gcc:
[official-gcc.git] / gcc / ada / s-taprop-hpux-dce.adb
blobf463d8f90d6f5ac1816c4d72b1ad2009530500f8
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This is a HP-UX DCE threads (HPUX 10) version of this package
36 -- This package contains all the GNULL primitives that interface directly
37 -- with the underlying OS.
39 pragma Polling (Off);
40 -- Turn off polling, we do not want ATC polling to take place during
41 -- tasking operations. It causes infinite loops and other problems.
43 with System.Tasking.Debug;
44 -- used for Known_Tasks
46 with System.Interrupt_Management;
47 -- used for Keep_Unmasked
48 -- Abort_Task_Interrupt
49 -- Interrupt_ID
51 pragma Warnings (Off);
52 with System.Interrupt_Management.Operations;
53 -- used for Set_Interrupt_Mask
54 -- All_Tasks_Mask
55 pragma Elaborate_All (System.Interrupt_Management.Operations);
57 pragma Warnings (On);
59 with System.OS_Primitives;
60 -- used for Delay_Modes
62 with Interfaces.C;
63 -- used for int
64 -- size_t
66 with System.Task_Primitives.Interrupt_Operations;
67 -- used for Get_Interrupt_ID
69 with System.Soft_Links;
70 -- used for Defer/Undefer_Abort
72 -- We use System.Soft_Links instead of System.Tasking.Initialization
73 -- because the later is a higher level package that we shouldn't depend on.
74 -- For example when using the restricted run time, it is replaced by
75 -- System.Tasking.Restricted.Stages.
77 with Unchecked_Conversion;
78 with Unchecked_Deallocation;
80 package body System.Task_Primitives.Operations is
82 package SSL renames System.Soft_Links;
84 use System.Tasking.Debug;
85 use System.Tasking;
86 use Interfaces.C;
87 use System.OS_Interface;
88 use System.Parameters;
89 use System.OS_Primitives;
91 package PIO renames System.Task_Primitives.Interrupt_Operations;
93 ----------------
94 -- Local Data --
95 ----------------
97 -- The followings are logically constants, but need to be initialized
98 -- at run time.
100 Single_RTS_Lock : aliased RTS_Lock;
101 -- This is a lock to allow only one thread of control in the RTS at
102 -- a time; it is used to execute in mutual exclusion from all other tasks.
103 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
105 ATCB_Key : aliased pthread_key_t;
106 -- Key used to find the Ada Task_Id associated with a thread
108 Environment_Task_Id : Task_Id;
109 -- A variable to hold Task_Id for the environment task
111 Unblocked_Signal_Mask : aliased sigset_t;
112 -- The set of signals that should unblocked in all tasks
114 Time_Slice_Val : Integer;
115 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
117 Dispatching_Policy : Character;
118 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
120 -- Note: the reason that Locking_Policy is not needed is that this
121 -- is not implemented for DCE threads. The HPUX 10 port is at this
122 -- stage considered dead, and no further work is planned on it.
124 Foreign_Task_Elaborated : aliased Boolean := True;
125 -- Used to identified fake tasks (i.e., non-Ada Threads)
127 --------------------
128 -- Local Packages --
129 --------------------
131 package Specific is
133 procedure Initialize (Environment_Task : Task_Id);
134 pragma Inline (Initialize);
135 -- Initialize various data needed by this package
137 function Is_Valid_Task return Boolean;
138 pragma Inline (Is_Valid_Task);
139 -- Does the executing thread have a TCB?
141 procedure Set (Self_Id : Task_Id);
142 pragma Inline (Set);
143 -- Set the self id for the current task
145 function Self return Task_Id;
146 pragma Inline (Self);
147 -- Return a pointer to the Ada Task Control Block of the calling task
149 end Specific;
151 package body Specific is separate;
152 -- The body of this package is target specific
154 ---------------------------------
155 -- Support for foreign threads --
156 ---------------------------------
158 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
159 -- Allocate and Initialize a new ATCB for the current Thread
161 function Register_Foreign_Thread
162 (Thread : Thread_Id) return Task_Id is separate;
164 -----------------------
165 -- Local Subprograms --
166 -----------------------
168 procedure Abort_Handler (Sig : Signal);
170 function To_Address is new Unchecked_Conversion (Task_Id, System.Address);
172 -------------------
173 -- Abort_Handler --
174 -------------------
176 procedure Abort_Handler (Sig : Signal) is
177 pragma Unreferenced (Sig);
179 Self_Id : constant Task_Id := Self;
180 Result : Interfaces.C.int;
181 Old_Set : aliased sigset_t;
183 begin
184 if Self_Id.Deferral_Level = 0
185 and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level and then
186 not Self_Id.Aborting
187 then
188 Self_Id.Aborting := True;
190 -- Make sure signals used for RTS internal purpose are unmasked
192 Result := pthread_sigmask (SIG_UNBLOCK,
193 Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
194 pragma Assert (Result = 0);
196 raise Standard'Abort_Signal;
197 end if;
198 end Abort_Handler;
200 -----------------
201 -- Stack_Guard --
202 -----------------
204 -- The underlying thread system sets a guard page at the
205 -- bottom of a thread stack, so nothing is needed.
206 -- ??? Check the comment above
208 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
209 pragma Unreferenced (T, On);
210 begin
211 null;
212 end Stack_Guard;
214 -------------------
215 -- Get_Thread_Id --
216 -------------------
218 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
219 begin
220 return T.Common.LL.Thread;
221 end Get_Thread_Id;
223 ----------
224 -- Self --
225 ----------
227 function Self return Task_Id renames Specific.Self;
229 ---------------------
230 -- Initialize_Lock --
231 ---------------------
233 -- Note: mutexes and cond_variables needed per-task basis are
234 -- initialized in Initialize_TCB and the Storage_Error is
235 -- handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
236 -- used in RTS is initialized before any status change of RTS.
237 -- Therefore rasing Storage_Error in the following routines
238 -- should be able to be handled safely.
240 procedure Initialize_Lock
241 (Prio : System.Any_Priority;
242 L : access Lock)
244 Attributes : aliased pthread_mutexattr_t;
245 Result : Interfaces.C.int;
247 begin
248 Result := pthread_mutexattr_init (Attributes'Access);
249 pragma Assert (Result = 0 or else Result = ENOMEM);
251 if Result = ENOMEM then
252 raise Storage_Error;
253 end if;
255 L.Priority := Prio;
257 Result := pthread_mutex_init (L.L'Access, Attributes'Access);
258 pragma Assert (Result = 0 or else Result = ENOMEM);
260 if Result = ENOMEM then
261 raise Storage_Error;
262 end if;
264 Result := pthread_mutexattr_destroy (Attributes'Access);
265 pragma Assert (Result = 0);
266 end Initialize_Lock;
268 procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
269 pragma Unreferenced (Level);
271 Attributes : aliased pthread_mutexattr_t;
272 Result : Interfaces.C.int;
274 begin
275 Result := pthread_mutexattr_init (Attributes'Access);
276 pragma Assert (Result = 0 or else Result = ENOMEM);
278 if Result = ENOMEM then
279 raise Storage_Error;
280 end if;
282 Result := pthread_mutex_init (L, Attributes'Access);
284 pragma Assert (Result = 0 or else Result = ENOMEM);
286 if Result = ENOMEM then
287 raise Storage_Error;
288 end if;
290 Result := pthread_mutexattr_destroy (Attributes'Access);
291 pragma Assert (Result = 0);
292 end Initialize_Lock;
294 -------------------
295 -- Finalize_Lock --
296 -------------------
298 procedure Finalize_Lock (L : access Lock) is
299 Result : Interfaces.C.int;
300 begin
301 Result := pthread_mutex_destroy (L.L'Access);
302 pragma Assert (Result = 0);
303 end Finalize_Lock;
305 procedure Finalize_Lock (L : access RTS_Lock) is
306 Result : Interfaces.C.int;
307 begin
308 Result := pthread_mutex_destroy (L);
309 pragma Assert (Result = 0);
310 end Finalize_Lock;
312 ----------------
313 -- Write_Lock --
314 ----------------
316 procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
317 Result : Interfaces.C.int;
319 begin
320 L.Owner_Priority := Get_Priority (Self);
322 if L.Priority < L.Owner_Priority then
323 Ceiling_Violation := True;
324 return;
325 end if;
327 Result := pthread_mutex_lock (L.L'Access);
328 pragma Assert (Result = 0);
329 Ceiling_Violation := False;
330 end Write_Lock;
332 procedure Write_Lock
333 (L : access RTS_Lock; Global_Lock : Boolean := False)
335 Result : Interfaces.C.int;
336 begin
337 if not Single_Lock or else Global_Lock then
338 Result := pthread_mutex_lock (L);
339 pragma Assert (Result = 0);
340 end if;
341 end Write_Lock;
343 procedure Write_Lock (T : Task_Id) is
344 Result : Interfaces.C.int;
345 begin
346 if not Single_Lock then
347 Result := pthread_mutex_lock (T.Common.LL.L'Access);
348 pragma Assert (Result = 0);
349 end if;
350 end Write_Lock;
352 ---------------
353 -- Read_Lock --
354 ---------------
356 procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
357 begin
358 Write_Lock (L, Ceiling_Violation);
359 end Read_Lock;
361 ------------
362 -- Unlock --
363 ------------
365 procedure Unlock (L : access Lock) is
366 Result : Interfaces.C.int;
367 begin
368 Result := pthread_mutex_unlock (L.L'Access);
369 pragma Assert (Result = 0);
370 end Unlock;
372 procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
373 Result : Interfaces.C.int;
374 begin
375 if not Single_Lock or else Global_Lock then
376 Result := pthread_mutex_unlock (L);
377 pragma Assert (Result = 0);
378 end if;
379 end Unlock;
381 procedure Unlock (T : Task_Id) is
382 Result : Interfaces.C.int;
383 begin
384 if not Single_Lock then
385 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
386 pragma Assert (Result = 0);
387 end if;
388 end Unlock;
390 -----------
391 -- Sleep --
392 -----------
394 procedure Sleep
395 (Self_ID : Task_Id;
396 Reason : System.Tasking.Task_States)
398 pragma Unreferenced (Reason);
400 Result : Interfaces.C.int;
401 begin
402 if Single_Lock then
403 Result := pthread_cond_wait
404 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
405 else
406 Result := pthread_cond_wait
407 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
408 end if;
410 -- EINTR is not considered a failure
412 pragma Assert (Result = 0 or else Result = EINTR);
413 end Sleep;
415 -----------------
416 -- Timed_Sleep --
417 -----------------
419 procedure Timed_Sleep
420 (Self_ID : Task_Id;
421 Time : Duration;
422 Mode : ST.Delay_Modes;
423 Reason : System.Tasking.Task_States;
424 Timedout : out Boolean;
425 Yielded : out Boolean)
427 pragma Unreferenced (Reason);
429 Check_Time : constant Duration := Monotonic_Clock;
430 Abs_Time : Duration;
431 Request : aliased timespec;
432 Result : Interfaces.C.int;
434 begin
435 Timedout := True;
436 Yielded := False;
438 if Mode = Relative then
439 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
440 else
441 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
442 end if;
444 if Abs_Time > Check_Time then
445 Request := To_Timespec (Abs_Time);
447 loop
448 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
449 or else Self_ID.Pending_Priority_Change;
451 if Single_Lock then
452 Result := pthread_cond_timedwait
453 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
454 Request'Access);
456 else
457 Result := pthread_cond_timedwait
458 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
459 Request'Access);
460 end if;
462 exit when Abs_Time <= Monotonic_Clock;
464 if Result = 0 or Result = EINTR then
466 -- Somebody may have called Wakeup for us
468 Timedout := False;
469 exit;
470 end if;
472 pragma Assert (Result = ETIMEDOUT);
473 end loop;
474 end if;
475 end Timed_Sleep;
477 -----------------
478 -- Timed_Delay --
479 -----------------
481 procedure Timed_Delay
482 (Self_ID : Task_Id;
483 Time : Duration;
484 Mode : ST.Delay_Modes)
486 Check_Time : constant Duration := Monotonic_Clock;
487 Abs_Time : Duration;
488 Request : aliased timespec;
490 Result : Interfaces.C.int;
491 pragma Warnings (Off, Result);
493 begin
494 if Single_Lock then
495 Lock_RTS;
496 end if;
498 Write_Lock (Self_ID);
500 if Mode = Relative then
501 Abs_Time := Time + Check_Time;
502 else
503 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
504 end if;
506 if Abs_Time > Check_Time then
507 Request := To_Timespec (Abs_Time);
508 Self_ID.Common.State := Delay_Sleep;
510 loop
511 if Self_ID.Pending_Priority_Change then
512 Self_ID.Pending_Priority_Change := False;
513 Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
514 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
515 end if;
517 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
519 if Single_Lock then
520 Result := pthread_cond_timedwait
521 (Self_ID.Common.LL.CV'Access,
522 Single_RTS_Lock'Access,
523 Request'Access);
524 else
525 Result := pthread_cond_timedwait
526 (Self_ID.Common.LL.CV'Access,
527 Self_ID.Common.LL.L'Access,
528 Request'Access);
529 end if;
531 exit when Abs_Time <= Monotonic_Clock;
533 pragma Assert (Result = 0 or else
534 Result = ETIMEDOUT or else
535 Result = EINTR);
536 end loop;
538 Self_ID.Common.State := Runnable;
539 end if;
541 Unlock (Self_ID);
543 if Single_Lock then
544 Unlock_RTS;
545 end if;
547 Result := sched_yield;
548 end Timed_Delay;
550 ---------------------
551 -- Monotonic_Clock --
552 ---------------------
554 function Monotonic_Clock return Duration is
555 TS : aliased timespec;
556 Result : Interfaces.C.int;
557 begin
558 Result := Clock_Gettime (CLOCK_REALTIME, TS'Unchecked_Access);
559 pragma Assert (Result = 0);
560 return To_Duration (TS);
561 end Monotonic_Clock;
563 -------------------
564 -- RT_Resolution --
565 -------------------
567 function RT_Resolution return Duration is
568 begin
569 return 10#1.0#E-6;
570 end RT_Resolution;
572 ------------
573 -- Wakeup --
574 ------------
576 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
577 pragma Unreferenced (Reason);
579 Result : Interfaces.C.int;
581 begin
582 Result := pthread_cond_signal (T.Common.LL.CV'Access);
583 pragma Assert (Result = 0);
584 end Wakeup;
586 -----------
587 -- Yield --
588 -----------
590 procedure Yield (Do_Yield : Boolean := True) is
591 Result : Interfaces.C.int;
592 pragma Unreferenced (Result);
593 begin
594 if Do_Yield then
595 Result := sched_yield;
596 end if;
597 end Yield;
599 ------------------
600 -- Set_Priority --
601 ------------------
603 type Prio_Array_Type is array (System.Any_Priority) of Integer;
604 pragma Atomic_Components (Prio_Array_Type);
606 Prio_Array : Prio_Array_Type;
607 -- Global array containing the id of the currently running task for
608 -- each priority.
610 -- Note: we assume that we are on a single processor with run-til-blocked
611 -- scheduling.
613 procedure Set_Priority
614 (T : Task_Id;
615 Prio : System.Any_Priority;
616 Loss_Of_Inheritance : Boolean := False)
618 Result : Interfaces.C.int;
619 Array_Item : Integer;
620 Param : aliased struct_sched_param;
622 function Get_Policy (Prio : System.Any_Priority) return Character;
623 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
624 -- Get priority specific dispatching policy
626 Priority_Specific_Policy : constant Character := Get_Policy (Prio);
627 -- Upper case first character of the policy name corresponding to the
628 -- task as set by a Priority_Specific_Dispatching pragma.
630 begin
631 Param.sched_priority := Interfaces.C.int (Underlying_Priorities (Prio));
633 if Dispatching_Policy = 'R'
634 or else Priority_Specific_Policy = 'R'
635 or else Time_Slice_Val > 0
636 then
637 Result := pthread_setschedparam
638 (T.Common.LL.Thread, SCHED_RR, Param'Access);
640 elsif Dispatching_Policy = 'F'
641 or else Priority_Specific_Policy = 'F'
642 or else Time_Slice_Val = 0
643 then
644 Result := pthread_setschedparam
645 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
647 else
648 Result := pthread_setschedparam
649 (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
650 end if;
652 pragma Assert (Result = 0);
654 if Dispatching_Policy = 'F' or else Priority_Specific_Policy = 'F' then
656 -- Annex D requirement [RM D.2.2 par. 9]:
657 -- If the task drops its priority due to the loss of inherited
658 -- priority, it is added at the head of the ready queue for its
659 -- new active priority.
661 if Loss_Of_Inheritance
662 and then Prio < T.Common.Current_Priority
663 then
664 Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
665 Prio_Array (T.Common.Base_Priority) := Array_Item;
667 loop
668 -- Let some processes a chance to arrive
670 Yield;
672 -- Then wait for our turn to proceed
674 exit when Array_Item = Prio_Array (T.Common.Base_Priority)
675 or else Prio_Array (T.Common.Base_Priority) = 1;
676 end loop;
678 Prio_Array (T.Common.Base_Priority) :=
679 Prio_Array (T.Common.Base_Priority) - 1;
680 end if;
681 end if;
683 T.Common.Current_Priority := Prio;
684 end Set_Priority;
686 ------------------
687 -- Get_Priority --
688 ------------------
690 function Get_Priority (T : Task_Id) return System.Any_Priority is
691 begin
692 return T.Common.Current_Priority;
693 end Get_Priority;
695 ----------------
696 -- Enter_Task --
697 ----------------
699 procedure Enter_Task (Self_ID : Task_Id) is
700 begin
701 Self_ID.Common.LL.Thread := pthread_self;
702 Specific.Set (Self_ID);
704 Lock_RTS;
706 for J in Known_Tasks'Range loop
707 if Known_Tasks (J) = null then
708 Known_Tasks (J) := Self_ID;
709 Self_ID.Known_Tasks_Index := J;
710 exit;
711 end if;
712 end loop;
714 Unlock_RTS;
715 end Enter_Task;
717 --------------
718 -- New_ATCB --
719 --------------
721 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
722 begin
723 return new Ada_Task_Control_Block (Entry_Num);
724 end New_ATCB;
726 -------------------
727 -- Is_Valid_Task --
728 -------------------
730 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
732 -----------------------------
733 -- Register_Foreign_Thread --
734 -----------------------------
736 function Register_Foreign_Thread return Task_Id is
737 begin
738 if Is_Valid_Task then
739 return Self;
740 else
741 return Register_Foreign_Thread (pthread_self);
742 end if;
743 end Register_Foreign_Thread;
745 --------------------
746 -- Initialize_TCB --
747 --------------------
749 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
750 Mutex_Attr : aliased pthread_mutexattr_t;
751 Result : Interfaces.C.int;
752 Cond_Attr : aliased pthread_condattr_t;
754 begin
755 if not Single_Lock then
756 Result := pthread_mutexattr_init (Mutex_Attr'Access);
757 pragma Assert (Result = 0 or else Result = ENOMEM);
759 if Result = 0 then
760 Result := pthread_mutex_init (Self_ID.Common.LL.L'Access,
761 Mutex_Attr'Access);
762 pragma Assert (Result = 0 or else Result = ENOMEM);
763 end if;
765 if Result /= 0 then
766 Succeeded := False;
767 return;
768 end if;
770 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
771 pragma Assert (Result = 0);
772 end if;
774 Result := pthread_condattr_init (Cond_Attr'Access);
775 pragma Assert (Result = 0 or else Result = ENOMEM);
777 if Result = 0 then
778 Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
779 Cond_Attr'Access);
780 pragma Assert (Result = 0 or else Result = ENOMEM);
781 end if;
783 if Result = 0 then
784 Succeeded := True;
785 else
786 if not Single_Lock then
787 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
788 pragma Assert (Result = 0);
789 end if;
791 Succeeded := False;
792 end if;
794 Result := pthread_condattr_destroy (Cond_Attr'Access);
795 pragma Assert (Result = 0);
796 end Initialize_TCB;
798 -----------------
799 -- Create_Task --
800 -----------------
802 procedure Create_Task
803 (T : Task_Id;
804 Wrapper : System.Address;
805 Stack_Size : System.Parameters.Size_Type;
806 Priority : System.Any_Priority;
807 Succeeded : out Boolean)
809 Attributes : aliased pthread_attr_t;
810 Result : Interfaces.C.int;
812 function Thread_Body_Access is new
813 Unchecked_Conversion (System.Address, Thread_Body);
815 begin
816 Result := pthread_attr_init (Attributes'Access);
817 pragma Assert (Result = 0 or else Result = ENOMEM);
819 if Result /= 0 then
820 Succeeded := False;
821 return;
822 end if;
824 Result := pthread_attr_setstacksize
825 (Attributes'Access, Interfaces.C.size_t (Stack_Size));
826 pragma Assert (Result = 0);
828 -- Since the initial signal mask of a thread is inherited from the
829 -- creator, and the Environment task has all its signals masked, we
830 -- do not need to manipulate caller's signal mask at this point.
831 -- All tasks in RTS will have All_Tasks_Mask initially.
833 Result := pthread_create
834 (T.Common.LL.Thread'Access,
835 Attributes'Access,
836 Thread_Body_Access (Wrapper),
837 To_Address (T));
838 pragma Assert (Result = 0 or else Result = EAGAIN);
840 Succeeded := Result = 0;
842 pthread_detach (T.Common.LL.Thread'Access);
843 -- Detach the thread using pthread_detach, sinc DCE threads do not have
844 -- pthread_attr_set_detachstate.
846 Result := pthread_attr_destroy (Attributes'Access);
847 pragma Assert (Result = 0);
849 Set_Priority (T, Priority);
850 end Create_Task;
852 ------------------
853 -- Finalize_TCB --
854 ------------------
856 procedure Finalize_TCB (T : Task_Id) is
857 Result : Interfaces.C.int;
858 Tmp : Task_Id := T;
859 Is_Self : constant Boolean := T = Self;
861 procedure Free is new
862 Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
864 begin
865 if not Single_Lock then
866 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
867 pragma Assert (Result = 0);
868 end if;
870 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
871 pragma Assert (Result = 0);
873 if T.Known_Tasks_Index /= -1 then
874 Known_Tasks (T.Known_Tasks_Index) := null;
875 end if;
877 Free (Tmp);
879 if Is_Self then
880 Specific.Set (null);
881 end if;
882 end Finalize_TCB;
884 ---------------
885 -- Exit_Task --
886 ---------------
888 procedure Exit_Task is
889 begin
890 Specific.Set (null);
891 end Exit_Task;
893 ----------------
894 -- Abort_Task --
895 ----------------
897 procedure Abort_Task (T : Task_Id) is
898 begin
900 -- Interrupt Server_Tasks may be waiting on an "event" flag (signal)
902 if T.Common.State = Interrupt_Server_Blocked_On_Event_Flag then
903 System.Interrupt_Management.Operations.Interrupt_Self_Process
904 (System.Interrupt_Management.Interrupt_ID
905 (PIO.Get_Interrupt_ID (T)));
906 end if;
907 end Abort_Task;
909 ----------------
910 -- Initialize --
911 ----------------
913 procedure Initialize (S : in out Suspension_Object) is
914 Mutex_Attr : aliased pthread_mutexattr_t;
915 Cond_Attr : aliased pthread_condattr_t;
916 Result : Interfaces.C.int;
917 begin
918 -- Initialize internal state. It is always initialized to False (ARM
919 -- D.10 par. 6).
921 S.State := False;
922 S.Waiting := False;
924 -- Initialize internal mutex
926 Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
927 pragma Assert (Result = 0 or else Result = ENOMEM);
929 if Result = ENOMEM then
930 raise Storage_Error;
931 end if;
933 -- Initialize internal condition variable
935 Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
936 pragma Assert (Result = 0 or else Result = ENOMEM);
938 if Result /= 0 then
939 Result := pthread_mutex_destroy (S.L'Access);
940 pragma Assert (Result = 0);
942 if Result = ENOMEM then
943 raise Storage_Error;
944 end if;
945 end if;
946 end Initialize;
948 --------------
949 -- Finalize --
950 --------------
952 procedure Finalize (S : in out Suspension_Object) is
953 Result : Interfaces.C.int;
954 begin
955 -- Destroy internal mutex
957 Result := pthread_mutex_destroy (S.L'Access);
958 pragma Assert (Result = 0);
960 -- Destroy internal condition variable
962 Result := pthread_cond_destroy (S.CV'Access);
963 pragma Assert (Result = 0);
964 end Finalize;
966 -------------------
967 -- Current_State --
968 -------------------
970 function Current_State (S : Suspension_Object) return Boolean is
971 begin
972 -- We do not want to use lock on this read operation. State is marked
973 -- as Atomic so that we ensure that the value retrieved is correct.
975 return S.State;
976 end Current_State;
978 ---------------
979 -- Set_False --
980 ---------------
982 procedure Set_False (S : in out Suspension_Object) is
983 Result : Interfaces.C.int;
984 begin
985 SSL.Abort_Defer.all;
987 Result := pthread_mutex_lock (S.L'Access);
988 pragma Assert (Result = 0);
990 S.State := False;
992 Result := pthread_mutex_unlock (S.L'Access);
993 pragma Assert (Result = 0);
995 SSL.Abort_Undefer.all;
996 end Set_False;
998 --------------
999 -- Set_True --
1000 --------------
1002 procedure Set_True (S : in out Suspension_Object) is
1003 Result : Interfaces.C.int;
1004 begin
1005 SSL.Abort_Defer.all;
1007 Result := pthread_mutex_lock (S.L'Access);
1008 pragma Assert (Result = 0);
1010 -- If there is already a task waiting on this suspension object then
1011 -- we resume it, leaving the state of the suspension object to False,
1012 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1013 -- the state to True.
1015 if S.Waiting then
1016 S.Waiting := False;
1017 S.State := False;
1019 Result := pthread_cond_signal (S.CV'Access);
1020 pragma Assert (Result = 0);
1021 else
1022 S.State := True;
1023 end if;
1025 Result := pthread_mutex_unlock (S.L'Access);
1026 pragma Assert (Result = 0);
1028 SSL.Abort_Undefer.all;
1029 end Set_True;
1031 ------------------------
1032 -- Suspend_Until_True --
1033 ------------------------
1035 procedure Suspend_Until_True (S : in out Suspension_Object) is
1036 Result : Interfaces.C.int;
1037 begin
1038 SSL.Abort_Defer.all;
1040 Result := pthread_mutex_lock (S.L'Access);
1041 pragma Assert (Result = 0);
1043 if S.Waiting then
1044 -- Program_Error must be raised upon calling Suspend_Until_True
1045 -- if another task is already waiting on that suspension object
1046 -- (ARM D.10 par. 10).
1048 Result := pthread_mutex_unlock (S.L'Access);
1049 pragma Assert (Result = 0);
1051 SSL.Abort_Undefer.all;
1053 raise Program_Error;
1054 else
1055 -- Suspend the task if the state is False. Otherwise, the task
1056 -- continues its execution, and the state of the suspension object
1057 -- is set to False (ARM D.10 par. 9).
1059 if S.State then
1060 S.State := False;
1061 else
1062 S.Waiting := True;
1063 Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1064 end if;
1066 Result := pthread_mutex_unlock (S.L'Access);
1067 pragma Assert (Result = 0);
1069 SSL.Abort_Undefer.all;
1070 end if;
1071 end Suspend_Until_True;
1073 ----------------
1074 -- Check_Exit --
1075 ----------------
1077 -- Dummy version
1079 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1080 pragma Unreferenced (Self_ID);
1081 begin
1082 return True;
1083 end Check_Exit;
1085 --------------------
1086 -- Check_No_Locks --
1087 --------------------
1089 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1090 pragma Unreferenced (Self_ID);
1091 begin
1092 return True;
1093 end Check_No_Locks;
1095 ----------------------
1096 -- Environment_Task --
1097 ----------------------
1099 function Environment_Task return Task_Id is
1100 begin
1101 return Environment_Task_Id;
1102 end Environment_Task;
1104 --------------
1105 -- Lock_RTS --
1106 --------------
1108 procedure Lock_RTS is
1109 begin
1110 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1111 end Lock_RTS;
1113 ----------------
1114 -- Unlock_RTS --
1115 ----------------
1117 procedure Unlock_RTS is
1118 begin
1119 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1120 end Unlock_RTS;
1122 ------------------
1123 -- Suspend_Task --
1124 ------------------
1126 function Suspend_Task
1127 (T : ST.Task_Id;
1128 Thread_Self : Thread_Id) return Boolean
1130 pragma Unreferenced (T);
1131 pragma Unreferenced (Thread_Self);
1132 begin
1133 return False;
1134 end Suspend_Task;
1136 -----------------
1137 -- Resume_Task --
1138 -----------------
1140 function Resume_Task
1141 (T : ST.Task_Id;
1142 Thread_Self : Thread_Id) return Boolean
1144 pragma Unreferenced (T);
1145 pragma Unreferenced (Thread_Self);
1146 begin
1147 return False;
1148 end Resume_Task;
1150 ----------------
1151 -- Initialize --
1152 ----------------
1154 procedure Initialize (Environment_Task : Task_Id) is
1155 act : aliased struct_sigaction;
1156 old_act : aliased struct_sigaction;
1157 Tmp_Set : aliased sigset_t;
1158 Result : Interfaces.C.int;
1160 function State
1161 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1162 pragma Import (C, State, "__gnat_get_interrupt_state");
1163 -- Get interrupt state. Defined in a-init.c. The input argument is
1164 -- the interrupt number, and the result is one of the following:
1166 Default : constant Character := 's';
1167 -- 'n' this interrupt not set by any Interrupt_State pragma
1168 -- 'u' Interrupt_State pragma set state to User
1169 -- 'r' Interrupt_State pragma set state to Runtime
1170 -- 's' Interrupt_State pragma set state to System (use "default"
1171 -- system handler)
1173 begin
1174 Environment_Task_Id := Environment_Task;
1176 Interrupt_Management.Initialize;
1178 -- Initialize the lock used to synchronize chain of all ATCBs
1180 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1182 Specific.Initialize (Environment_Task);
1184 Enter_Task (Environment_Task);
1186 -- Install the abort-signal handler
1188 if State (System.Interrupt_Management.Abort_Task_Interrupt)
1189 /= Default
1190 then
1191 act.sa_flags := 0;
1192 act.sa_handler := Abort_Handler'Address;
1194 Result := sigemptyset (Tmp_Set'Access);
1195 pragma Assert (Result = 0);
1196 act.sa_mask := Tmp_Set;
1198 Result :=
1199 sigaction (
1200 Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1201 act'Unchecked_Access,
1202 old_act'Unchecked_Access);
1203 pragma Assert (Result = 0);
1204 end if;
1205 end Initialize;
1207 -- NOTE: Unlike other pthread implementations, we do *not* mask all
1208 -- signals here since we handle signals using the process-wide primitive
1209 -- signal, rather than using sigthreadmask and sigwait. The reason of
1210 -- this difference is that sigwait doesn't work when some critical
1211 -- signals (SIGABRT, SIGPIPE) are masked.
1213 end System.Task_Primitives.Operations;