* prerequisites.xml: Refer to GCC (instead of gcc) and GNU/Linux.
[official-gcc.git] / gcc / ada / urealp.ads
blobca90ac4a0db57508b361d6491ab74f697f8e14ed
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- U R E A L P --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- Support for universal real arithmetic
34 with Types; use Types;
35 with Uintp; use Uintp;
37 package Urealp is
39 ---------------------------------------
40 -- Representation of Universal Reals --
41 ---------------------------------------
43 -- A universal real value is represented by a single value (which is
44 -- an index into an internal table). These values are not hashed, so
45 -- the equality operator should not be used on Ureal values (instead
46 -- use the UR_Eq function).
48 -- A Ureal value represents an arbitrary precision universal real value,
49 -- stored internally using four components
51 -- the numerator (Uint, always non-negative)
52 -- the denominator (Uint, always non-zero, always positive if base = 0)
53 -- a real base (Nat, either zero, or in the range 2 .. 16)
54 -- a sign flag (Boolean), set if negative
56 -- If the base is zero, then the absolute value of the Ureal is simply
57 -- numerator/denominator. If the base is non-zero, then the absolute
58 -- value is num / (rbase ** den).
60 -- Negative numbers are represented by the sign of the numerator being
61 -- negative. The denominator is always positive.
63 -- A normalized Ureal value has base = 0, and numerator/denominator
64 -- reduced to lowest terms, with zero itself being represented as 0/1.
65 -- This is a canonical format, so that for normalized Ureal values it
66 -- is the case that two equal values always have the same denominator
67 -- and numerator values.
69 -- Note: a value of minus zero is legitimate, and the operations in
70 -- Urealp preserve the handling of signed zeroes in accordance with
71 -- the rules of IEEE P754 ("IEEE floating point").
73 ------------------------------
74 -- Types for Urealp Package --
75 ------------------------------
77 type Ureal is private;
78 -- Type used for representation of universal reals
80 No_Ureal : constant Ureal;
81 -- Constant used to indicate missing or unset Ureal value
83 ---------------------
84 -- Ureal Constants --
85 ---------------------
87 function Ureal_0 return Ureal;
88 -- Returns value 0.0
90 function Ureal_M_0 return Ureal;
91 -- Returns value -0.0
93 function Ureal_Tenth return Ureal;
94 -- Returns value 0.1
96 function Ureal_Half return Ureal;
97 -- Returns value 0.5
99 function Ureal_1 return Ureal;
100 -- Returns value 1.0
102 function Ureal_2 return Ureal;
103 -- Returns value 2.0
105 function Ureal_10 return Ureal;
106 -- Returns value 10.0
108 function Ureal_100 return Ureal;
109 -- Returns value 100.0
111 function Ureal_2_80 return Ureal;
112 -- Returns value 2.0 ** 80
114 function Ureal_2_M_80 return Ureal;
115 -- Returns value 2.0 ** (-80)
117 function Ureal_2_128 return Ureal;
118 -- Returns value 2.0 ** 128
120 function Ureal_2_M_128 return Ureal;
121 -- Returns value 2.0 ** (-128)
123 function Ureal_10_36 return Ureal;
124 -- Returns value 10.0 ** 36
126 function Ureal_M_10_36 return Ureal;
127 -- Returns value -(10.0
129 -----------------
130 -- Subprograms --
131 -----------------
133 procedure Initialize;
134 -- Initialize Ureal tables. Note that Initialize must not be called if
135 -- Tree_Read is used. Note also that there is no Lock routine in this
136 -- unit. These tables are among the few tables that can be expanded
137 -- during Gigi processing.
139 procedure Tree_Read;
140 -- Initializes internal tables from current tree file using the relevant
141 -- Table.Tree_Read routines. Note that Initialize should not be called if
142 -- Tree_Read is used. Tree_Read includes all necessary initialization.
144 procedure Tree_Write;
145 -- Writes out internal tables to current tree file using the relevant
146 -- Table.Tree_Write routines.
148 function Rbase (Real : Ureal) return Nat;
149 -- Return the base of the universal real
151 function Denominator (Real : Ureal) return Uint;
152 -- Return the denominator of the universal real
154 function Numerator (Real : Ureal) return Uint;
155 -- Return the numerator of the universal real
157 function Norm_Den (Real : Ureal) return Uint;
158 -- Return the denominator of the universal real after a normalization
160 function Norm_Num (Real : Ureal) return Uint;
161 -- Return the numerator of the universal real after a normalization
163 function UR_From_Uint (UI : Uint) return Ureal;
164 -- Returns real corresponding to universal integer value
166 function UR_To_Uint (Real : Ureal) return Uint;
167 -- Return integer value obtained by accurate rounding of real value.
168 -- The rounding of values half way between two integers is away from
169 -- zero, as required by normal Ada 95 rounding semantics.
171 function UR_Trunc (Real : Ureal) return Uint;
172 -- Return integer value obtained by a truncation of real towards zero
174 function UR_Ceiling (Real : Ureal) return Uint;
175 -- Return value of smallest integer not less than the given value
177 function UR_Floor (Real : Ureal) return Uint;
178 -- Return value of smallest integer not greater than the given value
180 -- Conversion table for above four functions
182 -- Input To_Uint Trunc Ceiling Floor
183 -- 1.0 1 1 1 1
184 -- 1.2 1 1 2 1
185 -- 1.5 2 1 2 1
186 -- 1.7 2 1 2 1
187 -- 2.0 2 2 2 2
188 -- -1.0 -1 -1 -1 -1
189 -- -1.2 -1 -1 -1 -2
190 -- -1.5 -2 -1 -1 -2
191 -- -1.7 -2 -1 -1 -2
192 -- -2.0 -2 -2 -2 -2
194 function UR_From_Components
195 (Num : Uint;
196 Den : Uint;
197 Rbase : Nat := 0;
198 Negative : Boolean := False)
199 return Ureal;
200 -- Builds real value from given numerator, denominator and base. The
201 -- value is negative if Negative is set to true, and otherwise is
202 -- non-negative.
204 function UR_Add (Left : Ureal; Right : Ureal) return Ureal;
205 function UR_Add (Left : Ureal; Right : Uint) return Ureal;
206 function UR_Add (Left : Uint; Right : Ureal) return Ureal;
207 -- Returns real sum of operands
209 function UR_Div (Left : Ureal; Right : Ureal) return Ureal;
210 function UR_Div (Left : Uint; Right : Ureal) return Ureal;
211 function UR_Div (Left : Ureal; Right : Uint) return Ureal;
212 -- Returns real quotient of operands. Fatal error if Right is zero
214 function UR_Mul (Left : Ureal; Right : Ureal) return Ureal;
215 function UR_Mul (Left : Uint; Right : Ureal) return Ureal;
216 function UR_Mul (Left : Ureal; Right : Uint) return Ureal;
217 -- Returns real product of operands
219 function UR_Sub (Left : Ureal; Right : Ureal) return Ureal;
220 function UR_Sub (Left : Uint; Right : Ureal) return Ureal;
221 function UR_Sub (Left : Ureal; Right : Uint) return Ureal;
222 -- Returns real difference of operands
224 function UR_Exponentiate (Real : Ureal; N : Uint) return Ureal;
225 -- Returns result of raising Ureal to Uint power.
226 -- Fatal error if Left is 0 and Right is negative.
228 function UR_Abs (Real : Ureal) return Ureal;
229 -- Returns abs function of real
231 function UR_Negate (Real : Ureal) return Ureal;
232 -- Returns negative of real
234 function UR_Eq (Left, Right : Ureal) return Boolean;
235 -- Compares reals for equality
237 function UR_Max (Left, Right : Ureal) return Ureal;
238 -- Returns the maximum of two reals
240 function UR_Min (Left, Right : Ureal) return Ureal;
241 -- Returns the minimum of two reals
243 function UR_Ne (Left, Right : Ureal) return Boolean;
244 -- Compares reals for inequality
246 function UR_Lt (Left, Right : Ureal) return Boolean;
247 -- Compares reals for less than
249 function UR_Le (Left, Right : Ureal) return Boolean;
250 -- Compares reals for less than or equal
252 function UR_Gt (Left, Right : Ureal) return Boolean;
253 -- Compares reals for greater than
255 function UR_Ge (Left, Right : Ureal) return Boolean;
256 -- Compares reals for greater than or equal
258 function UR_Is_Zero (Real : Ureal) return Boolean;
259 -- Tests if real value is zero
261 function UR_Is_Negative (Real : Ureal) return Boolean;
262 -- Tests if real value is negative, note that negative zero gives true
264 function UR_Is_Positive (Real : Ureal) return Boolean;
265 -- Test if real value is greater than zero
267 procedure UR_Write (Real : Ureal; Brackets : Boolean := False);
268 -- Writes value of Real to standard output. Used for debugging and
269 -- tree/source output, and also for -gnatR representation output. If the
270 -- result is easily representable as a standard Ada literal, it will be
271 -- given that way, but as a result of evaluation of static expressions, it
272 -- is possible to generate constants (e.g. 1/13) which have no such
273 -- representation. In such cases (and in cases where it is too much work to
274 -- figure out the Ada literal), the string that is output is of the form
275 -- of some expression such as integer/integer, or integer*integer**integer.
276 -- In the case where an expression is output, if Brackets is set to True,
277 -- the expression is surrounded by square brackets.
279 procedure pr (Real : Ureal);
280 pragma Export (Ada, pr);
281 -- Writes value of Real to standard output with a terminating line return,
282 -- using UR_Write as described above. This is for use from the debugger.
284 ------------------------
285 -- Operator Renamings --
286 ------------------------
288 function "+" (Left : Ureal; Right : Ureal) return Ureal renames UR_Add;
289 function "+" (Left : Uint; Right : Ureal) return Ureal renames UR_Add;
290 function "+" (Left : Ureal; Right : Uint) return Ureal renames UR_Add;
292 function "/" (Left : Ureal; Right : Ureal) return Ureal renames UR_Div;
293 function "/" (Left : Uint; Right : Ureal) return Ureal renames UR_Div;
294 function "/" (Left : Ureal; Right : Uint) return Ureal renames UR_Div;
296 function "*" (Left : Ureal; Right : Ureal) return Ureal renames UR_Mul;
297 function "*" (Left : Uint; Right : Ureal) return Ureal renames UR_Mul;
298 function "*" (Left : Ureal; Right : Uint) return Ureal renames UR_Mul;
300 function "-" (Left : Ureal; Right : Ureal) return Ureal renames UR_Sub;
301 function "-" (Left : Uint; Right : Ureal) return Ureal renames UR_Sub;
302 function "-" (Left : Ureal; Right : Uint) return Ureal renames UR_Sub;
304 function "**" (Real : Ureal; N : Uint) return Ureal
305 renames UR_Exponentiate;
307 function "abs" (Real : Ureal) return Ureal renames UR_Abs;
309 function "-" (Real : Ureal) return Ureal renames UR_Negate;
311 function "=" (Left, Right : Ureal) return Boolean renames UR_Eq;
313 function "<" (Left, Right : Ureal) return Boolean renames UR_Lt;
315 function "<=" (Left, Right : Ureal) return Boolean renames UR_Le;
317 function ">=" (Left, Right : Ureal) return Boolean renames UR_Ge;
319 function ">" (Left, Right : Ureal) return Boolean renames UR_Gt;
321 -----------------------------
322 -- Mark/Release Processing --
323 -----------------------------
325 -- The space used by Ureal data is not automatically reclaimed. However,
326 -- a mark-release regime is implemented which allows storage to be
327 -- released back to a previously noted mark. This is used for example
328 -- when doing comparisons, where only intermediate results get stored
329 -- that do not need to be saved for future use.
331 type Save_Mark is private;
333 function Mark return Save_Mark;
334 -- Note mark point for future release
336 procedure Release (M : Save_Mark);
337 -- Release storage allocated since mark was noted
339 ------------------------------------
340 -- Representation of Ureal Values --
341 ------------------------------------
343 private
345 type Ureal is new Int range Ureal_Low_Bound .. Ureal_High_Bound;
346 for Ureal'Size use 32;
348 No_Ureal : constant Ureal := Ureal'First;
350 type Save_Mark is new Int;
352 pragma Inline (Denominator);
353 pragma Inline (Mark);
354 pragma Inline (Norm_Num);
355 pragma Inline (Norm_Den);
356 pragma Inline (Numerator);
357 pragma Inline (Rbase);
358 pragma Inline (Release);
359 pragma Inline (Ureal_0);
360 pragma Inline (Ureal_M_0);
361 pragma Inline (Ureal_Tenth);
362 pragma Inline (Ureal_Half);
363 pragma Inline (Ureal_1);
364 pragma Inline (Ureal_2);
365 pragma Inline (Ureal_10);
366 pragma Inline (UR_From_Components);
368 end Urealp;