svn merge -r215707:216846 svn+ssh://gcc.gnu.org/svn/gcc/trunk
[official-gcc.git] / gcc / config / xtensa / xtensa.h
blob54bfea44ce630fd76ca86286d69936d6af9f3b6a
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Get Xtensa configuration settings */
22 #include "xtensa-config.h"
24 /* External variables defined in xtensa.c. */
26 extern unsigned xtensa_current_frame_size;
28 /* Macros used in the machine description to select various Xtensa
29 configuration options. */
30 #ifndef XCHAL_HAVE_MUL32_HIGH
31 #define XCHAL_HAVE_MUL32_HIGH 0
32 #endif
33 #ifndef XCHAL_HAVE_RELEASE_SYNC
34 #define XCHAL_HAVE_RELEASE_SYNC 0
35 #endif
36 #ifndef XCHAL_HAVE_S32C1I
37 #define XCHAL_HAVE_S32C1I 0
38 #endif
39 #ifndef XCHAL_HAVE_THREADPTR
40 #define XCHAL_HAVE_THREADPTR 0
41 #endif
42 #ifndef XCHAL_HAVE_FP_POSTINC
43 #define XCHAL_HAVE_FP_POSTINC 0
44 #endif
45 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
46 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
47 #define TARGET_MAC16 XCHAL_HAVE_MAC16
48 #define TARGET_MUL16 XCHAL_HAVE_MUL16
49 #define TARGET_MUL32 XCHAL_HAVE_MUL32
50 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
51 #define TARGET_DIV32 XCHAL_HAVE_DIV32
52 #define TARGET_NSA XCHAL_HAVE_NSA
53 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
54 #define TARGET_SEXT XCHAL_HAVE_SEXT
55 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
56 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
57 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
58 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
59 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
60 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
61 #define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
62 #define TARGET_ABS XCHAL_HAVE_ABS
63 #define TARGET_ADDX XCHAL_HAVE_ADDX
64 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
65 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
66 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
67 #define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
69 #define TARGET_DEFAULT \
70 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
71 MASK_SERIALIZE_VOLATILE)
73 #ifndef HAVE_AS_TLS
74 #define HAVE_AS_TLS 0
75 #endif
78 /* Target CPU builtins. */
79 #define TARGET_CPU_CPP_BUILTINS() \
80 do { \
81 builtin_assert ("cpu=xtensa"); \
82 builtin_assert ("machine=xtensa"); \
83 builtin_define ("__xtensa__"); \
84 builtin_define ("__XTENSA__"); \
85 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
86 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
87 if (!TARGET_HARD_FLOAT) \
88 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
89 } while (0)
91 #define CPP_SPEC " %(subtarget_cpp_spec) "
93 #ifndef SUBTARGET_CPP_SPEC
94 #define SUBTARGET_CPP_SPEC ""
95 #endif
97 #define EXTRA_SPECS \
98 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
100 /* Target machine storage layout */
102 /* Define this if most significant bit is lowest numbered
103 in instructions that operate on numbered bit-fields. */
104 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
106 /* Define this if most significant byte of a word is the lowest numbered. */
107 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
109 /* Define this if most significant word of a multiword number is the lowest. */
110 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
112 #define MAX_BITS_PER_WORD 32
114 /* Width of a word, in units (bytes). */
115 #define UNITS_PER_WORD 4
116 #define MIN_UNITS_PER_WORD 4
118 /* Width of a floating point register. */
119 #define UNITS_PER_FPREG 4
121 /* Size in bits of various types on the target machine. */
122 #define INT_TYPE_SIZE 32
123 #define SHORT_TYPE_SIZE 16
124 #define LONG_TYPE_SIZE 32
125 #define LONG_LONG_TYPE_SIZE 64
126 #define FLOAT_TYPE_SIZE 32
127 #define DOUBLE_TYPE_SIZE 64
128 #define LONG_DOUBLE_TYPE_SIZE 64
130 /* Allocation boundary (in *bits*) for storing pointers in memory. */
131 #define POINTER_BOUNDARY 32
133 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
134 #define PARM_BOUNDARY 32
136 /* Allocation boundary (in *bits*) for the code of a function. */
137 #define FUNCTION_BOUNDARY 32
139 /* Alignment of field after 'int : 0' in a structure. */
140 #define EMPTY_FIELD_BOUNDARY 32
142 /* Every structure's size must be a multiple of this. */
143 #define STRUCTURE_SIZE_BOUNDARY 8
145 /* There is no point aligning anything to a rounder boundary than this. */
146 #define BIGGEST_ALIGNMENT 128
148 /* Set this nonzero if move instructions will actually fail to work
149 when given unaligned data. */
150 #define STRICT_ALIGNMENT 1
152 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
153 for QImode, because there is no 8-bit load from memory with sign
154 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
155 loads both with and without sign extension. */
156 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
157 do { \
158 if (GET_MODE_CLASS (MODE) == MODE_INT \
159 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
161 if ((MODE) == QImode) \
162 (UNSIGNEDP) = 1; \
163 (MODE) = SImode; \
165 } while (0)
167 /* Imitate the way many other C compilers handle alignment of
168 bitfields and the structures that contain them. */
169 #define PCC_BITFIELD_TYPE_MATTERS 1
171 /* Align string constants and constructors to at least a word boundary.
172 The typical use of this macro is to increase alignment for string
173 constants to be word aligned so that 'strcpy' calls that copy
174 constants can be done inline. */
175 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
176 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
177 && (ALIGN) < BITS_PER_WORD \
178 ? BITS_PER_WORD \
179 : (ALIGN))
181 /* Align arrays, unions and records to at least a word boundary.
182 One use of this macro is to increase alignment of medium-size
183 data to make it all fit in fewer cache lines. Another is to
184 cause character arrays to be word-aligned so that 'strcpy' calls
185 that copy constants to character arrays can be done inline. */
186 #undef DATA_ALIGNMENT
187 #define DATA_ALIGNMENT(TYPE, ALIGN) \
188 ((((ALIGN) < BITS_PER_WORD) \
189 && (TREE_CODE (TYPE) == ARRAY_TYPE \
190 || TREE_CODE (TYPE) == UNION_TYPE \
191 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
193 /* Operations between registers always perform the operation
194 on the full register even if a narrower mode is specified. */
195 #define WORD_REGISTER_OPERATIONS
197 /* Xtensa loads are zero-extended by default. */
198 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
200 /* Standard register usage. */
202 /* Number of actual hardware registers.
203 The hardware registers are assigned numbers for the compiler
204 from 0 to just below FIRST_PSEUDO_REGISTER.
205 All registers that the compiler knows about must be given numbers,
206 even those that are not normally considered general registers.
208 The fake frame pointer and argument pointer will never appear in
209 the generated code, since they will always be eliminated and replaced
210 by either the stack pointer or the hard frame pointer.
212 0 - 15 AR[0] - AR[15]
213 16 FRAME_POINTER (fake = initial sp)
214 17 ARG_POINTER (fake = initial sp + framesize)
215 18 BR[0] for floating-point CC
216 19 - 34 FR[0] - FR[15]
217 35 MAC16 accumulator */
219 #define FIRST_PSEUDO_REGISTER 36
221 /* Return the stabs register number to use for REGNO. */
222 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
224 /* 1 for registers that have pervasive standard uses
225 and are not available for the register allocator. */
226 #define FIXED_REGISTERS \
228 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
229 1, 1, 0, \
230 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
231 0, \
234 /* 1 for registers not available across function calls.
235 These must include the FIXED_REGISTERS and also any
236 registers that can be used without being saved.
237 The latter must include the registers where values are returned
238 and the register where structure-value addresses are passed.
239 Aside from that, you can include as many other registers as you like. */
240 #define CALL_USED_REGISTERS \
242 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
243 1, 1, 1, \
244 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
245 1, \
248 /* For non-leaf procedures on Xtensa processors, the allocation order
249 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
250 want to use the lowest numbered registers first to minimize
251 register window overflows. However, local-alloc is not smart
252 enough to consider conflicts with incoming arguments. If an
253 incoming argument in a2 is live throughout the function and
254 local-alloc decides to use a2, then the incoming argument must
255 either be spilled or copied to another register. To get around
256 this, we define ADJUST_REG_ALLOC_ORDER to redefine
257 reg_alloc_order for leaf functions such that lowest numbered
258 registers are used first with the exception that the incoming
259 argument registers are not used until after other register choices
260 have been exhausted. */
262 #define REG_ALLOC_ORDER \
263 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
264 18, \
265 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
266 0, 1, 16, 17, \
267 35, \
270 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
272 /* For Xtensa, the only point of this is to prevent GCC from otherwise
273 giving preference to call-used registers. To minimize window
274 overflows for the AR registers, we want to give preference to the
275 lower-numbered AR registers. For other register files, which are
276 not windowed, we still prefer call-used registers, if there are any. */
277 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
278 #define LEAF_REGISTERS xtensa_leaf_regs
280 /* For Xtensa, no remapping is necessary, but this macro must be
281 defined if LEAF_REGISTERS is defined. */
282 #define LEAF_REG_REMAP(REGNO) (REGNO)
284 /* This must be declared if LEAF_REGISTERS is set. */
285 extern int leaf_function;
287 /* Internal macros to classify a register number. */
289 /* 16 address registers + fake registers */
290 #define GP_REG_FIRST 0
291 #define GP_REG_LAST 17
292 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
294 /* Coprocessor registers */
295 #define BR_REG_FIRST 18
296 #define BR_REG_LAST 18
297 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
299 /* 16 floating-point registers */
300 #define FP_REG_FIRST 19
301 #define FP_REG_LAST 34
302 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
304 /* MAC16 accumulator */
305 #define ACC_REG_FIRST 35
306 #define ACC_REG_LAST 35
307 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
309 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
310 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
311 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
312 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
314 /* Return number of consecutive hard regs needed starting at reg REGNO
315 to hold something of mode MODE. */
316 #define HARD_REGNO_NREGS(REGNO, MODE) \
317 (FP_REG_P (REGNO) ? \
318 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
319 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
321 /* Value is 1 if hard register REGNO can hold a value of machine-mode
322 MODE. */
323 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
325 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
326 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
328 /* Value is 1 if it is a good idea to tie two pseudo registers
329 when one has mode MODE1 and one has mode MODE2.
330 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
331 for any hard reg, then this must be 0 for correct output. */
332 #define MODES_TIEABLE_P(MODE1, MODE2) \
333 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
334 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
335 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
336 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
338 /* Register to use for pushing function arguments. */
339 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
341 /* Base register for access to local variables of the function. */
342 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
344 /* The register number of the frame pointer register, which is used to
345 access automatic variables in the stack frame. For Xtensa, this
346 register never appears in the output. It is always eliminated to
347 either the stack pointer or the hard frame pointer. */
348 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
350 /* Base register for access to arguments of the function. */
351 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
353 /* For now we don't try to use the full set of boolean registers. Without
354 software pipelining of FP operations, there's not much to gain and it's
355 a real pain to get them reloaded. */
356 #define FPCC_REGNUM (BR_REG_FIRST + 0)
358 /* It is as good or better to call a constant function address than to
359 call an address kept in a register. */
360 #define NO_FUNCTION_CSE 1
362 /* Xtensa processors have "register windows". GCC does not currently
363 take advantage of the possibility for variable-sized windows; instead,
364 we use a fixed window size of 8. */
366 #define INCOMING_REGNO(OUT) \
367 ((GP_REG_P (OUT) && \
368 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
369 (OUT) - WINDOW_SIZE : (OUT))
371 #define OUTGOING_REGNO(IN) \
372 ((GP_REG_P (IN) && \
373 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
374 (IN) + WINDOW_SIZE : (IN))
377 /* Define the classes of registers for register constraints in the
378 machine description. */
379 enum reg_class
381 NO_REGS, /* no registers in set */
382 BR_REGS, /* coprocessor boolean registers */
383 FP_REGS, /* floating point registers */
384 ACC_REG, /* MAC16 accumulator */
385 SP_REG, /* sp register (aka a1) */
386 RL_REGS, /* preferred reload regs (not sp or fp) */
387 GR_REGS, /* integer registers except sp */
388 AR_REGS, /* all integer registers */
389 ALL_REGS, /* all registers */
390 LIM_REG_CLASSES /* max value + 1 */
393 #define N_REG_CLASSES (int) LIM_REG_CLASSES
395 #define GENERAL_REGS AR_REGS
397 /* An initializer containing the names of the register classes as C
398 string constants. These names are used in writing some of the
399 debugging dumps. */
400 #define REG_CLASS_NAMES \
402 "NO_REGS", \
403 "BR_REGS", \
404 "FP_REGS", \
405 "ACC_REG", \
406 "SP_REG", \
407 "RL_REGS", \
408 "GR_REGS", \
409 "AR_REGS", \
410 "ALL_REGS" \
413 /* Contents of the register classes. The Nth integer specifies the
414 contents of class N. The way the integer MASK is interpreted is
415 that register R is in the class if 'MASK & (1 << R)' is 1. */
416 #define REG_CLASS_CONTENTS \
418 { 0x00000000, 0x00000000 }, /* no registers */ \
419 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
420 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
421 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
422 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
423 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
424 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
425 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
426 { 0xffffffff, 0x0000000f } /* all registers */ \
429 /* A C expression whose value is a register class containing hard
430 register REGNO. In general there is more that one such class;
431 choose a class which is "minimal", meaning that no smaller class
432 also contains the register. */
433 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
435 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
437 /* Use the Xtensa AR register file for base registers.
438 No index registers. */
439 #define BASE_REG_CLASS AR_REGS
440 #define INDEX_REG_CLASS NO_REGS
442 /* The small_register_classes_for_mode_p hook must always return true for
443 Xtrnase, because all of the 16 AR registers may be explicitly used in
444 the RTL, as either incoming or outgoing arguments. */
445 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
447 /* Stack layout; function entry, exit and calling. */
449 #define STACK_GROWS_DOWNWARD
451 /* Offset within stack frame to start allocating local variables at. */
452 #define STARTING_FRAME_OFFSET \
453 crtl->outgoing_args_size
455 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
456 they are eliminated to either the stack pointer or hard frame pointer. */
457 #define ELIMINABLE_REGS \
458 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
459 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
460 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
461 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
463 /* Specify the initial difference between the specified pair of registers. */
464 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
465 do { \
466 compute_frame_size (get_frame_size ()); \
467 switch (FROM) \
469 case FRAME_POINTER_REGNUM: \
470 (OFFSET) = 0; \
471 break; \
472 case ARG_POINTER_REGNUM: \
473 (OFFSET) = xtensa_current_frame_size; \
474 break; \
475 default: \
476 gcc_unreachable (); \
478 } while (0)
480 /* If defined, the maximum amount of space required for outgoing
481 arguments will be computed and placed into the variable
482 'crtl->outgoing_args_size'. No space will be pushed
483 onto the stack for each call; instead, the function prologue
484 should increase the stack frame size by this amount. */
485 #define ACCUMULATE_OUTGOING_ARGS 1
487 /* Offset from the argument pointer register to the first argument's
488 address. On some machines it may depend on the data type of the
489 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
490 location above the first argument's address. */
491 #define FIRST_PARM_OFFSET(FNDECL) 0
493 /* Align stack frames on 128 bits for Xtensa. This is necessary for
494 128-bit datatypes defined in TIE (e.g., for Vectra). */
495 #define STACK_BOUNDARY 128
497 /* Use a fixed register window size of 8. */
498 #define WINDOW_SIZE 8
500 /* Symbolic macros for the registers used to return integer, floating
501 point, and values of coprocessor and user-defined modes. */
502 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
503 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
505 /* Symbolic macros for the first/last argument registers. */
506 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
507 #define GP_ARG_LAST (GP_REG_FIRST + 7)
508 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
509 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
511 #define MAX_ARGS_IN_REGISTERS 6
513 /* Don't worry about compatibility with PCC. */
514 #define DEFAULT_PCC_STRUCT_RETURN 0
516 /* A C expression that is nonzero if REGNO is the number of a hard
517 register in which function arguments are sometimes passed. This
518 does *not* include implicit arguments such as the static chain and
519 the structure-value address. On many machines, no registers can be
520 used for this purpose since all function arguments are pushed on
521 the stack. */
522 #define FUNCTION_ARG_REGNO_P(N) \
523 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
525 /* Record the number of argument words seen so far, along with a flag to
526 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
527 is used for both incoming and outgoing args, so a separate flag is
528 needed. */
529 typedef struct xtensa_args
531 int arg_words;
532 int incoming;
533 } CUMULATIVE_ARGS;
535 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
536 init_cumulative_args (&CUM, 0)
538 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
539 init_cumulative_args (&CUM, 1)
541 /* Profiling Xtensa code is typically done with the built-in profiling
542 feature of Tensilica's instruction set simulator, which does not
543 require any compiler support. Profiling code on a real (i.e.,
544 non-simulated) Xtensa processor is currently only supported by
545 GNU/Linux with glibc. The glibc version of _mcount doesn't require
546 counter variables. The _mcount function needs the current PC and
547 the current return address to identify an arc in the call graph.
548 Pass the current return address as the first argument; the current
549 PC is available as a0 in _mcount's register window. Both of these
550 values contain window size information in the two most significant
551 bits; we assume that _mcount will mask off those bits. The call to
552 _mcount uses a window size of 8 to make sure that it doesn't clobber
553 any incoming argument values. */
555 #define NO_PROFILE_COUNTERS 1
557 #define FUNCTION_PROFILER(FILE, LABELNO) \
558 do { \
559 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
560 if (flag_pic) \
562 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
563 fprintf (FILE, "\tcallx8\ta8\n"); \
565 else \
566 fprintf (FILE, "\tcall8\t_mcount\n"); \
567 } while (0)
569 /* Stack pointer value doesn't matter at exit. */
570 #define EXIT_IGNORE_STACK 1
572 /* Size in bytes of the trampoline, as an integer. Make sure this is
573 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
574 #define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
576 /* Alignment required for trampolines, in bits. */
577 #define TRAMPOLINE_ALIGNMENT 32
579 /* If defined, a C expression that produces the machine-specific code
580 to setup the stack so that arbitrary frames can be accessed.
582 On Xtensa, a stack back-trace must always begin from the stack pointer,
583 so that the register overflow save area can be located. However, the
584 stack-walking code in GCC always begins from the hard_frame_pointer
585 register, not the stack pointer. The frame pointer is usually equal
586 to the stack pointer, but the __builtin_return_address and
587 __builtin_frame_address functions will not work if count > 0 and
588 they are called from a routine that uses alloca. These functions
589 are not guaranteed to work at all if count > 0 so maybe that is OK.
591 A nicer solution would be to allow the architecture-specific files to
592 specify whether to start from the stack pointer or frame pointer. That
593 would also allow us to skip the machine->accesses_prev_frame stuff that
594 we currently need to ensure that there is a frame pointer when these
595 builtin functions are used. */
597 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
599 /* A C expression whose value is RTL representing the address in a
600 stack frame where the pointer to the caller's frame is stored.
601 Assume that FRAMEADDR is an RTL expression for the address of the
602 stack frame itself.
604 For Xtensa, there is no easy way to get the frame pointer if it is
605 not equivalent to the stack pointer. Moreover, the result of this
606 macro is used for continuing to walk back up the stack, so it must
607 return the stack pointer address. Thus, there is some inconsistency
608 here in that __builtin_frame_address will return the frame pointer
609 when count == 0 and the stack pointer when count > 0. */
611 #define DYNAMIC_CHAIN_ADDRESS(frame) \
612 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
614 /* Define this if the return address of a particular stack frame is
615 accessed from the frame pointer of the previous stack frame. */
616 #define RETURN_ADDR_IN_PREVIOUS_FRAME
618 /* A C expression whose value is RTL representing the value of the
619 return address for the frame COUNT steps up from the current
620 frame, after the prologue. */
621 #define RETURN_ADDR_RTX xtensa_return_addr
623 /* Addressing modes, and classification of registers for them. */
625 /* C expressions which are nonzero if register number NUM is suitable
626 for use as a base or index register in operand addresses. */
628 #define REGNO_OK_FOR_INDEX_P(NUM) 0
629 #define REGNO_OK_FOR_BASE_P(NUM) \
630 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
632 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
633 valid for use as a base or index register. */
635 #ifdef REG_OK_STRICT
636 #define REG_OK_STRICT_FLAG 1
637 #else
638 #define REG_OK_STRICT_FLAG 0
639 #endif
641 #define BASE_REG_P(X, STRICT) \
642 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
643 || REGNO_OK_FOR_BASE_P (REGNO (X)))
645 #define REG_OK_FOR_INDEX_P(X) 0
646 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
648 /* Maximum number of registers that can appear in a valid memory address. */
649 #define MAX_REGS_PER_ADDRESS 1
651 /* A C expression that is 1 if the RTX X is a constant which is a
652 valid address. This is defined to be the same as 'CONSTANT_P (X)',
653 but rejecting CONST_DOUBLE. */
654 #define CONSTANT_ADDRESS_P(X) \
655 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
656 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
657 || (GET_CODE (X) == CONST)))
659 /* A C expression that is nonzero if X is a legitimate immediate
660 operand on the target machine when generating position independent
661 code. */
662 #define LEGITIMATE_PIC_OPERAND_P(X) \
663 ((GET_CODE (X) != SYMBOL_REF \
664 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
665 && GET_CODE (X) != LABEL_REF \
666 && GET_CODE (X) != CONST)
668 /* Specify the machine mode that this machine uses
669 for the index in the tablejump instruction. */
670 #define CASE_VECTOR_MODE (SImode)
672 /* Define this as 1 if 'char' should by default be signed; else as 0. */
673 #define DEFAULT_SIGNED_CHAR 0
675 /* Max number of bytes we can move from memory to memory
676 in one reasonably fast instruction. */
677 #define MOVE_MAX 4
678 #define MAX_MOVE_MAX 4
680 /* Prefer word-sized loads. */
681 #define SLOW_BYTE_ACCESS 1
683 /* Shift instructions ignore all but the low-order few bits. */
684 #define SHIFT_COUNT_TRUNCATED 1
686 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
687 is done just by pretending it is already truncated. */
688 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
690 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
691 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
693 /* Specify the machine mode that pointers have.
694 After generation of rtl, the compiler makes no further distinction
695 between pointers and any other objects of this machine mode. */
696 #define Pmode SImode
698 /* A function address in a call instruction is a word address (for
699 indexing purposes) so give the MEM rtx a words's mode. */
700 #define FUNCTION_MODE SImode
702 #define BRANCH_COST(speed_p, predictable_p) 3
704 /* How to refer to registers in assembler output.
705 This sequence is indexed by compiler's hard-register-number (see above). */
706 #define REGISTER_NAMES \
708 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
709 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
710 "fp", "argp", "b0", \
711 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
712 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
713 "acc" \
716 /* If defined, a C initializer for an array of structures containing a
717 name and a register number. This macro defines additional names
718 for hard registers, thus allowing the 'asm' option in declarations
719 to refer to registers using alternate names. */
720 #define ADDITIONAL_REGISTER_NAMES \
722 { "a1", 1 + GP_REG_FIRST } \
725 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
726 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
728 /* Globalizing directive for a label. */
729 #define GLOBAL_ASM_OP "\t.global\t"
731 /* Declare an uninitialized external linkage data object. */
732 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
733 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
735 /* This is how to output an element of a case-vector that is absolute. */
736 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
737 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
738 LOCAL_LABEL_PREFIX, VALUE)
740 /* This is how to output an element of a case-vector that is relative.
741 This is used for pc-relative code. */
742 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
743 do { \
744 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
745 LOCAL_LABEL_PREFIX, (VALUE), \
746 LOCAL_LABEL_PREFIX, (REL)); \
747 } while (0)
749 /* This is how to output an assembler line that says to advance the
750 location counter to a multiple of 2**LOG bytes. */
751 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
752 do { \
753 if ((LOG) != 0) \
754 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
755 } while (0)
757 /* Indicate that jump tables go in the text section. This is
758 necessary when compiling PIC code. */
759 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
762 /* Define the strings to put out for each section in the object file. */
763 #define TEXT_SECTION_ASM_OP "\t.text"
764 #define DATA_SECTION_ASM_OP "\t.data"
765 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
768 /* Define output to appear before the constant pool. */
769 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
770 do { \
771 if ((SIZE) > 0) \
773 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
774 switch_to_section (function_section (FUNDECL)); \
775 fprintf (FILE, "\t.literal_position\n"); \
777 } while (0)
780 /* A C statement (with or without semicolon) to output a constant in
781 the constant pool, if it needs special treatment. */
782 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
783 do { \
784 xtensa_output_literal (FILE, X, MODE, LABELNO); \
785 goto JUMPTO; \
786 } while (0)
788 /* How to start an assembler comment. */
789 #define ASM_COMMENT_START "#"
791 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
792 machinery, but the variable size register window save areas are too
793 complicated to efficiently describe with CFI entries. The CFA must
794 still be specified in DWARF so that DW_AT_frame_base is set correctly
795 for debugging. */
796 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
797 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
798 #define DWARF_FRAME_REGISTERS 16
799 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
800 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
801 (flag_pic \
802 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
803 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
804 : DW_EH_PE_absptr)
806 /* Emit a PC-relative relocation. */
807 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
808 do { \
809 fputs (integer_asm_op (SIZE, FALSE), FILE); \
810 assemble_name (FILE, LABEL); \
811 fputs ("@pcrel", FILE); \
812 } while (0)
814 /* Xtensa constant pool breaks the devices in crtstuff.c to control
815 section in where code resides. We have to write it as asm code. Use
816 a MOVI and let the assembler relax it -- for the .init and .fini
817 sections, the assembler knows to put the literal in the right
818 place. */
819 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
820 asm (SECTION_OP "\n\
821 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
822 callx8\ta8\n" \
823 TEXT_SECTION_ASM_OP);