2015-03-02 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ipa-inline-analysis.c
blobbe178ad445c27ad543700409b3c288f1a17b18a5
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
24 - function body size
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
29 - function frame size
30 For each call
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
67 #include "config.h"
68 #include "system.h"
69 #include "coretypes.h"
70 #include "tm.h"
71 #include "hash-set.h"
72 #include "machmode.h"
73 #include "vec.h"
74 #include "double-int.h"
75 #include "input.h"
76 #include "alias.h"
77 #include "symtab.h"
78 #include "wide-int.h"
79 #include "inchash.h"
80 #include "real.h"
81 #include "tree.h"
82 #include "fold-const.h"
83 #include "stor-layout.h"
84 #include "stringpool.h"
85 #include "print-tree.h"
86 #include "tree-inline.h"
87 #include "langhooks.h"
88 #include "flags.h"
89 #include "diagnostic.h"
90 #include "gimple-pretty-print.h"
91 #include "params.h"
92 #include "tree-pass.h"
93 #include "coverage.h"
94 #include "predict.h"
95 #include "hard-reg-set.h"
96 #include "input.h"
97 #include "function.h"
98 #include "dominance.h"
99 #include "cfg.h"
100 #include "cfganal.h"
101 #include "basic-block.h"
102 #include "tree-ssa-alias.h"
103 #include "internal-fn.h"
104 #include "gimple-expr.h"
105 #include "is-a.h"
106 #include "gimple.h"
107 #include "gimple-iterator.h"
108 #include "gimple-ssa.h"
109 #include "tree-cfg.h"
110 #include "tree-phinodes.h"
111 #include "ssa-iterators.h"
112 #include "tree-ssanames.h"
113 #include "tree-ssa-loop-niter.h"
114 #include "tree-ssa-loop.h"
115 #include "hash-map.h"
116 #include "plugin-api.h"
117 #include "ipa-ref.h"
118 #include "cgraph.h"
119 #include "alloc-pool.h"
120 #include "symbol-summary.h"
121 #include "ipa-prop.h"
122 #include "lto-streamer.h"
123 #include "data-streamer.h"
124 #include "tree-streamer.h"
125 #include "ipa-inline.h"
126 #include "cfgloop.h"
127 #include "tree-scalar-evolution.h"
128 #include "ipa-utils.h"
129 #include "cilk.h"
130 #include "cfgexpand.h"
132 /* Estimate runtime of function can easilly run into huge numbers with many
133 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
134 integer. For anything larger we use gcov_type. */
135 #define MAX_TIME 500000
137 /* Number of bits in integer, but we really want to be stable across different
138 hosts. */
139 #define NUM_CONDITIONS 32
141 enum predicate_conditions
143 predicate_false_condition = 0,
144 predicate_not_inlined_condition = 1,
145 predicate_first_dynamic_condition = 2
148 /* Special condition code we use to represent test that operand is compile time
149 constant. */
150 #define IS_NOT_CONSTANT ERROR_MARK
151 /* Special condition code we use to represent test that operand is not changed
152 across invocation of the function. When operand IS_NOT_CONSTANT it is always
153 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
154 of executions even when they are not compile time constants. */
155 #define CHANGED IDENTIFIER_NODE
157 /* Holders of ipa cgraph hooks: */
158 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
159 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
160 static void inline_edge_removal_hook (struct cgraph_edge *, void *);
161 static void inline_edge_duplication_hook (struct cgraph_edge *,
162 struct cgraph_edge *, void *);
164 /* VECtor holding inline summaries.
165 In GGC memory because conditions might point to constant trees. */
166 function_summary <inline_summary *> *inline_summaries;
167 vec<inline_edge_summary_t> inline_edge_summary_vec;
169 /* Cached node/edge growths. */
170 vec<edge_growth_cache_entry> edge_growth_cache;
172 /* Edge predicates goes here. */
173 static alloc_pool edge_predicate_pool;
175 /* Return true predicate (tautology).
176 We represent it by empty list of clauses. */
178 static inline struct predicate
179 true_predicate (void)
181 struct predicate p;
182 p.clause[0] = 0;
183 return p;
187 /* Return predicate testing single condition number COND. */
189 static inline struct predicate
190 single_cond_predicate (int cond)
192 struct predicate p;
193 p.clause[0] = 1 << cond;
194 p.clause[1] = 0;
195 return p;
199 /* Return false predicate. First clause require false condition. */
201 static inline struct predicate
202 false_predicate (void)
204 return single_cond_predicate (predicate_false_condition);
208 /* Return true if P is (true). */
210 static inline bool
211 true_predicate_p (struct predicate *p)
213 return !p->clause[0];
217 /* Return true if P is (false). */
219 static inline bool
220 false_predicate_p (struct predicate *p)
222 if (p->clause[0] == (1 << predicate_false_condition))
224 gcc_checking_assert (!p->clause[1]
225 && p->clause[0] == 1 << predicate_false_condition);
226 return true;
228 return false;
232 /* Return predicate that is set true when function is not inlined. */
234 static inline struct predicate
235 not_inlined_predicate (void)
237 return single_cond_predicate (predicate_not_inlined_condition);
240 /* Simple description of whether a memory load or a condition refers to a load
241 from an aggregate and if so, how and where from in the aggregate.
242 Individual fields have the same meaning like fields with the same name in
243 struct condition. */
245 struct agg_position_info
247 HOST_WIDE_INT offset;
248 bool agg_contents;
249 bool by_ref;
252 /* Add condition to condition list CONDS. AGGPOS describes whether the used
253 oprand is loaded from an aggregate and where in the aggregate it is. It can
254 be NULL, which means this not a load from an aggregate. */
256 static struct predicate
257 add_condition (struct inline_summary *summary, int operand_num,
258 struct agg_position_info *aggpos,
259 enum tree_code code, tree val)
261 int i;
262 struct condition *c;
263 struct condition new_cond;
264 HOST_WIDE_INT offset;
265 bool agg_contents, by_ref;
267 if (aggpos)
269 offset = aggpos->offset;
270 agg_contents = aggpos->agg_contents;
271 by_ref = aggpos->by_ref;
273 else
275 offset = 0;
276 agg_contents = false;
277 by_ref = false;
280 gcc_checking_assert (operand_num >= 0);
281 for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
283 if (c->operand_num == operand_num
284 && c->code == code
285 && c->val == val
286 && c->agg_contents == agg_contents
287 && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
288 return single_cond_predicate (i + predicate_first_dynamic_condition);
290 /* Too many conditions. Give up and return constant true. */
291 if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
292 return true_predicate ();
294 new_cond.operand_num = operand_num;
295 new_cond.code = code;
296 new_cond.val = val;
297 new_cond.agg_contents = agg_contents;
298 new_cond.by_ref = by_ref;
299 new_cond.offset = offset;
300 vec_safe_push (summary->conds, new_cond);
301 return single_cond_predicate (i + predicate_first_dynamic_condition);
305 /* Add clause CLAUSE into the predicate P. */
307 static inline void
308 add_clause (conditions conditions, struct predicate *p, clause_t clause)
310 int i;
311 int i2;
312 int insert_here = -1;
313 int c1, c2;
315 /* True clause. */
316 if (!clause)
317 return;
319 /* False clause makes the whole predicate false. Kill the other variants. */
320 if (clause == (1 << predicate_false_condition))
322 p->clause[0] = (1 << predicate_false_condition);
323 p->clause[1] = 0;
324 return;
326 if (false_predicate_p (p))
327 return;
329 /* No one should be silly enough to add false into nontrivial clauses. */
330 gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
332 /* Look where to insert the clause. At the same time prune out
333 clauses of P that are implied by the new clause and thus
334 redundant. */
335 for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
337 p->clause[i2] = p->clause[i];
339 if (!p->clause[i])
340 break;
342 /* If p->clause[i] implies clause, there is nothing to add. */
343 if ((p->clause[i] & clause) == p->clause[i])
345 /* We had nothing to add, none of clauses should've become
346 redundant. */
347 gcc_checking_assert (i == i2);
348 return;
351 if (p->clause[i] < clause && insert_here < 0)
352 insert_here = i2;
354 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
355 Otherwise the p->clause[i] has to stay. */
356 if ((p->clause[i] & clause) != clause)
357 i2++;
360 /* Look for clauses that are obviously true. I.e.
361 op0 == 5 || op0 != 5. */
362 for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
364 condition *cc1;
365 if (!(clause & (1 << c1)))
366 continue;
367 cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
368 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
369 and thus there is no point for looking for them. */
370 if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
371 continue;
372 for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
373 if (clause & (1 << c2))
375 condition *cc1 =
376 &(*conditions)[c1 - predicate_first_dynamic_condition];
377 condition *cc2 =
378 &(*conditions)[c2 - predicate_first_dynamic_condition];
379 if (cc1->operand_num == cc2->operand_num
380 && cc1->val == cc2->val
381 && cc2->code != IS_NOT_CONSTANT
382 && cc2->code != CHANGED
383 && cc1->code == invert_tree_comparison (cc2->code,
384 HONOR_NANS (cc1->val)))
385 return;
390 /* We run out of variants. Be conservative in positive direction. */
391 if (i2 == MAX_CLAUSES)
392 return;
393 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
394 p->clause[i2 + 1] = 0;
395 if (insert_here >= 0)
396 for (; i2 > insert_here; i2--)
397 p->clause[i2] = p->clause[i2 - 1];
398 else
399 insert_here = i2;
400 p->clause[insert_here] = clause;
404 /* Return P & P2. */
406 static struct predicate
407 and_predicates (conditions conditions,
408 struct predicate *p, struct predicate *p2)
410 struct predicate out = *p;
411 int i;
413 /* Avoid busy work. */
414 if (false_predicate_p (p2) || true_predicate_p (p))
415 return *p2;
416 if (false_predicate_p (p) || true_predicate_p (p2))
417 return *p;
419 /* See how far predicates match. */
420 for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
422 gcc_checking_assert (i < MAX_CLAUSES);
425 /* Combine the predicates rest. */
426 for (; p2->clause[i]; i++)
428 gcc_checking_assert (i < MAX_CLAUSES);
429 add_clause (conditions, &out, p2->clause[i]);
431 return out;
435 /* Return true if predicates are obviously equal. */
437 static inline bool
438 predicates_equal_p (struct predicate *p, struct predicate *p2)
440 int i;
441 for (i = 0; p->clause[i]; i++)
443 gcc_checking_assert (i < MAX_CLAUSES);
444 gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
445 gcc_checking_assert (!p2->clause[i]
446 || p2->clause[i] > p2->clause[i + 1]);
447 if (p->clause[i] != p2->clause[i])
448 return false;
450 return !p2->clause[i];
454 /* Return P | P2. */
456 static struct predicate
457 or_predicates (conditions conditions,
458 struct predicate *p, struct predicate *p2)
460 struct predicate out = true_predicate ();
461 int i, j;
463 /* Avoid busy work. */
464 if (false_predicate_p (p2) || true_predicate_p (p))
465 return *p;
466 if (false_predicate_p (p) || true_predicate_p (p2))
467 return *p2;
468 if (predicates_equal_p (p, p2))
469 return *p;
471 /* OK, combine the predicates. */
472 for (i = 0; p->clause[i]; i++)
473 for (j = 0; p2->clause[j]; j++)
475 gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
476 add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
478 return out;
482 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
483 if predicate P is known to be false. */
485 static bool
486 evaluate_predicate (struct predicate *p, clause_t possible_truths)
488 int i;
490 /* True remains true. */
491 if (true_predicate_p (p))
492 return true;
494 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
496 /* See if we can find clause we can disprove. */
497 for (i = 0; p->clause[i]; i++)
499 gcc_checking_assert (i < MAX_CLAUSES);
500 if (!(p->clause[i] & possible_truths))
501 return false;
503 return true;
506 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
507 instruction will be recomputed per invocation of the inlined call. */
509 static int
510 predicate_probability (conditions conds,
511 struct predicate *p, clause_t possible_truths,
512 vec<inline_param_summary> inline_param_summary)
514 int i;
515 int combined_prob = REG_BR_PROB_BASE;
517 /* True remains true. */
518 if (true_predicate_p (p))
519 return REG_BR_PROB_BASE;
521 if (false_predicate_p (p))
522 return 0;
524 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
526 /* See if we can find clause we can disprove. */
527 for (i = 0; p->clause[i]; i++)
529 gcc_checking_assert (i < MAX_CLAUSES);
530 if (!(p->clause[i] & possible_truths))
531 return 0;
532 else
534 int this_prob = 0;
535 int i2;
536 if (!inline_param_summary.exists ())
537 return REG_BR_PROB_BASE;
538 for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
539 if ((p->clause[i] & possible_truths) & (1 << i2))
541 if (i2 >= predicate_first_dynamic_condition)
543 condition *c =
544 &(*conds)[i2 - predicate_first_dynamic_condition];
545 if (c->code == CHANGED
546 && (c->operand_num <
547 (int) inline_param_summary.length ()))
549 int iprob =
550 inline_param_summary[c->operand_num].change_prob;
551 this_prob = MAX (this_prob, iprob);
553 else
554 this_prob = REG_BR_PROB_BASE;
556 else
557 this_prob = REG_BR_PROB_BASE;
559 combined_prob = MIN (this_prob, combined_prob);
560 if (!combined_prob)
561 return 0;
564 return combined_prob;
568 /* Dump conditional COND. */
570 static void
571 dump_condition (FILE *f, conditions conditions, int cond)
573 condition *c;
574 if (cond == predicate_false_condition)
575 fprintf (f, "false");
576 else if (cond == predicate_not_inlined_condition)
577 fprintf (f, "not inlined");
578 else
580 c = &(*conditions)[cond - predicate_first_dynamic_condition];
581 fprintf (f, "op%i", c->operand_num);
582 if (c->agg_contents)
583 fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
584 c->by_ref ? "ref " : "", c->offset);
585 if (c->code == IS_NOT_CONSTANT)
587 fprintf (f, " not constant");
588 return;
590 if (c->code == CHANGED)
592 fprintf (f, " changed");
593 return;
595 fprintf (f, " %s ", op_symbol_code (c->code));
596 print_generic_expr (f, c->val, 1);
601 /* Dump clause CLAUSE. */
603 static void
604 dump_clause (FILE *f, conditions conds, clause_t clause)
606 int i;
607 bool found = false;
608 fprintf (f, "(");
609 if (!clause)
610 fprintf (f, "true");
611 for (i = 0; i < NUM_CONDITIONS; i++)
612 if (clause & (1 << i))
614 if (found)
615 fprintf (f, " || ");
616 found = true;
617 dump_condition (f, conds, i);
619 fprintf (f, ")");
623 /* Dump predicate PREDICATE. */
625 static void
626 dump_predicate (FILE *f, conditions conds, struct predicate *pred)
628 int i;
629 if (true_predicate_p (pred))
630 dump_clause (f, conds, 0);
631 else
632 for (i = 0; pred->clause[i]; i++)
634 if (i)
635 fprintf (f, " && ");
636 dump_clause (f, conds, pred->clause[i]);
638 fprintf (f, "\n");
642 /* Dump inline hints. */
643 void
644 dump_inline_hints (FILE *f, inline_hints hints)
646 if (!hints)
647 return;
648 fprintf (f, "inline hints:");
649 if (hints & INLINE_HINT_indirect_call)
651 hints &= ~INLINE_HINT_indirect_call;
652 fprintf (f, " indirect_call");
654 if (hints & INLINE_HINT_loop_iterations)
656 hints &= ~INLINE_HINT_loop_iterations;
657 fprintf (f, " loop_iterations");
659 if (hints & INLINE_HINT_loop_stride)
661 hints &= ~INLINE_HINT_loop_stride;
662 fprintf (f, " loop_stride");
664 if (hints & INLINE_HINT_same_scc)
666 hints &= ~INLINE_HINT_same_scc;
667 fprintf (f, " same_scc");
669 if (hints & INLINE_HINT_in_scc)
671 hints &= ~INLINE_HINT_in_scc;
672 fprintf (f, " in_scc");
674 if (hints & INLINE_HINT_cross_module)
676 hints &= ~INLINE_HINT_cross_module;
677 fprintf (f, " cross_module");
679 if (hints & INLINE_HINT_declared_inline)
681 hints &= ~INLINE_HINT_declared_inline;
682 fprintf (f, " declared_inline");
684 if (hints & INLINE_HINT_array_index)
686 hints &= ~INLINE_HINT_array_index;
687 fprintf (f, " array_index");
689 if (hints & INLINE_HINT_known_hot)
691 hints &= ~INLINE_HINT_known_hot;
692 fprintf (f, " known_hot");
694 gcc_assert (!hints);
698 /* Record SIZE and TIME under condition PRED into the inline summary. */
700 static void
701 account_size_time (struct inline_summary *summary, int size, int time,
702 struct predicate *pred)
704 size_time_entry *e;
705 bool found = false;
706 int i;
708 if (false_predicate_p (pred))
709 return;
711 /* We need to create initial empty unconitional clause, but otherwie
712 we don't need to account empty times and sizes. */
713 if (!size && !time && summary->entry)
714 return;
716 /* Watch overflow that might result from insane profiles. */
717 if (time > MAX_TIME * INLINE_TIME_SCALE)
718 time = MAX_TIME * INLINE_TIME_SCALE;
719 gcc_assert (time >= 0);
721 for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
722 if (predicates_equal_p (&e->predicate, pred))
724 found = true;
725 break;
727 if (i == 256)
729 i = 0;
730 found = true;
731 e = &(*summary->entry)[0];
732 gcc_assert (!e->predicate.clause[0]);
733 if (dump_file && (dump_flags & TDF_DETAILS))
734 fprintf (dump_file,
735 "\t\tReached limit on number of entries, "
736 "ignoring the predicate.");
738 if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
740 fprintf (dump_file,
741 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
742 ((double) size) / INLINE_SIZE_SCALE,
743 ((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
744 dump_predicate (dump_file, summary->conds, pred);
746 if (!found)
748 struct size_time_entry new_entry;
749 new_entry.size = size;
750 new_entry.time = time;
751 new_entry.predicate = *pred;
752 vec_safe_push (summary->entry, new_entry);
754 else
756 e->size += size;
757 e->time += time;
758 if (e->time > MAX_TIME * INLINE_TIME_SCALE)
759 e->time = MAX_TIME * INLINE_TIME_SCALE;
763 /* Set predicate for edge E. */
765 static void
766 edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
768 struct inline_edge_summary *es = inline_edge_summary (e);
770 /* If the edge is determined to be never executed, redirect it
771 to BUILTIN_UNREACHABLE to save inliner from inlining into it. */
772 if (predicate && false_predicate_p (predicate) && e->callee)
774 struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
776 e->redirect_callee (cgraph_node::get_create
777 (builtin_decl_implicit (BUILT_IN_UNREACHABLE)));
778 e->inline_failed = CIF_UNREACHABLE;
779 es->call_stmt_size = 0;
780 es->call_stmt_time = 0;
781 if (callee)
782 callee->remove_symbol_and_inline_clones ();
784 if (predicate && !true_predicate_p (predicate))
786 if (!es->predicate)
787 es->predicate = (struct predicate *) pool_alloc (edge_predicate_pool);
788 *es->predicate = *predicate;
790 else
792 if (es->predicate)
793 pool_free (edge_predicate_pool, es->predicate);
794 es->predicate = NULL;
798 /* Set predicate for hint *P. */
800 static void
801 set_hint_predicate (struct predicate **p, struct predicate new_predicate)
803 if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
805 if (*p)
806 pool_free (edge_predicate_pool, *p);
807 *p = NULL;
809 else
811 if (!*p)
812 *p = (struct predicate *) pool_alloc (edge_predicate_pool);
813 **p = new_predicate;
818 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
819 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
820 Return clause of possible truths. When INLINE_P is true, assume that we are
821 inlining.
823 ERROR_MARK means compile time invariant. */
825 static clause_t
826 evaluate_conditions_for_known_args (struct cgraph_node *node,
827 bool inline_p,
828 vec<tree> known_vals,
829 vec<ipa_agg_jump_function_p>
830 known_aggs)
832 clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
833 struct inline_summary *info = inline_summaries->get (node);
834 int i;
835 struct condition *c;
837 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
839 tree val;
840 tree res;
842 /* We allow call stmt to have fewer arguments than the callee function
843 (especially for K&R style programs). So bound check here (we assume
844 known_aggs vector, if non-NULL, has the same length as
845 known_vals). */
846 gcc_checking_assert (!known_aggs.exists ()
847 || (known_vals.length () == known_aggs.length ()));
848 if (c->operand_num >= (int) known_vals.length ())
850 clause |= 1 << (i + predicate_first_dynamic_condition);
851 continue;
854 if (c->agg_contents)
856 struct ipa_agg_jump_function *agg;
858 if (c->code == CHANGED
859 && !c->by_ref
860 && (known_vals[c->operand_num] == error_mark_node))
861 continue;
863 if (known_aggs.exists ())
865 agg = known_aggs[c->operand_num];
866 val = ipa_find_agg_cst_for_param (agg, c->offset, c->by_ref);
868 else
869 val = NULL_TREE;
871 else
873 val = known_vals[c->operand_num];
874 if (val == error_mark_node && c->code != CHANGED)
875 val = NULL_TREE;
878 if (!val)
880 clause |= 1 << (i + predicate_first_dynamic_condition);
881 continue;
883 if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
884 continue;
886 if (operand_equal_p (TYPE_SIZE (TREE_TYPE (c->val)),
887 TYPE_SIZE (TREE_TYPE (val)), 0))
889 val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (c->val), val);
891 res = val
892 ? fold_binary_to_constant (c->code, boolean_type_node, val, c->val)
893 : NULL;
895 if (res && integer_zerop (res))
896 continue;
898 clause |= 1 << (i + predicate_first_dynamic_condition);
900 return clause;
904 /* Work out what conditions might be true at invocation of E. */
906 static void
907 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
908 clause_t *clause_ptr,
909 vec<tree> *known_vals_ptr,
910 vec<ipa_polymorphic_call_context>
911 *known_contexts_ptr,
912 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
914 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
915 struct inline_summary *info = inline_summaries->get (callee);
916 vec<tree> known_vals = vNULL;
917 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
919 if (clause_ptr)
920 *clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
921 if (known_vals_ptr)
922 known_vals_ptr->create (0);
923 if (known_contexts_ptr)
924 known_contexts_ptr->create (0);
926 if (ipa_node_params_sum
927 && !e->call_stmt_cannot_inline_p
928 && ((clause_ptr && info->conds) || known_vals_ptr || known_contexts_ptr))
930 struct ipa_node_params *parms_info;
931 struct ipa_edge_args *args = IPA_EDGE_REF (e);
932 struct inline_edge_summary *es = inline_edge_summary (e);
933 int i, count = ipa_get_cs_argument_count (args);
935 if (e->caller->global.inlined_to)
936 parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
937 else
938 parms_info = IPA_NODE_REF (e->caller);
940 if (count && (info->conds || known_vals_ptr))
941 known_vals.safe_grow_cleared (count);
942 if (count && (info->conds || known_aggs_ptr))
943 known_aggs.safe_grow_cleared (count);
944 if (count && known_contexts_ptr)
945 known_contexts_ptr->safe_grow_cleared (count);
947 for (i = 0; i < count; i++)
949 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
950 tree cst = ipa_value_from_jfunc (parms_info, jf);
952 if (!cst && e->call_stmt
953 && i < (int)gimple_call_num_args (e->call_stmt))
955 cst = gimple_call_arg (e->call_stmt, i);
956 if (!is_gimple_min_invariant (cst))
957 cst = NULL;
959 if (cst)
961 gcc_checking_assert (TREE_CODE (cst) != TREE_BINFO);
962 if (known_vals.exists ())
963 known_vals[i] = cst;
965 else if (inline_p && !es->param[i].change_prob)
966 known_vals[i] = error_mark_node;
968 if (known_contexts_ptr)
969 (*known_contexts_ptr)[i] = ipa_context_from_jfunc (parms_info, e,
970 i, jf);
971 /* TODO: When IPA-CP starts propagating and merging aggregate jump
972 functions, use its knowledge of the caller too, just like the
973 scalar case above. */
974 known_aggs[i] = &jf->agg;
977 else if (e->call_stmt && !e->call_stmt_cannot_inline_p
978 && ((clause_ptr && info->conds) || known_vals_ptr))
980 int i, count = (int)gimple_call_num_args (e->call_stmt);
982 if (count && (info->conds || known_vals_ptr))
983 known_vals.safe_grow_cleared (count);
984 for (i = 0; i < count; i++)
986 tree cst = gimple_call_arg (e->call_stmt, i);
987 if (!is_gimple_min_invariant (cst))
988 cst = NULL;
989 if (cst)
990 known_vals[i] = cst;
994 if (clause_ptr)
995 *clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
996 known_vals, known_aggs);
998 if (known_vals_ptr)
999 *known_vals_ptr = known_vals;
1000 else
1001 known_vals.release ();
1003 if (known_aggs_ptr)
1004 *known_aggs_ptr = known_aggs;
1005 else
1006 known_aggs.release ();
1010 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
1012 static void
1013 inline_summary_alloc (void)
1015 if (!edge_removal_hook_holder)
1016 edge_removal_hook_holder =
1017 symtab->add_edge_removal_hook (&inline_edge_removal_hook, NULL);
1018 if (!edge_duplication_hook_holder)
1019 edge_duplication_hook_holder =
1020 symtab->add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
1022 if (!inline_summaries)
1023 inline_summaries = (inline_summary_t*) inline_summary_t::create_ggc (symtab);
1025 if (inline_edge_summary_vec.length () <= (unsigned) symtab->edges_max_uid)
1026 inline_edge_summary_vec.safe_grow_cleared (symtab->edges_max_uid + 1);
1027 if (!edge_predicate_pool)
1028 edge_predicate_pool = create_alloc_pool ("edge predicates",
1029 sizeof (struct predicate), 10);
1032 /* We are called multiple time for given function; clear
1033 data from previous run so they are not cumulated. */
1035 static void
1036 reset_inline_edge_summary (struct cgraph_edge *e)
1038 if (e->uid < (int) inline_edge_summary_vec.length ())
1040 struct inline_edge_summary *es = inline_edge_summary (e);
1042 es->call_stmt_size = es->call_stmt_time = 0;
1043 if (es->predicate)
1044 pool_free (edge_predicate_pool, es->predicate);
1045 es->predicate = NULL;
1046 es->param.release ();
1050 /* We are called multiple time for given function; clear
1051 data from previous run so they are not cumulated. */
1053 static void
1054 reset_inline_summary (struct cgraph_node *node,
1055 inline_summary *info)
1057 struct cgraph_edge *e;
1059 info->self_size = info->self_time = 0;
1060 info->estimated_stack_size = 0;
1061 info->estimated_self_stack_size = 0;
1062 info->stack_frame_offset = 0;
1063 info->size = 0;
1064 info->time = 0;
1065 info->growth = 0;
1066 info->scc_no = 0;
1067 if (info->loop_iterations)
1069 pool_free (edge_predicate_pool, info->loop_iterations);
1070 info->loop_iterations = NULL;
1072 if (info->loop_stride)
1074 pool_free (edge_predicate_pool, info->loop_stride);
1075 info->loop_stride = NULL;
1077 if (info->array_index)
1079 pool_free (edge_predicate_pool, info->array_index);
1080 info->array_index = NULL;
1082 vec_free (info->conds);
1083 vec_free (info->entry);
1084 for (e = node->callees; e; e = e->next_callee)
1085 reset_inline_edge_summary (e);
1086 for (e = node->indirect_calls; e; e = e->next_callee)
1087 reset_inline_edge_summary (e);
1090 /* Hook that is called by cgraph.c when a node is removed. */
1092 void
1093 inline_summary_t::remove (cgraph_node *node, inline_summary *info)
1095 reset_inline_summary (node, info);
1098 /* Remap predicate P of former function to be predicate of duplicated function.
1099 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1100 INFO is inline summary of the duplicated node. */
1102 static struct predicate
1103 remap_predicate_after_duplication (struct predicate *p,
1104 clause_t possible_truths,
1105 struct inline_summary *info)
1107 struct predicate new_predicate = true_predicate ();
1108 int j;
1109 for (j = 0; p->clause[j]; j++)
1110 if (!(possible_truths & p->clause[j]))
1112 new_predicate = false_predicate ();
1113 break;
1115 else
1116 add_clause (info->conds, &new_predicate,
1117 possible_truths & p->clause[j]);
1118 return new_predicate;
1121 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1122 Additionally care about allocating new memory slot for updated predicate
1123 and set it to NULL when it becomes true or false (and thus uninteresting).
1126 static void
1127 remap_hint_predicate_after_duplication (struct predicate **p,
1128 clause_t possible_truths,
1129 struct inline_summary *info)
1131 struct predicate new_predicate;
1133 if (!*p)
1134 return;
1136 new_predicate = remap_predicate_after_duplication (*p,
1137 possible_truths, info);
1138 /* We do not want to free previous predicate; it is used by node origin. */
1139 *p = NULL;
1140 set_hint_predicate (p, new_predicate);
1144 /* Hook that is called by cgraph.c when a node is duplicated. */
1145 void
1146 inline_summary_t::duplicate (cgraph_node *src,
1147 cgraph_node *dst,
1148 inline_summary *,
1149 inline_summary *info)
1151 inline_summary_alloc ();
1152 memcpy (info, inline_summaries->get (src), sizeof (inline_summary));
1153 /* TODO: as an optimization, we may avoid copying conditions
1154 that are known to be false or true. */
1155 info->conds = vec_safe_copy (info->conds);
1157 /* When there are any replacements in the function body, see if we can figure
1158 out that something was optimized out. */
1159 if (ipa_node_params_sum && dst->clone.tree_map)
1161 vec<size_time_entry, va_gc> *entry = info->entry;
1162 /* Use SRC parm info since it may not be copied yet. */
1163 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
1164 vec<tree> known_vals = vNULL;
1165 int count = ipa_get_param_count (parms_info);
1166 int i, j;
1167 clause_t possible_truths;
1168 struct predicate true_pred = true_predicate ();
1169 size_time_entry *e;
1170 int optimized_out_size = 0;
1171 bool inlined_to_p = false;
1172 struct cgraph_edge *edge;
1174 info->entry = 0;
1175 known_vals.safe_grow_cleared (count);
1176 for (i = 0; i < count; i++)
1178 struct ipa_replace_map *r;
1180 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
1182 if (((!r->old_tree && r->parm_num == i)
1183 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
1184 && r->replace_p && !r->ref_p)
1186 known_vals[i] = r->new_tree;
1187 break;
1191 possible_truths = evaluate_conditions_for_known_args (dst, false,
1192 known_vals,
1193 vNULL);
1194 known_vals.release ();
1196 account_size_time (info, 0, 0, &true_pred);
1198 /* Remap size_time vectors.
1199 Simplify the predicate by prunning out alternatives that are known
1200 to be false.
1201 TODO: as on optimization, we can also eliminate conditions known
1202 to be true. */
1203 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
1205 struct predicate new_predicate;
1206 new_predicate = remap_predicate_after_duplication (&e->predicate,
1207 possible_truths,
1208 info);
1209 if (false_predicate_p (&new_predicate))
1210 optimized_out_size += e->size;
1211 else
1212 account_size_time (info, e->size, e->time, &new_predicate);
1215 /* Remap edge predicates with the same simplification as above.
1216 Also copy constantness arrays. */
1217 for (edge = dst->callees; edge; edge = edge->next_callee)
1219 struct predicate new_predicate;
1220 struct inline_edge_summary *es = inline_edge_summary (edge);
1222 if (!edge->inline_failed)
1223 inlined_to_p = true;
1224 if (!es->predicate)
1225 continue;
1226 new_predicate = remap_predicate_after_duplication (es->predicate,
1227 possible_truths,
1228 info);
1229 if (false_predicate_p (&new_predicate)
1230 && !false_predicate_p (es->predicate))
1232 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1233 edge->frequency = 0;
1235 edge_set_predicate (edge, &new_predicate);
1238 /* Remap indirect edge predicates with the same simplificaiton as above.
1239 Also copy constantness arrays. */
1240 for (edge = dst->indirect_calls; edge; edge = edge->next_callee)
1242 struct predicate new_predicate;
1243 struct inline_edge_summary *es = inline_edge_summary (edge);
1245 gcc_checking_assert (edge->inline_failed);
1246 if (!es->predicate)
1247 continue;
1248 new_predicate = remap_predicate_after_duplication (es->predicate,
1249 possible_truths,
1250 info);
1251 if (false_predicate_p (&new_predicate)
1252 && !false_predicate_p (es->predicate))
1254 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1255 edge->frequency = 0;
1257 edge_set_predicate (edge, &new_predicate);
1259 remap_hint_predicate_after_duplication (&info->loop_iterations,
1260 possible_truths, info);
1261 remap_hint_predicate_after_duplication (&info->loop_stride,
1262 possible_truths, info);
1263 remap_hint_predicate_after_duplication (&info->array_index,
1264 possible_truths, info);
1266 /* If inliner or someone after inliner will ever start producing
1267 non-trivial clones, we will get trouble with lack of information
1268 about updating self sizes, because size vectors already contains
1269 sizes of the calees. */
1270 gcc_assert (!inlined_to_p || !optimized_out_size);
1272 else
1274 info->entry = vec_safe_copy (info->entry);
1275 if (info->loop_iterations)
1277 predicate p = *info->loop_iterations;
1278 info->loop_iterations = NULL;
1279 set_hint_predicate (&info->loop_iterations, p);
1281 if (info->loop_stride)
1283 predicate p = *info->loop_stride;
1284 info->loop_stride = NULL;
1285 set_hint_predicate (&info->loop_stride, p);
1287 if (info->array_index)
1289 predicate p = *info->array_index;
1290 info->array_index = NULL;
1291 set_hint_predicate (&info->array_index, p);
1294 inline_update_overall_summary (dst);
1298 /* Hook that is called by cgraph.c when a node is duplicated. */
1300 static void
1301 inline_edge_duplication_hook (struct cgraph_edge *src,
1302 struct cgraph_edge *dst,
1303 ATTRIBUTE_UNUSED void *data)
1305 struct inline_edge_summary *info;
1306 struct inline_edge_summary *srcinfo;
1307 inline_summary_alloc ();
1308 info = inline_edge_summary (dst);
1309 srcinfo = inline_edge_summary (src);
1310 memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
1311 info->predicate = NULL;
1312 edge_set_predicate (dst, srcinfo->predicate);
1313 info->param = srcinfo->param.copy ();
1314 if (!dst->indirect_unknown_callee && src->indirect_unknown_callee)
1316 info->call_stmt_size -= (eni_size_weights.indirect_call_cost
1317 - eni_size_weights.call_cost);
1318 info->call_stmt_time -= (eni_time_weights.indirect_call_cost
1319 - eni_time_weights.call_cost);
1324 /* Keep edge cache consistent across edge removal. */
1326 static void
1327 inline_edge_removal_hook (struct cgraph_edge *edge,
1328 void *data ATTRIBUTE_UNUSED)
1330 if (edge_growth_cache.exists ())
1331 reset_edge_growth_cache (edge);
1332 reset_inline_edge_summary (edge);
1336 /* Initialize growth caches. */
1338 void
1339 initialize_growth_caches (void)
1341 if (symtab->edges_max_uid)
1342 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
1346 /* Free growth caches. */
1348 void
1349 free_growth_caches (void)
1351 edge_growth_cache.release ();
1355 /* Dump edge summaries associated to NODE and recursively to all clones.
1356 Indent by INDENT. */
1358 static void
1359 dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
1360 struct inline_summary *info)
1362 struct cgraph_edge *edge;
1363 for (edge = node->callees; edge; edge = edge->next_callee)
1365 struct inline_edge_summary *es = inline_edge_summary (edge);
1366 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1367 int i;
1369 fprintf (f,
1370 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1371 " time: %2i callee size:%2i stack:%2i",
1372 indent, "", callee->name (), callee->order,
1373 !edge->inline_failed
1374 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
1375 indent, "", es->loop_depth, edge->frequency,
1376 es->call_stmt_size, es->call_stmt_time,
1377 (int) inline_summaries->get (callee)->size / INLINE_SIZE_SCALE,
1378 (int) inline_summaries->get (callee)->estimated_stack_size);
1380 if (es->predicate)
1382 fprintf (f, " predicate: ");
1383 dump_predicate (f, info->conds, es->predicate);
1385 else
1386 fprintf (f, "\n");
1387 if (es->param.exists ())
1388 for (i = 0; i < (int) es->param.length (); i++)
1390 int prob = es->param[i].change_prob;
1392 if (!prob)
1393 fprintf (f, "%*s op%i is compile time invariant\n",
1394 indent + 2, "", i);
1395 else if (prob != REG_BR_PROB_BASE)
1396 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
1397 prob * 100.0 / REG_BR_PROB_BASE);
1399 if (!edge->inline_failed)
1401 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
1402 " callee size %i\n",
1403 indent + 2, "",
1404 (int) inline_summaries->get (callee)->stack_frame_offset,
1405 (int) inline_summaries->get (callee)->estimated_self_stack_size,
1406 (int) inline_summaries->get (callee)->estimated_stack_size);
1407 dump_inline_edge_summary (f, indent + 2, callee, info);
1410 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
1412 struct inline_edge_summary *es = inline_edge_summary (edge);
1413 fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1414 " time: %2i",
1415 indent, "",
1416 es->loop_depth,
1417 edge->frequency, es->call_stmt_size, es->call_stmt_time);
1418 if (es->predicate)
1420 fprintf (f, "predicate: ");
1421 dump_predicate (f, info->conds, es->predicate);
1423 else
1424 fprintf (f, "\n");
1429 void
1430 dump_inline_summary (FILE *f, struct cgraph_node *node)
1432 if (node->definition)
1434 struct inline_summary *s = inline_summaries->get (node);
1435 size_time_entry *e;
1436 int i;
1437 fprintf (f, "Inline summary for %s/%i", node->name (),
1438 node->order);
1439 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
1440 fprintf (f, " always_inline");
1441 if (s->inlinable)
1442 fprintf (f, " inlinable");
1443 fprintf (f, "\n self time: %i\n", s->self_time);
1444 fprintf (f, " global time: %i\n", s->time);
1445 fprintf (f, " self size: %i\n", s->self_size);
1446 fprintf (f, " global size: %i\n", s->size);
1447 fprintf (f, " min size: %i\n", s->min_size);
1448 fprintf (f, " self stack: %i\n",
1449 (int) s->estimated_self_stack_size);
1450 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
1451 if (s->growth)
1452 fprintf (f, " estimated growth:%i\n", (int) s->growth);
1453 if (s->scc_no)
1454 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
1455 for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
1457 fprintf (f, " size:%f, time:%f, predicate:",
1458 (double) e->size / INLINE_SIZE_SCALE,
1459 (double) e->time / INLINE_TIME_SCALE);
1460 dump_predicate (f, s->conds, &e->predicate);
1462 if (s->loop_iterations)
1464 fprintf (f, " loop iterations:");
1465 dump_predicate (f, s->conds, s->loop_iterations);
1467 if (s->loop_stride)
1469 fprintf (f, " loop stride:");
1470 dump_predicate (f, s->conds, s->loop_stride);
1472 if (s->array_index)
1474 fprintf (f, " array index:");
1475 dump_predicate (f, s->conds, s->array_index);
1477 fprintf (f, " calls:\n");
1478 dump_inline_edge_summary (f, 4, node, s);
1479 fprintf (f, "\n");
1483 DEBUG_FUNCTION void
1484 debug_inline_summary (struct cgraph_node *node)
1486 dump_inline_summary (stderr, node);
1489 void
1490 dump_inline_summaries (FILE *f)
1492 struct cgraph_node *node;
1494 FOR_EACH_DEFINED_FUNCTION (node)
1495 if (!node->global.inlined_to)
1496 dump_inline_summary (f, node);
1499 /* Give initial reasons why inlining would fail on EDGE. This gets either
1500 nullified or usually overwritten by more precise reasons later. */
1502 void
1503 initialize_inline_failed (struct cgraph_edge *e)
1505 struct cgraph_node *callee = e->callee;
1507 if (e->indirect_unknown_callee)
1508 e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
1509 else if (!callee->definition)
1510 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
1511 else if (callee->local.redefined_extern_inline)
1512 e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
1513 else if (e->call_stmt_cannot_inline_p)
1514 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
1515 else if (cfun && fn_contains_cilk_spawn_p (cfun))
1516 /* We can't inline if the function is spawing a function. */
1517 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
1518 else
1519 e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
1522 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1523 boolean variable pointed to by DATA. */
1525 static bool
1526 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
1527 void *data)
1529 bool *b = (bool *) data;
1530 *b = true;
1531 return true;
1534 /* If OP refers to value of function parameter, return the corresponding
1535 parameter. */
1537 static tree
1538 unmodified_parm_1 (gimple stmt, tree op)
1540 /* SSA_NAME referring to parm default def? */
1541 if (TREE_CODE (op) == SSA_NAME
1542 && SSA_NAME_IS_DEFAULT_DEF (op)
1543 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
1544 return SSA_NAME_VAR (op);
1545 /* Non-SSA parm reference? */
1546 if (TREE_CODE (op) == PARM_DECL)
1548 bool modified = false;
1550 ao_ref refd;
1551 ao_ref_init (&refd, op);
1552 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
1553 NULL);
1554 if (!modified)
1555 return op;
1557 return NULL_TREE;
1560 /* If OP refers to value of function parameter, return the corresponding
1561 parameter. Also traverse chains of SSA register assignments. */
1563 static tree
1564 unmodified_parm (gimple stmt, tree op)
1566 tree res = unmodified_parm_1 (stmt, op);
1567 if (res)
1568 return res;
1570 if (TREE_CODE (op) == SSA_NAME
1571 && !SSA_NAME_IS_DEFAULT_DEF (op)
1572 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1573 return unmodified_parm (SSA_NAME_DEF_STMT (op),
1574 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
1575 return NULL_TREE;
1578 /* If OP refers to a value of a function parameter or value loaded from an
1579 aggregate passed to a parameter (either by value or reference), return TRUE
1580 and store the number of the parameter to *INDEX_P and information whether
1581 and how it has been loaded from an aggregate into *AGGPOS. INFO describes
1582 the function parameters, STMT is the statement in which OP is used or
1583 loaded. */
1585 static bool
1586 unmodified_parm_or_parm_agg_item (struct ipa_node_params *info,
1587 gimple stmt, tree op, int *index_p,
1588 struct agg_position_info *aggpos)
1590 tree res = unmodified_parm_1 (stmt, op);
1592 gcc_checking_assert (aggpos);
1593 if (res)
1595 *index_p = ipa_get_param_decl_index (info, res);
1596 if (*index_p < 0)
1597 return false;
1598 aggpos->agg_contents = false;
1599 aggpos->by_ref = false;
1600 return true;
1603 if (TREE_CODE (op) == SSA_NAME)
1605 if (SSA_NAME_IS_DEFAULT_DEF (op)
1606 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1607 return false;
1608 stmt = SSA_NAME_DEF_STMT (op);
1609 op = gimple_assign_rhs1 (stmt);
1610 if (!REFERENCE_CLASS_P (op))
1611 return unmodified_parm_or_parm_agg_item (info, stmt, op, index_p,
1612 aggpos);
1615 aggpos->agg_contents = true;
1616 return ipa_load_from_parm_agg (info, stmt, op, index_p, &aggpos->offset,
1617 &aggpos->by_ref);
1620 /* See if statement might disappear after inlining.
1621 0 - means not eliminated
1622 1 - half of statements goes away
1623 2 - for sure it is eliminated.
1624 We are not terribly sophisticated, basically looking for simple abstraction
1625 penalty wrappers. */
1627 static int
1628 eliminated_by_inlining_prob (gimple stmt)
1630 enum gimple_code code = gimple_code (stmt);
1631 enum tree_code rhs_code;
1633 if (!optimize)
1634 return 0;
1636 switch (code)
1638 case GIMPLE_RETURN:
1639 return 2;
1640 case GIMPLE_ASSIGN:
1641 if (gimple_num_ops (stmt) != 2)
1642 return 0;
1644 rhs_code = gimple_assign_rhs_code (stmt);
1646 /* Casts of parameters, loads from parameters passed by reference
1647 and stores to return value or parameters are often free after
1648 inlining dua to SRA and further combining.
1649 Assume that half of statements goes away. */
1650 if (CONVERT_EXPR_CODE_P (rhs_code)
1651 || rhs_code == VIEW_CONVERT_EXPR
1652 || rhs_code == ADDR_EXPR
1653 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1655 tree rhs = gimple_assign_rhs1 (stmt);
1656 tree lhs = gimple_assign_lhs (stmt);
1657 tree inner_rhs = get_base_address (rhs);
1658 tree inner_lhs = get_base_address (lhs);
1659 bool rhs_free = false;
1660 bool lhs_free = false;
1662 if (!inner_rhs)
1663 inner_rhs = rhs;
1664 if (!inner_lhs)
1665 inner_lhs = lhs;
1667 /* Reads of parameter are expected to be free. */
1668 if (unmodified_parm (stmt, inner_rhs))
1669 rhs_free = true;
1670 /* Match expressions of form &this->field. Those will most likely
1671 combine with something upstream after inlining. */
1672 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1674 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1675 if (TREE_CODE (op) == PARM_DECL)
1676 rhs_free = true;
1677 else if (TREE_CODE (op) == MEM_REF
1678 && unmodified_parm (stmt, TREE_OPERAND (op, 0)))
1679 rhs_free = true;
1682 /* When parameter is not SSA register because its address is taken
1683 and it is just copied into one, the statement will be completely
1684 free after inlining (we will copy propagate backward). */
1685 if (rhs_free && is_gimple_reg (lhs))
1686 return 2;
1688 /* Reads of parameters passed by reference
1689 expected to be free (i.e. optimized out after inlining). */
1690 if (TREE_CODE (inner_rhs) == MEM_REF
1691 && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
1692 rhs_free = true;
1694 /* Copying parameter passed by reference into gimple register is
1695 probably also going to copy propagate, but we can't be quite
1696 sure. */
1697 if (rhs_free && is_gimple_reg (lhs))
1698 lhs_free = true;
1700 /* Writes to parameters, parameters passed by value and return value
1701 (either dirrectly or passed via invisible reference) are free.
1703 TODO: We ought to handle testcase like
1704 struct a {int a,b;};
1705 struct a
1706 retrurnsturct (void)
1708 struct a a ={1,2};
1709 return a;
1712 This translate into:
1714 retrurnsturct ()
1716 int a$b;
1717 int a$a;
1718 struct a a;
1719 struct a D.2739;
1721 <bb 2>:
1722 D.2739.a = 1;
1723 D.2739.b = 2;
1724 return D.2739;
1727 For that we either need to copy ipa-split logic detecting writes
1728 to return value. */
1729 if (TREE_CODE (inner_lhs) == PARM_DECL
1730 || TREE_CODE (inner_lhs) == RESULT_DECL
1731 || (TREE_CODE (inner_lhs) == MEM_REF
1732 && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
1733 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1734 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1735 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1736 (inner_lhs,
1737 0))) == RESULT_DECL))))
1738 lhs_free = true;
1739 if (lhs_free
1740 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1741 rhs_free = true;
1742 if (lhs_free && rhs_free)
1743 return 1;
1745 return 0;
1746 default:
1747 return 0;
1752 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1753 predicates to the CFG edges. */
1755 static void
1756 set_cond_stmt_execution_predicate (struct ipa_node_params *info,
1757 struct inline_summary *summary,
1758 basic_block bb)
1760 gimple last;
1761 tree op;
1762 int index;
1763 struct agg_position_info aggpos;
1764 enum tree_code code, inverted_code;
1765 edge e;
1766 edge_iterator ei;
1767 gimple set_stmt;
1768 tree op2;
1770 last = last_stmt (bb);
1771 if (!last || gimple_code (last) != GIMPLE_COND)
1772 return;
1773 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1774 return;
1775 op = gimple_cond_lhs (last);
1776 /* TODO: handle conditionals like
1777 var = op0 < 4;
1778 if (var != 0). */
1779 if (unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1781 code = gimple_cond_code (last);
1782 inverted_code = invert_tree_comparison (code, HONOR_NANS (op));
1784 FOR_EACH_EDGE (e, ei, bb->succs)
1786 enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
1787 ? code : inverted_code);
1788 /* invert_tree_comparison will return ERROR_MARK on FP
1789 comparsions that are not EQ/NE instead of returning proper
1790 unordered one. Be sure it is not confused with NON_CONSTANT. */
1791 if (this_code != ERROR_MARK)
1793 struct predicate p = add_condition (summary, index, &aggpos,
1794 this_code,
1795 gimple_cond_rhs (last));
1796 e->aux = pool_alloc (edge_predicate_pool);
1797 *(struct predicate *) e->aux = p;
1802 if (TREE_CODE (op) != SSA_NAME)
1803 return;
1804 /* Special case
1805 if (builtin_constant_p (op))
1806 constant_code
1807 else
1808 nonconstant_code.
1809 Here we can predicate nonconstant_code. We can't
1810 really handle constant_code since we have no predicate
1811 for this and also the constant code is not known to be
1812 optimized away when inliner doen't see operand is constant.
1813 Other optimizers might think otherwise. */
1814 if (gimple_cond_code (last) != NE_EXPR
1815 || !integer_zerop (gimple_cond_rhs (last)))
1816 return;
1817 set_stmt = SSA_NAME_DEF_STMT (op);
1818 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1819 || gimple_call_num_args (set_stmt) != 1)
1820 return;
1821 op2 = gimple_call_arg (set_stmt, 0);
1822 if (!unmodified_parm_or_parm_agg_item
1823 (info, set_stmt, op2, &index, &aggpos))
1824 return;
1825 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1827 struct predicate p = add_condition (summary, index, &aggpos,
1828 IS_NOT_CONSTANT, NULL_TREE);
1829 e->aux = pool_alloc (edge_predicate_pool);
1830 *(struct predicate *) e->aux = p;
1835 /* If BB ends by a switch we can turn into predicates, attach corresponding
1836 predicates to the CFG edges. */
1838 static void
1839 set_switch_stmt_execution_predicate (struct ipa_node_params *info,
1840 struct inline_summary *summary,
1841 basic_block bb)
1843 gimple lastg;
1844 tree op;
1845 int index;
1846 struct agg_position_info aggpos;
1847 edge e;
1848 edge_iterator ei;
1849 size_t n;
1850 size_t case_idx;
1852 lastg = last_stmt (bb);
1853 if (!lastg || gimple_code (lastg) != GIMPLE_SWITCH)
1854 return;
1855 gswitch *last = as_a <gswitch *> (lastg);
1856 op = gimple_switch_index (last);
1857 if (!unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1858 return;
1860 FOR_EACH_EDGE (e, ei, bb->succs)
1862 e->aux = pool_alloc (edge_predicate_pool);
1863 *(struct predicate *) e->aux = false_predicate ();
1865 n = gimple_switch_num_labels (last);
1866 for (case_idx = 0; case_idx < n; ++case_idx)
1868 tree cl = gimple_switch_label (last, case_idx);
1869 tree min, max;
1870 struct predicate p;
1872 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
1873 min = CASE_LOW (cl);
1874 max = CASE_HIGH (cl);
1876 /* For default we might want to construct predicate that none
1877 of cases is met, but it is bit hard to do not having negations
1878 of conditionals handy. */
1879 if (!min && !max)
1880 p = true_predicate ();
1881 else if (!max)
1882 p = add_condition (summary, index, &aggpos, EQ_EXPR, min);
1883 else
1885 struct predicate p1, p2;
1886 p1 = add_condition (summary, index, &aggpos, GE_EXPR, min);
1887 p2 = add_condition (summary, index, &aggpos, LE_EXPR, max);
1888 p = and_predicates (summary->conds, &p1, &p2);
1890 *(struct predicate *) e->aux
1891 = or_predicates (summary->conds, &p, (struct predicate *) e->aux);
1896 /* For each BB in NODE attach to its AUX pointer predicate under
1897 which it is executable. */
1899 static void
1900 compute_bb_predicates (struct cgraph_node *node,
1901 struct ipa_node_params *parms_info,
1902 struct inline_summary *summary)
1904 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1905 bool done = false;
1906 basic_block bb;
1908 FOR_EACH_BB_FN (bb, my_function)
1910 set_cond_stmt_execution_predicate (parms_info, summary, bb);
1911 set_switch_stmt_execution_predicate (parms_info, summary, bb);
1914 /* Entry block is always executable. */
1915 ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1916 = pool_alloc (edge_predicate_pool);
1917 *(struct predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1918 = true_predicate ();
1920 /* A simple dataflow propagation of predicates forward in the CFG.
1921 TODO: work in reverse postorder. */
1922 while (!done)
1924 done = true;
1925 FOR_EACH_BB_FN (bb, my_function)
1927 struct predicate p = false_predicate ();
1928 edge e;
1929 edge_iterator ei;
1930 FOR_EACH_EDGE (e, ei, bb->preds)
1932 if (e->src->aux)
1934 struct predicate this_bb_predicate
1935 = *(struct predicate *) e->src->aux;
1936 if (e->aux)
1937 this_bb_predicate
1938 = and_predicates (summary->conds, &this_bb_predicate,
1939 (struct predicate *) e->aux);
1940 p = or_predicates (summary->conds, &p, &this_bb_predicate);
1941 if (true_predicate_p (&p))
1942 break;
1945 if (false_predicate_p (&p))
1946 gcc_assert (!bb->aux);
1947 else
1949 if (!bb->aux)
1951 done = false;
1952 bb->aux = pool_alloc (edge_predicate_pool);
1953 *((struct predicate *) bb->aux) = p;
1955 else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1957 /* This OR operation is needed to ensure monotonous data flow
1958 in the case we hit the limit on number of clauses and the
1959 and/or operations above give approximate answers. */
1960 p = or_predicates (summary->conds, &p, (struct predicate *)bb->aux);
1961 if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1963 done = false;
1964 *((struct predicate *) bb->aux) = p;
1973 /* We keep info about constantness of SSA names. */
1975 typedef struct predicate predicate_t;
1976 /* Return predicate specifying when the STMT might have result that is not
1977 a compile time constant. */
1979 static struct predicate
1980 will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
1981 struct inline_summary *summary,
1982 tree expr,
1983 vec<predicate_t> nonconstant_names)
1985 tree parm;
1986 int index;
1988 while (UNARY_CLASS_P (expr))
1989 expr = TREE_OPERAND (expr, 0);
1991 parm = unmodified_parm (NULL, expr);
1992 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
1993 return add_condition (summary, index, NULL, CHANGED, NULL_TREE);
1994 if (is_gimple_min_invariant (expr))
1995 return false_predicate ();
1996 if (TREE_CODE (expr) == SSA_NAME)
1997 return nonconstant_names[SSA_NAME_VERSION (expr)];
1998 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
2000 struct predicate p1 = will_be_nonconstant_expr_predicate
2001 (info, summary, TREE_OPERAND (expr, 0),
2002 nonconstant_names);
2003 struct predicate p2;
2004 if (true_predicate_p (&p1))
2005 return p1;
2006 p2 = will_be_nonconstant_expr_predicate (info, summary,
2007 TREE_OPERAND (expr, 1),
2008 nonconstant_names);
2009 return or_predicates (summary->conds, &p1, &p2);
2011 else if (TREE_CODE (expr) == COND_EXPR)
2013 struct predicate p1 = will_be_nonconstant_expr_predicate
2014 (info, summary, TREE_OPERAND (expr, 0),
2015 nonconstant_names);
2016 struct predicate p2;
2017 if (true_predicate_p (&p1))
2018 return p1;
2019 p2 = will_be_nonconstant_expr_predicate (info, summary,
2020 TREE_OPERAND (expr, 1),
2021 nonconstant_names);
2022 if (true_predicate_p (&p2))
2023 return p2;
2024 p1 = or_predicates (summary->conds, &p1, &p2);
2025 p2 = will_be_nonconstant_expr_predicate (info, summary,
2026 TREE_OPERAND (expr, 2),
2027 nonconstant_names);
2028 return or_predicates (summary->conds, &p1, &p2);
2030 else
2032 debug_tree (expr);
2033 gcc_unreachable ();
2035 return false_predicate ();
2039 /* Return predicate specifying when the STMT might have result that is not
2040 a compile time constant. */
2042 static struct predicate
2043 will_be_nonconstant_predicate (struct ipa_node_params *info,
2044 struct inline_summary *summary,
2045 gimple stmt,
2046 vec<predicate_t> nonconstant_names)
2048 struct predicate p = true_predicate ();
2049 ssa_op_iter iter;
2050 tree use;
2051 struct predicate op_non_const;
2052 bool is_load;
2053 int base_index;
2054 struct agg_position_info aggpos;
2056 /* What statments might be optimized away
2057 when their arguments are constant. */
2058 if (gimple_code (stmt) != GIMPLE_ASSIGN
2059 && gimple_code (stmt) != GIMPLE_COND
2060 && gimple_code (stmt) != GIMPLE_SWITCH
2061 && (gimple_code (stmt) != GIMPLE_CALL
2062 || !(gimple_call_flags (stmt) & ECF_CONST)))
2063 return p;
2065 /* Stores will stay anyway. */
2066 if (gimple_store_p (stmt))
2067 return p;
2069 is_load = gimple_assign_load_p (stmt);
2071 /* Loads can be optimized when the value is known. */
2072 if (is_load)
2074 tree op;
2075 gcc_assert (gimple_assign_single_p (stmt));
2076 op = gimple_assign_rhs1 (stmt);
2077 if (!unmodified_parm_or_parm_agg_item (info, stmt, op, &base_index,
2078 &aggpos))
2079 return p;
2081 else
2082 base_index = -1;
2084 /* See if we understand all operands before we start
2085 adding conditionals. */
2086 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2088 tree parm = unmodified_parm (stmt, use);
2089 /* For arguments we can build a condition. */
2090 if (parm && ipa_get_param_decl_index (info, parm) >= 0)
2091 continue;
2092 if (TREE_CODE (use) != SSA_NAME)
2093 return p;
2094 /* If we know when operand is constant,
2095 we still can say something useful. */
2096 if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
2097 continue;
2098 return p;
2101 if (is_load)
2102 op_non_const =
2103 add_condition (summary, base_index, &aggpos, CHANGED, NULL);
2104 else
2105 op_non_const = false_predicate ();
2106 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2108 tree parm = unmodified_parm (stmt, use);
2109 int index;
2111 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
2113 if (index != base_index)
2114 p = add_condition (summary, index, NULL, CHANGED, NULL_TREE);
2115 else
2116 continue;
2118 else
2119 p = nonconstant_names[SSA_NAME_VERSION (use)];
2120 op_non_const = or_predicates (summary->conds, &p, &op_non_const);
2122 if ((gimple_code (stmt) == GIMPLE_ASSIGN || gimple_code (stmt) == GIMPLE_CALL)
2123 && gimple_op (stmt, 0)
2124 && TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
2125 nonconstant_names[SSA_NAME_VERSION (gimple_op (stmt, 0))]
2126 = op_non_const;
2127 return op_non_const;
2130 struct record_modified_bb_info
2132 bitmap bb_set;
2133 gimple stmt;
2136 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2137 set except for info->stmt. */
2139 static bool
2140 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
2142 struct record_modified_bb_info *info =
2143 (struct record_modified_bb_info *) data;
2144 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
2145 return false;
2146 bitmap_set_bit (info->bb_set,
2147 SSA_NAME_IS_DEFAULT_DEF (vdef)
2148 ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
2149 : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
2150 return false;
2153 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2154 will change since last invocation of STMT.
2156 Value 0 is reserved for compile time invariants.
2157 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2158 ought to be REG_BR_PROB_BASE / estimated_iters. */
2160 static int
2161 param_change_prob (gimple stmt, int i)
2163 tree op = gimple_call_arg (stmt, i);
2164 basic_block bb = gimple_bb (stmt);
2165 tree base;
2167 /* Global invariants neve change. */
2168 if (is_gimple_min_invariant (op))
2169 return 0;
2170 /* We would have to do non-trivial analysis to really work out what
2171 is the probability of value to change (i.e. when init statement
2172 is in a sibling loop of the call).
2174 We do an conservative estimate: when call is executed N times more often
2175 than the statement defining value, we take the frequency 1/N. */
2176 if (TREE_CODE (op) == SSA_NAME)
2178 int init_freq;
2180 if (!bb->frequency)
2181 return REG_BR_PROB_BASE;
2183 if (SSA_NAME_IS_DEFAULT_DEF (op))
2184 init_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2185 else
2186 init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
2188 if (!init_freq)
2189 init_freq = 1;
2190 if (init_freq < bb->frequency)
2191 return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
2192 else
2193 return REG_BR_PROB_BASE;
2196 base = get_base_address (op);
2197 if (base)
2199 ao_ref refd;
2200 int max;
2201 struct record_modified_bb_info info;
2202 bitmap_iterator bi;
2203 unsigned index;
2204 tree init = ctor_for_folding (base);
2206 if (init != error_mark_node)
2207 return 0;
2208 if (!bb->frequency)
2209 return REG_BR_PROB_BASE;
2210 ao_ref_init (&refd, op);
2211 info.stmt = stmt;
2212 info.bb_set = BITMAP_ALLOC (NULL);
2213 walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
2214 NULL);
2215 if (bitmap_bit_p (info.bb_set, bb->index))
2217 BITMAP_FREE (info.bb_set);
2218 return REG_BR_PROB_BASE;
2221 /* Assume that every memory is initialized at entry.
2222 TODO: Can we easilly determine if value is always defined
2223 and thus we may skip entry block? */
2224 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
2225 max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2226 else
2227 max = 1;
2229 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
2230 max = MIN (max, BASIC_BLOCK_FOR_FN (cfun, index)->frequency);
2232 BITMAP_FREE (info.bb_set);
2233 if (max < bb->frequency)
2234 return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
2235 else
2236 return REG_BR_PROB_BASE;
2238 return REG_BR_PROB_BASE;
2241 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2242 sub-graph and if the predicate the condition depends on is known. If so,
2243 return true and store the pointer the predicate in *P. */
2245 static bool
2246 phi_result_unknown_predicate (struct ipa_node_params *info,
2247 inline_summary *summary, basic_block bb,
2248 struct predicate *p,
2249 vec<predicate_t> nonconstant_names)
2251 edge e;
2252 edge_iterator ei;
2253 basic_block first_bb = NULL;
2254 gimple stmt;
2256 if (single_pred_p (bb))
2258 *p = false_predicate ();
2259 return true;
2262 FOR_EACH_EDGE (e, ei, bb->preds)
2264 if (single_succ_p (e->src))
2266 if (!single_pred_p (e->src))
2267 return false;
2268 if (!first_bb)
2269 first_bb = single_pred (e->src);
2270 else if (single_pred (e->src) != first_bb)
2271 return false;
2273 else
2275 if (!first_bb)
2276 first_bb = e->src;
2277 else if (e->src != first_bb)
2278 return false;
2282 if (!first_bb)
2283 return false;
2285 stmt = last_stmt (first_bb);
2286 if (!stmt
2287 || gimple_code (stmt) != GIMPLE_COND
2288 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
2289 return false;
2291 *p = will_be_nonconstant_expr_predicate (info, summary,
2292 gimple_cond_lhs (stmt),
2293 nonconstant_names);
2294 if (true_predicate_p (p))
2295 return false;
2296 else
2297 return true;
2300 /* Given a PHI statement in a function described by inline properties SUMMARY
2301 and *P being the predicate describing whether the selected PHI argument is
2302 known, store a predicate for the result of the PHI statement into
2303 NONCONSTANT_NAMES, if possible. */
2305 static void
2306 predicate_for_phi_result (struct inline_summary *summary, gphi *phi,
2307 struct predicate *p,
2308 vec<predicate_t> nonconstant_names)
2310 unsigned i;
2312 for (i = 0; i < gimple_phi_num_args (phi); i++)
2314 tree arg = gimple_phi_arg (phi, i)->def;
2315 if (!is_gimple_min_invariant (arg))
2317 gcc_assert (TREE_CODE (arg) == SSA_NAME);
2318 *p = or_predicates (summary->conds, p,
2319 &nonconstant_names[SSA_NAME_VERSION (arg)]);
2320 if (true_predicate_p (p))
2321 return;
2325 if (dump_file && (dump_flags & TDF_DETAILS))
2327 fprintf (dump_file, "\t\tphi predicate: ");
2328 dump_predicate (dump_file, summary->conds, p);
2330 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
2333 /* Return predicate specifying when array index in access OP becomes non-constant. */
2335 static struct predicate
2336 array_index_predicate (inline_summary *info,
2337 vec< predicate_t> nonconstant_names, tree op)
2339 struct predicate p = false_predicate ();
2340 while (handled_component_p (op))
2342 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
2344 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
2345 p = or_predicates (info->conds, &p,
2346 &nonconstant_names[SSA_NAME_VERSION
2347 (TREE_OPERAND (op, 1))]);
2349 op = TREE_OPERAND (op, 0);
2351 return p;
2354 /* For a typical usage of __builtin_expect (a<b, 1), we
2355 may introduce an extra relation stmt:
2356 With the builtin, we have
2357 t1 = a <= b;
2358 t2 = (long int) t1;
2359 t3 = __builtin_expect (t2, 1);
2360 if (t3 != 0)
2361 goto ...
2362 Without the builtin, we have
2363 if (a<=b)
2364 goto...
2365 This affects the size/time estimation and may have
2366 an impact on the earlier inlining.
2367 Here find this pattern and fix it up later. */
2369 static gimple
2370 find_foldable_builtin_expect (basic_block bb)
2372 gimple_stmt_iterator bsi;
2374 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2376 gimple stmt = gsi_stmt (bsi);
2377 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
2378 || (is_gimple_call (stmt)
2379 && gimple_call_internal_p (stmt)
2380 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
2382 tree var = gimple_call_lhs (stmt);
2383 tree arg = gimple_call_arg (stmt, 0);
2384 use_operand_p use_p;
2385 gimple use_stmt;
2386 bool match = false;
2387 bool done = false;
2389 if (!var || !arg)
2390 continue;
2391 gcc_assert (TREE_CODE (var) == SSA_NAME);
2393 while (TREE_CODE (arg) == SSA_NAME)
2395 gimple stmt_tmp = SSA_NAME_DEF_STMT (arg);
2396 if (!is_gimple_assign (stmt_tmp))
2397 break;
2398 switch (gimple_assign_rhs_code (stmt_tmp))
2400 case LT_EXPR:
2401 case LE_EXPR:
2402 case GT_EXPR:
2403 case GE_EXPR:
2404 case EQ_EXPR:
2405 case NE_EXPR:
2406 match = true;
2407 done = true;
2408 break;
2409 CASE_CONVERT:
2410 break;
2411 default:
2412 done = true;
2413 break;
2415 if (done)
2416 break;
2417 arg = gimple_assign_rhs1 (stmt_tmp);
2420 if (match && single_imm_use (var, &use_p, &use_stmt)
2421 && gimple_code (use_stmt) == GIMPLE_COND)
2422 return use_stmt;
2425 return NULL;
2428 /* Return true when the basic blocks contains only clobbers followed by RESX.
2429 Such BBs are kept around to make removal of dead stores possible with
2430 presence of EH and will be optimized out by optimize_clobbers later in the
2431 game.
2433 NEED_EH is used to recurse in case the clobber has non-EH predecestors
2434 that can be clobber only, too.. When it is false, the RESX is not necessary
2435 on the end of basic block. */
2437 static bool
2438 clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
2440 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2441 edge_iterator ei;
2442 edge e;
2444 if (need_eh)
2446 if (gsi_end_p (gsi))
2447 return false;
2448 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
2449 return false;
2450 gsi_prev (&gsi);
2452 else if (!single_succ_p (bb))
2453 return false;
2455 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2457 gimple stmt = gsi_stmt (gsi);
2458 if (is_gimple_debug (stmt))
2459 continue;
2460 if (gimple_clobber_p (stmt))
2461 continue;
2462 if (gimple_code (stmt) == GIMPLE_LABEL)
2463 break;
2464 return false;
2467 /* See if all predecestors are either throws or clobber only BBs. */
2468 FOR_EACH_EDGE (e, ei, bb->preds)
2469 if (!(e->flags & EDGE_EH)
2470 && !clobber_only_eh_bb_p (e->src, false))
2471 return false;
2473 return true;
2476 /* Compute function body size parameters for NODE.
2477 When EARLY is true, we compute only simple summaries without
2478 non-trivial predicates to drive the early inliner. */
2480 static void
2481 estimate_function_body_sizes (struct cgraph_node *node, bool early)
2483 gcov_type time = 0;
2484 /* Estimate static overhead for function prologue/epilogue and alignment. */
2485 int size = 2;
2486 /* Benefits are scaled by probability of elimination that is in range
2487 <0,2>. */
2488 basic_block bb;
2489 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
2490 int freq;
2491 struct inline_summary *info = inline_summaries->get (node);
2492 struct predicate bb_predicate;
2493 struct ipa_node_params *parms_info = NULL;
2494 vec<predicate_t> nonconstant_names = vNULL;
2495 int nblocks, n;
2496 int *order;
2497 predicate array_index = true_predicate ();
2498 gimple fix_builtin_expect_stmt;
2500 info->conds = NULL;
2501 info->entry = NULL;
2503 /* When optimizing and analyzing for IPA inliner, initialize loop optimizer
2504 so we can produce proper inline hints.
2506 When optimizing and analyzing for early inliner, initialize node params
2507 so we can produce correct BB predicates. */
2509 if (opt_for_fn (node->decl, optimize))
2511 calculate_dominance_info (CDI_DOMINATORS);
2512 if (!early)
2513 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2514 else
2516 ipa_check_create_node_params ();
2517 ipa_initialize_node_params (node);
2520 if (ipa_node_params_sum)
2522 parms_info = IPA_NODE_REF (node);
2523 nonconstant_names.safe_grow_cleared
2524 (SSANAMES (my_function)->length ());
2528 if (dump_file)
2529 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2530 node->name ());
2532 /* When we run into maximal number of entries, we assign everything to the
2533 constant truth case. Be sure to have it in list. */
2534 bb_predicate = true_predicate ();
2535 account_size_time (info, 0, 0, &bb_predicate);
2537 bb_predicate = not_inlined_predicate ();
2538 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
2540 gcc_assert (my_function && my_function->cfg);
2541 if (parms_info)
2542 compute_bb_predicates (node, parms_info, info);
2543 gcc_assert (cfun == my_function);
2544 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2545 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2546 for (n = 0; n < nblocks; n++)
2548 bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
2549 freq = compute_call_stmt_bb_frequency (node->decl, bb);
2550 if (clobber_only_eh_bb_p (bb))
2552 if (dump_file && (dump_flags & TDF_DETAILS))
2553 fprintf (dump_file, "\n Ignoring BB %i;"
2554 " it will be optimized away by cleanup_clobbers\n",
2555 bb->index);
2556 continue;
2559 /* TODO: Obviously predicates can be propagated down across CFG. */
2560 if (parms_info)
2562 if (bb->aux)
2563 bb_predicate = *(struct predicate *) bb->aux;
2564 else
2565 bb_predicate = false_predicate ();
2567 else
2568 bb_predicate = true_predicate ();
2570 if (dump_file && (dump_flags & TDF_DETAILS))
2572 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2573 dump_predicate (dump_file, info->conds, &bb_predicate);
2576 if (parms_info && nonconstant_names.exists ())
2578 struct predicate phi_predicate;
2579 bool first_phi = true;
2581 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
2582 gsi_next (&bsi))
2584 if (first_phi
2585 && !phi_result_unknown_predicate (parms_info, info, bb,
2586 &phi_predicate,
2587 nonconstant_names))
2588 break;
2589 first_phi = false;
2590 if (dump_file && (dump_flags & TDF_DETAILS))
2592 fprintf (dump_file, " ");
2593 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
2595 predicate_for_phi_result (info, bsi.phi (), &phi_predicate,
2596 nonconstant_names);
2600 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2602 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
2603 gsi_next (&bsi))
2605 gimple stmt = gsi_stmt (bsi);
2606 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2607 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2608 int prob;
2609 struct predicate will_be_nonconstant;
2611 /* This relation stmt should be folded after we remove
2612 buildin_expect call. Adjust the cost here. */
2613 if (stmt == fix_builtin_expect_stmt)
2615 this_size--;
2616 this_time--;
2619 if (dump_file && (dump_flags & TDF_DETAILS))
2621 fprintf (dump_file, " ");
2622 print_gimple_stmt (dump_file, stmt, 0, 0);
2623 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2624 ((double) freq) / CGRAPH_FREQ_BASE, this_size,
2625 this_time);
2628 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2630 struct predicate this_array_index;
2631 this_array_index =
2632 array_index_predicate (info, nonconstant_names,
2633 gimple_assign_rhs1 (stmt));
2634 if (!false_predicate_p (&this_array_index))
2635 array_index =
2636 and_predicates (info->conds, &array_index,
2637 &this_array_index);
2639 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2641 struct predicate this_array_index;
2642 this_array_index =
2643 array_index_predicate (info, nonconstant_names,
2644 gimple_get_lhs (stmt));
2645 if (!false_predicate_p (&this_array_index))
2646 array_index =
2647 and_predicates (info->conds, &array_index,
2648 &this_array_index);
2652 if (is_gimple_call (stmt)
2653 && !gimple_call_internal_p (stmt))
2655 struct cgraph_edge *edge = node->get_edge (stmt);
2656 struct inline_edge_summary *es = inline_edge_summary (edge);
2658 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2659 resolved as constant. We however don't want to optimize
2660 out the cgraph edges. */
2661 if (nonconstant_names.exists ()
2662 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2663 && gimple_call_lhs (stmt)
2664 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2666 struct predicate false_p = false_predicate ();
2667 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2668 = false_p;
2670 if (ipa_node_params_sum)
2672 int count = gimple_call_num_args (stmt);
2673 int i;
2675 if (count)
2676 es->param.safe_grow_cleared (count);
2677 for (i = 0; i < count; i++)
2679 int prob = param_change_prob (stmt, i);
2680 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2681 es->param[i].change_prob = prob;
2685 es->call_stmt_size = this_size;
2686 es->call_stmt_time = this_time;
2687 es->loop_depth = bb_loop_depth (bb);
2688 edge_set_predicate (edge, &bb_predicate);
2691 /* TODO: When conditional jump or swithc is known to be constant, but
2692 we did not translate it into the predicates, we really can account
2693 just maximum of the possible paths. */
2694 if (parms_info)
2695 will_be_nonconstant
2696 = will_be_nonconstant_predicate (parms_info, info,
2697 stmt, nonconstant_names);
2698 if (this_time || this_size)
2700 struct predicate p;
2702 this_time *= freq;
2704 prob = eliminated_by_inlining_prob (stmt);
2705 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2706 fprintf (dump_file,
2707 "\t\t50%% will be eliminated by inlining\n");
2708 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2709 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2711 if (parms_info)
2712 p = and_predicates (info->conds, &bb_predicate,
2713 &will_be_nonconstant);
2714 else
2715 p = true_predicate ();
2717 if (!false_predicate_p (&p)
2718 || (is_gimple_call (stmt)
2719 && !false_predicate_p (&bb_predicate)))
2721 time += this_time;
2722 size += this_size;
2723 if (time > MAX_TIME * INLINE_TIME_SCALE)
2724 time = MAX_TIME * INLINE_TIME_SCALE;
2727 /* We account everything but the calls. Calls have their own
2728 size/time info attached to cgraph edges. This is necessary
2729 in order to make the cost disappear after inlining. */
2730 if (!is_gimple_call (stmt))
2732 if (prob)
2734 struct predicate ip = not_inlined_predicate ();
2735 ip = and_predicates (info->conds, &ip, &p);
2736 account_size_time (info, this_size * prob,
2737 this_time * prob, &ip);
2739 if (prob != 2)
2740 account_size_time (info, this_size * (2 - prob),
2741 this_time * (2 - prob), &p);
2744 gcc_assert (time >= 0);
2745 gcc_assert (size >= 0);
2749 set_hint_predicate (&inline_summaries->get (node)->array_index, array_index);
2750 time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
2751 if (time > MAX_TIME)
2752 time = MAX_TIME;
2753 free (order);
2755 if (nonconstant_names.exists () && !early)
2757 struct loop *loop;
2758 predicate loop_iterations = true_predicate ();
2759 predicate loop_stride = true_predicate ();
2761 if (dump_file && (dump_flags & TDF_DETAILS))
2762 flow_loops_dump (dump_file, NULL, 0);
2763 scev_initialize ();
2764 FOR_EACH_LOOP (loop, 0)
2766 vec<edge> exits;
2767 edge ex;
2768 unsigned int j, i;
2769 struct tree_niter_desc niter_desc;
2770 basic_block *body = get_loop_body (loop);
2771 bb_predicate = *(struct predicate *) loop->header->aux;
2773 exits = get_loop_exit_edges (loop);
2774 FOR_EACH_VEC_ELT (exits, j, ex)
2775 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2776 && !is_gimple_min_invariant (niter_desc.niter))
2778 predicate will_be_nonconstant
2779 = will_be_nonconstant_expr_predicate (parms_info, info,
2780 niter_desc.niter,
2781 nonconstant_names);
2782 if (!true_predicate_p (&will_be_nonconstant))
2783 will_be_nonconstant = and_predicates (info->conds,
2784 &bb_predicate,
2785 &will_be_nonconstant);
2786 if (!true_predicate_p (&will_be_nonconstant)
2787 && !false_predicate_p (&will_be_nonconstant))
2788 /* This is slightly inprecise. We may want to represent each
2789 loop with independent predicate. */
2790 loop_iterations =
2791 and_predicates (info->conds, &loop_iterations,
2792 &will_be_nonconstant);
2794 exits.release ();
2796 for (i = 0; i < loop->num_nodes; i++)
2798 gimple_stmt_iterator gsi;
2799 bb_predicate = *(struct predicate *) body[i]->aux;
2800 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2801 gsi_next (&gsi))
2803 gimple stmt = gsi_stmt (gsi);
2804 affine_iv iv;
2805 ssa_op_iter iter;
2806 tree use;
2808 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2810 predicate will_be_nonconstant;
2812 if (!simple_iv
2813 (loop, loop_containing_stmt (stmt), use, &iv, true)
2814 || is_gimple_min_invariant (iv.step))
2815 continue;
2816 will_be_nonconstant
2817 = will_be_nonconstant_expr_predicate (parms_info, info,
2818 iv.step,
2819 nonconstant_names);
2820 if (!true_predicate_p (&will_be_nonconstant))
2821 will_be_nonconstant
2822 = and_predicates (info->conds,
2823 &bb_predicate,
2824 &will_be_nonconstant);
2825 if (!true_predicate_p (&will_be_nonconstant)
2826 && !false_predicate_p (&will_be_nonconstant))
2827 /* This is slightly inprecise. We may want to represent
2828 each loop with independent predicate. */
2829 loop_stride =
2830 and_predicates (info->conds, &loop_stride,
2831 &will_be_nonconstant);
2835 free (body);
2837 set_hint_predicate (&inline_summaries->get (node)->loop_iterations,
2838 loop_iterations);
2839 set_hint_predicate (&inline_summaries->get (node)->loop_stride, loop_stride);
2840 scev_finalize ();
2842 FOR_ALL_BB_FN (bb, my_function)
2844 edge e;
2845 edge_iterator ei;
2847 if (bb->aux)
2848 pool_free (edge_predicate_pool, bb->aux);
2849 bb->aux = NULL;
2850 FOR_EACH_EDGE (e, ei, bb->succs)
2852 if (e->aux)
2853 pool_free (edge_predicate_pool, e->aux);
2854 e->aux = NULL;
2857 inline_summaries->get (node)->self_time = time;
2858 inline_summaries->get (node)->self_size = size;
2859 nonconstant_names.release ();
2860 if (opt_for_fn (node->decl, optimize))
2862 if (!early)
2863 loop_optimizer_finalize ();
2864 else if (!ipa_edge_args_vector)
2865 ipa_free_all_node_params ();
2866 free_dominance_info (CDI_DOMINATORS);
2868 if (dump_file)
2870 fprintf (dump_file, "\n");
2871 dump_inline_summary (dump_file, node);
2876 /* Compute parameters of functions used by inliner.
2877 EARLY is true when we compute parameters for the early inliner */
2879 void
2880 compute_inline_parameters (struct cgraph_node *node, bool early)
2882 HOST_WIDE_INT self_stack_size;
2883 struct cgraph_edge *e;
2884 struct inline_summary *info;
2886 gcc_assert (!node->global.inlined_to);
2888 inline_summary_alloc ();
2890 info = inline_summaries->get (node);
2891 reset_inline_summary (node, info);
2893 /* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
2894 Once this happen, we will need to more curefully predict call
2895 statement size. */
2896 if (node->thunk.thunk_p)
2898 struct inline_edge_summary *es = inline_edge_summary (node->callees);
2899 struct predicate t = true_predicate ();
2901 info->inlinable = 0;
2902 node->callees->call_stmt_cannot_inline_p = true;
2903 node->local.can_change_signature = false;
2904 es->call_stmt_time = 1;
2905 es->call_stmt_size = 1;
2906 account_size_time (info, 0, 0, &t);
2907 return;
2910 /* Even is_gimple_min_invariant rely on current_function_decl. */
2911 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
2913 /* Estimate the stack size for the function if we're optimizing. */
2914 self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
2915 info->estimated_self_stack_size = self_stack_size;
2916 info->estimated_stack_size = self_stack_size;
2917 info->stack_frame_offset = 0;
2919 /* Can this function be inlined at all? */
2920 if (!opt_for_fn (node->decl, optimize)
2921 && !lookup_attribute ("always_inline",
2922 DECL_ATTRIBUTES (node->decl)))
2923 info->inlinable = false;
2924 else
2925 info->inlinable = tree_inlinable_function_p (node->decl);
2927 /* Type attributes can use parameter indices to describe them. */
2928 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
2929 node->local.can_change_signature = false;
2930 else
2932 /* Otherwise, inlinable functions always can change signature. */
2933 if (info->inlinable)
2934 node->local.can_change_signature = true;
2935 else
2937 /* Functions calling builtin_apply can not change signature. */
2938 for (e = node->callees; e; e = e->next_callee)
2940 tree cdecl = e->callee->decl;
2941 if (DECL_BUILT_IN (cdecl)
2942 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
2943 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
2944 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
2945 break;
2947 node->local.can_change_signature = !e;
2950 estimate_function_body_sizes (node, early);
2952 for (e = node->callees; e; e = e->next_callee)
2953 if (e->callee->comdat_local_p ())
2954 break;
2955 node->calls_comdat_local = (e != NULL);
2957 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2958 info->time = info->self_time;
2959 info->size = info->self_size;
2960 info->stack_frame_offset = 0;
2961 info->estimated_stack_size = info->estimated_self_stack_size;
2962 #ifdef ENABLE_CHECKING
2963 inline_update_overall_summary (node);
2964 gcc_assert (info->time == info->self_time && info->size == info->self_size);
2965 #endif
2967 pop_cfun ();
2971 /* Compute parameters of functions used by inliner using
2972 current_function_decl. */
2974 static unsigned int
2975 compute_inline_parameters_for_current (void)
2977 compute_inline_parameters (cgraph_node::get (current_function_decl), true);
2978 return 0;
2981 namespace {
2983 const pass_data pass_data_inline_parameters =
2985 GIMPLE_PASS, /* type */
2986 "inline_param", /* name */
2987 OPTGROUP_INLINE, /* optinfo_flags */
2988 TV_INLINE_PARAMETERS, /* tv_id */
2989 0, /* properties_required */
2990 0, /* properties_provided */
2991 0, /* properties_destroyed */
2992 0, /* todo_flags_start */
2993 0, /* todo_flags_finish */
2996 class pass_inline_parameters : public gimple_opt_pass
2998 public:
2999 pass_inline_parameters (gcc::context *ctxt)
3000 : gimple_opt_pass (pass_data_inline_parameters, ctxt)
3003 /* opt_pass methods: */
3004 opt_pass * clone () { return new pass_inline_parameters (m_ctxt); }
3005 virtual unsigned int execute (function *)
3007 return compute_inline_parameters_for_current ();
3010 }; // class pass_inline_parameters
3012 } // anon namespace
3014 gimple_opt_pass *
3015 make_pass_inline_parameters (gcc::context *ctxt)
3017 return new pass_inline_parameters (ctxt);
3021 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS,
3022 KNOWN_CONTEXTS and KNOWN_AGGS. */
3024 static bool
3025 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
3026 int *size, int *time,
3027 vec<tree> known_vals,
3028 vec<ipa_polymorphic_call_context> known_contexts,
3029 vec<ipa_agg_jump_function_p> known_aggs)
3031 tree target;
3032 struct cgraph_node *callee;
3033 struct inline_summary *isummary;
3034 enum availability avail;
3035 bool speculative;
3037 if (!known_vals.exists () && !known_contexts.exists ())
3038 return false;
3039 if (!opt_for_fn (ie->caller->decl, flag_indirect_inlining))
3040 return false;
3042 target = ipa_get_indirect_edge_target (ie, known_vals, known_contexts,
3043 known_aggs, &speculative);
3044 if (!target || speculative)
3045 return false;
3047 /* Account for difference in cost between indirect and direct calls. */
3048 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
3049 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
3050 gcc_checking_assert (*time >= 0);
3051 gcc_checking_assert (*size >= 0);
3053 callee = cgraph_node::get (target);
3054 if (!callee || !callee->definition)
3055 return false;
3056 callee = callee->function_symbol (&avail);
3057 if (avail < AVAIL_AVAILABLE)
3058 return false;
3059 isummary = inline_summaries->get (callee);
3060 return isummary->inlinable;
3063 /* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
3064 handle edge E with probability PROB.
3065 Set HINTS if edge may be devirtualized.
3066 KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS describe context of the call
3067 site. */
3069 static inline void
3070 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
3071 int *time,
3072 int prob,
3073 vec<tree> known_vals,
3074 vec<ipa_polymorphic_call_context> known_contexts,
3075 vec<ipa_agg_jump_function_p> known_aggs,
3076 inline_hints *hints)
3078 struct inline_edge_summary *es = inline_edge_summary (e);
3079 int call_size = es->call_stmt_size;
3080 int call_time = es->call_stmt_time;
3081 int cur_size;
3082 if (!e->callee
3083 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
3084 known_vals, known_contexts, known_aggs)
3085 && hints && e->maybe_hot_p ())
3086 *hints |= INLINE_HINT_indirect_call;
3087 cur_size = call_size * INLINE_SIZE_SCALE;
3088 *size += cur_size;
3089 if (min_size)
3090 *min_size += cur_size;
3091 *time += apply_probability ((gcov_type) call_time, prob)
3092 * e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
3093 if (*time > MAX_TIME * INLINE_TIME_SCALE)
3094 *time = MAX_TIME * INLINE_TIME_SCALE;
3099 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
3100 calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3101 describe context of the call site. */
3103 static void
3104 estimate_calls_size_and_time (struct cgraph_node *node, int *size,
3105 int *min_size, int *time,
3106 inline_hints *hints,
3107 clause_t possible_truths,
3108 vec<tree> known_vals,
3109 vec<ipa_polymorphic_call_context> known_contexts,
3110 vec<ipa_agg_jump_function_p> known_aggs)
3112 struct cgraph_edge *e;
3113 for (e = node->callees; e; e = e->next_callee)
3115 struct inline_edge_summary *es = inline_edge_summary (e);
3117 /* Do not care about zero sized builtins. */
3118 if (e->inline_failed && !es->call_stmt_size)
3120 gcc_checking_assert (!es->call_stmt_time);
3121 continue;
3123 if (!es->predicate
3124 || evaluate_predicate (es->predicate, possible_truths))
3126 if (e->inline_failed)
3128 /* Predicates of calls shall not use NOT_CHANGED codes,
3129 sowe do not need to compute probabilities. */
3130 estimate_edge_size_and_time (e, size,
3131 es->predicate ? NULL : min_size,
3132 time, REG_BR_PROB_BASE,
3133 known_vals, known_contexts,
3134 known_aggs, hints);
3136 else
3137 estimate_calls_size_and_time (e->callee, size, min_size, time,
3138 hints,
3139 possible_truths,
3140 known_vals, known_contexts,
3141 known_aggs);
3144 for (e = node->indirect_calls; e; e = e->next_callee)
3146 struct inline_edge_summary *es = inline_edge_summary (e);
3147 if (!es->predicate
3148 || evaluate_predicate (es->predicate, possible_truths))
3149 estimate_edge_size_and_time (e, size,
3150 es->predicate ? NULL : min_size,
3151 time, REG_BR_PROB_BASE,
3152 known_vals, known_contexts, known_aggs,
3153 hints);
3158 /* Estimate size and time needed to execute NODE assuming
3159 POSSIBLE_TRUTHS clause, and KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3160 information about NODE's arguments. If non-NULL use also probability
3161 information present in INLINE_PARAM_SUMMARY vector.
3162 Additionally detemine hints determined by the context. Finally compute
3163 minimal size needed for the call that is independent on the call context and
3164 can be used for fast estimates. Return the values in RET_SIZE,
3165 RET_MIN_SIZE, RET_TIME and RET_HINTS. */
3167 static void
3168 estimate_node_size_and_time (struct cgraph_node *node,
3169 clause_t possible_truths,
3170 vec<tree> known_vals,
3171 vec<ipa_polymorphic_call_context> known_contexts,
3172 vec<ipa_agg_jump_function_p> known_aggs,
3173 int *ret_size, int *ret_min_size, int *ret_time,
3174 inline_hints *ret_hints,
3175 vec<inline_param_summary>
3176 inline_param_summary)
3178 struct inline_summary *info = inline_summaries->get (node);
3179 size_time_entry *e;
3180 int size = 0;
3181 int time = 0;
3182 int min_size = 0;
3183 inline_hints hints = 0;
3184 int i;
3186 if (dump_file && (dump_flags & TDF_DETAILS))
3188 bool found = false;
3189 fprintf (dump_file, " Estimating body: %s/%i\n"
3190 " Known to be false: ", node->name (),
3191 node->order);
3193 for (i = predicate_not_inlined_condition;
3194 i < (predicate_first_dynamic_condition
3195 + (int) vec_safe_length (info->conds)); i++)
3196 if (!(possible_truths & (1 << i)))
3198 if (found)
3199 fprintf (dump_file, ", ");
3200 found = true;
3201 dump_condition (dump_file, info->conds, i);
3205 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3206 if (evaluate_predicate (&e->predicate, possible_truths))
3208 size += e->size;
3209 gcc_checking_assert (e->time >= 0);
3210 gcc_checking_assert (time >= 0);
3211 if (!inline_param_summary.exists ())
3212 time += e->time;
3213 else
3215 int prob = predicate_probability (info->conds,
3216 &e->predicate,
3217 possible_truths,
3218 inline_param_summary);
3219 gcc_checking_assert (prob >= 0);
3220 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
3221 time += apply_probability ((gcov_type) e->time, prob);
3223 if (time > MAX_TIME * INLINE_TIME_SCALE)
3224 time = MAX_TIME * INLINE_TIME_SCALE;
3225 gcc_checking_assert (time >= 0);
3228 gcc_checking_assert (true_predicate_p (&(*info->entry)[0].predicate));
3229 min_size = (*info->entry)[0].size;
3230 gcc_checking_assert (size >= 0);
3231 gcc_checking_assert (time >= 0);
3233 if (info->loop_iterations
3234 && !evaluate_predicate (info->loop_iterations, possible_truths))
3235 hints |= INLINE_HINT_loop_iterations;
3236 if (info->loop_stride
3237 && !evaluate_predicate (info->loop_stride, possible_truths))
3238 hints |= INLINE_HINT_loop_stride;
3239 if (info->array_index
3240 && !evaluate_predicate (info->array_index, possible_truths))
3241 hints |= INLINE_HINT_array_index;
3242 if (info->scc_no)
3243 hints |= INLINE_HINT_in_scc;
3244 if (DECL_DECLARED_INLINE_P (node->decl))
3245 hints |= INLINE_HINT_declared_inline;
3247 estimate_calls_size_and_time (node, &size, &min_size, &time, &hints, possible_truths,
3248 known_vals, known_contexts, known_aggs);
3249 gcc_checking_assert (size >= 0);
3250 gcc_checking_assert (time >= 0);
3251 time = RDIV (time, INLINE_TIME_SCALE);
3252 size = RDIV (size, INLINE_SIZE_SCALE);
3253 min_size = RDIV (min_size, INLINE_SIZE_SCALE);
3255 if (dump_file && (dump_flags & TDF_DETAILS))
3256 fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
3257 if (ret_time)
3258 *ret_time = time;
3259 if (ret_size)
3260 *ret_size = size;
3261 if (ret_min_size)
3262 *ret_min_size = min_size;
3263 if (ret_hints)
3264 *ret_hints = hints;
3265 return;
3269 /* Estimate size and time needed to execute callee of EDGE assuming that
3270 parameters known to be constant at caller of EDGE are propagated.
3271 KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
3272 and types for parameters. */
3274 void
3275 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
3276 vec<tree> known_vals,
3277 vec<ipa_polymorphic_call_context>
3278 known_contexts,
3279 vec<ipa_agg_jump_function_p> known_aggs,
3280 int *ret_size, int *ret_time,
3281 inline_hints *hints)
3283 clause_t clause;
3285 clause = evaluate_conditions_for_known_args (node, false, known_vals,
3286 known_aggs);
3287 estimate_node_size_and_time (node, clause, known_vals, known_contexts,
3288 known_aggs, ret_size, NULL, ret_time, hints, vNULL);
3291 /* Translate all conditions from callee representation into caller
3292 representation and symbolically evaluate predicate P into new predicate.
3294 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
3295 is summary of function predicate P is from. OPERAND_MAP is array giving
3296 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
3297 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
3298 predicate under which callee is executed. OFFSET_MAP is an array of of
3299 offsets that need to be added to conditions, negative offset means that
3300 conditions relying on values passed by reference have to be discarded
3301 because they might not be preserved (and should be considered offset zero
3302 for other purposes). */
3304 static struct predicate
3305 remap_predicate (struct inline_summary *info,
3306 struct inline_summary *callee_info,
3307 struct predicate *p,
3308 vec<int> operand_map,
3309 vec<int> offset_map,
3310 clause_t possible_truths, struct predicate *toplev_predicate)
3312 int i;
3313 struct predicate out = true_predicate ();
3315 /* True predicate is easy. */
3316 if (true_predicate_p (p))
3317 return *toplev_predicate;
3318 for (i = 0; p->clause[i]; i++)
3320 clause_t clause = p->clause[i];
3321 int cond;
3322 struct predicate clause_predicate = false_predicate ();
3324 gcc_assert (i < MAX_CLAUSES);
3326 for (cond = 0; cond < NUM_CONDITIONS; cond++)
3327 /* Do we have condition we can't disprove? */
3328 if (clause & possible_truths & (1 << cond))
3330 struct predicate cond_predicate;
3331 /* Work out if the condition can translate to predicate in the
3332 inlined function. */
3333 if (cond >= predicate_first_dynamic_condition)
3335 struct condition *c;
3337 c = &(*callee_info->conds)[cond
3339 predicate_first_dynamic_condition];
3340 /* See if we can remap condition operand to caller's operand.
3341 Otherwise give up. */
3342 if (!operand_map.exists ()
3343 || (int) operand_map.length () <= c->operand_num
3344 || operand_map[c->operand_num] == -1
3345 /* TODO: For non-aggregate conditions, adding an offset is
3346 basically an arithmetic jump function processing which
3347 we should support in future. */
3348 || ((!c->agg_contents || !c->by_ref)
3349 && offset_map[c->operand_num] > 0)
3350 || (c->agg_contents && c->by_ref
3351 && offset_map[c->operand_num] < 0))
3352 cond_predicate = true_predicate ();
3353 else
3355 struct agg_position_info ap;
3356 HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
3357 if (offset_delta < 0)
3359 gcc_checking_assert (!c->agg_contents || !c->by_ref);
3360 offset_delta = 0;
3362 gcc_assert (!c->agg_contents
3363 || c->by_ref || offset_delta == 0);
3364 ap.offset = c->offset + offset_delta;
3365 ap.agg_contents = c->agg_contents;
3366 ap.by_ref = c->by_ref;
3367 cond_predicate = add_condition (info,
3368 operand_map[c->operand_num],
3369 &ap, c->code, c->val);
3372 /* Fixed conditions remains same, construct single
3373 condition predicate. */
3374 else
3376 cond_predicate.clause[0] = 1 << cond;
3377 cond_predicate.clause[1] = 0;
3379 clause_predicate = or_predicates (info->conds, &clause_predicate,
3380 &cond_predicate);
3382 out = and_predicates (info->conds, &out, &clause_predicate);
3384 return and_predicates (info->conds, &out, toplev_predicate);
3388 /* Update summary information of inline clones after inlining.
3389 Compute peak stack usage. */
3391 static void
3392 inline_update_callee_summaries (struct cgraph_node *node, int depth)
3394 struct cgraph_edge *e;
3395 struct inline_summary *callee_info = inline_summaries->get (node);
3396 struct inline_summary *caller_info = inline_summaries->get (node->callers->caller);
3397 HOST_WIDE_INT peak;
3399 callee_info->stack_frame_offset
3400 = caller_info->stack_frame_offset
3401 + caller_info->estimated_self_stack_size;
3402 peak = callee_info->stack_frame_offset
3403 + callee_info->estimated_self_stack_size;
3404 if (inline_summaries->get (node->global.inlined_to)->estimated_stack_size < peak)
3405 inline_summaries->get (node->global.inlined_to)->estimated_stack_size = peak;
3406 ipa_propagate_frequency (node);
3407 for (e = node->callees; e; e = e->next_callee)
3409 if (!e->inline_failed)
3410 inline_update_callee_summaries (e->callee, depth);
3411 inline_edge_summary (e)->loop_depth += depth;
3413 for (e = node->indirect_calls; e; e = e->next_callee)
3414 inline_edge_summary (e)->loop_depth += depth;
3417 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3418 When functoin A is inlined in B and A calls C with parameter that
3419 changes with probability PROB1 and C is known to be passthroug
3420 of argument if B that change with probability PROB2, the probability
3421 of change is now PROB1*PROB2. */
3423 static void
3424 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
3425 struct cgraph_edge *edge)
3427 if (ipa_node_params_sum)
3429 int i;
3430 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3431 struct inline_edge_summary *es = inline_edge_summary (edge);
3432 struct inline_edge_summary *inlined_es
3433 = inline_edge_summary (inlined_edge);
3435 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
3437 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3438 if (jfunc->type == IPA_JF_PASS_THROUGH
3439 && (ipa_get_jf_pass_through_formal_id (jfunc)
3440 < (int) inlined_es->param.length ()))
3442 int jf_formal_id = ipa_get_jf_pass_through_formal_id (jfunc);
3443 int prob1 = es->param[i].change_prob;
3444 int prob2 = inlined_es->param[jf_formal_id].change_prob;
3445 int prob = combine_probabilities (prob1, prob2);
3447 if (prob1 && prob2 && !prob)
3448 prob = 1;
3450 es->param[i].change_prob = prob;
3456 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3458 Remap predicates of callees of NODE. Rest of arguments match
3459 remap_predicate.
3461 Also update change probabilities. */
3463 static void
3464 remap_edge_summaries (struct cgraph_edge *inlined_edge,
3465 struct cgraph_node *node,
3466 struct inline_summary *info,
3467 struct inline_summary *callee_info,
3468 vec<int> operand_map,
3469 vec<int> offset_map,
3470 clause_t possible_truths,
3471 struct predicate *toplev_predicate)
3473 struct cgraph_edge *e;
3474 for (e = node->callees; e; e = e->next_callee)
3476 struct inline_edge_summary *es = inline_edge_summary (e);
3477 struct predicate p;
3479 if (e->inline_failed)
3481 remap_edge_change_prob (inlined_edge, e);
3483 if (es->predicate)
3485 p = remap_predicate (info, callee_info,
3486 es->predicate, operand_map, offset_map,
3487 possible_truths, toplev_predicate);
3488 edge_set_predicate (e, &p);
3489 /* TODO: We should remove the edge for code that will be
3490 optimized out, but we need to keep verifiers and tree-inline
3491 happy. Make it cold for now. */
3492 if (false_predicate_p (&p))
3494 e->count = 0;
3495 e->frequency = 0;
3498 else
3499 edge_set_predicate (e, toplev_predicate);
3501 else
3502 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
3503 operand_map, offset_map, possible_truths,
3504 toplev_predicate);
3506 for (e = node->indirect_calls; e; e = e->next_callee)
3508 struct inline_edge_summary *es = inline_edge_summary (e);
3509 struct predicate p;
3511 remap_edge_change_prob (inlined_edge, e);
3512 if (es->predicate)
3514 p = remap_predicate (info, callee_info,
3515 es->predicate, operand_map, offset_map,
3516 possible_truths, toplev_predicate);
3517 edge_set_predicate (e, &p);
3518 /* TODO: We should remove the edge for code that will be optimized
3519 out, but we need to keep verifiers and tree-inline happy.
3520 Make it cold for now. */
3521 if (false_predicate_p (&p))
3523 e->count = 0;
3524 e->frequency = 0;
3527 else
3528 edge_set_predicate (e, toplev_predicate);
3532 /* Same as remap_predicate, but set result into hint *HINT. */
3534 static void
3535 remap_hint_predicate (struct inline_summary *info,
3536 struct inline_summary *callee_info,
3537 struct predicate **hint,
3538 vec<int> operand_map,
3539 vec<int> offset_map,
3540 clause_t possible_truths,
3541 struct predicate *toplev_predicate)
3543 predicate p;
3545 if (!*hint)
3546 return;
3547 p = remap_predicate (info, callee_info,
3548 *hint,
3549 operand_map, offset_map,
3550 possible_truths, toplev_predicate);
3551 if (!false_predicate_p (&p) && !true_predicate_p (&p))
3553 if (!*hint)
3554 set_hint_predicate (hint, p);
3555 else
3556 **hint = and_predicates (info->conds, *hint, &p);
3560 /* We inlined EDGE. Update summary of the function we inlined into. */
3562 void
3563 inline_merge_summary (struct cgraph_edge *edge)
3565 struct inline_summary *callee_info = inline_summaries->get (edge->callee);
3566 struct cgraph_node *to = (edge->caller->global.inlined_to
3567 ? edge->caller->global.inlined_to : edge->caller);
3568 struct inline_summary *info = inline_summaries->get (to);
3569 clause_t clause = 0; /* not_inline is known to be false. */
3570 size_time_entry *e;
3571 vec<int> operand_map = vNULL;
3572 vec<int> offset_map = vNULL;
3573 int i;
3574 struct predicate toplev_predicate;
3575 struct predicate true_p = true_predicate ();
3576 struct inline_edge_summary *es = inline_edge_summary (edge);
3578 if (es->predicate)
3579 toplev_predicate = *es->predicate;
3580 else
3581 toplev_predicate = true_predicate ();
3583 if (callee_info->conds)
3584 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
3585 if (ipa_node_params_sum && callee_info->conds)
3587 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3588 int count = ipa_get_cs_argument_count (args);
3589 int i;
3591 if (count)
3593 operand_map.safe_grow_cleared (count);
3594 offset_map.safe_grow_cleared (count);
3596 for (i = 0; i < count; i++)
3598 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3599 int map = -1;
3601 /* TODO: handle non-NOPs when merging. */
3602 if (jfunc->type == IPA_JF_PASS_THROUGH)
3604 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3605 map = ipa_get_jf_pass_through_formal_id (jfunc);
3606 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3607 offset_map[i] = -1;
3609 else if (jfunc->type == IPA_JF_ANCESTOR)
3611 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3612 if (offset >= 0 && offset < INT_MAX)
3614 map = ipa_get_jf_ancestor_formal_id (jfunc);
3615 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3616 offset = -1;
3617 offset_map[i] = offset;
3620 operand_map[i] = map;
3621 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3624 for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
3626 struct predicate p = remap_predicate (info, callee_info,
3627 &e->predicate, operand_map,
3628 offset_map, clause,
3629 &toplev_predicate);
3630 if (!false_predicate_p (&p))
3632 gcov_type add_time = ((gcov_type) e->time * edge->frequency
3633 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
3634 int prob = predicate_probability (callee_info->conds,
3635 &e->predicate,
3636 clause, es->param);
3637 add_time = apply_probability ((gcov_type) add_time, prob);
3638 if (add_time > MAX_TIME * INLINE_TIME_SCALE)
3639 add_time = MAX_TIME * INLINE_TIME_SCALE;
3640 if (prob != REG_BR_PROB_BASE
3641 && dump_file && (dump_flags & TDF_DETAILS))
3643 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3644 (double) prob / REG_BR_PROB_BASE);
3646 account_size_time (info, e->size, add_time, &p);
3649 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3650 offset_map, clause, &toplev_predicate);
3651 remap_hint_predicate (info, callee_info,
3652 &callee_info->loop_iterations,
3653 operand_map, offset_map, clause, &toplev_predicate);
3654 remap_hint_predicate (info, callee_info,
3655 &callee_info->loop_stride,
3656 operand_map, offset_map, clause, &toplev_predicate);
3657 remap_hint_predicate (info, callee_info,
3658 &callee_info->array_index,
3659 operand_map, offset_map, clause, &toplev_predicate);
3661 inline_update_callee_summaries (edge->callee,
3662 inline_edge_summary (edge)->loop_depth);
3664 /* We do not maintain predicates of inlined edges, free it. */
3665 edge_set_predicate (edge, &true_p);
3666 /* Similarly remove param summaries. */
3667 es->param.release ();
3668 operand_map.release ();
3669 offset_map.release ();
3672 /* For performance reasons inline_merge_summary is not updating overall size
3673 and time. Recompute it. */
3675 void
3676 inline_update_overall_summary (struct cgraph_node *node)
3678 struct inline_summary *info = inline_summaries->get (node);
3679 size_time_entry *e;
3680 int i;
3682 info->size = 0;
3683 info->time = 0;
3684 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3686 info->size += e->size, info->time += e->time;
3687 if (info->time > MAX_TIME * INLINE_TIME_SCALE)
3688 info->time = MAX_TIME * INLINE_TIME_SCALE;
3690 estimate_calls_size_and_time (node, &info->size, &info->min_size,
3691 &info->time, NULL,
3692 ~(clause_t) (1 << predicate_false_condition),
3693 vNULL, vNULL, vNULL);
3694 info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
3695 info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
3698 /* Return hints derrived from EDGE. */
3700 simple_edge_hints (struct cgraph_edge *edge)
3702 int hints = 0;
3703 struct cgraph_node *to = (edge->caller->global.inlined_to
3704 ? edge->caller->global.inlined_to : edge->caller);
3705 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
3706 if (inline_summaries->get (to)->scc_no
3707 && inline_summaries->get (to)->scc_no
3708 == inline_summaries->get (callee)->scc_no
3709 && !edge->recursive_p ())
3710 hints |= INLINE_HINT_same_scc;
3712 if (callee->lto_file_data && edge->caller->lto_file_data
3713 && edge->caller->lto_file_data != callee->lto_file_data
3714 && !callee->merged)
3715 hints |= INLINE_HINT_cross_module;
3717 return hints;
3720 /* Estimate the time cost for the caller when inlining EDGE.
3721 Only to be called via estimate_edge_time, that handles the
3722 caching mechanism.
3724 When caching, also update the cache entry. Compute both time and
3725 size, since we always need both metrics eventually. */
3728 do_estimate_edge_time (struct cgraph_edge *edge)
3730 int time;
3731 int size;
3732 inline_hints hints;
3733 struct cgraph_node *callee;
3734 clause_t clause;
3735 vec<tree> known_vals;
3736 vec<ipa_polymorphic_call_context> known_contexts;
3737 vec<ipa_agg_jump_function_p> known_aggs;
3738 struct inline_edge_summary *es = inline_edge_summary (edge);
3739 int min_size;
3741 callee = edge->callee->ultimate_alias_target ();
3743 gcc_checking_assert (edge->inline_failed);
3744 evaluate_properties_for_edge (edge, true,
3745 &clause, &known_vals, &known_contexts,
3746 &known_aggs);
3747 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3748 known_aggs, &size, &min_size, &time, &hints, es->param);
3750 /* When we have profile feedback, we can quite safely identify hot
3751 edges and for those we disable size limits. Don't do that when
3752 probability that caller will call the callee is low however, since it
3753 may hurt optimization of the caller's hot path. */
3754 if (edge->count && edge->maybe_hot_p ()
3755 && (edge->count * 2
3756 > (edge->caller->global.inlined_to
3757 ? edge->caller->global.inlined_to->count : edge->caller->count)))
3758 hints |= INLINE_HINT_known_hot;
3760 known_vals.release ();
3761 known_contexts.release ();
3762 known_aggs.release ();
3763 gcc_checking_assert (size >= 0);
3764 gcc_checking_assert (time >= 0);
3766 /* When caching, update the cache entry. */
3767 if (edge_growth_cache.exists ())
3769 inline_summaries->get (edge->callee)->min_size = min_size;
3770 if ((int) edge_growth_cache.length () <= edge->uid)
3771 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
3772 edge_growth_cache[edge->uid].time = time + (time >= 0);
3774 edge_growth_cache[edge->uid].size = size + (size >= 0);
3775 hints |= simple_edge_hints (edge);
3776 edge_growth_cache[edge->uid].hints = hints + 1;
3778 return time;
3782 /* Return estimated callee growth after inlining EDGE.
3783 Only to be called via estimate_edge_size. */
3786 do_estimate_edge_size (struct cgraph_edge *edge)
3788 int size;
3789 struct cgraph_node *callee;
3790 clause_t clause;
3791 vec<tree> known_vals;
3792 vec<ipa_polymorphic_call_context> known_contexts;
3793 vec<ipa_agg_jump_function_p> known_aggs;
3795 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3797 if (edge_growth_cache.exists ())
3799 do_estimate_edge_time (edge);
3800 size = edge_growth_cache[edge->uid].size;
3801 gcc_checking_assert (size);
3802 return size - (size > 0);
3805 callee = edge->callee->ultimate_alias_target ();
3807 /* Early inliner runs without caching, go ahead and do the dirty work. */
3808 gcc_checking_assert (edge->inline_failed);
3809 evaluate_properties_for_edge (edge, true,
3810 &clause, &known_vals, &known_contexts,
3811 &known_aggs);
3812 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3813 known_aggs, &size, NULL, NULL, NULL, vNULL);
3814 known_vals.release ();
3815 known_contexts.release ();
3816 known_aggs.release ();
3817 return size;
3821 /* Estimate the growth of the caller when inlining EDGE.
3822 Only to be called via estimate_edge_size. */
3824 inline_hints
3825 do_estimate_edge_hints (struct cgraph_edge *edge)
3827 inline_hints hints;
3828 struct cgraph_node *callee;
3829 clause_t clause;
3830 vec<tree> known_vals;
3831 vec<ipa_polymorphic_call_context> known_contexts;
3832 vec<ipa_agg_jump_function_p> known_aggs;
3834 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3836 if (edge_growth_cache.exists ())
3838 do_estimate_edge_time (edge);
3839 hints = edge_growth_cache[edge->uid].hints;
3840 gcc_checking_assert (hints);
3841 return hints - 1;
3844 callee = edge->callee->ultimate_alias_target ();
3846 /* Early inliner runs without caching, go ahead and do the dirty work. */
3847 gcc_checking_assert (edge->inline_failed);
3848 evaluate_properties_for_edge (edge, true,
3849 &clause, &known_vals, &known_contexts,
3850 &known_aggs);
3851 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3852 known_aggs, NULL, NULL, NULL, &hints, vNULL);
3853 known_vals.release ();
3854 known_contexts.release ();
3855 known_aggs.release ();
3856 hints |= simple_edge_hints (edge);
3857 return hints;
3861 /* Estimate self time of the function NODE after inlining EDGE. */
3864 estimate_time_after_inlining (struct cgraph_node *node,
3865 struct cgraph_edge *edge)
3867 struct inline_edge_summary *es = inline_edge_summary (edge);
3868 if (!es->predicate || !false_predicate_p (es->predicate))
3870 gcov_type time =
3871 inline_summaries->get (node)->time + estimate_edge_time (edge);
3872 if (time < 0)
3873 time = 0;
3874 if (time > MAX_TIME)
3875 time = MAX_TIME;
3876 return time;
3878 return inline_summaries->get (node)->time;
3882 /* Estimate the size of NODE after inlining EDGE which should be an
3883 edge to either NODE or a call inlined into NODE. */
3886 estimate_size_after_inlining (struct cgraph_node *node,
3887 struct cgraph_edge *edge)
3889 struct inline_edge_summary *es = inline_edge_summary (edge);
3890 if (!es->predicate || !false_predicate_p (es->predicate))
3892 int size = inline_summaries->get (node)->size + estimate_edge_growth (edge);
3893 gcc_assert (size >= 0);
3894 return size;
3896 return inline_summaries->get (node)->size;
3900 struct growth_data
3902 struct cgraph_node *node;
3903 bool self_recursive;
3904 bool uninlinable;
3905 int growth;
3909 /* Worker for do_estimate_growth. Collect growth for all callers. */
3911 static bool
3912 do_estimate_growth_1 (struct cgraph_node *node, void *data)
3914 struct cgraph_edge *e;
3915 struct growth_data *d = (struct growth_data *) data;
3917 for (e = node->callers; e; e = e->next_caller)
3919 gcc_checking_assert (e->inline_failed);
3921 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
3923 d->uninlinable = true;
3924 continue;
3927 if (e->caller == d->node
3928 || (e->caller->global.inlined_to
3929 && e->caller->global.inlined_to == d->node))
3930 d->self_recursive = true;
3931 d->growth += estimate_edge_growth (e);
3933 return false;
3937 /* Estimate the growth caused by inlining NODE into all callees. */
3940 estimate_growth (struct cgraph_node *node)
3942 struct growth_data d = { node, false, false, 0 };
3943 struct inline_summary *info = inline_summaries->get (node);
3945 node->call_for_symbol_and_aliases (do_estimate_growth_1, &d, true);
3947 /* For self recursive functions the growth estimation really should be
3948 infinity. We don't want to return very large values because the growth
3949 plays various roles in badness computation fractions. Be sure to not
3950 return zero or negative growths. */
3951 if (d.self_recursive)
3952 d.growth = d.growth < info->size ? info->size : d.growth;
3953 else if (DECL_EXTERNAL (node->decl) || d.uninlinable)
3955 else
3957 if (node->will_be_removed_from_program_if_no_direct_calls_p ())
3958 d.growth -= info->size;
3959 /* COMDAT functions are very often not shared across multiple units
3960 since they come from various template instantiations.
3961 Take this into account. */
3962 else if (DECL_COMDAT (node->decl)
3963 && node->can_remove_if_no_direct_calls_p ())
3964 d.growth -= (info->size
3965 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
3966 + 50) / 100;
3969 return d.growth;
3972 /* Verify if there are fewer than MAX_CALLERS. */
3974 static bool
3975 check_callers (cgraph_node *node, int *max_callers)
3977 ipa_ref *ref;
3979 for (cgraph_edge *e = node->callers; e; e = e->next_caller)
3981 (*max_callers)--;
3982 if (!*max_callers
3983 || cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
3984 return true;
3987 FOR_EACH_ALIAS (node, ref)
3988 if (check_callers (dyn_cast <cgraph_node *> (ref->referring), max_callers))
3989 return true;
3991 return false;
3995 /* Make cheap estimation if growth of NODE is likely positive knowing
3996 EDGE_GROWTH of one particular edge.
3997 We assume that most of other edges will have similar growth
3998 and skip computation if there are too many callers. */
4000 bool
4001 growth_likely_positive (struct cgraph_node *node,
4002 int edge_growth)
4004 int max_callers;
4005 struct cgraph_edge *e;
4006 gcc_checking_assert (edge_growth > 0);
4008 /* Unlike for functions called once, we play unsafe with
4009 COMDATs. We can allow that since we know functions
4010 in consideration are small (and thus risk is small) and
4011 moreover grow estimates already accounts that COMDAT
4012 functions may or may not disappear when eliminated from
4013 current unit. With good probability making aggressive
4014 choice in all units is going to make overall program
4015 smaller.
4017 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
4018 instead of
4019 cgraph_will_be_removed_from_program_if_no_direct_calls */
4020 if (DECL_EXTERNAL (node->decl)
4021 || !node->can_remove_if_no_direct_calls_p ())
4022 return true;
4024 if (!node->will_be_removed_from_program_if_no_direct_calls_p ()
4025 && (!DECL_COMDAT (node->decl)
4026 || !node->can_remove_if_no_direct_calls_p ()))
4027 return true;
4028 max_callers = inline_summaries->get (node)->size * 4 / edge_growth + 2;
4030 for (e = node->callers; e; e = e->next_caller)
4032 max_callers--;
4033 if (!max_callers
4034 || cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
4035 return true;
4038 ipa_ref *ref;
4039 FOR_EACH_ALIAS (node, ref)
4040 if (check_callers (dyn_cast <cgraph_node *> (ref->referring), &max_callers))
4041 return true;
4043 return estimate_growth (node) > 0;
4047 /* This function performs intraprocedural analysis in NODE that is required to
4048 inline indirect calls. */
4050 static void
4051 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
4053 ipa_analyze_node (node);
4054 if (dump_file && (dump_flags & TDF_DETAILS))
4056 ipa_print_node_params (dump_file, node);
4057 ipa_print_node_jump_functions (dump_file, node);
4062 /* Note function body size. */
4064 void
4065 inline_analyze_function (struct cgraph_node *node)
4067 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4069 if (dump_file)
4070 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
4071 node->name (), node->order);
4072 if (opt_for_fn (node->decl, optimize) && !node->thunk.thunk_p)
4073 inline_indirect_intraprocedural_analysis (node);
4074 compute_inline_parameters (node, false);
4075 if (!optimize)
4077 struct cgraph_edge *e;
4078 for (e = node->callees; e; e = e->next_callee)
4080 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
4081 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4082 e->call_stmt_cannot_inline_p = true;
4084 for (e = node->indirect_calls; e; e = e->next_callee)
4086 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
4087 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4088 e->call_stmt_cannot_inline_p = true;
4092 pop_cfun ();
4096 /* Called when new function is inserted to callgraph late. */
4098 void
4099 inline_summary_t::insert (struct cgraph_node *node, inline_summary *)
4101 inline_analyze_function (node);
4104 /* Note function body size. */
4106 void
4107 inline_generate_summary (void)
4109 struct cgraph_node *node;
4111 /* When not optimizing, do not bother to analyze. Inlining is still done
4112 because edge redirection needs to happen there. */
4113 if (!optimize && !flag_generate_lto && !flag_generate_offload && !flag_wpa)
4114 return;
4116 if (!inline_summaries)
4117 inline_summaries = (inline_summary_t*) inline_summary_t::create_ggc (symtab);
4119 inline_summaries->enable_insertion_hook ();
4121 ipa_register_cgraph_hooks ();
4122 inline_free_summary ();
4124 FOR_EACH_DEFINED_FUNCTION (node)
4125 if (!node->alias)
4126 inline_analyze_function (node);
4130 /* Read predicate from IB. */
4132 static struct predicate
4133 read_predicate (struct lto_input_block *ib)
4135 struct predicate out;
4136 clause_t clause;
4137 int k = 0;
4141 gcc_assert (k <= MAX_CLAUSES);
4142 clause = out.clause[k++] = streamer_read_uhwi (ib);
4144 while (clause);
4146 /* Zero-initialize the remaining clauses in OUT. */
4147 while (k <= MAX_CLAUSES)
4148 out.clause[k++] = 0;
4150 return out;
4154 /* Write inline summary for edge E to OB. */
4156 static void
4157 read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
4159 struct inline_edge_summary *es = inline_edge_summary (e);
4160 struct predicate p;
4161 int length, i;
4163 es->call_stmt_size = streamer_read_uhwi (ib);
4164 es->call_stmt_time = streamer_read_uhwi (ib);
4165 es->loop_depth = streamer_read_uhwi (ib);
4166 p = read_predicate (ib);
4167 edge_set_predicate (e, &p);
4168 length = streamer_read_uhwi (ib);
4169 if (length)
4171 es->param.safe_grow_cleared (length);
4172 for (i = 0; i < length; i++)
4173 es->param[i].change_prob = streamer_read_uhwi (ib);
4178 /* Stream in inline summaries from the section. */
4180 static void
4181 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
4182 size_t len)
4184 const struct lto_function_header *header =
4185 (const struct lto_function_header *) data;
4186 const int cfg_offset = sizeof (struct lto_function_header);
4187 const int main_offset = cfg_offset + header->cfg_size;
4188 const int string_offset = main_offset + header->main_size;
4189 struct data_in *data_in;
4190 unsigned int i, count2, j;
4191 unsigned int f_count;
4193 lto_input_block ib ((const char *) data + main_offset, header->main_size,
4194 file_data->mode_table);
4196 data_in =
4197 lto_data_in_create (file_data, (const char *) data + string_offset,
4198 header->string_size, vNULL);
4199 f_count = streamer_read_uhwi (&ib);
4200 for (i = 0; i < f_count; i++)
4202 unsigned int index;
4203 struct cgraph_node *node;
4204 struct inline_summary *info;
4205 lto_symtab_encoder_t encoder;
4206 struct bitpack_d bp;
4207 struct cgraph_edge *e;
4208 predicate p;
4210 index = streamer_read_uhwi (&ib);
4211 encoder = file_data->symtab_node_encoder;
4212 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
4213 index));
4214 info = inline_summaries->get (node);
4216 info->estimated_stack_size
4217 = info->estimated_self_stack_size = streamer_read_uhwi (&ib);
4218 info->size = info->self_size = streamer_read_uhwi (&ib);
4219 info->time = info->self_time = streamer_read_uhwi (&ib);
4221 bp = streamer_read_bitpack (&ib);
4222 info->inlinable = bp_unpack_value (&bp, 1);
4224 count2 = streamer_read_uhwi (&ib);
4225 gcc_assert (!info->conds);
4226 for (j = 0; j < count2; j++)
4228 struct condition c;
4229 c.operand_num = streamer_read_uhwi (&ib);
4230 c.code = (enum tree_code) streamer_read_uhwi (&ib);
4231 c.val = stream_read_tree (&ib, data_in);
4232 bp = streamer_read_bitpack (&ib);
4233 c.agg_contents = bp_unpack_value (&bp, 1);
4234 c.by_ref = bp_unpack_value (&bp, 1);
4235 if (c.agg_contents)
4236 c.offset = streamer_read_uhwi (&ib);
4237 vec_safe_push (info->conds, c);
4239 count2 = streamer_read_uhwi (&ib);
4240 gcc_assert (!info->entry);
4241 for (j = 0; j < count2; j++)
4243 struct size_time_entry e;
4245 e.size = streamer_read_uhwi (&ib);
4246 e.time = streamer_read_uhwi (&ib);
4247 e.predicate = read_predicate (&ib);
4249 vec_safe_push (info->entry, e);
4252 p = read_predicate (&ib);
4253 set_hint_predicate (&info->loop_iterations, p);
4254 p = read_predicate (&ib);
4255 set_hint_predicate (&info->loop_stride, p);
4256 p = read_predicate (&ib);
4257 set_hint_predicate (&info->array_index, p);
4258 for (e = node->callees; e; e = e->next_callee)
4259 read_inline_edge_summary (&ib, e);
4260 for (e = node->indirect_calls; e; e = e->next_callee)
4261 read_inline_edge_summary (&ib, e);
4264 lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
4265 len);
4266 lto_data_in_delete (data_in);
4270 /* Read inline summary. Jump functions are shared among ipa-cp
4271 and inliner, so when ipa-cp is active, we don't need to write them
4272 twice. */
4274 void
4275 inline_read_summary (void)
4277 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4278 struct lto_file_decl_data *file_data;
4279 unsigned int j = 0;
4281 inline_summary_alloc ();
4283 while ((file_data = file_data_vec[j++]))
4285 size_t len;
4286 const char *data = lto_get_section_data (file_data,
4287 LTO_section_inline_summary,
4288 NULL, &len);
4289 if (data)
4290 inline_read_section (file_data, data, len);
4291 else
4292 /* Fatal error here. We do not want to support compiling ltrans units
4293 with different version of compiler or different flags than the WPA
4294 unit, so this should never happen. */
4295 fatal_error (input_location,
4296 "ipa inline summary is missing in input file");
4298 if (optimize)
4300 ipa_register_cgraph_hooks ();
4301 if (!flag_ipa_cp)
4302 ipa_prop_read_jump_functions ();
4305 gcc_assert (inline_summaries);
4306 inline_summaries->enable_insertion_hook ();
4310 /* Write predicate P to OB. */
4312 static void
4313 write_predicate (struct output_block *ob, struct predicate *p)
4315 int j;
4316 if (p)
4317 for (j = 0; p->clause[j]; j++)
4319 gcc_assert (j < MAX_CLAUSES);
4320 streamer_write_uhwi (ob, p->clause[j]);
4322 streamer_write_uhwi (ob, 0);
4326 /* Write inline summary for edge E to OB. */
4328 static void
4329 write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
4331 struct inline_edge_summary *es = inline_edge_summary (e);
4332 int i;
4334 streamer_write_uhwi (ob, es->call_stmt_size);
4335 streamer_write_uhwi (ob, es->call_stmt_time);
4336 streamer_write_uhwi (ob, es->loop_depth);
4337 write_predicate (ob, es->predicate);
4338 streamer_write_uhwi (ob, es->param.length ());
4339 for (i = 0; i < (int) es->param.length (); i++)
4340 streamer_write_uhwi (ob, es->param[i].change_prob);
4344 /* Write inline summary for node in SET.
4345 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4346 active, we don't need to write them twice. */
4348 void
4349 inline_write_summary (void)
4351 struct cgraph_node *node;
4352 struct output_block *ob = create_output_block (LTO_section_inline_summary);
4353 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
4354 unsigned int count = 0;
4355 int i;
4357 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4359 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4360 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4361 if (cnode && cnode->definition && !cnode->alias)
4362 count++;
4364 streamer_write_uhwi (ob, count);
4366 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4368 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4369 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4370 if (cnode && (node = cnode)->definition && !node->alias)
4372 struct inline_summary *info = inline_summaries->get (node);
4373 struct bitpack_d bp;
4374 struct cgraph_edge *edge;
4375 int i;
4376 size_time_entry *e;
4377 struct condition *c;
4379 streamer_write_uhwi (ob,
4380 lto_symtab_encoder_encode (encoder,
4382 node));
4383 streamer_write_hwi (ob, info->estimated_self_stack_size);
4384 streamer_write_hwi (ob, info->self_size);
4385 streamer_write_hwi (ob, info->self_time);
4386 bp = bitpack_create (ob->main_stream);
4387 bp_pack_value (&bp, info->inlinable, 1);
4388 streamer_write_bitpack (&bp);
4389 streamer_write_uhwi (ob, vec_safe_length (info->conds));
4390 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
4392 streamer_write_uhwi (ob, c->operand_num);
4393 streamer_write_uhwi (ob, c->code);
4394 stream_write_tree (ob, c->val, true);
4395 bp = bitpack_create (ob->main_stream);
4396 bp_pack_value (&bp, c->agg_contents, 1);
4397 bp_pack_value (&bp, c->by_ref, 1);
4398 streamer_write_bitpack (&bp);
4399 if (c->agg_contents)
4400 streamer_write_uhwi (ob, c->offset);
4402 streamer_write_uhwi (ob, vec_safe_length (info->entry));
4403 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
4405 streamer_write_uhwi (ob, e->size);
4406 streamer_write_uhwi (ob, e->time);
4407 write_predicate (ob, &e->predicate);
4409 write_predicate (ob, info->loop_iterations);
4410 write_predicate (ob, info->loop_stride);
4411 write_predicate (ob, info->array_index);
4412 for (edge = node->callees; edge; edge = edge->next_callee)
4413 write_inline_edge_summary (ob, edge);
4414 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
4415 write_inline_edge_summary (ob, edge);
4418 streamer_write_char_stream (ob->main_stream, 0);
4419 produce_asm (ob, NULL);
4420 destroy_output_block (ob);
4422 if (optimize && !flag_ipa_cp)
4423 ipa_prop_write_jump_functions ();
4427 /* Release inline summary. */
4429 void
4430 inline_free_summary (void)
4432 struct cgraph_node *node;
4433 if (edge_removal_hook_holder)
4434 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
4435 edge_removal_hook_holder = NULL;
4436 if (edge_duplication_hook_holder)
4437 symtab->remove_edge_duplication_hook (edge_duplication_hook_holder);
4438 edge_duplication_hook_holder = NULL;
4439 if (!inline_edge_summary_vec.exists ())
4440 return;
4441 FOR_EACH_DEFINED_FUNCTION (node)
4442 if (!node->alias)
4443 reset_inline_summary (node, inline_summaries->get (node));
4444 inline_summaries->release ();
4445 inline_summaries = NULL;
4446 inline_edge_summary_vec.release ();
4447 if (edge_predicate_pool)
4448 free_alloc_pool (edge_predicate_pool);
4449 edge_predicate_pool = 0;