1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "diagnostic-core.h"
31 #include "hard-reg-set.h"
33 #include "insn-config.h"
35 #include "basic-block.h"
45 #include "tree-pass.h"
48 /* The following code implements gcse after reload, the purpose of this
49 pass is to cleanup redundant loads generated by reload and other
50 optimizations that come after gcse. It searches for simple inter-block
51 redundancies and tries to eliminate them by adding moves and loads
54 Perform partially redundant load elimination, try to eliminate redundant
55 loads created by the reload pass. We try to look for full or partial
56 redundant loads fed by one or more loads/stores in predecessor BBs,
57 and try adding loads to make them fully redundant. We also check if
58 it's worth adding loads to be able to delete the redundant load.
61 1. Build available expressions hash table:
62 For each load/store instruction, if the loaded/stored memory didn't
63 change until the end of the basic block add this memory expression to
65 2. Perform Redundancy elimination:
66 For each load instruction do the following:
67 perform partial redundancy elimination, check if it's worth adding
68 loads to make the load fully redundant. If so add loads and
69 register copies and delete the load.
70 3. Delete instructions made redundant in step 2.
73 If the loaded register is used/defined between load and some store,
74 look for some other free register between load and all its stores,
75 and replace the load with a copy from this register to the loaded
80 /* Keep statistics of this pass. */
88 /* We need to keep a hash table of expressions. The table entries are of
89 type 'struct expr', and for each expression there is a single linked
90 list of occurrences. */
92 /* The table itself. */
93 static htab_t expr_table
;
95 /* Expression elements in the hash table. */
98 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
101 /* The same hash for this entry. */
104 /* List of available occurrence in basic blocks in the function. */
105 struct occr
*avail_occr
;
108 static struct obstack expr_obstack
;
110 /* Occurrence of an expression.
111 There is at most one occurrence per basic block. If a pattern appears
112 more than once, the last appearance is used. */
116 /* Next occurrence of this expression. */
118 /* The insn that computes the expression. */
120 /* Nonzero if this [anticipatable] occurrence has been deleted. */
124 static struct obstack occr_obstack
;
126 /* The following structure holds the information about the occurrences of
127 the redundant instructions. */
135 static struct obstack unoccr_obstack
;
137 /* Array where each element is the CUID if the insn that last set the hard
138 register with the number of the element, since the start of the current
141 This array is used during the building of the hash table (step 1) to
142 determine if a reg is killed before the end of a basic block.
144 It is also used when eliminating partial redundancies (step 2) to see
145 if a reg was modified since the start of a basic block. */
146 static int *reg_avail_info
;
148 /* A list of insns that may modify memory within the current basic block. */
152 struct modifies_mem
*next
;
154 static struct modifies_mem
*modifies_mem_list
;
156 /* The modifies_mem structs also go on an obstack, only this obstack is
157 freed each time after completing the analysis or transformations on
158 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
159 object on the obstack to keep track of the bottom of the obstack. */
160 static struct obstack modifies_mem_obstack
;
161 static struct modifies_mem
*modifies_mem_obstack_bottom
;
163 /* Mapping of insn UIDs to CUIDs.
164 CUIDs are like UIDs except they increase monotonically in each basic
165 block, have no gaps, and only apply to real insns. */
166 static int *uid_cuid
;
167 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
170 /* Helpers for memory allocation/freeing. */
171 static void alloc_mem (void);
172 static void free_mem (void);
174 /* Support for hash table construction and transformations. */
175 static bool oprs_unchanged_p (rtx
, rtx
, bool);
176 static void record_last_reg_set_info (rtx
, rtx
);
177 static void record_last_reg_set_info_regno (rtx
, int);
178 static void record_last_mem_set_info (rtx
);
179 static void record_last_set_info (rtx
, const_rtx
, void *);
180 static void record_opr_changes (rtx
);
182 static void find_mem_conflicts (rtx
, const_rtx
, void *);
183 static int load_killed_in_block_p (int, rtx
, bool);
184 static void reset_opr_set_tables (void);
186 /* Hash table support. */
187 static hashval_t
hash_expr (rtx
, int *);
188 static hashval_t
hash_expr_for_htab (const void *);
189 static int expr_equiv_p (const void *, const void *);
190 static void insert_expr_in_table (rtx
, rtx
);
191 static struct expr
*lookup_expr_in_table (rtx
);
192 static int dump_hash_table_entry (void **, void *);
193 static void dump_hash_table (FILE *);
195 /* Helpers for eliminate_partially_redundant_load. */
196 static bool reg_killed_on_edge (rtx
, edge
);
197 static bool reg_used_on_edge (rtx
, edge
);
199 static rtx
get_avail_load_store_reg (rtx
);
201 static bool bb_has_well_behaved_predecessors (basic_block
);
202 static struct occr
* get_bb_avail_insn (basic_block
, struct occr
*);
203 static void hash_scan_set (rtx
);
204 static void compute_hash_table (void);
206 /* The work horses of this pass. */
207 static void eliminate_partially_redundant_load (basic_block
,
210 static void eliminate_partially_redundant_loads (void);
213 /* Allocate memory for the CUID mapping array and register/memory
223 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
224 uid_cuid
= XCNEWVEC (int, get_max_uid () + 1);
227 FOR_BB_INSNS (bb
, insn
)
230 uid_cuid
[INSN_UID (insn
)] = i
++;
232 uid_cuid
[INSN_UID (insn
)] = i
;
235 /* Allocate the available expressions hash table. We don't want to
236 make the hash table too small, but unnecessarily making it too large
237 also doesn't help. The i/4 is a gcse.c relic, and seems like a
238 reasonable choice. */
239 expr_table
= htab_create (MAX (i
/ 4, 13),
240 hash_expr_for_htab
, expr_equiv_p
, NULL
);
242 /* We allocate everything on obstacks because we often can roll back
243 the whole obstack to some point. Freeing obstacks is very fast. */
244 gcc_obstack_init (&expr_obstack
);
245 gcc_obstack_init (&occr_obstack
);
246 gcc_obstack_init (&unoccr_obstack
);
247 gcc_obstack_init (&modifies_mem_obstack
);
249 /* Working array used to track the last set for each register
250 in the current block. */
251 reg_avail_info
= (int *) xmalloc (FIRST_PSEUDO_REGISTER
* sizeof (int));
253 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
254 can roll it back in reset_opr_set_tables. */
255 modifies_mem_obstack_bottom
=
256 (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
257 sizeof (struct modifies_mem
));
260 /* Free memory allocated by alloc_mem. */
267 htab_delete (expr_table
);
269 obstack_free (&expr_obstack
, NULL
);
270 obstack_free (&occr_obstack
, NULL
);
271 obstack_free (&unoccr_obstack
, NULL
);
272 obstack_free (&modifies_mem_obstack
, NULL
);
274 free (reg_avail_info
);
278 /* Hash expression X.
279 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
280 or if the expression contains something we don't want to insert in the
284 hash_expr (rtx x
, int *do_not_record_p
)
286 *do_not_record_p
= 0;
287 return hash_rtx (x
, GET_MODE (x
), do_not_record_p
,
288 NULL
, /*have_reg_qty=*/false);
291 /* Callback for hashtab.
292 Return the hash value for expression EXP. We don't actually hash
293 here, we just return the cached hash value. */
296 hash_expr_for_htab (const void *expp
)
298 const struct expr
*const exp
= (const struct expr
*) expp
;
302 /* Callback for hashtab.
303 Return nonzero if exp1 is equivalent to exp2. */
306 expr_equiv_p (const void *exp1p
, const void *exp2p
)
308 const struct expr
*const exp1
= (const struct expr
*) exp1p
;
309 const struct expr
*const exp2
= (const struct expr
*) exp2p
;
310 int equiv_p
= exp_equiv_p (exp1
->expr
, exp2
->expr
, 0, true);
312 gcc_assert (!equiv_p
|| exp1
->hash
== exp2
->hash
);
317 /* Insert expression X in INSN in the hash TABLE.
318 If it is already present, record it as the last occurrence in INSN's
322 insert_expr_in_table (rtx x
, rtx insn
)
326 struct expr
*cur_expr
, **slot
;
327 struct occr
*avail_occr
, *last_occr
= NULL
;
329 hash
= hash_expr (x
, &do_not_record_p
);
331 /* Do not insert expression in the table if it contains volatile operands,
332 or if hash_expr determines the expression is something we don't want
333 to or can't handle. */
337 /* We anticipate that redundant expressions are rare, so for convenience
338 allocate a new hash table element here already and set its fields.
339 If we don't do this, we need a hack with a static struct expr. Anyway,
340 obstack_free is really fast and one more obstack_alloc doesn't hurt if
341 we're going to see more expressions later on. */
342 cur_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
343 sizeof (struct expr
));
345 cur_expr
->hash
= hash
;
346 cur_expr
->avail_occr
= NULL
;
348 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, cur_expr
,
352 /* The expression isn't found, so insert it. */
356 /* The expression is already in the table, so roll back the
357 obstack and use the existing table entry. */
358 obstack_free (&expr_obstack
, cur_expr
);
362 /* Search for another occurrence in the same basic block. */
363 avail_occr
= cur_expr
->avail_occr
;
365 && BLOCK_FOR_INSN (avail_occr
->insn
) != BLOCK_FOR_INSN (insn
))
367 /* If an occurrence isn't found, save a pointer to the end of
369 last_occr
= avail_occr
;
370 avail_occr
= avail_occr
->next
;
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
378 avail_occr
->insn
= insn
;
381 /* First occurrence of this expression in this basic block. */
382 avail_occr
= (struct occr
*) obstack_alloc (&occr_obstack
,
383 sizeof (struct occr
));
385 /* First occurrence of this expression in any block? */
386 if (cur_expr
->avail_occr
== NULL
)
387 cur_expr
->avail_occr
= avail_occr
;
389 last_occr
->next
= avail_occr
;
391 avail_occr
->insn
= insn
;
392 avail_occr
->next
= NULL
;
393 avail_occr
->deleted_p
= 0;
398 /* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
402 lookup_expr_in_table (rtx pat
)
405 struct expr
**slot
, *tmp_expr
;
406 hashval_t hash
= hash_expr (pat
, &do_not_record_p
);
411 tmp_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
412 sizeof (struct expr
));
413 tmp_expr
->expr
= pat
;
414 tmp_expr
->hash
= hash
;
415 tmp_expr
->avail_occr
= NULL
;
417 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, tmp_expr
,
419 obstack_free (&expr_obstack
, tmp_expr
);
428 /* Dump all expressions and occurrences that are currently in the
429 expression hash table to FILE. */
431 /* This helper is called via htab_traverse. */
433 dump_hash_table_entry (void **slot
, void *filep
)
435 struct expr
*expr
= (struct expr
*) *slot
;
436 FILE *file
= (FILE *) filep
;
439 fprintf (file
, "expr: ");
440 print_rtl (file
, expr
->expr
);
441 fprintf (file
,"\nhashcode: %u\n", expr
->hash
);
442 fprintf (file
,"list of occurrences:\n");
443 occr
= expr
->avail_occr
;
446 rtx insn
= occr
->insn
;
447 print_rtl_single (file
, insn
);
448 fprintf (file
, "\n");
451 fprintf (file
, "\n");
456 dump_hash_table (FILE *file
)
458 fprintf (file
, "\n\nexpression hash table\n");
459 fprintf (file
, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table
),
461 (long) htab_elements (expr_table
),
462 htab_collisions (expr_table
));
463 if (htab_elements (expr_table
) > 0)
465 fprintf (file
, "\n\ntable entries:\n");
466 htab_traverse (expr_table
, dump_hash_table_entry
, file
);
468 fprintf (file
, "\n");
471 /* Return true if register X is recorded as being set by an instruction
472 whose CUID is greater than the one given. */
475 reg_changed_after_insn_p (rtx x
, int cuid
)
477 unsigned int regno
, end_regno
;
480 end_regno
= END_HARD_REGNO (x
);
482 if (reg_avail_info
[regno
] > cuid
)
484 while (++regno
< end_regno
);
488 /* Return nonzero if the operands of expression X are unchanged
489 1) from the start of INSN's basic block up to but not including INSN
490 if AFTER_INSN is false, or
491 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
494 oprs_unchanged_p (rtx x
, rtx insn
, bool after_insn
)
507 /* We are called after register allocation. */
508 gcc_assert (REGNO (x
) < FIRST_PSEUDO_REGISTER
);
510 return !reg_changed_after_insn_p (x
, INSN_CUID (insn
) - 1);
512 return !reg_changed_after_insn_p (x
, 0);
515 if (load_killed_in_block_p (INSN_CUID (insn
), x
, after_insn
))
518 return oprs_unchanged_p (XEXP (x
, 0), insn
, after_insn
);
547 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
551 if (! oprs_unchanged_p (XEXP (x
, i
), insn
, after_insn
))
554 else if (fmt
[i
] == 'E')
555 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
556 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, after_insn
))
564 /* Used for communication between find_mem_conflicts and
565 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
566 conflict between two memory references.
567 This is a bit of a hack to work around the limitations of note_stores. */
568 static int mems_conflict_p
;
570 /* DEST is the output of an instruction. If it is a memory reference, and
571 possibly conflicts with the load found in DATA, then set mems_conflict_p
572 to a nonzero value. */
575 find_mem_conflicts (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
578 rtx mem_op
= (rtx
) data
;
580 while (GET_CODE (dest
) == SUBREG
581 || GET_CODE (dest
) == ZERO_EXTRACT
582 || GET_CODE (dest
) == STRICT_LOW_PART
)
583 dest
= XEXP (dest
, 0);
585 /* If DEST is not a MEM, then it will not conflict with the load. Note
586 that function calls are assumed to clobber memory, but are handled
591 if (true_dependence (dest
, GET_MODE (dest
), mem_op
))
596 /* Return nonzero if the expression in X (a memory reference) is killed
597 in the current basic block before (if AFTER_INSN is false) or after
598 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
600 This function assumes that the modifies_mem table is flushed when
601 the hash table construction or redundancy elimination phases start
602 processing a new basic block. */
605 load_killed_in_block_p (int uid_limit
, rtx x
, bool after_insn
)
607 struct modifies_mem
*list_entry
= modifies_mem_list
;
611 rtx setter
= list_entry
->insn
;
613 /* Ignore entries in the list that do not apply. */
615 && INSN_CUID (setter
) < uid_limit
)
617 && INSN_CUID (setter
) > uid_limit
))
619 list_entry
= list_entry
->next
;
623 /* If SETTER is a call everything is clobbered. Note that calls
624 to pure functions are never put on the list, so we need not
629 /* SETTER must be an insn of some kind that sets memory. Call
630 note_stores to examine each hunk of memory that is modified.
631 It will set mems_conflict_p to nonzero if there may be a
632 conflict between X and SETTER. */
634 note_stores (PATTERN (setter
), find_mem_conflicts
, x
);
638 list_entry
= list_entry
->next
;
644 /* Record register first/last/block set information for REGNO in INSN. */
647 record_last_reg_set_info (rtx insn
, rtx reg
)
649 unsigned int regno
, end_regno
;
652 end_regno
= END_HARD_REGNO (reg
);
654 reg_avail_info
[regno
] = INSN_CUID (insn
);
655 while (++regno
< end_regno
);
659 record_last_reg_set_info_regno (rtx insn
, int regno
)
661 reg_avail_info
[regno
] = INSN_CUID (insn
);
665 /* Record memory modification information for INSN. We do not actually care
666 about the memory location(s) that are set, or even how they are set (consider
667 a CALL_INSN). We merely need to record which insns modify memory. */
670 record_last_mem_set_info (rtx insn
)
672 struct modifies_mem
*list_entry
;
674 list_entry
= (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
675 sizeof (struct modifies_mem
));
676 list_entry
->insn
= insn
;
677 list_entry
->next
= modifies_mem_list
;
678 modifies_mem_list
= list_entry
;
681 /* Called from compute_hash_table via note_stores to handle one
682 SET or CLOBBER in an insn. DATA is really the instruction in which
683 the SET is taking place. */
686 record_last_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
688 rtx last_set_insn
= (rtx
) data
;
690 if (GET_CODE (dest
) == SUBREG
)
691 dest
= SUBREG_REG (dest
);
694 record_last_reg_set_info (last_set_insn
, dest
);
695 else if (MEM_P (dest
))
697 /* Ignore pushes, they don't clobber memory. They may still
698 clobber the stack pointer though. Some targets do argument
699 pushes without adding REG_INC notes. See e.g. PR25196,
700 where a pushsi2 on i386 doesn't have REG_INC notes. Note
701 such changes here too. */
702 if (! push_operand (dest
, GET_MODE (dest
)))
703 record_last_mem_set_info (last_set_insn
);
705 record_last_reg_set_info_regno (last_set_insn
, STACK_POINTER_REGNUM
);
710 /* Reset tables used to keep track of what's still available since the
711 start of the block. */
714 reset_opr_set_tables (void)
716 memset (reg_avail_info
, 0, FIRST_PSEUDO_REGISTER
* sizeof (int));
717 obstack_free (&modifies_mem_obstack
, modifies_mem_obstack_bottom
);
718 modifies_mem_list
= NULL
;
722 /* Record things set by INSN.
723 This data is used by oprs_unchanged_p. */
726 record_opr_changes (rtx insn
)
730 /* Find all stores and record them. */
731 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
733 /* Also record autoincremented REGs for this insn as changed. */
734 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
735 if (REG_NOTE_KIND (note
) == REG_INC
)
736 record_last_reg_set_info (insn
, XEXP (note
, 0));
738 /* Finally, if this is a call, record all call clobbers. */
744 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
745 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
746 record_last_reg_set_info_regno (insn
, regno
);
748 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
749 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
751 x
= XEXP (XEXP (link
, 0), 0);
754 gcc_assert (HARD_REGISTER_P (x
));
755 record_last_reg_set_info (insn
, x
);
759 if (! RTL_CONST_OR_PURE_CALL_P (insn
))
760 record_last_mem_set_info (insn
);
765 /* Scan the pattern of INSN and add an entry to the hash TABLE.
766 After reload we are interested in loads/stores only. */
769 hash_scan_set (rtx insn
)
771 rtx pat
= PATTERN (insn
);
772 rtx src
= SET_SRC (pat
);
773 rtx dest
= SET_DEST (pat
);
775 /* We are only interested in loads and stores. */
776 if (! MEM_P (src
) && ! MEM_P (dest
))
779 /* Don't mess with jumps and nops. */
780 if (JUMP_P (insn
) || set_noop_p (pat
))
785 if (/* Don't CSE something if we can't do a reg/reg copy. */
786 can_copy_p (GET_MODE (dest
))
787 /* Is SET_SRC something we want to gcse? */
788 && general_operand (src
, GET_MODE (src
))
790 /* Never consider insns touching the register stack. It may
791 create situations that reg-stack cannot handle (e.g. a stack
792 register live across an abnormal edge). */
793 && (REGNO (dest
) < FIRST_STACK_REG
|| REGNO (dest
) > LAST_STACK_REG
)
795 /* An expression is not available if its operands are
796 subsequently modified, including this insn. */
797 && oprs_unchanged_p (src
, insn
, true))
799 insert_expr_in_table (src
, insn
);
802 else if (REG_P (src
))
804 /* Only record sets of pseudo-regs in the hash table. */
805 if (/* Don't CSE something if we can't do a reg/reg copy. */
806 can_copy_p (GET_MODE (src
))
807 /* Is SET_DEST something we want to gcse? */
808 && general_operand (dest
, GET_MODE (dest
))
810 /* As above for STACK_REGS. */
811 && (REGNO (src
) < FIRST_STACK_REG
|| REGNO (src
) > LAST_STACK_REG
)
813 && ! (flag_float_store
&& FLOAT_MODE_P (GET_MODE (dest
)))
814 /* Check if the memory expression is killed after insn. */
815 && ! load_killed_in_block_p (INSN_CUID (insn
) + 1, dest
, true)
816 && oprs_unchanged_p (XEXP (dest
, 0), insn
, true))
818 insert_expr_in_table (dest
, insn
);
824 /* Create hash table of memory expressions available at end of basic
825 blocks. Basically you should think of this hash table as the
826 representation of AVAIL_OUT. This is the set of expressions that
827 is generated in a basic block and not killed before the end of the
828 same basic block. Notice that this is really a local computation. */
831 compute_hash_table (void)
839 /* First pass over the instructions records information used to
840 determine when registers and memory are last set.
841 Since we compute a "local" AVAIL_OUT, reset the tables that
842 help us keep track of what has been modified since the start
844 reset_opr_set_tables ();
845 FOR_BB_INSNS (bb
, insn
)
848 record_opr_changes (insn
);
851 /* The next pass actually builds the hash table. */
852 FOR_BB_INSNS (bb
, insn
)
853 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SET
)
854 hash_scan_set (insn
);
859 /* Check if register REG is killed in any insn waiting to be inserted on
860 edge E. This function is required to check that our data flow analysis
861 is still valid prior to commit_edge_insertions. */
864 reg_killed_on_edge (rtx reg
, edge e
)
868 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
869 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
875 /* Similar to above - check if register REG is used in any insn waiting
876 to be inserted on edge E.
877 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
878 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
881 reg_used_on_edge (rtx reg
, edge e
)
885 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
886 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
892 /* Return the loaded/stored register of a load/store instruction. */
895 get_avail_load_store_reg (rtx insn
)
897 if (REG_P (SET_DEST (PATTERN (insn
))))
899 return SET_DEST(PATTERN(insn
));
903 gcc_assert (REG_P (SET_SRC (PATTERN (insn
))));
904 return SET_SRC (PATTERN (insn
));
908 /* Return nonzero if the predecessors of BB are "well behaved". */
911 bb_has_well_behaved_predecessors (basic_block bb
)
916 if (EDGE_COUNT (bb
->preds
) == 0)
919 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
921 if ((pred
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (pred
))
924 if ((pred
->flags
& EDGE_ABNORMAL_CALL
) && cfun
->has_nonlocal_label
)
927 if (JUMP_TABLE_DATA_P (BB_END (pred
->src
)))
934 /* Search for the occurrences of expression in BB. */
937 get_bb_avail_insn (basic_block bb
, struct occr
*occr
)
939 for (; occr
!= NULL
; occr
= occr
->next
)
940 if (BLOCK_FOR_INSN (occr
->insn
) == bb
)
946 /* This handles the case where several stores feed a partially redundant
947 load. It checks if the redundancy elimination is possible and if it's
950 Redundancy elimination is possible if,
951 1) None of the operands of an insn have been modified since the start
952 of the current basic block.
953 2) In any predecessor of the current basic block, the same expression
956 See the function body for the heuristics that determine if eliminating
957 a redundancy is also worth doing, assuming it is possible. */
960 eliminate_partially_redundant_load (basic_block bb
, rtx insn
,
964 rtx avail_insn
= NULL_RTX
;
968 struct unoccr
*occr
, *avail_occrs
= NULL
;
969 struct unoccr
*unoccr
, *unavail_occrs
= NULL
, *rollback_unoccr
= NULL
;
971 gcov_type ok_count
= 0; /* Redundant load execution count. */
972 gcov_type critical_count
= 0; /* Execution count of critical edges. */
974 bool critical_edge_split
= false;
976 /* The execution count of the loads to be added to make the
977 load fully redundant. */
978 gcov_type not_ok_count
= 0;
981 pat
= PATTERN (insn
);
982 dest
= SET_DEST (pat
);
984 /* Check that the loaded register is not used, set, or killed from the
985 beginning of the block. */
986 if (reg_changed_after_insn_p (dest
, 0)
987 || reg_used_between_p (dest
, PREV_INSN (BB_HEAD (bb
)), insn
))
990 /* Check potential for replacing load with copy for predecessors. */
991 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
993 rtx next_pred_bb_end
;
995 avail_insn
= NULL_RTX
;
996 avail_reg
= NULL_RTX
;
998 next_pred_bb_end
= NEXT_INSN (BB_END (pred_bb
));
999 for (a_occr
= get_bb_avail_insn (pred_bb
, expr
->avail_occr
); a_occr
;
1000 a_occr
= get_bb_avail_insn (pred_bb
, a_occr
->next
))
1002 /* Check if the loaded register is not used. */
1003 avail_insn
= a_occr
->insn
;
1004 avail_reg
= get_avail_load_store_reg (avail_insn
);
1005 gcc_assert (avail_reg
);
1007 /* Make sure we can generate a move from register avail_reg to
1009 extract_insn (gen_move_insn (copy_rtx (dest
),
1010 copy_rtx (avail_reg
)));
1011 if (! constrain_operands (1)
1012 || reg_killed_on_edge (avail_reg
, pred
)
1013 || reg_used_on_edge (dest
, pred
))
1018 if (!reg_set_between_p (avail_reg
, avail_insn
, next_pred_bb_end
))
1019 /* AVAIL_INSN remains non-null. */
1025 if (EDGE_CRITICAL_P (pred
))
1026 critical_count
+= pred
->count
;
1028 if (avail_insn
!= NULL_RTX
)
1031 ok_count
+= pred
->count
;
1032 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest
),
1033 copy_rtx (avail_reg
)))))
1035 /* Check if there is going to be a split. */
1036 if (EDGE_CRITICAL_P (pred
))
1037 critical_edge_split
= true;
1039 else /* Its a dead move no need to generate. */
1041 occr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1042 sizeof (struct unoccr
));
1043 occr
->insn
= avail_insn
;
1045 occr
->next
= avail_occrs
;
1047 if (! rollback_unoccr
)
1048 rollback_unoccr
= occr
;
1052 /* Adding a load on a critical edge will cause a split. */
1053 if (EDGE_CRITICAL_P (pred
))
1054 critical_edge_split
= true;
1055 not_ok_count
+= pred
->count
;
1056 unoccr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1057 sizeof (struct unoccr
));
1058 unoccr
->insn
= NULL_RTX
;
1059 unoccr
->pred
= pred
;
1060 unoccr
->next
= unavail_occrs
;
1061 unavail_occrs
= unoccr
;
1062 if (! rollback_unoccr
)
1063 rollback_unoccr
= unoccr
;
1067 if (/* No load can be replaced by copy. */
1069 /* Prevent exploding the code. */
1070 || (optimize_bb_for_size_p (bb
) && npred_ok
> 1)
1071 /* If we don't have profile information we cannot tell if splitting
1072 a critical edge is profitable or not so don't do it. */
1073 || ((! profile_info
|| ! flag_branch_probabilities
1074 || targetm
.cannot_modify_jumps_p ())
1075 && critical_edge_split
))
1078 /* Check if it's worth applying the partial redundancy elimination. */
1079 if (ok_count
< GCSE_AFTER_RELOAD_PARTIAL_FRACTION
* not_ok_count
)
1081 if (ok_count
< GCSE_AFTER_RELOAD_CRITICAL_FRACTION
* critical_count
)
1084 /* Generate moves to the loaded register from where
1085 the memory is available. */
1086 for (occr
= avail_occrs
; occr
; occr
= occr
->next
)
1088 avail_insn
= occr
->insn
;
1090 /* Set avail_reg to be the register having the value of the
1092 avail_reg
= get_avail_load_store_reg (avail_insn
);
1093 gcc_assert (avail_reg
);
1095 insert_insn_on_edge (gen_move_insn (copy_rtx (dest
),
1096 copy_rtx (avail_reg
)),
1098 stats
.moves_inserted
++;
1102 "generating move from %d to %d on edge from %d to %d\n",
1109 /* Regenerate loads where the memory is unavailable. */
1110 for (unoccr
= unavail_occrs
; unoccr
; unoccr
= unoccr
->next
)
1112 pred
= unoccr
->pred
;
1113 insert_insn_on_edge (copy_insn (PATTERN (insn
)), pred
);
1114 stats
.copies_inserted
++;
1119 "generating on edge from %d to %d a copy of load: ",
1122 print_rtl (dump_file
, PATTERN (insn
));
1123 fprintf (dump_file
, "\n");
1127 /* Delete the insn if it is not available in this block and mark it
1128 for deletion if it is available. If insn is available it may help
1129 discover additional redundancies, so mark it for later deletion. */
1130 for (a_occr
= get_bb_avail_insn (bb
, expr
->avail_occr
);
1131 a_occr
&& (a_occr
->insn
!= insn
);
1132 a_occr
= get_bb_avail_insn (bb
, a_occr
->next
))
1137 stats
.insns_deleted
++;
1141 fprintf (dump_file
, "deleting insn:\n");
1142 print_rtl_single (dump_file
, insn
);
1143 fprintf (dump_file
, "\n");
1148 a_occr
->deleted_p
= 1;
1151 if (rollback_unoccr
)
1152 obstack_free (&unoccr_obstack
, rollback_unoccr
);
1155 /* Performing the redundancy elimination as described before. */
1158 eliminate_partially_redundant_loads (void)
1163 /* Note we start at block 1. */
1165 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
1169 ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
1173 /* Don't try anything on basic blocks with strange predecessors. */
1174 if (! bb_has_well_behaved_predecessors (bb
))
1177 /* Do not try anything on cold basic blocks. */
1178 if (optimize_bb_for_size_p (bb
))
1181 /* Reset the table of things changed since the start of the current
1183 reset_opr_set_tables ();
1185 /* Look at all insns in the current basic block and see if there are
1186 any loads in it that we can record. */
1187 FOR_BB_INSNS (bb
, insn
)
1189 /* Is it a load - of the form (set (reg) (mem))? */
1190 if (NONJUMP_INSN_P (insn
)
1191 && GET_CODE (PATTERN (insn
)) == SET
1192 && REG_P (SET_DEST (PATTERN (insn
)))
1193 && MEM_P (SET_SRC (PATTERN (insn
))))
1195 rtx pat
= PATTERN (insn
);
1196 rtx src
= SET_SRC (pat
);
1199 if (!MEM_VOLATILE_P (src
)
1200 && GET_MODE (src
) != BLKmode
1201 && general_operand (src
, GET_MODE (src
))
1202 /* Are the operands unchanged since the start of the
1204 && oprs_unchanged_p (src
, insn
, false)
1205 && !(cfun
->can_throw_non_call_exceptions
&& may_trap_p (src
))
1206 && !side_effects_p (src
)
1207 /* Is the expression recorded? */
1208 && (expr
= lookup_expr_in_table (src
)) != NULL
)
1210 /* We now have a load (insn) and an available memory at
1211 its BB start (expr). Try to remove the loads if it is
1213 eliminate_partially_redundant_load (bb
, insn
, expr
);
1217 /* Keep track of everything modified by this insn, so that we
1218 know what has been modified since the start of the current
1221 record_opr_changes (insn
);
1225 commit_edge_insertions ();
1228 /* Go over the expression hash table and delete insns that were
1229 marked for later deletion. */
1231 /* This helper is called via htab_traverse. */
1233 delete_redundant_insns_1 (void **slot
, void *data ATTRIBUTE_UNUSED
)
1235 struct expr
*expr
= (struct expr
*) *slot
;
1238 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1240 if (occr
->deleted_p
&& dbg_cnt (gcse2_delete
))
1242 delete_insn (occr
->insn
);
1243 stats
.insns_deleted
++;
1247 fprintf (dump_file
, "deleting insn:\n");
1248 print_rtl_single (dump_file
, occr
->insn
);
1249 fprintf (dump_file
, "\n");
1258 delete_redundant_insns (void)
1260 htab_traverse (expr_table
, delete_redundant_insns_1
, NULL
);
1262 fprintf (dump_file
, "\n");
1265 /* Main entry point of the GCSE after reload - clean some redundant loads
1269 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED
)
1272 memset (&stats
, 0, sizeof (stats
));
1274 /* Allocate memory for this pass.
1275 Also computes and initializes the insns' CUIDs. */
1278 /* We need alias analysis. */
1279 init_alias_analysis ();
1281 compute_hash_table ();
1284 dump_hash_table (dump_file
);
1286 if (htab_elements (expr_table
) > 0)
1288 eliminate_partially_redundant_loads ();
1289 delete_redundant_insns ();
1293 fprintf (dump_file
, "GCSE AFTER RELOAD stats:\n");
1294 fprintf (dump_file
, "copies inserted: %d\n", stats
.copies_inserted
);
1295 fprintf (dump_file
, "moves inserted: %d\n", stats
.moves_inserted
);
1296 fprintf (dump_file
, "insns deleted: %d\n", stats
.insns_deleted
);
1297 fprintf (dump_file
, "\n\n");
1300 statistics_counter_event (cfun
, "copies inserted",
1301 stats
.copies_inserted
);
1302 statistics_counter_event (cfun
, "moves inserted",
1303 stats
.moves_inserted
);
1304 statistics_counter_event (cfun
, "insns deleted",
1305 stats
.insns_deleted
);
1308 /* We are finished with alias. */
1309 end_alias_analysis ();
1316 gate_handle_gcse2 (void)
1318 return (optimize
> 0 && flag_gcse_after_reload
1319 && optimize_function_for_speed_p (cfun
));
1324 rest_of_handle_gcse2 (void)
1326 gcse_after_reload_main (get_insns ());
1327 rebuild_jump_labels (get_insns ());
1331 struct rtl_opt_pass pass_gcse2
=
1336 gate_handle_gcse2
, /* gate */
1337 rest_of_handle_gcse2
, /* execute */
1340 0, /* static_pass_number */
1341 TV_GCSE_AFTER_RELOAD
, /* tv_id */
1342 0, /* properties_required */
1343 0, /* properties_provided */
1344 0, /* properties_destroyed */
1345 0, /* todo_flags_start */
1346 TODO_verify_rtl_sharing
1347 | TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */