1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* Allocation of hard register numbers to pseudo registers is done in
24 two passes. In this pass we consider only regs that are born and
25 die once within one basic block. We do this one basic block at a
26 time. Then the next pass allocates the registers that remain.
27 Two passes are used because this pass uses methods that work only
28 on linear code, but that do a better job than the general methods
29 used in global_alloc, and more quickly too.
31 The assignments made are recorded in the vector reg_renumber
32 whose space is allocated here. The rtl code itself is not altered.
34 We assign each instruction in the basic block a number
35 which is its order from the beginning of the block.
36 Then we can represent the lifetime of a pseudo register with
37 a pair of numbers, and check for conflicts easily.
38 We can record the availability of hard registers with a
39 HARD_REG_SET for each instruction. The HARD_REG_SET
40 contains 0 or 1 for each hard reg.
42 To avoid register shuffling, we tie registers together when one
43 dies by being copied into another, or dies in an instruction that
44 does arithmetic to produce another. The tied registers are
45 allocated as one. Registers with different reg class preferences
46 can never be tied unless the class preferred by one is a subclass
47 of the one preferred by the other.
49 Tying is represented with "quantity numbers".
50 A non-tied register is given a new quantity number.
51 Tied registers have the same quantity number.
53 We have provision to exempt registers, even when they are contained
54 within the block, that can be tied to others that are not contained in it.
55 This is so that global_alloc could process them both and tie them then.
56 But this is currently disabled since tying in global_alloc is not
59 /* Pseudos allocated here can be reallocated by global.c if the hard register
60 is used as a spill register. Currently we don't allocate such pseudos
61 here if their preferred class is likely to be used by spills. */
65 #include "coretypes.h"
67 #include "hard-reg-set.h"
73 #include "insn-config.h"
74 #include "insn-attr.h"
79 #include "integrate.h"
83 #include "tree-pass.h"
85 /* Next quantity number available for allocation. */
89 /* Information we maintain about each quantity. */
92 /* The number of refs to quantity Q. */
96 /* The frequency of uses of quantity Q. */
100 /* Insn number (counting from head of basic block)
101 where quantity Q was born. -1 if birth has not been recorded. */
105 /* Insn number (counting from head of basic block)
106 where given quantity died. Due to the way tying is done,
107 and the fact that we consider in this pass only regs that die but once,
108 a quantity can die only once. Each quantity's life span
109 is a set of consecutive insns. -1 if death has not been recorded. */
113 /* Number of words needed to hold the data in given quantity.
114 This depends on its machine mode. It is used for these purposes:
115 1. It is used in computing the relative importance of qtys,
116 which determines the order in which we look for regs for them.
117 2. It is used in rules that prevent tying several registers of
118 different sizes in a way that is geometrically impossible
119 (see combine_regs). */
123 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
127 /* Number of times a reg tied to given qty lives across a CALL_INSN
130 int n_throwing_calls_crossed
;
132 /* The register number of one pseudo register whose reg_qty value is Q.
133 This register should be the head of the chain
134 maintained in reg_next_in_qty. */
138 /* Reg class contained in (smaller than) the preferred classes of all
139 the pseudo regs that are tied in given quantity.
140 This is the preferred class for allocating that quantity. */
142 enum reg_class min_class
;
144 /* Register class within which we allocate given qty if we can't get
145 its preferred class. */
147 enum reg_class alternate_class
;
149 /* This holds the mode of the registers that are tied to given qty,
150 or VOIDmode if registers with differing modes are tied together. */
152 enum machine_mode mode
;
154 /* the hard reg number chosen for given quantity,
155 or -1 if none was found. */
160 static struct qty
*qty
;
162 /* These fields are kept separately to speedup their clearing. */
164 /* We maintain two hard register sets that indicate suggested hard registers
165 for each quantity. The first, phys_copy_sugg, contains hard registers
166 that are tied to the quantity by a simple copy. The second contains all
167 hard registers that are tied to the quantity via an arithmetic operation.
169 The former register set is given priority for allocation. This tends to
170 eliminate copy insns. */
172 /* Element Q is a set of hard registers that are suggested for quantity Q by
175 static HARD_REG_SET
*qty_phys_copy_sugg
;
177 /* Element Q is a set of hard registers that are suggested for quantity Q by
180 static HARD_REG_SET
*qty_phys_sugg
;
182 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
184 static short *qty_phys_num_copy_sugg
;
186 /* Element Q is the number of suggested registers in qty_phys_sugg. */
188 static short *qty_phys_num_sugg
;
190 /* If (REG N) has been assigned a quantity number, is a register number
191 of another register assigned the same quantity number, or -1 for the
192 end of the chain. qty->first_reg point to the head of this chain. */
194 static int *reg_next_in_qty
;
196 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
198 of -1 if this register cannot be allocated by local-alloc,
199 or -2 if not known yet.
201 Note that if we see a use or death of pseudo register N with
202 reg_qty[N] == -2, register N must be local to the current block. If
203 it were used in more than one block, we would have reg_qty[N] == -1.
204 This relies on the fact that if reg_basic_block[N] is >= 0, register N
205 will not appear in any other block. We save a considerable number of
206 tests by exploiting this.
208 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
213 /* The offset (in words) of register N within its quantity.
214 This can be nonzero if register N is SImode, and has been tied
215 to a subreg of a DImode register. */
217 static char *reg_offset
;
219 /* Vector of substitutions of register numbers,
220 used to map pseudo regs into hardware regs.
221 This is set up as a result of register allocation.
222 Element N is the hard reg assigned to pseudo reg N,
223 or is -1 if no hard reg was assigned.
224 If N is a hard reg number, element N is N. */
228 /* Set of hard registers live at the current point in the scan
229 of the instructions in a basic block. */
231 static HARD_REG_SET regs_live
;
233 /* Each set of hard registers indicates registers live at a particular
234 point in the basic block. For N even, regs_live_at[N] says which
235 hard registers are needed *after* insn N/2 (i.e., they may not
236 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
238 If an object is to conflict with the inputs of insn J but not the
239 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
240 if it is to conflict with the outputs of insn J but not the inputs of
241 insn J + 1, it is said to die at index J*2 + 1. */
243 static HARD_REG_SET
*regs_live_at
;
245 /* Communicate local vars `insn_number' and `insn'
246 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
247 static int this_insn_number
;
248 static rtx this_insn
;
252 /* Set when an attempt should be made to replace a register
253 with the associated src_p entry. */
257 /* Set when a REG_EQUIV note is found or created. Use to
258 keep track of what memory accesses might be created later,
265 /* Loop depth is used to recognize equivalences which appear
266 to be present within the same loop (or in an inner loop). */
270 /* The list of each instruction which initializes this register. */
274 /* Nonzero if this had a preexisting REG_EQUIV note. */
276 int is_arg_equivalence
;
279 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
280 structure for that register. */
282 static struct equivalence
*reg_equiv
;
284 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
285 static int recorded_label_ref
;
287 static void alloc_qty (int, enum machine_mode
, int, int);
288 static void validate_equiv_mem_from_store (rtx
, rtx
, void *);
289 static int validate_equiv_mem (rtx
, rtx
, rtx
);
290 static int equiv_init_varies_p (rtx
);
291 static int equiv_init_movable_p (rtx
, int);
292 static int contains_replace_regs (rtx
);
293 static int memref_referenced_p (rtx
, rtx
);
294 static int memref_used_between_p (rtx
, rtx
, rtx
);
295 static void update_equiv_regs (void);
296 static void no_equiv (rtx
, rtx
, void *);
297 static void block_alloc (int);
298 static int qty_sugg_compare (int, int);
299 static int qty_sugg_compare_1 (const void *, const void *);
300 static int qty_compare (int, int);
301 static int qty_compare_1 (const void *, const void *);
302 static int combine_regs (rtx
, rtx
, int, int, rtx
, int);
303 static int reg_meets_class_p (int, enum reg_class
);
304 static void update_qty_class (int, int);
305 static void reg_is_set (rtx
, rtx
, void *);
306 static void reg_is_born (rtx
, int);
307 static void wipe_dead_reg (rtx
, int);
308 static int find_free_reg (enum reg_class
, enum machine_mode
, int, int, int,
310 static void mark_life (int, enum machine_mode
, int);
311 static void post_mark_life (int, enum machine_mode
, int, int, int);
312 static int no_conflict_p (rtx
, rtx
, rtx
);
313 static int requires_inout (const char *);
315 /* Allocate a new quantity (new within current basic block)
316 for register number REGNO which is born at index BIRTH
317 within the block. MODE and SIZE are info on reg REGNO. */
320 alloc_qty (int regno
, enum machine_mode mode
, int size
, int birth
)
322 int qtyno
= next_qty
++;
324 reg_qty
[regno
] = qtyno
;
325 reg_offset
[regno
] = 0;
326 reg_next_in_qty
[regno
] = -1;
328 qty
[qtyno
].first_reg
= regno
;
329 qty
[qtyno
].size
= size
;
330 qty
[qtyno
].mode
= mode
;
331 qty
[qtyno
].birth
= birth
;
332 qty
[qtyno
].n_calls_crossed
= REG_N_CALLS_CROSSED (regno
);
333 qty
[qtyno
].n_throwing_calls_crossed
= REG_N_THROWING_CALLS_CROSSED (regno
);
334 qty
[qtyno
].min_class
= reg_preferred_class (regno
);
335 qty
[qtyno
].alternate_class
= reg_alternate_class (regno
);
336 qty
[qtyno
].n_refs
= REG_N_REFS (regno
);
337 qty
[qtyno
].freq
= REG_FREQ (regno
);
340 /* Main entry point of this file. */
349 /* We need to keep track of whether or not we recorded a LABEL_REF so
350 that we know if the jump optimizer needs to be rerun. */
351 recorded_label_ref
= 0;
353 /* Leaf functions and non-leaf functions have different needs.
354 If defined, let the machine say what kind of ordering we
356 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
357 ORDER_REGS_FOR_LOCAL_ALLOC
;
360 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
362 update_equiv_regs ();
364 /* This sets the maximum number of quantities we can have. Quantity
365 numbers start at zero and we can have one for each pseudo. */
366 max_qty
= (max_regno
- FIRST_PSEUDO_REGISTER
);
368 /* Allocate vectors of temporary data.
369 See the declarations of these variables, above,
370 for what they mean. */
372 qty
= XNEWVEC (struct qty
, max_qty
);
373 qty_phys_copy_sugg
= XNEWVEC (HARD_REG_SET
, max_qty
);
374 qty_phys_num_copy_sugg
= XNEWVEC (short, max_qty
);
375 qty_phys_sugg
= XNEWVEC (HARD_REG_SET
, max_qty
);
376 qty_phys_num_sugg
= XNEWVEC (short, max_qty
);
378 reg_qty
= XNEWVEC (int, max_regno
);
379 reg_offset
= XNEWVEC (char, max_regno
);
380 reg_next_in_qty
= XNEWVEC (int, max_regno
);
382 /* Determine which pseudo-registers can be allocated by local-alloc.
383 In general, these are the registers used only in a single block and
386 We need not be concerned with which block actually uses the register
387 since we will never see it outside that block. */
389 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
391 if (REG_BASIC_BLOCK (i
) >= 0 && REG_N_DEATHS (i
) == 1)
397 /* Force loop below to initialize entire quantity array. */
400 /* Allocate each block's local registers, block by block. */
404 /* NEXT_QTY indicates which elements of the `qty_...'
405 vectors might need to be initialized because they were used
406 for the previous block; it is set to the entire array before
407 block 0. Initialize those, with explicit loop if there are few,
408 else with bzero and bcopy. Do not initialize vectors that are
409 explicit set by `alloc_qty'. */
413 for (i
= 0; i
< next_qty
; i
++)
415 CLEAR_HARD_REG_SET (qty_phys_copy_sugg
[i
]);
416 qty_phys_num_copy_sugg
[i
] = 0;
417 CLEAR_HARD_REG_SET (qty_phys_sugg
[i
]);
418 qty_phys_num_sugg
[i
] = 0;
423 #define CLEAR(vector) \
424 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
426 CLEAR (qty_phys_copy_sugg
);
427 CLEAR (qty_phys_num_copy_sugg
);
428 CLEAR (qty_phys_sugg
);
429 CLEAR (qty_phys_num_sugg
);
434 block_alloc (b
->index
);
438 free (qty_phys_copy_sugg
);
439 free (qty_phys_num_copy_sugg
);
440 free (qty_phys_sugg
);
441 free (qty_phys_num_sugg
);
445 free (reg_next_in_qty
);
447 return recorded_label_ref
;
450 /* Used for communication between the following two functions: contains
451 a MEM that we wish to ensure remains unchanged. */
452 static rtx equiv_mem
;
454 /* Set nonzero if EQUIV_MEM is modified. */
455 static int equiv_mem_modified
;
457 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
458 Called via note_stores. */
461 validate_equiv_mem_from_store (rtx dest
, rtx set ATTRIBUTE_UNUSED
,
462 void *data ATTRIBUTE_UNUSED
)
465 && reg_overlap_mentioned_p (dest
, equiv_mem
))
467 && true_dependence (dest
, VOIDmode
, equiv_mem
, rtx_varies_p
)))
468 equiv_mem_modified
= 1;
471 /* Verify that no store between START and the death of REG invalidates
472 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
473 by storing into an overlapping memory location, or with a non-const
476 Return 1 if MEMREF remains valid. */
479 validate_equiv_mem (rtx start
, rtx reg
, rtx memref
)
485 equiv_mem_modified
= 0;
487 /* If the memory reference has side effects or is volatile, it isn't a
488 valid equivalence. */
489 if (side_effects_p (memref
))
492 for (insn
= start
; insn
&& ! equiv_mem_modified
; insn
= NEXT_INSN (insn
))
497 if (find_reg_note (insn
, REG_DEAD
, reg
))
500 if (CALL_P (insn
) && ! MEM_READONLY_P (memref
)
501 && ! CONST_OR_PURE_CALL_P (insn
))
504 note_stores (PATTERN (insn
), validate_equiv_mem_from_store
, NULL
);
506 /* If a register mentioned in MEMREF is modified via an
507 auto-increment, we lose the equivalence. Do the same if one
508 dies; although we could extend the life, it doesn't seem worth
511 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
512 if ((REG_NOTE_KIND (note
) == REG_INC
513 || REG_NOTE_KIND (note
) == REG_DEAD
)
514 && REG_P (XEXP (note
, 0))
515 && reg_overlap_mentioned_p (XEXP (note
, 0), memref
))
522 /* Returns zero if X is known to be invariant. */
525 equiv_init_varies_p (rtx x
)
527 RTX_CODE code
= GET_CODE (x
);
534 return !MEM_READONLY_P (x
) || equiv_init_varies_p (XEXP (x
, 0));
545 return reg_equiv
[REGNO (x
)].replace
== 0 && rtx_varies_p (x
, 0);
548 if (MEM_VOLATILE_P (x
))
557 fmt
= GET_RTX_FORMAT (code
);
558 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
561 if (equiv_init_varies_p (XEXP (x
, i
)))
564 else if (fmt
[i
] == 'E')
567 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
568 if (equiv_init_varies_p (XVECEXP (x
, i
, j
)))
575 /* Returns nonzero if X (used to initialize register REGNO) is movable.
576 X is only movable if the registers it uses have equivalent initializations
577 which appear to be within the same loop (or in an inner loop) and movable
578 or if they are not candidates for local_alloc and don't vary. */
581 equiv_init_movable_p (rtx x
, int regno
)
585 enum rtx_code code
= GET_CODE (x
);
590 return equiv_init_movable_p (SET_SRC (x
), regno
);
605 return (reg_equiv
[REGNO (x
)].loop_depth
>= reg_equiv
[regno
].loop_depth
606 && reg_equiv
[REGNO (x
)].replace
)
607 || (REG_BASIC_BLOCK (REGNO (x
)) < 0 && ! rtx_varies_p (x
, 0));
609 case UNSPEC_VOLATILE
:
613 if (MEM_VOLATILE_P (x
))
622 fmt
= GET_RTX_FORMAT (code
);
623 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
627 if (! equiv_init_movable_p (XEXP (x
, i
), regno
))
631 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
632 if (! equiv_init_movable_p (XVECEXP (x
, i
, j
), regno
))
640 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
643 contains_replace_regs (rtx x
)
647 enum rtx_code code
= GET_CODE (x
);
663 return reg_equiv
[REGNO (x
)].replace
;
669 fmt
= GET_RTX_FORMAT (code
);
670 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
674 if (contains_replace_regs (XEXP (x
, i
)))
678 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
679 if (contains_replace_regs (XVECEXP (x
, i
, j
)))
687 /* TRUE if X references a memory location that would be affected by a store
691 memref_referenced_p (rtx memref
, rtx x
)
695 enum rtx_code code
= GET_CODE (x
);
712 return (reg_equiv
[REGNO (x
)].replacement
713 && memref_referenced_p (memref
,
714 reg_equiv
[REGNO (x
)].replacement
));
717 if (true_dependence (memref
, VOIDmode
, x
, rtx_varies_p
))
722 /* If we are setting a MEM, it doesn't count (its address does), but any
723 other SET_DEST that has a MEM in it is referencing the MEM. */
724 if (MEM_P (SET_DEST (x
)))
726 if (memref_referenced_p (memref
, XEXP (SET_DEST (x
), 0)))
729 else if (memref_referenced_p (memref
, SET_DEST (x
)))
732 return memref_referenced_p (memref
, SET_SRC (x
));
738 fmt
= GET_RTX_FORMAT (code
);
739 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
743 if (memref_referenced_p (memref
, XEXP (x
, i
)))
747 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
748 if (memref_referenced_p (memref
, XVECEXP (x
, i
, j
)))
756 /* TRUE if some insn in the range (START, END] references a memory location
757 that would be affected by a store to MEMREF. */
760 memref_used_between_p (rtx memref
, rtx start
, rtx end
)
764 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
765 insn
= NEXT_INSN (insn
))
770 if (memref_referenced_p (memref
, PATTERN (insn
)))
773 /* Nonconst functions may access memory. */
775 && (! CONST_OR_PURE_CALL_P (insn
)
776 || pure_call_p (insn
)))
783 /* Find registers that are equivalent to a single value throughout the
784 compilation (either because they can be referenced in memory or are set once
785 from a single constant). Lower their priority for a register.
787 If such a register is only referenced once, try substituting its value
788 into the using insn. If it succeeds, we can eliminate the register
791 Initialize the REG_EQUIV_INIT array of initializing insns. */
794 update_equiv_regs (void)
799 regset_head cleared_regs
;
800 int clear_regnos
= 0;
802 reg_equiv
= XCNEWVEC (struct equivalence
, max_regno
);
803 INIT_REG_SET (&cleared_regs
);
804 reg_equiv_init
= ggc_alloc_cleared (max_regno
* sizeof (rtx
));
805 reg_equiv_init_size
= max_regno
;
807 init_alias_analysis ();
809 /* Scan the insns and find which registers have equivalences. Do this
810 in a separate scan of the insns because (due to -fcse-follow-jumps)
811 a register can be set below its use. */
814 loop_depth
= bb
->loop_depth
;
816 for (insn
= BB_HEAD (bb
);
817 insn
!= NEXT_INSN (BB_END (bb
));
818 insn
= NEXT_INSN (insn
))
828 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
829 if (REG_NOTE_KIND (note
) == REG_INC
)
830 no_equiv (XEXP (note
, 0), note
, NULL
);
832 set
= single_set (insn
);
834 /* If this insn contains more (or less) than a single SET,
835 only mark all destinations as having no known equivalence. */
838 note_stores (PATTERN (insn
), no_equiv
, NULL
);
841 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
845 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
847 rtx part
= XVECEXP (PATTERN (insn
), 0, i
);
849 note_stores (part
, no_equiv
, NULL
);
853 dest
= SET_DEST (set
);
856 /* See if this is setting up the equivalence between an argument
857 register and its stack slot. */
858 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
861 gcc_assert (REG_P (dest
));
862 regno
= REGNO (dest
);
864 /* Note that we don't want to clear reg_equiv_init even if there
865 are multiple sets of this register. */
866 reg_equiv
[regno
].is_arg_equivalence
= 1;
868 /* Record for reload that this is an equivalencing insn. */
869 if (rtx_equal_p (src
, XEXP (note
, 0)))
870 reg_equiv_init
[regno
]
871 = gen_rtx_INSN_LIST (VOIDmode
, insn
, reg_equiv_init
[regno
]);
873 /* Continue normally in case this is a candidate for
880 /* We only handle the case of a pseudo register being set
881 once, or always to the same value. */
882 /* ??? The mn10200 port breaks if we add equivalences for
883 values that need an ADDRESS_REGS register and set them equivalent
884 to a MEM of a pseudo. The actual problem is in the over-conservative
885 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
886 calculate_needs, but we traditionally work around this problem
887 here by rejecting equivalences when the destination is in a register
888 that's likely spilled. This is fragile, of course, since the
889 preferred class of a pseudo depends on all instructions that set
893 || (regno
= REGNO (dest
)) < FIRST_PSEUDO_REGISTER
894 || reg_equiv
[regno
].init_insns
== const0_rtx
895 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno
))
896 && MEM_P (src
) && ! reg_equiv
[regno
].is_arg_equivalence
))
898 /* This might be setting a SUBREG of a pseudo, a pseudo that is
899 also set somewhere else to a constant. */
900 note_stores (set
, no_equiv
, NULL
);
904 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
906 /* cse sometimes generates function invariants, but doesn't put a
907 REG_EQUAL note on the insn. Since this note would be redundant,
908 there's no point creating it earlier than here. */
909 if (! note
&& ! rtx_varies_p (src
, 0))
910 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
912 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
913 since it represents a function call */
914 if (note
&& GET_CODE (XEXP (note
, 0)) == EXPR_LIST
)
917 if (REG_N_SETS (regno
) != 1
919 || rtx_varies_p (XEXP (note
, 0), 0)
920 || (reg_equiv
[regno
].replacement
921 && ! rtx_equal_p (XEXP (note
, 0),
922 reg_equiv
[regno
].replacement
))))
924 no_equiv (dest
, set
, NULL
);
927 /* Record this insn as initializing this register. */
928 reg_equiv
[regno
].init_insns
929 = gen_rtx_INSN_LIST (VOIDmode
, insn
, reg_equiv
[regno
].init_insns
);
931 /* If this register is known to be equal to a constant, record that
932 it is always equivalent to the constant. */
933 if (note
&& ! rtx_varies_p (XEXP (note
, 0), 0))
934 PUT_MODE (note
, (enum machine_mode
) REG_EQUIV
);
936 /* If this insn introduces a "constant" register, decrease the priority
937 of that register. Record this insn if the register is only used once
938 more and the equivalence value is the same as our source.
940 The latter condition is checked for two reasons: First, it is an
941 indication that it may be more efficient to actually emit the insn
942 as written (if no registers are available, reload will substitute
943 the equivalence). Secondly, it avoids problems with any registers
944 dying in this insn whose death notes would be missed.
946 If we don't have a REG_EQUIV note, see if this insn is loading
947 a register used only in one basic block from a MEM. If so, and the
948 MEM remains unchanged for the life of the register, add a REG_EQUIV
951 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
953 if (note
== 0 && REG_BASIC_BLOCK (regno
) >= 0
954 && MEM_P (SET_SRC (set
))
955 && validate_equiv_mem (insn
, dest
, SET_SRC (set
)))
956 REG_NOTES (insn
) = note
= gen_rtx_EXPR_LIST (REG_EQUIV
,
957 copy_rtx (SET_SRC (set
)),
962 int regno
= REGNO (dest
);
963 rtx x
= XEXP (note
, 0);
965 /* If we haven't done so, record for reload that this is an
966 equivalencing insn. */
967 if (!reg_equiv
[regno
].is_arg_equivalence
)
968 reg_equiv_init
[regno
]
969 = gen_rtx_INSN_LIST (VOIDmode
, insn
, reg_equiv_init
[regno
]);
971 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
972 We might end up substituting the LABEL_REF for uses of the
973 pseudo here or later. That kind of transformation may turn an
974 indirect jump into a direct jump, in which case we must rerun the
975 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
976 if (GET_CODE (x
) == LABEL_REF
977 || (GET_CODE (x
) == CONST
978 && GET_CODE (XEXP (x
, 0)) == PLUS
979 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == LABEL_REF
)))
980 recorded_label_ref
= 1;
982 reg_equiv
[regno
].replacement
= x
;
983 reg_equiv
[regno
].src_p
= &SET_SRC (set
);
984 reg_equiv
[regno
].loop_depth
= loop_depth
;
986 /* Don't mess with things live during setjmp. */
987 if (REG_LIVE_LENGTH (regno
) >= 0 && optimize
)
989 /* Note that the statement below does not affect the priority
991 REG_LIVE_LENGTH (regno
) *= 2;
993 /* If the register is referenced exactly twice, meaning it is
994 set once and used once, indicate that the reference may be
995 replaced by the equivalence we computed above. Do this
996 even if the register is only used in one block so that
997 dependencies can be handled where the last register is
998 used in a different block (i.e. HIGH / LO_SUM sequences)
999 and to reduce the number of registers alive across
1002 if (REG_N_REFS (regno
) == 2
1003 && (rtx_equal_p (x
, src
)
1004 || ! equiv_init_varies_p (src
))
1005 && NONJUMP_INSN_P (insn
)
1006 && equiv_init_movable_p (PATTERN (insn
), regno
))
1007 reg_equiv
[regno
].replace
= 1;
1016 /* A second pass, to gather additional equivalences with memory. This needs
1017 to be done after we know which registers we are going to replace. */
1019 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1024 if (! INSN_P (insn
))
1027 set
= single_set (insn
);
1031 dest
= SET_DEST (set
);
1032 src
= SET_SRC (set
);
1034 /* If this sets a MEM to the contents of a REG that is only used
1035 in a single basic block, see if the register is always equivalent
1036 to that memory location and if moving the store from INSN to the
1037 insn that set REG is safe. If so, put a REG_EQUIV note on the
1040 Don't add a REG_EQUIV note if the insn already has one. The existing
1041 REG_EQUIV is likely more useful than the one we are adding.
1043 If one of the regs in the address has reg_equiv[REGNO].replace set,
1044 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
1045 optimization may move the set of this register immediately before
1046 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1047 the mention in the REG_EQUIV note would be to an uninitialized
1050 if (MEM_P (dest
) && REG_P (src
)
1051 && (regno
= REGNO (src
)) >= FIRST_PSEUDO_REGISTER
1052 && REG_BASIC_BLOCK (regno
) >= 0
1053 && REG_N_SETS (regno
) == 1
1054 && reg_equiv
[regno
].init_insns
!= 0
1055 && reg_equiv
[regno
].init_insns
!= const0_rtx
1056 && ! find_reg_note (XEXP (reg_equiv
[regno
].init_insns
, 0),
1057 REG_EQUIV
, NULL_RTX
)
1058 && ! contains_replace_regs (XEXP (dest
, 0)))
1060 rtx init_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
1061 if (validate_equiv_mem (init_insn
, src
, dest
)
1062 && ! memref_used_between_p (dest
, init_insn
, insn
))
1064 REG_NOTES (init_insn
)
1065 = gen_rtx_EXPR_LIST (REG_EQUIV
, copy_rtx (dest
),
1066 REG_NOTES (init_insn
));
1067 /* This insn makes the equivalence, not the one initializing
1069 reg_equiv_init
[regno
]
1070 = gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
1075 /* Now scan all regs killed in an insn to see if any of them are
1076 registers only used that once. If so, see if we can replace the
1077 reference with the equivalent form. If we can, delete the
1078 initializing reference and this register will go away. If we
1079 can't replace the reference, and the initializing reference is
1080 within the same loop (or in an inner loop), then move the register
1081 initialization just before the use, so that they are in the same
1083 FOR_EACH_BB_REVERSE (bb
)
1085 loop_depth
= bb
->loop_depth
;
1086 for (insn
= BB_END (bb
);
1087 insn
!= PREV_INSN (BB_HEAD (bb
));
1088 insn
= PREV_INSN (insn
))
1092 if (! INSN_P (insn
))
1095 /* Don't substitute into a non-local goto, this confuses CFG. */
1097 && find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1100 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1102 if (REG_NOTE_KIND (link
) == REG_DEAD
1103 /* Make sure this insn still refers to the register. */
1104 && reg_mentioned_p (XEXP (link
, 0), PATTERN (insn
)))
1106 int regno
= REGNO (XEXP (link
, 0));
1109 if (! reg_equiv
[regno
].replace
1110 || reg_equiv
[regno
].loop_depth
< loop_depth
)
1113 /* reg_equiv[REGNO].replace gets set only when
1114 REG_N_REFS[REGNO] is 2, i.e. the register is set
1115 once and used once. (If it were only set, but not used,
1116 flow would have deleted the setting insns.) Hence
1117 there can only be one insn in reg_equiv[REGNO].init_insns. */
1118 gcc_assert (reg_equiv
[regno
].init_insns
1119 && !XEXP (reg_equiv
[regno
].init_insns
, 1));
1120 equiv_insn
= XEXP (reg_equiv
[regno
].init_insns
, 0);
1122 /* We may not move instructions that can throw, since
1123 that changes basic block boundaries and we are not
1124 prepared to adjust the CFG to match. */
1125 if (can_throw_internal (equiv_insn
))
1128 if (asm_noperands (PATTERN (equiv_insn
)) < 0
1129 && validate_replace_rtx (regno_reg_rtx
[regno
],
1130 *(reg_equiv
[regno
].src_p
), insn
))
1136 /* Find the last note. */
1137 for (last_link
= link
; XEXP (last_link
, 1);
1138 last_link
= XEXP (last_link
, 1))
1141 /* Append the REG_DEAD notes from equiv_insn. */
1142 equiv_link
= REG_NOTES (equiv_insn
);
1146 equiv_link
= XEXP (equiv_link
, 1);
1147 if (REG_NOTE_KIND (note
) == REG_DEAD
)
1149 remove_note (equiv_insn
, note
);
1150 XEXP (last_link
, 1) = note
;
1151 XEXP (note
, 1) = NULL_RTX
;
1156 remove_death (regno
, insn
);
1157 REG_N_REFS (regno
) = 0;
1158 REG_FREQ (regno
) = 0;
1159 delete_insn (equiv_insn
);
1161 reg_equiv
[regno
].init_insns
1162 = XEXP (reg_equiv
[regno
].init_insns
, 1);
1164 /* Remember to clear REGNO from all basic block's live
1166 SET_REGNO_REG_SET (&cleared_regs
, regno
);
1168 reg_equiv_init
[regno
] = NULL_RTX
;
1170 /* Move the initialization of the register to just before
1171 INSN. Update the flow information. */
1172 else if (PREV_INSN (insn
) != equiv_insn
)
1176 new_insn
= emit_insn_before (PATTERN (equiv_insn
), insn
);
1177 REG_NOTES (new_insn
) = REG_NOTES (equiv_insn
);
1178 REG_NOTES (equiv_insn
) = 0;
1180 /* Make sure this insn is recognized before
1181 reload begins, otherwise
1182 eliminate_regs_in_insn will die. */
1183 INSN_CODE (new_insn
) = INSN_CODE (equiv_insn
);
1185 delete_insn (equiv_insn
);
1187 XEXP (reg_equiv
[regno
].init_insns
, 0) = new_insn
;
1189 REG_BASIC_BLOCK (regno
) = bb
->index
;
1190 REG_N_CALLS_CROSSED (regno
) = 0;
1191 REG_N_THROWING_CALLS_CROSSED (regno
) = 0;
1192 REG_LIVE_LENGTH (regno
) = 2;
1194 if (insn
== BB_HEAD (bb
))
1195 BB_HEAD (bb
) = PREV_INSN (insn
);
1197 /* Remember to clear REGNO from all basic block's live
1199 SET_REGNO_REG_SET (&cleared_regs
, regno
);
1201 reg_equiv_init
[regno
]
1202 = gen_rtx_INSN_LIST (VOIDmode
, new_insn
, NULL_RTX
);
1209 /* Clear all dead REGNOs from all basic block's live info. */
1214 if (clear_regnos
> 8)
1218 AND_COMPL_REG_SET (bb
->il
.rtl
->global_live_at_start
,
1220 AND_COMPL_REG_SET (bb
->il
.rtl
->global_live_at_end
,
1226 reg_set_iterator rsi
;
1227 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs
, 0, j
, rsi
)
1231 CLEAR_REGNO_REG_SET (bb
->il
.rtl
->global_live_at_start
, j
);
1232 CLEAR_REGNO_REG_SET (bb
->il
.rtl
->global_live_at_end
, j
);
1240 end_alias_analysis ();
1241 CLEAR_REG_SET (&cleared_regs
);
1245 /* Mark REG as having no known equivalence.
1246 Some instructions might have been processed before and furnished
1247 with REG_EQUIV notes for this register; these notes will have to be
1249 STORE is the piece of RTL that does the non-constant / conflicting
1250 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1251 but needs to be there because this function is called from note_stores. */
1253 no_equiv (rtx reg
, rtx store ATTRIBUTE_UNUSED
, void *data ATTRIBUTE_UNUSED
)
1260 regno
= REGNO (reg
);
1261 list
= reg_equiv
[regno
].init_insns
;
1262 if (list
== const0_rtx
)
1264 reg_equiv
[regno
].init_insns
= const0_rtx
;
1265 reg_equiv
[regno
].replacement
= NULL_RTX
;
1266 /* This doesn't matter for equivalences made for argument registers, we
1267 should keep their initialization insns. */
1268 if (reg_equiv
[regno
].is_arg_equivalence
)
1270 reg_equiv_init
[regno
] = NULL_RTX
;
1271 for (; list
; list
= XEXP (list
, 1))
1273 rtx insn
= XEXP (list
, 0);
1274 remove_note (insn
, find_reg_note (insn
, REG_EQUIV
, NULL_RTX
));
1278 /* Allocate hard regs to the pseudo regs used only within block number B.
1279 Only the pseudos that die but once can be handled. */
1287 int insn_number
= 0;
1289 int max_uid
= get_max_uid ();
1291 int no_conflict_combined_regno
= -1;
1293 /* Count the instructions in the basic block. */
1295 insn
= BB_END (BASIC_BLOCK (b
));
1301 gcc_assert (insn_count
<= max_uid
);
1303 if (insn
== BB_HEAD (BASIC_BLOCK (b
)))
1305 insn
= PREV_INSN (insn
);
1308 /* +2 to leave room for a post_mark_life at the last insn and for
1309 the birth of a CLOBBER in the first insn. */
1310 regs_live_at
= XCNEWVEC (HARD_REG_SET
, 2 * insn_count
+ 2);
1312 /* Initialize table of hardware registers currently live. */
1314 REG_SET_TO_HARD_REG_SET (regs_live
,
1315 BASIC_BLOCK (b
)->il
.rtl
->global_live_at_start
);
1317 /* This loop scans the instructions of the basic block
1318 and assigns quantities to registers.
1319 It computes which registers to tie. */
1321 insn
= BB_HEAD (BASIC_BLOCK (b
));
1331 rtx r0
, r1
= NULL_RTX
;
1332 int combined_regno
= -1;
1335 this_insn_number
= insn_number
;
1338 extract_insn (insn
);
1339 which_alternative
= -1;
1341 /* Is this insn suitable for tying two registers?
1342 If so, try doing that.
1343 Suitable insns are those with at least two operands and where
1344 operand 0 is an output that is a register that is not
1347 We can tie operand 0 with some operand that dies in this insn.
1348 First look for operands that are required to be in the same
1349 register as operand 0. If we find such, only try tying that
1350 operand or one that can be put into that operand if the
1351 operation is commutative. If we don't find an operand
1352 that is required to be in the same register as operand 0,
1353 we can tie with any operand.
1355 Subregs in place of regs are also ok.
1357 If tying is done, WIN is set nonzero. */
1360 && recog_data
.n_operands
> 1
1361 && recog_data
.constraints
[0][0] == '='
1362 && recog_data
.constraints
[0][1] != '&')
1364 /* If non-negative, is an operand that must match operand 0. */
1365 int must_match_0
= -1;
1366 /* Counts number of alternatives that require a match with
1368 int n_matching_alts
= 0;
1370 for (i
= 1; i
< recog_data
.n_operands
; i
++)
1372 const char *p
= recog_data
.constraints
[i
];
1373 int this_match
= requires_inout (p
);
1375 n_matching_alts
+= this_match
;
1376 if (this_match
== recog_data
.n_alternatives
)
1380 r0
= recog_data
.operand
[0];
1381 for (i
= 1; i
< recog_data
.n_operands
; i
++)
1383 /* Skip this operand if we found an operand that
1384 must match operand 0 and this operand isn't it
1385 and can't be made to be it by commutativity. */
1387 if (must_match_0
>= 0 && i
!= must_match_0
1388 && ! (i
== must_match_0
+ 1
1389 && recog_data
.constraints
[i
-1][0] == '%')
1390 && ! (i
== must_match_0
- 1
1391 && recog_data
.constraints
[i
][0] == '%'))
1394 /* Likewise if each alternative has some operand that
1395 must match operand zero. In that case, skip any
1396 operand that doesn't list operand 0 since we know that
1397 the operand always conflicts with operand 0. We
1398 ignore commutativity in this case to keep things simple. */
1399 if (n_matching_alts
== recog_data
.n_alternatives
1400 && 0 == requires_inout (recog_data
.constraints
[i
]))
1403 r1
= recog_data
.operand
[i
];
1405 /* If the operand is an address, find a register in it.
1406 There may be more than one register, but we only try one
1408 if (recog_data
.constraints
[i
][0] == 'p'
1409 || EXTRA_ADDRESS_CONSTRAINT (recog_data
.constraints
[i
][0],
1410 recog_data
.constraints
[i
]))
1411 while (GET_CODE (r1
) == PLUS
|| GET_CODE (r1
) == MULT
)
1414 /* Avoid making a call-saved register unnecessarily
1416 hard_reg
= get_hard_reg_initial_reg (cfun
, r1
);
1417 if (hard_reg
!= NULL_RTX
)
1419 if (REG_P (hard_reg
)
1420 && REGNO (hard_reg
) < FIRST_PSEUDO_REGISTER
1421 && !call_used_regs
[REGNO (hard_reg
)])
1425 if (REG_P (r0
) || GET_CODE (r0
) == SUBREG
)
1427 /* We have two priorities for hard register preferences.
1428 If we have a move insn or an insn whose first input
1429 can only be in the same register as the output, give
1430 priority to an equivalence found from that insn. */
1432 = (r1
== recog_data
.operand
[i
] && must_match_0
>= 0);
1434 if (REG_P (r1
) || GET_CODE (r1
) == SUBREG
)
1435 win
= combine_regs (r1
, r0
, may_save_copy
,
1436 insn_number
, insn
, 0);
1443 /* Recognize an insn sequence with an ultimate result
1444 which can safely overlap one of the inputs.
1445 The sequence begins with a CLOBBER of its result,
1446 and ends with an insn that copies the result to itself
1447 and has a REG_EQUAL note for an equivalent formula.
1448 That note indicates what the inputs are.
1449 The result and the input can overlap if each insn in
1450 the sequence either doesn't mention the input
1451 or has a REG_NO_CONFLICT note to inhibit the conflict.
1453 We do the combining test at the CLOBBER so that the
1454 destination register won't have had a quantity number
1455 assigned, since that would prevent combining. */
1458 && GET_CODE (PATTERN (insn
)) == CLOBBER
1459 && (r0
= XEXP (PATTERN (insn
), 0),
1461 && (link
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)) != 0
1462 && XEXP (link
, 0) != 0
1463 && NONJUMP_INSN_P (XEXP (link
, 0))
1464 && (set
= single_set (XEXP (link
, 0))) != 0
1465 && SET_DEST (set
) == r0
&& SET_SRC (set
) == r0
1466 && (note
= find_reg_note (XEXP (link
, 0), REG_EQUAL
,
1469 if (r1
= XEXP (note
, 0), REG_P (r1
)
1470 /* Check that we have such a sequence. */
1471 && no_conflict_p (insn
, r0
, r1
))
1472 win
= combine_regs (r1
, r0
, 1, insn_number
, insn
, 1);
1473 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note
, 0)))[0] == 'e'
1474 && (r1
= XEXP (XEXP (note
, 0), 0),
1475 REG_P (r1
) || GET_CODE (r1
) == SUBREG
)
1476 && no_conflict_p (insn
, r0
, r1
))
1477 win
= combine_regs (r1
, r0
, 0, insn_number
, insn
, 1);
1479 /* Here we care if the operation to be computed is
1481 else if (COMMUTATIVE_P (XEXP (note
, 0))
1482 && (r1
= XEXP (XEXP (note
, 0), 1),
1483 (REG_P (r1
) || GET_CODE (r1
) == SUBREG
))
1484 && no_conflict_p (insn
, r0
, r1
))
1485 win
= combine_regs (r1
, r0
, 0, insn_number
, insn
, 1);
1487 /* If we did combine something, show the register number
1488 in question so that we know to ignore its death. */
1490 no_conflict_combined_regno
= REGNO (r1
);
1493 /* If registers were just tied, set COMBINED_REGNO
1494 to the number of the register used in this insn
1495 that was tied to the register set in this insn.
1496 This register's qty should not be "killed". */
1500 while (GET_CODE (r1
) == SUBREG
)
1501 r1
= SUBREG_REG (r1
);
1502 combined_regno
= REGNO (r1
);
1505 /* Mark the death of everything that dies in this instruction,
1506 except for anything that was just combined. */
1508 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1509 if (REG_NOTE_KIND (link
) == REG_DEAD
1510 && REG_P (XEXP (link
, 0))
1511 && combined_regno
!= (int) REGNO (XEXP (link
, 0))
1512 && (no_conflict_combined_regno
!= (int) REGNO (XEXP (link
, 0))
1513 || ! find_reg_note (insn
, REG_NO_CONFLICT
,
1515 wipe_dead_reg (XEXP (link
, 0), 0);
1517 /* Allocate qty numbers for all registers local to this block
1518 that are born (set) in this instruction.
1519 A pseudo that already has a qty is not changed. */
1521 note_stores (PATTERN (insn
), reg_is_set
, NULL
);
1523 /* If anything is set in this insn and then unused, mark it as dying
1524 after this insn, so it will conflict with our outputs. This
1525 can't match with something that combined, and it doesn't matter
1526 if it did. Do this after the calls to reg_is_set since these
1527 die after, not during, the current insn. */
1529 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1530 if (REG_NOTE_KIND (link
) == REG_UNUSED
1531 && REG_P (XEXP (link
, 0)))
1532 wipe_dead_reg (XEXP (link
, 0), 1);
1534 /* If this is an insn that has a REG_RETVAL note pointing at a
1535 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1536 block, so clear any register number that combined within it. */
1537 if ((note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)) != 0
1538 && NONJUMP_INSN_P (XEXP (note
, 0))
1539 && GET_CODE (PATTERN (XEXP (note
, 0))) == CLOBBER
)
1540 no_conflict_combined_regno
= -1;
1543 /* Set the registers live after INSN_NUMBER. Note that we never
1544 record the registers live before the block's first insn, since no
1545 pseudos we care about are live before that insn. */
1547 IOR_HARD_REG_SET (regs_live_at
[2 * insn_number
], regs_live
);
1548 IOR_HARD_REG_SET (regs_live_at
[2 * insn_number
+ 1], regs_live
);
1550 if (insn
== BB_END (BASIC_BLOCK (b
)))
1553 insn
= NEXT_INSN (insn
);
1556 /* Now every register that is local to this basic block
1557 should have been given a quantity, or else -1 meaning ignore it.
1558 Every quantity should have a known birth and death.
1560 Order the qtys so we assign them registers in order of the
1561 number of suggested registers they need so we allocate those with
1562 the most restrictive needs first. */
1564 qty_order
= XNEWVEC (int, next_qty
);
1565 for (i
= 0; i
< next_qty
; i
++)
1568 #define EXCHANGE(I1, I2) \
1569 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1574 /* Make qty_order[2] be the one to allocate last. */
1575 if (qty_sugg_compare (0, 1) > 0)
1577 if (qty_sugg_compare (1, 2) > 0)
1580 /* ... Fall through ... */
1582 /* Put the best one to allocate in qty_order[0]. */
1583 if (qty_sugg_compare (0, 1) > 0)
1586 /* ... Fall through ... */
1590 /* Nothing to do here. */
1594 qsort (qty_order
, next_qty
, sizeof (int), qty_sugg_compare_1
);
1597 /* Try to put each quantity in a suggested physical register, if it has one.
1598 This may cause registers to be allocated that otherwise wouldn't be, but
1599 this seems acceptable in local allocation (unlike global allocation). */
1600 for (i
= 0; i
< next_qty
; i
++)
1603 if (qty_phys_num_sugg
[q
] != 0 || qty_phys_num_copy_sugg
[q
] != 0)
1604 qty
[q
].phys_reg
= find_free_reg (qty
[q
].min_class
, qty
[q
].mode
, q
,
1605 0, 1, qty
[q
].birth
, qty
[q
].death
);
1607 qty
[q
].phys_reg
= -1;
1610 /* Order the qtys so we assign them registers in order of
1611 decreasing length of life. Normally call qsort, but if we
1612 have only a very small number of quantities, sort them ourselves. */
1614 for (i
= 0; i
< next_qty
; i
++)
1617 #define EXCHANGE(I1, I2) \
1618 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1623 /* Make qty_order[2] be the one to allocate last. */
1624 if (qty_compare (0, 1) > 0)
1626 if (qty_compare (1, 2) > 0)
1629 /* ... Fall through ... */
1631 /* Put the best one to allocate in qty_order[0]. */
1632 if (qty_compare (0, 1) > 0)
1635 /* ... Fall through ... */
1639 /* Nothing to do here. */
1643 qsort (qty_order
, next_qty
, sizeof (int), qty_compare_1
);
1646 /* Now for each qty that is not a hardware register,
1647 look for a hardware register to put it in.
1648 First try the register class that is cheapest for this qty,
1649 if there is more than one class. */
1651 for (i
= 0; i
< next_qty
; i
++)
1654 if (qty
[q
].phys_reg
< 0)
1656 #ifdef INSN_SCHEDULING
1657 /* These values represent the adjusted lifetime of a qty so
1658 that it conflicts with qtys which appear near the start/end
1659 of this qty's lifetime.
1661 The purpose behind extending the lifetime of this qty is to
1662 discourage the register allocator from creating false
1665 The adjustment value is chosen to indicate that this qty
1666 conflicts with all the qtys in the instructions immediately
1667 before and after the lifetime of this qty.
1669 Experiments have shown that higher values tend to hurt
1670 overall code performance.
1672 If allocation using the extended lifetime fails we will try
1673 again with the qty's unadjusted lifetime. */
1674 int fake_birth
= MAX (0, qty
[q
].birth
- 2 + qty
[q
].birth
% 2);
1675 int fake_death
= MIN (insn_number
* 2 + 1,
1676 qty
[q
].death
+ 2 - qty
[q
].death
% 2);
1679 if (N_REG_CLASSES
> 1)
1681 #ifdef INSN_SCHEDULING
1682 /* We try to avoid using hard registers allocated to qtys which
1683 are born immediately after this qty or die immediately before
1686 This optimization is only appropriate when we will run
1687 a scheduling pass after reload and we are not optimizing
1689 if (flag_schedule_insns_after_reload
1691 && !SMALL_REGISTER_CLASSES
)
1693 qty
[q
].phys_reg
= find_free_reg (qty
[q
].min_class
,
1694 qty
[q
].mode
, q
, 0, 0,
1695 fake_birth
, fake_death
);
1696 if (qty
[q
].phys_reg
>= 0)
1700 qty
[q
].phys_reg
= find_free_reg (qty
[q
].min_class
,
1701 qty
[q
].mode
, q
, 0, 0,
1702 qty
[q
].birth
, qty
[q
].death
);
1703 if (qty
[q
].phys_reg
>= 0)
1707 #ifdef INSN_SCHEDULING
1708 /* Similarly, avoid false dependencies. */
1709 if (flag_schedule_insns_after_reload
1711 && !SMALL_REGISTER_CLASSES
1712 && qty
[q
].alternate_class
!= NO_REGS
)
1713 qty
[q
].phys_reg
= find_free_reg (qty
[q
].alternate_class
,
1714 qty
[q
].mode
, q
, 0, 0,
1715 fake_birth
, fake_death
);
1717 if (qty
[q
].alternate_class
!= NO_REGS
)
1718 qty
[q
].phys_reg
= find_free_reg (qty
[q
].alternate_class
,
1719 qty
[q
].mode
, q
, 0, 0,
1720 qty
[q
].birth
, qty
[q
].death
);
1724 /* Now propagate the register assignments
1725 to the pseudo regs belonging to the qtys. */
1727 for (q
= 0; q
< next_qty
; q
++)
1728 if (qty
[q
].phys_reg
>= 0)
1730 for (i
= qty
[q
].first_reg
; i
>= 0; i
= reg_next_in_qty
[i
])
1731 reg_renumber
[i
] = qty
[q
].phys_reg
+ reg_offset
[i
];
1735 free (regs_live_at
);
1739 /* Compare two quantities' priority for getting real registers.
1740 We give shorter-lived quantities higher priority.
1741 Quantities with more references are also preferred, as are quantities that
1742 require multiple registers. This is the identical prioritization as
1743 done by global-alloc.
1745 We used to give preference to registers with *longer* lives, but using
1746 the same algorithm in both local- and global-alloc can speed up execution
1747 of some programs by as much as a factor of three! */
1749 /* Note that the quotient will never be bigger than
1750 the value of floor_log2 times the maximum number of
1751 times a register can occur in one insn (surely less than 100)
1752 weighted by frequency (max REG_FREQ_MAX).
1753 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1754 QTY_CMP_PRI is also used by qty_sugg_compare. */
1756 #define QTY_CMP_PRI(q) \
1757 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1758 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1761 qty_compare (int q1
, int q2
)
1763 return QTY_CMP_PRI (q2
) - QTY_CMP_PRI (q1
);
1767 qty_compare_1 (const void *q1p
, const void *q2p
)
1769 int q1
= *(const int *) q1p
, q2
= *(const int *) q2p
;
1770 int tem
= QTY_CMP_PRI (q2
) - QTY_CMP_PRI (q1
);
1775 /* If qtys are equally good, sort by qty number,
1776 so that the results of qsort leave nothing to chance. */
1780 /* Compare two quantities' priority for getting real registers. This version
1781 is called for quantities that have suggested hard registers. First priority
1782 goes to quantities that have copy preferences, then to those that have
1783 normal preferences. Within those groups, quantities with the lower
1784 number of preferences have the highest priority. Of those, we use the same
1785 algorithm as above. */
1787 #define QTY_CMP_SUGG(q) \
1788 (qty_phys_num_copy_sugg[q] \
1789 ? qty_phys_num_copy_sugg[q] \
1790 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1793 qty_sugg_compare (int q1
, int q2
)
1795 int tem
= QTY_CMP_SUGG (q1
) - QTY_CMP_SUGG (q2
);
1800 return QTY_CMP_PRI (q2
) - QTY_CMP_PRI (q1
);
1804 qty_sugg_compare_1 (const void *q1p
, const void *q2p
)
1806 int q1
= *(const int *) q1p
, q2
= *(const int *) q2p
;
1807 int tem
= QTY_CMP_SUGG (q1
) - QTY_CMP_SUGG (q2
);
1812 tem
= QTY_CMP_PRI (q2
) - QTY_CMP_PRI (q1
);
1816 /* If qtys are equally good, sort by qty number,
1817 so that the results of qsort leave nothing to chance. */
1824 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1825 Returns 1 if have done so, or 0 if cannot.
1827 Combining registers means marking them as having the same quantity
1828 and adjusting the offsets within the quantity if either of
1831 We don't actually combine a hard reg with a pseudo; instead
1832 we just record the hard reg as the suggestion for the pseudo's quantity.
1833 If we really combined them, we could lose if the pseudo lives
1834 across an insn that clobbers the hard reg (eg, movmem).
1836 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1837 there is no REG_DEAD note on INSN. This occurs during the processing
1838 of REG_NO_CONFLICT blocks.
1840 MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1841 SETREG or if the input and output must share a register.
1842 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1844 There are elaborate checks for the validity of combining. */
1847 combine_regs (rtx usedreg
, rtx setreg
, int may_save_copy
, int insn_number
,
1848 rtx insn
, int already_dead
)
1855 /* Determine the numbers and sizes of registers being used. If a subreg
1856 is present that does not change the entire register, don't consider
1857 this a copy insn. */
1859 while (GET_CODE (usedreg
) == SUBREG
)
1861 rtx subreg
= SUBREG_REG (usedreg
);
1865 if (GET_MODE_SIZE (GET_MODE (subreg
)) > UNITS_PER_WORD
)
1868 if (REGNO (subreg
) < FIRST_PSEUDO_REGISTER
)
1869 offset
+= subreg_regno_offset (REGNO (subreg
),
1871 SUBREG_BYTE (usedreg
),
1872 GET_MODE (usedreg
));
1874 offset
+= (SUBREG_BYTE (usedreg
)
1875 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg
)));
1881 if (!REG_P (usedreg
))
1884 ureg
= REGNO (usedreg
);
1885 if (ureg
< FIRST_PSEUDO_REGISTER
)
1886 usize
= hard_regno_nregs
[ureg
][GET_MODE (usedreg
)];
1888 usize
= ((GET_MODE_SIZE (GET_MODE (usedreg
))
1889 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg
)) - 1))
1890 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg
)));
1892 while (GET_CODE (setreg
) == SUBREG
)
1894 rtx subreg
= SUBREG_REG (setreg
);
1898 if (GET_MODE_SIZE (GET_MODE (subreg
)) > UNITS_PER_WORD
)
1901 if (REGNO (subreg
) < FIRST_PSEUDO_REGISTER
)
1902 offset
-= subreg_regno_offset (REGNO (subreg
),
1904 SUBREG_BYTE (setreg
),
1907 offset
-= (SUBREG_BYTE (setreg
)
1908 / REGMODE_NATURAL_SIZE (GET_MODE (setreg
)));
1914 if (!REG_P (setreg
))
1917 sreg
= REGNO (setreg
);
1918 if (sreg
< FIRST_PSEUDO_REGISTER
)
1919 ssize
= hard_regno_nregs
[sreg
][GET_MODE (setreg
)];
1921 ssize
= ((GET_MODE_SIZE (GET_MODE (setreg
))
1922 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg
)) - 1))
1923 / REGMODE_NATURAL_SIZE (GET_MODE (setreg
)));
1925 /* If UREG is a pseudo-register that hasn't already been assigned a
1926 quantity number, it means that it is not local to this block or dies
1927 more than once. In either event, we can't do anything with it. */
1928 if ((ureg
>= FIRST_PSEUDO_REGISTER
&& reg_qty
[ureg
] < 0)
1929 /* Do not combine registers unless one fits within the other. */
1930 || (offset
> 0 && usize
+ offset
> ssize
)
1931 || (offset
< 0 && usize
+ offset
< ssize
)
1932 /* Do not combine with a smaller already-assigned object
1933 if that smaller object is already combined with something bigger. */
1934 || (ssize
> usize
&& ureg
>= FIRST_PSEUDO_REGISTER
1935 && usize
< qty
[reg_qty
[ureg
]].size
)
1936 /* Can't combine if SREG is not a register we can allocate. */
1937 || (sreg
>= FIRST_PSEUDO_REGISTER
&& reg_qty
[sreg
] == -1)
1938 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1939 These have already been taken care of. This probably wouldn't
1940 combine anyway, but don't take any chances. */
1941 || (ureg
>= FIRST_PSEUDO_REGISTER
1942 && find_reg_note (insn
, REG_NO_CONFLICT
, usedreg
))
1943 /* Don't tie something to itself. In most cases it would make no
1944 difference, but it would screw up if the reg being tied to itself
1945 also dies in this insn. */
1947 /* Don't try to connect two different hardware registers. */
1948 || (ureg
< FIRST_PSEUDO_REGISTER
&& sreg
< FIRST_PSEUDO_REGISTER
)
1949 /* Don't connect two different machine modes if they have different
1950 implications as to which registers may be used. */
1951 || !MODES_TIEABLE_P (GET_MODE (usedreg
), GET_MODE (setreg
)))
1954 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1955 qty_phys_sugg for the pseudo instead of tying them.
1957 Return "failure" so that the lifespan of UREG is terminated here;
1958 that way the two lifespans will be disjoint and nothing will prevent
1959 the pseudo reg from being given this hard reg. */
1961 if (ureg
< FIRST_PSEUDO_REGISTER
)
1963 /* Allocate a quantity number so we have a place to put our
1965 if (reg_qty
[sreg
] == -2)
1966 reg_is_born (setreg
, 2 * insn_number
);
1968 if (reg_qty
[sreg
] >= 0)
1971 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[sreg
]], ureg
))
1973 SET_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[sreg
]], ureg
);
1974 qty_phys_num_copy_sugg
[reg_qty
[sreg
]]++;
1976 else if (! TEST_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[sreg
]], ureg
))
1978 SET_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[sreg
]], ureg
);
1979 qty_phys_num_sugg
[reg_qty
[sreg
]]++;
1985 /* Similarly for SREG a hard register and UREG a pseudo register. */
1987 if (sreg
< FIRST_PSEUDO_REGISTER
)
1990 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[ureg
]], sreg
))
1992 SET_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[ureg
]], sreg
);
1993 qty_phys_num_copy_sugg
[reg_qty
[ureg
]]++;
1995 else if (! TEST_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[ureg
]], sreg
))
1997 SET_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[ureg
]], sreg
);
1998 qty_phys_num_sugg
[reg_qty
[ureg
]]++;
2003 /* At this point we know that SREG and UREG are both pseudos.
2004 Do nothing if SREG already has a quantity or is a register that we
2006 if (reg_qty
[sreg
] >= -1
2007 /* If we are not going to let any regs live across calls,
2008 don't tie a call-crossing reg to a non-call-crossing reg. */
2009 || (current_function_has_nonlocal_label
2010 && ((REG_N_CALLS_CROSSED (ureg
) > 0)
2011 != (REG_N_CALLS_CROSSED (sreg
) > 0))))
2014 /* We don't already know about SREG, so tie it to UREG
2015 if this is the last use of UREG, provided the classes they want
2018 if ((already_dead
|| find_regno_note (insn
, REG_DEAD
, ureg
))
2019 && reg_meets_class_p (sreg
, qty
[reg_qty
[ureg
]].min_class
))
2021 /* Add SREG to UREG's quantity. */
2022 sqty
= reg_qty
[ureg
];
2023 reg_qty
[sreg
] = sqty
;
2024 reg_offset
[sreg
] = reg_offset
[ureg
] + offset
;
2025 reg_next_in_qty
[sreg
] = qty
[sqty
].first_reg
;
2026 qty
[sqty
].first_reg
= sreg
;
2028 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
2029 update_qty_class (sqty
, sreg
);
2031 /* Update info about quantity SQTY. */
2032 qty
[sqty
].n_calls_crossed
+= REG_N_CALLS_CROSSED (sreg
);
2033 qty
[sqty
].n_throwing_calls_crossed
2034 += REG_N_THROWING_CALLS_CROSSED (sreg
);
2035 qty
[sqty
].n_refs
+= REG_N_REFS (sreg
);
2036 qty
[sqty
].freq
+= REG_FREQ (sreg
);
2041 for (i
= qty
[sqty
].first_reg
; i
>= 0; i
= reg_next_in_qty
[i
])
2042 reg_offset
[i
] -= offset
;
2044 qty
[sqty
].size
= ssize
;
2045 qty
[sqty
].mode
= GET_MODE (setreg
);
2054 /* Return 1 if the preferred class of REG allows it to be tied
2055 to a quantity or register whose class is CLASS.
2056 True if REG's reg class either contains or is contained in CLASS. */
2059 reg_meets_class_p (int reg
, enum reg_class
class)
2061 enum reg_class rclass
= reg_preferred_class (reg
);
2062 return (reg_class_subset_p (rclass
, class)
2063 || reg_class_subset_p (class, rclass
));
2066 /* Update the class of QTYNO assuming that REG is being tied to it. */
2069 update_qty_class (int qtyno
, int reg
)
2071 enum reg_class rclass
= reg_preferred_class (reg
);
2072 if (reg_class_subset_p (rclass
, qty
[qtyno
].min_class
))
2073 qty
[qtyno
].min_class
= rclass
;
2075 rclass
= reg_alternate_class (reg
);
2076 if (reg_class_subset_p (rclass
, qty
[qtyno
].alternate_class
))
2077 qty
[qtyno
].alternate_class
= rclass
;
2080 /* Handle something which alters the value of an rtx REG.
2082 REG is whatever is set or clobbered. SETTER is the rtx that
2083 is modifying the register.
2085 If it is not really a register, we do nothing.
2086 The file-global variables `this_insn' and `this_insn_number'
2087 carry info from `block_alloc'. */
2090 reg_is_set (rtx reg
, rtx setter
, void *data ATTRIBUTE_UNUSED
)
2092 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2093 a hard register. These may actually not exist any more. */
2095 if (GET_CODE (reg
) != SUBREG
2099 /* Mark this register as being born. If it is used in a CLOBBER, mark
2100 it as being born halfway between the previous insn and this insn so that
2101 it conflicts with our inputs but not the outputs of the previous insn. */
2103 reg_is_born (reg
, 2 * this_insn_number
- (GET_CODE (setter
) == CLOBBER
));
2106 /* Handle beginning of the life of register REG.
2107 BIRTH is the index at which this is happening. */
2110 reg_is_born (rtx reg
, int birth
)
2114 if (GET_CODE (reg
) == SUBREG
)
2116 regno
= REGNO (SUBREG_REG (reg
));
2117 if (regno
< FIRST_PSEUDO_REGISTER
)
2118 regno
= subreg_regno (reg
);
2121 regno
= REGNO (reg
);
2123 if (regno
< FIRST_PSEUDO_REGISTER
)
2125 mark_life (regno
, GET_MODE (reg
), 1);
2127 /* If the register was to have been born earlier that the present
2128 insn, mark it as live where it is actually born. */
2129 if (birth
< 2 * this_insn_number
)
2130 post_mark_life (regno
, GET_MODE (reg
), 1, birth
, 2 * this_insn_number
);
2134 if (reg_qty
[regno
] == -2)
2135 alloc_qty (regno
, GET_MODE (reg
), PSEUDO_REGNO_SIZE (regno
), birth
);
2137 /* If this register has a quantity number, show that it isn't dead. */
2138 if (reg_qty
[regno
] >= 0)
2139 qty
[reg_qty
[regno
]].death
= -1;
2143 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2144 REG is an output that is dying (i.e., it is never used), otherwise it
2145 is an input (the normal case).
2146 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2149 wipe_dead_reg (rtx reg
, int output_p
)
2151 int regno
= REGNO (reg
);
2153 /* If this insn has multiple results,
2154 and the dead reg is used in one of the results,
2155 extend its life to after this insn,
2156 so it won't get allocated together with any other result of this insn.
2158 It is unsafe to use !single_set here since it will ignore an unused
2159 output. Just because an output is unused does not mean the compiler
2160 can assume the side effect will not occur. Consider if REG appears
2161 in the address of an output and we reload the output. If we allocate
2162 REG to the same hard register as an unused output we could set the hard
2163 register before the output reload insn. */
2164 if (GET_CODE (PATTERN (this_insn
)) == PARALLEL
2165 && multiple_sets (this_insn
))
2168 for (i
= XVECLEN (PATTERN (this_insn
), 0) - 1; i
>= 0; i
--)
2170 rtx set
= XVECEXP (PATTERN (this_insn
), 0, i
);
2171 if (GET_CODE (set
) == SET
2172 && !REG_P (SET_DEST (set
))
2173 && !rtx_equal_p (reg
, SET_DEST (set
))
2174 && reg_overlap_mentioned_p (reg
, SET_DEST (set
)))
2179 /* If this register is used in an auto-increment address, then extend its
2180 life to after this insn, so that it won't get allocated together with
2181 the result of this insn. */
2182 if (! output_p
&& find_regno_note (this_insn
, REG_INC
, regno
))
2185 if (regno
< FIRST_PSEUDO_REGISTER
)
2187 mark_life (regno
, GET_MODE (reg
), 0);
2189 /* If a hard register is dying as an output, mark it as in use at
2190 the beginning of this insn (the above statement would cause this
2193 post_mark_life (regno
, GET_MODE (reg
), 1,
2194 2 * this_insn_number
, 2 * this_insn_number
+ 1);
2197 else if (reg_qty
[regno
] >= 0)
2198 qty
[reg_qty
[regno
]].death
= 2 * this_insn_number
+ output_p
;
2201 /* Find a block of SIZE words of hard regs in reg_class CLASS
2202 that can hold something of machine-mode MODE
2203 (but actually we test only the first of the block for holding MODE)
2204 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2205 and return the number of the first of them.
2206 Return -1 if such a block cannot be found.
2207 If QTYNO crosses calls, insist on a register preserved by calls,
2208 unless ACCEPT_CALL_CLOBBERED is nonzero.
2210 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2211 register is available. If not, return -1. */
2214 find_free_reg (enum reg_class
class, enum machine_mode mode
, int qtyno
,
2215 int accept_call_clobbered
, int just_try_suggested
,
2216 int born_index
, int dead_index
)
2219 HARD_REG_SET first_used
, used
;
2220 #ifdef ELIMINABLE_REGS
2221 static const struct {const int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
2224 /* Validate our parameters. */
2225 gcc_assert (born_index
>= 0 && born_index
<= dead_index
);
2227 /* Don't let a pseudo live in a reg across a function call
2228 if we might get a nonlocal goto. */
2229 if (current_function_has_nonlocal_label
2230 && qty
[qtyno
].n_calls_crossed
> 0)
2233 if (accept_call_clobbered
)
2234 COPY_HARD_REG_SET (used
, call_fixed_reg_set
);
2235 else if (qty
[qtyno
].n_calls_crossed
== 0)
2236 COPY_HARD_REG_SET (used
, fixed_reg_set
);
2238 COPY_HARD_REG_SET (used
, call_used_reg_set
);
2240 if (accept_call_clobbered
)
2241 IOR_HARD_REG_SET (used
, losing_caller_save_reg_set
);
2243 for (ins
= born_index
; ins
< dead_index
; ins
++)
2244 IOR_HARD_REG_SET (used
, regs_live_at
[ins
]);
2246 IOR_COMPL_HARD_REG_SET (used
, reg_class_contents
[(int) class]);
2248 /* Don't use the frame pointer reg in local-alloc even if
2249 we may omit the frame pointer, because if we do that and then we
2250 need a frame pointer, reload won't know how to move the pseudo
2251 to another hard reg. It can move only regs made by global-alloc.
2253 This is true of any register that can be eliminated. */
2254 #ifdef ELIMINABLE_REGS
2255 for (i
= 0; i
< (int) ARRAY_SIZE (eliminables
); i
++)
2256 SET_HARD_REG_BIT (used
, eliminables
[i
].from
);
2257 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2258 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2259 that it might be eliminated into. */
2260 SET_HARD_REG_BIT (used
, HARD_FRAME_POINTER_REGNUM
);
2263 SET_HARD_REG_BIT (used
, FRAME_POINTER_REGNUM
);
2266 #ifdef CANNOT_CHANGE_MODE_CLASS
2267 cannot_change_mode_set_regs (&used
, mode
, qty
[qtyno
].first_reg
);
2270 /* Normally, the registers that can be used for the first register in
2271 a multi-register quantity are the same as those that can be used for
2272 subsequent registers. However, if just trying suggested registers,
2273 restrict our consideration to them. If there are copy-suggested
2274 register, try them. Otherwise, try the arithmetic-suggested
2276 COPY_HARD_REG_SET (first_used
, used
);
2278 if (just_try_suggested
)
2280 if (qty_phys_num_copy_sugg
[qtyno
] != 0)
2281 IOR_COMPL_HARD_REG_SET (first_used
, qty_phys_copy_sugg
[qtyno
]);
2283 IOR_COMPL_HARD_REG_SET (first_used
, qty_phys_sugg
[qtyno
]);
2286 /* If all registers are excluded, we can't do anything. */
2287 GO_IF_HARD_REG_SUBSET (reg_class_contents
[(int) ALL_REGS
], first_used
, fail
);
2289 /* If at least one would be suitable, test each hard reg. */
2291 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2293 #ifdef REG_ALLOC_ORDER
2294 int regno
= reg_alloc_order
[i
];
2298 if (! TEST_HARD_REG_BIT (first_used
, regno
)
2299 && HARD_REGNO_MODE_OK (regno
, mode
)
2300 && (qty
[qtyno
].n_calls_crossed
== 0
2301 || accept_call_clobbered
2302 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno
, mode
)))
2305 int size1
= hard_regno_nregs
[regno
][mode
];
2306 for (j
= 1; j
< size1
&& ! TEST_HARD_REG_BIT (used
, regno
+ j
); j
++);
2309 /* Mark that this register is in use between its birth and death
2311 post_mark_life (regno
, mode
, 1, born_index
, dead_index
);
2314 #ifndef REG_ALLOC_ORDER
2315 /* Skip starting points we know will lose. */
2322 /* If we are just trying suggested register, we have just tried copy-
2323 suggested registers, and there are arithmetic-suggested registers,
2326 /* If it would be profitable to allocate a call-clobbered register
2327 and save and restore it around calls, do that. */
2328 if (just_try_suggested
&& qty_phys_num_copy_sugg
[qtyno
] != 0
2329 && qty_phys_num_sugg
[qtyno
] != 0)
2331 /* Don't try the copy-suggested regs again. */
2332 qty_phys_num_copy_sugg
[qtyno
] = 0;
2333 return find_free_reg (class, mode
, qtyno
, accept_call_clobbered
, 1,
2334 born_index
, dead_index
);
2337 /* We need not check to see if the current function has nonlocal
2338 labels because we don't put any pseudos that are live over calls in
2339 registers in that case. Avoid putting pseudos crossing calls that
2340 might throw into call used registers. */
2342 if (! accept_call_clobbered
2343 && flag_caller_saves
2344 && ! just_try_suggested
2345 && qty
[qtyno
].n_calls_crossed
!= 0
2346 && qty
[qtyno
].n_throwing_calls_crossed
== 0
2347 && CALLER_SAVE_PROFITABLE (qty
[qtyno
].n_refs
,
2348 qty
[qtyno
].n_calls_crossed
))
2350 i
= find_free_reg (class, mode
, qtyno
, 1, 0, born_index
, dead_index
);
2352 caller_save_needed
= 1;
2358 /* Mark that REGNO with machine-mode MODE is live starting from the current
2359 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2363 mark_life (int regno
, enum machine_mode mode
, int life
)
2365 int j
= hard_regno_nregs
[regno
][mode
];
2368 SET_HARD_REG_BIT (regs_live
, regno
+ j
);
2371 CLEAR_HARD_REG_BIT (regs_live
, regno
+ j
);
2374 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2375 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2376 to insn number DEATH (exclusive). */
2379 post_mark_life (int regno
, enum machine_mode mode
, int life
, int birth
,
2382 int j
= hard_regno_nregs
[regno
][mode
];
2383 HARD_REG_SET this_reg
;
2385 CLEAR_HARD_REG_SET (this_reg
);
2387 SET_HARD_REG_BIT (this_reg
, regno
+ j
);
2390 while (birth
< death
)
2392 IOR_HARD_REG_SET (regs_live_at
[birth
], this_reg
);
2396 while (birth
< death
)
2398 AND_COMPL_HARD_REG_SET (regs_live_at
[birth
], this_reg
);
2403 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2404 is the register being clobbered, and R1 is a register being used in
2405 the equivalent expression.
2407 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2408 in which it is used, return 1.
2410 Otherwise, return 0. */
2413 no_conflict_p (rtx insn
, rtx r0 ATTRIBUTE_UNUSED
, rtx r1
)
2416 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
2419 /* If R1 is a hard register, return 0 since we handle this case
2420 when we scan the insns that actually use it. */
2423 || (REG_P (r1
) && REGNO (r1
) < FIRST_PSEUDO_REGISTER
)
2424 || (GET_CODE (r1
) == SUBREG
&& REG_P (SUBREG_REG (r1
))
2425 && REGNO (SUBREG_REG (r1
)) < FIRST_PSEUDO_REGISTER
))
2428 last
= XEXP (note
, 0);
2430 for (p
= NEXT_INSN (insn
); p
&& p
!= last
; p
= NEXT_INSN (p
))
2433 if (find_reg_note (p
, REG_DEAD
, r1
))
2436 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2437 some earlier optimization pass has inserted instructions into
2438 the sequence, and it is not safe to perform this optimization.
2439 Note that emit_no_conflict_block always ensures that this is
2440 true when these sequences are created. */
2441 if (! find_reg_note (p
, REG_NO_CONFLICT
, r1
))
2448 /* Return the number of alternatives for which the constraint string P
2449 indicates that the operand must be equal to operand 0 and that no register
2453 requires_inout (const char *p
)
2457 int reg_allowed
= 0;
2458 int num_matching_alts
= 0;
2461 for ( ; (c
= *p
); p
+= len
)
2463 len
= CONSTRAINT_LEN (c
, p
);
2466 case '=': case '+': case '?':
2467 case '#': case '&': case '!':
2469 case 'm': case '<': case '>': case 'V': case 'o':
2470 case 'E': case 'F': case 'G': case 'H':
2471 case 's': case 'i': case 'n':
2472 case 'I': case 'J': case 'K': case 'L':
2473 case 'M': case 'N': case 'O': case 'P':
2475 /* These don't say anything we care about. */
2479 if (found_zero
&& ! reg_allowed
)
2480 num_matching_alts
++;
2482 found_zero
= reg_allowed
= 0;
2489 case '1': case '2': case '3': case '4': case '5':
2490 case '6': case '7': case '8': case '9':
2491 /* Skip the balance of the matching constraint. */
2494 while (ISDIGIT (*p
));
2499 if (REG_CLASS_FROM_CONSTRAINT (c
, p
) == NO_REGS
2500 && !EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2510 if (found_zero
&& ! reg_allowed
)
2511 num_matching_alts
++;
2513 return num_matching_alts
;
2517 dump_local_alloc (FILE *file
)
2520 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
2521 if (reg_renumber
[i
] != -1)
2522 fprintf (file
, ";; Register %d in %d.\n", i
, reg_renumber
[i
]);
2525 /* Run old register allocator. Return TRUE if we must exit
2526 rest_of_compilation upon return. */
2528 rest_of_handle_local_alloc (void)
2532 /* Determine if the current function is a leaf before running reload
2533 since this can impact optimizations done by the prologue and
2534 epilogue thus changing register elimination offsets. */
2535 current_function_is_leaf
= leaf_function_p ();
2537 /* Allocate the reg_renumber array. */
2538 allocate_reg_info (max_regno
, FALSE
, TRUE
);
2540 /* And the reg_equiv_memory_loc array. */
2541 VEC_safe_grow (rtx
, gc
, reg_equiv_memory_loc_vec
, max_regno
);
2542 memset (VEC_address (rtx
, reg_equiv_memory_loc_vec
), 0,
2543 sizeof (rtx
) * max_regno
);
2544 reg_equiv_memory_loc
= VEC_address (rtx
, reg_equiv_memory_loc_vec
);
2546 allocate_initial_values (reg_equiv_memory_loc
);
2548 regclass (get_insns (), max_reg_num ());
2549 rebuild_notes
= local_alloc ();
2551 /* Local allocation may have turned an indirect jump into a direct
2552 jump. If so, we must rebuild the JUMP_LABEL fields of jumping
2556 timevar_push (TV_JUMP
);
2558 rebuild_jump_labels (get_insns ());
2559 purge_all_dead_edges ();
2560 delete_unreachable_blocks ();
2562 timevar_pop (TV_JUMP
);
2565 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2567 timevar_push (TV_DUMP
);
2568 dump_flow_info (dump_file
, dump_flags
);
2569 dump_local_alloc (dump_file
);
2570 timevar_pop (TV_DUMP
);
2575 struct tree_opt_pass pass_local_alloc
=
2579 rest_of_handle_local_alloc
, /* execute */
2582 0, /* static_pass_number */
2583 TV_LOCAL_ALLOC
, /* tv_id */
2584 0, /* properties_required */
2585 0, /* properties_provided */
2586 0, /* properties_destroyed */
2587 0, /* todo_flags_start */
2589 TODO_ggc_collect
, /* todo_flags_finish */