1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - Consistency checking
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
50 #include "coretypes.h"
54 #include "hard-reg-set.h"
59 #include "diagnostic-core.h"
63 #include "tree-pass.h"
66 #include "alloc-pool.h"
69 #include "tree-flow.h"
71 /* The obstack on which the flow graph components are allocated. */
73 struct bitmap_obstack reg_obstack
;
75 void debug_flow_info (void);
76 static void free_edge (edge
);
78 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
80 /* Called once at initialization time. */
83 init_flow (struct function
*the_fun
)
86 the_fun
->cfg
= ggc_alloc_cleared_control_flow_graph ();
87 n_edges_for_function (the_fun
) = 0;
88 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun
)
89 = ggc_alloc_cleared_basic_block_def ();
90 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun
)->index
= ENTRY_BLOCK
;
91 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun
)
92 = ggc_alloc_cleared_basic_block_def ();
93 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun
)->index
= EXIT_BLOCK
;
94 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun
)->next_bb
95 = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun
);
96 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun
)->prev_bb
97 = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun
);
100 /* Helper function for remove_edge and clear_edges. Frees edge structure
101 without actually unlinking it from the pred/succ lists. */
104 free_edge (edge e ATTRIBUTE_UNUSED
)
110 /* Free the memory associated with the edge structures. */
121 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
123 VEC_truncate (edge
, bb
->succs
, 0);
124 VEC_truncate (edge
, bb
->preds
, 0);
127 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
129 VEC_truncate (edge
, EXIT_BLOCK_PTR
->preds
, 0);
130 VEC_truncate (edge
, ENTRY_BLOCK_PTR
->succs
, 0);
132 gcc_assert (!n_edges
);
135 /* Allocate memory for basic_block. */
141 bb
= ggc_alloc_cleared_basic_block_def ();
145 /* Link block B to chain after AFTER. */
147 link_block (basic_block b
, basic_block after
)
149 b
->next_bb
= after
->next_bb
;
152 b
->next_bb
->prev_bb
= b
;
155 /* Unlink block B from chain. */
157 unlink_block (basic_block b
)
159 b
->next_bb
->prev_bb
= b
->prev_bb
;
160 b
->prev_bb
->next_bb
= b
->next_bb
;
165 /* Sequentially order blocks and compact the arrays. */
167 compact_blocks (void)
171 SET_BASIC_BLOCK (ENTRY_BLOCK
, ENTRY_BLOCK_PTR
);
172 SET_BASIC_BLOCK (EXIT_BLOCK
, EXIT_BLOCK_PTR
);
175 df_compact_blocks ();
180 i
= NUM_FIXED_BLOCKS
;
183 SET_BASIC_BLOCK (i
, bb
);
187 gcc_assert (i
== n_basic_blocks
);
189 for (; i
< last_basic_block
; i
++)
190 SET_BASIC_BLOCK (i
, NULL
);
192 last_basic_block
= n_basic_blocks
;
195 /* Remove block B from the basic block array. */
198 expunge_block (basic_block b
)
201 SET_BASIC_BLOCK (b
->index
, NULL
);
203 /* We should be able to ggc_free here, but we are not.
204 The dead SSA_NAMES are left pointing to dead statements that are pointing
205 to dead basic blocks making garbage collector to die.
206 We should be able to release all dead SSA_NAMES and at the same time we should
207 clear out BB pointer of dead statements consistently. */
210 /* Connect E to E->src. */
215 VEC_safe_push (edge
, gc
, e
->src
->succs
, e
);
216 df_mark_solutions_dirty ();
219 /* Connect E to E->dest. */
222 connect_dest (edge e
)
224 basic_block dest
= e
->dest
;
225 VEC_safe_push (edge
, gc
, dest
->preds
, e
);
226 e
->dest_idx
= EDGE_COUNT (dest
->preds
) - 1;
227 df_mark_solutions_dirty ();
230 /* Disconnect edge E from E->src. */
233 disconnect_src (edge e
)
235 basic_block src
= e
->src
;
239 for (ei
= ei_start (src
->succs
); (tmp
= ei_safe_edge (ei
)); )
243 VEC_unordered_remove (edge
, src
->succs
, ei
.index
);
244 df_mark_solutions_dirty ();
254 /* Disconnect edge E from E->dest. */
257 disconnect_dest (edge e
)
259 basic_block dest
= e
->dest
;
260 unsigned int dest_idx
= e
->dest_idx
;
262 VEC_unordered_remove (edge
, dest
->preds
, dest_idx
);
264 /* If we removed an edge in the middle of the edge vector, we need
265 to update dest_idx of the edge that moved into the "hole". */
266 if (dest_idx
< EDGE_COUNT (dest
->preds
))
267 EDGE_PRED (dest
, dest_idx
)->dest_idx
= dest_idx
;
268 df_mark_solutions_dirty ();
271 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
272 created edge. Use this only if you are sure that this edge can't
273 possibly already exist. */
276 unchecked_make_edge (basic_block src
, basic_block dst
, int flags
)
279 e
= ggc_alloc_cleared_edge_def ();
289 execute_on_growing_pred (e
);
293 /* Create an edge connecting SRC and DST with FLAGS optionally using
294 edge cache CACHE. Return the new edge, NULL if already exist. */
297 cached_make_edge (sbitmap edge_cache
, basic_block src
, basic_block dst
, int flags
)
299 if (edge_cache
== NULL
300 || src
== ENTRY_BLOCK_PTR
301 || dst
== EXIT_BLOCK_PTR
)
302 return make_edge (src
, dst
, flags
);
304 /* Does the requested edge already exist? */
305 if (! TEST_BIT (edge_cache
, dst
->index
))
307 /* The edge does not exist. Create one and update the
309 SET_BIT (edge_cache
, dst
->index
);
310 return unchecked_make_edge (src
, dst
, flags
);
313 /* At this point, we know that the requested edge exists. Adjust
314 flags if necessary. */
317 edge e
= find_edge (src
, dst
);
324 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
325 created edge or NULL if already exist. */
328 make_edge (basic_block src
, basic_block dest
, int flags
)
330 edge e
= find_edge (src
, dest
);
332 /* Make sure we don't add duplicate edges. */
339 return unchecked_make_edge (src
, dest
, flags
);
342 /* Create an edge connecting SRC to DEST and set probability by knowing
343 that it is the single edge leaving SRC. */
346 make_single_succ_edge (basic_block src
, basic_block dest
, int flags
)
348 edge e
= make_edge (src
, dest
, flags
);
350 e
->probability
= REG_BR_PROB_BASE
;
351 e
->count
= src
->count
;
355 /* This function will remove an edge from the flow graph. */
358 remove_edge_raw (edge e
)
360 remove_predictions_associated_with_edge (e
);
361 execute_on_shrinking_pred (e
);
366 /* This is probably not needed, but it doesn't hurt. */
367 redirect_edge_var_map_clear (e
);
372 /* Redirect an edge's successor from one block to another. */
375 redirect_edge_succ (edge e
, basic_block new_succ
)
377 execute_on_shrinking_pred (e
);
383 /* Reconnect the edge to the new successor block. */
386 execute_on_growing_pred (e
);
389 /* Like previous but avoid possible duplicate edge. */
392 redirect_edge_succ_nodup (edge e
, basic_block new_succ
)
396 s
= find_edge (e
->src
, new_succ
);
399 s
->flags
|= e
->flags
;
400 s
->probability
+= e
->probability
;
401 if (s
->probability
> REG_BR_PROB_BASE
)
402 s
->probability
= REG_BR_PROB_BASE
;
403 s
->count
+= e
->count
;
404 redirect_edge_var_map_dup (s
, e
);
409 redirect_edge_succ (e
, new_succ
);
414 /* Redirect an edge's predecessor from one block to another. */
417 redirect_edge_pred (edge e
, basic_block new_pred
)
423 /* Reconnect the edge to the new predecessor block. */
427 /* Clear all basic block flags, with the exception of partitioning and
430 clear_bb_flags (void)
434 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
435 bb
->flags
= (BB_PARTITION (bb
)
436 | (bb
->flags
& (BB_DISABLE_SCHEDULE
+ BB_RTL
+ BB_NON_LOCAL_GOTO_TARGET
)));
439 /* Check the consistency of profile information. We can't do that
440 in verify_flow_info, as the counts may get invalid for incompletely
441 solved graphs, later eliminating of conditionals or roundoff errors.
442 It is still practical to have them reported for debugging of simple
445 check_bb_profile (basic_block bb
, FILE * file
)
452 if (profile_status
== PROFILE_ABSENT
)
455 if (bb
!= EXIT_BLOCK_PTR
)
457 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
458 sum
+= e
->probability
;
459 if (EDGE_COUNT (bb
->succs
) && abs (sum
- REG_BR_PROB_BASE
) > 100)
460 fprintf (file
, "Invalid sum of outgoing probabilities %.1f%%\n",
461 sum
* 100.0 / REG_BR_PROB_BASE
);
463 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
465 if (EDGE_COUNT (bb
->succs
)
466 && (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100))
467 fprintf (file
, "Invalid sum of outgoing counts %i, should be %i\n",
468 (int) lsum
, (int) bb
->count
);
470 if (bb
!= ENTRY_BLOCK_PTR
)
473 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
474 sum
+= EDGE_FREQUENCY (e
);
475 if (abs (sum
- bb
->frequency
) > 100)
477 "Invalid sum of incoming frequencies %i, should be %i\n",
480 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
482 if (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100)
483 fprintf (file
, "Invalid sum of incoming counts %i, should be %i\n",
484 (int) lsum
, (int) bb
->count
);
488 /* Write information about registers and basic blocks into FILE.
489 This is part of making a debugging dump. */
492 dump_regset (regset r
, FILE *outf
)
495 reg_set_iterator rsi
;
499 fputs (" (nil)", outf
);
503 EXECUTE_IF_SET_IN_REG_SET (r
, 0, i
, rsi
)
505 fprintf (outf
, " %d", i
);
506 if (i
< FIRST_PSEUDO_REGISTER
)
507 fprintf (outf
, " [%s]",
512 /* Print a human-readable representation of R on the standard error
513 stream. This function is designed to be used from within the
517 debug_regset (regset r
)
519 dump_regset (r
, stderr
);
523 /* Emit basic block information for BB. HEADER is true if the user wants
524 the generic information and the predecessors, FOOTER is true if they want
525 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
526 global register liveness information. PREFIX is put in front of every
527 line. The output is emitted to FILE. */
529 dump_bb_info (basic_block bb
, bool header
, bool footer
, int flags
,
530 const char *prefix
, FILE *file
)
537 fprintf (file
, "\n%sBasic block %d ", prefix
, bb
->index
);
539 fprintf (file
, ", prev %d", bb
->prev_bb
->index
);
541 fprintf (file
, ", next %d", bb
->next_bb
->index
);
542 fprintf (file
, ", loop_depth %d, count ", bb
->loop_depth
);
543 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, bb
->count
);
544 fprintf (file
, ", freq %i", bb
->frequency
);
545 /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
546 crash without cfun. */
547 if (cfun
&& maybe_hot_bb_p (bb
))
548 fputs (", maybe hot", file
);
549 if (cfun
&& probably_never_executed_bb_p (bb
))
550 fputs (", probably never executed", file
);
553 static const char * const bits
[] = {
554 "new", "reachable", "irr_loop", "superblock", "disable_sched",
555 "hot_partition", "cold_partition", "duplicated",
556 "non_local_goto_target", "rtl", "forwarder", "nonthreadable",
561 fputs (", flags:", file
);
562 for (flags
= bb
->flags
; flags
; flags
&= flags
- 1)
564 unsigned i
= ctz_hwi (flags
);
565 if (i
< ARRAY_SIZE (bits
))
566 fprintf (file
, " %s", bits
[i
]);
568 fprintf (file
, " <%d>", i
);
573 fprintf (file
, "%sPredecessors: ", prefix
);
574 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
575 dump_edge_info (file
, e
, 0);
577 if ((flags
& TDF_DETAILS
)
578 && (bb
->flags
& BB_RTL
)
582 df_dump_top (bb
, file
);
588 fprintf (file
, "\n%sSuccessors: ", prefix
);
589 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
590 dump_edge_info (file
, e
, 1);
592 if ((flags
& TDF_DETAILS
)
593 && (bb
->flags
& BB_RTL
)
597 df_dump_bottom (bb
, file
);
604 /* Dump the register info to FILE. */
607 dump_reg_info (FILE *file
)
609 unsigned int i
, max
= max_reg_num ();
610 if (reload_completed
)
613 if (reg_info_p_size
< max
)
614 max
= reg_info_p_size
;
616 fprintf (file
, "%d registers.\n", max
);
617 for (i
= FIRST_PSEUDO_REGISTER
; i
< max
; i
++)
619 enum reg_class rclass
, altclass
;
621 if (regstat_n_sets_and_refs
)
622 fprintf (file
, "\nRegister %d used %d times across %d insns",
623 i
, REG_N_REFS (i
), REG_LIVE_LENGTH (i
));
625 fprintf (file
, "\nRegister %d used %d times across %d insns",
626 i
, DF_REG_USE_COUNT (i
) + DF_REG_DEF_COUNT (i
), REG_LIVE_LENGTH (i
));
628 if (REG_BASIC_BLOCK (i
) >= NUM_FIXED_BLOCKS
)
629 fprintf (file
, " in block %d", REG_BASIC_BLOCK (i
));
630 if (regstat_n_sets_and_refs
)
631 fprintf (file
, "; set %d time%s", REG_N_SETS (i
),
632 (REG_N_SETS (i
) == 1) ? "" : "s");
634 fprintf (file
, "; set %d time%s", DF_REG_DEF_COUNT (i
),
635 (DF_REG_DEF_COUNT (i
) == 1) ? "" : "s");
636 if (regno_reg_rtx
[i
] != NULL
&& REG_USERVAR_P (regno_reg_rtx
[i
]))
637 fputs ("; user var", file
);
638 if (REG_N_DEATHS (i
) != 1)
639 fprintf (file
, "; dies in %d places", REG_N_DEATHS (i
));
640 if (REG_N_CALLS_CROSSED (i
) == 1)
641 fputs ("; crosses 1 call", file
);
642 else if (REG_N_CALLS_CROSSED (i
))
643 fprintf (file
, "; crosses %d calls", REG_N_CALLS_CROSSED (i
));
644 if (REG_FREQ_CALLS_CROSSED (i
))
645 fprintf (file
, "; crosses call with %d frequency", REG_FREQ_CALLS_CROSSED (i
));
646 if (regno_reg_rtx
[i
] != NULL
647 && PSEUDO_REGNO_BYTES (i
) != UNITS_PER_WORD
)
648 fprintf (file
, "; %d bytes", PSEUDO_REGNO_BYTES (i
));
650 rclass
= reg_preferred_class (i
);
651 altclass
= reg_alternate_class (i
);
652 if (rclass
!= GENERAL_REGS
|| altclass
!= ALL_REGS
)
654 if (altclass
== ALL_REGS
|| rclass
== ALL_REGS
)
655 fprintf (file
, "; pref %s", reg_class_names
[(int) rclass
]);
656 else if (altclass
== NO_REGS
)
657 fprintf (file
, "; %s or none", reg_class_names
[(int) rclass
]);
659 fprintf (file
, "; pref %s, else %s",
660 reg_class_names
[(int) rclass
],
661 reg_class_names
[(int) altclass
]);
664 if (regno_reg_rtx
[i
] != NULL
&& REG_POINTER (regno_reg_rtx
[i
]))
665 fputs ("; pointer", file
);
672 dump_flow_info (FILE *file
, int flags
)
676 /* There are no pseudo registers after reload. Don't dump them. */
677 if (reg_info_p_size
&& (flags
& TDF_DETAILS
) != 0)
678 dump_reg_info (file
);
680 fprintf (file
, "\n%d basic blocks, %d edges.\n", n_basic_blocks
, n_edges
);
683 dump_bb_info (bb
, true, true, flags
, "", file
);
684 check_bb_profile (bb
, file
);
691 debug_flow_info (void)
693 dump_flow_info (stderr
, TDF_DETAILS
);
697 dump_edge_info (FILE *file
, edge e
, int do_succ
)
699 basic_block side
= (do_succ
? e
->dest
: e
->src
);
700 /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
701 if (cfun
&& side
== ENTRY_BLOCK_PTR
)
702 fputs (" ENTRY", file
);
703 else if (cfun
&& side
== EXIT_BLOCK_PTR
)
704 fputs (" EXIT", file
);
706 fprintf (file
, " %d", side
->index
);
709 fprintf (file
, " [%.1f%%] ", e
->probability
* 100.0 / REG_BR_PROB_BASE
);
713 fputs (" count:", file
);
714 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, e
->count
);
719 static const char * const bitnames
[] = {
720 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
721 "can_fallthru", "irreducible", "sibcall", "loop_exit",
722 "true", "false", "exec", "crossing", "preserve"
725 int i
, flags
= e
->flags
;
728 for (i
= 0; flags
; i
++)
729 if (flags
& (1 << i
))
735 if (i
< (int) ARRAY_SIZE (bitnames
))
736 fputs (bitnames
[i
], file
);
738 fprintf (file
, "%d", i
);
746 /* Simple routines to easily allocate AUX fields of basic blocks. */
748 static struct obstack block_aux_obstack
;
749 static void *first_block_aux_obj
= 0;
750 static struct obstack edge_aux_obstack
;
751 static void *first_edge_aux_obj
= 0;
753 /* Allocate a memory block of SIZE as BB->aux. The obstack must
754 be first initialized by alloc_aux_for_blocks. */
757 alloc_aux_for_block (basic_block bb
, int size
)
759 /* Verify that aux field is clear. */
760 gcc_assert (!bb
->aux
&& first_block_aux_obj
);
761 bb
->aux
= obstack_alloc (&block_aux_obstack
, size
);
762 memset (bb
->aux
, 0, size
);
765 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
766 alloc_aux_for_block for each basic block. */
769 alloc_aux_for_blocks (int size
)
771 static int initialized
;
775 gcc_obstack_init (&block_aux_obstack
);
779 /* Check whether AUX data are still allocated. */
780 gcc_assert (!first_block_aux_obj
);
782 first_block_aux_obj
= obstack_alloc (&block_aux_obstack
, 0);
788 alloc_aux_for_block (bb
, size
);
792 /* Clear AUX pointers of all blocks. */
795 clear_aux_for_blocks (void)
803 /* Free data allocated in block_aux_obstack and clear AUX pointers
807 free_aux_for_blocks (void)
809 gcc_assert (first_block_aux_obj
);
810 obstack_free (&block_aux_obstack
, first_block_aux_obj
);
811 first_block_aux_obj
= NULL
;
813 clear_aux_for_blocks ();
816 /* Allocate a memory edge of SIZE as E->aux. The obstack must
817 be first initialized by alloc_aux_for_edges. */
820 alloc_aux_for_edge (edge e
, int size
)
822 /* Verify that aux field is clear. */
823 gcc_assert (!e
->aux
&& first_edge_aux_obj
);
824 e
->aux
= obstack_alloc (&edge_aux_obstack
, size
);
825 memset (e
->aux
, 0, size
);
828 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
829 alloc_aux_for_edge for each basic edge. */
832 alloc_aux_for_edges (int size
)
834 static int initialized
;
838 gcc_obstack_init (&edge_aux_obstack
);
842 /* Check whether AUX data are still allocated. */
843 gcc_assert (!first_edge_aux_obj
);
845 first_edge_aux_obj
= obstack_alloc (&edge_aux_obstack
, 0);
850 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
855 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
856 alloc_aux_for_edge (e
, size
);
861 /* Clear AUX pointers of all edges. */
864 clear_aux_for_edges (void)
869 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
872 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
877 /* Free data allocated in edge_aux_obstack and clear AUX pointers
881 free_aux_for_edges (void)
883 gcc_assert (first_edge_aux_obj
);
884 obstack_free (&edge_aux_obstack
, first_edge_aux_obj
);
885 first_edge_aux_obj
= NULL
;
887 clear_aux_for_edges ();
891 debug_bb (basic_block bb
)
893 dump_bb (bb
, stderr
, 0);
896 DEBUG_FUNCTION basic_block
899 basic_block bb
= BASIC_BLOCK (n
);
900 dump_bb (bb
, stderr
, 0);
904 /* Dumps cfg related information about basic block BB to FILE. */
907 dump_cfg_bb_info (FILE *file
, basic_block bb
)
912 static const char * const bb_bitnames
[] =
914 "new", "reachable", "irreducible_loop", "superblock",
915 "nosched", "hot", "cold", "dup", "xlabel", "rtl",
918 const unsigned n_bitnames
= sizeof (bb_bitnames
) / sizeof (char *);
921 fprintf (file
, "Basic block %d", bb
->index
);
922 for (i
= 0; i
< n_bitnames
; i
++)
923 if (bb
->flags
& (1 << i
))
930 fputs (bb_bitnames
[i
], file
);
936 fputs ("Predecessors: ", file
);
937 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
938 dump_edge_info (file
, e
, 0);
940 fprintf (file
, "\nSuccessors: ");
941 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
942 dump_edge_info (file
, e
, 1);
943 fputs ("\n\n", file
);
946 /* Dumps a brief description of cfg to FILE. */
949 brief_dump_cfg (FILE *file
)
955 dump_cfg_bb_info (file
, bb
);
959 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
960 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
961 redirected to destination of TAKEN_EDGE.
963 This function may leave the profile inconsistent in the case TAKEN_EDGE
964 frequency or count is believed to be lower than FREQUENCY or COUNT
967 update_bb_profile_for_threading (basic_block bb
, int edge_frequency
,
968 gcov_type count
, edge taken_edge
)
978 fprintf (dump_file
, "bb %i count became negative after threading",
983 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
984 Watch for overflows. */
986 prob
= edge_frequency
* REG_BR_PROB_BASE
/ bb
->frequency
;
989 if (prob
> taken_edge
->probability
)
992 fprintf (dump_file
, "Jump threading proved probability of edge "
993 "%i->%i too small (it is %i, should be %i).\n",
994 taken_edge
->src
->index
, taken_edge
->dest
->index
,
995 taken_edge
->probability
, prob
);
996 prob
= taken_edge
->probability
;
999 /* Now rescale the probabilities. */
1000 taken_edge
->probability
-= prob
;
1001 prob
= REG_BR_PROB_BASE
- prob
;
1002 bb
->frequency
-= edge_frequency
;
1003 if (bb
->frequency
< 0)
1008 fprintf (dump_file
, "Edge frequencies of bb %i has been reset, "
1009 "frequency of block should end up being 0, it is %i\n",
1010 bb
->index
, bb
->frequency
);
1011 EDGE_SUCC (bb
, 0)->probability
= REG_BR_PROB_BASE
;
1012 ei
= ei_start (bb
->succs
);
1014 for (; (c
= ei_safe_edge (ei
)); ei_next (&ei
))
1017 else if (prob
!= REG_BR_PROB_BASE
)
1019 int scale
= RDIV (65536 * REG_BR_PROB_BASE
, prob
);
1021 FOR_EACH_EDGE (c
, ei
, bb
->succs
)
1023 /* Protect from overflow due to additional scaling. */
1024 if (c
->probability
> prob
)
1025 c
->probability
= REG_BR_PROB_BASE
;
1028 c
->probability
= RDIV (c
->probability
* scale
, 65536);
1029 if (c
->probability
> REG_BR_PROB_BASE
)
1030 c
->probability
= REG_BR_PROB_BASE
;
1035 gcc_assert (bb
== taken_edge
->src
);
1036 taken_edge
->count
-= count
;
1037 if (taken_edge
->count
< 0)
1040 fprintf (dump_file
, "edge %i->%i count became negative after threading",
1041 taken_edge
->src
->index
, taken_edge
->dest
->index
);
1042 taken_edge
->count
= 0;
1046 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1047 by NUM/DEN, in int arithmetic. May lose some accuracy. */
1049 scale_bbs_frequencies_int (basic_block
*bbs
, int nbbs
, int num
, int den
)
1056 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
1057 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
1058 and still safely fit in int during calculations. */
1064 num
= RDIV (1000 * num
, den
);
1067 if (num
> 100 * den
)
1070 for (i
= 0; i
< nbbs
; i
++)
1073 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
1074 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
1075 if (bbs
[i
]->frequency
> BB_FREQ_MAX
)
1076 bbs
[i
]->frequency
= BB_FREQ_MAX
;
1077 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* num
, den
);
1078 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
1079 e
->count
= RDIV (e
->count
* num
, den
);
1083 /* numbers smaller than this value are safe to multiply without getting
1085 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
1087 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1088 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
1089 function but considerably slower. */
1091 scale_bbs_frequencies_gcov_type (basic_block
*bbs
, int nbbs
, gcov_type num
,
1096 gcov_type fraction
= RDIV (num
* 65536, den
);
1098 gcc_assert (fraction
>= 0);
1100 if (num
< MAX_SAFE_MULTIPLIER
)
1101 for (i
= 0; i
< nbbs
; i
++)
1104 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
1105 if (bbs
[i
]->count
<= MAX_SAFE_MULTIPLIER
)
1106 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* num
, den
);
1108 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* fraction
, 65536);
1109 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
1110 if (bbs
[i
]->count
<= MAX_SAFE_MULTIPLIER
)
1111 e
->count
= RDIV (e
->count
* num
, den
);
1113 e
->count
= RDIV (e
->count
* fraction
, 65536);
1116 for (i
= 0; i
< nbbs
; i
++)
1119 if (sizeof (gcov_type
) > sizeof (int))
1120 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
1122 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* fraction
, 65536);
1123 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* fraction
, 65536);
1124 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
1125 e
->count
= RDIV (e
->count
* fraction
, 65536);
1129 /* Data structures used to maintain mapping between basic blocks and
1131 static htab_t bb_original
;
1132 static htab_t bb_copy
;
1134 /* And between loops and copies. */
1135 static htab_t loop_copy
;
1136 static alloc_pool original_copy_bb_pool
;
1138 struct htab_bb_copy_original_entry
1140 /* Block we are attaching info to. */
1142 /* Index of original or copy (depending on the hashtable) */
1147 bb_copy_original_hash (const void *p
)
1149 const struct htab_bb_copy_original_entry
*data
1150 = ((const struct htab_bb_copy_original_entry
*)p
);
1152 return data
->index1
;
1155 bb_copy_original_eq (const void *p
, const void *q
)
1157 const struct htab_bb_copy_original_entry
*data
1158 = ((const struct htab_bb_copy_original_entry
*)p
);
1159 const struct htab_bb_copy_original_entry
*data2
1160 = ((const struct htab_bb_copy_original_entry
*)q
);
1162 return data
->index1
== data2
->index1
;
1165 /* Initialize the data structures to maintain mapping between blocks
1168 initialize_original_copy_tables (void)
1170 gcc_assert (!original_copy_bb_pool
);
1171 original_copy_bb_pool
1172 = create_alloc_pool ("original_copy",
1173 sizeof (struct htab_bb_copy_original_entry
), 10);
1174 bb_original
= htab_create (10, bb_copy_original_hash
,
1175 bb_copy_original_eq
, NULL
);
1176 bb_copy
= htab_create (10, bb_copy_original_hash
, bb_copy_original_eq
, NULL
);
1177 loop_copy
= htab_create (10, bb_copy_original_hash
, bb_copy_original_eq
, NULL
);
1180 /* Free the data structures to maintain mapping between blocks and
1183 free_original_copy_tables (void)
1185 gcc_assert (original_copy_bb_pool
);
1186 htab_delete (bb_copy
);
1187 htab_delete (bb_original
);
1188 htab_delete (loop_copy
);
1189 free_alloc_pool (original_copy_bb_pool
);
1193 original_copy_bb_pool
= NULL
;
1196 /* Removes the value associated with OBJ from table TAB. */
1199 copy_original_table_clear (htab_t tab
, unsigned obj
)
1202 struct htab_bb_copy_original_entry key
, *elt
;
1204 if (!original_copy_bb_pool
)
1208 slot
= htab_find_slot (tab
, &key
, NO_INSERT
);
1212 elt
= (struct htab_bb_copy_original_entry
*) *slot
;
1213 htab_clear_slot (tab
, slot
);
1214 pool_free (original_copy_bb_pool
, elt
);
1217 /* Sets the value associated with OBJ in table TAB to VAL.
1218 Do nothing when data structures are not initialized. */
1221 copy_original_table_set (htab_t tab
, unsigned obj
, unsigned val
)
1223 struct htab_bb_copy_original_entry
**slot
;
1224 struct htab_bb_copy_original_entry key
;
1226 if (!original_copy_bb_pool
)
1230 slot
= (struct htab_bb_copy_original_entry
**)
1231 htab_find_slot (tab
, &key
, INSERT
);
1234 *slot
= (struct htab_bb_copy_original_entry
*)
1235 pool_alloc (original_copy_bb_pool
);
1236 (*slot
)->index1
= obj
;
1238 (*slot
)->index2
= val
;
1241 /* Set original for basic block. Do nothing when data structures are not
1242 initialized so passes not needing this don't need to care. */
1244 set_bb_original (basic_block bb
, basic_block original
)
1246 copy_original_table_set (bb_original
, bb
->index
, original
->index
);
1249 /* Get the original basic block. */
1251 get_bb_original (basic_block bb
)
1253 struct htab_bb_copy_original_entry
*entry
;
1254 struct htab_bb_copy_original_entry key
;
1256 gcc_assert (original_copy_bb_pool
);
1258 key
.index1
= bb
->index
;
1259 entry
= (struct htab_bb_copy_original_entry
*) htab_find (bb_original
, &key
);
1261 return BASIC_BLOCK (entry
->index2
);
1266 /* Set copy for basic block. Do nothing when data structures are not
1267 initialized so passes not needing this don't need to care. */
1269 set_bb_copy (basic_block bb
, basic_block copy
)
1271 copy_original_table_set (bb_copy
, bb
->index
, copy
->index
);
1274 /* Get the copy of basic block. */
1276 get_bb_copy (basic_block bb
)
1278 struct htab_bb_copy_original_entry
*entry
;
1279 struct htab_bb_copy_original_entry key
;
1281 gcc_assert (original_copy_bb_pool
);
1283 key
.index1
= bb
->index
;
1284 entry
= (struct htab_bb_copy_original_entry
*) htab_find (bb_copy
, &key
);
1286 return BASIC_BLOCK (entry
->index2
);
1291 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1292 initialized so passes not needing this don't need to care. */
1295 set_loop_copy (struct loop
*loop
, struct loop
*copy
)
1298 copy_original_table_clear (loop_copy
, loop
->num
);
1300 copy_original_table_set (loop_copy
, loop
->num
, copy
->num
);
1303 /* Get the copy of LOOP. */
1306 get_loop_copy (struct loop
*loop
)
1308 struct htab_bb_copy_original_entry
*entry
;
1309 struct htab_bb_copy_original_entry key
;
1311 gcc_assert (original_copy_bb_pool
);
1313 key
.index1
= loop
->num
;
1314 entry
= (struct htab_bb_copy_original_entry
*) htab_find (loop_copy
, &key
);
1316 return get_loop (entry
->index2
);