1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 -- This package provides facilities for manipulating lists of nodes (see
33 -- package Atree for format and implementation of tree nodes). Separate list
34 -- elements are allocated to represent elements of these lists, so it is
35 -- possible for a given node to be on more than one element list at a time.
36 -- See also package Nlists, which provides another form that is threaded
37 -- through the nodes themselves (using the Link field), which is more time
38 -- and space efficient, but a node can be only one such list.
40 with Types
; use Types
;
45 -- An element list is represented by a header that is allocated in the
46 -- Elist header table. This header contains pointers to the first and
47 -- last elements in the list, or to No_Elmt if the list is empty.
49 -- The elements in the list each contain a pointer to the next element
50 -- and a pointer to the referenced node. Putting a node into an element
51 -- list causes no change at all to the node itself, so a node may be
52 -- included in multiple element lists, and the nodes thus included may
53 -- or may not be elements of node lists (see package Nlists).
56 -- Initialize allocation of element list tables. Called at the start of
57 -- compiling each new main source file. Note that Initialize must not be
58 -- called if Tree_Read is used.
61 -- Lock tables used for element lists before calling backend
64 -- Unlock list tables, in cases where the back end needs to modify them
67 -- Initializes internal tables from current tree file using the relevant
68 -- Table.Tree_Read routines. Note that Initialize should not be called if
69 -- Tree_Read is used. Tree_Read includes all necessary initialization.
72 -- Writes out internal tables to current tree file using the relevant
73 -- Table.Tree_Write routines.
75 function Last_Elist_Id
return Elist_Id
;
76 -- Returns Id of last allocated element list header
78 function Elists_Address
return System
.Address
;
79 -- Return address of Elists table (used in Back_End for Gigi call)
81 function Num_Elists
return Nat
;
82 -- Number of currently allocated element lists
84 function Last_Elmt_Id
return Elmt_Id
;
85 -- Returns Id of last allocated list element
87 function Elmts_Address
return System
.Address
;
88 -- Return address of Elmts table (used in Back_End for Gigi call)
90 function Node
(Elmt
: Elmt_Id
) return Node_Or_Entity_Id
;
92 -- Returns the value of a given list element. Returns Empty if Elmt
95 function New_Elmt_List
return Elist_Id
;
96 -- Creates a new empty element list. Typically this is used to initialize
97 -- a field in some other node which points to an element list where the
98 -- list is then subsequently filled in using Append calls.
100 function First_Elmt
(List
: Elist_Id
) return Elmt_Id
;
101 pragma Inline
(First_Elmt
);
102 -- Obtains the first element of the given element list or, if the list has
103 -- no items, then No_Elmt is returned.
105 function Last_Elmt
(List
: Elist_Id
) return Elmt_Id
;
106 pragma Inline
(Last_Elmt
);
107 -- Obtains the last element of the given element list or, if the list has
108 -- no items, then No_Elmt is returned.
110 function Next_Elmt
(Elmt
: Elmt_Id
) return Elmt_Id
;
111 pragma Inline
(Next_Elmt
);
112 -- This function returns the next element on an element list. The argument
113 -- must be a list element other than No_Elmt. Returns No_Elmt if the given
114 -- element is the last element of the list.
116 procedure Next_Elmt
(Elmt
: in out Elmt_Id
);
117 pragma Inline
(Next_Elmt
);
118 -- Next_Elmt (Elmt) is equivalent to Elmt := Next_Elmt (Elmt)
120 function Is_Empty_Elmt_List
(List
: Elist_Id
) return Boolean;
121 pragma Inline
(Is_Empty_Elmt_List
);
122 -- This function determines if a given tree id references an element list
123 -- that contains no items.
125 procedure Append_Elmt
(N
: Node_Or_Entity_Id
; To
: Elist_Id
);
126 -- Appends N at the end of To, allocating a new element. N must be a
127 -- non-empty node or entity Id, and To must be an Elist (not No_Elist).
129 procedure Append_Unique_Elmt
(N
: Node_Or_Entity_Id
; To
: Elist_Id
);
130 -- Like Append_Elmt, except that a check is made to see if To already
131 -- contains N and if so the call has no effect.
133 procedure Prepend_Elmt
(N
: Node_Or_Entity_Id
; To
: Elist_Id
);
134 -- Appends N at the beginning of To, allocating a new element
136 procedure Insert_Elmt_After
(N
: Node_Or_Entity_Id
; Elmt
: Elmt_Id
);
137 -- Add a new element (N) right after the pre-existing element Elmt
138 -- It is invalid to call this subprogram with Elmt = No_Elmt.
140 procedure Replace_Elmt
(Elmt
: Elmt_Id
; New_Node
: Node_Or_Entity_Id
);
141 pragma Inline
(Replace_Elmt
);
142 -- Causes the given element of the list to refer to New_Node, the node
143 -- which was previously referred to by Elmt is effectively removed from
144 -- the list and replaced by New_Node.
146 procedure Remove_Elmt
(List
: Elist_Id
; Elmt
: Elmt_Id
);
147 -- Removes Elmt from the given list. The node itself is not affected,
148 -- but the space used by the list element may be (but is not required
149 -- to be) freed for reuse in a subsequent Append_Elmt call.
151 procedure Remove_Last_Elmt
(List
: Elist_Id
);
152 -- Removes the last element of the given list. The node itself is not
153 -- affected, but the space used by the list element may be (but is not
154 -- required to be) freed for reuse in a subsequent Append_Elmt call.
156 function No
(List
: Elist_Id
) return Boolean;
158 -- Tests given Id for equality with No_Elist. This allows notations like
159 -- "if No (Statements)" as opposed to "if Statements = No_Elist".
161 function Present
(List
: Elist_Id
) return Boolean;
162 pragma Inline
(Present
);
163 -- Tests given Id for inequality with No_Elist. This allows notations like
164 -- "if Present (Statements)" as opposed to "if Statements /= No_Elist".
166 function No
(Elmt
: Elmt_Id
) return Boolean;
168 -- Tests given Id for equality with No_Elmt. This allows notations like
169 -- "if No (Operation)" as opposed to "if Operation = No_Elmt".
171 function Present
(Elmt
: Elmt_Id
) return Boolean;
172 pragma Inline
(Present
);
173 -- Tests given Id for inequality with No_Elmt. This allows notations like
174 -- "if Present (Operation)" as opposed to "if Operation /= No_Elmt".