
1308 for (i = 0; i < next_qty; i++)
1309 qty_order[i] = i;
1311 #define EXCHANGE(I1, I2) \
1312 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1314 switch (next_qty)
1316 case 3:
1317 /* Make qty_order[2] be the one to allocate last. */
1318 if (qty_sugg_compare (0, 1) > 0)
1319 EXCHANGE (0, 1);
1320 if (qty_sugg_compare (1, 2) > 0)
1321 EXCHANGE (2, 1);
1323 /* ... Fall through ... */
1324 case 2:
1325 /* Put the best one to allocate in qty_order[0]. */
1326 if (qty_sugg_compare (0, 1) > 0)
1327 EXCHANGE (0, 1);
1329 /* ... Fall through ... */
1331 case 1:
1332 case 0:
1333 /* Nothing to do here. */
1334 break;
1336 default:
1337 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1340 /* Try to put each quantity in a suggested physical register, if it has one.
1341 This may cause registers to be allocated that otherwise wouldn't be, but
1342 this seems acceptable in local allocation (unlike global allocation). */
1343 for (i = 0; i < next_qty; i++)
1345 q = qty_order[i];
1346 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1347 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1348 0, 1, qty_birth[q], qty_death[q]);
1349 else
1350 qty_phys_reg[q] = -1;
1353 /* Order the qtys so we assign them registers in order of
1354 decreasing length of life. Normally call qsort, but if we
1355 have only a very small number of quantities, sort them ourselves. */
1357 for (i = 0; i < next_qty; i++)
1358 qty_order[i] = i;
1360 #define EXCHANGE(I1, I2) \
1361 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1363 switch (next_qty)
1365 case 3:
1366 /* Make qty_order[2] be the one to allocate last. */
1367 if (qty_compare (0, 1) > 0)
1368 EXCHANGE (0, 1);
1369 if (qty_compare (1, 2) > 0)
1370 EXCHANGE (2, 1);
1372 /* ... Fall through ... */
1373 case 2:
1374 /* Put the best one to allocate in qty_order[0]. */
1375 if (qty_compare (0, 1) > 0)
1376 EXCHANGE (0, 1);
1378 /* ... Fall through ... */
1380 case 1:
1381 case 0:
1382 /* Nothing to do here. */
1383 break;
1385 default:
1386 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1389 /* Now for each qty that is not a hardware register,
1390 look for a hardware register to put it in.
1391 First try the register class that is cheapest for this qty,
1392 if there is more than one class. */
1394 for (i = 0; i < next_qty; i++)
1396 q = qty_order[i];
1397 if (qty_phys_reg[q] < 0)
1399 #ifdef INSN_SCHEDULING
1400 /* These values represent the adjusted lifetime of a qty so
1401 that it conflicts with qtys which appear near the start/end
1402 of this qty's lifetime.
1404 The purpose behind extending the lifetime of this qty is to
1405 discourage the register allocator from creating false
1406 dependencies.
1408 The adjustment value is choosen to indicate that this qty
1409 conflicts with all the qtys in the instructions immediately
1410 before and after the lifetime of this qty.
1412 Experiments have shown that higher values tend to hurt
1413 overall code performance.
1415 If allocation using the extended lifetime fails we will try
1416 again with the qty's unadjusted lifetime. */
1417 int fake_birth = MAX (0, qty_birth[q] - 2 + qty_birth[q] % 2);
1418 int fake_death = MIN (insn_number * 2 + 1,
1419 qty_death[q] + 2 - qty_death[q] % 2);
1420 #endif
1422 if (N_REG_CLASSES > 1)
1424 #ifdef INSN_SCHEDULING
1425 /* We try to avoid using hard registers allocated to qtys which
1426 are born immediately after this qty or die immediately before
1427 this qty.
1429 This optimization is only appropriate when we will run
1430 a scheduling pass after reload and we are not optimizing
1431 for code size. */
1432 if (flag_schedule_insns_after_reload
1433 && !optimize_size
1434 && !SMALL_REGISTER_CLASSES)
1437 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1438 qty_mode[q], q, 0, 0,
1439 fake_birth, fake_death);
1440 if (qty_phys_reg[q] >= 0)
1441 continue;
1443 #endif
1444 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1445 qty_mode[q], q, 0, 0,
1446 qty_birth[q], qty_death[q]);
1447 if (qty_phys_reg[q] >= 0)
1448 continue;
1451 #ifdef INSN_SCHEDULING
1452 /* Similarly, avoid false dependencies. */
1453 if (flag_schedule_insns_after_reload
1454 && !optimize_size
1455 && !SMALL_REGISTER_CLASSES
1456 && qty_alternate_class[q] != NO_REGS)
1457 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1458 qty_mode[q], q, 0, 0,
1459 fake_birth, fake_death);
1460 #endif
1461 if (qty_alternate_class[q] != NO_REGS)
1462 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1463 qty_mode[q], q, 0, 0,
1464 qty_birth[q], qty_death[q]);
1468 /* Now propagate the register assignments
1469 to the pseudo regs belonging to the qtys. */
1471 for (q = 0; q < next_qty; q++)
1472 if (qty_phys_reg[q] >= 0)
1474 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1475 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1479 /* Compare two quantities' priority for getting real registers.
1480 We give shorter-lived quantities higher priority.
1481 Quantities with more references are also preferred, as are quantities that
1482 require multiple registers. This is the identical prioritization as
1483 done by global-alloc.
1485 We used to give preference to registers with *longer* lives, but using
1486 the same algorithm in both local- and global-alloc can speed up execution
1487 of some programs by as much as a factor of three! */
1489 /* Note that the quotient will never be bigger than
1490 the value of floor_log2 times the maximum number of
1491 times a register can occur in one insn (surely less than 100).
1492 Multiplying this by 10000 can't overflow.
1493 QTY_CMP_PRI is also used by qty_sugg_compare. */
1495 #define QTY_CMP_PRI(q) \
1496 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1497 / (qty_death[q] - qty_birth[q])) * 10000))
1499 static int
1500 qty_compare (q1, q2)
1501 int q1, q2;
1503 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1506 static int
1507 qty_compare_1 (q1p, q2p)
1508 const PTR q1p;
1509 const PTR q2p;
1511 register int q1 = *(const int *)q1p, q2 = *(const int *)q2p;
1512 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1514 if (tem != 0)
1515 return tem;
1517 /* If qtys are equally good, sort by qty number,
1518 so that the results of qsort leave nothing to chance. */
1519 return q1 - q2;
1522 /* Compare two quantities' priority for getting real registers. This version
1523 is called for quantities that have suggested hard registers. First priority
1524 goes to quantities that have copy preferences, then to those that have
1525 normal preferences. Within those groups, quantities with the lower
1526 number of preferences have the highest priority. Of those, we use the same
1527 algorithm as above. */
1529 #define QTY_CMP_SUGG(q) \
1530 (qty_phys_num_copy_sugg[q] \
1531 ? qty_phys_num_copy_sugg[q] \
1532 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1534 static int
1535 qty_sugg_compare (q1, q2)
1536 int q1, q2;
1538 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1540 if (tem != 0)
1541 return tem;
1543 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1546 static int
1547 qty_sugg_compare_1 (q1p, q2p)
1548 const PTR q1p;
1549 const PTR q2p;
1551 register int q1 = *(const int *)q1p, q2 = *(const int *)q2p;
1552 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1554 if (tem != 0)
1555 return tem;
1557 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1558 if (tem != 0)
1559 return tem;
1561 /* If qtys are equally good, sort by qty number,
1562 so that the results of qsort leave nothing to chance. */
1563 return q1 - q2;
1566 #undef QTY_CMP_SUGG
1567 #undef QTY_CMP_PRI
1569 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1570 Returns 1 if have done so, or 0 if cannot.
1572 Combining registers means marking them as having the same quantity
1573 and adjusting the offsets within the quantity if either of
1574 them is a SUBREG).
1576 We don't actually combine a hard reg with a pseudo; instead
1577 we just record the hard reg as the suggestion for the pseudo's quantity.
1578 If we really combined them, we could lose if the pseudo lives
1579 across an insn that clobbers the hard reg (eg, movstr).
1581 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1582 there is no REG_DEAD note on INSN. This occurs during the processing
1583 of REG_NO_CONFLICT blocks.
1585 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1586 SETREG or if the input and output must share a register.
1587 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1589 There are elaborate checks for the validity of combining. */
1592 static int
1593 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1594 rtx usedreg, setreg;
1595 int may_save_copy;
1596 int insn_number;
1597 rtx insn;
1598 int already_dead;
1600 register int ureg, sreg;
1601 register int offset = 0;
1602 int usize, ssize;
1603 register int sqty;
1605 /* Determine the numbers and sizes of registers being used. If a subreg
1606 is present that does not change the entire register, don't consider
1607 this a copy insn. */
1609 while (GET_CODE (usedreg) == SUBREG)
1611 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1612 may_save_copy = 0;
1613 offset += SUBREG_WORD (usedreg);
1614 usedreg = SUBREG_REG (usedreg);
1616 if (GET_CODE (usedreg) != REG)
1617 return 0;
1618 ureg = REGNO (usedreg);
1619 usize = REG_SIZE (usedreg);
1621 while (GET_CODE (setreg) == SUBREG)
1623 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1624 may_save_copy = 0;
1625 offset -= SUBREG_WORD (setreg);
1626 setreg = SUBREG_REG (setreg);
1628 if (GET_CODE (setreg) != REG)
1629 return 0;
1630 sreg = REGNO (setreg);
1631 ssize = REG_SIZE (setreg);
1633 /* If UREG is a pseudo-register that hasn't already been assigned a
1634 quantity number, it means that it is not local to this block or dies
1635 more than once. In either event, we can't do anything with it. */
1636 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1637 /* Do not combine registers unless one fits within the other. */
1638 || (offset > 0 && usize + offset > ssize)
1639 || (offset < 0 && usize + offset < ssize)
1640 /* Do not combine with a smaller already-assigned object
1641 if that smaller object is already combined with something bigger. */
1642 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1643 && usize < qty_size[reg_qty[ureg]])
1644 /* Can't combine if SREG is not a register we can allocate. */
1645 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1646 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1647 These have already been taken care of. This probably wouldn't
1648 combine anyway, but don't take any chances. */
1649 || (ureg >= FIRST_PSEUDO_REGISTER
1650 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1651 /* Don't tie something to itself. In most cases it would make no
1652 difference, but it would screw up if the reg being tied to itself
1653 also dies in this insn. */
1654 || ureg == sreg
1655 /* Don't try to connect two different hardware registers. */
1656 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1657 /* Don't use a hard reg that might be spilled. */
1658 || (ureg < FIRST_PSEUDO_REGISTER
1659 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1660 || (sreg < FIRST_PSEUDO_REGISTER
1661 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1662 /* Don't connect two different machine modes if they have different
1663 implications as to which registers may be used. */
1664 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1665 return 0;
1667 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1668 qty_phys_sugg for the pseudo instead of tying them.
1670 Return "failure" so that the lifespan of UREG is terminated here;
1671 that way the two lifespans will be disjoint and nothing will prevent
1672 the pseudo reg from being given this hard reg. */
1674 if (ureg < FIRST_PSEUDO_REGISTER)
1676 /* Allocate a quantity number so we have a place to put our
1677 suggestions. */
1678 if (reg_qty[sreg] == -2)
1679 reg_is_born (setreg, 2 * insn_number);
1681 if (reg_qty[sreg] >= 0)
1683 if (may_save_copy
1684 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1686 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1687 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1689 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1691 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1692 qty_phys_num_sugg[reg_qty[sreg]]++;
1695 return 0;
1698 /* Similarly for SREG a hard register and UREG a pseudo register. */
1700 if (sreg < FIRST_PSEUDO_REGISTER)
1702 if (may_save_copy
1703 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1705 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1706 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1708 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1710 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1711 qty_phys_num_sugg[reg_qty[ureg]]++;
1713 return 0;
1716 /* At this point we know that SREG and UREG are both pseudos.
1717 Do nothing if SREG already has a quantity or is a register that we
1718 don't allocate. */
1719 if (reg_qty[sreg] >= -1
1720 /* If we are not going to let any regs live across calls,
1721 don't tie a call-crossing reg to a non-call-crossing reg. */
1722 || (current_function_has_nonlocal_label
1723 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1724 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1725 return 0;
1727 /* We don't already know about SREG, so tie it to UREG
1728 if this is the last use of UREG, provided the classes they want
1729 are compatible. */
1731 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1732 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1734 /* Add SREG to UREG's quantity. */
1735 sqty = reg_qty[ureg];
1736 reg_qty[sreg] = sqty;
1737 reg_offset[sreg] = reg_offset[ureg] + offset;
1738 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1739 qty_first_reg[sqty] = sreg;
1741 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1742 update_qty_class (sqty, sreg);
1744 /* Update info about quantity SQTY. */
1745 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1746 qty_n_refs[sqty] += REG_N_REFS (sreg);
1747 if (usize < ssize)
1749 register int i;
1751 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1752 reg_offset[i] -= offset;
1754 qty_size[sqty] = ssize;
1755 qty_mode[sqty] = GET_MODE (setreg);
1758 else
1759 return 0;
1761 return 1;
1764 /* Return 1 if the preferred class of REG allows it to be tied
1765 to a quantity or register whose class is CLASS.
1766 True if REG's reg class either contains or is contained in CLASS. */
1768 static int
1769 reg_meets_class_p (reg, class)
1770 int reg;
1771 enum reg_class class;
1773 register enum reg_class rclass = reg_preferred_class (reg);
1774 return (reg_class_subset_p (rclass, class)
1775 || reg_class_subset_p (class, rclass));
1778 /* Update the class of QTY assuming that REG is being tied to it. */
1780 static void
1781 update_qty_class (qty, reg)
1782 int qty;
1783 int reg;
1785 enum reg_class rclass = reg_preferred_class (reg);
1786 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1787 qty_min_class[qty] = rclass;
1789 rclass = reg_alternate_class (reg);
1790 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1791 qty_alternate_class[qty] = rclass;
1793 if (REG_CHANGES_SIZE (reg))
1794 qty_changes_size[qty] = 1;
1797 /* Handle something which alters the value of an rtx REG.
1799 REG is whatever is set or clobbered. SETTER is the rtx that
1800 is modifying the register.
1802 If it is not really a register, we do nothing.
1803 The file-global variables `this_insn' and `this_insn_number'
1804 carry info from `block_alloc'. */
1806 static void
1807 reg_is_set (reg, setter, data)
1808 rtx reg;
1809 rtx setter;
1810 void *data ATTRIBUTE_UNUSED;
1812 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1813 a hard register. These may actually not exist any more. */
1815 if (GET_CODE (reg) != SUBREG
1816 && GET_CODE (reg) != REG)
1817 return;
1819 /* Mark this register as being born. If it is used in a CLOBBER, mark
1820 it as being born halfway between the previous insn and this insn so that
1821 it conflicts with our inputs but not the outputs of the previous insn. */
1823 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1826 /* Handle beginning of the life of register REG.
1827 BIRTH is the index at which this is happening. */
1829 static void
1830 reg_is_born (reg, birth)
1831 rtx reg;
1832 int birth;
1834 register int regno;
1836 if (GET_CODE (reg) == SUBREG)
1837 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1838 else
1839 regno = REGNO (reg);
1841 if (regno < FIRST_PSEUDO_REGISTER)
1843 mark_life (regno, GET_MODE (reg), 1);
1845 /* If the register was to have been born earlier that the present
1846 insn, mark it as live where it is actually born. */
1847 if (birth < 2 * this_insn_number)
1848 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1850 else
1852 if (reg_qty[regno] == -2)
1853 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1855 /* If this register has a quantity number, show that it isn't dead. */
1856 if (reg_qty[regno] >= 0)
1857 qty_death[reg_qty[regno]] = -1;
1861 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1862 REG is an output that is dying (i.e., it is never used), otherwise it
1863 is an input (the normal case).
1864 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1866 static void
1867 wipe_dead_reg (reg, output_p)
1868 register rtx reg;
1869 int output_p;
1871 register int regno = REGNO (reg);
1873 /* If this insn has multiple results,
1874 and the dead reg is used in one of the results,
1875 extend its life to after this insn,
1876 so it won't get allocated together with any other result of this insn.
1878 It is unsafe to use !single_set here since it will ignore an unused
1879 output. Just because an output is unused does not mean the compiler
1880 can assume the side effect will not occur. Consider if REG appears
1881 in the address of an output and we reload the output. If we allocate
1882 REG to the same hard register as an unused output we could set the hard
1883 register before the output reload insn. */
1884 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1885 && multiple_sets (this_insn))
1887 int i;
1888 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1890 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1891 if (GET_CODE (set) == SET
1892 && GET_CODE (SET_DEST (set)) != REG
1893 && !rtx_equal_p (reg, SET_DEST (set))
1894 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1895 output_p = 1;
1899 /* If this register is used in an auto-increment address, then extend its
1900 life to after this insn, so that it won't get allocated together with
1901 the result of this insn. */
1902 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1903 output_p = 1;
1905 if (regno < FIRST_PSEUDO_REGISTER)
1907 mark_life (regno, GET_MODE (reg), 0);
1909 /* If a hard register is dying as an output, mark it as in use at
1910 the beginning of this insn (the above statement would cause this
1911 not to happen). */
1912 if (output_p)
1913 post_mark_life (regno, GET_MODE (reg), 1,
1914 2 * this_insn_number, 2 * this_insn_number+ 1);
1917 else if (reg_qty[regno] >= 0)
1918 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1921 /* Find a block of SIZE words of hard regs in reg_class CLASS
1922 that can hold something of machine-mode MODE
1923 (but actually we test only the first of the block for holding MODE)
1924 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1925 and return the number of the first of them.
1926 Return -1 if such a block cannot be found.
1927 If QTY crosses calls, insist on a register preserved by calls,
1928 unless ACCEPT_CALL_CLOBBERED is nonzero.
1930 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1931 register is available. If not, return -1. */
1933 static int
1934 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1935 born_index, dead_index)
1936 enum reg_class class;
1937 enum machine_mode mode;
1938 int qty;
1939 int accept_call_clobbered;
1940 int just_try_suggested;
1941 int born_index, dead_index;
1943 register int i, ins;
1944 #ifdef HARD_REG_SET
1945 register /* Declare it register if it's a scalar. */
1946 #endif
1947 HARD_REG_SET used, first_used;
1948 #ifdef ELIMINABLE_REGS
1949 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1950 #endif
1952 /* Validate our parameters. */
1953 if (born_index < 0 || born_index > dead_index)
1954 abort ();
1956 /* Don't let a pseudo live in a reg across a function call
1957 if we might get a nonlocal goto. */
1958 if (current_function_has_nonlocal_label
1959 && qty_n_calls_crossed[qty] > 0)
1960 return -1;
1962 if (accept_call_clobbered)
1963 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1964 else if (qty_n_calls_crossed[qty] == 0)
1965 COPY_HARD_REG_SET (used, fixed_reg_set);
1966 else
1967 COPY_HARD_REG_SET (used, call_used_reg_set);
1969 if (accept_call_clobbered)
1970 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1972 for (ins = born_index; ins < dead_index; ins++)
1973 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1975 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1977 /* Don't use the frame pointer reg in local-alloc even if
1978 we may omit the frame pointer, because if we do that and then we
1979 need a frame pointer, reload won't know how to move the pseudo
1980 to another hard reg. It can move only regs made by global-alloc.
1982 This is true of any register that can be eliminated. */
1983 #ifdef ELIMINABLE_REGS
1984 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1985 SET_HARD_REG_BIT (used, eliminables[i].from);
1986 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1987 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
1988 that it might be eliminated into. */
1989 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
1990 #endif
1991 #else
1992 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
1993 #endif
1995 #ifdef CLASS_CANNOT_CHANGE_SIZE
1996 if (qty_changes_size[qty])
1997 IOR_HARD_REG_SET (used,
1998 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
1999 #endif
2001 /* Normally, the registers that can be used for the first register in
2002 a multi-register quantity are the same as those that can be used for
2003 subsequent registers. However, if just trying suggested registers,
2004 restrict our consideration to them. If there are copy-suggested
2005 register, try them. Otherwise, try the arithmetic-suggested
2006 registers. */
2007 COPY_HARD_REG_SET (first_used, used);
2009 if (just_try_suggested)
2011 if (qty_phys_num_copy_sugg[qty] != 0)
2012 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2013 else
2014 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2017 /* If all registers are excluded, we can't do anything. */
2018 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2020 /* If at least one would be suitable, test each hard reg. */
2022 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2024 #ifdef REG_ALLOC_ORDER
2025 int regno = reg_alloc_order[i];
2026 #else
2027 int regno = i;
2028 #endif
2029 if (! TEST_HARD_REG_BIT (first_used, regno)
2030 && HARD_REGNO_MODE_OK (regno, mode)
2031 && (qty_n_calls_crossed[qty] == 0
2032 || accept_call_clobbered
2033 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2035 register int j;
2036 register int size1 = HARD_REGNO_NREGS (regno, mode);
2037 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2038 if (j == size1)
2040 /* Mark that this register is in use between its birth and death
2041 insns. */
2042 post_mark_life (regno, mode, 1, born_index, dead_index);
2043 return regno;
2045 #ifndef REG_ALLOC_ORDER
2046 i += j; /* Skip starting points we know will lose */
2047 #endif
2051 fail:
2053 /* If we are just trying suggested register, we have just tried copy-
2054 suggested registers, and there are arithmetic-suggested registers,
2055 try them. */
2057 /* If it would be profitable to allocate a call-clobbered register
2058 and save and restore it around calls, do that. */
2059 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2060 && qty_phys_num_sugg[qty] != 0)
2062 /* Don't try the copy-suggested regs again. */
2063 qty_phys_num_copy_sugg[qty] = 0;
2064 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2065 born_index, dead_index);
2068 /* We need not check to see if the current function has nonlocal
2069 labels because we don't put any pseudos that are live over calls in
2070 registers in that case. */
2072 if (! accept_call_clobbered
2073 && flag_caller_saves
2074 && ! just_try_suggested
2075 && qty_n_calls_crossed[qty] != 0
2076 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2078 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2079 if (i >= 0)
2080 caller_save_needed = 1;
2081 return i;
2083 return -1;
2086 /* Mark that REGNO with machine-mode MODE is live starting from the current
2087 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2088 is zero). */
2090 static void
2091 mark_life (regno, mode, life)
2092 register int regno;
2093 enum machine_mode mode;
2094 int life;
2096 register int j = HARD_REGNO_NREGS (regno, mode);
2097 if (life)
2098 while (--j >= 0)
2099 SET_HARD_REG_BIT (regs_live, regno + j);
2100 else
2101 while (--j >= 0)
2102 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2105 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2106 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2107 to insn number DEATH (exclusive). */
2109 static void
2110 post_mark_life (regno, mode, life, birth, death)
2111 int regno;
2112 enum machine_mode mode;
2113 int life, birth, death;
2115 register int j = HARD_REGNO_NREGS (regno, mode);
2116 #ifdef HARD_REG_SET
2117 register /* Declare it register if it's a scalar. */
2118 #endif
2119 HARD_REG_SET this_reg;
2121 CLEAR_HARD_REG_SET (this_reg);
2122 while (--j >= 0)
2123 SET_HARD_REG_BIT (this_reg, regno + j);
2125 if (life)
2126 while (birth < death)
2128 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2129 birth++;
2131 else
2132 while (birth < death)
2134 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2135 birth++;
2139 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2140 is the register being clobbered, and R1 is a register being used in
2141 the equivalent expression.
2143 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2144 in which it is used, return 1.
2146 Otherwise, return 0. */
2148 static int
2149 no_conflict_p (insn, r0, r1)
2150 rtx insn, r0, r1;
2152 int ok = 0;
2153 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2154 rtx p, last;
2156 /* If R1 is a hard register, return 0 since we handle this case
2157 when we scan the insns that actually use it. */
2159 if (note == 0
2160 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2161 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2162 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2163 return 0;
2165 last = XEXP (note, 0);
2167 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2168 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2170 if (find_reg_note (p, REG_DEAD, r1))
2171 ok = 1;
2173 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2174 some earlier optimization pass has inserted instructions into
2175 the sequence, and it is not safe to perform this optimization.
2176 Note that emit_no_conflict_block always ensures that this is
2177 true when these sequences are created. */
2178 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2179 return 0;
2182 return ok;
2185 /* Return the number of alternatives for which the constraint string P
2186 indicates that the operand must be equal to operand 0 and that no register
2187 is acceptable. */
2189 static int
2190 requires_inout (p)
2191 const char *p;
2193 char c;
2194 int found_zero = 0;
2195 int reg_allowed = 0;
2196 int num_matching_alts = 0;
2198 while ((c = *p++))
2199 switch (c)
2201 case '=': case '+': case '?':
2202 case '#': case '&': case '!':
2203 case '*': case '%':
2204 case '1': case '2': case '3': case '4': case '5':
2205 case '6': case '7': case '8': case '9':
2206 case 'm': case '<': case '>': case 'V': case 'o':
2207 case 'E': case 'F': case 'G': case 'H':
2208 case 's': case 'i': case 'n':
2209 case 'I': case 'J': case 'K': case 'L':
2210 case 'M': case 'N': case 'O': case 'P':
2211 #ifdef EXTRA_CONSTRAINT
2212 case 'Q': case 'R': case 'S': case 'T': case 'U':
2213 #endif
2214 case 'X':
2215 /* These don't say anything we care about. */
2216 break;
2218 case ',':
2219 if (found_zero && ! reg_allowed)
2220 num_matching_alts++;
2222 found_zero = reg_allowed = 0;
2223 break;
2225 case '0':
2226 found_zero = 1;
2227 break;
2229 case 'p':
2230 case 'g': case 'r':
2231 default:
2232 reg_allowed = 1;
2233 break;
2236 if (found_zero && ! reg_allowed)
2237 num_matching_alts++;
2239 return num_matching_alts;
2242 void
2243 dump_local_alloc (file)
2244 FILE *file;
2246 register int i;
2247 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2248 if (reg_renumber[i] != -1)
2249 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);