* config/xtensa/elf.h (HANDLE_PRAGMA_PACK_PUSH_POP): Define.
[official-gcc.git] / gcc / config / c4x / c4x.h
blob22904e1dc466e4ad0319bbbde32da384cacd4a81
1 /* Definitions of target machine for GNU compiler. TMS320C[34]x
2 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
6 and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
25 /* RUN-TIME TARGET SPECIFICATION. */
27 #define C4x 1
29 #define TARGET_CPU_CPP_BUILTINS() \
30 do \
31 { \
32 extern int flag_inline_trees; \
33 if (!TARGET_SMALL) \
34 builtin_define ("_BIGMODEL"); \
35 if (!TARGET_MEMPARM) \
36 builtin_define ("_REGPARM"); \
37 if (flag_inline_functions) \
38 builtin_define ("_INLINE"); \
39 if (TARGET_C3X) \
40 { \
41 builtin_define ("_TMS320C3x"); \
42 builtin_define ("_C3x"); \
43 if (TARGET_C30) \
44 { \
45 builtin_define ("_TMS320C30"); \
46 builtin_define ("_C30"); \
47 } \
48 else if (TARGET_C31) \
49 { \
50 builtin_define ("_TMS320C31"); \
51 builtin_define ("_C31"); \
52 } \
53 else if (TARGET_C32) \
54 { \
55 builtin_define ("_TMS320C32"); \
56 builtin_define ("_C32"); \
57 } \
58 else if (TARGET_C33) \
59 { \
60 builtin_define ("_TMS320C33"); \
61 builtin_define ("_C33"); \
62 } \
63 } \
64 else \
65 { \
66 builtin_define ("_TMS320C4x"); \
67 builtin_define ("_C4x"); \
68 if (TARGET_C40) \
69 { \
70 builtin_define ("_TMS320C40"); \
71 builtin_define ("_C40"); \
72 } \
73 else if (TARGET_C44) \
74 { \
75 builtin_define ("_TMS320C44"); \
76 builtin_define ("_C44"); \
77 } \
78 } \
79 } \
80 while (0)
82 /* Define assembler options. */
84 #define ASM_SPEC "\
85 %{!mcpu=30:%{!mcpu=31:%{!mcpu=32:%{!mcpu=33:%{!mcpu=40:%{!mcpu=44:\
86 %{!m30:%{!m31:%{!m32:%{!m33:%{!m40:%{!m44:-m40}}}}}}}}}}}} \
87 %{mcpu=30} \
88 %{mcpu=31} \
89 %{mcpu=32} \
90 %{mcpu=33} \
91 %{mcpu=40} \
92 %{mcpu=44} \
93 %{m30} \
94 %{m31} \
95 %{m32} \
96 %{m33} \
97 %{m40} \
98 %{m44} \
99 %{mmemparm} %{mregparm} %{!mmemparm:%{!mregparm:-mregparm}} \
100 %{mbig} %{msmall} %{!msmall:%{!mbig:-mbig}}"
102 /* Define linker options. */
104 #define LINK_SPEC "\
105 %{m30:--architecture c3x} \
106 %{m31:--architecture c3x} \
107 %{m32:--architecture c3x} \
108 %{m33:--architecture c3x} \
109 %{mcpu=30:--architecture c3x} \
110 %{mcpu=31:--architecture c3x} \
111 %{mcpu=32:--architecture c3x} \
112 %{mcpu=33:--architecture c3x}"
114 /* Specify the end file to link with. */
116 #define ENDFILE_SPEC ""
118 /* Caveats:
119 Max iteration count for RPTB/RPTS is 2^31 + 1.
120 Max iteration count for DB is 2^31 + 1 for C40, but 2^23 + 1 for C30.
121 RPTS blocks interrupts. */
124 extern int c4x_cpu_version; /* Cpu version C30/31/32/33/40/44. */
126 #define TARGET_INLINE (! optimize_size) /* Inline MPYI. */
127 #define TARGET_SMALL_REG_CLASS 0
129 #define TARGET_C3X (c4x_cpu_version >= 30 \
130 && c4x_cpu_version <= 39)
132 #define TARGET_C30 (c4x_cpu_version == 30)
133 #define TARGET_C31 (c4x_cpu_version == 31)
134 #define TARGET_C32 (c4x_cpu_version == 32)
135 #define TARGET_C33 (c4x_cpu_version == 33)
136 #define TARGET_C40 (c4x_cpu_version == 40)
137 #define TARGET_C44 (c4x_cpu_version == 44)
139 /* Nonzero to use load_immed_addr pattern rather than forcing memory
140 addresses into memory. */
141 #define TARGET_LOAD_ADDRESS (1 || (! TARGET_C3X && ! TARGET_SMALL))
143 /* Nonzero to convert direct memory references into HIGH/LO_SUM pairs
144 during RTL generation. */
145 #define TARGET_EXPOSE_LDP 0
147 /* Nonzero to force loading of direct memory references into a register. */
148 #define TARGET_LOAD_DIRECT_MEMS 0
150 /* -mrpts allows the use of the RPTS instruction irregardless.
151 -mrpts=max-cycles will use RPTS if the number of cycles is constant
152 and less than max-cycles. */
154 #define TARGET_RPTS_CYCLES(CYCLES) (TARGET_RPTS || (CYCLES) < c4x_rpts_cycles)
156 /* Sometimes certain combinations of command options do not make sense
157 on a particular target machine. You can define a macro
158 `OVERRIDE_OPTIONS' to take account of this. This macro, if
159 defined, is executed once just after all the command options have
160 been parsed. */
162 #define OVERRIDE_OPTIONS c4x_override_options ()
164 /* Define this to change the optimizations performed by default. */
166 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) c4x_optimization_options(LEVEL, SIZE)
168 /* Run Time Target Specification. */
170 #define TARGET_VERSION fprintf (stderr, " (TMS320C[34]x, TI syntax)");
172 /* Storage Layout. */
174 #define BITS_BIG_ENDIAN 0
175 #define BYTES_BIG_ENDIAN 0
176 #define WORDS_BIG_ENDIAN 0
178 /* Technically, we are little endian, but we put the floats out as
179 whole longs and this makes GCC put them out in the right order. */
181 #define FLOAT_WORDS_BIG_ENDIAN 1
183 /* Note the ANSI C standard requires sizeof(char) = 1. On the C[34]x
184 all integral and floating point data types are stored in memory as
185 32-bits (floating point types can be stored as 40-bits in the
186 extended precision registers), so sizeof(char) = sizeof(short) =
187 sizeof(int) = sizeof(long) = sizeof(float) = sizeof(double) = 1. */
189 #define BITS_PER_UNIT 32
190 #define UNITS_PER_WORD 1
191 #define PARM_BOUNDARY 32
192 #define STACK_BOUNDARY 32
193 #define FUNCTION_BOUNDARY 32
194 #define BIGGEST_ALIGNMENT 32
195 #define EMPTY_FIELD_BOUNDARY 32
196 #define STRICT_ALIGNMENT 0
197 #define TARGET_FLOAT_FORMAT C4X_FLOAT_FORMAT
198 #define MAX_FIXED_MODE_SIZE 64 /* HImode. */
200 /* If a structure has a floating point field then force structure
201 to have BLKMODE, unless it is the only field. */
202 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
203 (TREE_CODE (TREE_TYPE (FIELD)) == REAL_TYPE && (MODE) == VOIDmode)
205 /* Number of bits in the high and low parts of a two stage
206 load of an immediate constant. */
207 #define BITS_PER_HIGH 16
208 #define BITS_PER_LO_SUM 16
210 /* Define register numbers. */
212 /* Extended-precision registers. */
214 #define R0_REGNO 0
215 #define R1_REGNO 1
216 #define R2_REGNO 2
217 #define R3_REGNO 3
218 #define R4_REGNO 4
219 #define R5_REGNO 5
220 #define R6_REGNO 6
221 #define R7_REGNO 7
223 /* Auxiliary (address) registers. */
225 #define AR0_REGNO 8
226 #define AR1_REGNO 9
227 #define AR2_REGNO 10
228 #define AR3_REGNO 11
229 #define AR4_REGNO 12
230 #define AR5_REGNO 13
231 #define AR6_REGNO 14
232 #define AR7_REGNO 15
234 /* Data page register. */
236 #define DP_REGNO 16
238 /* Index registers. */
240 #define IR0_REGNO 17
241 #define IR1_REGNO 18
243 /* Block size register. */
245 #define BK_REGNO 19
247 /* Stack pointer. */
249 #define SP_REGNO 20
251 /* Status register. */
253 #define ST_REGNO 21
255 /* Misc. interrupt registers. */
257 #define DIE_REGNO 22 /* C4x only. */
258 #define IE_REGNO 22 /* C3x only. */
259 #define IIE_REGNO 23 /* C4x only. */
260 #define IF_REGNO 23 /* C3x only. */
261 #define IIF_REGNO 24 /* C4x only. */
262 #define IOF_REGNO 24 /* C3x only. */
264 /* Repeat block registers. */
266 #define RS_REGNO 25
267 #define RE_REGNO 26
268 #define RC_REGNO 27
270 /* Additional extended-precision registers. */
272 #define R8_REGNO 28 /* C4x only. */
273 #define R9_REGNO 29 /* C4x only. */
274 #define R10_REGNO 30 /* C4x only. */
275 #define R11_REGNO 31 /* C4x only. */
277 #define FIRST_PSEUDO_REGISTER 32
279 /* Extended precision registers (low set). */
281 #define IS_R0R1_REGNO(r) \
282 ((unsigned int)((r) - R0_REGNO) <= (R1_REGNO - R0_REGNO))
283 #define IS_R2R3_REGNO(r) \
284 ((unsigned int)((r) - R2_REGNO) <= (R3_REGNO - R2_REGNO))
285 #define IS_EXT_LOW_REGNO(r) \
286 ((unsigned int)((r) - R0_REGNO) <= (R7_REGNO - R0_REGNO))
288 /* Extended precision registers (high set). */
290 #define IS_EXT_HIGH_REGNO(r) \
291 (! TARGET_C3X \
292 && ((unsigned int) ((r) - R8_REGNO) <= (R11_REGNO - R8_REGNO)))
294 /* Address registers. */
296 #define IS_AUX_REGNO(r) \
297 ((unsigned int)((r) - AR0_REGNO) <= (AR7_REGNO - AR0_REGNO))
298 #define IS_ADDR_REGNO(r) IS_AUX_REGNO(r)
299 #define IS_DP_REGNO(r) ((r) == DP_REGNO)
300 #define IS_INDEX_REGNO(r) (((r) == IR0_REGNO) || ((r) == IR1_REGNO))
301 #define IS_SP_REGNO(r) ((r) == SP_REGNO)
302 #define IS_BK_REGNO(r) (TARGET_BK && (r) == BK_REGNO)
304 /* Misc registers. */
306 #define IS_ST_REGNO(r) ((r) == ST_REGNO)
307 #define IS_RC_REGNO(r) ((r) == RC_REGNO)
308 #define IS_REPEAT_REGNO(r) (((r) >= RS_REGNO) && ((r) <= RC_REGNO))
310 /* Composite register sets. */
312 #define IS_ADDR_OR_INDEX_REGNO(r) (IS_ADDR_REGNO(r) || IS_INDEX_REGNO(r))
313 #define IS_EXT_REGNO(r) (IS_EXT_LOW_REGNO(r) || IS_EXT_HIGH_REGNO(r))
314 #define IS_STD_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) \
315 || IS_REPEAT_REGNO(r) \
316 || IS_SP_REGNO(r) \
317 || IS_BK_REGNO(r))
318 #define IS_INT_REGNO(r) (IS_EXT_REGNO(r) || IS_STD_REGNO(r))
319 #define IS_GROUP1_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) || IS_BK_REGNO(r))
320 #define IS_INT_CALL_SAVED_REGNO(r) (((r) == R4_REGNO) || ((r) == R5_REGNO) \
321 || ((r) == R8_REGNO))
322 #define IS_FLOAT_CALL_SAVED_REGNO(r) (((r) == R6_REGNO) || ((r) == R7_REGNO))
324 #define IS_PSEUDO_REGNO(r) ((r) >= FIRST_PSEUDO_REGISTER)
325 #define IS_R0R1_OR_PSEUDO_REGNO(r) (IS_R0R1_REGNO(r) || IS_PSEUDO_REGNO(r))
326 #define IS_R2R3_OR_PSEUDO_REGNO(r) (IS_R2R3_REGNO(r) || IS_PSEUDO_REGNO(r))
327 #define IS_EXT_OR_PSEUDO_REGNO(r) (IS_EXT_REGNO(r) || IS_PSEUDO_REGNO(r))
328 #define IS_STD_OR_PSEUDO_REGNO(r) (IS_STD_REGNO(r) || IS_PSEUDO_REGNO(r))
329 #define IS_INT_OR_PSEUDO_REGNO(r) (IS_INT_REGNO(r) || IS_PSEUDO_REGNO(r))
330 #define IS_ADDR_OR_PSEUDO_REGNO(r) (IS_ADDR_REGNO(r) || IS_PSEUDO_REGNO(r))
331 #define IS_INDEX_OR_PSEUDO_REGNO(r) (IS_INDEX_REGNO(r) || IS_PSEUDO_REGNO(r))
332 #define IS_EXT_LOW_OR_PSEUDO_REGNO(r) (IS_EXT_LOW_REGNO(r) \
333 || IS_PSEUDO_REGNO(r))
334 #define IS_DP_OR_PSEUDO_REGNO(r) (IS_DP_REGNO(r) || IS_PSEUDO_REGNO(r))
335 #define IS_SP_OR_PSEUDO_REGNO(r) (IS_SP_REGNO(r) || IS_PSEUDO_REGNO(r))
336 #define IS_ST_OR_PSEUDO_REGNO(r) (IS_ST_REGNO(r) || IS_PSEUDO_REGNO(r))
337 #define IS_RC_OR_PSEUDO_REGNO(r) (IS_RC_REGNO(r) || IS_PSEUDO_REGNO(r))
339 #define IS_PSEUDO_REG(op) (IS_PSEUDO_REGNO(REGNO(op)))
340 #define IS_ADDR_REG(op) (IS_ADDR_REGNO(REGNO(op)))
341 #define IS_INDEX_REG(op) (IS_INDEX_REGNO(REGNO(op)))
342 #define IS_GROUP1_REG(r) (IS_GROUP1_REGNO(REGNO(op)))
343 #define IS_SP_REG(op) (IS_SP_REGNO(REGNO(op)))
344 #define IS_STD_REG(op) (IS_STD_REGNO(REGNO(op)))
345 #define IS_EXT_REG(op) (IS_EXT_REGNO(REGNO(op)))
347 #define IS_R0R1_OR_PSEUDO_REG(op) (IS_R0R1_OR_PSEUDO_REGNO(REGNO(op)))
348 #define IS_R2R3_OR_PSEUDO_REG(op) (IS_R2R3_OR_PSEUDO_REGNO(REGNO(op)))
349 #define IS_EXT_OR_PSEUDO_REG(op) (IS_EXT_OR_PSEUDO_REGNO(REGNO(op)))
350 #define IS_STD_OR_PSEUDO_REG(op) (IS_STD_OR_PSEUDO_REGNO(REGNO(op)))
351 #define IS_EXT_LOW_OR_PSEUDO_REG(op) (IS_EXT_LOW_OR_PSEUDO_REGNO(REGNO(op)))
352 #define IS_INT_OR_PSEUDO_REG(op) (IS_INT_OR_PSEUDO_REGNO(REGNO(op)))
354 #define IS_ADDR_OR_PSEUDO_REG(op) (IS_ADDR_OR_PSEUDO_REGNO(REGNO(op)))
355 #define IS_INDEX_OR_PSEUDO_REG(op) (IS_INDEX_OR_PSEUDO_REGNO(REGNO(op)))
356 #define IS_DP_OR_PSEUDO_REG(op) (IS_DP_OR_PSEUDO_REGNO(REGNO(op)))
357 #define IS_SP_OR_PSEUDO_REG(op) (IS_SP_OR_PSEUDO_REGNO(REGNO(op)))
358 #define IS_ST_OR_PSEUDO_REG(op) (IS_ST_OR_PSEUDO_REGNO(REGNO(op)))
359 #define IS_RC_OR_PSEUDO_REG(op) (IS_RC_OR_PSEUDO_REGNO(REGNO(op)))
361 /* 1 for registers that have pervasive standard uses
362 and are not available for the register allocator. */
364 #define FIXED_REGISTERS \
366 /* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
367 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
368 /* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
369 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 \
372 /* 1 for registers not available across function calls.
373 These must include the FIXED_REGISTERS and also any
374 registers that can be used without being saved.
375 The latter must include the registers where values are returned
376 and the register where structure-value addresses are passed.
377 Aside from that, you can include as many other registers as you like.
379 Note that the extended precision registers are only saved in some
380 modes. The macro HARD_REGNO_CALL_CLOBBERED specifies which modes
381 get clobbered for a given regno. */
383 #define CALL_USED_REGISTERS \
385 /* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
386 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, \
387 /* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
388 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1 \
391 /* Macro to conditionally modify fixed_regs/call_used_regs. */
393 #define CONDITIONAL_REGISTER_USAGE \
395 if (! TARGET_BK) \
397 fixed_regs[BK_REGNO] = 1; \
398 call_used_regs[BK_REGNO] = 1; \
399 c4x_regclass_map[BK_REGNO] = NO_REGS; \
401 if (TARGET_C3X) \
403 int i; \
405 reg_names[DIE_REGNO] = "ie"; /* Clobber die. */ \
406 reg_names[IF_REGNO] = "if"; /* Clobber iie. */ \
407 reg_names[IOF_REGNO] = "iof"; /* Clobber iif. */ \
409 for (i = R8_REGNO; i <= R11_REGNO; i++) \
411 fixed_regs[i] = call_used_regs[i] = 1; \
412 c4x_regclass_map[i] = NO_REGS; \
415 if (TARGET_PRESERVE_FLOAT) \
417 c4x_caller_save_map[R6_REGNO] = HFmode; \
418 c4x_caller_save_map[R7_REGNO] = HFmode; \
422 /* Order of Allocation of Registers. */
424 /* List the order in which to allocate registers. Each register must be
425 listed once, even those in FIXED_REGISTERS.
427 First allocate registers that don't need preservation across calls,
428 except index and address registers. Then allocate data registers
429 that require preservation across calls (even though this invokes an
430 extra overhead of having to save/restore these registers). Next
431 allocate the address and index registers, since using these
432 registers for arithmetic can cause pipeline stalls. Finally
433 allocated the fixed registers which won't be allocated anyhow. */
435 #define REG_ALLOC_ORDER \
436 {R0_REGNO, R1_REGNO, R2_REGNO, R3_REGNO, \
437 R9_REGNO, R10_REGNO, R11_REGNO, \
438 RS_REGNO, RE_REGNO, RC_REGNO, BK_REGNO, \
439 R4_REGNO, R5_REGNO, R6_REGNO, R7_REGNO, R8_REGNO, \
440 AR0_REGNO, AR1_REGNO, AR2_REGNO, AR3_REGNO, \
441 AR4_REGNO, AR5_REGNO, AR6_REGNO, AR7_REGNO, \
442 IR0_REGNO, IR1_REGNO, \
443 SP_REGNO, DP_REGNO, ST_REGNO, IE_REGNO, IF_REGNO, IOF_REGNO}
445 /* A C expression that is nonzero if hard register number REGNO2 can be
446 considered for use as a rename register for REGNO1 */
448 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
449 c4x_hard_regno_rename_ok((REGNO1), (REGNO2))
451 /* Determine which register classes are very likely used by spill registers.
452 local-alloc.c won't allocate pseudos that have these classes as their
453 preferred class unless they are "preferred or nothing". */
455 #define CLASS_LIKELY_SPILLED_P(CLASS) ((CLASS) == INDEX_REGS)
457 /* CCmode is wrongly defined in machmode.def. It should have a size
458 of UNITS_PER_WORD. HFmode is 40-bits and thus fits within a single
459 extended precision register. Similarly, HCmode fits within two
460 extended precision registers. */
462 #define HARD_REGNO_NREGS(REGNO, MODE) \
463 (((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : \
464 ((MODE) == HFmode) ? 1 : \
465 ((MODE) == HCmode) ? 2 : \
466 ((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
469 /* A C expression that is nonzero if the hard register REGNO is preserved
470 across a call in mode MODE. This does not have to include the call used
471 registers. */
473 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
474 ((IS_FLOAT_CALL_SAVED_REGNO (REGNO) && ! ((MODE) == QFmode)) \
475 || (IS_INT_CALL_SAVED_REGNO (REGNO) \
476 && ! ((MODE) == QImode || (MODE) == HImode || (MODE) == Pmode)))
478 /* Specify the modes required to caller save a given hard regno. */
480 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) (c4x_caller_save_map[REGNO])
482 #define HARD_REGNO_MODE_OK(REGNO, MODE) c4x_hard_regno_mode_ok(REGNO, MODE)
484 /* A C expression that is nonzero if it is desirable to choose
485 register allocation so as to avoid move instructions between a
486 value of mode MODE1 and a value of mode MODE2.
488 Value is 1 if it is a good idea to tie two pseudo registers
489 when one has mode MODE1 and one has mode MODE2.
490 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
491 for any hard reg, then this must be 0 for correct output. */
493 #define MODES_TIEABLE_P(MODE1, MODE2) 0
496 /* Define the classes of registers for register constraints in the
497 machine description. Also define ranges of constants.
499 One of the classes must always be named ALL_REGS and include all hard regs.
500 If there is more than one class, another class must be named NO_REGS
501 and contain no registers.
503 The name GENERAL_REGS must be the name of a class (or an alias for
504 another name such as ALL_REGS). This is the class of registers
505 that is allowed by "g" or "r" in a register constraint.
506 Also, registers outside this class are allocated only when
507 instructions express preferences for them.
509 The classes must be numbered in nondecreasing order; that is,
510 a larger-numbered class must never be contained completely
511 in a smaller-numbered class.
513 For any two classes, it is very desirable that there be another
514 class that represents their union. */
516 enum reg_class
518 NO_REGS,
519 R0R1_REGS, /* 't'. */
520 R2R3_REGS, /* 'u'. */
521 EXT_LOW_REGS, /* 'q'. */
522 EXT_REGS, /* 'f'. */
523 ADDR_REGS, /* 'a'. */
524 INDEX_REGS, /* 'x'. */
525 BK_REG, /* 'k'. */
526 SP_REG, /* 'b'. */
527 RC_REG, /* 'v'. */
528 COUNTER_REGS, /* */
529 INT_REGS, /* 'c'. */
530 GENERAL_REGS, /* 'r'. */
531 DP_REG, /* 'z'. */
532 ST_REG, /* 'y'. */
533 ALL_REGS,
534 LIM_REG_CLASSES
537 #define N_REG_CLASSES (int) LIM_REG_CLASSES
539 #define REG_CLASS_NAMES \
541 "NO_REGS", \
542 "R0R1_REGS", \
543 "R2R3_REGS", \
544 "EXT_LOW_REGS", \
545 "EXT_REGS", \
546 "ADDR_REGS", \
547 "INDEX_REGS", \
548 "BK_REG", \
549 "SP_REG", \
550 "RC_REG", \
551 "COUNTER_REGS", \
552 "INT_REGS", \
553 "GENERAL_REGS", \
554 "DP_REG", \
555 "ST_REG", \
556 "ALL_REGS" \
559 /* Define which registers fit in which classes.
560 This is an initializer for a vector of HARD_REG_SET
561 of length N_REG_CLASSES. RC is not included in GENERAL_REGS
562 since the register allocator will often choose a general register
563 in preference to RC for the decrement_and_branch_on_count pattern. */
565 #define REG_CLASS_CONTENTS \
567 {0x00000000}, /* No registers. */ \
568 {0x00000003}, /* 't' R0-R1 . */ \
569 {0x0000000c}, /* 'u' R2-R3 . */ \
570 {0x000000ff}, /* 'q' R0-R7 . */ \
571 {0xf00000ff}, /* 'f' R0-R11 */ \
572 {0x0000ff00}, /* 'a' AR0-AR7. */ \
573 {0x00060000}, /* 'x' IR0-IR1. */ \
574 {0x00080000}, /* 'k' BK. */ \
575 {0x00100000}, /* 'b' SP. */ \
576 {0x08000000}, /* 'v' RC. */ \
577 {0x0800ff00}, /* RC,AR0-AR7. */ \
578 {0x0e1eff00}, /* 'c' AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */ \
579 {0xfe1effff}, /* 'r' R0-R11, AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */\
580 {0x00010000}, /* 'z' DP. */ \
581 {0x00200000}, /* 'y' ST. */ \
582 {0xffffffff}, /* All registers. */ \
585 /* The same information, inverted:
586 Return the class number of the smallest class containing
587 reg number REGNO. This could be a conditional expression
588 or could index an array. */
590 #define REGNO_REG_CLASS(REGNO) (c4x_regclass_map[REGNO])
592 /* When SMALL_REGISTER_CLASSES is defined, the lifetime of registers
593 explicitly used in the rtl is kept as short as possible.
595 We only need to define SMALL_REGISTER_CLASSES if TARGET_PARALLEL_MPY
596 is defined since the MPY|ADD insns require the classes R0R1_REGS and
597 R2R3_REGS which are used by the function return registers (R0,R1) and
598 the register arguments (R2,R3), respectively. I'm reluctant to define
599 this macro since it stomps on many potential optimizations. Ideally
600 it should have a register class argument so that not all the register
601 classes gets penalized for the sake of a naughty few... For long
602 double arithmetic we need two additional registers that we can use as
603 spill registers. */
605 #define SMALL_REGISTER_CLASSES (TARGET_SMALL_REG_CLASS && TARGET_PARALLEL_MPY)
607 #define BASE_REG_CLASS ADDR_REGS
608 #define INDEX_REG_CLASS INDEX_REGS
611 Register constraints for the C4x
613 a - address reg (ar0-ar7)
614 b - stack reg (sp)
615 c - other gp int-only reg
616 d - data/int reg (equiv. to f)
617 f - data/float reg
618 h - data/long double reg (equiv. to f)
619 k - block count (bk)
620 q - r0-r7
621 t - r0-r1
622 u - r2-r3
623 v - repeat count (rc)
624 x - index register (ir0-ir1)
625 y - status register (st)
626 z - dp reg (dp)
628 Memory/constant constraints for the C4x
630 G - short float 16-bit
631 I - signed 16-bit constant (sign extended)
632 J - signed 8-bit constant (sign extended) (C4x only)
633 K - signed 5-bit constant (sign extended) (C4x only for stik)
634 L - unsigned 16-bit constant
635 M - unsigned 8-bit constant (C4x only)
636 N - ones complement of unsigned 16-bit constant
637 Q - indirect arx + 9-bit signed displacement
638 (a *-arx(n) or *+arx(n) is used to account for the sign bit)
639 R - indirect arx + 5-bit unsigned displacement (C4x only)
640 S - indirect arx + 0, 1, or irn displacement
641 T - direct symbol ref
642 > - indirect with autoincrement
643 < - indirect with autodecrement
644 } - indirect with post-modify
645 { - indirect with pre-modify
648 #define REG_CLASS_FROM_LETTER(CC) \
649 ( ((CC) == 'a') ? ADDR_REGS \
650 : ((CC) == 'b') ? SP_REG \
651 : ((CC) == 'c') ? INT_REGS \
652 : ((CC) == 'd') ? EXT_REGS \
653 : ((CC) == 'f') ? EXT_REGS \
654 : ((CC) == 'h') ? EXT_REGS \
655 : ((CC) == 'k') ? BK_REG \
656 : ((CC) == 'q') ? EXT_LOW_REGS \
657 : ((CC) == 't') ? R0R1_REGS \
658 : ((CC) == 'u') ? R2R3_REGS \
659 : ((CC) == 'v') ? RC_REG \
660 : ((CC) == 'x') ? INDEX_REGS \
661 : ((CC) == 'y') ? ST_REG \
662 : ((CC) == 'z') ? DP_REG \
663 : NO_REGS )
665 /* These assume that REGNO is a hard or pseudo reg number.
666 They give nonzero only if REGNO is a hard reg of the suitable class
667 or a pseudo reg currently allocated to a suitable hard reg.
668 Since they use reg_renumber, they are safe only once reg_renumber
669 has been allocated, which happens in local-alloc.c. */
671 #define REGNO_OK_FOR_BASE_P(REGNO) \
672 (IS_ADDR_REGNO(REGNO) || IS_ADDR_REGNO((unsigned)reg_renumber[REGNO]))
674 #define REGNO_OK_FOR_INDEX_P(REGNO) \
675 (IS_INDEX_REGNO(REGNO) || IS_INDEX_REGNO((unsigned)reg_renumber[REGNO]))
677 /* If we have to generate framepointer + constant prefer an ADDR_REGS
678 register. This avoids using EXT_REGS in addqi3_noclobber_reload. */
680 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
681 (GET_CODE (X) == PLUS \
682 && GET_MODE (X) == Pmode \
683 && GET_CODE (XEXP ((X), 0)) == REG \
684 && GET_MODE (XEXP ((X), 0)) == Pmode \
685 && REGNO (XEXP ((X), 0)) == FRAME_POINTER_REGNUM \
686 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
687 ? ADDR_REGS : (CLASS))
689 #define LIMIT_RELOAD_CLASS(X, CLASS) (CLASS)
691 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) 0
693 #define CLASS_MAX_NREGS(CLASS, MODE) \
694 (((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : ((MODE) == HFmode) ? 1 : \
695 ((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
697 #define IS_INT5_CONST(VAL) (((VAL) <= 15) && ((VAL) >= -16)) /* 'K'. */
699 #define IS_UINT5_CONST(VAL) (((VAL) <= 31) && ((VAL) >= 0)) /* 'R'. */
701 #define IS_INT8_CONST(VAL) (((VAL) <= 127) && ((VAL) >= -128)) /* 'J'. */
703 #define IS_UINT8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= 0)) /* 'M'. */
705 #define IS_INT16_CONST(VAL) (((VAL) <= 32767) && ((VAL) >= -32768)) /* 'I'. */
707 #define IS_UINT16_CONST(VAL) (((VAL) <= 65535) && ((VAL) >= 0)) /* 'L'. */
709 #define IS_NOT_UINT16_CONST(VAL) IS_UINT16_CONST(~(VAL)) /* 'N'. */
711 #define IS_HIGH_CONST(VAL) \
712 (! TARGET_C3X && (((VAL) & 0xffff) == 0)) /* 'O'. */
715 #define IS_DISP1_CONST(VAL) (((VAL) <= 1) && ((VAL) >= -1)) /* 'S'. */
717 #define IS_DISP8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= -255)) /* 'Q'. */
719 #define IS_DISP1_OFF_CONST(VAL) (IS_DISP1_CONST (VAL) \
720 && IS_DISP1_CONST (VAL + 1))
722 #define IS_DISP8_OFF_CONST(VAL) (IS_DISP8_CONST (VAL) \
723 && IS_DISP8_CONST (VAL + 1))
725 #define CONST_OK_FOR_LETTER_P(VAL, C) \
726 ( ((C) == 'I') ? (IS_INT16_CONST (VAL)) \
727 : ((C) == 'J') ? (! TARGET_C3X && IS_INT8_CONST (VAL)) \
728 : ((C) == 'K') ? (! TARGET_C3X && IS_INT5_CONST (VAL)) \
729 : ((C) == 'L') ? (IS_UINT16_CONST (VAL)) \
730 : ((C) == 'M') ? (! TARGET_C3X && IS_UINT8_CONST (VAL)) \
731 : ((C) == 'N') ? (IS_NOT_UINT16_CONST (VAL)) \
732 : ((C) == 'O') ? (IS_HIGH_CONST (VAL)) \
733 : 0 )
735 #define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \
736 ( ((C) == 'G') ? (fp_zero_operand (OP, QFmode)) \
737 : ((C) == 'H') ? (c4x_H_constant (OP)) \
738 : 0 )
740 #define EXTRA_CONSTRAINT(OP, C) \
741 ( ((C) == 'Q') ? (c4x_Q_constraint (OP)) \
742 : ((C) == 'R') ? (c4x_R_constraint (OP)) \
743 : ((C) == 'S') ? (c4x_S_constraint (OP)) \
744 : ((C) == 'T') ? (c4x_T_constraint (OP)) \
745 : ((C) == 'U') ? (c4x_U_constraint (OP)) \
746 : 0 )
748 #define SMALL_CONST(VAL, insn) \
749 ( ((insn == NULL_RTX) || (get_attr_data (insn) == DATA_INT16)) \
750 ? IS_INT16_CONST (VAL) \
751 : ( (get_attr_data (insn) == DATA_NOT_UINT16) \
752 ? IS_NOT_UINT16_CONST (VAL) \
753 : ( (get_attr_data (insn) == DATA_HIGH_16) \
754 ? IS_HIGH_CONST (VAL) \
755 : IS_UINT16_CONST (VAL) \
761 I. Routine calling with arguments in registers
762 ----------------------------------------------
764 The TI C3x compiler has a rather unusual register passing algorithm.
765 Data is passed in the following registers (in order):
767 AR2, R2, R3, RC, RS, RE
769 However, the first and second floating point values are always in R2
770 and R3 (and all other floats are on the stack). Structs are always
771 passed on the stack. If the last argument is an ellipsis, the
772 previous argument is passed on the stack so that its address can be
773 taken for the stdargs macros.
775 Because of this, we have to pre-scan the list of arguments to figure
776 out what goes where in the list.
778 II. Routine calling with arguments on stack
779 -------------------------------------------
781 Let the subroutine declared as "foo(arg0, arg1, arg2);" have local
782 variables loc0, loc1, and loc2. After the function prologue has
783 been executed, the stack frame will look like:
785 [stack grows towards increasing addresses]
786 I-------------I
787 5 I saved reg1 I <= SP points here
788 I-------------I
789 4 I saved reg0 I
790 I-------------I
791 3 I loc2 I
792 I-------------I
793 2 I loc1 I
794 I-------------I
795 1 I loc0 I
796 I-------------I
797 0 I old FP I <= FP (AR3) points here
798 I-------------I
799 -1 I return PC I
800 I-------------I
801 -2 I arg0 I
802 I-------------I
803 -3 I arg1 I
804 I-------------I
805 -4 I arg2 I
806 I-------------I
808 All local variables (locn) are accessible by means of +FP(n+1)
809 addressing, where n is the local variable number.
811 All stack arguments (argn) are accessible by means of -FP(n-2).
813 The stack pointer (SP) points to the last register saved in the
814 prologue (regn).
816 Note that a push instruction performs a preincrement of the stack
817 pointer. (STACK_PUSH_CODE == PRE_INC)
819 III. Registers used in function calling convention
820 --------------------------------------------------
822 Preserved across calls: R4...R5 (only by PUSH, i.e. lower 32 bits)
823 R6...R7 (only by PUSHF, i.e. upper 32 bits)
824 AR3...AR7
826 (Because of this model, we only assign FP values in R6, R7 and
827 only assign integer values in R4, R5.)
829 These registers are saved at each function entry and restored at
830 the exit. Also it is expected any of these not affected by any
831 call to user-defined (not service) functions.
833 Not preserved across calls: R0...R3
834 R4...R5 (upper 8 bits)
835 R6...R7 (lower 8 bits)
836 AR0...AR2, IR0, IR1, BK, ST, RS, RE, RC
838 These registers are used arbitrary in a function without being preserved.
839 It is also expected that any of these can be clobbered by any call.
841 Not used by GCC (except for in user "asm" statements):
842 IE (DIE), IF (IIE), IOF (IIF)
844 These registers are never used by GCC for any data, but can be used
845 with "asm" statements. */
847 #define C4X_ARG0 -2
848 #define C4X_LOC0 1
850 /* Basic Stack Layout. */
852 /* The stack grows upward, stack frame grows upward, and args grow
853 downward. */
855 #define STARTING_FRAME_OFFSET C4X_LOC0
856 #define FIRST_PARM_OFFSET(FNDECL) (C4X_ARG0 + 1)
857 #define ARGS_GROW_DOWNWARD
858 #define STACK_POINTER_OFFSET 1
860 /* Define this if pushing a word on the stack
861 makes the stack pointer a smaller address. */
863 /* #define STACK_GROWS_DOWNWARD. */
864 /* Like the dsp16xx, i370, i960, and we32k ports. */
866 /* Define this to nonzero if the nominal address of the stack frame
867 is at the high-address end of the local variables;
868 that is, each additional local variable allocated
869 goes at a more negative offset in the frame. */
871 #define FRAME_GROWS_DOWNWARD 0
874 /* Registers That Address the Stack Frame. */
876 #define STACK_POINTER_REGNUM SP_REGNO /* SP. */
877 #define FRAME_POINTER_REGNUM AR3_REGNO /* AR3. */
878 #define ARG_POINTER_REGNUM AR3_REGNO /* AR3. */
879 #define STATIC_CHAIN_REGNUM AR0_REGNO /* AR0. */
881 /* Eliminating Frame Pointer and Arg Pointer. */
883 #define FRAME_POINTER_REQUIRED 0
885 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
887 int regno; \
888 int offset = 0; \
889 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
890 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
891 offset += TARGET_PRESERVE_FLOAT \
892 && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
893 (DEPTH) = -(offset + get_frame_size ()); \
896 /* This is a hack... We need to specify a register. */
897 #define ELIMINABLE_REGS \
898 {{ FRAME_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
900 #define CAN_ELIMINATE(FROM, TO) \
901 (! (((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
902 || ((FROM) == FRAME_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)))
904 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
906 int regno; \
907 int offset = 0; \
908 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
909 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
910 offset += TARGET_PRESERVE_FLOAT \
911 && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
912 (OFFSET) = -(offset + get_frame_size ()); \
916 /* Passing Function Arguments on the Stack. */
918 #define PUSH_ARGS 1
919 #define PUSH_ROUNDING(BYTES) (BYTES)
920 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
922 /* The following structure is used by calls.c, function.c, c4x.c. */
924 typedef struct c4x_args
926 int floats;
927 int ints;
928 int maxfloats;
929 int maxints;
930 int init;
931 int var;
932 int prototype;
933 int args;
935 CUMULATIVE_ARGS;
937 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
938 (c4x_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
940 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
941 (c4x_function_arg_advance (&CUM, MODE, TYPE, NAMED))
943 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
944 (c4x_function_arg(&CUM, MODE, TYPE, NAMED))
946 /* Define the profitability of saving registers around calls.
947 We disable caller save to avoid a bug in flow.c (this also affects
948 other targets such as m68k). Since we must use stf/sti,
949 the profitability is marginal anyway. */
951 #define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
953 /* 1 if N is a possible register number for function argument passing. */
955 #define FUNCTION_ARG_REGNO_P(REGNO) \
956 ( ( ((REGNO) == AR2_REGNO) /* AR2. */ \
957 || ((REGNO) == R2_REGNO) /* R2. */ \
958 || ((REGNO) == R3_REGNO) /* R3. */ \
959 || ((REGNO) == RC_REGNO) /* RC. */ \
960 || ((REGNO) == RS_REGNO) /* RS. */ \
961 || ((REGNO) == RE_REGNO)) /* RE. */ \
962 ? 1 \
963 : 0)
965 /* How Scalar Function Values Are Returned. */
967 #define FUNCTION_VALUE(VALTYPE, FUNC) \
968 gen_rtx_REG (TYPE_MODE(VALTYPE), R0_REGNO) /* Return in R0. */
970 #define LIBCALL_VALUE(MODE) \
971 gen_rtx_REG (MODE, R0_REGNO) /* Return in R0. */
973 #define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == R0_REGNO)
975 /* How Large Values Are Returned. */
977 #define DEFAULT_PCC_STRUCT_RETURN 0
979 /* Generating Code for Profiling. */
981 /* Note that the generated assembly uses the ^ operator to load the 16
982 MSBs of the address. This is not supported by the TI assembler.
983 The FUNCTION profiler needs a function mcount which gets passed
984 a pointer to the LABELNO. */
986 #define FUNCTION_PROFILER(FILE, LABELNO) \
987 if (! TARGET_C3X) \
989 fprintf (FILE, "\tpush\tar2\n"); \
990 fprintf (FILE, "\tldhi\t^LP%d,ar2\n", (LABELNO)); \
991 fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
992 fprintf (FILE, "\tcall\tmcount\n"); \
993 fprintf (FILE, "\tpop\tar2\n"); \
995 else \
997 fprintf (FILE, "\tpush\tar2\n"); \
998 fprintf (FILE, "\tldiu\t^LP%d,ar2\n", (LABELNO)); \
999 fprintf (FILE, "\tlsh\t16,ar2\n"); \
1000 fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
1001 fprintf (FILE, "\tcall\tmcount\n"); \
1002 fprintf (FILE, "\tpop\tar2\n"); \
1005 /* CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG
1006 or MULT.
1007 CCmode should be used when no special processing is needed. */
1008 #define SELECT_CC_MODE(OP,X,Y) \
1009 ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
1010 || GET_CODE (X) == NEG || GET_CODE (X) == MULT \
1011 || GET_MODE (X) == ABS \
1012 || GET_CODE (Y) == PLUS || GET_CODE (Y) == MINUS \
1013 || GET_CODE (Y) == NEG || GET_CODE (Y) == MULT \
1014 || GET_MODE (Y) == ABS) \
1015 ? CC_NOOVmode : CCmode)
1017 /* Addressing Modes. */
1019 #define HAVE_POST_INCREMENT 1
1020 #define HAVE_PRE_INCREMENT 1
1021 #define HAVE_POST_DECREMENT 1
1022 #define HAVE_PRE_DECREMENT 1
1023 #define HAVE_PRE_MODIFY_REG 1
1024 #define HAVE_POST_MODIFY_REG 1
1025 #define HAVE_PRE_MODIFY_DISP 1
1026 #define HAVE_POST_MODIFY_DISP 1
1028 /* The number of insns that can be packed into a single opcode. */
1029 #define PACK_INSNS 2
1031 /* Recognize any constant value that is a valid address.
1032 We could allow arbitrary constant addresses in the large memory
1033 model but for the small memory model we can only accept addresses
1034 within the data page. I suppose we could also allow
1035 CONST PLUS SYMBOL_REF. */
1036 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == SYMBOL_REF)
1038 /* Maximum number of registers that can appear in a valid memory
1039 address. */
1040 #define MAX_REGS_PER_ADDRESS 2
1042 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1043 and check its validity for a certain class.
1044 We have two alternate definitions for each of them.
1045 The usual definition accepts all pseudo regs; the other rejects
1046 them unless they have been allocated suitable hard regs.
1047 The symbol REG_OK_STRICT causes the latter definition to be used.
1049 Most source files want to accept pseudo regs in the hope that
1050 they will get allocated to the class that the insn wants them to be in.
1051 Source files for reload pass need to be strict.
1052 After reload, it makes no difference, since pseudo regs have
1053 been eliminated by then. */
1055 #ifndef REG_OK_STRICT
1057 /* Nonzero if X is a hard or pseudo reg that can be used as a base. */
1059 #define REG_OK_FOR_BASE_P(X) IS_ADDR_OR_PSEUDO_REG(X)
1061 /* Nonzero if X is a hard or pseudo reg that can be used as an index. */
1063 #define REG_OK_FOR_INDEX_P(X) IS_INDEX_OR_PSEUDO_REG(X)
1065 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1067 if (c4x_legitimate_address_p (MODE, X, 0)) \
1068 goto ADDR; \
1071 #else
1073 /* Nonzero if X is a hard reg that can be used as an index. */
1075 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1077 /* Nonzero if X is a hard reg that can be used as a base reg. */
1079 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1081 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1083 if (c4x_legitimate_address_p (MODE, X, 1)) \
1084 goto ADDR; \
1087 #endif
1089 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1091 rtx new; \
1093 new = c4x_legitimize_address (X, MODE); \
1094 if (new != NULL_RTX) \
1096 (X) = new; \
1097 goto WIN; \
1101 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1103 if (MODE != HImode \
1104 && MODE != HFmode \
1105 && GET_MODE (X) != HImode \
1106 && GET_MODE (X) != HFmode \
1107 && (GET_CODE (X) == CONST \
1108 || GET_CODE (X) == SYMBOL_REF \
1109 || GET_CODE (X) == LABEL_REF)) \
1111 if (! TARGET_SMALL) \
1113 int i; \
1114 (X) = gen_rtx_LO_SUM (GET_MODE (X), \
1115 gen_rtx_HIGH (GET_MODE (X), X), X); \
1116 i = push_reload (XEXP (X, 0), NULL_RTX, \
1117 &XEXP (X, 0), NULL, \
1118 DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
1119 OPNUM, TYPE); \
1120 /* The only valid reg is DP. This is a fixed reg and will \
1121 normally not be used so force it. */ \
1122 rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
1123 rld[i].nocombine = 1; \
1125 else \
1127 /* make_memloc in reload will substitute invalid memory \
1128 references. We need to fix them up. */ \
1129 (X) = gen_rtx_LO_SUM (Pmode, gen_rtx_REG (Pmode, DP_REGNO), (X)); \
1131 goto WIN; \
1133 else if (MODE != HImode \
1134 && MODE != HFmode \
1135 && GET_MODE (X) != HImode \
1136 && GET_MODE (X) != HFmode \
1137 && GET_CODE (X) == LO_SUM \
1138 && GET_CODE (XEXP (X,0)) == HIGH \
1139 && (GET_CODE (XEXP (XEXP (X,0),0)) == CONST \
1140 || GET_CODE (XEXP (XEXP (X,0),0)) == SYMBOL_REF \
1141 || GET_CODE (XEXP (XEXP (X,0),0)) == LABEL_REF)) \
1143 if (! TARGET_SMALL) \
1145 int i = push_reload (XEXP (X, 0), NULL_RTX, \
1146 &XEXP (X, 0), NULL, \
1147 DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
1148 OPNUM, TYPE); \
1149 /* The only valid reg is DP. This is a fixed reg and will \
1150 normally not be used so force it. */ \
1151 rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
1152 rld[i].nocombine = 1; \
1154 goto WIN; \
1158 /* No mode-dependent addresses on the C4x are autoincrements. */
1160 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1161 if (GET_CODE (ADDR) == PRE_DEC \
1162 || GET_CODE (ADDR) == POST_DEC \
1163 || GET_CODE (ADDR) == PRE_INC \
1164 || GET_CODE (ADDR) == POST_INC \
1165 || GET_CODE (ADDR) == POST_MODIFY \
1166 || GET_CODE (ADDR) == PRE_MODIFY) \
1167 goto LABEL
1170 /* Nonzero if the constant value X is a legitimate general operand.
1171 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1173 The C4x can only load 16-bit immediate values, so we only allow a
1174 restricted subset of CONST_INT and CONST_DOUBLE. Disallow
1175 LABEL_REF and SYMBOL_REF (except on the C40 with the big memory
1176 model) so that the symbols will be forced into the constant pool.
1177 On second thoughts, let's do this with the move expanders since
1178 the alias analysis has trouble if we force constant addresses
1179 into memory.
1182 #define LEGITIMATE_CONSTANT_P(X) \
1183 ((GET_CODE (X) == CONST_DOUBLE && c4x_H_constant (X)) \
1184 || (GET_CODE (X) == CONST_INT) \
1185 || (GET_CODE (X) == SYMBOL_REF) \
1186 || (GET_CODE (X) == LABEL_REF) \
1187 || (GET_CODE (X) == CONST) \
1188 || (GET_CODE (X) == HIGH && ! TARGET_C3X) \
1189 || (GET_CODE (X) == LO_SUM && ! TARGET_C3X))
1191 #define LEGITIMATE_DISPLACEMENT_P(X) IS_DISP8_CONST (INTVAL (X))
1193 /* Describing Relative Cost of Operations. */
1195 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
1196 if (REG_P (OP1) && ! REG_P (OP0)) \
1198 rtx tmp = OP0; OP0 = OP1 ; OP1 = tmp; \
1199 CODE = swap_condition (CODE); \
1202 #define EXT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, EXT_REGS))
1203 #define ADDR_CLASS_P(CLASS) (reg_class_subset_p (CLASS, ADDR_REGS))
1204 #define INDEX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, INDEX_REGS))
1205 #define EXPENSIVE_CLASS_P(CLASS) (ADDR_CLASS_P(CLASS) \
1206 || INDEX_CLASS_P(CLASS) || (CLASS) == SP_REG)
1208 /* Compute extra cost of moving data between one register class
1209 and another. */
1211 #define REGISTER_MOVE_COST(MODE, FROM, TO) 2
1213 /* Memory move cost is same as fast register move. Maybe this should
1214 be bumped up?. */
1216 #define MEMORY_MOVE_COST(M,C,I) 4
1218 /* Branches are kind of expensive (even with delayed branching) so
1219 make their cost higher. */
1221 #define BRANCH_COST 8
1223 #define WORD_REGISTER_OPERATIONS
1225 /* Dividing the Output into Sections. */
1227 #define TEXT_SECTION_ASM_OP "\t.text"
1229 #define DATA_SECTION_ASM_OP "\t.data"
1231 #define READONLY_DATA_SECTION_ASM_OP "\t.sect\t\".const\""
1233 /* Do not use .init section so __main will be called on startup. This will
1234 call __do_global_ctors and prepare for __do_global_dtors on exit. */
1236 #if 0
1237 #define INIT_SECTION_ASM_OP "\t.sect\t\".init\""
1238 #endif
1240 #define FINI_SECTION_ASM_OP "\t.sect\t\".fini\""
1242 /* Switch into a generic section. */
1243 #define TARGET_ASM_NAMED_SECTION c4x_asm_named_section
1246 /* Overall Framework of an Assembler File. */
1248 #define ASM_COMMENT_START ";"
1250 #define ASM_APP_ON ""
1251 #define ASM_APP_OFF ""
1253 #define ASM_OUTPUT_ASCII(FILE, PTR, LEN) c4x_output_ascii (FILE, PTR, LEN)
1255 /* Output and Generation of Labels. */
1257 #define NO_DOT_IN_LABEL /* Only required for TI format. */
1259 /* Globalizing directive for a label. */
1260 #define GLOBAL_ASM_OP "\t.global\t"
1262 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1263 c4x_external_ref (NAME)
1265 /* The prefix to add to user-visible assembler symbols. */
1267 #define USER_LABEL_PREFIX "_"
1269 /* This is how to store into the string LABEL
1270 the symbol_ref name of an internal numbered label where
1271 PREFIX is the class of label and NUM is the number within the class.
1272 This is suitable for output with `assemble_name'. */
1274 #define ASM_GENERATE_INTERNAL_LABEL(BUFFER, PREFIX, NUM) \
1275 sprintf (BUFFER, "*%s%lu", PREFIX, (unsigned long)(NUM))
1277 /* A C statement to output to the stdio stream STREAM assembler code which
1278 defines (equates) the symbol NAME to have the value VALUE. */
1280 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1281 do { \
1282 assemble_name (STREAM, NAME); \
1283 fprintf (STREAM, "\t.set\t%s\n", VALUE); \
1284 } while (0)
1286 /* Output of Dispatch Tables. */
1288 /* This is how to output an element of a case-vector that is absolute. */
1290 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1291 fprintf (FILE, "\t.long\tL%d\n", VALUE);
1293 /* This is how to output an element of a case-vector that is relative. */
1295 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1296 fprintf (FILE, "\t.long\tL%d-L%d\n", VALUE, REL);
1298 #undef SIZE_TYPE
1299 #define SIZE_TYPE "unsigned int"
1301 #undef PTRDIFF_TYPE
1302 #define PTRDIFF_TYPE "int"
1304 #undef WCHAR_TYPE
1305 #define WCHAR_TYPE "long int"
1307 #undef WCHAR_TYPE_SIZE
1308 #define WCHAR_TYPE_SIZE 32
1310 #define INT_TYPE_SIZE 32
1311 #define LONG_LONG_TYPE_SIZE 64
1312 #define FLOAT_TYPE_SIZE 32
1313 #define DOUBLE_TYPE_SIZE 32
1314 #define LONG_DOUBLE_TYPE_SIZE 64 /* Actually only 40. */
1316 /* Output #ident as a .ident. */
1318 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1319 fprintf (FILE, "\t.ident \"%s\"\n", NAME);
1321 /* Output of Uninitialized Variables. */
1323 /* This says how to output an assembler line to define a local
1324 uninitialized variable. */
1326 #undef ASM_OUTPUT_LOCAL
1327 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1328 ( fputs ("\t.bss\t", FILE), \
1329 assemble_name (FILE, (NAME)), \
1330 fprintf (FILE, ",%u\n", (int)(ROUNDED)))
1332 /* This says how to output an assembler line to define a global
1333 uninitialized variable. */
1335 #undef ASM_OUTPUT_COMMON
1336 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1337 ( fputs ("\t.globl\t", FILE), \
1338 assemble_name (FILE, (NAME)), \
1339 fputs ("\n\t.bss\t", FILE), \
1340 assemble_name (FILE, (NAME)), \
1341 fprintf (FILE, ",%u\n", (int)(ROUNDED)))
1343 #undef ASM_OUTPUT_BSS
1344 #define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1345 ( fputs ("\t.globl\t", FILE), \
1346 assemble_name (FILE, (NAME)), \
1347 fputs ("\n\t.bss\t", FILE), \
1348 assemble_name (FILE, (NAME)), \
1349 fprintf (FILE, ",%u\n", (int)(SIZE)))
1351 /* Macros Controlling Initialization Routines. */
1353 #define OBJECT_FORMAT_COFF
1354 #define REAL_NM_FILE_NAME "c4x-nm"
1356 /* Output of Assembler Instructions. */
1358 /* Register names when used for integer modes. */
1360 #define REGISTER_NAMES \
1362 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1363 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
1364 "dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
1365 "iif", "rs", "re", "rc", "r8", "r9", "r10", "r11" \
1368 /* Alternate register names when used for floating point modes. */
1370 #define FLOAT_REGISTER_NAMES \
1372 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1373 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
1374 "dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
1375 "iif", "rs", "re", "rc", "f8", "f9", "f10", "f11" \
1378 #define PRINT_OPERAND(FILE, X, CODE) c4x_print_operand(FILE, X, CODE)
1380 /* Determine which codes are valid without a following integer. These must
1381 not be alphabetic. */
1383 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#')
1385 #define PRINT_OPERAND_ADDRESS(FILE, X) c4x_print_operand_address(FILE, X)
1387 /* C4x specific pragmas. */
1388 #define REGISTER_TARGET_PRAGMAS() do { \
1389 c_register_pragma (0, "CODE_SECTION", c4x_pr_CODE_SECTION); \
1390 c_register_pragma (0, "DATA_SECTION", c4x_pr_DATA_SECTION); \
1391 c_register_pragma (0, "FUNC_CANNOT_INLINE", c4x_pr_ignored); \
1392 c_register_pragma (0, "FUNC_EXT_CALLED", c4x_pr_ignored); \
1393 c_register_pragma (0, "FUNC_IS_PURE", c4x_pr_FUNC_IS_PURE); \
1394 c_register_pragma (0, "FUNC_IS_SYSTEM", c4x_pr_ignored); \
1395 c_register_pragma (0, "FUNC_NEVER_RETURNS", c4x_pr_FUNC_NEVER_RETURNS); \
1396 c_register_pragma (0, "FUNC_NO_GLOBAL_ASG", c4x_pr_ignored); \
1397 c_register_pragma (0, "FUNC_NO_IND_ASG", c4x_pr_ignored); \
1398 c_register_pragma (0, "INTERRUPT", c4x_pr_INTERRUPT); \
1399 } while (0)
1401 /* Assembler Commands for Alignment. */
1403 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1404 { int c = SIZE; \
1405 for (; c > 0; --c) \
1406 fprintf (FILE,"\t.word\t0\n"); \
1409 #define ASM_NO_SKIP_IN_TEXT 1
1411 /* I'm not sure about this one. FIXME. */
1413 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1414 if ((LOG) != 0) \
1415 fprintf (FILE, "\t.align\t%d\n", (1 << (LOG)))
1418 /* Macros for SDB and DWARF Output (use .sdef instead of .def
1419 to avoid conflict with TI's use of .def). */
1421 #define SDB_DELIM "\n"
1422 #define SDB_DEBUGGING_INFO 1
1424 /* Don't use octal since this can confuse gas for the c4x. */
1425 #define PUT_SDB_TYPE(a) fprintf(asm_out_file, "\t.type\t0x%x%s", a, SDB_DELIM)
1427 #define PUT_SDB_DEF(A) \
1428 do { fprintf (asm_out_file, "\t.sdef\t"); \
1429 ASM_OUTPUT_LABELREF (asm_out_file, A); \
1430 fprintf (asm_out_file, SDB_DELIM); } while (0)
1432 #define PUT_SDB_PLAIN_DEF(A) \
1433 fprintf (asm_out_file,"\t.sdef\t.%s%s", A, SDB_DELIM)
1435 #define PUT_SDB_BLOCK_START(LINE) \
1436 fprintf (asm_out_file, \
1437 "\t.sdef\t.bb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
1438 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1440 #define PUT_SDB_BLOCK_END(LINE) \
1441 fprintf (asm_out_file, \
1442 "\t.sdef\t.eb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
1443 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1445 #define PUT_SDB_FUNCTION_START(LINE) \
1446 fprintf (asm_out_file, \
1447 "\t.sdef\t.bf%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
1448 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1450 /* Note we output relative line numbers for .ef which gas converts
1451 to absolute line numbers. The TI compiler outputs absolute line numbers
1452 in the .sym directive which gas does not support. */
1453 #define PUT_SDB_FUNCTION_END(LINE) \
1454 fprintf (asm_out_file, \
1455 "\t.sdef\t.ef%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
1456 SDB_DELIM, SDB_DELIM, SDB_DELIM, \
1457 (LINE), SDB_DELIM)
1459 #define PUT_SDB_EPILOGUE_END(NAME) \
1460 do { fprintf (asm_out_file, "\t.sdef\t"); \
1461 ASM_OUTPUT_LABELREF (asm_out_file, NAME); \
1462 fprintf (asm_out_file, \
1463 "%s\t.val\t.%s\t.scl\t-1%s\t.endef\n", \
1464 SDB_DELIM, SDB_DELIM, SDB_DELIM); } while (0)
1466 /* Define this as 1 if `char' should by default be signed; else as 0. */
1468 #define DEFAULT_SIGNED_CHAR 1
1470 /* A function address in a call instruction is a byte address (for
1471 indexing purposes) so give the MEM rtx a byte's mode. */
1473 #define FUNCTION_MODE QImode
1475 #define SLOW_BYTE_ACCESS 0
1477 /* Specify the machine mode that pointers have. After generation of
1478 RTL, the compiler makes no further distinction between pointers and
1479 any other objects of this machine mode. */
1481 #define Pmode QImode
1483 /* On the C4x we can write the following code. We have to clear the cache
1484 every time we execute it because the data in the stack could change.
1486 laj $+4
1487 addi3 4,r11,ar0
1488 lda *ar0,ar1
1489 lda *+ar0(1),ar0
1490 bud ar1
1493 or 1000h,st
1494 .word FNADDR
1495 .word CXT
1497 On the c3x this is a bit more difficult. We have to write self
1498 modifying code here. So we have to clear the cache every time
1499 we execute it because the data in the stack could change.
1501 ldiu TOP_OF_FUNCTION,ar1
1502 lsh 16,ar1
1503 or BOTTOM_OF_FUNCTION,ar1
1504 ldiu TOP_OF_STATIC,ar0
1505 bud ar1
1506 lsh 16,ar0
1507 or BOTTOM_OF_STATIC,ar0
1508 or 1000h,st
1512 #define TRAMPOLINE_SIZE (TARGET_C3X ? 8 : 10)
1514 #define TRAMPOLINE_TEMPLATE(FILE) \
1516 if (TARGET_C3X) \
1518 fprintf (FILE, "\tldiu\t0,ar1\n"); \
1519 fprintf (FILE, "\tlsh\t16,ar1\n"); \
1520 fprintf (FILE, "\tor\t0,ar1\n"); \
1521 fprintf (FILE, "\tldiu\t0,ar0\n"); \
1522 fprintf (FILE, "\tbud\tar1\n"); \
1523 fprintf (FILE, "\tlsh\t16,ar0\n"); \
1524 fprintf (FILE, "\tor\t0,ar0\n"); \
1525 fprintf (FILE, "\tor\t1000h,st\n"); \
1527 else \
1529 fprintf (FILE, "\tlaj\t$+4\n"); \
1530 fprintf (FILE, "\taddi3\t4,r11,ar0\n"); \
1531 fprintf (FILE, "\tlda\t*ar0,ar1\n"); \
1532 fprintf (FILE, "\tlda\t*+ar0(1),ar0\n"); \
1533 fprintf (FILE, "\tbud\tar1\n"); \
1534 fprintf (FILE, "\tnop\n"); \
1535 fprintf (FILE, "\tnop\n"); \
1536 fprintf (FILE, "\tor\t1000h,st\n"); \
1537 fprintf (FILE, "\t.word\t0\n"); \
1538 fprintf (FILE, "\t.word\t0\n"); \
1542 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1544 if (TARGET_C3X) \
1546 rtx tmp1, tmp2; \
1547 tmp1 = expand_shift (RSHIFT_EXPR, QImode, FNADDR, \
1548 size_int (16), 0, 1); \
1549 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1550 GEN_INT (0x5069), size_int (16), 0, 1); \
1551 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1552 emit_move_insn (gen_rtx_MEM (QImode, \
1553 plus_constant (TRAMP, 0)), tmp1); \
1554 tmp1 = expand_and (QImode, FNADDR, GEN_INT (0xffff), 0); \
1555 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1556 GEN_INT (0x1069), size_int (16), 0, 1); \
1557 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1558 emit_move_insn (gen_rtx_MEM (QImode, \
1559 plus_constant (TRAMP, 2)), tmp1); \
1560 tmp1 = expand_shift (RSHIFT_EXPR, QImode, CXT, \
1561 size_int (16), 0, 1); \
1562 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1563 GEN_INT (0x5068), size_int (16), 0, 1); \
1564 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1565 emit_move_insn (gen_rtx_MEM (QImode, \
1566 plus_constant (TRAMP, 3)), tmp1); \
1567 tmp1 = expand_and (QImode, CXT, GEN_INT (0xffff), 0); \
1568 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1569 GEN_INT (0x1068), size_int (16), 0, 1); \
1570 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1571 emit_move_insn (gen_rtx_MEM (QImode, \
1572 plus_constant (TRAMP, 6)), tmp1); \
1574 else \
1576 emit_move_insn (gen_rtx_MEM (QImode, \
1577 plus_constant (TRAMP, 8)), FNADDR); \
1578 emit_move_insn (gen_rtx_MEM (QImode, \
1579 plus_constant (TRAMP, 9)), CXT); \
1583 /* Specify the machine mode that this machine uses for the index in
1584 the tablejump instruction. */
1586 #define CASE_VECTOR_MODE Pmode
1588 /* Max number of (32-bit) bytes we can move from memory to memory
1589 in one reasonably fast instruction. */
1591 #define MOVE_MAX 1
1593 /* MOVE_RATIO is the number of move instructions that is better than a
1594 block move. */
1596 #define MOVE_RATIO 3
1598 #define BSS_SECTION_ASM_OP "\t.bss"
1600 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1601 fprintf (FILE, "\tpush\t%s\n", reg_names[REGNO])
1603 /* This is how to output an insn to pop a register from the stack.
1604 It need not be very fast code. */
1606 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1607 fprintf (FILE, "\tpop\t%s\n", reg_names[REGNO])
1609 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1610 is done just by pretending it is already truncated. */
1612 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1614 #define DBR_OUTPUT_SEQEND(FILE) \
1615 if (final_sequence != NULL_RTX) \
1617 int count; \
1618 rtx insn = XVECEXP (final_sequence, 0, 0); \
1619 int laj = GET_CODE (insn) == CALL_INSN \
1620 || (GET_CODE (insn) == INSN \
1621 && GET_CODE (PATTERN (insn)) == TRAP_IF);\
1623 count = dbr_sequence_length(); \
1624 while (count < (laj ? 2 : 3)) \
1626 fputs("\tnop\n", FILE); \
1627 count++; \
1629 if (laj) \
1630 fputs("\tpush\tr11\n", FILE); \
1633 #define NO_FUNCTION_CSE
1635 /* We don't want a leading tab. */
1637 #define ASM_OUTPUT_ASM(FILE, STRING) fprintf (FILE, "%s\n", STRING)
1639 /* Define the intrinsic functions for the c3x/c4x. */
1641 enum c4x_builtins
1643 /* intrinsic name */
1644 C4X_BUILTIN_FIX, /* fast_ftoi */
1645 C4X_BUILTIN_FIX_ANSI, /* ansi_ftoi */
1646 C4X_BUILTIN_MPYI, /* fast_imult (only C3x) */
1647 C4X_BUILTIN_TOIEEE, /* toieee (only C4x) */
1648 C4X_BUILTIN_FRIEEE, /* frieee (only C4x) */
1649 C4X_BUILTIN_RCPF /* fast_invf (only C4x) */
1653 /* Hack to overcome use of libgcc2.c using auto-host.h to determine
1654 HAVE_GAS_HIDDEN. */
1655 #undef HAVE_GAS_HIDDEN