[AArch64] Define TARGET_FLAGS_REGNUM
[official-gcc.git] / gcc / alias.c
blob5f37402919340cf2281219fa3adefe819637b1b8
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "varasm.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "flags.h"
36 #include "diagnostic-core.h"
37 #include "cselib.h"
38 #include "splay-tree.h"
39 #include "langhooks.h"
40 #include "timevar.h"
41 #include "dumpfile.h"
42 #include "target.h"
43 #include "df.h"
44 #include "tree-ssa-alias.h"
45 #include "pointer-set.h"
46 #include "internal-fn.h"
47 #include "gimple-expr.h"
48 #include "is-a.h"
49 #include "gimple.h"
50 #include "gimple-ssa.h"
52 /* The aliasing API provided here solves related but different problems:
54 Say there exists (in c)
56 struct X {
57 struct Y y1;
58 struct Z z2;
59 } x1, *px1, *px2;
61 struct Y y2, *py;
62 struct Z z2, *pz;
65 py = &x1.y1;
66 px2 = &x1;
68 Consider the four questions:
70 Can a store to x1 interfere with px2->y1?
71 Can a store to x1 interfere with px2->z2?
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
75 The answer to these questions can be yes, yes, yes, and maybe.
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store through a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
82 The last two questions can be solved in the same way as the first
83 two questions but this is too conservative. The observation is
84 that in some cases we can know which (if any) fields are addressed
85 and if those addresses are used in bad ways. This analysis may be
86 language specific. In C, arbitrary operations may be applied to
87 pointers. However, there is some indication that this may be too
88 conservative for some C++ types.
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
93 Historically in GCC, these two problems were combined and a single
94 data structure that was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two questions is similar to
97 the first, but does not contain the fields whose address are never
98 taken. For types that do escape the compilation unit, the data
99 structures will have identical information.
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
107 struct S { int i; double d; };
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
116 |/_ _\|
117 int double
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
132 struct GTY(()) alias_set_entry_d {
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 splay_tree GTY((param1_is (int), param2_is (int))) children;
149 typedef struct alias_set_entry_d *alias_set_entry;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static tree decl_for_component_ref (tree);
161 static int write_dependence_p (const_rtx,
162 const_rtx, enum machine_mode, rtx,
163 bool, bool, bool);
165 static void memory_modified_1 (rtx, const_rtx, void *);
167 /* Set up all info needed to perform alias analysis on memory references. */
169 /* Returns the size in bytes of the mode of X. */
170 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
172 /* Cap the number of passes we make over the insns propagating alias
173 information through set chains.
174 ??? 10 is a completely arbitrary choice. This should be based on the
175 maximum loop depth in the CFG, but we do not have this information
176 available (even if current_loops _is_ available). */
177 #define MAX_ALIAS_LOOP_PASSES 10
179 /* reg_base_value[N] gives an address to which register N is related.
180 If all sets after the first add or subtract to the current value
181 or otherwise modify it so it does not point to a different top level
182 object, reg_base_value[N] is equal to the address part of the source
183 of the first set.
185 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
186 expressions represent three types of base:
188 1. incoming arguments. There is just one ADDRESS to represent all
189 arguments, since we do not know at this level whether accesses
190 based on different arguments can alias. The ADDRESS has id 0.
192 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
193 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
194 Each of these rtxes has a separate ADDRESS associated with it,
195 each with a negative id.
197 GCC is (and is required to be) precise in which register it
198 chooses to access a particular region of stack. We can therefore
199 assume that accesses based on one of these rtxes do not alias
200 accesses based on another of these rtxes.
202 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
203 Each such piece of memory has a separate ADDRESS associated
204 with it, each with an id greater than 0.
206 Accesses based on one ADDRESS do not alias accesses based on other
207 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
208 alias globals either; the ADDRESSes have Pmode to indicate this.
209 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
210 indicate this. */
212 static GTY(()) vec<rtx, va_gc> *reg_base_value;
213 static rtx *new_reg_base_value;
215 /* The single VOIDmode ADDRESS that represents all argument bases.
216 It has id 0. */
217 static GTY(()) rtx arg_base_value;
219 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
220 static int unique_id;
222 /* We preserve the copy of old array around to avoid amount of garbage
223 produced. About 8% of garbage produced were attributed to this
224 array. */
225 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
227 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
228 registers. */
229 #define UNIQUE_BASE_VALUE_SP -1
230 #define UNIQUE_BASE_VALUE_ARGP -2
231 #define UNIQUE_BASE_VALUE_FP -3
232 #define UNIQUE_BASE_VALUE_HFP -4
234 #define static_reg_base_value \
235 (this_target_rtl->x_static_reg_base_value)
237 #define REG_BASE_VALUE(X) \
238 (REGNO (X) < vec_safe_length (reg_base_value) \
239 ? (*reg_base_value)[REGNO (X)] : 0)
241 /* Vector indexed by N giving the initial (unchanging) value known for
242 pseudo-register N. This vector is initialized in init_alias_analysis,
243 and does not change until end_alias_analysis is called. */
244 static GTY(()) vec<rtx, va_gc> *reg_known_value;
246 /* Vector recording for each reg_known_value whether it is due to a
247 REG_EQUIV note. Future passes (viz., reload) may replace the
248 pseudo with the equivalent expression and so we account for the
249 dependences that would be introduced if that happens.
251 The REG_EQUIV notes created in assign_parms may mention the arg
252 pointer, and there are explicit insns in the RTL that modify the
253 arg pointer. Thus we must ensure that such insns don't get
254 scheduled across each other because that would invalidate the
255 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
256 wrong, but solving the problem in the scheduler will likely give
257 better code, so we do it here. */
258 static sbitmap reg_known_equiv_p;
260 /* True when scanning insns from the start of the rtl to the
261 NOTE_INSN_FUNCTION_BEG note. */
262 static bool copying_arguments;
265 /* The splay-tree used to store the various alias set entries. */
266 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
268 /* Build a decomposed reference object for querying the alias-oracle
269 from the MEM rtx and store it in *REF.
270 Returns false if MEM is not suitable for the alias-oracle. */
272 static bool
273 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
275 tree expr = MEM_EXPR (mem);
276 tree base;
278 if (!expr)
279 return false;
281 ao_ref_init (ref, expr);
283 /* Get the base of the reference and see if we have to reject or
284 adjust it. */
285 base = ao_ref_base (ref);
286 if (base == NULL_TREE)
287 return false;
289 /* The tree oracle doesn't like bases that are neither decls
290 nor indirect references of SSA names. */
291 if (!(DECL_P (base)
292 || (TREE_CODE (base) == MEM_REF
293 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
294 || (TREE_CODE (base) == TARGET_MEM_REF
295 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
296 return false;
298 /* If this is a reference based on a partitioned decl replace the
299 base with a MEM_REF of the pointer representative we
300 created during stack slot partitioning. */
301 if (TREE_CODE (base) == VAR_DECL
302 && ! is_global_var (base)
303 && cfun->gimple_df->decls_to_pointers != NULL)
305 void *namep;
306 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
307 if (namep)
308 ref->base = build_simple_mem_ref (*(tree *)namep);
311 ref->ref_alias_set = MEM_ALIAS_SET (mem);
313 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
314 is conservative, so trust it. */
315 if (!MEM_OFFSET_KNOWN_P (mem)
316 || !MEM_SIZE_KNOWN_P (mem))
317 return true;
319 /* If the base decl is a parameter we can have negative MEM_OFFSET in
320 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
321 here. */
322 if (MEM_OFFSET (mem) < 0
323 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
324 return true;
326 /* Otherwise continue and refine size and offset we got from analyzing
327 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
329 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
330 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
332 /* The MEM may extend into adjacent fields, so adjust max_size if
333 necessary. */
334 if (ref->max_size != -1
335 && ref->size > ref->max_size)
336 ref->max_size = ref->size;
338 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
339 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
340 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
341 && (ref->offset < 0
342 || (DECL_P (ref->base)
343 && (!tree_fits_uhwi_p (DECL_SIZE (ref->base))
344 || (tree_to_uhwi (DECL_SIZE (ref->base))
345 < (unsigned HOST_WIDE_INT) (ref->offset + ref->size))))))
346 return false;
348 return true;
351 /* Query the alias-oracle on whether the two memory rtx X and MEM may
352 alias. If TBAA_P is set also apply TBAA. Returns true if the
353 two rtxen may alias, false otherwise. */
355 static bool
356 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
358 ao_ref ref1, ref2;
360 if (!ao_ref_from_mem (&ref1, x)
361 || !ao_ref_from_mem (&ref2, mem))
362 return true;
364 return refs_may_alias_p_1 (&ref1, &ref2,
365 tbaa_p
366 && MEM_ALIAS_SET (x) != 0
367 && MEM_ALIAS_SET (mem) != 0);
370 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
371 such an entry, or NULL otherwise. */
373 static inline alias_set_entry
374 get_alias_set_entry (alias_set_type alias_set)
376 return (*alias_sets)[alias_set];
379 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
380 the two MEMs cannot alias each other. */
382 static inline int
383 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
385 /* Perform a basic sanity check. Namely, that there are no alias sets
386 if we're not using strict aliasing. This helps to catch bugs
387 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
388 where a MEM is allocated in some way other than by the use of
389 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
390 use alias sets to indicate that spilled registers cannot alias each
391 other, we might need to remove this check. */
392 gcc_assert (flag_strict_aliasing
393 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
395 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
398 /* Insert the NODE into the splay tree given by DATA. Used by
399 record_alias_subset via splay_tree_foreach. */
401 static int
402 insert_subset_children (splay_tree_node node, void *data)
404 splay_tree_insert ((splay_tree) data, node->key, node->value);
406 return 0;
409 /* Return true if the first alias set is a subset of the second. */
411 bool
412 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
414 alias_set_entry ase;
416 /* Everything is a subset of the "aliases everything" set. */
417 if (set2 == 0)
418 return true;
420 /* Otherwise, check if set1 is a subset of set2. */
421 ase = get_alias_set_entry (set2);
422 if (ase != 0
423 && (ase->has_zero_child
424 || splay_tree_lookup (ase->children,
425 (splay_tree_key) set1)))
426 return true;
427 return false;
430 /* Return 1 if the two specified alias sets may conflict. */
433 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
435 alias_set_entry ase;
437 /* The easy case. */
438 if (alias_sets_must_conflict_p (set1, set2))
439 return 1;
441 /* See if the first alias set is a subset of the second. */
442 ase = get_alias_set_entry (set1);
443 if (ase != 0
444 && (ase->has_zero_child
445 || splay_tree_lookup (ase->children,
446 (splay_tree_key) set2)))
447 return 1;
449 /* Now do the same, but with the alias sets reversed. */
450 ase = get_alias_set_entry (set2);
451 if (ase != 0
452 && (ase->has_zero_child
453 || splay_tree_lookup (ase->children,
454 (splay_tree_key) set1)))
455 return 1;
457 /* The two alias sets are distinct and neither one is the
458 child of the other. Therefore, they cannot conflict. */
459 return 0;
462 /* Return 1 if the two specified alias sets will always conflict. */
465 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
467 if (set1 == 0 || set2 == 0 || set1 == set2)
468 return 1;
470 return 0;
473 /* Return 1 if any MEM object of type T1 will always conflict (using the
474 dependency routines in this file) with any MEM object of type T2.
475 This is used when allocating temporary storage. If T1 and/or T2 are
476 NULL_TREE, it means we know nothing about the storage. */
479 objects_must_conflict_p (tree t1, tree t2)
481 alias_set_type set1, set2;
483 /* If neither has a type specified, we don't know if they'll conflict
484 because we may be using them to store objects of various types, for
485 example the argument and local variables areas of inlined functions. */
486 if (t1 == 0 && t2 == 0)
487 return 0;
489 /* If they are the same type, they must conflict. */
490 if (t1 == t2
491 /* Likewise if both are volatile. */
492 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
493 return 1;
495 set1 = t1 ? get_alias_set (t1) : 0;
496 set2 = t2 ? get_alias_set (t2) : 0;
498 /* We can't use alias_sets_conflict_p because we must make sure
499 that every subtype of t1 will conflict with every subtype of
500 t2 for which a pair of subobjects of these respective subtypes
501 overlaps on the stack. */
502 return alias_sets_must_conflict_p (set1, set2);
505 /* Return the outermost parent of component present in the chain of
506 component references handled by get_inner_reference in T with the
507 following property:
508 - the component is non-addressable, or
509 - the parent has alias set zero,
510 or NULL_TREE if no such parent exists. In the former cases, the alias
511 set of this parent is the alias set that must be used for T itself. */
513 tree
514 component_uses_parent_alias_set_from (const_tree t)
516 const_tree found = NULL_TREE;
518 while (handled_component_p (t))
520 switch (TREE_CODE (t))
522 case COMPONENT_REF:
523 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
524 found = t;
525 break;
527 case ARRAY_REF:
528 case ARRAY_RANGE_REF:
529 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
530 found = t;
531 break;
533 case REALPART_EXPR:
534 case IMAGPART_EXPR:
535 break;
537 case BIT_FIELD_REF:
538 case VIEW_CONVERT_EXPR:
539 /* Bitfields and casts are never addressable. */
540 found = t;
541 break;
543 default:
544 gcc_unreachable ();
547 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
548 found = t;
550 t = TREE_OPERAND (t, 0);
553 if (found)
554 return TREE_OPERAND (found, 0);
556 return NULL_TREE;
560 /* Return whether the pointer-type T effective for aliasing may
561 access everything and thus the reference has to be assigned
562 alias-set zero. */
564 static bool
565 ref_all_alias_ptr_type_p (const_tree t)
567 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
568 || TYPE_REF_CAN_ALIAS_ALL (t));
571 /* Return the alias set for the memory pointed to by T, which may be
572 either a type or an expression. Return -1 if there is nothing
573 special about dereferencing T. */
575 static alias_set_type
576 get_deref_alias_set_1 (tree t)
578 /* All we care about is the type. */
579 if (! TYPE_P (t))
580 t = TREE_TYPE (t);
582 /* If we have an INDIRECT_REF via a void pointer, we don't
583 know anything about what that might alias. Likewise if the
584 pointer is marked that way. */
585 if (ref_all_alias_ptr_type_p (t))
586 return 0;
588 return -1;
591 /* Return the alias set for the memory pointed to by T, which may be
592 either a type or an expression. */
594 alias_set_type
595 get_deref_alias_set (tree t)
597 /* If we're not doing any alias analysis, just assume everything
598 aliases everything else. */
599 if (!flag_strict_aliasing)
600 return 0;
602 alias_set_type set = get_deref_alias_set_1 (t);
604 /* Fall back to the alias-set of the pointed-to type. */
605 if (set == -1)
607 if (! TYPE_P (t))
608 t = TREE_TYPE (t);
609 set = get_alias_set (TREE_TYPE (t));
612 return set;
615 /* Return the pointer-type relevant for TBAA purposes from the
616 memory reference tree *T or NULL_TREE in which case *T is
617 adjusted to point to the outermost component reference that
618 can be used for assigning an alias set. */
620 static tree
621 reference_alias_ptr_type_1 (tree *t)
623 tree inner;
625 /* Get the base object of the reference. */
626 inner = *t;
627 while (handled_component_p (inner))
629 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
630 the type of any component references that wrap it to
631 determine the alias-set. */
632 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
633 *t = TREE_OPERAND (inner, 0);
634 inner = TREE_OPERAND (inner, 0);
637 /* Handle pointer dereferences here, they can override the
638 alias-set. */
639 if (INDIRECT_REF_P (inner)
640 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
641 return TREE_TYPE (TREE_OPERAND (inner, 0));
642 else if (TREE_CODE (inner) == TARGET_MEM_REF)
643 return TREE_TYPE (TMR_OFFSET (inner));
644 else if (TREE_CODE (inner) == MEM_REF
645 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
646 return TREE_TYPE (TREE_OPERAND (inner, 1));
648 /* If the innermost reference is a MEM_REF that has a
649 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
650 using the memory access type for determining the alias-set. */
651 if (TREE_CODE (inner) == MEM_REF
652 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
653 != TYPE_MAIN_VARIANT
654 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
655 return TREE_TYPE (TREE_OPERAND (inner, 1));
657 /* Otherwise, pick up the outermost object that we could have
658 a pointer to. */
659 tree tem = component_uses_parent_alias_set_from (*t);
660 if (tem)
661 *t = tem;
663 return NULL_TREE;
666 /* Return the pointer-type relevant for TBAA purposes from the
667 gimple memory reference tree T. This is the type to be used for
668 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
669 and guarantees that get_alias_set will return the same alias
670 set for T and the replacement. */
672 tree
673 reference_alias_ptr_type (tree t)
675 tree ptype = reference_alias_ptr_type_1 (&t);
676 /* If there is a given pointer type for aliasing purposes, return it. */
677 if (ptype != NULL_TREE)
678 return ptype;
680 /* Otherwise build one from the outermost component reference we
681 may use. */
682 if (TREE_CODE (t) == MEM_REF
683 || TREE_CODE (t) == TARGET_MEM_REF)
684 return TREE_TYPE (TREE_OPERAND (t, 1));
685 else
686 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
689 /* Return whether the pointer-types T1 and T2 used to determine
690 two alias sets of two references will yield the same answer
691 from get_deref_alias_set. */
693 bool
694 alias_ptr_types_compatible_p (tree t1, tree t2)
696 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
697 return true;
699 if (ref_all_alias_ptr_type_p (t1)
700 || ref_all_alias_ptr_type_p (t2))
701 return false;
703 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
704 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
707 /* Return the alias set for T, which may be either a type or an
708 expression. Call language-specific routine for help, if needed. */
710 alias_set_type
711 get_alias_set (tree t)
713 alias_set_type set;
715 /* If we're not doing any alias analysis, just assume everything
716 aliases everything else. Also return 0 if this or its type is
717 an error. */
718 if (! flag_strict_aliasing || t == error_mark_node
719 || (! TYPE_P (t)
720 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
721 return 0;
723 /* We can be passed either an expression or a type. This and the
724 language-specific routine may make mutually-recursive calls to each other
725 to figure out what to do. At each juncture, we see if this is a tree
726 that the language may need to handle specially. First handle things that
727 aren't types. */
728 if (! TYPE_P (t))
730 /* Give the language a chance to do something with this tree
731 before we look at it. */
732 STRIP_NOPS (t);
733 set = lang_hooks.get_alias_set (t);
734 if (set != -1)
735 return set;
737 /* Get the alias pointer-type to use or the outermost object
738 that we could have a pointer to. */
739 tree ptype = reference_alias_ptr_type_1 (&t);
740 if (ptype != NULL)
741 return get_deref_alias_set (ptype);
743 /* If we've already determined the alias set for a decl, just return
744 it. This is necessary for C++ anonymous unions, whose component
745 variables don't look like union members (boo!). */
746 if (TREE_CODE (t) == VAR_DECL
747 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
748 return MEM_ALIAS_SET (DECL_RTL (t));
750 /* Now all we care about is the type. */
751 t = TREE_TYPE (t);
754 /* Variant qualifiers don't affect the alias set, so get the main
755 variant. */
756 t = TYPE_MAIN_VARIANT (t);
758 /* Always use the canonical type as well. If this is a type that
759 requires structural comparisons to identify compatible types
760 use alias set zero. */
761 if (TYPE_STRUCTURAL_EQUALITY_P (t))
763 /* Allow the language to specify another alias set for this
764 type. */
765 set = lang_hooks.get_alias_set (t);
766 if (set != -1)
767 return set;
768 return 0;
771 t = TYPE_CANONICAL (t);
773 /* The canonical type should not require structural equality checks. */
774 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
776 /* If this is a type with a known alias set, return it. */
777 if (TYPE_ALIAS_SET_KNOWN_P (t))
778 return TYPE_ALIAS_SET (t);
780 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
781 if (!COMPLETE_TYPE_P (t))
783 /* For arrays with unknown size the conservative answer is the
784 alias set of the element type. */
785 if (TREE_CODE (t) == ARRAY_TYPE)
786 return get_alias_set (TREE_TYPE (t));
788 /* But return zero as a conservative answer for incomplete types. */
789 return 0;
792 /* See if the language has special handling for this type. */
793 set = lang_hooks.get_alias_set (t);
794 if (set != -1)
795 return set;
797 /* There are no objects of FUNCTION_TYPE, so there's no point in
798 using up an alias set for them. (There are, of course, pointers
799 and references to functions, but that's different.) */
800 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
801 set = 0;
803 /* Unless the language specifies otherwise, let vector types alias
804 their components. This avoids some nasty type punning issues in
805 normal usage. And indeed lets vectors be treated more like an
806 array slice. */
807 else if (TREE_CODE (t) == VECTOR_TYPE)
808 set = get_alias_set (TREE_TYPE (t));
810 /* Unless the language specifies otherwise, treat array types the
811 same as their components. This avoids the asymmetry we get
812 through recording the components. Consider accessing a
813 character(kind=1) through a reference to a character(kind=1)[1:1].
814 Or consider if we want to assign integer(kind=4)[0:D.1387] and
815 integer(kind=4)[4] the same alias set or not.
816 Just be pragmatic here and make sure the array and its element
817 type get the same alias set assigned. */
818 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
819 set = get_alias_set (TREE_TYPE (t));
821 /* From the former common C and C++ langhook implementation:
823 Unfortunately, there is no canonical form of a pointer type.
824 In particular, if we have `typedef int I', then `int *', and
825 `I *' are different types. So, we have to pick a canonical
826 representative. We do this below.
828 Technically, this approach is actually more conservative that
829 it needs to be. In particular, `const int *' and `int *'
830 should be in different alias sets, according to the C and C++
831 standard, since their types are not the same, and so,
832 technically, an `int **' and `const int **' cannot point at
833 the same thing.
835 But, the standard is wrong. In particular, this code is
836 legal C++:
838 int *ip;
839 int **ipp = &ip;
840 const int* const* cipp = ipp;
841 And, it doesn't make sense for that to be legal unless you
842 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
843 the pointed-to types. This issue has been reported to the
844 C++ committee.
846 In addition to the above canonicalization issue, with LTO
847 we should also canonicalize `T (*)[]' to `T *' avoiding
848 alias issues with pointer-to element types and pointer-to
849 array types.
851 Likewise we need to deal with the situation of incomplete
852 pointed-to types and make `*(struct X **)&a' and
853 `*(struct X {} **)&a' alias. Otherwise we will have to
854 guarantee that all pointer-to incomplete type variants
855 will be replaced by pointer-to complete type variants if
856 they are available.
858 With LTO the convenient situation of using `void *' to
859 access and store any pointer type will also become
860 more apparent (and `void *' is just another pointer-to
861 incomplete type). Assigning alias-set zero to `void *'
862 and all pointer-to incomplete types is a not appealing
863 solution. Assigning an effective alias-set zero only
864 affecting pointers might be - by recording proper subset
865 relationships of all pointer alias-sets.
867 Pointer-to function types are another grey area which
868 needs caution. Globbing them all into one alias-set
869 or the above effective zero set would work.
871 For now just assign the same alias-set to all pointers.
872 That's simple and avoids all the above problems. */
873 else if (POINTER_TYPE_P (t)
874 && t != ptr_type_node)
875 set = get_alias_set (ptr_type_node);
877 /* Otherwise make a new alias set for this type. */
878 else
880 /* Each canonical type gets its own alias set, so canonical types
881 shouldn't form a tree. It doesn't really matter for types
882 we handle specially above, so only check it where it possibly
883 would result in a bogus alias set. */
884 gcc_checking_assert (TYPE_CANONICAL (t) == t);
886 set = new_alias_set ();
889 TYPE_ALIAS_SET (t) = set;
891 /* If this is an aggregate type or a complex type, we must record any
892 component aliasing information. */
893 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
894 record_component_aliases (t);
896 return set;
899 /* Return a brand-new alias set. */
901 alias_set_type
902 new_alias_set (void)
904 if (flag_strict_aliasing)
906 if (alias_sets == 0)
907 vec_safe_push (alias_sets, (alias_set_entry) 0);
908 vec_safe_push (alias_sets, (alias_set_entry) 0);
909 return alias_sets->length () - 1;
911 else
912 return 0;
915 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
916 not everything that aliases SUPERSET also aliases SUBSET. For example,
917 in C, a store to an `int' can alias a load of a structure containing an
918 `int', and vice versa. But it can't alias a load of a 'double' member
919 of the same structure. Here, the structure would be the SUPERSET and
920 `int' the SUBSET. This relationship is also described in the comment at
921 the beginning of this file.
923 This function should be called only once per SUPERSET/SUBSET pair.
925 It is illegal for SUPERSET to be zero; everything is implicitly a
926 subset of alias set zero. */
928 void
929 record_alias_subset (alias_set_type superset, alias_set_type subset)
931 alias_set_entry superset_entry;
932 alias_set_entry subset_entry;
934 /* It is possible in complex type situations for both sets to be the same,
935 in which case we can ignore this operation. */
936 if (superset == subset)
937 return;
939 gcc_assert (superset);
941 superset_entry = get_alias_set_entry (superset);
942 if (superset_entry == 0)
944 /* Create an entry for the SUPERSET, so that we have a place to
945 attach the SUBSET. */
946 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
947 superset_entry->alias_set = superset;
948 superset_entry->children
949 = splay_tree_new_ggc (splay_tree_compare_ints,
950 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
951 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
952 superset_entry->has_zero_child = 0;
953 (*alias_sets)[superset] = superset_entry;
956 if (subset == 0)
957 superset_entry->has_zero_child = 1;
958 else
960 subset_entry = get_alias_set_entry (subset);
961 /* If there is an entry for the subset, enter all of its children
962 (if they are not already present) as children of the SUPERSET. */
963 if (subset_entry)
965 if (subset_entry->has_zero_child)
966 superset_entry->has_zero_child = 1;
968 splay_tree_foreach (subset_entry->children, insert_subset_children,
969 superset_entry->children);
972 /* Enter the SUBSET itself as a child of the SUPERSET. */
973 splay_tree_insert (superset_entry->children,
974 (splay_tree_key) subset, 0);
978 /* Record that component types of TYPE, if any, are part of that type for
979 aliasing purposes. For record types, we only record component types
980 for fields that are not marked non-addressable. For array types, we
981 only record the component type if it is not marked non-aliased. */
983 void
984 record_component_aliases (tree type)
986 alias_set_type superset = get_alias_set (type);
987 tree field;
989 if (superset == 0)
990 return;
992 switch (TREE_CODE (type))
994 case RECORD_TYPE:
995 case UNION_TYPE:
996 case QUAL_UNION_TYPE:
997 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
998 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
999 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
1000 break;
1002 case COMPLEX_TYPE:
1003 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1004 break;
1006 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1007 element type. */
1009 default:
1010 break;
1014 /* Allocate an alias set for use in storing and reading from the varargs
1015 spill area. */
1017 static GTY(()) alias_set_type varargs_set = -1;
1019 alias_set_type
1020 get_varargs_alias_set (void)
1022 #if 1
1023 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1024 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1025 consistently use the varargs alias set for loads from the varargs
1026 area. So don't use it anywhere. */
1027 return 0;
1028 #else
1029 if (varargs_set == -1)
1030 varargs_set = new_alias_set ();
1032 return varargs_set;
1033 #endif
1036 /* Likewise, but used for the fixed portions of the frame, e.g., register
1037 save areas. */
1039 static GTY(()) alias_set_type frame_set = -1;
1041 alias_set_type
1042 get_frame_alias_set (void)
1044 if (frame_set == -1)
1045 frame_set = new_alias_set ();
1047 return frame_set;
1050 /* Create a new, unique base with id ID. */
1052 static rtx
1053 unique_base_value (HOST_WIDE_INT id)
1055 return gen_rtx_ADDRESS (Pmode, id);
1058 /* Return true if accesses based on any other base value cannot alias
1059 those based on X. */
1061 static bool
1062 unique_base_value_p (rtx x)
1064 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1067 /* Return true if X is known to be a base value. */
1069 static bool
1070 known_base_value_p (rtx x)
1072 switch (GET_CODE (x))
1074 case LABEL_REF:
1075 case SYMBOL_REF:
1076 return true;
1078 case ADDRESS:
1079 /* Arguments may or may not be bases; we don't know for sure. */
1080 return GET_MODE (x) != VOIDmode;
1082 default:
1083 return false;
1087 /* Inside SRC, the source of a SET, find a base address. */
1089 static rtx
1090 find_base_value (rtx src)
1092 unsigned int regno;
1094 #if defined (FIND_BASE_TERM)
1095 /* Try machine-dependent ways to find the base term. */
1096 src = FIND_BASE_TERM (src);
1097 #endif
1099 switch (GET_CODE (src))
1101 case SYMBOL_REF:
1102 case LABEL_REF:
1103 return src;
1105 case REG:
1106 regno = REGNO (src);
1107 /* At the start of a function, argument registers have known base
1108 values which may be lost later. Returning an ADDRESS
1109 expression here allows optimization based on argument values
1110 even when the argument registers are used for other purposes. */
1111 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1112 return new_reg_base_value[regno];
1114 /* If a pseudo has a known base value, return it. Do not do this
1115 for non-fixed hard regs since it can result in a circular
1116 dependency chain for registers which have values at function entry.
1118 The test above is not sufficient because the scheduler may move
1119 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1120 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1121 && regno < vec_safe_length (reg_base_value))
1123 /* If we're inside init_alias_analysis, use new_reg_base_value
1124 to reduce the number of relaxation iterations. */
1125 if (new_reg_base_value && new_reg_base_value[regno]
1126 && DF_REG_DEF_COUNT (regno) == 1)
1127 return new_reg_base_value[regno];
1129 if ((*reg_base_value)[regno])
1130 return (*reg_base_value)[regno];
1133 return 0;
1135 case MEM:
1136 /* Check for an argument passed in memory. Only record in the
1137 copying-arguments block; it is too hard to track changes
1138 otherwise. */
1139 if (copying_arguments
1140 && (XEXP (src, 0) == arg_pointer_rtx
1141 || (GET_CODE (XEXP (src, 0)) == PLUS
1142 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1143 return arg_base_value;
1144 return 0;
1146 case CONST:
1147 src = XEXP (src, 0);
1148 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1149 break;
1151 /* ... fall through ... */
1153 case PLUS:
1154 case MINUS:
1156 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1158 /* If either operand is a REG that is a known pointer, then it
1159 is the base. */
1160 if (REG_P (src_0) && REG_POINTER (src_0))
1161 return find_base_value (src_0);
1162 if (REG_P (src_1) && REG_POINTER (src_1))
1163 return find_base_value (src_1);
1165 /* If either operand is a REG, then see if we already have
1166 a known value for it. */
1167 if (REG_P (src_0))
1169 temp = find_base_value (src_0);
1170 if (temp != 0)
1171 src_0 = temp;
1174 if (REG_P (src_1))
1176 temp = find_base_value (src_1);
1177 if (temp!= 0)
1178 src_1 = temp;
1181 /* If either base is named object or a special address
1182 (like an argument or stack reference), then use it for the
1183 base term. */
1184 if (src_0 != 0 && known_base_value_p (src_0))
1185 return src_0;
1187 if (src_1 != 0 && known_base_value_p (src_1))
1188 return src_1;
1190 /* Guess which operand is the base address:
1191 If either operand is a symbol, then it is the base. If
1192 either operand is a CONST_INT, then the other is the base. */
1193 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1194 return find_base_value (src_0);
1195 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1196 return find_base_value (src_1);
1198 return 0;
1201 case LO_SUM:
1202 /* The standard form is (lo_sum reg sym) so look only at the
1203 second operand. */
1204 return find_base_value (XEXP (src, 1));
1206 case AND:
1207 /* If the second operand is constant set the base
1208 address to the first operand. */
1209 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1210 return find_base_value (XEXP (src, 0));
1211 return 0;
1213 case TRUNCATE:
1214 /* As we do not know which address space the pointer is referring to, we can
1215 handle this only if the target does not support different pointer or
1216 address modes depending on the address space. */
1217 if (!target_default_pointer_address_modes_p ())
1218 break;
1219 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1220 break;
1221 /* Fall through. */
1222 case HIGH:
1223 case PRE_INC:
1224 case PRE_DEC:
1225 case POST_INC:
1226 case POST_DEC:
1227 case PRE_MODIFY:
1228 case POST_MODIFY:
1229 return find_base_value (XEXP (src, 0));
1231 case ZERO_EXTEND:
1232 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1233 /* As we do not know which address space the pointer is referring to, we can
1234 handle this only if the target does not support different pointer or
1235 address modes depending on the address space. */
1236 if (!target_default_pointer_address_modes_p ())
1237 break;
1240 rtx temp = find_base_value (XEXP (src, 0));
1242 if (temp != 0 && CONSTANT_P (temp))
1243 temp = convert_memory_address (Pmode, temp);
1245 return temp;
1248 default:
1249 break;
1252 return 0;
1255 /* Called from init_alias_analysis indirectly through note_stores,
1256 or directly if DEST is a register with a REG_NOALIAS note attached.
1257 SET is null in the latter case. */
1259 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1260 register N has been set in this function. */
1261 static sbitmap reg_seen;
1263 static void
1264 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1266 unsigned regno;
1267 rtx src;
1268 int n;
1270 if (!REG_P (dest))
1271 return;
1273 regno = REGNO (dest);
1275 gcc_checking_assert (regno < reg_base_value->length ());
1277 /* If this spans multiple hard registers, then we must indicate that every
1278 register has an unusable value. */
1279 if (regno < FIRST_PSEUDO_REGISTER)
1280 n = hard_regno_nregs[regno][GET_MODE (dest)];
1281 else
1282 n = 1;
1283 if (n != 1)
1285 while (--n >= 0)
1287 bitmap_set_bit (reg_seen, regno + n);
1288 new_reg_base_value[regno + n] = 0;
1290 return;
1293 if (set)
1295 /* A CLOBBER wipes out any old value but does not prevent a previously
1296 unset register from acquiring a base address (i.e. reg_seen is not
1297 set). */
1298 if (GET_CODE (set) == CLOBBER)
1300 new_reg_base_value[regno] = 0;
1301 return;
1303 src = SET_SRC (set);
1305 else
1307 /* There's a REG_NOALIAS note against DEST. */
1308 if (bitmap_bit_p (reg_seen, regno))
1310 new_reg_base_value[regno] = 0;
1311 return;
1313 bitmap_set_bit (reg_seen, regno);
1314 new_reg_base_value[regno] = unique_base_value (unique_id++);
1315 return;
1318 /* If this is not the first set of REGNO, see whether the new value
1319 is related to the old one. There are two cases of interest:
1321 (1) The register might be assigned an entirely new value
1322 that has the same base term as the original set.
1324 (2) The set might be a simple self-modification that
1325 cannot change REGNO's base value.
1327 If neither case holds, reject the original base value as invalid.
1328 Note that the following situation is not detected:
1330 extern int x, y; int *p = &x; p += (&y-&x);
1332 ANSI C does not allow computing the difference of addresses
1333 of distinct top level objects. */
1334 if (new_reg_base_value[regno] != 0
1335 && find_base_value (src) != new_reg_base_value[regno])
1336 switch (GET_CODE (src))
1338 case LO_SUM:
1339 case MINUS:
1340 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1341 new_reg_base_value[regno] = 0;
1342 break;
1343 case PLUS:
1344 /* If the value we add in the PLUS is also a valid base value,
1345 this might be the actual base value, and the original value
1346 an index. */
1348 rtx other = NULL_RTX;
1350 if (XEXP (src, 0) == dest)
1351 other = XEXP (src, 1);
1352 else if (XEXP (src, 1) == dest)
1353 other = XEXP (src, 0);
1355 if (! other || find_base_value (other))
1356 new_reg_base_value[regno] = 0;
1357 break;
1359 case AND:
1360 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1361 new_reg_base_value[regno] = 0;
1362 break;
1363 default:
1364 new_reg_base_value[regno] = 0;
1365 break;
1367 /* If this is the first set of a register, record the value. */
1368 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1369 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1370 new_reg_base_value[regno] = find_base_value (src);
1372 bitmap_set_bit (reg_seen, regno);
1375 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1376 using hard registers with non-null REG_BASE_VALUE for renaming. */
1378 get_reg_base_value (unsigned int regno)
1380 return (*reg_base_value)[regno];
1383 /* If a value is known for REGNO, return it. */
1386 get_reg_known_value (unsigned int regno)
1388 if (regno >= FIRST_PSEUDO_REGISTER)
1390 regno -= FIRST_PSEUDO_REGISTER;
1391 if (regno < vec_safe_length (reg_known_value))
1392 return (*reg_known_value)[regno];
1394 return NULL;
1397 /* Set it. */
1399 static void
1400 set_reg_known_value (unsigned int regno, rtx val)
1402 if (regno >= FIRST_PSEUDO_REGISTER)
1404 regno -= FIRST_PSEUDO_REGISTER;
1405 if (regno < vec_safe_length (reg_known_value))
1406 (*reg_known_value)[regno] = val;
1410 /* Similarly for reg_known_equiv_p. */
1412 bool
1413 get_reg_known_equiv_p (unsigned int regno)
1415 if (regno >= FIRST_PSEUDO_REGISTER)
1417 regno -= FIRST_PSEUDO_REGISTER;
1418 if (regno < vec_safe_length (reg_known_value))
1419 return bitmap_bit_p (reg_known_equiv_p, regno);
1421 return false;
1424 static void
1425 set_reg_known_equiv_p (unsigned int regno, bool val)
1427 if (regno >= FIRST_PSEUDO_REGISTER)
1429 regno -= FIRST_PSEUDO_REGISTER;
1430 if (regno < vec_safe_length (reg_known_value))
1432 if (val)
1433 bitmap_set_bit (reg_known_equiv_p, regno);
1434 else
1435 bitmap_clear_bit (reg_known_equiv_p, regno);
1441 /* Returns a canonical version of X, from the point of view alias
1442 analysis. (For example, if X is a MEM whose address is a register,
1443 and the register has a known value (say a SYMBOL_REF), then a MEM
1444 whose address is the SYMBOL_REF is returned.) */
1447 canon_rtx (rtx x)
1449 /* Recursively look for equivalences. */
1450 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1452 rtx t = get_reg_known_value (REGNO (x));
1453 if (t == x)
1454 return x;
1455 if (t)
1456 return canon_rtx (t);
1459 if (GET_CODE (x) == PLUS)
1461 rtx x0 = canon_rtx (XEXP (x, 0));
1462 rtx x1 = canon_rtx (XEXP (x, 1));
1464 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1466 if (CONST_INT_P (x0))
1467 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1468 else if (CONST_INT_P (x1))
1469 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1470 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1474 /* This gives us much better alias analysis when called from
1475 the loop optimizer. Note we want to leave the original
1476 MEM alone, but need to return the canonicalized MEM with
1477 all the flags with their original values. */
1478 else if (MEM_P (x))
1479 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1481 return x;
1484 /* Return 1 if X and Y are identical-looking rtx's.
1485 Expect that X and Y has been already canonicalized.
1487 We use the data in reg_known_value above to see if two registers with
1488 different numbers are, in fact, equivalent. */
1490 static int
1491 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1493 int i;
1494 int j;
1495 enum rtx_code code;
1496 const char *fmt;
1498 if (x == 0 && y == 0)
1499 return 1;
1500 if (x == 0 || y == 0)
1501 return 0;
1503 if (x == y)
1504 return 1;
1506 code = GET_CODE (x);
1507 /* Rtx's of different codes cannot be equal. */
1508 if (code != GET_CODE (y))
1509 return 0;
1511 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1512 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1514 if (GET_MODE (x) != GET_MODE (y))
1515 return 0;
1517 /* Some RTL can be compared without a recursive examination. */
1518 switch (code)
1520 case REG:
1521 return REGNO (x) == REGNO (y);
1523 case LABEL_REF:
1524 return XEXP (x, 0) == XEXP (y, 0);
1526 case SYMBOL_REF:
1527 return XSTR (x, 0) == XSTR (y, 0);
1529 case ENTRY_VALUE:
1530 /* This is magic, don't go through canonicalization et al. */
1531 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1533 case VALUE:
1534 CASE_CONST_UNIQUE:
1535 /* There's no need to compare the contents of CONST_DOUBLEs or
1536 CONST_INTs because pointer equality is a good enough
1537 comparison for these nodes. */
1538 return 0;
1540 default:
1541 break;
1544 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1545 if (code == PLUS)
1546 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1547 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1548 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1549 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1550 /* For commutative operations, the RTX match if the operand match in any
1551 order. Also handle the simple binary and unary cases without a loop. */
1552 if (COMMUTATIVE_P (x))
1554 rtx xop0 = canon_rtx (XEXP (x, 0));
1555 rtx yop0 = canon_rtx (XEXP (y, 0));
1556 rtx yop1 = canon_rtx (XEXP (y, 1));
1558 return ((rtx_equal_for_memref_p (xop0, yop0)
1559 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1560 || (rtx_equal_for_memref_p (xop0, yop1)
1561 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1563 else if (NON_COMMUTATIVE_P (x))
1565 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1566 canon_rtx (XEXP (y, 0)))
1567 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1568 canon_rtx (XEXP (y, 1))));
1570 else if (UNARY_P (x))
1571 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1572 canon_rtx (XEXP (y, 0)));
1574 /* Compare the elements. If any pair of corresponding elements
1575 fail to match, return 0 for the whole things.
1577 Limit cases to types which actually appear in addresses. */
1579 fmt = GET_RTX_FORMAT (code);
1580 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1582 switch (fmt[i])
1584 case 'i':
1585 if (XINT (x, i) != XINT (y, i))
1586 return 0;
1587 break;
1589 case 'E':
1590 /* Two vectors must have the same length. */
1591 if (XVECLEN (x, i) != XVECLEN (y, i))
1592 return 0;
1594 /* And the corresponding elements must match. */
1595 for (j = 0; j < XVECLEN (x, i); j++)
1596 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1597 canon_rtx (XVECEXP (y, i, j))) == 0)
1598 return 0;
1599 break;
1601 case 'e':
1602 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1603 canon_rtx (XEXP (y, i))) == 0)
1604 return 0;
1605 break;
1607 /* This can happen for asm operands. */
1608 case 's':
1609 if (strcmp (XSTR (x, i), XSTR (y, i)))
1610 return 0;
1611 break;
1613 /* This can happen for an asm which clobbers memory. */
1614 case '0':
1615 break;
1617 /* It is believed that rtx's at this level will never
1618 contain anything but integers and other rtx's,
1619 except for within LABEL_REFs and SYMBOL_REFs. */
1620 default:
1621 gcc_unreachable ();
1624 return 1;
1627 static rtx
1628 find_base_term (rtx x)
1630 cselib_val *val;
1631 struct elt_loc_list *l, *f;
1632 rtx ret;
1634 #if defined (FIND_BASE_TERM)
1635 /* Try machine-dependent ways to find the base term. */
1636 x = FIND_BASE_TERM (x);
1637 #endif
1639 switch (GET_CODE (x))
1641 case REG:
1642 return REG_BASE_VALUE (x);
1644 case TRUNCATE:
1645 /* As we do not know which address space the pointer is referring to, we can
1646 handle this only if the target does not support different pointer or
1647 address modes depending on the address space. */
1648 if (!target_default_pointer_address_modes_p ())
1649 return 0;
1650 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1651 return 0;
1652 /* Fall through. */
1653 case HIGH:
1654 case PRE_INC:
1655 case PRE_DEC:
1656 case POST_INC:
1657 case POST_DEC:
1658 case PRE_MODIFY:
1659 case POST_MODIFY:
1660 return find_base_term (XEXP (x, 0));
1662 case ZERO_EXTEND:
1663 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1664 /* As we do not know which address space the pointer is referring to, we can
1665 handle this only if the target does not support different pointer or
1666 address modes depending on the address space. */
1667 if (!target_default_pointer_address_modes_p ())
1668 return 0;
1671 rtx temp = find_base_term (XEXP (x, 0));
1673 if (temp != 0 && CONSTANT_P (temp))
1674 temp = convert_memory_address (Pmode, temp);
1676 return temp;
1679 case VALUE:
1680 val = CSELIB_VAL_PTR (x);
1681 ret = NULL_RTX;
1683 if (!val)
1684 return ret;
1686 if (cselib_sp_based_value_p (val))
1687 return static_reg_base_value[STACK_POINTER_REGNUM];
1689 f = val->locs;
1690 /* Temporarily reset val->locs to avoid infinite recursion. */
1691 val->locs = NULL;
1693 for (l = f; l; l = l->next)
1694 if (GET_CODE (l->loc) == VALUE
1695 && CSELIB_VAL_PTR (l->loc)->locs
1696 && !CSELIB_VAL_PTR (l->loc)->locs->next
1697 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1698 continue;
1699 else if ((ret = find_base_term (l->loc)) != 0)
1700 break;
1702 val->locs = f;
1703 return ret;
1705 case LO_SUM:
1706 /* The standard form is (lo_sum reg sym) so look only at the
1707 second operand. */
1708 return find_base_term (XEXP (x, 1));
1710 case CONST:
1711 x = XEXP (x, 0);
1712 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1713 return 0;
1714 /* Fall through. */
1715 case PLUS:
1716 case MINUS:
1718 rtx tmp1 = XEXP (x, 0);
1719 rtx tmp2 = XEXP (x, 1);
1721 /* This is a little bit tricky since we have to determine which of
1722 the two operands represents the real base address. Otherwise this
1723 routine may return the index register instead of the base register.
1725 That may cause us to believe no aliasing was possible, when in
1726 fact aliasing is possible.
1728 We use a few simple tests to guess the base register. Additional
1729 tests can certainly be added. For example, if one of the operands
1730 is a shift or multiply, then it must be the index register and the
1731 other operand is the base register. */
1733 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1734 return find_base_term (tmp2);
1736 /* If either operand is known to be a pointer, then prefer it
1737 to determine the base term. */
1738 if (REG_P (tmp1) && REG_POINTER (tmp1))
1740 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1742 rtx tem = tmp1;
1743 tmp1 = tmp2;
1744 tmp2 = tem;
1747 /* Go ahead and find the base term for both operands. If either base
1748 term is from a pointer or is a named object or a special address
1749 (like an argument or stack reference), then use it for the
1750 base term. */
1751 rtx base = find_base_term (tmp1);
1752 if (base != NULL_RTX
1753 && ((REG_P (tmp1) && REG_POINTER (tmp1))
1754 || known_base_value_p (base)))
1755 return base;
1756 base = find_base_term (tmp2);
1757 if (base != NULL_RTX
1758 && ((REG_P (tmp2) && REG_POINTER (tmp2))
1759 || known_base_value_p (base)))
1760 return base;
1762 /* We could not determine which of the two operands was the
1763 base register and which was the index. So we can determine
1764 nothing from the base alias check. */
1765 return 0;
1768 case AND:
1769 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1770 return find_base_term (XEXP (x, 0));
1771 return 0;
1773 case SYMBOL_REF:
1774 case LABEL_REF:
1775 return x;
1777 default:
1778 return 0;
1782 /* Return true if accesses to address X may alias accesses based
1783 on the stack pointer. */
1785 bool
1786 may_be_sp_based_p (rtx x)
1788 rtx base = find_base_term (x);
1789 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1792 /* Return 0 if the addresses X and Y are known to point to different
1793 objects, 1 if they might be pointers to the same object. */
1795 static int
1796 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
1797 enum machine_mode x_mode, enum machine_mode y_mode)
1799 /* If the address itself has no known base see if a known equivalent
1800 value has one. If either address still has no known base, nothing
1801 is known about aliasing. */
1802 if (x_base == 0)
1804 rtx x_c;
1806 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1807 return 1;
1809 x_base = find_base_term (x_c);
1810 if (x_base == 0)
1811 return 1;
1814 if (y_base == 0)
1816 rtx y_c;
1817 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1818 return 1;
1820 y_base = find_base_term (y_c);
1821 if (y_base == 0)
1822 return 1;
1825 /* If the base addresses are equal nothing is known about aliasing. */
1826 if (rtx_equal_p (x_base, y_base))
1827 return 1;
1829 /* The base addresses are different expressions. If they are not accessed
1830 via AND, there is no conflict. We can bring knowledge of object
1831 alignment into play here. For example, on alpha, "char a, b;" can
1832 alias one another, though "char a; long b;" cannot. AND addesses may
1833 implicitly alias surrounding objects; i.e. unaligned access in DImode
1834 via AND address can alias all surrounding object types except those
1835 with aligment 8 or higher. */
1836 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1837 return 1;
1838 if (GET_CODE (x) == AND
1839 && (!CONST_INT_P (XEXP (x, 1))
1840 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1841 return 1;
1842 if (GET_CODE (y) == AND
1843 && (!CONST_INT_P (XEXP (y, 1))
1844 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1845 return 1;
1847 /* Differing symbols not accessed via AND never alias. */
1848 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1849 return 0;
1851 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1852 return 0;
1854 return 1;
1857 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1858 whose UID is greater than the int uid that D points to. */
1860 static int
1861 refs_newer_value_cb (rtx *x, void *d)
1863 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1864 return 1;
1866 return 0;
1869 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1870 that of V. */
1872 static bool
1873 refs_newer_value_p (rtx expr, rtx v)
1875 int minuid = CSELIB_VAL_PTR (v)->uid;
1877 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1880 /* Convert the address X into something we can use. This is done by returning
1881 it unchanged unless it is a value; in the latter case we call cselib to get
1882 a more useful rtx. */
1885 get_addr (rtx x)
1887 cselib_val *v;
1888 struct elt_loc_list *l;
1890 if (GET_CODE (x) != VALUE)
1891 return x;
1892 v = CSELIB_VAL_PTR (x);
1893 if (v)
1895 bool have_equivs = cselib_have_permanent_equivalences ();
1896 if (have_equivs)
1897 v = canonical_cselib_val (v);
1898 for (l = v->locs; l; l = l->next)
1899 if (CONSTANT_P (l->loc))
1900 return l->loc;
1901 for (l = v->locs; l; l = l->next)
1902 if (!REG_P (l->loc) && !MEM_P (l->loc)
1903 /* Avoid infinite recursion when potentially dealing with
1904 var-tracking artificial equivalences, by skipping the
1905 equivalences themselves, and not choosing expressions
1906 that refer to newer VALUEs. */
1907 && (!have_equivs
1908 || (GET_CODE (l->loc) != VALUE
1909 && !refs_newer_value_p (l->loc, x))))
1910 return l->loc;
1911 if (have_equivs)
1913 for (l = v->locs; l; l = l->next)
1914 if (REG_P (l->loc)
1915 || (GET_CODE (l->loc) != VALUE
1916 && !refs_newer_value_p (l->loc, x)))
1917 return l->loc;
1918 /* Return the canonical value. */
1919 return v->val_rtx;
1921 if (v->locs)
1922 return v->locs->loc;
1924 return x;
1927 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1928 where SIZE is the size in bytes of the memory reference. If ADDR
1929 is not modified by the memory reference then ADDR is returned. */
1931 static rtx
1932 addr_side_effect_eval (rtx addr, int size, int n_refs)
1934 int offset = 0;
1936 switch (GET_CODE (addr))
1938 case PRE_INC:
1939 offset = (n_refs + 1) * size;
1940 break;
1941 case PRE_DEC:
1942 offset = -(n_refs + 1) * size;
1943 break;
1944 case POST_INC:
1945 offset = n_refs * size;
1946 break;
1947 case POST_DEC:
1948 offset = -n_refs * size;
1949 break;
1951 default:
1952 return addr;
1955 if (offset)
1956 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1957 gen_int_mode (offset, GET_MODE (addr)));
1958 else
1959 addr = XEXP (addr, 0);
1960 addr = canon_rtx (addr);
1962 return addr;
1965 /* Return TRUE if an object X sized at XSIZE bytes and another object
1966 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
1967 any of the sizes is zero, assume an overlap, otherwise use the
1968 absolute value of the sizes as the actual sizes. */
1970 static inline bool
1971 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
1973 return (xsize == 0 || ysize == 0
1974 || (c >= 0
1975 ? (abs (xsize) > c)
1976 : (abs (ysize) > -c)));
1979 /* Return one if X and Y (memory addresses) reference the
1980 same location in memory or if the references overlap.
1981 Return zero if they do not overlap, else return
1982 minus one in which case they still might reference the same location.
1984 C is an offset accumulator. When
1985 C is nonzero, we are testing aliases between X and Y + C.
1986 XSIZE is the size in bytes of the X reference,
1987 similarly YSIZE is the size in bytes for Y.
1988 Expect that canon_rtx has been already called for X and Y.
1990 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1991 referenced (the reference was BLKmode), so make the most pessimistic
1992 assumptions.
1994 If XSIZE or YSIZE is negative, we may access memory outside the object
1995 being referenced as a side effect. This can happen when using AND to
1996 align memory references, as is done on the Alpha.
1998 Nice to notice that varying addresses cannot conflict with fp if no
1999 local variables had their addresses taken, but that's too hard now.
2001 ??? Contrary to the tree alias oracle this does not return
2002 one for X + non-constant and Y + non-constant when X and Y are equal.
2003 If that is fixed the TBAA hack for union type-punning can be removed. */
2005 static int
2006 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2008 if (GET_CODE (x) == VALUE)
2010 if (REG_P (y))
2012 struct elt_loc_list *l = NULL;
2013 if (CSELIB_VAL_PTR (x))
2014 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2015 l; l = l->next)
2016 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2017 break;
2018 if (l)
2019 x = y;
2020 else
2021 x = get_addr (x);
2023 /* Don't call get_addr if y is the same VALUE. */
2024 else if (x != y)
2025 x = get_addr (x);
2027 if (GET_CODE (y) == VALUE)
2029 if (REG_P (x))
2031 struct elt_loc_list *l = NULL;
2032 if (CSELIB_VAL_PTR (y))
2033 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2034 l; l = l->next)
2035 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2036 break;
2037 if (l)
2038 y = x;
2039 else
2040 y = get_addr (y);
2042 /* Don't call get_addr if x is the same VALUE. */
2043 else if (y != x)
2044 y = get_addr (y);
2046 if (GET_CODE (x) == HIGH)
2047 x = XEXP (x, 0);
2048 else if (GET_CODE (x) == LO_SUM)
2049 x = XEXP (x, 1);
2050 else
2051 x = addr_side_effect_eval (x, abs (xsize), 0);
2052 if (GET_CODE (y) == HIGH)
2053 y = XEXP (y, 0);
2054 else if (GET_CODE (y) == LO_SUM)
2055 y = XEXP (y, 1);
2056 else
2057 y = addr_side_effect_eval (y, abs (ysize), 0);
2059 if (rtx_equal_for_memref_p (x, y))
2061 return offset_overlap_p (c, xsize, ysize);
2064 /* This code used to check for conflicts involving stack references and
2065 globals but the base address alias code now handles these cases. */
2067 if (GET_CODE (x) == PLUS)
2069 /* The fact that X is canonicalized means that this
2070 PLUS rtx is canonicalized. */
2071 rtx x0 = XEXP (x, 0);
2072 rtx x1 = XEXP (x, 1);
2074 if (GET_CODE (y) == PLUS)
2076 /* The fact that Y is canonicalized means that this
2077 PLUS rtx is canonicalized. */
2078 rtx y0 = XEXP (y, 0);
2079 rtx y1 = XEXP (y, 1);
2081 if (rtx_equal_for_memref_p (x1, y1))
2082 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2083 if (rtx_equal_for_memref_p (x0, y0))
2084 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2085 if (CONST_INT_P (x1))
2087 if (CONST_INT_P (y1))
2088 return memrefs_conflict_p (xsize, x0, ysize, y0,
2089 c - INTVAL (x1) + INTVAL (y1));
2090 else
2091 return memrefs_conflict_p (xsize, x0, ysize, y,
2092 c - INTVAL (x1));
2094 else if (CONST_INT_P (y1))
2095 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2097 return -1;
2099 else if (CONST_INT_P (x1))
2100 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2102 else if (GET_CODE (y) == PLUS)
2104 /* The fact that Y is canonicalized means that this
2105 PLUS rtx is canonicalized. */
2106 rtx y0 = XEXP (y, 0);
2107 rtx y1 = XEXP (y, 1);
2109 if (CONST_INT_P (y1))
2110 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2111 else
2112 return -1;
2115 if (GET_CODE (x) == GET_CODE (y))
2116 switch (GET_CODE (x))
2118 case MULT:
2120 /* Handle cases where we expect the second operands to be the
2121 same, and check only whether the first operand would conflict
2122 or not. */
2123 rtx x0, y0;
2124 rtx x1 = canon_rtx (XEXP (x, 1));
2125 rtx y1 = canon_rtx (XEXP (y, 1));
2126 if (! rtx_equal_for_memref_p (x1, y1))
2127 return -1;
2128 x0 = canon_rtx (XEXP (x, 0));
2129 y0 = canon_rtx (XEXP (y, 0));
2130 if (rtx_equal_for_memref_p (x0, y0))
2131 return offset_overlap_p (c, xsize, ysize);
2133 /* Can't properly adjust our sizes. */
2134 if (!CONST_INT_P (x1))
2135 return -1;
2136 xsize /= INTVAL (x1);
2137 ysize /= INTVAL (x1);
2138 c /= INTVAL (x1);
2139 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2142 default:
2143 break;
2146 /* Deal with alignment ANDs by adjusting offset and size so as to
2147 cover the maximum range, without taking any previously known
2148 alignment into account. Make a size negative after such an
2149 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2150 assume a potential overlap, because they may end up in contiguous
2151 memory locations and the stricter-alignment access may span over
2152 part of both. */
2153 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2155 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2156 unsigned HOST_WIDE_INT uc = sc;
2157 if (sc < 0 && -uc == (uc & -uc))
2159 if (xsize > 0)
2160 xsize = -xsize;
2161 if (xsize)
2162 xsize += sc + 1;
2163 c -= sc + 1;
2164 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2165 ysize, y, c);
2168 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2170 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2171 unsigned HOST_WIDE_INT uc = sc;
2172 if (sc < 0 && -uc == (uc & -uc))
2174 if (ysize > 0)
2175 ysize = -ysize;
2176 if (ysize)
2177 ysize += sc + 1;
2178 c += sc + 1;
2179 return memrefs_conflict_p (xsize, x,
2180 ysize, canon_rtx (XEXP (y, 0)), c);
2184 if (CONSTANT_P (x))
2186 if (CONST_INT_P (x) && CONST_INT_P (y))
2188 c += (INTVAL (y) - INTVAL (x));
2189 return offset_overlap_p (c, xsize, ysize);
2192 if (GET_CODE (x) == CONST)
2194 if (GET_CODE (y) == CONST)
2195 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2196 ysize, canon_rtx (XEXP (y, 0)), c);
2197 else
2198 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2199 ysize, y, c);
2201 if (GET_CODE (y) == CONST)
2202 return memrefs_conflict_p (xsize, x, ysize,
2203 canon_rtx (XEXP (y, 0)), c);
2205 /* Assume a potential overlap for symbolic addresses that went
2206 through alignment adjustments (i.e., that have negative
2207 sizes), because we can't know how far they are from each
2208 other. */
2209 if (CONSTANT_P (y))
2210 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2212 return -1;
2215 return -1;
2218 /* Functions to compute memory dependencies.
2220 Since we process the insns in execution order, we can build tables
2221 to keep track of what registers are fixed (and not aliased), what registers
2222 are varying in known ways, and what registers are varying in unknown
2223 ways.
2225 If both memory references are volatile, then there must always be a
2226 dependence between the two references, since their order can not be
2227 changed. A volatile and non-volatile reference can be interchanged
2228 though.
2230 We also must allow AND addresses, because they may generate accesses
2231 outside the object being referenced. This is used to generate aligned
2232 addresses from unaligned addresses, for instance, the alpha
2233 storeqi_unaligned pattern. */
2235 /* Read dependence: X is read after read in MEM takes place. There can
2236 only be a dependence here if both reads are volatile, or if either is
2237 an explicit barrier. */
2240 read_dependence (const_rtx mem, const_rtx x)
2242 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2243 return true;
2244 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2245 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2246 return true;
2247 return false;
2250 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2252 static tree
2253 decl_for_component_ref (tree x)
2257 x = TREE_OPERAND (x, 0);
2259 while (x && TREE_CODE (x) == COMPONENT_REF);
2261 return x && DECL_P (x) ? x : NULL_TREE;
2264 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2265 for the offset of the field reference. *KNOWN_P says whether the
2266 offset is known. */
2268 static void
2269 adjust_offset_for_component_ref (tree x, bool *known_p,
2270 HOST_WIDE_INT *offset)
2272 if (!*known_p)
2273 return;
2276 tree xoffset = component_ref_field_offset (x);
2277 tree field = TREE_OPERAND (x, 1);
2279 if (! tree_fits_uhwi_p (xoffset))
2281 *known_p = false;
2282 return;
2284 *offset += (tree_to_uhwi (xoffset)
2285 + (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2286 / BITS_PER_UNIT));
2288 x = TREE_OPERAND (x, 0);
2290 while (x && TREE_CODE (x) == COMPONENT_REF);
2293 /* Return nonzero if we can determine the exprs corresponding to memrefs
2294 X and Y and they do not overlap.
2295 If LOOP_VARIANT is set, skip offset-based disambiguation */
2298 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2300 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2301 rtx rtlx, rtly;
2302 rtx basex, basey;
2303 bool moffsetx_known_p, moffsety_known_p;
2304 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2305 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2307 /* Unless both have exprs, we can't tell anything. */
2308 if (exprx == 0 || expry == 0)
2309 return 0;
2311 /* For spill-slot accesses make sure we have valid offsets. */
2312 if ((exprx == get_spill_slot_decl (false)
2313 && ! MEM_OFFSET_KNOWN_P (x))
2314 || (expry == get_spill_slot_decl (false)
2315 && ! MEM_OFFSET_KNOWN_P (y)))
2316 return 0;
2318 /* If the field reference test failed, look at the DECLs involved. */
2319 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2320 if (moffsetx_known_p)
2321 moffsetx = MEM_OFFSET (x);
2322 if (TREE_CODE (exprx) == COMPONENT_REF)
2324 tree t = decl_for_component_ref (exprx);
2325 if (! t)
2326 return 0;
2327 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2328 exprx = t;
2331 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2332 if (moffsety_known_p)
2333 moffsety = MEM_OFFSET (y);
2334 if (TREE_CODE (expry) == COMPONENT_REF)
2336 tree t = decl_for_component_ref (expry);
2337 if (! t)
2338 return 0;
2339 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2340 expry = t;
2343 if (! DECL_P (exprx) || ! DECL_P (expry))
2344 return 0;
2346 /* With invalid code we can end up storing into the constant pool.
2347 Bail out to avoid ICEing when creating RTL for this.
2348 See gfortran.dg/lto/20091028-2_0.f90. */
2349 if (TREE_CODE (exprx) == CONST_DECL
2350 || TREE_CODE (expry) == CONST_DECL)
2351 return 1;
2353 rtlx = DECL_RTL (exprx);
2354 rtly = DECL_RTL (expry);
2356 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2357 can't overlap unless they are the same because we never reuse that part
2358 of the stack frame used for locals for spilled pseudos. */
2359 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2360 && ! rtx_equal_p (rtlx, rtly))
2361 return 1;
2363 /* If we have MEMs referring to different address spaces (which can
2364 potentially overlap), we cannot easily tell from the addresses
2365 whether the references overlap. */
2366 if (MEM_P (rtlx) && MEM_P (rtly)
2367 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2368 return 0;
2370 /* Get the base and offsets of both decls. If either is a register, we
2371 know both are and are the same, so use that as the base. The only
2372 we can avoid overlap is if we can deduce that they are nonoverlapping
2373 pieces of that decl, which is very rare. */
2374 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2375 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2376 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2378 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2379 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2380 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2382 /* If the bases are different, we know they do not overlap if both
2383 are constants or if one is a constant and the other a pointer into the
2384 stack frame. Otherwise a different base means we can't tell if they
2385 overlap or not. */
2386 if (! rtx_equal_p (basex, basey))
2387 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2388 || (CONSTANT_P (basex) && REG_P (basey)
2389 && REGNO_PTR_FRAME_P (REGNO (basey)))
2390 || (CONSTANT_P (basey) && REG_P (basex)
2391 && REGNO_PTR_FRAME_P (REGNO (basex))));
2393 /* Offset based disambiguation not appropriate for loop invariant */
2394 if (loop_invariant)
2395 return 0;
2397 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2398 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2399 : -1);
2400 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2401 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2402 : -1);
2404 /* If we have an offset for either memref, it can update the values computed
2405 above. */
2406 if (moffsetx_known_p)
2407 offsetx += moffsetx, sizex -= moffsetx;
2408 if (moffsety_known_p)
2409 offsety += moffsety, sizey -= moffsety;
2411 /* If a memref has both a size and an offset, we can use the smaller size.
2412 We can't do this if the offset isn't known because we must view this
2413 memref as being anywhere inside the DECL's MEM. */
2414 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2415 sizex = MEM_SIZE (x);
2416 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2417 sizey = MEM_SIZE (y);
2419 /* Put the values of the memref with the lower offset in X's values. */
2420 if (offsetx > offsety)
2422 tem = offsetx, offsetx = offsety, offsety = tem;
2423 tem = sizex, sizex = sizey, sizey = tem;
2426 /* If we don't know the size of the lower-offset value, we can't tell
2427 if they conflict. Otherwise, we do the test. */
2428 return sizex >= 0 && offsety >= offsetx + sizex;
2431 /* Helper for true_dependence and canon_true_dependence.
2432 Checks for true dependence: X is read after store in MEM takes place.
2434 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2435 NULL_RTX, and the canonical addresses of MEM and X are both computed
2436 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2438 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2440 Returns 1 if there is a true dependence, 0 otherwise. */
2442 static int
2443 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2444 const_rtx x, rtx x_addr, bool mem_canonicalized)
2446 rtx base;
2447 int ret;
2449 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2450 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2452 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2453 return 1;
2455 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2456 This is used in epilogue deallocation functions, and in cselib. */
2457 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2458 return 1;
2459 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2460 return 1;
2461 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2462 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2463 return 1;
2465 /* Read-only memory is by definition never modified, and therefore can't
2466 conflict with anything. We don't expect to find read-only set on MEM,
2467 but stupid user tricks can produce them, so don't die. */
2468 if (MEM_READONLY_P (x))
2469 return 0;
2471 /* If we have MEMs referring to different address spaces (which can
2472 potentially overlap), we cannot easily tell from the addresses
2473 whether the references overlap. */
2474 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2475 return 1;
2477 if (! mem_addr)
2479 mem_addr = XEXP (mem, 0);
2480 if (mem_mode == VOIDmode)
2481 mem_mode = GET_MODE (mem);
2484 if (! x_addr)
2486 x_addr = XEXP (x, 0);
2487 if (!((GET_CODE (x_addr) == VALUE
2488 && GET_CODE (mem_addr) != VALUE
2489 && reg_mentioned_p (x_addr, mem_addr))
2490 || (GET_CODE (x_addr) != VALUE
2491 && GET_CODE (mem_addr) == VALUE
2492 && reg_mentioned_p (mem_addr, x_addr))))
2494 x_addr = get_addr (x_addr);
2495 if (! mem_canonicalized)
2496 mem_addr = get_addr (mem_addr);
2500 base = find_base_term (x_addr);
2501 if (base && (GET_CODE (base) == LABEL_REF
2502 || (GET_CODE (base) == SYMBOL_REF
2503 && CONSTANT_POOL_ADDRESS_P (base))))
2504 return 0;
2506 rtx mem_base = find_base_term (mem_addr);
2507 if (! base_alias_check (x_addr, base, mem_addr, mem_base,
2508 GET_MODE (x), mem_mode))
2509 return 0;
2511 x_addr = canon_rtx (x_addr);
2512 if (!mem_canonicalized)
2513 mem_addr = canon_rtx (mem_addr);
2515 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2516 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2517 return ret;
2519 if (mems_in_disjoint_alias_sets_p (x, mem))
2520 return 0;
2522 if (nonoverlapping_memrefs_p (mem, x, false))
2523 return 0;
2525 return rtx_refs_may_alias_p (x, mem, true);
2528 /* True dependence: X is read after store in MEM takes place. */
2531 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2533 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2534 x, NULL_RTX, /*mem_canonicalized=*/false);
2537 /* Canonical true dependence: X is read after store in MEM takes place.
2538 Variant of true_dependence which assumes MEM has already been
2539 canonicalized (hence we no longer do that here).
2540 The mem_addr argument has been added, since true_dependence_1 computed
2541 this value prior to canonicalizing. */
2544 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2545 const_rtx x, rtx x_addr)
2547 return true_dependence_1 (mem, mem_mode, mem_addr,
2548 x, x_addr, /*mem_canonicalized=*/true);
2551 /* Returns nonzero if a write to X might alias a previous read from
2552 (or, if WRITEP is true, a write to) MEM.
2553 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2554 and X_MODE the mode for that access.
2555 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2557 static int
2558 write_dependence_p (const_rtx mem,
2559 const_rtx x, enum machine_mode x_mode, rtx x_addr,
2560 bool mem_canonicalized, bool x_canonicalized, bool writep)
2562 rtx mem_addr;
2563 rtx base;
2564 int ret;
2566 gcc_checking_assert (x_canonicalized
2567 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2568 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2570 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2571 return 1;
2573 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2574 This is used in epilogue deallocation functions. */
2575 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2576 return 1;
2577 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2578 return 1;
2579 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2580 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2581 return 1;
2583 /* A read from read-only memory can't conflict with read-write memory. */
2584 if (!writep && MEM_READONLY_P (mem))
2585 return 0;
2587 /* If we have MEMs referring to different address spaces (which can
2588 potentially overlap), we cannot easily tell from the addresses
2589 whether the references overlap. */
2590 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2591 return 1;
2593 mem_addr = XEXP (mem, 0);
2594 if (!x_addr)
2596 x_addr = XEXP (x, 0);
2597 if (!((GET_CODE (x_addr) == VALUE
2598 && GET_CODE (mem_addr) != VALUE
2599 && reg_mentioned_p (x_addr, mem_addr))
2600 || (GET_CODE (x_addr) != VALUE
2601 && GET_CODE (mem_addr) == VALUE
2602 && reg_mentioned_p (mem_addr, x_addr))))
2604 x_addr = get_addr (x_addr);
2605 if (!mem_canonicalized)
2606 mem_addr = get_addr (mem_addr);
2610 base = find_base_term (mem_addr);
2611 if (! writep
2612 && base
2613 && (GET_CODE (base) == LABEL_REF
2614 || (GET_CODE (base) == SYMBOL_REF
2615 && CONSTANT_POOL_ADDRESS_P (base))))
2616 return 0;
2618 rtx x_base = find_base_term (x_addr);
2619 if (! base_alias_check (x_addr, x_base, mem_addr, base, GET_MODE (x),
2620 GET_MODE (mem)))
2621 return 0;
2623 if (!x_canonicalized)
2625 x_addr = canon_rtx (x_addr);
2626 x_mode = GET_MODE (x);
2628 if (!mem_canonicalized)
2629 mem_addr = canon_rtx (mem_addr);
2631 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2632 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
2633 return ret;
2635 if (nonoverlapping_memrefs_p (x, mem, false))
2636 return 0;
2638 return rtx_refs_may_alias_p (x, mem, false);
2641 /* Anti dependence: X is written after read in MEM takes place. */
2644 anti_dependence (const_rtx mem, const_rtx x)
2646 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2647 /*mem_canonicalized=*/false,
2648 /*x_canonicalized*/false, /*writep=*/false);
2651 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2652 Also, consider X in X_MODE (which might be from an enclosing
2653 STRICT_LOW_PART / ZERO_EXTRACT).
2654 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2657 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
2658 const_rtx x, enum machine_mode x_mode, rtx x_addr)
2660 return write_dependence_p (mem, x, x_mode, x_addr,
2661 mem_canonicalized, /*x_canonicalized=*/true,
2662 /*writep=*/false);
2665 /* Output dependence: X is written after store in MEM takes place. */
2668 output_dependence (const_rtx mem, const_rtx x)
2670 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2671 /*mem_canonicalized=*/false,
2672 /*x_canonicalized*/false, /*writep=*/true);
2677 /* Check whether X may be aliased with MEM. Don't do offset-based
2678 memory disambiguation & TBAA. */
2680 may_alias_p (const_rtx mem, const_rtx x)
2682 rtx x_addr, mem_addr;
2684 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2685 return 1;
2687 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2688 This is used in epilogue deallocation functions. */
2689 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2690 return 1;
2691 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2692 return 1;
2693 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2694 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2695 return 1;
2697 /* Read-only memory is by definition never modified, and therefore can't
2698 conflict with anything. We don't expect to find read-only set on MEM,
2699 but stupid user tricks can produce them, so don't die. */
2700 if (MEM_READONLY_P (x))
2701 return 0;
2703 /* If we have MEMs referring to different address spaces (which can
2704 potentially overlap), we cannot easily tell from the addresses
2705 whether the references overlap. */
2706 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2707 return 1;
2709 x_addr = XEXP (x, 0);
2710 mem_addr = XEXP (mem, 0);
2711 if (!((GET_CODE (x_addr) == VALUE
2712 && GET_CODE (mem_addr) != VALUE
2713 && reg_mentioned_p (x_addr, mem_addr))
2714 || (GET_CODE (x_addr) != VALUE
2715 && GET_CODE (mem_addr) == VALUE
2716 && reg_mentioned_p (mem_addr, x_addr))))
2718 x_addr = get_addr (x_addr);
2719 mem_addr = get_addr (mem_addr);
2722 rtx x_base = find_base_term (x_addr);
2723 rtx mem_base = find_base_term (mem_addr);
2724 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
2725 GET_MODE (x), GET_MODE (mem_addr)))
2726 return 0;
2728 x_addr = canon_rtx (x_addr);
2729 mem_addr = canon_rtx (mem_addr);
2731 if (nonoverlapping_memrefs_p (mem, x, true))
2732 return 0;
2734 /* TBAA not valid for loop_invarint */
2735 return rtx_refs_may_alias_p (x, mem, false);
2738 void
2739 init_alias_target (void)
2741 int i;
2743 if (!arg_base_value)
2744 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2746 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2748 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2749 /* Check whether this register can hold an incoming pointer
2750 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2751 numbers, so translate if necessary due to register windows. */
2752 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2753 && HARD_REGNO_MODE_OK (i, Pmode))
2754 static_reg_base_value[i] = arg_base_value;
2756 static_reg_base_value[STACK_POINTER_REGNUM]
2757 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2758 static_reg_base_value[ARG_POINTER_REGNUM]
2759 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2760 static_reg_base_value[FRAME_POINTER_REGNUM]
2761 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2762 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2763 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2764 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2765 #endif
2768 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2769 to be memory reference. */
2770 static bool memory_modified;
2771 static void
2772 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2774 if (MEM_P (x))
2776 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2777 memory_modified = true;
2782 /* Return true when INSN possibly modify memory contents of MEM
2783 (i.e. address can be modified). */
2784 bool
2785 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2787 if (!INSN_P (insn))
2788 return false;
2789 memory_modified = false;
2790 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2791 return memory_modified;
2794 /* Return TRUE if the destination of a set is rtx identical to
2795 ITEM. */
2796 static inline bool
2797 set_dest_equal_p (const_rtx set, const_rtx item)
2799 rtx dest = SET_DEST (set);
2800 return rtx_equal_p (dest, item);
2803 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2804 *DEFINITELY* modify the memory contents of MEM. */
2805 bool
2806 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2808 if (!INSN_P (insn))
2809 return false;
2810 insn = PATTERN (insn);
2811 if (GET_CODE (insn) == SET)
2812 return set_dest_equal_p (insn, mem);
2813 else if (GET_CODE (insn) == PARALLEL)
2815 int i;
2816 for (i = 0; i < XVECLEN (insn, 0); i++)
2818 rtx sub = XVECEXP (insn, 0, i);
2819 if (GET_CODE (sub) == SET
2820 && set_dest_equal_p (sub, mem))
2821 return true;
2824 return false;
2827 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2828 array. */
2830 void
2831 init_alias_analysis (void)
2833 unsigned int maxreg = max_reg_num ();
2834 int changed, pass;
2835 int i;
2836 unsigned int ui;
2837 rtx insn, val;
2838 int rpo_cnt;
2839 int *rpo;
2841 timevar_push (TV_ALIAS_ANALYSIS);
2843 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2844 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2845 bitmap_clear (reg_known_equiv_p);
2847 /* If we have memory allocated from the previous run, use it. */
2848 if (old_reg_base_value)
2849 reg_base_value = old_reg_base_value;
2851 if (reg_base_value)
2852 reg_base_value->truncate (0);
2854 vec_safe_grow_cleared (reg_base_value, maxreg);
2856 new_reg_base_value = XNEWVEC (rtx, maxreg);
2857 reg_seen = sbitmap_alloc (maxreg);
2859 /* The basic idea is that each pass through this loop will use the
2860 "constant" information from the previous pass to propagate alias
2861 information through another level of assignments.
2863 The propagation is done on the CFG in reverse post-order, to propagate
2864 things forward as far as possible in each iteration.
2866 This could get expensive if the assignment chains are long. Maybe
2867 we should throttle the number of iterations, possibly based on
2868 the optimization level or flag_expensive_optimizations.
2870 We could propagate more information in the first pass by making use
2871 of DF_REG_DEF_COUNT to determine immediately that the alias information
2872 for a pseudo is "constant".
2874 A program with an uninitialized variable can cause an infinite loop
2875 here. Instead of doing a full dataflow analysis to detect such problems
2876 we just cap the number of iterations for the loop.
2878 The state of the arrays for the set chain in question does not matter
2879 since the program has undefined behavior. */
2881 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2882 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2884 pass = 0;
2887 /* Assume nothing will change this iteration of the loop. */
2888 changed = 0;
2890 /* We want to assign the same IDs each iteration of this loop, so
2891 start counting from one each iteration of the loop. */
2892 unique_id = 1;
2894 /* We're at the start of the function each iteration through the
2895 loop, so we're copying arguments. */
2896 copying_arguments = true;
2898 /* Wipe the potential alias information clean for this pass. */
2899 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2901 /* Wipe the reg_seen array clean. */
2902 bitmap_clear (reg_seen);
2904 /* Initialize the alias information for this pass. */
2905 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2906 if (static_reg_base_value[i])
2908 new_reg_base_value[i] = static_reg_base_value[i];
2909 bitmap_set_bit (reg_seen, i);
2912 /* Walk the insns adding values to the new_reg_base_value array. */
2913 for (i = 0; i < rpo_cnt; i++)
2915 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
2916 FOR_BB_INSNS (bb, insn)
2918 if (NONDEBUG_INSN_P (insn))
2920 rtx note, set;
2922 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2923 /* The prologue/epilogue insns are not threaded onto the
2924 insn chain until after reload has completed. Thus,
2925 there is no sense wasting time checking if INSN is in
2926 the prologue/epilogue until after reload has completed. */
2927 if (reload_completed
2928 && prologue_epilogue_contains (insn))
2929 continue;
2930 #endif
2932 /* If this insn has a noalias note, process it, Otherwise,
2933 scan for sets. A simple set will have no side effects
2934 which could change the base value of any other register. */
2936 if (GET_CODE (PATTERN (insn)) == SET
2937 && REG_NOTES (insn) != 0
2938 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2939 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2940 else
2941 note_stores (PATTERN (insn), record_set, NULL);
2943 set = single_set (insn);
2945 if (set != 0
2946 && REG_P (SET_DEST (set))
2947 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2949 unsigned int regno = REGNO (SET_DEST (set));
2950 rtx src = SET_SRC (set);
2951 rtx t;
2953 note = find_reg_equal_equiv_note (insn);
2954 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2955 && DF_REG_DEF_COUNT (regno) != 1)
2956 note = NULL_RTX;
2958 if (note != NULL_RTX
2959 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2960 && ! rtx_varies_p (XEXP (note, 0), 1)
2961 && ! reg_overlap_mentioned_p (SET_DEST (set),
2962 XEXP (note, 0)))
2964 set_reg_known_value (regno, XEXP (note, 0));
2965 set_reg_known_equiv_p (regno,
2966 REG_NOTE_KIND (note) == REG_EQUIV);
2968 else if (DF_REG_DEF_COUNT (regno) == 1
2969 && GET_CODE (src) == PLUS
2970 && REG_P (XEXP (src, 0))
2971 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2972 && CONST_INT_P (XEXP (src, 1)))
2974 t = plus_constant (GET_MODE (src), t,
2975 INTVAL (XEXP (src, 1)));
2976 set_reg_known_value (regno, t);
2977 set_reg_known_equiv_p (regno, false);
2979 else if (DF_REG_DEF_COUNT (regno) == 1
2980 && ! rtx_varies_p (src, 1))
2982 set_reg_known_value (regno, src);
2983 set_reg_known_equiv_p (regno, false);
2987 else if (NOTE_P (insn)
2988 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2989 copying_arguments = false;
2993 /* Now propagate values from new_reg_base_value to reg_base_value. */
2994 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2996 for (ui = 0; ui < maxreg; ui++)
2998 if (new_reg_base_value[ui]
2999 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3000 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3002 (*reg_base_value)[ui] = new_reg_base_value[ui];
3003 changed = 1;
3007 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3008 XDELETEVEC (rpo);
3010 /* Fill in the remaining entries. */
3011 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3013 int regno = i + FIRST_PSEUDO_REGISTER;
3014 if (! val)
3015 set_reg_known_value (regno, regno_reg_rtx[regno]);
3018 /* Clean up. */
3019 free (new_reg_base_value);
3020 new_reg_base_value = 0;
3021 sbitmap_free (reg_seen);
3022 reg_seen = 0;
3023 timevar_pop (TV_ALIAS_ANALYSIS);
3026 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3027 Special API for var-tracking pass purposes. */
3029 void
3030 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3032 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3035 void
3036 end_alias_analysis (void)
3038 old_reg_base_value = reg_base_value;
3039 vec_free (reg_known_value);
3040 sbitmap_free (reg_known_equiv_p);
3043 #include "gt-alias.h"