svn merge -r215707:216846 svn+ssh://gcc.gnu.org/svn/gcc/trunk
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blobb68ea2fadefbc3b667c57d1dedf1fc7dcab87d9b
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "vec.h"
30 #include "hashtab.h"
31 #include "hash-set.h"
32 #include "machmode.h"
33 #include "hard-reg-set.h"
34 #include "input.h"
35 #include "function.h"
36 #include "dominance.h"
37 #include "cfg.h"
38 #include "cfganal.h"
39 #include "basic-block.h"
40 #include "gimple-pretty-print.h"
41 #include "tree-ssa-alias.h"
42 #include "internal-fn.h"
43 #include "gimple-expr.h"
44 #include "is-a.h"
45 #include "gimple.h"
46 #include "gimplify.h"
47 #include "gimple-iterator.h"
48 #include "gimplify-me.h"
49 #include "gimple-ssa.h"
50 #include "tree-cfg.h"
51 #include "tree-phinodes.h"
52 #include "ssa-iterators.h"
53 #include "stringpool.h"
54 #include "tree-ssanames.h"
55 #include "tree-ssa-loop-manip.h"
56 #include "tree-into-ssa.h"
57 #include "tree-ssa.h"
58 #include "tree-pass.h"
59 #include "cfgloop.h"
60 #include "diagnostic-core.h"
61 #include "tree-scalar-evolution.h"
62 #include "tree-vectorizer.h"
63 #include "langhooks.h"
65 /*************************************************************************
66 Simple Loop Peeling Utilities
68 Utilities to support loop peeling for vectorization purposes.
69 *************************************************************************/
72 /* Renames the use *OP_P. */
74 static void
75 rename_use_op (use_operand_p op_p)
77 tree new_name;
79 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
80 return;
82 new_name = get_current_def (USE_FROM_PTR (op_p));
84 /* Something defined outside of the loop. */
85 if (!new_name)
86 return;
88 /* An ordinary ssa name defined in the loop. */
90 SET_USE (op_p, new_name);
94 /* Renames the variables in basic block BB. */
96 static void
97 rename_variables_in_bb (basic_block bb)
99 gimple_stmt_iterator gsi;
100 gimple stmt;
101 use_operand_p use_p;
102 ssa_op_iter iter;
103 edge e;
104 edge_iterator ei;
105 struct loop *loop = bb->loop_father;
107 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
109 stmt = gsi_stmt (gsi);
110 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
111 rename_use_op (use_p);
114 FOR_EACH_EDGE (e, ei, bb->preds)
116 if (!flow_bb_inside_loop_p (loop, e->src))
117 continue;
118 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
119 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
124 typedef struct
126 tree from, to;
127 basic_block bb;
128 } adjust_info;
130 /* A stack of values to be adjusted in debug stmts. We have to
131 process them LIFO, so that the closest substitution applies. If we
132 processed them FIFO, without the stack, we might substitute uses
133 with a PHI DEF that would soon become non-dominant, and when we got
134 to the suitable one, it wouldn't have anything to substitute any
135 more. */
136 static vec<adjust_info, va_heap> adjust_vec;
138 /* Adjust any debug stmts that referenced AI->from values to use the
139 loop-closed AI->to, if the references are dominated by AI->bb and
140 not by the definition of AI->from. */
142 static void
143 adjust_debug_stmts_now (adjust_info *ai)
145 basic_block bbphi = ai->bb;
146 tree orig_def = ai->from;
147 tree new_def = ai->to;
148 imm_use_iterator imm_iter;
149 gimple stmt;
150 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
152 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
154 /* Adjust any debug stmts that held onto non-loop-closed
155 references. */
156 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
158 use_operand_p use_p;
159 basic_block bbuse;
161 if (!is_gimple_debug (stmt))
162 continue;
164 gcc_assert (gimple_debug_bind_p (stmt));
166 bbuse = gimple_bb (stmt);
168 if ((bbuse == bbphi
169 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
170 && !(bbuse == bbdef
171 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
173 if (new_def)
174 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
175 SET_USE (use_p, new_def);
176 else
178 gimple_debug_bind_reset_value (stmt);
179 update_stmt (stmt);
185 /* Adjust debug stmts as scheduled before. */
187 static void
188 adjust_vec_debug_stmts (void)
190 if (!MAY_HAVE_DEBUG_STMTS)
191 return;
193 gcc_assert (adjust_vec.exists ());
195 while (!adjust_vec.is_empty ())
197 adjust_debug_stmts_now (&adjust_vec.last ());
198 adjust_vec.pop ();
201 adjust_vec.release ();
204 /* Adjust any debug stmts that referenced FROM values to use the
205 loop-closed TO, if the references are dominated by BB and not by
206 the definition of FROM. If adjust_vec is non-NULL, adjustments
207 will be postponed until adjust_vec_debug_stmts is called. */
209 static void
210 adjust_debug_stmts (tree from, tree to, basic_block bb)
212 adjust_info ai;
214 if (MAY_HAVE_DEBUG_STMTS
215 && TREE_CODE (from) == SSA_NAME
216 && ! SSA_NAME_IS_DEFAULT_DEF (from)
217 && ! virtual_operand_p (from))
219 ai.from = from;
220 ai.to = to;
221 ai.bb = bb;
223 if (adjust_vec.exists ())
224 adjust_vec.safe_push (ai);
225 else
226 adjust_debug_stmts_now (&ai);
230 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
231 to adjust any debug stmts that referenced the old phi arg,
232 presumably non-loop-closed references left over from other
233 transformations. */
235 static void
236 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
238 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
240 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
242 if (MAY_HAVE_DEBUG_STMTS)
243 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
244 gimple_bb (update_phi));
248 /* Update PHI nodes for a guard of the LOOP.
250 Input:
251 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
252 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
253 originates from the guard-bb, skips LOOP and reaches the (unique) exit
254 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
255 We denote this bb NEW_MERGE_BB because before the guard code was added
256 it had a single predecessor (the LOOP header), and now it became a merge
257 point of two paths - the path that ends with the LOOP exit-edge, and
258 the path that ends with GUARD_EDGE.
259 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
260 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
262 ===> The CFG before the guard-code was added:
263 LOOP_header_bb:
264 loop_body
265 if (exit_loop) goto update_bb
266 else goto LOOP_header_bb
267 update_bb:
269 ==> The CFG after the guard-code was added:
270 guard_bb:
271 if (LOOP_guard_condition) goto new_merge_bb
272 else goto LOOP_header_bb
273 LOOP_header_bb:
274 loop_body
275 if (exit_loop_condition) goto new_merge_bb
276 else goto LOOP_header_bb
277 new_merge_bb:
278 goto update_bb
279 update_bb:
281 ==> The CFG after this function:
282 guard_bb:
283 if (LOOP_guard_condition) goto new_merge_bb
284 else goto LOOP_header_bb
285 LOOP_header_bb:
286 loop_body
287 if (exit_loop_condition) goto new_exit_bb
288 else goto LOOP_header_bb
289 new_exit_bb:
290 new_merge_bb:
291 goto update_bb
292 update_bb:
294 This function:
295 1. creates and updates the relevant phi nodes to account for the new
296 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
297 1.1. Create phi nodes at NEW_MERGE_BB.
298 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
299 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
300 2. preserves loop-closed-ssa-form by creating the required phi nodes
301 at the exit of LOOP (i.e, in NEW_EXIT_BB).
303 There are two flavors to this function:
305 slpeel_update_phi_nodes_for_guard1:
306 Here the guard controls whether we enter or skip LOOP, where LOOP is a
307 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
308 for variables that have phis in the loop header.
310 slpeel_update_phi_nodes_for_guard2:
311 Here the guard controls whether we enter or skip LOOP, where LOOP is an
312 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
313 for variables that have phis in the loop exit.
315 I.E., the overall structure is:
317 loop1_preheader_bb:
318 guard1 (goto loop1/merge1_bb)
319 loop1
320 loop1_exit_bb:
321 guard2 (goto merge1_bb/merge2_bb)
322 merge1_bb
323 loop2
324 loop2_exit_bb
325 merge2_bb
326 next_bb
328 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
329 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
330 that have phis in loop1->header).
332 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
333 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
334 that have phis in next_bb). It also adds some of these phis to
335 loop1_exit_bb.
337 slpeel_update_phi_nodes_for_guard1 is always called before
338 slpeel_update_phi_nodes_for_guard2. They are both needed in order
339 to create correct data-flow and loop-closed-ssa-form.
341 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
342 that change between iterations of a loop (and therefore have a phi-node
343 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
344 phis for variables that are used out of the loop (and therefore have
345 loop-closed exit phis). Some variables may be both updated between
346 iterations and used after the loop. This is why in loop1_exit_bb we
347 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
348 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
350 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
351 an original loop. i.e., we have:
353 orig_loop
354 guard_bb (goto LOOP/new_merge)
355 new_loop <-- LOOP
356 new_exit
357 new_merge
358 next_bb
360 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
361 have:
363 new_loop
364 guard_bb (goto LOOP/new_merge)
365 orig_loop <-- LOOP
366 new_exit
367 new_merge
368 next_bb
370 The SSA names defined in the original loop have a current
371 reaching definition that that records the corresponding new
372 ssa-name used in the new duplicated loop copy.
375 /* Function slpeel_update_phi_nodes_for_guard1
377 Input:
378 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
379 - DEFS - a bitmap of ssa names to mark new names for which we recorded
380 information.
382 In the context of the overall structure, we have:
384 loop1_preheader_bb:
385 guard1 (goto loop1/merge1_bb)
386 LOOP-> loop1
387 loop1_exit_bb:
388 guard2 (goto merge1_bb/merge2_bb)
389 merge1_bb
390 loop2
391 loop2_exit_bb
392 merge2_bb
393 next_bb
395 For each name updated between loop iterations (i.e - for each name that has
396 an entry (loop-header) phi in LOOP) we create a new phi in:
397 1. merge1_bb (to account for the edge from guard1)
398 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
401 static void
402 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
403 bool is_new_loop, basic_block *new_exit_bb)
405 gimple orig_phi, new_phi;
406 gimple update_phi, update_phi2;
407 tree guard_arg, loop_arg;
408 basic_block new_merge_bb = guard_edge->dest;
409 edge e = EDGE_SUCC (new_merge_bb, 0);
410 basic_block update_bb = e->dest;
411 basic_block orig_bb = loop->header;
412 edge new_exit_e;
413 tree current_new_name;
414 gimple_stmt_iterator gsi_orig, gsi_update;
416 /* Create new bb between loop and new_merge_bb. */
417 *new_exit_bb = split_edge (single_exit (loop));
419 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
421 for (gsi_orig = gsi_start_phis (orig_bb),
422 gsi_update = gsi_start_phis (update_bb);
423 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
424 gsi_next (&gsi_orig), gsi_next (&gsi_update))
426 source_location loop_locus, guard_locus;
427 tree new_res;
428 orig_phi = gsi_stmt (gsi_orig);
429 update_phi = gsi_stmt (gsi_update);
431 /** 1. Handle new-merge-point phis **/
433 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
434 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
435 new_phi = create_phi_node (new_res, new_merge_bb);
437 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
438 of LOOP. Set the two phi args in NEW_PHI for these edges: */
439 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
440 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
441 EDGE_SUCC (loop->latch,
442 0));
443 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
444 guard_locus
445 = gimple_phi_arg_location_from_edge (orig_phi,
446 loop_preheader_edge (loop));
448 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
449 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
451 /* 1.3. Update phi in successor block. */
452 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
453 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
454 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
455 update_phi2 = new_phi;
458 /** 2. Handle loop-closed-ssa-form phis **/
460 if (virtual_operand_p (PHI_RESULT (orig_phi)))
461 continue;
463 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
464 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
465 new_phi = create_phi_node (new_res, *new_exit_bb);
467 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
468 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
470 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
471 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
472 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
473 PHI_RESULT (new_phi));
475 /* 2.4. Record the newly created name with set_current_def.
476 We want to find a name such that
477 name = get_current_def (orig_loop_name)
478 and to set its current definition as follows:
479 set_current_def (name, new_phi_name)
481 If LOOP is a new loop then loop_arg is already the name we're
482 looking for. If LOOP is the original loop, then loop_arg is
483 the orig_loop_name and the relevant name is recorded in its
484 current reaching definition. */
485 if (is_new_loop)
486 current_new_name = loop_arg;
487 else
489 current_new_name = get_current_def (loop_arg);
490 /* current_def is not available only if the variable does not
491 change inside the loop, in which case we also don't care
492 about recording a current_def for it because we won't be
493 trying to create loop-exit-phis for it. */
494 if (!current_new_name)
495 continue;
497 tree new_name = get_current_def (current_new_name);
498 /* Because of peeled_chrec optimization it is possible that we have
499 set this earlier. Verify the PHI has the same value. */
500 if (new_name)
502 gimple phi = SSA_NAME_DEF_STMT (new_name);
503 gcc_assert (gimple_code (phi) == GIMPLE_PHI
504 && gimple_bb (phi) == *new_exit_bb
505 && (PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop))
506 == loop_arg));
507 continue;
510 set_current_def (current_new_name, PHI_RESULT (new_phi));
515 /* Function slpeel_update_phi_nodes_for_guard2
517 Input:
518 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
520 In the context of the overall structure, we have:
522 loop1_preheader_bb:
523 guard1 (goto loop1/merge1_bb)
524 loop1
525 loop1_exit_bb:
526 guard2 (goto merge1_bb/merge2_bb)
527 merge1_bb
528 LOOP-> loop2
529 loop2_exit_bb
530 merge2_bb
531 next_bb
533 For each name used out side the loop (i.e - for each name that has an exit
534 phi in next_bb) we create a new phi in:
535 1. merge2_bb (to account for the edge from guard_bb)
536 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
537 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
538 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
541 static void
542 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
543 bool is_new_loop, basic_block *new_exit_bb)
545 gimple orig_phi, new_phi;
546 gimple update_phi, update_phi2;
547 tree guard_arg, loop_arg;
548 basic_block new_merge_bb = guard_edge->dest;
549 edge e = EDGE_SUCC (new_merge_bb, 0);
550 basic_block update_bb = e->dest;
551 edge new_exit_e;
552 tree orig_def, orig_def_new_name;
553 tree new_name, new_name2;
554 tree arg;
555 gimple_stmt_iterator gsi;
557 /* Create new bb between loop and new_merge_bb. */
558 *new_exit_bb = split_edge (single_exit (loop));
560 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
562 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
564 tree new_res;
565 update_phi = gsi_stmt (gsi);
566 orig_phi = update_phi;
567 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
568 /* This loop-closed-phi actually doesn't represent a use
569 out of the loop - the phi arg is a constant. */
570 if (TREE_CODE (orig_def) != SSA_NAME)
571 continue;
572 orig_def_new_name = get_current_def (orig_def);
573 arg = NULL_TREE;
575 /** 1. Handle new-merge-point phis **/
577 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
578 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
579 new_phi = create_phi_node (new_res, new_merge_bb);
581 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
582 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
583 new_name = orig_def;
584 new_name2 = NULL_TREE;
585 if (orig_def_new_name)
587 new_name = orig_def_new_name;
588 /* Some variables have both loop-entry-phis and loop-exit-phis.
589 Such variables were given yet newer names by phis placed in
590 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
591 new_name2 = get_current_def (get_current_def (orig_name)). */
592 new_name2 = get_current_def (new_name);
595 if (is_new_loop)
597 guard_arg = orig_def;
598 loop_arg = new_name;
600 else
602 guard_arg = new_name;
603 loop_arg = orig_def;
605 if (new_name2)
606 guard_arg = new_name2;
608 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
609 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
611 /* 1.3. Update phi in successor block. */
612 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
613 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
614 update_phi2 = new_phi;
617 /** 2. Handle loop-closed-ssa-form phis **/
619 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
620 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
621 new_phi = create_phi_node (new_res, *new_exit_bb);
623 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
624 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
626 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
627 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
628 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
629 PHI_RESULT (new_phi));
632 /** 3. Handle loop-closed-ssa-form phis for first loop **/
634 /* 3.1. Find the relevant names that need an exit-phi in
635 GUARD_BB, i.e. names for which
636 slpeel_update_phi_nodes_for_guard1 had not already created a
637 phi node. This is the case for names that are used outside
638 the loop (and therefore need an exit phi) but are not updated
639 across loop iterations (and therefore don't have a
640 loop-header-phi).
642 slpeel_update_phi_nodes_for_guard1 is responsible for
643 creating loop-exit phis in GUARD_BB for names that have a
644 loop-header-phi. When such a phi is created we also record
645 the new name in its current definition. If this new name
646 exists, then guard_arg was set to this new name (see 1.2
647 above). Therefore, if guard_arg is not this new name, this
648 is an indication that an exit-phi in GUARD_BB was not yet
649 created, so we take care of it here. */
650 if (guard_arg == new_name2)
651 continue;
652 arg = guard_arg;
654 /* 3.2. Generate new phi node in GUARD_BB: */
655 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
656 new_phi = create_phi_node (new_res, guard_edge->src);
658 /* 3.3. GUARD_BB has one incoming edge: */
659 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
660 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
661 UNKNOWN_LOCATION);
663 /* 3.4. Update phi in successor of GUARD_BB: */
664 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
665 == guard_arg);
666 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
667 PHI_RESULT (new_phi));
672 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
673 that starts at zero, increases by one and its limit is NITERS.
675 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
677 void
678 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
680 tree indx_before_incr, indx_after_incr;
681 gimple cond_stmt;
682 gimple orig_cond;
683 edge exit_edge = single_exit (loop);
684 gimple_stmt_iterator loop_cond_gsi;
685 gimple_stmt_iterator incr_gsi;
686 bool insert_after;
687 tree init = build_int_cst (TREE_TYPE (niters), 0);
688 tree step = build_int_cst (TREE_TYPE (niters), 1);
689 source_location loop_loc;
690 enum tree_code code;
692 orig_cond = get_loop_exit_condition (loop);
693 gcc_assert (orig_cond);
694 loop_cond_gsi = gsi_for_stmt (orig_cond);
696 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
697 create_iv (init, step, NULL_TREE, loop,
698 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
700 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
701 true, NULL_TREE, true,
702 GSI_SAME_STMT);
703 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
704 true, GSI_SAME_STMT);
706 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
707 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
708 NULL_TREE);
710 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
712 /* Remove old loop exit test: */
713 gsi_remove (&loop_cond_gsi, true);
714 free_stmt_vec_info (orig_cond);
716 loop_loc = find_loop_location (loop);
717 if (dump_enabled_p ())
719 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
720 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
721 LOCATION_LINE (loop_loc));
722 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
723 dump_printf (MSG_NOTE, "\n");
725 loop->nb_iterations = niters;
728 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
729 For all PHI arguments in FROM->dest and TO->dest from those
730 edges ensure that TO->dest PHI arguments have current_def
731 to that in from. */
733 static void
734 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
736 gimple_stmt_iterator gsi_from, gsi_to;
738 for (gsi_from = gsi_start_phis (from->dest),
739 gsi_to = gsi_start_phis (to->dest);
740 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
741 gsi_next (&gsi_from), gsi_next (&gsi_to))
743 gimple from_phi = gsi_stmt (gsi_from);
744 gimple to_phi = gsi_stmt (gsi_to);
745 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
746 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
747 if (TREE_CODE (from_arg) == SSA_NAME
748 && TREE_CODE (to_arg) == SSA_NAME
749 && get_current_def (to_arg) == NULL_TREE)
750 set_current_def (to_arg, get_current_def (from_arg));
755 /* Given LOOP this function generates a new copy of it and puts it
756 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
757 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
758 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
759 entry or exit of LOOP. */
761 struct loop *
762 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
763 struct loop *scalar_loop, edge e)
765 struct loop *new_loop;
766 basic_block *new_bbs, *bbs;
767 bool at_exit;
768 bool was_imm_dom;
769 basic_block exit_dest;
770 edge exit, new_exit;
772 exit = single_exit (loop);
773 at_exit = (e == exit);
774 if (!at_exit && e != loop_preheader_edge (loop))
775 return NULL;
777 if (scalar_loop == NULL)
778 scalar_loop = loop;
780 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
781 get_loop_body_with_size (scalar_loop, bbs, scalar_loop->num_nodes);
783 /* Check whether duplication is possible. */
784 if (!can_copy_bbs_p (bbs, scalar_loop->num_nodes))
786 free (bbs);
787 return NULL;
790 /* Generate new loop structure. */
791 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
792 duplicate_subloops (scalar_loop, new_loop);
794 exit_dest = exit->dest;
795 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
796 exit_dest) == loop->header ?
797 true : false);
799 /* Also copy the pre-header, this avoids jumping through hoops to
800 duplicate the loop entry PHI arguments. Create an empty
801 pre-header unconditionally for this. */
802 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
803 edge entry_e = single_pred_edge (preheader);
804 bbs[scalar_loop->num_nodes] = preheader;
805 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
807 exit = single_exit (scalar_loop);
808 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
809 &exit, 1, &new_exit, NULL,
810 e->src, true);
811 exit = single_exit (loop);
812 basic_block new_preheader = new_bbs[scalar_loop->num_nodes];
814 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
816 if (scalar_loop != loop)
818 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
819 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
820 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
821 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
822 header) to have current_def set, so copy them over. */
823 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
824 exit);
825 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
827 EDGE_SUCC (loop->latch, 0));
830 if (at_exit) /* Add the loop copy at exit. */
832 if (scalar_loop != loop)
834 gimple_stmt_iterator gsi;
835 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
837 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
838 gsi_next (&gsi))
840 gimple phi = gsi_stmt (gsi);
841 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
842 location_t orig_locus
843 = gimple_phi_arg_location_from_edge (phi, e);
845 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
848 redirect_edge_and_branch_force (e, new_preheader);
849 flush_pending_stmts (e);
850 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
851 if (was_imm_dom)
852 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
854 /* And remove the non-necessary forwarder again. Keep the other
855 one so we have a proper pre-header for the loop at the exit edge. */
856 redirect_edge_pred (single_succ_edge (preheader),
857 single_pred (preheader));
858 delete_basic_block (preheader);
859 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
860 loop_preheader_edge (scalar_loop)->src);
862 else /* Add the copy at entry. */
864 if (scalar_loop != loop)
866 /* Remove the non-necessary forwarder of scalar_loop again. */
867 redirect_edge_pred (single_succ_edge (preheader),
868 single_pred (preheader));
869 delete_basic_block (preheader);
870 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
871 loop_preheader_edge (scalar_loop)->src);
872 preheader = split_edge (loop_preheader_edge (loop));
873 entry_e = single_pred_edge (preheader);
876 redirect_edge_and_branch_force (entry_e, new_preheader);
877 flush_pending_stmts (entry_e);
878 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
880 redirect_edge_and_branch_force (new_exit, preheader);
881 flush_pending_stmts (new_exit);
882 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
884 /* And remove the non-necessary forwarder again. Keep the other
885 one so we have a proper pre-header for the loop at the exit edge. */
886 redirect_edge_pred (single_succ_edge (new_preheader),
887 single_pred (new_preheader));
888 delete_basic_block (new_preheader);
889 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
890 loop_preheader_edge (new_loop)->src);
893 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
894 rename_variables_in_bb (new_bbs[i]);
896 if (scalar_loop != loop)
898 /* Update new_loop->header PHIs, so that on the preheader
899 edge they are the ones from loop rather than scalar_loop. */
900 gimple_stmt_iterator gsi_orig, gsi_new;
901 edge orig_e = loop_preheader_edge (loop);
902 edge new_e = loop_preheader_edge (new_loop);
904 for (gsi_orig = gsi_start_phis (loop->header),
905 gsi_new = gsi_start_phis (new_loop->header);
906 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
907 gsi_next (&gsi_orig), gsi_next (&gsi_new))
909 gimple orig_phi = gsi_stmt (gsi_orig);
910 gimple new_phi = gsi_stmt (gsi_new);
911 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
912 location_t orig_locus
913 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
915 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
919 free (new_bbs);
920 free (bbs);
922 #ifdef ENABLE_CHECKING
923 verify_dominators (CDI_DOMINATORS);
924 #endif
926 return new_loop;
930 /* Given the condition statement COND, put it as the last statement
931 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
932 Assumes that this is the single exit of the guarded loop.
933 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
935 static edge
936 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
937 gimple_seq cond_expr_stmt_list,
938 basic_block exit_bb, basic_block dom_bb,
939 int probability)
941 gimple_stmt_iterator gsi;
942 edge new_e, enter_e;
943 gimple cond_stmt;
944 gimple_seq gimplify_stmt_list = NULL;
946 enter_e = EDGE_SUCC (guard_bb, 0);
947 enter_e->flags &= ~EDGE_FALLTHRU;
948 enter_e->flags |= EDGE_FALSE_VALUE;
949 gsi = gsi_last_bb (guard_bb);
951 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
952 NULL_TREE);
953 if (gimplify_stmt_list)
954 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
955 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
956 if (cond_expr_stmt_list)
957 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
959 gsi = gsi_last_bb (guard_bb);
960 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
962 /* Add new edge to connect guard block to the merge/loop-exit block. */
963 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
965 new_e->count = guard_bb->count;
966 new_e->probability = probability;
967 new_e->count = apply_probability (enter_e->count, probability);
968 enter_e->count -= new_e->count;
969 enter_e->probability = inverse_probability (probability);
970 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
971 return new_e;
975 /* This function verifies that the following restrictions apply to LOOP:
976 (1) it is innermost
977 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
978 (3) it is single entry, single exit
979 (4) its exit condition is the last stmt in the header
980 (5) E is the entry/exit edge of LOOP.
983 bool
984 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
986 edge exit_e = single_exit (loop);
987 edge entry_e = loop_preheader_edge (loop);
988 gimple orig_cond = get_loop_exit_condition (loop);
989 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
991 if (loop->inner
992 /* All loops have an outer scope; the only case loop->outer is NULL is for
993 the function itself. */
994 || !loop_outer (loop)
995 || loop->num_nodes != 2
996 || !empty_block_p (loop->latch)
997 || !single_exit (loop)
998 /* Verify that new loop exit condition can be trivially modified. */
999 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1000 || (e != exit_e && e != entry_e))
1001 return false;
1003 return true;
1006 #ifdef ENABLE_CHECKING
1007 static void
1008 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1009 struct loop *second_loop)
1011 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1012 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1013 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1015 /* A guard that controls whether the second_loop is to be executed or skipped
1016 is placed in first_loop->exit. first_loop->exit therefore has two
1017 successors - one is the preheader of second_loop, and the other is a bb
1018 after second_loop.
1020 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1022 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1023 of second_loop. */
1025 /* The preheader of new_loop is expected to have two predecessors:
1026 first_loop->exit and the block that precedes first_loop. */
1028 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1029 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1030 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1031 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1032 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1034 /* Verify that the other successor of first_loop->exit is after the
1035 second_loop. */
1036 /* TODO */
1038 #endif
1040 /* If the run time cost model check determines that vectorization is
1041 not profitable and hence scalar loop should be generated then set
1042 FIRST_NITERS to prologue peeled iterations. This will allow all the
1043 iterations to be executed in the prologue peeled scalar loop. */
1045 static void
1046 set_prologue_iterations (basic_block bb_before_first_loop,
1047 tree *first_niters,
1048 struct loop *loop,
1049 unsigned int th,
1050 int probability)
1052 edge e;
1053 basic_block cond_bb, then_bb;
1054 tree var, prologue_after_cost_adjust_name;
1055 gimple_stmt_iterator gsi;
1056 gimple newphi;
1057 edge e_true, e_false, e_fallthru;
1058 gimple cond_stmt;
1059 gimple_seq stmts = NULL;
1060 tree cost_pre_condition = NULL_TREE;
1061 tree scalar_loop_iters =
1062 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1064 e = single_pred_edge (bb_before_first_loop);
1065 cond_bb = split_edge (e);
1067 e = single_pred_edge (bb_before_first_loop);
1068 then_bb = split_edge (e);
1069 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1071 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1072 EDGE_FALSE_VALUE);
1073 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1075 e_true = EDGE_PRED (then_bb, 0);
1076 e_true->flags &= ~EDGE_FALLTHRU;
1077 e_true->flags |= EDGE_TRUE_VALUE;
1079 e_true->probability = probability;
1080 e_false->probability = inverse_probability (probability);
1081 e_true->count = apply_probability (cond_bb->count, probability);
1082 e_false->count = cond_bb->count - e_true->count;
1083 then_bb->frequency = EDGE_FREQUENCY (e_true);
1084 then_bb->count = e_true->count;
1086 e_fallthru = EDGE_SUCC (then_bb, 0);
1087 e_fallthru->count = then_bb->count;
1089 gsi = gsi_last_bb (cond_bb);
1090 cost_pre_condition =
1091 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1092 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1093 cost_pre_condition =
1094 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
1095 NULL_TREE, false, GSI_CONTINUE_LINKING);
1096 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
1097 NULL_TREE, NULL_TREE);
1098 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1100 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1101 "prologue_after_cost_adjust");
1102 prologue_after_cost_adjust_name =
1103 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1105 gsi = gsi_last_bb (then_bb);
1106 if (stmts)
1107 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1109 newphi = create_phi_node (var, bb_before_first_loop);
1110 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1111 UNKNOWN_LOCATION);
1112 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1114 *first_niters = PHI_RESULT (newphi);
1117 /* Function slpeel_tree_peel_loop_to_edge.
1119 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1120 that is placed on the entry (exit) edge E of LOOP. After this transformation
1121 we have two loops one after the other - first-loop iterates FIRST_NITERS
1122 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1123 If the cost model indicates that it is profitable to emit a scalar
1124 loop instead of the vector one, then the prolog (epilog) loop will iterate
1125 for the entire unchanged scalar iterations of the loop.
1127 Input:
1128 - LOOP: the loop to be peeled.
1129 - SCALAR_LOOP: if non-NULL, the alternate loop from which basic blocks
1130 should be copied.
1131 - E: the exit or entry edge of LOOP.
1132 If it is the entry edge, we peel the first iterations of LOOP. In this
1133 case first-loop is LOOP, and second-loop is the newly created loop.
1134 If it is the exit edge, we peel the last iterations of LOOP. In this
1135 case, first-loop is the newly created loop, and second-loop is LOOP.
1136 - NITERS: the number of iterations that LOOP iterates.
1137 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1138 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1139 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1140 is false, the caller of this function may want to take care of this
1141 (this can be useful if we don't want new stmts added to first-loop).
1142 - TH: cost model profitability threshold of iterations for vectorization.
1143 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1144 during versioning and hence needs to occur during
1145 prologue generation or whether cost model check
1146 has not occurred during prologue generation and hence
1147 needs to occur during epilogue generation.
1148 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1149 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1152 Output:
1153 The function returns a pointer to the new loop-copy, or NULL if it failed
1154 to perform the transformation.
1156 The function generates two if-then-else guards: one before the first loop,
1157 and the other before the second loop:
1158 The first guard is:
1159 if (FIRST_NITERS == 0) then skip the first loop,
1160 and go directly to the second loop.
1161 The second guard is:
1162 if (FIRST_NITERS == NITERS) then skip the second loop.
1164 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1165 then the generated condition is combined with COND_EXPR and the
1166 statements in COND_EXPR_STMT_LIST are emitted together with it.
1168 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1169 FORNOW the resulting code will not be in loop-closed-ssa form.
1172 static struct loop *
1173 slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loop *scalar_loop,
1174 edge e, tree *first_niters,
1175 tree niters, bool update_first_loop_count,
1176 unsigned int th, bool check_profitability,
1177 tree cond_expr, gimple_seq cond_expr_stmt_list,
1178 int bound1, int bound2)
1180 struct loop *new_loop = NULL, *first_loop, *second_loop;
1181 edge skip_e;
1182 tree pre_condition = NULL_TREE;
1183 basic_block bb_before_second_loop, bb_after_second_loop;
1184 basic_block bb_before_first_loop;
1185 basic_block bb_between_loops;
1186 basic_block new_exit_bb;
1187 gimple_stmt_iterator gsi;
1188 edge exit_e = single_exit (loop);
1189 source_location loop_loc;
1190 /* There are many aspects to how likely the first loop is going to be executed.
1191 Without histogram we can't really do good job. Simply set it to
1192 2/3, so the first loop is not reordered to the end of function and
1193 the hot path through stays short. */
1194 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1195 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1196 int probability_of_second_loop;
1198 if (!slpeel_can_duplicate_loop_p (loop, e))
1199 return NULL;
1201 /* We might have a queued need to update virtual SSA form. As we
1202 delete the update SSA machinery below after doing a regular
1203 incremental SSA update during loop copying make sure we don't
1204 lose that fact.
1205 ??? Needing to update virtual SSA form by renaming is unfortunate
1206 but not all of the vectorizer code inserting new loads / stores
1207 properly assigns virtual operands to those statements. */
1208 update_ssa (TODO_update_ssa_only_virtuals);
1210 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1211 in the exit bb and rename all the uses after the loop. This simplifies
1212 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1213 (but normally loop closed SSA form doesn't require virtual PHIs to be
1214 in the same form). Doing this early simplifies the checking what
1215 uses should be renamed. */
1216 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1217 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1219 gimple phi = gsi_stmt (gsi);
1220 for (gsi = gsi_start_phis (exit_e->dest);
1221 !gsi_end_p (gsi); gsi_next (&gsi))
1222 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1223 break;
1224 if (gsi_end_p (gsi))
1226 tree new_vop = copy_ssa_name (PHI_RESULT (phi), NULL);
1227 gimple new_phi = create_phi_node (new_vop, exit_e->dest);
1228 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1229 imm_use_iterator imm_iter;
1230 gimple stmt;
1231 use_operand_p use_p;
1233 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1234 gimple_phi_set_result (new_phi, new_vop);
1235 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1236 if (stmt != new_phi && gimple_bb (stmt) != loop->header)
1237 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1238 SET_USE (use_p, new_vop);
1240 break;
1243 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1244 Resulting CFG would be:
1246 first_loop:
1247 do {
1248 } while ...
1250 second_loop:
1251 do {
1252 } while ...
1254 orig_exit_bb:
1257 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop,
1258 e)))
1260 loop_loc = find_loop_location (loop);
1261 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1262 "tree_duplicate_loop_to_edge_cfg failed.\n");
1263 return NULL;
1266 if (MAY_HAVE_DEBUG_STMTS)
1268 gcc_assert (!adjust_vec.exists ());
1269 adjust_vec.create (32);
1272 if (e == exit_e)
1274 /* NEW_LOOP was placed after LOOP. */
1275 first_loop = loop;
1276 second_loop = new_loop;
1278 else
1280 /* NEW_LOOP was placed before LOOP. */
1281 first_loop = new_loop;
1282 second_loop = loop;
1285 /* 2. Add the guard code in one of the following ways:
1287 2.a Add the guard that controls whether the first loop is executed.
1288 This occurs when this function is invoked for prologue or epilogue
1289 generation and when the cost model check can be done at compile time.
1291 Resulting CFG would be:
1293 bb_before_first_loop:
1294 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1295 GOTO first-loop
1297 first_loop:
1298 do {
1299 } while ...
1301 bb_before_second_loop:
1303 second_loop:
1304 do {
1305 } while ...
1307 orig_exit_bb:
1309 2.b Add the cost model check that allows the prologue
1310 to iterate for the entire unchanged scalar
1311 iterations of the loop in the event that the cost
1312 model indicates that the scalar loop is more
1313 profitable than the vector one. This occurs when
1314 this function is invoked for prologue generation
1315 and the cost model check needs to be done at run
1316 time.
1318 Resulting CFG after prologue peeling would be:
1320 if (scalar_loop_iterations <= th)
1321 FIRST_NITERS = scalar_loop_iterations
1323 bb_before_first_loop:
1324 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1325 GOTO first-loop
1327 first_loop:
1328 do {
1329 } while ...
1331 bb_before_second_loop:
1333 second_loop:
1334 do {
1335 } while ...
1337 orig_exit_bb:
1339 2.c Add the cost model check that allows the epilogue
1340 to iterate for the entire unchanged scalar
1341 iterations of the loop in the event that the cost
1342 model indicates that the scalar loop is more
1343 profitable than the vector one. This occurs when
1344 this function is invoked for epilogue generation
1345 and the cost model check needs to be done at run
1346 time. This check is combined with any pre-existing
1347 check in COND_EXPR to avoid versioning.
1349 Resulting CFG after prologue peeling would be:
1351 bb_before_first_loop:
1352 if ((scalar_loop_iterations <= th)
1354 FIRST_NITERS == 0) GOTO bb_before_second_loop
1355 GOTO first-loop
1357 first_loop:
1358 do {
1359 } while ...
1361 bb_before_second_loop:
1363 second_loop:
1364 do {
1365 } while ...
1367 orig_exit_bb:
1370 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1371 /* Loop copying insterted a forwarder block for us here. */
1372 bb_before_second_loop = single_exit (first_loop)->dest;
1374 probability_of_second_loop = (inverse_probability (first_guard_probability)
1375 + combine_probabilities (second_guard_probability,
1376 first_guard_probability));
1377 /* Theoretically preheader edge of first loop and exit edge should have
1378 same frequencies. Loop exit probablities are however easy to get wrong.
1379 It is safer to copy value from original loop entry. */
1380 bb_before_second_loop->frequency
1381 = combine_probabilities (bb_before_first_loop->frequency,
1382 probability_of_second_loop);
1383 bb_before_second_loop->count
1384 = apply_probability (bb_before_first_loop->count,
1385 probability_of_second_loop);
1386 single_succ_edge (bb_before_second_loop)->count
1387 = bb_before_second_loop->count;
1389 /* Epilogue peeling. */
1390 if (!update_first_loop_count)
1392 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
1393 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
1394 unsigned limit = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
1395 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1396 limit = limit + 1;
1397 if (check_profitability
1398 && th > limit)
1399 limit = th;
1400 pre_condition =
1401 fold_build2 (LT_EXPR, boolean_type_node, scalar_loop_iters,
1402 build_int_cst (TREE_TYPE (scalar_loop_iters), limit));
1403 if (cond_expr)
1405 pre_condition =
1406 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1407 pre_condition,
1408 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1409 cond_expr));
1413 /* Prologue peeling. */
1414 else
1416 if (check_profitability)
1417 set_prologue_iterations (bb_before_first_loop, first_niters,
1418 loop, th, first_guard_probability);
1420 pre_condition =
1421 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1422 build_int_cst (TREE_TYPE (*first_niters), 0));
1425 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1426 cond_expr_stmt_list,
1427 bb_before_second_loop, bb_before_first_loop,
1428 inverse_probability (first_guard_probability));
1429 scale_loop_profile (first_loop, first_guard_probability,
1430 check_profitability && (int)th > bound1 ? th : bound1);
1431 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1432 first_loop == new_loop,
1433 &new_exit_bb);
1436 /* 3. Add the guard that controls whether the second loop is executed.
1437 Resulting CFG would be:
1439 bb_before_first_loop:
1440 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1441 GOTO first-loop
1443 first_loop:
1444 do {
1445 } while ...
1447 bb_between_loops:
1448 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1449 GOTO bb_before_second_loop
1451 bb_before_second_loop:
1453 second_loop:
1454 do {
1455 } while ...
1457 bb_after_second_loop:
1459 orig_exit_bb:
1462 bb_between_loops = new_exit_bb;
1463 bb_after_second_loop = split_edge (single_exit (second_loop));
1465 pre_condition =
1466 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1467 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1468 bb_after_second_loop, bb_before_first_loop,
1469 inverse_probability (second_guard_probability));
1470 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1471 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1472 second_loop == new_loop, &new_exit_bb);
1474 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1476 if (update_first_loop_count)
1477 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1479 delete_update_ssa ();
1481 adjust_vec_debug_stmts ();
1483 return new_loop;
1486 /* Function vect_get_loop_location.
1488 Extract the location of the loop in the source code.
1489 If the loop is not well formed for vectorization, an estimated
1490 location is calculated.
1491 Return the loop location if succeed and NULL if not. */
1493 source_location
1494 find_loop_location (struct loop *loop)
1496 gimple stmt = NULL;
1497 basic_block bb;
1498 gimple_stmt_iterator si;
1500 if (!loop)
1501 return UNKNOWN_LOCATION;
1503 stmt = get_loop_exit_condition (loop);
1505 if (stmt
1506 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1507 return gimple_location (stmt);
1509 /* If we got here the loop is probably not "well formed",
1510 try to estimate the loop location */
1512 if (!loop->header)
1513 return UNKNOWN_LOCATION;
1515 bb = loop->header;
1517 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1519 stmt = gsi_stmt (si);
1520 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1521 return gimple_location (stmt);
1524 return UNKNOWN_LOCATION;
1528 /* Function vect_can_advance_ivs_p
1530 In case the number of iterations that LOOP iterates is unknown at compile
1531 time, an epilog loop will be generated, and the loop induction variables
1532 (IVs) will be "advanced" to the value they are supposed to take just before
1533 the epilog loop. Here we check that the access function of the loop IVs
1534 and the expression that represents the loop bound are simple enough.
1535 These restrictions will be relaxed in the future. */
1537 bool
1538 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1540 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1541 basic_block bb = loop->header;
1542 gimple phi;
1543 gimple_stmt_iterator gsi;
1545 /* Analyze phi functions of the loop header. */
1547 if (dump_enabled_p ())
1548 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1549 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1551 tree evolution_part;
1553 phi = gsi_stmt (gsi);
1554 if (dump_enabled_p ())
1556 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1557 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1558 dump_printf (MSG_NOTE, "\n");
1561 /* Skip virtual phi's. The data dependences that are associated with
1562 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1564 if (virtual_operand_p (PHI_RESULT (phi)))
1566 if (dump_enabled_p ())
1567 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1568 "virtual phi. skip.\n");
1569 continue;
1572 /* Skip reduction phis. */
1574 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1576 if (dump_enabled_p ())
1577 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1578 "reduc phi. skip.\n");
1579 continue;
1582 /* Analyze the evolution function. */
1584 evolution_part
1585 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1586 if (evolution_part == NULL_TREE)
1588 if (dump_enabled_p ())
1589 dump_printf (MSG_MISSED_OPTIMIZATION,
1590 "No access function or evolution.\n");
1591 return false;
1594 /* FORNOW: We do not transform initial conditions of IVs
1595 which evolution functions are a polynomial of degree >= 2. */
1597 if (tree_is_chrec (evolution_part))
1598 return false;
1601 return true;
1605 /* Function vect_update_ivs_after_vectorizer.
1607 "Advance" the induction variables of LOOP to the value they should take
1608 after the execution of LOOP. This is currently necessary because the
1609 vectorizer does not handle induction variables that are used after the
1610 loop. Such a situation occurs when the last iterations of LOOP are
1611 peeled, because:
1612 1. We introduced new uses after LOOP for IVs that were not originally used
1613 after LOOP: the IVs of LOOP are now used by an epilog loop.
1614 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1615 times, whereas the loop IVs should be bumped N times.
1617 Input:
1618 - LOOP - a loop that is going to be vectorized. The last few iterations
1619 of LOOP were peeled.
1620 - NITERS - the number of iterations that LOOP executes (before it is
1621 vectorized). i.e, the number of times the ivs should be bumped.
1622 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1623 coming out from LOOP on which there are uses of the LOOP ivs
1624 (this is the path from LOOP->exit to epilog_loop->preheader).
1626 The new definitions of the ivs are placed in LOOP->exit.
1627 The phi args associated with the edge UPDATE_E in the bb
1628 UPDATE_E->dest are updated accordingly.
1630 Assumption 1: Like the rest of the vectorizer, this function assumes
1631 a single loop exit that has a single predecessor.
1633 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1634 organized in the same order.
1636 Assumption 3: The access function of the ivs is simple enough (see
1637 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1639 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1640 coming out of LOOP on which the ivs of LOOP are used (this is the path
1641 that leads to the epilog loop; other paths skip the epilog loop). This
1642 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1643 needs to have its phis updated.
1646 static void
1647 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1648 edge update_e)
1650 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1651 basic_block exit_bb = single_exit (loop)->dest;
1652 gimple phi, phi1;
1653 gimple_stmt_iterator gsi, gsi1;
1654 basic_block update_bb = update_e->dest;
1656 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1658 /* Make sure there exists a single-predecessor exit bb: */
1659 gcc_assert (single_pred_p (exit_bb));
1661 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1662 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1663 gsi_next (&gsi), gsi_next (&gsi1))
1665 tree init_expr;
1666 tree step_expr, off;
1667 tree type;
1668 tree var, ni, ni_name;
1669 gimple_stmt_iterator last_gsi;
1670 stmt_vec_info stmt_info;
1672 phi = gsi_stmt (gsi);
1673 phi1 = gsi_stmt (gsi1);
1674 if (dump_enabled_p ())
1676 dump_printf_loc (MSG_NOTE, vect_location,
1677 "vect_update_ivs_after_vectorizer: phi: ");
1678 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1679 dump_printf (MSG_NOTE, "\n");
1682 /* Skip virtual phi's. */
1683 if (virtual_operand_p (PHI_RESULT (phi)))
1685 if (dump_enabled_p ())
1686 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1687 "virtual phi. skip.\n");
1688 continue;
1691 /* Skip reduction phis. */
1692 stmt_info = vinfo_for_stmt (phi);
1693 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
1695 if (dump_enabled_p ())
1696 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1697 "reduc phi. skip.\n");
1698 continue;
1701 type = TREE_TYPE (gimple_phi_result (phi));
1702 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1703 step_expr = unshare_expr (step_expr);
1705 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1706 of degree >= 2 or exponential. */
1707 gcc_assert (!tree_is_chrec (step_expr));
1709 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1711 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1712 fold_convert (TREE_TYPE (step_expr), niters),
1713 step_expr);
1714 if (POINTER_TYPE_P (type))
1715 ni = fold_build_pointer_plus (init_expr, off);
1716 else
1717 ni = fold_build2 (PLUS_EXPR, type,
1718 init_expr, fold_convert (type, off));
1720 var = create_tmp_var (type, "tmp");
1722 last_gsi = gsi_last_bb (exit_bb);
1723 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1724 true, GSI_SAME_STMT);
1726 /* Fix phi expressions in the successor bb. */
1727 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1731 /* Function vect_do_peeling_for_loop_bound
1733 Peel the last iterations of the loop represented by LOOP_VINFO.
1734 The peeled iterations form a new epilog loop. Given that the loop now
1735 iterates NITERS times, the new epilog loop iterates
1736 NITERS % VECTORIZATION_FACTOR times.
1738 The original loop will later be made to iterate
1739 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1741 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1742 test. */
1744 void
1745 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo,
1746 tree ni_name, tree ratio_mult_vf_name,
1747 unsigned int th, bool check_profitability)
1749 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1750 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1751 struct loop *new_loop;
1752 edge update_e;
1753 basic_block preheader;
1754 int loop_num;
1755 int max_iter;
1756 tree cond_expr = NULL_TREE;
1757 gimple_seq cond_expr_stmt_list = NULL;
1759 if (dump_enabled_p ())
1760 dump_printf_loc (MSG_NOTE, vect_location,
1761 "=== vect_do_peeling_for_loop_bound ===\n");
1763 initialize_original_copy_tables ();
1765 loop_num = loop->num;
1767 new_loop
1768 = slpeel_tree_peel_loop_to_edge (loop, scalar_loop, single_exit (loop),
1769 &ratio_mult_vf_name, ni_name, false,
1770 th, check_profitability,
1771 cond_expr, cond_expr_stmt_list,
1772 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1773 gcc_assert (new_loop);
1774 gcc_assert (loop_num == loop->num);
1775 #ifdef ENABLE_CHECKING
1776 slpeel_verify_cfg_after_peeling (loop, new_loop);
1777 #endif
1779 /* A guard that controls whether the new_loop is to be executed or skipped
1780 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1781 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1782 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1783 is on the path where the LOOP IVs are used and need to be updated. */
1785 preheader = loop_preheader_edge (new_loop)->src;
1786 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1787 update_e = EDGE_PRED (preheader, 0);
1788 else
1789 update_e = EDGE_PRED (preheader, 1);
1791 /* Update IVs of original loop as if they were advanced
1792 by ratio_mult_vf_name steps. */
1793 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1795 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1796 and this means N-2 loopback edge executions.
1798 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1799 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1800 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1801 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1802 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1803 if (check_profitability)
1804 max_iter = MAX (max_iter, (int) th - 1);
1805 record_niter_bound (new_loop, max_iter, false, true);
1806 dump_printf (MSG_NOTE,
1807 "Setting upper bound of nb iterations for epilogue "
1808 "loop to %d\n", max_iter);
1810 /* After peeling we have to reset scalar evolution analyzer. */
1811 scev_reset ();
1813 free_original_copy_tables ();
1817 /* Function vect_gen_niters_for_prolog_loop
1819 Set the number of iterations for the loop represented by LOOP_VINFO
1820 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1821 and the misalignment of DR - the data reference recorded in
1822 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1823 this loop, the data reference DR will refer to an aligned location.
1825 The following computation is generated:
1827 If the misalignment of DR is known at compile time:
1828 addr_mis = int mis = DR_MISALIGNMENT (dr);
1829 Else, compute address misalignment in bytes:
1830 addr_mis = addr & (vectype_align - 1)
1832 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1834 (elem_size = element type size; an element is the scalar element whose type
1835 is the inner type of the vectype)
1837 When the step of the data-ref in the loop is not 1 (as in interleaved data
1838 and SLP), the number of iterations of the prolog must be divided by the step
1839 (which is equal to the size of interleaved group).
1841 The above formulas assume that VF == number of elements in the vector. This
1842 may not hold when there are multiple-types in the loop.
1843 In this case, for some data-references in the loop the VF does not represent
1844 the number of elements that fit in the vector. Therefore, instead of VF we
1845 use TYPE_VECTOR_SUBPARTS. */
1847 static tree
1848 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
1850 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1851 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1852 tree var;
1853 gimple_seq stmts;
1854 tree iters, iters_name;
1855 edge pe;
1856 basic_block new_bb;
1857 gimple dr_stmt = DR_STMT (dr);
1858 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1859 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1860 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1861 tree niters_type = TREE_TYPE (loop_niters);
1862 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1864 pe = loop_preheader_edge (loop);
1866 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1868 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1870 if (dump_enabled_p ())
1871 dump_printf_loc (MSG_NOTE, vect_location,
1872 "known peeling = %d.\n", npeel);
1874 iters = build_int_cst (niters_type, npeel);
1875 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1877 else
1879 gimple_seq new_stmts = NULL;
1880 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1881 tree offset = negative
1882 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
1883 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1884 &new_stmts, offset, loop);
1885 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1886 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1887 HOST_WIDE_INT elem_size =
1888 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1889 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1890 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1891 tree nelements_tree = build_int_cst (type, nelements);
1892 tree byte_misalign;
1893 tree elem_misalign;
1895 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1896 gcc_assert (!new_bb);
1898 /* Create: byte_misalign = addr & (vectype_align - 1) */
1899 byte_misalign =
1900 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
1901 vectype_align_minus_1);
1903 /* Create: elem_misalign = byte_misalign / element_size */
1904 elem_misalign =
1905 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1907 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1908 if (negative)
1909 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1910 else
1911 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1912 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1913 iters = fold_convert (niters_type, iters);
1914 *bound = nelements;
1917 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1918 /* If the loop bound is known at compile time we already verified that it is
1919 greater than vf; since the misalignment ('iters') is at most vf, there's
1920 no need to generate the MIN_EXPR in this case. */
1921 if (TREE_CODE (loop_niters) != INTEGER_CST)
1922 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1924 if (dump_enabled_p ())
1926 dump_printf_loc (MSG_NOTE, vect_location,
1927 "niters for prolog loop: ");
1928 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1929 dump_printf (MSG_NOTE, "\n");
1932 var = create_tmp_var (niters_type, "prolog_loop_niters");
1933 stmts = NULL;
1934 iters_name = force_gimple_operand (iters, &stmts, false, var);
1936 /* Insert stmt on loop preheader edge. */
1937 if (stmts)
1939 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1940 gcc_assert (!new_bb);
1943 return iters_name;
1947 /* Function vect_update_init_of_dr
1949 NITERS iterations were peeled from LOOP. DR represents a data reference
1950 in LOOP. This function updates the information recorded in DR to
1951 account for the fact that the first NITERS iterations had already been
1952 executed. Specifically, it updates the OFFSET field of DR. */
1954 static void
1955 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1957 tree offset = DR_OFFSET (dr);
1959 niters = fold_build2 (MULT_EXPR, sizetype,
1960 fold_convert (sizetype, niters),
1961 fold_convert (sizetype, DR_STEP (dr)));
1962 offset = fold_build2 (PLUS_EXPR, sizetype,
1963 fold_convert (sizetype, offset), niters);
1964 DR_OFFSET (dr) = offset;
1968 /* Function vect_update_inits_of_drs
1970 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1971 This function updates the information recorded for the data references in
1972 the loop to account for the fact that the first NITERS iterations had
1973 already been executed. Specifically, it updates the initial_condition of
1974 the access_function of all the data_references in the loop. */
1976 static void
1977 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1979 unsigned int i;
1980 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1981 struct data_reference *dr;
1983 if (dump_enabled_p ())
1984 dump_printf_loc (MSG_NOTE, vect_location,
1985 "=== vect_update_inits_of_dr ===\n");
1987 FOR_EACH_VEC_ELT (datarefs, i, dr)
1988 vect_update_init_of_dr (dr, niters);
1992 /* Function vect_do_peeling_for_alignment
1994 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
1995 'niters' is set to the misalignment of one of the data references in the
1996 loop, thereby forcing it to refer to an aligned location at the beginning
1997 of the execution of this loop. The data reference for which we are
1998 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2000 void
2001 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, tree ni_name,
2002 unsigned int th, bool check_profitability)
2004 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2005 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2006 tree niters_of_prolog_loop;
2007 tree wide_prolog_niters;
2008 struct loop *new_loop;
2009 int max_iter;
2010 int bound = 0;
2012 if (dump_enabled_p ())
2013 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2014 "loop peeled for vectorization to enhance"
2015 " alignment\n");
2017 initialize_original_copy_tables ();
2019 gimple_seq stmts = NULL;
2020 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2021 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2022 ni_name,
2023 &bound);
2025 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2026 new_loop =
2027 slpeel_tree_peel_loop_to_edge (loop, scalar_loop,
2028 loop_preheader_edge (loop),
2029 &niters_of_prolog_loop, ni_name, true,
2030 th, check_profitability, NULL_TREE, NULL,
2031 bound, 0);
2033 gcc_assert (new_loop);
2034 #ifdef ENABLE_CHECKING
2035 slpeel_verify_cfg_after_peeling (new_loop, loop);
2036 #endif
2037 /* For vectorization factor N, we need to copy at most N-1 values
2038 for alignment and this means N-2 loopback edge executions. */
2039 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2040 if (check_profitability)
2041 max_iter = MAX (max_iter, (int) th - 1);
2042 record_niter_bound (new_loop, max_iter, false, true);
2043 dump_printf (MSG_NOTE,
2044 "Setting upper bound of nb iterations for prologue "
2045 "loop to %d\n", max_iter);
2047 /* Update number of times loop executes. */
2048 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2049 TREE_TYPE (ni_name), ni_name, niters_of_prolog_loop);
2050 LOOP_VINFO_NITERSM1 (loop_vinfo) = fold_build2 (MINUS_EXPR,
2051 TREE_TYPE (ni_name),
2052 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_of_prolog_loop);
2054 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2055 wide_prolog_niters = niters_of_prolog_loop;
2056 else
2058 gimple_seq seq = NULL;
2059 edge pe = loop_preheader_edge (loop);
2060 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2061 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2062 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2063 var);
2064 if (seq)
2066 /* Insert stmt on loop preheader edge. */
2067 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2068 gcc_assert (!new_bb);
2072 /* Update the init conditions of the access functions of all data refs. */
2073 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2075 /* After peeling we have to reset scalar evolution analyzer. */
2076 scev_reset ();
2078 free_original_copy_tables ();
2082 /* Function vect_create_cond_for_align_checks.
2084 Create a conditional expression that represents the alignment checks for
2085 all of data references (array element references) whose alignment must be
2086 checked at runtime.
2088 Input:
2089 COND_EXPR - input conditional expression. New conditions will be chained
2090 with logical AND operation.
2091 LOOP_VINFO - two fields of the loop information are used.
2092 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2093 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2095 Output:
2096 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2097 expression.
2098 The returned value is the conditional expression to be used in the if
2099 statement that controls which version of the loop gets executed at runtime.
2101 The algorithm makes two assumptions:
2102 1) The number of bytes "n" in a vector is a power of 2.
2103 2) An address "a" is aligned if a%n is zero and that this
2104 test can be done as a&(n-1) == 0. For example, for 16
2105 byte vectors the test is a&0xf == 0. */
2107 static void
2108 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2109 tree *cond_expr,
2110 gimple_seq *cond_expr_stmt_list)
2112 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2113 vec<gimple> may_misalign_stmts
2114 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2115 gimple ref_stmt;
2116 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2117 tree mask_cst;
2118 unsigned int i;
2119 tree int_ptrsize_type;
2120 char tmp_name[20];
2121 tree or_tmp_name = NULL_TREE;
2122 tree and_tmp_name;
2123 gimple and_stmt;
2124 tree ptrsize_zero;
2125 tree part_cond_expr;
2127 /* Check that mask is one less than a power of 2, i.e., mask is
2128 all zeros followed by all ones. */
2129 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2131 int_ptrsize_type = signed_type_for (ptr_type_node);
2133 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2134 of the first vector of the i'th data reference. */
2136 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2138 gimple_seq new_stmt_list = NULL;
2139 tree addr_base;
2140 tree addr_tmp_name;
2141 tree new_or_tmp_name;
2142 gimple addr_stmt, or_stmt;
2143 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2144 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2145 bool negative = tree_int_cst_compare
2146 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2147 tree offset = negative
2148 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2150 /* create: addr_tmp = (int)(address_of_first_vector) */
2151 addr_base =
2152 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2153 offset, loop);
2154 if (new_stmt_list != NULL)
2155 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2157 sprintf (tmp_name, "addr2int%d", i);
2158 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2159 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2160 addr_base, NULL_TREE);
2161 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2163 /* The addresses are OR together. */
2165 if (or_tmp_name != NULL_TREE)
2167 /* create: or_tmp = or_tmp | addr_tmp */
2168 sprintf (tmp_name, "orptrs%d", i);
2169 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2170 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2171 new_or_tmp_name,
2172 or_tmp_name, addr_tmp_name);
2173 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2174 or_tmp_name = new_or_tmp_name;
2176 else
2177 or_tmp_name = addr_tmp_name;
2179 } /* end for i */
2181 mask_cst = build_int_cst (int_ptrsize_type, mask);
2183 /* create: and_tmp = or_tmp & mask */
2184 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2186 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2187 or_tmp_name, mask_cst);
2188 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2190 /* Make and_tmp the left operand of the conditional test against zero.
2191 if and_tmp has a nonzero bit then some address is unaligned. */
2192 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2193 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2194 and_tmp_name, ptrsize_zero);
2195 if (*cond_expr)
2196 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2197 *cond_expr, part_cond_expr);
2198 else
2199 *cond_expr = part_cond_expr;
2202 /* Function vect_create_cond_for_alias_checks.
2204 Create a conditional expression that represents the run-time checks for
2205 overlapping of address ranges represented by a list of data references
2206 relations passed as input.
2208 Input:
2209 COND_EXPR - input conditional expression. New conditions will be chained
2210 with logical AND operation. If it is NULL, then the function
2211 is used to return the number of alias checks.
2212 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2213 to be checked.
2215 Output:
2216 COND_EXPR - conditional expression.
2218 The returned COND_EXPR is the conditional expression to be used in the if
2219 statement that controls which version of the loop gets executed at runtime.
2222 void
2223 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2225 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2226 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2227 tree part_cond_expr;
2229 /* Create expression
2230 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2231 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2235 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2236 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2238 if (comp_alias_ddrs.is_empty ())
2239 return;
2241 for (size_t i = 0, s = comp_alias_ddrs.length (); i < s; ++i)
2243 const dr_with_seg_len& dr_a = comp_alias_ddrs[i].first;
2244 const dr_with_seg_len& dr_b = comp_alias_ddrs[i].second;
2245 tree segment_length_a = dr_a.seg_len;
2246 tree segment_length_b = dr_b.seg_len;
2248 tree addr_base_a
2249 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr), dr_a.offset);
2250 tree addr_base_b
2251 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr), dr_b.offset);
2253 if (dump_enabled_p ())
2255 dump_printf_loc (MSG_NOTE, vect_location,
2256 "create runtime check for data references ");
2257 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
2258 dump_printf (MSG_NOTE, " and ");
2259 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
2260 dump_printf (MSG_NOTE, "\n");
2263 tree seg_a_min = addr_base_a;
2264 tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2265 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
2266 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
2267 [a, a+12) */
2268 if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
2270 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
2271 seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
2272 seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
2275 tree seg_b_min = addr_base_b;
2276 tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2277 if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
2279 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
2280 seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
2281 seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
2284 part_cond_expr =
2285 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2286 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2287 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2289 if (*cond_expr)
2290 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2291 *cond_expr, part_cond_expr);
2292 else
2293 *cond_expr = part_cond_expr;
2296 if (dump_enabled_p ())
2297 dump_printf_loc (MSG_NOTE, vect_location,
2298 "created %u versioning for alias checks.\n",
2299 comp_alias_ddrs.length ());
2301 comp_alias_ddrs.release ();
2305 /* Function vect_loop_versioning.
2307 If the loop has data references that may or may not be aligned or/and
2308 has data reference relations whose independence was not proven then
2309 two versions of the loop need to be generated, one which is vectorized
2310 and one which isn't. A test is then generated to control which of the
2311 loops is executed. The test checks for the alignment of all of the
2312 data references that may or may not be aligned. An additional
2313 sequence of runtime tests is generated for each pairs of DDRs whose
2314 independence was not proven. The vectorized version of loop is
2315 executed only if both alias and alignment tests are passed.
2317 The test generated to check which version of loop is executed
2318 is modified to also check for profitability as indicated by the
2319 cost model initially.
2321 The versioning precondition(s) are placed in *COND_EXPR and
2322 *COND_EXPR_STMT_LIST. */
2324 void
2325 vect_loop_versioning (loop_vec_info loop_vinfo,
2326 unsigned int th, bool check_profitability)
2328 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2329 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2330 basic_block condition_bb;
2331 gimple_stmt_iterator gsi, cond_exp_gsi;
2332 basic_block merge_bb;
2333 basic_block new_exit_bb;
2334 edge new_exit_e, e;
2335 gimple orig_phi, new_phi;
2336 tree cond_expr = NULL_TREE;
2337 gimple_seq cond_expr_stmt_list = NULL;
2338 tree arg;
2339 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2340 gimple_seq gimplify_stmt_list = NULL;
2341 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2342 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2343 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2345 if (check_profitability)
2347 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2348 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2349 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2350 is_gimple_condexpr, NULL_TREE);
2353 if (version_align)
2354 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2355 &cond_expr_stmt_list);
2357 if (version_alias)
2358 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2360 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2361 is_gimple_condexpr, NULL_TREE);
2362 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2364 initialize_original_copy_tables ();
2365 if (scalar_loop)
2367 edge scalar_e;
2368 basic_block preheader, scalar_preheader;
2370 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2371 scale LOOP's frequencies instead. */
2372 loop_version (scalar_loop, cond_expr, &condition_bb,
2373 prob, REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
2374 scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
2375 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2376 while we need to move it above LOOP's preheader. */
2377 e = loop_preheader_edge (loop);
2378 scalar_e = loop_preheader_edge (scalar_loop);
2379 gcc_assert (empty_block_p (e->src)
2380 && single_pred_p (e->src));
2381 gcc_assert (empty_block_p (scalar_e->src)
2382 && single_pred_p (scalar_e->src));
2383 gcc_assert (single_pred_p (condition_bb));
2384 preheader = e->src;
2385 scalar_preheader = scalar_e->src;
2386 scalar_e = find_edge (condition_bb, scalar_preheader);
2387 e = single_pred_edge (preheader);
2388 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2389 scalar_preheader);
2390 redirect_edge_and_branch_force (scalar_e, preheader);
2391 redirect_edge_and_branch_force (e, condition_bb);
2392 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2393 single_pred (condition_bb));
2394 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2395 single_pred (scalar_preheader));
2396 set_immediate_dominator (CDI_DOMINATORS, preheader,
2397 condition_bb);
2399 else
2400 loop_version (loop, cond_expr, &condition_bb,
2401 prob, prob, REG_BR_PROB_BASE - prob, true);
2403 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2404 && dump_enabled_p ())
2406 if (version_alias)
2407 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2408 "loop versioned for vectorization because of "
2409 "possible aliasing\n");
2410 if (version_align)
2411 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2412 "loop versioned for vectorization to enhance "
2413 "alignment\n");
2416 free_original_copy_tables ();
2418 /* Loop versioning violates an assumption we try to maintain during
2419 vectorization - that the loop exit block has a single predecessor.
2420 After versioning, the exit block of both loop versions is the same
2421 basic block (i.e. it has two predecessors). Just in order to simplify
2422 following transformations in the vectorizer, we fix this situation
2423 here by adding a new (empty) block on the exit-edge of the loop,
2424 with the proper loop-exit phis to maintain loop-closed-form.
2425 If loop versioning wasn't done from loop, but scalar_loop instead,
2426 merge_bb will have already just a single successor. */
2428 merge_bb = single_exit (loop)->dest;
2429 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2431 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2432 new_exit_bb = split_edge (single_exit (loop));
2433 new_exit_e = single_exit (loop);
2434 e = EDGE_SUCC (new_exit_bb, 0);
2436 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2438 tree new_res;
2439 orig_phi = gsi_stmt (gsi);
2440 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
2441 new_phi = create_phi_node (new_res, new_exit_bb);
2442 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2443 add_phi_arg (new_phi, arg, new_exit_e,
2444 gimple_phi_arg_location_from_edge (orig_phi, e));
2445 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2449 /* End loop-exit-fixes after versioning. */
2451 if (cond_expr_stmt_list)
2453 cond_exp_gsi = gsi_last_bb (condition_bb);
2454 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2455 GSI_SAME_STMT);
2457 update_ssa (TODO_update_ssa);