tilegx: Fix infinite loop in gen-mul-tables generator
[official-gcc.git] / gcc / alias.cc
blob8c08452e0acfcbf1bfd8fd2e8cd420b5b929d6b4
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2022 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
44 /* The aliasing API provided here solves related but different problems:
46 Say there exists (in c)
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
53 struct Y y2, *py;
54 struct Z z2, *pz;
57 py = &x1.y1;
58 px2 = &x1;
60 Consider the four questions:
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
67 The answer to these questions can be yes, yes, yes, and maybe.
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
71 a store through a pointer to an X can overwrite any field that is
72 contained (recursively) in an X (unless we know that px1 != px2).
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
82 The pass ipa-type-escape does this analysis for the types whose
83 instances do not escape across the compilation boundary.
85 Historically in GCC, these two problems were combined and a single
86 data structure that was used to represent the solution to these
87 problems. We now have two similar but different data structures,
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
94 /* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
99 struct S { int i; double d; };
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
105 struct S
108 |/_ _\|
109 int double
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
117 past immediate descendants, however, since we propagate all
118 grandchildren up one level.
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
126 struct GTY(()) alias_set_entry {
127 /* The alias set number, as stored in MEM_ALIAS_SET. */
128 alias_set_type alias_set;
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
144 struct T { struct S s; float f; }
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx,
163 HOST_WIDE_INT * = NULL);
165 static void memory_modified_1 (rtx, const_rtx, void *);
167 /* Query statistics for the different low-level disambiguators.
168 A high-level query may trigger multiple of them. */
170 static struct {
171 unsigned long long num_alias_zero;
172 unsigned long long num_same_alias_set;
173 unsigned long long num_same_objects;
174 unsigned long long num_volatile;
175 unsigned long long num_dag;
176 unsigned long long num_universal;
177 unsigned long long num_disambiguated;
178 } alias_stats;
181 /* Set up all info needed to perform alias analysis on memory references. */
183 /* Returns the size in bytes of the mode of X. */
184 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
186 /* Cap the number of passes we make over the insns propagating alias
187 information through set chains.
188 ??? 10 is a completely arbitrary choice. This should be based on the
189 maximum loop depth in the CFG, but we do not have this information
190 available (even if current_loops _is_ available). */
191 #define MAX_ALIAS_LOOP_PASSES 10
193 /* reg_base_value[N] gives an address to which register N is related.
194 If all sets after the first add or subtract to the current value
195 or otherwise modify it so it does not point to a different top level
196 object, reg_base_value[N] is equal to the address part of the source
197 of the first set.
199 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
200 expressions represent three types of base:
202 1. incoming arguments. There is just one ADDRESS to represent all
203 arguments, since we do not know at this level whether accesses
204 based on different arguments can alias. The ADDRESS has id 0.
206 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
207 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
208 Each of these rtxes has a separate ADDRESS associated with it,
209 each with a negative id.
211 GCC is (and is required to be) precise in which register it
212 chooses to access a particular region of stack. We can therefore
213 assume that accesses based on one of these rtxes do not alias
214 accesses based on another of these rtxes.
216 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
217 Each such piece of memory has a separate ADDRESS associated
218 with it, each with an id greater than 0.
220 Accesses based on one ADDRESS do not alias accesses based on other
221 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
222 alias globals either; the ADDRESSes have Pmode to indicate this.
223 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
224 indicate this. */
226 static GTY(()) vec<rtx, va_gc> *reg_base_value;
227 static rtx *new_reg_base_value;
229 /* The single VOIDmode ADDRESS that represents all argument bases.
230 It has id 0. */
231 static GTY(()) rtx arg_base_value;
233 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
234 static int unique_id;
236 /* We preserve the copy of old array around to avoid amount of garbage
237 produced. About 8% of garbage produced were attributed to this
238 array. */
239 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
241 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
242 registers. */
243 #define UNIQUE_BASE_VALUE_SP -1
244 #define UNIQUE_BASE_VALUE_ARGP -2
245 #define UNIQUE_BASE_VALUE_FP -3
246 #define UNIQUE_BASE_VALUE_HFP -4
248 #define static_reg_base_value \
249 (this_target_rtl->x_static_reg_base_value)
251 #define REG_BASE_VALUE(X) \
252 (REGNO (X) < vec_safe_length (reg_base_value) \
253 ? (*reg_base_value)[REGNO (X)] : 0)
255 /* Vector indexed by N giving the initial (unchanging) value known for
256 pseudo-register N. This vector is initialized in init_alias_analysis,
257 and does not change until end_alias_analysis is called. */
258 static GTY(()) vec<rtx, va_gc> *reg_known_value;
260 /* Vector recording for each reg_known_value whether it is due to a
261 REG_EQUIV note. Future passes (viz., reload) may replace the
262 pseudo with the equivalent expression and so we account for the
263 dependences that would be introduced if that happens.
265 The REG_EQUIV notes created in assign_parms may mention the arg
266 pointer, and there are explicit insns in the RTL that modify the
267 arg pointer. Thus we must ensure that such insns don't get
268 scheduled across each other because that would invalidate the
269 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
270 wrong, but solving the problem in the scheduler will likely give
271 better code, so we do it here. */
272 static sbitmap reg_known_equiv_p;
274 /* True when scanning insns from the start of the rtl to the
275 NOTE_INSN_FUNCTION_BEG note. */
276 static bool copying_arguments;
279 /* The splay-tree used to store the various alias set entries. */
280 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
282 /* Build a decomposed reference object for querying the alias-oracle
283 from the MEM rtx and store it in *REF.
284 Returns false if MEM is not suitable for the alias-oracle. */
286 static bool
287 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
289 tree expr = MEM_EXPR (mem);
290 tree base;
292 if (!expr)
293 return false;
295 ao_ref_init (ref, expr);
297 /* Get the base of the reference and see if we have to reject or
298 adjust it. */
299 base = ao_ref_base (ref);
300 if (base == NULL_TREE)
301 return false;
303 /* The tree oracle doesn't like bases that are neither decls
304 nor indirect references of SSA names. */
305 if (!(DECL_P (base)
306 || (TREE_CODE (base) == MEM_REF
307 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
308 || (TREE_CODE (base) == TARGET_MEM_REF
309 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
310 return false;
312 ref->ref_alias_set = MEM_ALIAS_SET (mem);
314 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
315 is conservative, so trust it. */
316 if (!MEM_OFFSET_KNOWN_P (mem)
317 || !MEM_SIZE_KNOWN_P (mem))
318 return true;
320 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
321 drop ref->ref. */
322 if (maybe_lt (MEM_OFFSET (mem), 0)
323 || (ref->max_size_known_p ()
324 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
325 ref->max_size)))
326 ref->ref = NULL_TREE;
328 /* Refine size and offset we got from analyzing MEM_EXPR by using
329 MEM_SIZE and MEM_OFFSET. */
331 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
332 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
334 /* The MEM may extend into adjacent fields, so adjust max_size if
335 necessary. */
336 if (ref->max_size_known_p ())
337 ref->max_size = upper_bound (ref->max_size, ref->size);
339 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
340 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
341 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
342 && (maybe_lt (ref->offset, 0)
343 || (DECL_P (ref->base)
344 && (DECL_SIZE (ref->base) == NULL_TREE
345 || !poly_int_tree_p (DECL_SIZE (ref->base))
346 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
347 ref->offset + ref->size)))))
348 return false;
350 return true;
353 /* Query the alias-oracle on whether the two memory rtx X and MEM may
354 alias. If TBAA_P is set also apply TBAA. Returns true if the
355 two rtxen may alias, false otherwise. */
357 static bool
358 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
360 ao_ref ref1, ref2;
362 if (!ao_ref_from_mem (&ref1, x)
363 || !ao_ref_from_mem (&ref2, mem))
364 return true;
366 return refs_may_alias_p_1 (&ref1, &ref2,
367 tbaa_p
368 && MEM_ALIAS_SET (x) != 0
369 && MEM_ALIAS_SET (mem) != 0);
372 /* Return true if the ref EARLIER behaves the same as LATER with respect
373 to TBAA for every memory reference that might follow LATER. */
375 bool
376 refs_same_for_tbaa_p (tree earlier, tree later)
378 ao_ref earlier_ref, later_ref;
379 ao_ref_init (&earlier_ref, earlier);
380 ao_ref_init (&later_ref, later);
381 alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref);
382 alias_set_type later_set = ao_ref_alias_set (&later_ref);
383 if (!(earlier_set == later_set
384 || alias_set_subset_of (later_set, earlier_set)))
385 return false;
386 alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref);
387 alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref);
388 return (earlier_base_set == later_base_set
389 || alias_set_subset_of (later_base_set, earlier_base_set));
392 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
393 such an entry, or NULL otherwise. */
395 static inline alias_set_entry *
396 get_alias_set_entry (alias_set_type alias_set)
398 return (*alias_sets)[alias_set];
401 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
402 the two MEMs cannot alias each other. */
404 static inline int
405 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
407 return (flag_strict_aliasing
408 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
409 MEM_ALIAS_SET (mem2)));
412 /* Return true if the first alias set is a subset of the second. */
414 bool
415 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
417 alias_set_entry *ase2;
419 /* Disable TBAA oracle with !flag_strict_aliasing. */
420 if (!flag_strict_aliasing)
421 return true;
423 /* Everything is a subset of the "aliases everything" set. */
424 if (set2 == 0)
425 return true;
427 /* Check if set1 is a subset of set2. */
428 ase2 = get_alias_set_entry (set2);
429 if (ase2 != 0
430 && (ase2->has_zero_child
431 || (ase2->children && ase2->children->get (set1))))
432 return true;
434 /* As a special case we consider alias set of "void *" to be both subset
435 and superset of every alias set of a pointer. This extra symmetry does
436 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
437 to return true on the following testcase:
439 void *ptr;
440 char **ptr2=(char **)&ptr;
441 *ptr2 = ...
443 Additionally if a set contains universal pointer, we consider every pointer
444 to be a subset of it, but we do not represent this explicitely - doing so
445 would require us to update transitive closure each time we introduce new
446 pointer type. This makes aliasing_component_refs_p to return true
447 on the following testcase:
449 struct a {void *ptr;}
450 char **ptr = (char **)&a.ptr;
451 ptr = ...
453 This makes void * truly universal pointer type. See pointer handling in
454 get_alias_set for more details. */
455 if (ase2 && ase2->has_pointer)
457 alias_set_entry *ase1 = get_alias_set_entry (set1);
459 if (ase1 && ase1->is_pointer)
461 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
462 /* If one is ptr_type_node and other is pointer, then we consider
463 them subset of each other. */
464 if (set1 == voidptr_set || set2 == voidptr_set)
465 return true;
466 /* If SET2 contains universal pointer's alias set, then we consdier
467 every (non-universal) pointer. */
468 if (ase2->children && set1 != voidptr_set
469 && ase2->children->get (voidptr_set))
470 return true;
473 return false;
476 /* Return 1 if the two specified alias sets may conflict. */
479 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
481 alias_set_entry *ase1;
482 alias_set_entry *ase2;
484 /* The easy case. */
485 if (alias_sets_must_conflict_p (set1, set2))
486 return 1;
488 /* See if the first alias set is a subset of the second. */
489 ase1 = get_alias_set_entry (set1);
490 if (ase1 != 0
491 && ase1->children && ase1->children->get (set2))
493 ++alias_stats.num_dag;
494 return 1;
497 /* Now do the same, but with the alias sets reversed. */
498 ase2 = get_alias_set_entry (set2);
499 if (ase2 != 0
500 && ase2->children && ase2->children->get (set1))
502 ++alias_stats.num_dag;
503 return 1;
506 /* We want void * to be compatible with any other pointer without
507 really dropping it to alias set 0. Doing so would make it
508 compatible with all non-pointer types too.
510 This is not strictly necessary by the C/C++ language
511 standards, but avoids common type punning mistakes. In
512 addition to that, we need the existence of such universal
513 pointer to implement Fortran's C_PTR type (which is defined as
514 type compatible with all C pointers). */
515 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
517 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
519 /* If one of the sets corresponds to universal pointer,
520 we consider it to conflict with anything that is
521 or contains pointer. */
522 if (set1 == voidptr_set || set2 == voidptr_set)
524 ++alias_stats.num_universal;
525 return true;
527 /* If one of sets is (non-universal) pointer and the other
528 contains universal pointer, we also get conflict. */
529 if (ase1->is_pointer && set2 != voidptr_set
530 && ase2->children && ase2->children->get (voidptr_set))
532 ++alias_stats.num_universal;
533 return true;
535 if (ase2->is_pointer && set1 != voidptr_set
536 && ase1->children && ase1->children->get (voidptr_set))
538 ++alias_stats.num_universal;
539 return true;
543 ++alias_stats.num_disambiguated;
545 /* The two alias sets are distinct and neither one is the
546 child of the other. Therefore, they cannot conflict. */
547 return 0;
550 /* Return 1 if the two specified alias sets will always conflict. */
553 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
555 /* Disable TBAA oracle with !flag_strict_aliasing. */
556 if (!flag_strict_aliasing)
557 return 1;
558 if (set1 == 0 || set2 == 0)
560 ++alias_stats.num_alias_zero;
561 return 1;
563 if (set1 == set2)
565 ++alias_stats.num_same_alias_set;
566 return 1;
569 return 0;
572 /* Return 1 if any MEM object of type T1 will always conflict (using the
573 dependency routines in this file) with any MEM object of type T2.
574 This is used when allocating temporary storage. If T1 and/or T2 are
575 NULL_TREE, it means we know nothing about the storage. */
578 objects_must_conflict_p (tree t1, tree t2)
580 alias_set_type set1, set2;
582 /* If neither has a type specified, we don't know if they'll conflict
583 because we may be using them to store objects of various types, for
584 example the argument and local variables areas of inlined functions. */
585 if (t1 == 0 && t2 == 0)
586 return 0;
588 /* If they are the same type, they must conflict. */
589 if (t1 == t2)
591 ++alias_stats.num_same_objects;
592 return 1;
594 /* Likewise if both are volatile. */
595 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
597 ++alias_stats.num_volatile;
598 return 1;
601 set1 = t1 ? get_alias_set (t1) : 0;
602 set2 = t2 ? get_alias_set (t2) : 0;
604 /* We can't use alias_sets_conflict_p because we must make sure
605 that every subtype of t1 will conflict with every subtype of
606 t2 for which a pair of subobjects of these respective subtypes
607 overlaps on the stack. */
608 return alias_sets_must_conflict_p (set1, set2);
611 /* Return true if T is an end of the access path which can be used
612 by type based alias oracle. */
614 bool
615 ends_tbaa_access_path_p (const_tree t)
617 switch (TREE_CODE (t))
619 case COMPONENT_REF:
620 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
621 return true;
622 /* Permit type-punning when accessing a union, provided the access
623 is directly through the union. For example, this code does not
624 permit taking the address of a union member and then storing
625 through it. Even the type-punning allowed here is a GCC
626 extension, albeit a common and useful one; the C standard says
627 that such accesses have implementation-defined behavior. */
628 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
629 return true;
630 break;
632 case ARRAY_REF:
633 case ARRAY_RANGE_REF:
634 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
635 return true;
636 break;
638 case REALPART_EXPR:
639 case IMAGPART_EXPR:
640 break;
642 case BIT_FIELD_REF:
643 case VIEW_CONVERT_EXPR:
644 /* Bitfields and casts are never addressable. */
645 return true;
646 break;
648 default:
649 gcc_unreachable ();
651 return false;
654 /* Return the outermost parent of component present in the chain of
655 component references handled by get_inner_reference in T with the
656 following property:
657 - the component is non-addressable
658 or NULL_TREE if no such parent exists. In the former cases, the alias
659 set of this parent is the alias set that must be used for T itself. */
661 tree
662 component_uses_parent_alias_set_from (const_tree t)
664 const_tree found = NULL_TREE;
666 while (handled_component_p (t))
668 if (ends_tbaa_access_path_p (t))
669 found = t;
671 t = TREE_OPERAND (t, 0);
674 if (found)
675 return TREE_OPERAND (found, 0);
677 return NULL_TREE;
681 /* Return whether the pointer-type T effective for aliasing may
682 access everything and thus the reference has to be assigned
683 alias-set zero. */
685 static bool
686 ref_all_alias_ptr_type_p (const_tree t)
688 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
689 || TYPE_REF_CAN_ALIAS_ALL (t));
692 /* Return the alias set for the memory pointed to by T, which may be
693 either a type or an expression. Return -1 if there is nothing
694 special about dereferencing T. */
696 static alias_set_type
697 get_deref_alias_set_1 (tree t)
699 /* All we care about is the type. */
700 if (! TYPE_P (t))
701 t = TREE_TYPE (t);
703 /* If we have an INDIRECT_REF via a void pointer, we don't
704 know anything about what that might alias. Likewise if the
705 pointer is marked that way. */
706 if (ref_all_alias_ptr_type_p (t))
707 return 0;
709 return -1;
712 /* Return the alias set for the memory pointed to by T, which may be
713 either a type or an expression. */
715 alias_set_type
716 get_deref_alias_set (tree t)
718 /* If we're not doing any alias analysis, just assume everything
719 aliases everything else. */
720 if (!flag_strict_aliasing)
721 return 0;
723 alias_set_type set = get_deref_alias_set_1 (t);
725 /* Fall back to the alias-set of the pointed-to type. */
726 if (set == -1)
728 if (! TYPE_P (t))
729 t = TREE_TYPE (t);
730 set = get_alias_set (TREE_TYPE (t));
733 return set;
736 /* Return the pointer-type relevant for TBAA purposes from the
737 memory reference tree *T or NULL_TREE in which case *T is
738 adjusted to point to the outermost component reference that
739 can be used for assigning an alias set. */
741 tree
742 reference_alias_ptr_type_1 (tree *t)
744 tree inner;
746 /* Get the base object of the reference. */
747 inner = *t;
748 while (handled_component_p (inner))
750 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
751 the type of any component references that wrap it to
752 determine the alias-set. */
753 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
754 *t = TREE_OPERAND (inner, 0);
755 inner = TREE_OPERAND (inner, 0);
758 /* Handle pointer dereferences here, they can override the
759 alias-set. */
760 if (INDIRECT_REF_P (inner)
761 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
762 return TREE_TYPE (TREE_OPERAND (inner, 0));
763 else if (TREE_CODE (inner) == TARGET_MEM_REF)
764 return TREE_TYPE (TMR_OFFSET (inner));
765 else if (TREE_CODE (inner) == MEM_REF
766 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
767 return TREE_TYPE (TREE_OPERAND (inner, 1));
769 /* If the innermost reference is a MEM_REF that has a
770 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
771 using the memory access type for determining the alias-set. */
772 if (TREE_CODE (inner) == MEM_REF
773 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
774 != TYPE_MAIN_VARIANT
775 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
776 return TREE_TYPE (TREE_OPERAND (inner, 1));
778 /* Otherwise, pick up the outermost object that we could have
779 a pointer to. */
780 tree tem = component_uses_parent_alias_set_from (*t);
781 if (tem)
782 *t = tem;
784 return NULL_TREE;
787 /* Return the pointer-type relevant for TBAA purposes from the
788 gimple memory reference tree T. This is the type to be used for
789 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
790 and guarantees that get_alias_set will return the same alias
791 set for T and the replacement. */
793 tree
794 reference_alias_ptr_type (tree t)
796 /* If the frontend assigns this alias-set zero, preserve that. */
797 if (lang_hooks.get_alias_set (t) == 0)
798 return ptr_type_node;
800 tree ptype = reference_alias_ptr_type_1 (&t);
801 /* If there is a given pointer type for aliasing purposes, return it. */
802 if (ptype != NULL_TREE)
803 return ptype;
805 /* Otherwise build one from the outermost component reference we
806 may use. */
807 if (TREE_CODE (t) == MEM_REF
808 || TREE_CODE (t) == TARGET_MEM_REF)
809 return TREE_TYPE (TREE_OPERAND (t, 1));
810 else
811 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
814 /* Return whether the pointer-types T1 and T2 used to determine
815 two alias sets of two references will yield the same answer
816 from get_deref_alias_set. */
818 bool
819 alias_ptr_types_compatible_p (tree t1, tree t2)
821 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
822 return true;
824 if (ref_all_alias_ptr_type_p (t1)
825 || ref_all_alias_ptr_type_p (t2))
826 return false;
828 /* This function originally abstracts from simply comparing
829 get_deref_alias_set so that we are sure this still computes
830 the same result after LTO type merging is applied.
831 When in LTO type merging is done we can actually do this compare.
833 if (in_lto_p)
834 return get_deref_alias_set (t1) == get_deref_alias_set (t2);
835 else
836 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
837 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
840 /* Create emptry alias set entry. */
842 alias_set_entry *
843 init_alias_set_entry (alias_set_type set)
845 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
846 ase->alias_set = set;
847 ase->children = NULL;
848 ase->has_zero_child = false;
849 ase->is_pointer = false;
850 ase->has_pointer = false;
851 gcc_checking_assert (!get_alias_set_entry (set));
852 (*alias_sets)[set] = ase;
853 return ase;
856 /* Return the alias set for T, which may be either a type or an
857 expression. Call language-specific routine for help, if needed. */
859 alias_set_type
860 get_alias_set (tree t)
862 alias_set_type set;
864 /* We cannot give up with -fno-strict-aliasing because we need to build
865 proper type representations for possible functions which are built with
866 -fstrict-aliasing. */
868 /* return 0 if this or its type is an error. */
869 if (t == error_mark_node
870 || (! TYPE_P (t)
871 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
872 return 0;
874 /* We can be passed either an expression or a type. This and the
875 language-specific routine may make mutually-recursive calls to each other
876 to figure out what to do. At each juncture, we see if this is a tree
877 that the language may need to handle specially. First handle things that
878 aren't types. */
879 if (! TYPE_P (t))
881 /* Give the language a chance to do something with this tree
882 before we look at it. */
883 STRIP_NOPS (t);
884 set = lang_hooks.get_alias_set (t);
885 if (set != -1)
886 return set;
888 /* Get the alias pointer-type to use or the outermost object
889 that we could have a pointer to. */
890 tree ptype = reference_alias_ptr_type_1 (&t);
891 if (ptype != NULL)
892 return get_deref_alias_set (ptype);
894 /* If we've already determined the alias set for a decl, just return
895 it. This is necessary for C++ anonymous unions, whose component
896 variables don't look like union members (boo!). */
897 if (VAR_P (t)
898 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
899 return MEM_ALIAS_SET (DECL_RTL (t));
901 /* Now all we care about is the type. */
902 t = TREE_TYPE (t);
905 /* Variant qualifiers don't affect the alias set, so get the main
906 variant. */
907 t = TYPE_MAIN_VARIANT (t);
909 if (AGGREGATE_TYPE_P (t)
910 && TYPE_TYPELESS_STORAGE (t))
911 return 0;
913 /* Always use the canonical type as well. If this is a type that
914 requires structural comparisons to identify compatible types
915 use alias set zero. */
916 if (TYPE_STRUCTURAL_EQUALITY_P (t))
918 /* Allow the language to specify another alias set for this
919 type. */
920 set = lang_hooks.get_alias_set (t);
921 if (set != -1)
922 return set;
923 /* Handle structure type equality for pointer types, arrays and vectors.
924 This is easy to do, because the code below ignores canonical types on
925 these anyway. This is important for LTO, where TYPE_CANONICAL for
926 pointers cannot be meaningfully computed by the frontend. */
927 if (canonical_type_used_p (t))
929 /* In LTO we set canonical types for all types where it makes
930 sense to do so. Double check we did not miss some type. */
931 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
932 return 0;
935 else
937 t = TYPE_CANONICAL (t);
938 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
941 /* If this is a type with a known alias set, return it. */
942 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
943 if (TYPE_ALIAS_SET_KNOWN_P (t))
944 return TYPE_ALIAS_SET (t);
946 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
947 if (!COMPLETE_TYPE_P (t))
949 /* For arrays with unknown size the conservative answer is the
950 alias set of the element type. */
951 if (TREE_CODE (t) == ARRAY_TYPE)
952 return get_alias_set (TREE_TYPE (t));
954 /* But return zero as a conservative answer for incomplete types. */
955 return 0;
958 /* See if the language has special handling for this type. */
959 set = lang_hooks.get_alias_set (t);
960 if (set != -1)
961 return set;
963 /* There are no objects of FUNCTION_TYPE, so there's no point in
964 using up an alias set for them. (There are, of course, pointers
965 and references to functions, but that's different.) */
966 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
967 set = 0;
969 /* Unless the language specifies otherwise, let vector types alias
970 their components. This avoids some nasty type punning issues in
971 normal usage. And indeed lets vectors be treated more like an
972 array slice. */
973 else if (TREE_CODE (t) == VECTOR_TYPE)
974 set = get_alias_set (TREE_TYPE (t));
976 /* Unless the language specifies otherwise, treat array types the
977 same as their components. This avoids the asymmetry we get
978 through recording the components. Consider accessing a
979 character(kind=1) through a reference to a character(kind=1)[1:1].
980 Or consider if we want to assign integer(kind=4)[0:D.1387] and
981 integer(kind=4)[4] the same alias set or not.
982 Just be pragmatic here and make sure the array and its element
983 type get the same alias set assigned. */
984 else if (TREE_CODE (t) == ARRAY_TYPE
985 && (!TYPE_NONALIASED_COMPONENT (t)
986 || TYPE_STRUCTURAL_EQUALITY_P (t)))
987 set = get_alias_set (TREE_TYPE (t));
989 /* From the former common C and C++ langhook implementation:
991 Unfortunately, there is no canonical form of a pointer type.
992 In particular, if we have `typedef int I', then `int *', and
993 `I *' are different types. So, we have to pick a canonical
994 representative. We do this below.
996 Technically, this approach is actually more conservative that
997 it needs to be. In particular, `const int *' and `int *'
998 should be in different alias sets, according to the C and C++
999 standard, since their types are not the same, and so,
1000 technically, an `int **' and `const int **' cannot point at
1001 the same thing.
1003 But, the standard is wrong. In particular, this code is
1004 legal C++:
1006 int *ip;
1007 int **ipp = &ip;
1008 const int* const* cipp = ipp;
1009 And, it doesn't make sense for that to be legal unless you
1010 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
1011 the pointed-to types. This issue has been reported to the
1012 C++ committee.
1014 For this reason go to canonical type of the unqalified pointer type.
1015 Until GCC 6 this code set all pointers sets to have alias set of
1016 ptr_type_node but that is a bad idea, because it prevents disabiguations
1017 in between pointers. For Firefox this accounts about 20% of all
1018 disambiguations in the program. */
1019 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1021 tree p;
1022 auto_vec <bool, 8> reference;
1024 /* Unnest all pointers and references.
1025 We also want to make pointer to array/vector equivalent to pointer to
1026 its element (see the reasoning above). Skip all those types, too. */
1027 for (p = t; POINTER_TYPE_P (p)
1028 || (TREE_CODE (p) == ARRAY_TYPE
1029 && (!TYPE_NONALIASED_COMPONENT (p)
1030 || !COMPLETE_TYPE_P (p)
1031 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1032 || TREE_CODE (p) == VECTOR_TYPE;
1033 p = TREE_TYPE (p))
1035 /* Ada supports recursive pointers. Instead of doing recursion
1036 check, just give up once the preallocated space of 8 elements
1037 is up. In this case just punt to void * alias set. */
1038 if (reference.length () == 8)
1040 p = ptr_type_node;
1041 break;
1043 if (TREE_CODE (p) == REFERENCE_TYPE)
1044 /* In LTO we want languages that use references to be compatible
1045 with languages that use pointers. */
1046 reference.safe_push (true && !in_lto_p);
1047 if (TREE_CODE (p) == POINTER_TYPE)
1048 reference.safe_push (false);
1050 p = TYPE_MAIN_VARIANT (p);
1052 /* In LTO for C++ programs we can turn incomplete types to complete
1053 using ODR name lookup. */
1054 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1056 p = prevailing_odr_type (p);
1057 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1060 /* Make void * compatible with char * and also void **.
1061 Programs are commonly violating TBAA by this.
1063 We also make void * to conflict with every pointer
1064 (see record_component_aliases) and thus it is safe it to use it for
1065 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1066 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1067 set = get_alias_set (ptr_type_node);
1068 else
1070 /* Rebuild pointer type starting from canonical types using
1071 unqualified pointers and references only. This way all such
1072 pointers will have the same alias set and will conflict with
1073 each other.
1075 Most of time we already have pointers or references of a given type.
1076 If not we build new one just to be sure that if someone later
1077 (probably only middle-end can, as we should assign all alias
1078 classes only after finishing translation unit) builds the pointer
1079 type, the canonical type will match. */
1080 p = TYPE_CANONICAL (p);
1081 while (!reference.is_empty ())
1083 if (reference.pop ())
1084 p = build_reference_type (p);
1085 else
1086 p = build_pointer_type (p);
1087 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1088 /* build_pointer_type should always return the canonical type.
1089 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1090 them. Be sure that frontends do not glob canonical types of
1091 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1092 in all other cases. */
1093 gcc_checking_assert (!TYPE_CANONICAL (p)
1094 || p == TYPE_CANONICAL (p));
1097 /* Assign the alias set to both p and t.
1098 We cannot call get_alias_set (p) here as that would trigger
1099 infinite recursion when p == t. In other cases it would just
1100 trigger unnecesary legwork of rebuilding the pointer again. */
1101 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1102 if (TYPE_ALIAS_SET_KNOWN_P (p))
1103 set = TYPE_ALIAS_SET (p);
1104 else
1106 set = new_alias_set ();
1107 TYPE_ALIAS_SET (p) = set;
1111 /* Alias set of ptr_type_node is special and serve as universal pointer which
1112 is TBAA compatible with every other pointer type. Be sure we have the
1113 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1114 of pointer types NULL. */
1115 else if (t == ptr_type_node)
1116 set = new_alias_set ();
1118 /* Otherwise make a new alias set for this type. */
1119 else
1121 /* Each canonical type gets its own alias set, so canonical types
1122 shouldn't form a tree. It doesn't really matter for types
1123 we handle specially above, so only check it where it possibly
1124 would result in a bogus alias set. */
1125 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1127 set = new_alias_set ();
1130 TYPE_ALIAS_SET (t) = set;
1132 /* If this is an aggregate type or a complex type, we must record any
1133 component aliasing information. */
1134 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1135 record_component_aliases (t);
1137 /* We treat pointer types specially in alias_set_subset_of. */
1138 if (POINTER_TYPE_P (t) && set)
1140 alias_set_entry *ase = get_alias_set_entry (set);
1141 if (!ase)
1142 ase = init_alias_set_entry (set);
1143 ase->is_pointer = true;
1144 ase->has_pointer = true;
1147 return set;
1150 /* Return a brand-new alias set. */
1152 alias_set_type
1153 new_alias_set (void)
1155 if (alias_sets == 0)
1156 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1157 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1158 return alias_sets->length () - 1;
1161 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1162 not everything that aliases SUPERSET also aliases SUBSET. For example,
1163 in C, a store to an `int' can alias a load of a structure containing an
1164 `int', and vice versa. But it can't alias a load of a 'double' member
1165 of the same structure. Here, the structure would be the SUPERSET and
1166 `int' the SUBSET. This relationship is also described in the comment at
1167 the beginning of this file.
1169 This function should be called only once per SUPERSET/SUBSET pair.
1171 It is illegal for SUPERSET to be zero; everything is implicitly a
1172 subset of alias set zero. */
1174 void
1175 record_alias_subset (alias_set_type superset, alias_set_type subset)
1177 alias_set_entry *superset_entry;
1178 alias_set_entry *subset_entry;
1180 /* It is possible in complex type situations for both sets to be the same,
1181 in which case we can ignore this operation. */
1182 if (superset == subset)
1183 return;
1185 gcc_assert (superset);
1187 superset_entry = get_alias_set_entry (superset);
1188 if (superset_entry == 0)
1190 /* Create an entry for the SUPERSET, so that we have a place to
1191 attach the SUBSET. */
1192 superset_entry = init_alias_set_entry (superset);
1195 if (subset == 0)
1196 superset_entry->has_zero_child = 1;
1197 else
1199 if (!superset_entry->children)
1200 superset_entry->children
1201 = hash_map<alias_set_hash, int>::create_ggc (64);
1203 /* Enter the SUBSET itself as a child of the SUPERSET. If it was
1204 already there we're done. */
1205 if (superset_entry->children->put (subset, 0))
1206 return;
1208 subset_entry = get_alias_set_entry (subset);
1209 /* If there is an entry for the subset, enter all of its children
1210 (if they are not already present) as children of the SUPERSET. */
1211 if (subset_entry)
1213 if (subset_entry->has_zero_child)
1214 superset_entry->has_zero_child = true;
1215 if (subset_entry->has_pointer)
1216 superset_entry->has_pointer = true;
1218 if (subset_entry->children)
1220 hash_map<alias_set_hash, int>::iterator iter
1221 = subset_entry->children->begin ();
1222 for (; iter != subset_entry->children->end (); ++iter)
1223 superset_entry->children->put ((*iter).first, (*iter).second);
1229 /* Record that component types of TYPE, if any, are part of SUPERSET for
1230 aliasing purposes. For record types, we only record component types
1231 for fields that are not marked non-addressable. For array types, we
1232 only record the component type if it is not marked non-aliased. */
1234 void
1235 record_component_aliases (tree type, alias_set_type superset)
1237 tree field;
1239 if (superset == 0)
1240 return;
1242 switch (TREE_CODE (type))
1244 case RECORD_TYPE:
1245 case UNION_TYPE:
1246 case QUAL_UNION_TYPE:
1248 /* LTO non-ODR type merging does not make any difference between
1249 component pointer types. We may have
1251 struct foo {int *a;};
1253 as TYPE_CANONICAL of
1255 struct bar {float *a;};
1257 Because accesses to int * and float * do not alias, we would get
1258 false negative when accessing the same memory location by
1259 float ** and bar *. We thus record the canonical type as:
1261 struct {void *a;};
1263 void * is special cased and works as a universal pointer type.
1264 Accesses to it conflicts with accesses to any other pointer
1265 type. */
1266 bool void_pointers = in_lto_p
1267 && (!odr_type_p (type)
1268 || !odr_based_tbaa_p (type));
1269 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1270 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1272 tree t = TREE_TYPE (field);
1273 if (void_pointers)
1275 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1276 element type and that type has to be normalized to void *,
1277 too, in the case it is a pointer. */
1278 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1280 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1281 t = TREE_TYPE (t);
1283 if (POINTER_TYPE_P (t))
1284 t = ptr_type_node;
1285 else if (flag_checking)
1286 gcc_checking_assert (get_alias_set (t)
1287 == get_alias_set (TREE_TYPE (field)));
1290 alias_set_type set = get_alias_set (t);
1291 record_alias_subset (superset, set);
1292 /* If the field has alias-set zero make sure to still record
1293 any componets of it. This makes sure that for
1294 struct A {
1295 struct B {
1296 int i;
1297 char c[4];
1298 } b;
1300 in C++ even though 'B' has alias-set zero because
1301 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1302 'int' as subset. */
1303 if (set == 0)
1304 record_component_aliases (t, superset);
1307 break;
1309 case COMPLEX_TYPE:
1310 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1311 break;
1313 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1314 element type. */
1316 default:
1317 break;
1321 /* Record that component types of TYPE, if any, are part of that type for
1322 aliasing purposes. For record types, we only record component types
1323 for fields that are not marked non-addressable. For array types, we
1324 only record the component type if it is not marked non-aliased. */
1326 void
1327 record_component_aliases (tree type)
1329 alias_set_type superset = get_alias_set (type);
1330 record_component_aliases (type, superset);
1334 /* Allocate an alias set for use in storing and reading from the varargs
1335 spill area. */
1337 static GTY(()) alias_set_type varargs_set = -1;
1339 alias_set_type
1340 get_varargs_alias_set (void)
1342 #if 1
1343 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1344 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1345 consistently use the varargs alias set for loads from the varargs
1346 area. So don't use it anywhere. */
1347 return 0;
1348 #else
1349 if (varargs_set == -1)
1350 varargs_set = new_alias_set ();
1352 return varargs_set;
1353 #endif
1356 /* Likewise, but used for the fixed portions of the frame, e.g., register
1357 save areas. */
1359 static GTY(()) alias_set_type frame_set = -1;
1361 alias_set_type
1362 get_frame_alias_set (void)
1364 if (frame_set == -1)
1365 frame_set = new_alias_set ();
1367 return frame_set;
1370 /* Create a new, unique base with id ID. */
1372 static rtx
1373 unique_base_value (HOST_WIDE_INT id)
1375 return gen_rtx_ADDRESS (Pmode, id);
1378 /* Return true if accesses based on any other base value cannot alias
1379 those based on X. */
1381 static bool
1382 unique_base_value_p (rtx x)
1384 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1387 /* Return true if X is known to be a base value. */
1389 static bool
1390 known_base_value_p (rtx x)
1392 switch (GET_CODE (x))
1394 case LABEL_REF:
1395 case SYMBOL_REF:
1396 return true;
1398 case ADDRESS:
1399 /* Arguments may or may not be bases; we don't know for sure. */
1400 return GET_MODE (x) != VOIDmode;
1402 default:
1403 return false;
1407 /* Inside SRC, the source of a SET, find a base address. */
1409 static rtx
1410 find_base_value (rtx src)
1412 unsigned int regno;
1413 scalar_int_mode int_mode;
1415 #if defined (FIND_BASE_TERM)
1416 /* Try machine-dependent ways to find the base term. */
1417 src = FIND_BASE_TERM (src);
1418 #endif
1420 switch (GET_CODE (src))
1422 case SYMBOL_REF:
1423 case LABEL_REF:
1424 return src;
1426 case REG:
1427 regno = REGNO (src);
1428 /* At the start of a function, argument registers have known base
1429 values which may be lost later. Returning an ADDRESS
1430 expression here allows optimization based on argument values
1431 even when the argument registers are used for other purposes. */
1432 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1433 return new_reg_base_value[regno];
1435 /* If a pseudo has a known base value, return it. Do not do this
1436 for non-fixed hard regs since it can result in a circular
1437 dependency chain for registers which have values at function entry.
1439 The test above is not sufficient because the scheduler may move
1440 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1441 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1442 && regno < vec_safe_length (reg_base_value))
1444 /* If we're inside init_alias_analysis, use new_reg_base_value
1445 to reduce the number of relaxation iterations. */
1446 if (new_reg_base_value && new_reg_base_value[regno]
1447 && DF_REG_DEF_COUNT (regno) == 1)
1448 return new_reg_base_value[regno];
1450 if ((*reg_base_value)[regno])
1451 return (*reg_base_value)[regno];
1454 return 0;
1456 case MEM:
1457 /* Check for an argument passed in memory. Only record in the
1458 copying-arguments block; it is too hard to track changes
1459 otherwise. */
1460 if (copying_arguments
1461 && (XEXP (src, 0) == arg_pointer_rtx
1462 || (GET_CODE (XEXP (src, 0)) == PLUS
1463 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1464 return arg_base_value;
1465 return 0;
1467 case CONST:
1468 src = XEXP (src, 0);
1469 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1470 break;
1472 /* fall through */
1474 case PLUS:
1475 case MINUS:
1477 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1479 /* If either operand is a REG that is a known pointer, then it
1480 is the base. */
1481 if (REG_P (src_0) && REG_POINTER (src_0))
1482 return find_base_value (src_0);
1483 if (REG_P (src_1) && REG_POINTER (src_1))
1484 return find_base_value (src_1);
1486 /* If either operand is a REG, then see if we already have
1487 a known value for it. */
1488 if (REG_P (src_0))
1490 temp = find_base_value (src_0);
1491 if (temp != 0)
1492 src_0 = temp;
1495 if (REG_P (src_1))
1497 temp = find_base_value (src_1);
1498 if (temp!= 0)
1499 src_1 = temp;
1502 /* If either base is named object or a special address
1503 (like an argument or stack reference), then use it for the
1504 base term. */
1505 if (src_0 != 0 && known_base_value_p (src_0))
1506 return src_0;
1508 if (src_1 != 0 && known_base_value_p (src_1))
1509 return src_1;
1511 /* Guess which operand is the base address:
1512 If either operand is a symbol, then it is the base. If
1513 either operand is a CONST_INT, then the other is the base. */
1514 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1515 return find_base_value (src_0);
1516 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1517 return find_base_value (src_1);
1519 return 0;
1522 case LO_SUM:
1523 /* The standard form is (lo_sum reg sym) so look only at the
1524 second operand. */
1525 return find_base_value (XEXP (src, 1));
1527 case AND:
1528 /* Look through aligning ANDs. And AND with zero or one with
1529 the LSB set isn't one (see for example PR92462). */
1530 if (CONST_INT_P (XEXP (src, 1))
1531 && INTVAL (XEXP (src, 1)) != 0
1532 && (INTVAL (XEXP (src, 1)) & 1) == 0)
1533 return find_base_value (XEXP (src, 0));
1534 return 0;
1536 case TRUNCATE:
1537 /* As we do not know which address space the pointer is referring to, we can
1538 handle this only if the target does not support different pointer or
1539 address modes depending on the address space. */
1540 if (!target_default_pointer_address_modes_p ())
1541 break;
1542 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1543 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1544 break;
1545 /* Fall through. */
1546 case HIGH:
1547 case PRE_INC:
1548 case PRE_DEC:
1549 case POST_INC:
1550 case POST_DEC:
1551 case PRE_MODIFY:
1552 case POST_MODIFY:
1553 return find_base_value (XEXP (src, 0));
1555 case ZERO_EXTEND:
1556 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1557 /* As we do not know which address space the pointer is referring to, we can
1558 handle this only if the target does not support different pointer or
1559 address modes depending on the address space. */
1560 if (!target_default_pointer_address_modes_p ())
1561 break;
1564 rtx temp = find_base_value (XEXP (src, 0));
1566 if (temp != 0 && CONSTANT_P (temp))
1567 temp = convert_memory_address (Pmode, temp);
1569 return temp;
1572 default:
1573 break;
1576 return 0;
1579 /* Called from init_alias_analysis indirectly through note_stores,
1580 or directly if DEST is a register with a REG_NOALIAS note attached.
1581 SET is null in the latter case. */
1583 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1584 register N has been set in this function. */
1585 static sbitmap reg_seen;
1587 static void
1588 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1590 unsigned regno;
1591 rtx src;
1592 int n;
1594 if (!REG_P (dest))
1595 return;
1597 regno = REGNO (dest);
1599 gcc_checking_assert (regno < reg_base_value->length ());
1601 n = REG_NREGS (dest);
1602 if (n != 1)
1604 while (--n >= 0)
1606 bitmap_set_bit (reg_seen, regno + n);
1607 new_reg_base_value[regno + n] = 0;
1609 return;
1612 if (set)
1614 /* A CLOBBER wipes out any old value but does not prevent a previously
1615 unset register from acquiring a base address (i.e. reg_seen is not
1616 set). */
1617 if (GET_CODE (set) == CLOBBER)
1619 new_reg_base_value[regno] = 0;
1620 return;
1623 src = SET_SRC (set);
1625 else
1627 /* There's a REG_NOALIAS note against DEST. */
1628 if (bitmap_bit_p (reg_seen, regno))
1630 new_reg_base_value[regno] = 0;
1631 return;
1633 bitmap_set_bit (reg_seen, regno);
1634 new_reg_base_value[regno] = unique_base_value (unique_id++);
1635 return;
1638 /* If this is not the first set of REGNO, see whether the new value
1639 is related to the old one. There are two cases of interest:
1641 (1) The register might be assigned an entirely new value
1642 that has the same base term as the original set.
1644 (2) The set might be a simple self-modification that
1645 cannot change REGNO's base value.
1647 If neither case holds, reject the original base value as invalid.
1648 Note that the following situation is not detected:
1650 extern int x, y; int *p = &x; p += (&y-&x);
1652 ANSI C does not allow computing the difference of addresses
1653 of distinct top level objects. */
1654 if (new_reg_base_value[regno] != 0
1655 && find_base_value (src) != new_reg_base_value[regno])
1656 switch (GET_CODE (src))
1658 case LO_SUM:
1659 case MINUS:
1660 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1661 new_reg_base_value[regno] = 0;
1662 break;
1663 case PLUS:
1664 /* If the value we add in the PLUS is also a valid base value,
1665 this might be the actual base value, and the original value
1666 an index. */
1668 rtx other = NULL_RTX;
1670 if (XEXP (src, 0) == dest)
1671 other = XEXP (src, 1);
1672 else if (XEXP (src, 1) == dest)
1673 other = XEXP (src, 0);
1675 if (! other || find_base_value (other))
1676 new_reg_base_value[regno] = 0;
1677 break;
1679 case AND:
1680 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1681 new_reg_base_value[regno] = 0;
1682 break;
1683 default:
1684 new_reg_base_value[regno] = 0;
1685 break;
1687 /* If this is the first set of a register, record the value. */
1688 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1689 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1690 new_reg_base_value[regno] = find_base_value (src);
1692 bitmap_set_bit (reg_seen, regno);
1695 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1696 using hard registers with non-null REG_BASE_VALUE for renaming. */
1698 get_reg_base_value (unsigned int regno)
1700 return (*reg_base_value)[regno];
1703 /* If a value is known for REGNO, return it. */
1706 get_reg_known_value (unsigned int regno)
1708 if (regno >= FIRST_PSEUDO_REGISTER)
1710 regno -= FIRST_PSEUDO_REGISTER;
1711 if (regno < vec_safe_length (reg_known_value))
1712 return (*reg_known_value)[regno];
1714 return NULL;
1717 /* Set it. */
1719 static void
1720 set_reg_known_value (unsigned int regno, rtx val)
1722 if (regno >= FIRST_PSEUDO_REGISTER)
1724 regno -= FIRST_PSEUDO_REGISTER;
1725 if (regno < vec_safe_length (reg_known_value))
1726 (*reg_known_value)[regno] = val;
1730 /* Similarly for reg_known_equiv_p. */
1732 bool
1733 get_reg_known_equiv_p (unsigned int regno)
1735 if (regno >= FIRST_PSEUDO_REGISTER)
1737 regno -= FIRST_PSEUDO_REGISTER;
1738 if (regno < vec_safe_length (reg_known_value))
1739 return bitmap_bit_p (reg_known_equiv_p, regno);
1741 return false;
1744 static void
1745 set_reg_known_equiv_p (unsigned int regno, bool val)
1747 if (regno >= FIRST_PSEUDO_REGISTER)
1749 regno -= FIRST_PSEUDO_REGISTER;
1750 if (regno < vec_safe_length (reg_known_value))
1752 if (val)
1753 bitmap_set_bit (reg_known_equiv_p, regno);
1754 else
1755 bitmap_clear_bit (reg_known_equiv_p, regno);
1761 /* Returns a canonical version of X, from the point of view alias
1762 analysis. (For example, if X is a MEM whose address is a register,
1763 and the register has a known value (say a SYMBOL_REF), then a MEM
1764 whose address is the SYMBOL_REF is returned.) */
1767 canon_rtx (rtx x)
1769 /* Recursively look for equivalences. */
1770 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1772 rtx t = get_reg_known_value (REGNO (x));
1773 if (t == x)
1774 return x;
1775 if (t)
1776 return canon_rtx (t);
1779 if (GET_CODE (x) == PLUS)
1781 rtx x0 = canon_rtx (XEXP (x, 0));
1782 rtx x1 = canon_rtx (XEXP (x, 1));
1784 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1785 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1788 /* This gives us much better alias analysis when called from
1789 the loop optimizer. Note we want to leave the original
1790 MEM alone, but need to return the canonicalized MEM with
1791 all the flags with their original values. */
1792 else if (MEM_P (x))
1793 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1795 return x;
1798 /* Return 1 if X and Y are identical-looking rtx's.
1799 Expect that X and Y has been already canonicalized.
1801 We use the data in reg_known_value above to see if two registers with
1802 different numbers are, in fact, equivalent. */
1804 static int
1805 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1807 int i;
1808 int j;
1809 enum rtx_code code;
1810 const char *fmt;
1812 if (x == 0 && y == 0)
1813 return 1;
1814 if (x == 0 || y == 0)
1815 return 0;
1817 if (x == y)
1818 return 1;
1820 code = GET_CODE (x);
1821 /* Rtx's of different codes cannot be equal. */
1822 if (code != GET_CODE (y))
1823 return 0;
1825 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1826 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1828 if (GET_MODE (x) != GET_MODE (y))
1829 return 0;
1831 /* Some RTL can be compared without a recursive examination. */
1832 switch (code)
1834 case REG:
1835 return REGNO (x) == REGNO (y);
1837 case LABEL_REF:
1838 return label_ref_label (x) == label_ref_label (y);
1840 case SYMBOL_REF:
1842 HOST_WIDE_INT distance = 0;
1843 return (compare_base_symbol_refs (x, y, &distance) == 1
1844 && distance == 0);
1847 case ENTRY_VALUE:
1848 /* This is magic, don't go through canonicalization et al. */
1849 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1851 case VALUE:
1852 CASE_CONST_UNIQUE:
1853 /* Pointer equality guarantees equality for these nodes. */
1854 return 0;
1856 default:
1857 break;
1860 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1861 if (code == PLUS)
1862 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1863 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1864 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1865 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1866 /* For commutative operations, the RTX match if the operand match in any
1867 order. Also handle the simple binary and unary cases without a loop. */
1868 if (COMMUTATIVE_P (x))
1870 rtx xop0 = canon_rtx (XEXP (x, 0));
1871 rtx yop0 = canon_rtx (XEXP (y, 0));
1872 rtx yop1 = canon_rtx (XEXP (y, 1));
1874 return ((rtx_equal_for_memref_p (xop0, yop0)
1875 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1876 || (rtx_equal_for_memref_p (xop0, yop1)
1877 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1879 else if (NON_COMMUTATIVE_P (x))
1881 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1882 canon_rtx (XEXP (y, 0)))
1883 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1884 canon_rtx (XEXP (y, 1))));
1886 else if (UNARY_P (x))
1887 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1888 canon_rtx (XEXP (y, 0)));
1890 /* Compare the elements. If any pair of corresponding elements
1891 fail to match, return 0 for the whole things.
1893 Limit cases to types which actually appear in addresses. */
1895 fmt = GET_RTX_FORMAT (code);
1896 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1898 switch (fmt[i])
1900 case 'i':
1901 if (XINT (x, i) != XINT (y, i))
1902 return 0;
1903 break;
1905 case 'p':
1906 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1907 return 0;
1908 break;
1910 case 'E':
1911 /* Two vectors must have the same length. */
1912 if (XVECLEN (x, i) != XVECLEN (y, i))
1913 return 0;
1915 /* And the corresponding elements must match. */
1916 for (j = 0; j < XVECLEN (x, i); j++)
1917 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1918 canon_rtx (XVECEXP (y, i, j))) == 0)
1919 return 0;
1920 break;
1922 case 'e':
1923 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1924 canon_rtx (XEXP (y, i))) == 0)
1925 return 0;
1926 break;
1928 /* This can happen for asm operands. */
1929 case 's':
1930 if (strcmp (XSTR (x, i), XSTR (y, i)))
1931 return 0;
1932 break;
1934 /* This can happen for an asm which clobbers memory. */
1935 case '0':
1936 break;
1938 /* It is believed that rtx's at this level will never
1939 contain anything but integers and other rtx's,
1940 except for within LABEL_REFs and SYMBOL_REFs. */
1941 default:
1942 gcc_unreachable ();
1945 return 1;
1948 static rtx
1949 find_base_term (rtx x, vec<std::pair<cselib_val *,
1950 struct elt_loc_list *> > &visited_vals)
1952 cselib_val *val;
1953 struct elt_loc_list *l, *f;
1954 rtx ret;
1955 scalar_int_mode int_mode;
1957 #if defined (FIND_BASE_TERM)
1958 /* Try machine-dependent ways to find the base term. */
1959 x = FIND_BASE_TERM (x);
1960 #endif
1962 switch (GET_CODE (x))
1964 case REG:
1965 return REG_BASE_VALUE (x);
1967 case TRUNCATE:
1968 /* As we do not know which address space the pointer is referring to, we can
1969 handle this only if the target does not support different pointer or
1970 address modes depending on the address space. */
1971 if (!target_default_pointer_address_modes_p ())
1972 return 0;
1973 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1974 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1975 return 0;
1976 /* Fall through. */
1977 case HIGH:
1978 case PRE_INC:
1979 case PRE_DEC:
1980 case POST_INC:
1981 case POST_DEC:
1982 case PRE_MODIFY:
1983 case POST_MODIFY:
1984 return find_base_term (XEXP (x, 0), visited_vals);
1986 case ZERO_EXTEND:
1987 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1988 /* As we do not know which address space the pointer is referring to, we can
1989 handle this only if the target does not support different pointer or
1990 address modes depending on the address space. */
1991 if (!target_default_pointer_address_modes_p ())
1992 return 0;
1995 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1997 if (temp != 0 && CONSTANT_P (temp))
1998 temp = convert_memory_address (Pmode, temp);
2000 return temp;
2003 case VALUE:
2004 val = CSELIB_VAL_PTR (x);
2005 ret = NULL_RTX;
2007 if (!val)
2008 return ret;
2010 if (cselib_sp_based_value_p (val))
2011 return static_reg_base_value[STACK_POINTER_REGNUM];
2013 if (visited_vals.length () > (unsigned) param_max_find_base_term_values)
2014 return ret;
2016 f = val->locs;
2017 /* Reset val->locs to avoid infinite recursion. */
2018 if (f)
2019 visited_vals.safe_push (std::make_pair (val, f));
2020 val->locs = NULL;
2022 for (l = f; l; l = l->next)
2023 if (GET_CODE (l->loc) == VALUE
2024 && CSELIB_VAL_PTR (l->loc)->locs
2025 && !CSELIB_VAL_PTR (l->loc)->locs->next
2026 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
2027 continue;
2028 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
2029 break;
2031 return ret;
2033 case LO_SUM:
2034 /* The standard form is (lo_sum reg sym) so look only at the
2035 second operand. */
2036 return find_base_term (XEXP (x, 1), visited_vals);
2038 case CONST:
2039 x = XEXP (x, 0);
2040 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
2041 return 0;
2042 /* Fall through. */
2043 case PLUS:
2044 case MINUS:
2046 rtx tmp1 = XEXP (x, 0);
2047 rtx tmp2 = XEXP (x, 1);
2049 /* This is a little bit tricky since we have to determine which of
2050 the two operands represents the real base address. Otherwise this
2051 routine may return the index register instead of the base register.
2053 That may cause us to believe no aliasing was possible, when in
2054 fact aliasing is possible.
2056 We use a few simple tests to guess the base register. Additional
2057 tests can certainly be added. For example, if one of the operands
2058 is a shift or multiply, then it must be the index register and the
2059 other operand is the base register. */
2061 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2062 return find_base_term (tmp2, visited_vals);
2064 /* If either operand is known to be a pointer, then prefer it
2065 to determine the base term. */
2066 if (REG_P (tmp1) && REG_POINTER (tmp1))
2068 else if (REG_P (tmp2) && REG_POINTER (tmp2))
2069 std::swap (tmp1, tmp2);
2070 /* If second argument is constant which has base term, prefer it
2071 over variable tmp1. See PR64025. */
2072 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2073 std::swap (tmp1, tmp2);
2075 /* Go ahead and find the base term for both operands. If either base
2076 term is from a pointer or is a named object or a special address
2077 (like an argument or stack reference), then use it for the
2078 base term. */
2079 rtx base = find_base_term (tmp1, visited_vals);
2080 if (base != NULL_RTX
2081 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2082 || known_base_value_p (base)))
2083 return base;
2084 base = find_base_term (tmp2, visited_vals);
2085 if (base != NULL_RTX
2086 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2087 || known_base_value_p (base)))
2088 return base;
2090 /* We could not determine which of the two operands was the
2091 base register and which was the index. So we can determine
2092 nothing from the base alias check. */
2093 return 0;
2096 case AND:
2097 /* Look through aligning ANDs. And AND with zero or one with
2098 the LSB set isn't one (see for example PR92462). */
2099 if (CONST_INT_P (XEXP (x, 1))
2100 && INTVAL (XEXP (x, 1)) != 0
2101 && (INTVAL (XEXP (x, 1)) & 1) == 0)
2102 return find_base_term (XEXP (x, 0), visited_vals);
2103 return 0;
2105 case SYMBOL_REF:
2106 case LABEL_REF:
2107 return x;
2109 default:
2110 return 0;
2114 /* Wrapper around the worker above which removes locs from visited VALUEs
2115 to avoid visiting them multiple times. We unwind that changes here. */
2117 static rtx
2118 find_base_term (rtx x)
2120 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2121 rtx res = find_base_term (x, visited_vals);
2122 for (unsigned i = 0; i < visited_vals.length (); ++i)
2123 visited_vals[i].first->locs = visited_vals[i].second;
2124 return res;
2127 /* Return true if accesses to address X may alias accesses based
2128 on the stack pointer. */
2130 bool
2131 may_be_sp_based_p (rtx x)
2133 rtx base = find_base_term (x);
2134 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2137 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2138 if they refer to different objects and -1 if we cannot decide. */
2141 compare_base_decls (tree base1, tree base2)
2143 int ret;
2144 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2145 if (base1 == base2)
2146 return 1;
2148 /* If we have two register decls with register specification we
2149 cannot decide unless their assembler names are the same. */
2150 if (VAR_P (base1)
2151 && VAR_P (base2)
2152 && DECL_HARD_REGISTER (base1)
2153 && DECL_HARD_REGISTER (base2)
2154 && DECL_ASSEMBLER_NAME_SET_P (base1)
2155 && DECL_ASSEMBLER_NAME_SET_P (base2))
2157 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2158 return 1;
2159 return -1;
2162 /* Declarations of non-automatic variables may have aliases. All other
2163 decls are unique. */
2164 if (!decl_in_symtab_p (base1)
2165 || !decl_in_symtab_p (base2))
2166 return 0;
2168 /* Don't cause symbols to be inserted by the act of checking. */
2169 symtab_node *node1 = symtab_node::get (base1);
2170 if (!node1)
2171 return 0;
2172 symtab_node *node2 = symtab_node::get (base2);
2173 if (!node2)
2174 return 0;
2176 ret = node1->equal_address_to (node2, true);
2177 return ret;
2180 /* Compare SYMBOL_REFs X_BASE and Y_BASE.
2182 - Return 1 if Y_BASE - X_BASE is constant, adding that constant
2183 to *DISTANCE if DISTANCE is nonnull.
2185 - Return 0 if no accesses based on X_BASE can alias Y_BASE.
2187 - Return -1 if one of the two results applies, but we can't tell
2188 which at compile time. Update DISTANCE in the same way as
2189 for a return value of 1, for the case in which that holds. */
2191 static int
2192 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base,
2193 HOST_WIDE_INT *distance)
2195 tree x_decl = SYMBOL_REF_DECL (x_base);
2196 tree y_decl = SYMBOL_REF_DECL (y_base);
2197 bool binds_def = true;
2198 bool swap = false;
2200 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2201 return 1;
2202 if (x_decl && y_decl)
2203 return compare_base_decls (x_decl, y_decl);
2204 if (x_decl || y_decl)
2206 if (!x_decl)
2208 swap = true;
2209 std::swap (x_decl, y_decl);
2210 std::swap (x_base, y_base);
2212 /* We handle specially only section anchors. Other symbols are
2213 either equal (via aliasing) or refer to different objects. */
2214 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2215 return -1;
2216 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2217 to ignore CONST_DECLs because they are readonly. */
2218 if (!VAR_P (x_decl)
2219 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2220 return 0;
2222 symtab_node *x_node = symtab_node::get_create (x_decl)
2223 ->ultimate_alias_target ();
2224 /* External variable cannot be in section anchor. */
2225 if (!x_node->definition)
2226 return 0;
2227 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2228 /* If not in anchor, we can disambiguate. */
2229 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2230 return 0;
2232 /* We have an alias of anchored variable. If it can be interposed;
2233 we must assume it may or may not alias its anchor. */
2234 binds_def = decl_binds_to_current_def_p (x_decl);
2236 /* If we have variable in section anchor, we can compare by offset. */
2237 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2238 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2240 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2241 return 0;
2242 if (distance)
2243 *distance += (swap ? -1 : 1) * (SYMBOL_REF_BLOCK_OFFSET (y_base)
2244 - SYMBOL_REF_BLOCK_OFFSET (x_base));
2245 return binds_def ? 1 : -1;
2247 /* Either the symbols are equal (via aliasing) or they refer to
2248 different objects. */
2249 return -1;
2252 /* Return 0 if the addresses X and Y are known to point to different
2253 objects, 1 if they might be pointers to the same object. */
2255 static int
2256 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2257 machine_mode x_mode, machine_mode y_mode)
2259 /* If the address itself has no known base see if a known equivalent
2260 value has one. If either address still has no known base, nothing
2261 is known about aliasing. */
2262 if (x_base == 0)
2264 rtx x_c;
2266 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2267 return 1;
2269 x_base = find_base_term (x_c);
2270 if (x_base == 0)
2271 return 1;
2274 if (y_base == 0)
2276 rtx y_c;
2277 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2278 return 1;
2280 y_base = find_base_term (y_c);
2281 if (y_base == 0)
2282 return 1;
2285 /* If the base addresses are equal nothing is known about aliasing. */
2286 if (rtx_equal_p (x_base, y_base))
2287 return 1;
2289 /* The base addresses are different expressions. If they are not accessed
2290 via AND, there is no conflict. We can bring knowledge of object
2291 alignment into play here. For example, on alpha, "char a, b;" can
2292 alias one another, though "char a; long b;" cannot. AND addresses may
2293 implicitly alias surrounding objects; i.e. unaligned access in DImode
2294 via AND address can alias all surrounding object types except those
2295 with aligment 8 or higher. */
2296 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2297 return 1;
2298 if (GET_CODE (x) == AND
2299 && (!CONST_INT_P (XEXP (x, 1))
2300 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2301 return 1;
2302 if (GET_CODE (y) == AND
2303 && (!CONST_INT_P (XEXP (y, 1))
2304 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2305 return 1;
2307 /* Differing symbols not accessed via AND never alias. */
2308 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2309 return compare_base_symbol_refs (x_base, y_base) != 0;
2311 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2312 return 0;
2314 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2315 return 0;
2317 return 1;
2320 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2321 (or equal to) that of V. */
2323 static bool
2324 refs_newer_value_p (const_rtx expr, rtx v)
2326 int minuid = CSELIB_VAL_PTR (v)->uid;
2327 subrtx_iterator::array_type array;
2328 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2329 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2330 return true;
2331 return false;
2334 /* Convert the address X into something we can use. This is done by returning
2335 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2336 we call cselib to get a more useful rtx. */
2339 get_addr (rtx x)
2341 cselib_val *v;
2342 struct elt_loc_list *l;
2344 if (GET_CODE (x) != VALUE)
2346 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2347 && GET_CODE (XEXP (x, 0)) == VALUE
2348 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2350 rtx op0 = get_addr (XEXP (x, 0));
2351 if (op0 != XEXP (x, 0))
2353 poly_int64 c;
2354 if (GET_CODE (x) == PLUS
2355 && poly_int_rtx_p (XEXP (x, 1), &c))
2356 return plus_constant (GET_MODE (x), op0, c);
2357 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2358 op0, XEXP (x, 1));
2361 return x;
2363 v = CSELIB_VAL_PTR (x);
2364 if (v)
2366 bool have_equivs = cselib_have_permanent_equivalences ();
2367 if (have_equivs)
2368 v = canonical_cselib_val (v);
2369 for (l = v->locs; l; l = l->next)
2370 if (CONSTANT_P (l->loc))
2371 return l->loc;
2372 for (l = v->locs; l; l = l->next)
2373 if (!REG_P (l->loc) && !MEM_P (l->loc)
2374 /* Avoid infinite recursion when potentially dealing with
2375 var-tracking artificial equivalences, by skipping the
2376 equivalences themselves, and not choosing expressions
2377 that refer to newer VALUEs. */
2378 && (!have_equivs
2379 || (GET_CODE (l->loc) != VALUE
2380 && !refs_newer_value_p (l->loc, x))))
2381 return l->loc;
2382 if (have_equivs)
2384 for (l = v->locs; l; l = l->next)
2385 if (REG_P (l->loc)
2386 || (GET_CODE (l->loc) != VALUE
2387 && !refs_newer_value_p (l->loc, x)))
2388 return l->loc;
2389 /* Return the canonical value. */
2390 return v->val_rtx;
2392 if (v->locs)
2393 return v->locs->loc;
2395 return x;
2398 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2399 where SIZE is the size in bytes of the memory reference. If ADDR
2400 is not modified by the memory reference then ADDR is returned. */
2402 static rtx
2403 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2405 poly_int64 offset = 0;
2407 switch (GET_CODE (addr))
2409 case PRE_INC:
2410 offset = (n_refs + 1) * size;
2411 break;
2412 case PRE_DEC:
2413 offset = -(n_refs + 1) * size;
2414 break;
2415 case POST_INC:
2416 offset = n_refs * size;
2417 break;
2418 case POST_DEC:
2419 offset = -n_refs * size;
2420 break;
2422 default:
2423 return addr;
2426 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2427 addr = canon_rtx (addr);
2429 return addr;
2432 /* Return TRUE if an object X sized at XSIZE bytes and another object
2433 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2434 any of the sizes is zero, assume an overlap, otherwise use the
2435 absolute value of the sizes as the actual sizes. */
2437 static inline bool
2438 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2440 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2441 return true;
2443 if (maybe_ge (c, 0))
2444 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2445 else
2446 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2449 /* Return one if X and Y (memory addresses) reference the
2450 same location in memory or if the references overlap.
2451 Return zero if they do not overlap, else return
2452 minus one in which case they still might reference the same location.
2454 C is an offset accumulator. When
2455 C is nonzero, we are testing aliases between X and Y + C.
2456 XSIZE is the size in bytes of the X reference,
2457 similarly YSIZE is the size in bytes for Y.
2458 Expect that canon_rtx has been already called for X and Y.
2460 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2461 referenced (the reference was BLKmode), so make the most pessimistic
2462 assumptions.
2464 If XSIZE or YSIZE is negative, we may access memory outside the object
2465 being referenced as a side effect. This can happen when using AND to
2466 align memory references, as is done on the Alpha.
2468 Nice to notice that varying addresses cannot conflict with fp if no
2469 local variables had their addresses taken, but that's too hard now.
2471 ??? Contrary to the tree alias oracle this does not return
2472 one for X + non-constant and Y + non-constant when X and Y are equal.
2473 If that is fixed the TBAA hack for union type-punning can be removed. */
2475 static int
2476 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2477 poly_int64 c)
2479 if (GET_CODE (x) == VALUE)
2481 if (REG_P (y))
2483 struct elt_loc_list *l = NULL;
2484 if (CSELIB_VAL_PTR (x))
2485 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2486 l; l = l->next)
2487 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2488 break;
2489 if (l)
2490 x = y;
2491 else
2492 x = get_addr (x);
2494 /* Don't call get_addr if y is the same VALUE. */
2495 else if (x != y)
2496 x = get_addr (x);
2498 if (GET_CODE (y) == VALUE)
2500 if (REG_P (x))
2502 struct elt_loc_list *l = NULL;
2503 if (CSELIB_VAL_PTR (y))
2504 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2505 l; l = l->next)
2506 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2507 break;
2508 if (l)
2509 y = x;
2510 else
2511 y = get_addr (y);
2513 /* Don't call get_addr if x is the same VALUE. */
2514 else if (y != x)
2515 y = get_addr (y);
2517 if (GET_CODE (x) == HIGH)
2518 x = XEXP (x, 0);
2519 else if (GET_CODE (x) == LO_SUM)
2520 x = XEXP (x, 1);
2521 else
2522 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2523 if (GET_CODE (y) == HIGH)
2524 y = XEXP (y, 0);
2525 else if (GET_CODE (y) == LO_SUM)
2526 y = XEXP (y, 1);
2527 else
2528 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2530 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2532 HOST_WIDE_INT distance = 0;
2533 int cmp = compare_base_symbol_refs (x, y, &distance);
2535 /* If both decls are the same, decide by offsets. */
2536 if (cmp == 1)
2537 return offset_overlap_p (c + distance, xsize, ysize);
2538 /* Assume a potential overlap for symbolic addresses that went
2539 through alignment adjustments (i.e., that have negative
2540 sizes), because we can't know how far they are from each
2541 other. */
2542 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2543 return -1;
2544 /* If decls are different or we know by offsets that there is no overlap,
2545 we win. */
2546 if (!cmp || !offset_overlap_p (c + distance, xsize, ysize))
2547 return 0;
2548 /* Decls may or may not be different and offsets overlap....*/
2549 return -1;
2551 else if (rtx_equal_for_memref_p (x, y))
2553 return offset_overlap_p (c, xsize, ysize);
2556 /* This code used to check for conflicts involving stack references and
2557 globals but the base address alias code now handles these cases. */
2559 if (GET_CODE (x) == PLUS)
2561 /* The fact that X is canonicalized means that this
2562 PLUS rtx is canonicalized. */
2563 rtx x0 = XEXP (x, 0);
2564 rtx x1 = XEXP (x, 1);
2566 /* However, VALUEs might end up in different positions even in
2567 canonical PLUSes. Comparing their addresses is enough. */
2568 if (x0 == y)
2569 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2570 else if (x1 == y)
2571 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2573 poly_int64 cx1, cy1;
2574 if (GET_CODE (y) == PLUS)
2576 /* The fact that Y is canonicalized means that this
2577 PLUS rtx is canonicalized. */
2578 rtx y0 = XEXP (y, 0);
2579 rtx y1 = XEXP (y, 1);
2581 if (x0 == y1)
2582 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2583 if (x1 == y0)
2584 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2586 if (rtx_equal_for_memref_p (x1, y1))
2587 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2588 if (rtx_equal_for_memref_p (x0, y0))
2589 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2590 if (poly_int_rtx_p (x1, &cx1))
2592 if (poly_int_rtx_p (y1, &cy1))
2593 return memrefs_conflict_p (xsize, x0, ysize, y0,
2594 c - cx1 + cy1);
2595 else
2596 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2598 else if (poly_int_rtx_p (y1, &cy1))
2599 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2601 return -1;
2603 else if (poly_int_rtx_p (x1, &cx1))
2604 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2606 else if (GET_CODE (y) == PLUS)
2608 /* The fact that Y is canonicalized means that this
2609 PLUS rtx is canonicalized. */
2610 rtx y0 = XEXP (y, 0);
2611 rtx y1 = XEXP (y, 1);
2613 if (x == y0)
2614 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2615 if (x == y1)
2616 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2618 poly_int64 cy1;
2619 if (poly_int_rtx_p (y1, &cy1))
2620 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2621 else
2622 return -1;
2625 if (GET_CODE (x) == GET_CODE (y))
2626 switch (GET_CODE (x))
2628 case MULT:
2630 /* Handle cases where we expect the second operands to be the
2631 same, and check only whether the first operand would conflict
2632 or not. */
2633 rtx x0, y0;
2634 rtx x1 = canon_rtx (XEXP (x, 1));
2635 rtx y1 = canon_rtx (XEXP (y, 1));
2636 if (! rtx_equal_for_memref_p (x1, y1))
2637 return -1;
2638 x0 = canon_rtx (XEXP (x, 0));
2639 y0 = canon_rtx (XEXP (y, 0));
2640 if (rtx_equal_for_memref_p (x0, y0))
2641 return offset_overlap_p (c, xsize, ysize);
2643 /* Can't properly adjust our sizes. */
2644 poly_int64 c1;
2645 if (!poly_int_rtx_p (x1, &c1)
2646 || !can_div_trunc_p (xsize, c1, &xsize)
2647 || !can_div_trunc_p (ysize, c1, &ysize)
2648 || !can_div_trunc_p (c, c1, &c))
2649 return -1;
2650 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2653 default:
2654 break;
2657 /* Deal with alignment ANDs by adjusting offset and size so as to
2658 cover the maximum range, without taking any previously known
2659 alignment into account. Make a size negative after such an
2660 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2661 assume a potential overlap, because they may end up in contiguous
2662 memory locations and the stricter-alignment access may span over
2663 part of both. */
2664 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2666 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2667 unsigned HOST_WIDE_INT uc = sc;
2668 if (sc < 0 && pow2_or_zerop (-uc))
2670 if (maybe_gt (xsize, 0))
2671 xsize = -xsize;
2672 if (maybe_ne (xsize, 0))
2673 xsize += sc + 1;
2674 c -= sc + 1;
2675 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2676 ysize, y, c);
2679 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2681 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2682 unsigned HOST_WIDE_INT uc = sc;
2683 if (sc < 0 && pow2_or_zerop (-uc))
2685 if (maybe_gt (ysize, 0))
2686 ysize = -ysize;
2687 if (maybe_ne (ysize, 0))
2688 ysize += sc + 1;
2689 c += sc + 1;
2690 return memrefs_conflict_p (xsize, x,
2691 ysize, canon_rtx (XEXP (y, 0)), c);
2695 if (CONSTANT_P (x))
2697 poly_int64 cx, cy;
2698 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2700 c += cy - cx;
2701 return offset_overlap_p (c, xsize, ysize);
2704 if (GET_CODE (x) == CONST)
2706 if (GET_CODE (y) == CONST)
2707 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2708 ysize, canon_rtx (XEXP (y, 0)), c);
2709 else
2710 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2711 ysize, y, c);
2713 if (GET_CODE (y) == CONST)
2714 return memrefs_conflict_p (xsize, x, ysize,
2715 canon_rtx (XEXP (y, 0)), c);
2717 /* Assume a potential overlap for symbolic addresses that went
2718 through alignment adjustments (i.e., that have negative
2719 sizes), because we can't know how far they are from each
2720 other. */
2721 if (CONSTANT_P (y))
2722 return (maybe_lt (xsize, 0)
2723 || maybe_lt (ysize, 0)
2724 || offset_overlap_p (c, xsize, ysize));
2726 return -1;
2729 return -1;
2732 /* Functions to compute memory dependencies.
2734 Since we process the insns in execution order, we can build tables
2735 to keep track of what registers are fixed (and not aliased), what registers
2736 are varying in known ways, and what registers are varying in unknown
2737 ways.
2739 If both memory references are volatile, then there must always be a
2740 dependence between the two references, since their order cannot be
2741 changed. A volatile and non-volatile reference can be interchanged
2742 though.
2744 We also must allow AND addresses, because they may generate accesses
2745 outside the object being referenced. This is used to generate aligned
2746 addresses from unaligned addresses, for instance, the alpha
2747 storeqi_unaligned pattern. */
2749 /* Read dependence: X is read after read in MEM takes place. There can
2750 only be a dependence here if both reads are volatile, or if either is
2751 an explicit barrier. */
2754 read_dependence (const_rtx mem, const_rtx x)
2756 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2757 return true;
2758 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2759 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2760 return true;
2761 return false;
2764 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2766 static tree
2767 decl_for_component_ref (tree x)
2771 x = TREE_OPERAND (x, 0);
2773 while (x && TREE_CODE (x) == COMPONENT_REF);
2775 return x && DECL_P (x) ? x : NULL_TREE;
2778 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2779 for the offset of the field reference. *KNOWN_P says whether the
2780 offset is known. */
2782 static void
2783 adjust_offset_for_component_ref (tree x, bool *known_p,
2784 poly_int64 *offset)
2786 if (!*known_p)
2787 return;
2790 tree xoffset = component_ref_field_offset (x);
2791 tree field = TREE_OPERAND (x, 1);
2792 if (!poly_int_tree_p (xoffset))
2794 *known_p = false;
2795 return;
2798 poly_offset_int woffset
2799 = (wi::to_poly_offset (xoffset)
2800 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2801 >> LOG2_BITS_PER_UNIT)
2802 + *offset);
2803 if (!woffset.to_shwi (offset))
2805 *known_p = false;
2806 return;
2809 x = TREE_OPERAND (x, 0);
2811 while (x && TREE_CODE (x) == COMPONENT_REF);
2814 /* Return nonzero if we can determine the exprs corresponding to memrefs
2815 X and Y and they do not overlap.
2816 If LOOP_VARIANT is set, skip offset-based disambiguation */
2819 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2821 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2822 rtx rtlx, rtly;
2823 rtx basex, basey;
2824 bool moffsetx_known_p, moffsety_known_p;
2825 poly_int64 moffsetx = 0, moffsety = 0;
2826 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2828 /* Unless both have exprs, we can't tell anything. */
2829 if (exprx == 0 || expry == 0)
2830 return 0;
2832 /* For spill-slot accesses make sure we have valid offsets. */
2833 if ((exprx == get_spill_slot_decl (false)
2834 && ! MEM_OFFSET_KNOWN_P (x))
2835 || (expry == get_spill_slot_decl (false)
2836 && ! MEM_OFFSET_KNOWN_P (y)))
2837 return 0;
2839 /* If the field reference test failed, look at the DECLs involved. */
2840 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2841 if (moffsetx_known_p)
2842 moffsetx = MEM_OFFSET (x);
2843 if (TREE_CODE (exprx) == COMPONENT_REF)
2845 tree t = decl_for_component_ref (exprx);
2846 if (! t)
2847 return 0;
2848 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2849 exprx = t;
2852 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2853 if (moffsety_known_p)
2854 moffsety = MEM_OFFSET (y);
2855 if (TREE_CODE (expry) == COMPONENT_REF)
2857 tree t = decl_for_component_ref (expry);
2858 if (! t)
2859 return 0;
2860 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2861 expry = t;
2864 if (! DECL_P (exprx) || ! DECL_P (expry))
2865 return 0;
2867 /* If we refer to different gimple registers, or one gimple register
2868 and one non-gimple-register, we know they can't overlap. First,
2869 gimple registers don't have their addresses taken. Now, there
2870 could be more than one stack slot for (different versions of) the
2871 same gimple register, but we can presumably tell they don't
2872 overlap based on offsets from stack base addresses elsewhere.
2873 It's important that we don't proceed to DECL_RTL, because gimple
2874 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2875 able to do anything about them since no SSA information will have
2876 remained to guide it. */
2877 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2878 return exprx != expry
2879 || (moffsetx_known_p && moffsety_known_p
2880 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2881 && !offset_overlap_p (moffsety - moffsetx,
2882 MEM_SIZE (x), MEM_SIZE (y)));
2884 /* With invalid code we can end up storing into the constant pool.
2885 Bail out to avoid ICEing when creating RTL for this.
2886 See gfortran.dg/lto/20091028-2_0.f90. */
2887 if (TREE_CODE (exprx) == CONST_DECL
2888 || TREE_CODE (expry) == CONST_DECL)
2889 return 1;
2891 /* If one decl is known to be a function or label in a function and
2892 the other is some kind of data, they can't overlap. */
2893 if ((TREE_CODE (exprx) == FUNCTION_DECL
2894 || TREE_CODE (exprx) == LABEL_DECL)
2895 != (TREE_CODE (expry) == FUNCTION_DECL
2896 || TREE_CODE (expry) == LABEL_DECL))
2897 return 1;
2899 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2900 living in multiple places), we can't tell anything. Exception
2901 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2902 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2903 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2904 return 0;
2906 rtlx = DECL_RTL (exprx);
2907 rtly = DECL_RTL (expry);
2909 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2910 can't overlap unless they are the same because we never reuse that part
2911 of the stack frame used for locals for spilled pseudos. */
2912 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2913 && ! rtx_equal_p (rtlx, rtly))
2914 return 1;
2916 /* If we have MEMs referring to different address spaces (which can
2917 potentially overlap), we cannot easily tell from the addresses
2918 whether the references overlap. */
2919 if (MEM_P (rtlx) && MEM_P (rtly)
2920 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2921 return 0;
2923 /* Get the base and offsets of both decls. If either is a register, we
2924 know both are and are the same, so use that as the base. The only
2925 we can avoid overlap is if we can deduce that they are nonoverlapping
2926 pieces of that decl, which is very rare. */
2927 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2928 basex = strip_offset_and_add (basex, &offsetx);
2930 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2931 basey = strip_offset_and_add (basey, &offsety);
2933 /* If the bases are different, we know they do not overlap if both
2934 are constants or if one is a constant and the other a pointer into the
2935 stack frame. Otherwise a different base means we can't tell if they
2936 overlap or not. */
2937 if (compare_base_decls (exprx, expry) == 0)
2938 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2939 || (CONSTANT_P (basex) && REG_P (basey)
2940 && REGNO_PTR_FRAME_P (REGNO (basey)))
2941 || (CONSTANT_P (basey) && REG_P (basex)
2942 && REGNO_PTR_FRAME_P (REGNO (basex))));
2944 /* Offset based disambiguation not appropriate for loop invariant */
2945 if (loop_invariant)
2946 return 0;
2948 /* Offset based disambiguation is OK even if we do not know that the
2949 declarations are necessarily different
2950 (i.e. compare_base_decls (exprx, expry) == -1) */
2952 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2953 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2954 : -1);
2955 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2956 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2957 : -1);
2959 /* If we have an offset for either memref, it can update the values computed
2960 above. */
2961 if (moffsetx_known_p)
2962 offsetx += moffsetx, sizex -= moffsetx;
2963 if (moffsety_known_p)
2964 offsety += moffsety, sizey -= moffsety;
2966 /* If a memref has both a size and an offset, we can use the smaller size.
2967 We can't do this if the offset isn't known because we must view this
2968 memref as being anywhere inside the DECL's MEM. */
2969 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2970 sizex = MEM_SIZE (x);
2971 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2972 sizey = MEM_SIZE (y);
2974 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2977 /* Helper for true_dependence and canon_true_dependence.
2978 Checks for true dependence: X is read after store in MEM takes place.
2980 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2981 NULL_RTX, and the canonical addresses of MEM and X are both computed
2982 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2984 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2986 Returns 1 if there is a true dependence, 0 otherwise. */
2988 static int
2989 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2990 const_rtx x, rtx x_addr, bool mem_canonicalized)
2992 rtx true_mem_addr;
2993 rtx base;
2994 int ret;
2996 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2997 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2999 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3000 return 1;
3002 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3003 This is used in epilogue deallocation functions, and in cselib. */
3004 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3005 return 1;
3006 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3007 return 1;
3008 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3009 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3010 return 1;
3012 if (! x_addr)
3013 x_addr = XEXP (x, 0);
3014 x_addr = get_addr (x_addr);
3016 if (! mem_addr)
3018 mem_addr = XEXP (mem, 0);
3019 if (mem_mode == VOIDmode)
3020 mem_mode = GET_MODE (mem);
3022 true_mem_addr = get_addr (mem_addr);
3024 /* Read-only memory is by definition never modified, and therefore can't
3025 conflict with anything. However, don't assume anything when AND
3026 addresses are involved and leave to the code below to determine
3027 dependence. We don't expect to find read-only set on MEM, but
3028 stupid user tricks can produce them, so don't die. */
3029 if (MEM_READONLY_P (x)
3030 && GET_CODE (x_addr) != AND
3031 && GET_CODE (true_mem_addr) != AND)
3032 return 0;
3034 /* If we have MEMs referring to different address spaces (which can
3035 potentially overlap), we cannot easily tell from the addresses
3036 whether the references overlap. */
3037 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3038 return 1;
3040 base = find_base_term (x_addr);
3041 if (base && (GET_CODE (base) == LABEL_REF
3042 || (GET_CODE (base) == SYMBOL_REF
3043 && CONSTANT_POOL_ADDRESS_P (base))))
3044 return 0;
3046 rtx mem_base = find_base_term (true_mem_addr);
3047 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
3048 GET_MODE (x), mem_mode))
3049 return 0;
3051 x_addr = canon_rtx (x_addr);
3052 if (!mem_canonicalized)
3053 mem_addr = canon_rtx (true_mem_addr);
3055 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
3056 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
3057 return ret;
3059 if (mems_in_disjoint_alias_sets_p (x, mem))
3060 return 0;
3062 if (nonoverlapping_memrefs_p (mem, x, false))
3063 return 0;
3065 return rtx_refs_may_alias_p (x, mem, true);
3068 /* True dependence: X is read after store in MEM takes place. */
3071 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
3073 return true_dependence_1 (mem, mem_mode, NULL_RTX,
3074 x, NULL_RTX, /*mem_canonicalized=*/false);
3077 /* Canonical true dependence: X is read after store in MEM takes place.
3078 Variant of true_dependence which assumes MEM has already been
3079 canonicalized (hence we no longer do that here).
3080 The mem_addr argument has been added, since true_dependence_1 computed
3081 this value prior to canonicalizing. */
3084 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3085 const_rtx x, rtx x_addr)
3087 return true_dependence_1 (mem, mem_mode, mem_addr,
3088 x, x_addr, /*mem_canonicalized=*/true);
3091 /* Returns nonzero if a write to X might alias a previous read from
3092 (or, if WRITEP is true, a write to) MEM.
3093 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3094 and X_MODE the mode for that access.
3095 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3097 static int
3098 write_dependence_p (const_rtx mem,
3099 const_rtx x, machine_mode x_mode, rtx x_addr,
3100 bool mem_canonicalized, bool x_canonicalized, bool writep)
3102 rtx mem_addr;
3103 rtx true_mem_addr, true_x_addr;
3104 rtx base;
3105 int ret;
3107 gcc_checking_assert (x_canonicalized
3108 ? (x_addr != NULL_RTX
3109 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3110 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3112 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3113 return 1;
3115 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3116 This is used in epilogue deallocation functions. */
3117 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3118 return 1;
3119 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3120 return 1;
3121 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3122 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3123 return 1;
3125 if (!x_addr)
3126 x_addr = XEXP (x, 0);
3127 true_x_addr = get_addr (x_addr);
3129 mem_addr = XEXP (mem, 0);
3130 true_mem_addr = get_addr (mem_addr);
3132 /* A read from read-only memory can't conflict with read-write memory.
3133 Don't assume anything when AND addresses are involved and leave to
3134 the code below to determine dependence. */
3135 if (!writep
3136 && MEM_READONLY_P (mem)
3137 && GET_CODE (true_x_addr) != AND
3138 && GET_CODE (true_mem_addr) != AND)
3139 return 0;
3141 /* If we have MEMs referring to different address spaces (which can
3142 potentially overlap), we cannot easily tell from the addresses
3143 whether the references overlap. */
3144 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3145 return 1;
3147 base = find_base_term (true_mem_addr);
3148 if (! writep
3149 && base
3150 && (GET_CODE (base) == LABEL_REF
3151 || (GET_CODE (base) == SYMBOL_REF
3152 && CONSTANT_POOL_ADDRESS_P (base))))
3153 return 0;
3155 rtx x_base = find_base_term (true_x_addr);
3156 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3157 GET_MODE (x), GET_MODE (mem)))
3158 return 0;
3160 if (!x_canonicalized)
3162 x_addr = canon_rtx (true_x_addr);
3163 x_mode = GET_MODE (x);
3165 if (!mem_canonicalized)
3166 mem_addr = canon_rtx (true_mem_addr);
3168 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3169 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3170 return ret;
3172 if (nonoverlapping_memrefs_p (x, mem, false))
3173 return 0;
3175 return rtx_refs_may_alias_p (x, mem, false);
3178 /* Anti dependence: X is written after read in MEM takes place. */
3181 anti_dependence (const_rtx mem, const_rtx x)
3183 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3184 /*mem_canonicalized=*/false,
3185 /*x_canonicalized*/false, /*writep=*/false);
3188 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3189 Also, consider X in X_MODE (which might be from an enclosing
3190 STRICT_LOW_PART / ZERO_EXTRACT).
3191 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3194 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3195 const_rtx x, machine_mode x_mode, rtx x_addr)
3197 return write_dependence_p (mem, x, x_mode, x_addr,
3198 mem_canonicalized, /*x_canonicalized=*/true,
3199 /*writep=*/false);
3202 /* Output dependence: X is written after store in MEM takes place. */
3205 output_dependence (const_rtx mem, const_rtx x)
3207 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3208 /*mem_canonicalized=*/false,
3209 /*x_canonicalized*/false, /*writep=*/true);
3212 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3213 Also, consider X in X_MODE (which might be from an enclosing
3214 STRICT_LOW_PART / ZERO_EXTRACT).
3215 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3218 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3219 const_rtx x, machine_mode x_mode, rtx x_addr)
3221 return write_dependence_p (mem, x, x_mode, x_addr,
3222 mem_canonicalized, /*x_canonicalized=*/true,
3223 /*writep=*/true);
3228 /* Check whether X may be aliased with MEM. Don't do offset-based
3229 memory disambiguation & TBAA. */
3231 may_alias_p (const_rtx mem, const_rtx x)
3233 rtx x_addr, mem_addr;
3235 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3236 return 1;
3238 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3239 This is used in epilogue deallocation functions. */
3240 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3241 return 1;
3242 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3243 return 1;
3244 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3245 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3246 return 1;
3248 x_addr = XEXP (x, 0);
3249 x_addr = get_addr (x_addr);
3251 mem_addr = XEXP (mem, 0);
3252 mem_addr = get_addr (mem_addr);
3254 /* Read-only memory is by definition never modified, and therefore can't
3255 conflict with anything. However, don't assume anything when AND
3256 addresses are involved and leave to the code below to determine
3257 dependence. We don't expect to find read-only set on MEM, but
3258 stupid user tricks can produce them, so don't die. */
3259 if (MEM_READONLY_P (x)
3260 && GET_CODE (x_addr) != AND
3261 && GET_CODE (mem_addr) != AND)
3262 return 0;
3264 /* If we have MEMs referring to different address spaces (which can
3265 potentially overlap), we cannot easily tell from the addresses
3266 whether the references overlap. */
3267 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3268 return 1;
3270 rtx x_base = find_base_term (x_addr);
3271 rtx mem_base = find_base_term (mem_addr);
3272 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3273 GET_MODE (x), GET_MODE (mem_addr)))
3274 return 0;
3276 if (nonoverlapping_memrefs_p (mem, x, true))
3277 return 0;
3279 /* TBAA not valid for loop_invarint */
3280 return rtx_refs_may_alias_p (x, mem, false);
3283 void
3284 init_alias_target (void)
3286 int i;
3288 if (!arg_base_value)
3289 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3291 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3293 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3294 /* Check whether this register can hold an incoming pointer
3295 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3296 numbers, so translate if necessary due to register windows. */
3297 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3298 && targetm.hard_regno_mode_ok (i, Pmode))
3299 static_reg_base_value[i] = arg_base_value;
3301 /* RTL code is required to be consistent about whether it uses the
3302 stack pointer, the frame pointer or the argument pointer to
3303 access a given area of the frame. We can therefore use the
3304 base address to distinguish between the different areas. */
3305 static_reg_base_value[STACK_POINTER_REGNUM]
3306 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3307 static_reg_base_value[ARG_POINTER_REGNUM]
3308 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3309 static_reg_base_value[FRAME_POINTER_REGNUM]
3310 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3312 /* The above rules extend post-reload, with eliminations applying
3313 consistently to each of the three pointers. Cope with cases in
3314 which the frame pointer is eliminated to the hard frame pointer
3315 rather than the stack pointer. */
3316 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3317 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3318 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3321 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3322 to be memory reference. */
3323 static bool memory_modified;
3324 static void
3325 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3327 if (MEM_P (x))
3329 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3330 memory_modified = true;
3335 /* Return true when INSN possibly modify memory contents of MEM
3336 (i.e. address can be modified). */
3337 bool
3338 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3340 if (!INSN_P (insn))
3341 return false;
3342 /* Conservatively assume all non-readonly MEMs might be modified in
3343 calls. */
3344 if (CALL_P (insn))
3345 return true;
3346 memory_modified = false;
3347 note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3348 CONST_CAST_RTX(mem));
3349 return memory_modified;
3352 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3353 array. */
3355 void
3356 init_alias_analysis (void)
3358 unsigned int maxreg = max_reg_num ();
3359 int changed, pass;
3360 int i;
3361 unsigned int ui;
3362 rtx_insn *insn;
3363 rtx val;
3364 int rpo_cnt;
3365 int *rpo;
3367 timevar_push (TV_ALIAS_ANALYSIS);
3369 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER,
3370 true);
3371 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3372 bitmap_clear (reg_known_equiv_p);
3374 /* If we have memory allocated from the previous run, use it. */
3375 if (old_reg_base_value)
3376 reg_base_value = old_reg_base_value;
3378 if (reg_base_value)
3379 reg_base_value->truncate (0);
3381 vec_safe_grow_cleared (reg_base_value, maxreg, true);
3383 new_reg_base_value = XNEWVEC (rtx, maxreg);
3384 reg_seen = sbitmap_alloc (maxreg);
3386 /* The basic idea is that each pass through this loop will use the
3387 "constant" information from the previous pass to propagate alias
3388 information through another level of assignments.
3390 The propagation is done on the CFG in reverse post-order, to propagate
3391 things forward as far as possible in each iteration.
3393 This could get expensive if the assignment chains are long. Maybe
3394 we should throttle the number of iterations, possibly based on
3395 the optimization level or flag_expensive_optimizations.
3397 We could propagate more information in the first pass by making use
3398 of DF_REG_DEF_COUNT to determine immediately that the alias information
3399 for a pseudo is "constant".
3401 A program with an uninitialized variable can cause an infinite loop
3402 here. Instead of doing a full dataflow analysis to detect such problems
3403 we just cap the number of iterations for the loop.
3405 The state of the arrays for the set chain in question does not matter
3406 since the program has undefined behavior. */
3408 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3409 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3411 pass = 0;
3414 /* Assume nothing will change this iteration of the loop. */
3415 changed = 0;
3417 /* We want to assign the same IDs each iteration of this loop, so
3418 start counting from one each iteration of the loop. */
3419 unique_id = 1;
3421 /* We're at the start of the function each iteration through the
3422 loop, so we're copying arguments. */
3423 copying_arguments = true;
3425 /* Wipe the potential alias information clean for this pass. */
3426 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3428 /* Wipe the reg_seen array clean. */
3429 bitmap_clear (reg_seen);
3431 /* Initialize the alias information for this pass. */
3432 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3433 if (static_reg_base_value[i]
3434 /* Don't treat the hard frame pointer as special if we
3435 eliminated the frame pointer to the stack pointer instead. */
3436 && !(i == HARD_FRAME_POINTER_REGNUM
3437 && reload_completed
3438 && !frame_pointer_needed
3439 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3440 STACK_POINTER_REGNUM)))
3442 new_reg_base_value[i] = static_reg_base_value[i];
3443 bitmap_set_bit (reg_seen, i);
3446 /* Walk the insns adding values to the new_reg_base_value array. */
3447 for (i = 0; i < rpo_cnt; i++)
3449 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3450 FOR_BB_INSNS (bb, insn)
3452 if (NONDEBUG_INSN_P (insn))
3454 rtx note, set;
3456 /* If this insn has a noalias note, process it, Otherwise,
3457 scan for sets. A simple set will have no side effects
3458 which could change the base value of any other register. */
3460 if (GET_CODE (PATTERN (insn)) == SET
3461 && REG_NOTES (insn) != 0
3462 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3463 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3464 else
3465 note_stores (insn, record_set, NULL);
3467 set = single_set (insn);
3469 if (set != 0
3470 && REG_P (SET_DEST (set))
3471 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3473 unsigned int regno = REGNO (SET_DEST (set));
3474 rtx src = SET_SRC (set);
3475 rtx t;
3477 note = find_reg_equal_equiv_note (insn);
3478 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3479 && DF_REG_DEF_COUNT (regno) != 1)
3480 note = NULL_RTX;
3482 poly_int64 offset;
3483 if (note != NULL_RTX
3484 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3485 && ! rtx_varies_p (XEXP (note, 0), 1)
3486 && ! reg_overlap_mentioned_p (SET_DEST (set),
3487 XEXP (note, 0)))
3489 set_reg_known_value (regno, XEXP (note, 0));
3490 set_reg_known_equiv_p (regno,
3491 REG_NOTE_KIND (note) == REG_EQUIV);
3493 else if (DF_REG_DEF_COUNT (regno) == 1
3494 && GET_CODE (src) == PLUS
3495 && REG_P (XEXP (src, 0))
3496 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3497 && poly_int_rtx_p (XEXP (src, 1), &offset))
3499 t = plus_constant (GET_MODE (src), t, offset);
3500 set_reg_known_value (regno, t);
3501 set_reg_known_equiv_p (regno, false);
3503 else if (DF_REG_DEF_COUNT (regno) == 1
3504 && ! rtx_varies_p (src, 1))
3506 set_reg_known_value (regno, src);
3507 set_reg_known_equiv_p (regno, false);
3511 else if (NOTE_P (insn)
3512 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3513 copying_arguments = false;
3517 /* Now propagate values from new_reg_base_value to reg_base_value. */
3518 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3520 for (ui = 0; ui < maxreg; ui++)
3522 if (new_reg_base_value[ui]
3523 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3524 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3526 (*reg_base_value)[ui] = new_reg_base_value[ui];
3527 changed = 1;
3531 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3532 XDELETEVEC (rpo);
3534 /* Fill in the remaining entries. */
3535 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3537 int regno = i + FIRST_PSEUDO_REGISTER;
3538 if (! val)
3539 set_reg_known_value (regno, regno_reg_rtx[regno]);
3542 /* Clean up. */
3543 free (new_reg_base_value);
3544 new_reg_base_value = 0;
3545 sbitmap_free (reg_seen);
3546 reg_seen = 0;
3547 timevar_pop (TV_ALIAS_ANALYSIS);
3550 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3551 Special API for var-tracking pass purposes. */
3553 void
3554 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3556 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3559 void
3560 end_alias_analysis (void)
3562 old_reg_base_value = reg_base_value;
3563 vec_free (reg_known_value);
3564 sbitmap_free (reg_known_equiv_p);
3567 void
3568 dump_alias_stats_in_alias_c (FILE *s)
3570 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3571 " %llu are in alias set 0\n"
3572 " %llu queries asked about the same object\n"
3573 " %llu queries asked about the same alias set\n"
3574 " %llu access volatile\n"
3575 " %llu are dependent in the DAG\n"
3576 " %llu are aritificially in conflict with void *\n",
3577 alias_stats.num_disambiguated,
3578 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3579 + alias_stats.num_same_objects + alias_stats.num_volatile
3580 + alias_stats.num_dag + alias_stats.num_disambiguated
3581 + alias_stats.num_universal,
3582 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3583 alias_stats.num_same_objects, alias_stats.num_volatile,
3584 alias_stats.num_dag, alias_stats.num_universal);
3586 #include "gt-alias.h"