1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 2001-2006, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Exp_Ch3
; use Exp_Ch3
;
33 with Exp_Util
; use Exp_Util
;
34 with Nlists
; use Nlists
;
35 with Nmake
; use Nmake
;
37 with Repinfo
; use Repinfo
;
39 with Sem_Ch13
; use Sem_Ch13
;
40 with Sem_Eval
; use Sem_Eval
;
41 with Sem_Util
; use Sem_Util
;
42 with Sinfo
; use Sinfo
;
43 with Snames
; use Snames
;
44 with Stand
; use Stand
;
45 with Targparm
; use Targparm
;
46 with Tbuild
; use Tbuild
;
47 with Ttypes
; use Ttypes
;
48 with Uintp
; use Uintp
;
50 package body Layout
is
52 ------------------------
53 -- Local Declarations --
54 ------------------------
56 SSU
: constant Int
:= Ttypes
.System_Storage_Unit
;
57 -- Short hand for System_Storage_Unit
59 Vname
: constant Name_Id
:= Name_uV
;
60 -- Formal parameter name used for functions generated for size offset
61 -- values that depend on the discriminant. All such functions have the
64 -- function xxx (V : vtyp) return Unsigned is
66 -- return ... expression involving V.discrim
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
73 procedure Adjust_Esize_Alignment
(E
: Entity_Id
);
74 -- E is the entity for a type or object. This procedure checks that the
75 -- size and alignment are compatible, and if not either gives an error
76 -- message if they cannot be adjusted or else adjusts them appropriately.
81 Right_Opnd
: Node_Id
) return Node_Id
;
82 -- This is like Make_Op_Add except that it optimizes some cases knowing
83 -- that associative rearrangement is allowed for constant folding if one
84 -- of the operands is a compile time known value.
86 function Assoc_Multiply
89 Right_Opnd
: Node_Id
) return Node_Id
;
90 -- This is like Make_Op_Multiply except that it optimizes some cases
91 -- knowing that associative rearrangement is allowed for constant
92 -- folding if one of the operands is a compile time known value
94 function Assoc_Subtract
97 Right_Opnd
: Node_Id
) return Node_Id
;
98 -- This is like Make_Op_Subtract except that it optimizes some cases
99 -- knowing that associative rearrangement is allowed for constant
100 -- folding if one of the operands is a compile time known value
102 function Bits_To_SU
(N
: Node_Id
) return Node_Id
;
103 -- This is used when we cross the boundary from static sizes in bits to
104 -- dynamic sizes in storage units. If the argument N is anything other
105 -- than an integer literal, it is returned unchanged, but if it is an
106 -- integer literal, then it is taken as a size in bits, and is replaced
107 -- by the corresponding size in storage units.
109 function Compute_Length
(Lo
: Node_Id
; Hi
: Node_Id
) return Node_Id
;
110 -- Given expressions for the low bound (Lo) and the high bound (Hi),
111 -- Build an expression for the value hi-lo+1, converted to type
112 -- Standard.Unsigned. Takes care of the case where the operands
113 -- are of an enumeration type (so that the subtraction cannot be
114 -- done directly) by applying the Pos operator to Hi/Lo first.
116 function Expr_From_SO_Ref
119 Comp
: Entity_Id
:= Empty
) return Node_Id
;
120 -- Given a value D from a size or offset field, return an expression
121 -- representing the value stored. If the value is known at compile time,
122 -- then an N_Integer_Literal is returned with the appropriate value. If
123 -- the value references a constant entity, then an N_Identifier node
124 -- referencing this entity is returned. If the value denotes a size
125 -- function, then returns a call node denoting the given function, with
126 -- a single actual parameter that either refers to the parameter V of
127 -- an enclosing size function (if Comp is Empty or its type doesn't match
128 -- the function's formal), or else is a selected component V.c when Comp
129 -- denotes a component c whose type matches that of the function formal.
130 -- The Loc value is used for the Sloc value of constructed notes.
132 function SO_Ref_From_Expr
134 Ins_Type
: Entity_Id
;
135 Vtype
: Entity_Id
:= Empty
;
136 Make_Func
: Boolean := False) return Dynamic_SO_Ref
;
137 -- This routine is used in the case where a size/offset value is dynamic
138 -- and is represented by the expression Expr. SO_Ref_From_Expr checks if
139 -- the Expr contains a reference to the identifier V, and if so builds
140 -- a function depending on discriminants of the formal parameter V which
141 -- is of type Vtype. Otherwise, if the parameter Make_Func is True, then
142 -- Expr will be encapsulated in a parameterless function; if Make_Func is
143 -- False, then a constant entity with the value Expr is built. The result
144 -- is a Dynamic_SO_Ref to the created entity. Note that Vtype can be
145 -- omitted if Expr does not contain any reference to V, the created entity.
146 -- The declaration created is inserted in the freeze actions of Ins_Type,
147 -- which also supplies the Sloc for created nodes. This function also takes
148 -- care of making sure that the expression is properly analyzed and
149 -- resolved (which may not be the case yet if we build the expression
152 function Get_Max_SU_Size
(E
: Entity_Id
) return Node_Id
;
153 -- E is an array type or subtype that has at least one index bound that
154 -- is the value of a record discriminant. For such an array, the function
155 -- computes an expression that yields the maximum possible size of the
156 -- array in storage units. The result is not defined for any other type,
157 -- or for arrays that do not depend on discriminants, and it is a fatal
158 -- error to call this unless Size_Depends_On_Discriminant (E) is True.
160 procedure Layout_Array_Type
(E
: Entity_Id
);
161 -- Front-end layout of non-bit-packed array type or subtype
163 procedure Layout_Record_Type
(E
: Entity_Id
);
164 -- Front-end layout of record type
166 procedure Rewrite_Integer
(N
: Node_Id
; V
: Uint
);
167 -- Rewrite node N with an integer literal whose value is V. The Sloc
168 -- for the new node is taken from N, and the type of the literal is
169 -- set to a copy of the type of N on entry.
171 procedure Set_And_Check_Static_Size
175 -- This procedure is called to check explicit given sizes (possibly
176 -- stored in the Esize and RM_Size fields of E) against computed
177 -- Object_Size (Esiz) and Value_Size (RM_Siz) values. Appropriate
178 -- errors and warnings are posted if specified sizes are inconsistent
179 -- with specified sizes. On return, the Esize and RM_Size fields of
180 -- E are set (either from previously given values, or from the newly
181 -- computed values, as appropriate).
183 procedure Set_Composite_Alignment
(E
: Entity_Id
);
184 -- This procedure is called for record types and subtypes, and also for
185 -- atomic array types and subtypes. If no alignment is set, and the size
186 -- is 2 or 4 (or 8 if the word size is 8), then the alignment is set to
189 ----------------------------
190 -- Adjust_Esize_Alignment --
191 ----------------------------
193 procedure Adjust_Esize_Alignment
(E
: Entity_Id
) is
198 -- Nothing to do if size unknown
200 if Unknown_Esize
(E
) then
204 -- Determine if size is constrained by an attribute definition clause
205 -- which must be obeyed. If so, we cannot increase the size in this
208 -- For a type, the issue is whether an object size clause has been
209 -- set. A normal size clause constrains only the value size (RM_Size)
212 Esize_Set
:= Has_Object_Size_Clause
(E
);
214 -- For an object, the issue is whether a size clause is present
217 Esize_Set
:= Has_Size_Clause
(E
);
220 -- If size is known it must be a multiple of the storage unit size
222 if Esize
(E
) mod SSU
/= 0 then
224 -- If not, and size specified, then give error
228 ("size for& not a multiple of storage unit size",
232 -- Otherwise bump up size to a storage unit boundary
235 Set_Esize
(E
, (Esize
(E
) + SSU
- 1) / SSU
* SSU
);
239 -- Now we have the size set, it must be a multiple of the alignment
240 -- nothing more we can do here if the alignment is unknown here.
242 if Unknown_Alignment
(E
) then
246 -- At this point both the Esize and Alignment are known, so we need
247 -- to make sure they are consistent.
249 Abits
:= UI_To_Int
(Alignment
(E
)) * SSU
;
251 if Esize
(E
) mod Abits
= 0 then
255 -- Here we have a situation where the Esize is not a multiple of
256 -- the alignment. We must either increase Esize or reduce the
257 -- alignment to correct this situation.
259 -- The case in which we can decrease the alignment is where the
260 -- alignment was not set by an alignment clause, and the type in
261 -- question is a discrete type, where it is definitely safe to
262 -- reduce the alignment. For example:
264 -- t : integer range 1 .. 2;
267 -- In this situation, the initial alignment of t is 4, copied from
268 -- the Integer base type, but it is safe to reduce it to 1 at this
269 -- stage, since we will only be loading a single storage unit.
271 if Is_Discrete_Type
(Etype
(E
))
272 and then not Has_Alignment_Clause
(E
)
276 exit when Esize
(E
) mod Abits
= 0;
279 Init_Alignment
(E
, Abits
/ SSU
);
283 -- Now the only possible approach left is to increase the Esize
284 -- but we can't do that if the size was set by a specific clause.
288 ("size for& is not a multiple of alignment",
291 -- Otherwise we can indeed increase the size to a multiple of alignment
294 Set_Esize
(E
, ((Esize
(E
) + (Abits
- 1)) / Abits
) * Abits
);
296 end Adjust_Esize_Alignment
;
305 Right_Opnd
: Node_Id
) return Node_Id
311 -- Case of right operand is a constant
313 if Compile_Time_Known_Value
(Right_Opnd
) then
315 R
:= Expr_Value
(Right_Opnd
);
317 -- Case of left operand is a constant
319 elsif Compile_Time_Known_Value
(Left_Opnd
) then
321 R
:= Expr_Value
(Left_Opnd
);
323 -- Neither operand is a constant, do the addition with no optimization
326 return Make_Op_Add
(Loc
, Left_Opnd
, Right_Opnd
);
329 -- Case of left operand is an addition
331 if Nkind
(L
) = N_Op_Add
then
333 -- (C1 + E) + C2 = (C1 + C2) + E
335 if Compile_Time_Known_Value
(Sinfo
.Left_Opnd
(L
)) then
337 (Sinfo
.Left_Opnd
(L
),
338 Expr_Value
(Sinfo
.Left_Opnd
(L
)) + R
);
341 -- (E + C1) + C2 = E + (C1 + C2)
343 elsif Compile_Time_Known_Value
(Sinfo
.Right_Opnd
(L
)) then
345 (Sinfo
.Right_Opnd
(L
),
346 Expr_Value
(Sinfo
.Right_Opnd
(L
)) + R
);
350 -- Case of left operand is a subtraction
352 elsif Nkind
(L
) = N_Op_Subtract
then
354 -- (C1 - E) + C2 = (C1 + C2) + E
356 if Compile_Time_Known_Value
(Sinfo
.Left_Opnd
(L
)) then
358 (Sinfo
.Left_Opnd
(L
),
359 Expr_Value
(Sinfo
.Left_Opnd
(L
)) + R
);
362 -- (E - C1) + C2 = E - (C1 - C2)
364 elsif Compile_Time_Known_Value
(Sinfo
.Right_Opnd
(L
)) then
366 (Sinfo
.Right_Opnd
(L
),
367 Expr_Value
(Sinfo
.Right_Opnd
(L
)) - R
);
372 -- Not optimizable, do the addition
374 return Make_Op_Add
(Loc
, Left_Opnd
, Right_Opnd
);
381 function Assoc_Multiply
384 Right_Opnd
: Node_Id
) return Node_Id
390 -- Case of right operand is a constant
392 if Compile_Time_Known_Value
(Right_Opnd
) then
394 R
:= Expr_Value
(Right_Opnd
);
396 -- Case of left operand is a constant
398 elsif Compile_Time_Known_Value
(Left_Opnd
) then
400 R
:= Expr_Value
(Left_Opnd
);
402 -- Neither operand is a constant, do the multiply with no optimization
405 return Make_Op_Multiply
(Loc
, Left_Opnd
, Right_Opnd
);
408 -- Case of left operand is an multiplication
410 if Nkind
(L
) = N_Op_Multiply
then
412 -- (C1 * E) * C2 = (C1 * C2) + E
414 if Compile_Time_Known_Value
(Sinfo
.Left_Opnd
(L
)) then
416 (Sinfo
.Left_Opnd
(L
),
417 Expr_Value
(Sinfo
.Left_Opnd
(L
)) * R
);
420 -- (E * C1) * C2 = E * (C1 * C2)
422 elsif Compile_Time_Known_Value
(Sinfo
.Right_Opnd
(L
)) then
424 (Sinfo
.Right_Opnd
(L
),
425 Expr_Value
(Sinfo
.Right_Opnd
(L
)) * R
);
430 -- Not optimizable, do the multiplication
432 return Make_Op_Multiply
(Loc
, Left_Opnd
, Right_Opnd
);
439 function Assoc_Subtract
442 Right_Opnd
: Node_Id
) return Node_Id
448 -- Case of right operand is a constant
450 if Compile_Time_Known_Value
(Right_Opnd
) then
452 R
:= Expr_Value
(Right_Opnd
);
454 -- Right operand is a constant, do the subtract with no optimization
457 return Make_Op_Subtract
(Loc
, Left_Opnd
, Right_Opnd
);
460 -- Case of left operand is an addition
462 if Nkind
(L
) = N_Op_Add
then
464 -- (C1 + E) - C2 = (C1 - C2) + E
466 if Compile_Time_Known_Value
(Sinfo
.Left_Opnd
(L
)) then
468 (Sinfo
.Left_Opnd
(L
),
469 Expr_Value
(Sinfo
.Left_Opnd
(L
)) - R
);
472 -- (E + C1) - C2 = E + (C1 - C2)
474 elsif Compile_Time_Known_Value
(Sinfo
.Right_Opnd
(L
)) then
476 (Sinfo
.Right_Opnd
(L
),
477 Expr_Value
(Sinfo
.Right_Opnd
(L
)) - R
);
481 -- Case of left operand is a subtraction
483 elsif Nkind
(L
) = N_Op_Subtract
then
485 -- (C1 - E) - C2 = (C1 - C2) + E
487 if Compile_Time_Known_Value
(Sinfo
.Left_Opnd
(L
)) then
489 (Sinfo
.Left_Opnd
(L
),
490 Expr_Value
(Sinfo
.Left_Opnd
(L
)) + R
);
493 -- (E - C1) - C2 = E - (C1 + C2)
495 elsif Compile_Time_Known_Value
(Sinfo
.Right_Opnd
(L
)) then
497 (Sinfo
.Right_Opnd
(L
),
498 Expr_Value
(Sinfo
.Right_Opnd
(L
)) + R
);
503 -- Not optimizable, do the subtraction
505 return Make_Op_Subtract
(Loc
, Left_Opnd
, Right_Opnd
);
512 function Bits_To_SU
(N
: Node_Id
) return Node_Id
is
514 if Nkind
(N
) = N_Integer_Literal
then
515 Set_Intval
(N
, (Intval
(N
) + (SSU
- 1)) / SSU
);
525 function Compute_Length
(Lo
: Node_Id
; Hi
: Node_Id
) return Node_Id
is
526 Loc
: constant Source_Ptr
:= Sloc
(Lo
);
527 Typ
: constant Entity_Id
:= Etype
(Lo
);
534 -- If the bounds are First and Last attributes for the same dimension
535 -- and both have prefixes that denotes the same entity, then we create
536 -- and return a Length attribute. This may allow the back end to
537 -- generate better code in cases where it already has the length.
539 if Nkind
(Lo
) = N_Attribute_Reference
540 and then Attribute_Name
(Lo
) = Name_First
541 and then Nkind
(Hi
) = N_Attribute_Reference
542 and then Attribute_Name
(Hi
) = Name_Last
543 and then Is_Entity_Name
(Prefix
(Lo
))
544 and then Is_Entity_Name
(Prefix
(Hi
))
545 and then Entity
(Prefix
(Lo
)) = Entity
(Prefix
(Hi
))
550 if Present
(First
(Expressions
(Lo
))) then
551 Lo_Dim
:= Expr_Value
(First
(Expressions
(Lo
)));
554 if Present
(First
(Expressions
(Hi
))) then
555 Hi_Dim
:= Expr_Value
(First
(Expressions
(Hi
)));
558 if Lo_Dim
= Hi_Dim
then
560 Make_Attribute_Reference
(Loc
,
561 Prefix
=> New_Occurrence_Of
562 (Entity
(Prefix
(Lo
)), Loc
),
563 Attribute_Name
=> Name_Length
,
564 Expressions
=> New_List
565 (Make_Integer_Literal
(Loc
, Lo_Dim
)));
569 Lo_Op
:= New_Copy_Tree
(Lo
);
570 Hi_Op
:= New_Copy_Tree
(Hi
);
572 -- If type is enumeration type, then use Pos attribute to convert
573 -- to integer type for which subtraction is a permitted operation.
575 if Is_Enumeration_Type
(Typ
) then
577 Make_Attribute_Reference
(Loc
,
578 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
579 Attribute_Name
=> Name_Pos
,
580 Expressions
=> New_List
(Lo_Op
));
583 Make_Attribute_Reference
(Loc
,
584 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
585 Attribute_Name
=> Name_Pos
,
586 Expressions
=> New_List
(Hi_Op
));
594 Right_Opnd
=> Lo_Op
),
595 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
598 ----------------------
599 -- Expr_From_SO_Ref --
600 ----------------------
602 function Expr_From_SO_Ref
605 Comp
: Entity_Id
:= Empty
) return Node_Id
610 if Is_Dynamic_SO_Ref
(D
) then
611 Ent
:= Get_Dynamic_SO_Entity
(D
);
613 if Is_Discrim_SO_Function
(Ent
) then
614 -- If a component is passed in whose type matches the type
615 -- of the function formal, then select that component from
616 -- the "V" parameter rather than passing "V" directly.
619 and then Base_Type
(Etype
(Comp
))
620 = Base_Type
(Etype
(First_Formal
(Ent
)))
623 Make_Function_Call
(Loc
,
624 Name
=> New_Occurrence_Of
(Ent
, Loc
),
625 Parameter_Associations
=> New_List
(
626 Make_Selected_Component
(Loc
,
627 Prefix
=> Make_Identifier
(Loc
, Chars
=> Vname
),
628 Selector_Name
=> New_Occurrence_Of
(Comp
, Loc
))));
632 Make_Function_Call
(Loc
,
633 Name
=> New_Occurrence_Of
(Ent
, Loc
),
634 Parameter_Associations
=> New_List
(
635 Make_Identifier
(Loc
, Chars
=> Vname
)));
639 return New_Occurrence_Of
(Ent
, Loc
);
643 return Make_Integer_Literal
(Loc
, D
);
645 end Expr_From_SO_Ref
;
647 ---------------------
648 -- Get_Max_SU_Size --
649 ---------------------
651 function Get_Max_SU_Size
(E
: Entity_Id
) return Node_Id
is
652 Loc
: constant Source_Ptr
:= Sloc
(E
);
660 type Val_Status_Type
is (Const
, Dynamic
);
662 type Val_Type
(Status
: Val_Status_Type
:= Const
) is
665 when Const
=> Val
: Uint
;
666 when Dynamic
=> Nod
: Node_Id
;
669 -- Shows the status of the value so far. Const means that the value
670 -- is constant, and Val is the current constant value. Dynamic means
671 -- that the value is dynamic, and in this case Nod is the Node_Id of
672 -- the expression to compute the value.
675 -- Calculated value so far if Size.Status = Const,
676 -- or expression value so far if Size.Status = Dynamic.
678 SU_Convert_Required
: Boolean := False;
679 -- This is set to True if the final result must be converted from
680 -- bits to storage units (rounding up to a storage unit boundary).
682 -----------------------
683 -- Local Subprograms --
684 -----------------------
686 procedure Max_Discrim
(N
: in out Node_Id
);
687 -- If the node N represents a discriminant, replace it by the maximum
688 -- value of the discriminant.
690 procedure Min_Discrim
(N
: in out Node_Id
);
691 -- If the node N represents a discriminant, replace it by the minimum
692 -- value of the discriminant.
698 procedure Max_Discrim
(N
: in out Node_Id
) is
700 if Nkind
(N
) = N_Identifier
701 and then Ekind
(Entity
(N
)) = E_Discriminant
703 N
:= Type_High_Bound
(Etype
(N
));
711 procedure Min_Discrim
(N
: in out Node_Id
) is
713 if Nkind
(N
) = N_Identifier
714 and then Ekind
(Entity
(N
)) = E_Discriminant
716 N
:= Type_Low_Bound
(Etype
(N
));
720 -- Start of processing for Get_Max_SU_Size
723 pragma Assert
(Size_Depends_On_Discriminant
(E
));
725 -- Initialize status from component size
727 if Known_Static_Component_Size
(E
) then
728 Size
:= (Const
, Component_Size
(E
));
731 Size
:= (Dynamic
, Expr_From_SO_Ref
(Loc
, Component_Size
(E
)));
734 -- Loop through indices
736 Indx
:= First_Index
(E
);
737 while Present
(Indx
) loop
738 Ityp
:= Etype
(Indx
);
739 Lo
:= Type_Low_Bound
(Ityp
);
740 Hi
:= Type_High_Bound
(Ityp
);
745 -- Value of the current subscript range is statically known
747 if Compile_Time_Known_Value
(Lo
)
748 and then Compile_Time_Known_Value
(Hi
)
750 S
:= Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1;
752 -- If known flat bound, entire size of array is zero!
755 return Make_Integer_Literal
(Loc
, 0);
758 -- Current value is constant, evolve value
760 if Size
.Status
= Const
then
761 Size
.Val
:= Size
.Val
* S
;
763 -- Current value is dynamic
766 -- An interesting little optimization, if we have a pending
767 -- conversion from bits to storage units, and the current
768 -- length is a multiple of the storage unit size, then we
769 -- can take the factor out here statically, avoiding some
770 -- extra dynamic computations at the end.
772 if SU_Convert_Required
and then S
mod SSU
= 0 then
774 SU_Convert_Required
:= False;
779 Left_Opnd
=> Size
.Nod
,
781 Make_Integer_Literal
(Loc
, Intval
=> S
));
784 -- Value of the current subscript range is dynamic
787 -- If the current size value is constant, then here is where we
788 -- make a transition to dynamic values, which are always stored
789 -- in storage units, However, we do not want to convert to SU's
790 -- too soon, consider the case of a packed array of single bits,
791 -- we want to do the SU conversion after computing the size in
794 if Size
.Status
= Const
then
796 -- If the current value is a multiple of the storage unit,
797 -- then most certainly we can do the conversion now, simply
798 -- by dividing the current value by the storage unit value.
799 -- If this works, we set SU_Convert_Required to False.
801 if Size
.Val
mod SSU
= 0 then
804 (Dynamic
, Make_Integer_Literal
(Loc
, Size
.Val
/ SSU
));
805 SU_Convert_Required
:= False;
807 -- Otherwise, we go ahead and convert the value in bits,
808 -- and set SU_Convert_Required to True to ensure that the
809 -- final value is indeed properly converted.
812 Size
:= (Dynamic
, Make_Integer_Literal
(Loc
, Size
.Val
));
813 SU_Convert_Required
:= True;
819 Len
:= Compute_Length
(Lo
, Hi
);
821 -- Check possible range of Len
830 Determine_Range
(Len
, OK
, LLo
, LHi
);
832 Len
:= Convert_To
(Standard_Unsigned
, Len
);
834 -- If we cannot verify that range cannot be super-flat,
835 -- we need a max with zero, since length must be non-neg.
837 if not OK
or else LLo
< 0 then
839 Make_Attribute_Reference
(Loc
,
841 New_Occurrence_Of
(Standard_Unsigned
, Loc
),
842 Attribute_Name
=> Name_Max
,
843 Expressions
=> New_List
(
844 Make_Integer_Literal
(Loc
, 0),
853 -- Here after processing all bounds to set sizes. If the value is
854 -- a constant, then it is bits, so we convert to storage units.
856 if Size
.Status
= Const
then
857 return Bits_To_SU
(Make_Integer_Literal
(Loc
, Size
.Val
));
859 -- Case where the value is dynamic
862 -- Do convert from bits to SU's if needed
864 if SU_Convert_Required
then
866 -- The expression required is (Size.Nod + SU - 1) / SU
872 Left_Opnd
=> Size
.Nod
,
873 Right_Opnd
=> Make_Integer_Literal
(Loc
, SSU
- 1)),
874 Right_Opnd
=> Make_Integer_Literal
(Loc
, SSU
));
881 -----------------------
882 -- Layout_Array_Type --
883 -----------------------
885 procedure Layout_Array_Type
(E
: Entity_Id
) is
886 Loc
: constant Source_Ptr
:= Sloc
(E
);
887 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
895 Insert_Typ
: Entity_Id
;
896 -- This is the type with which any generated constants or functions
897 -- will be associated (i.e. inserted into the freeze actions). This
898 -- is normally the type being laid out. The exception occurs when
899 -- we are laying out Itype's which are local to a record type, and
900 -- whose scope is this record type. Such types do not have freeze
901 -- nodes (because we have no place to put them).
903 ------------------------------------
904 -- How An Array Type is Laid Out --
905 ------------------------------------
907 -- Here is what goes on. We need to multiply the component size of
908 -- the array (which has already been set) by the length of each of
909 -- the indexes. If all these values are known at compile time, then
910 -- the resulting size of the array is the appropriate constant value.
912 -- If the component size or at least one bound is dynamic (but no
913 -- discriminants are present), then the size will be computed as an
914 -- expression that calculates the proper size.
916 -- If there is at least one discriminant bound, then the size is also
917 -- computed as an expression, but this expression contains discriminant
918 -- values which are obtained by selecting from a function parameter, and
919 -- the size is given by a function that is passed the variant record in
920 -- question, and whose body is the expression.
922 type Val_Status_Type
is (Const
, Dynamic
, Discrim
);
924 type Val_Type
(Status
: Val_Status_Type
:= Const
) is
929 -- Calculated value so far if Val_Status = Const
931 when Dynamic | Discrim
=>
933 -- Expression value so far if Val_Status /= Const
937 -- Records the value or expression computed so far. Const means that
938 -- the value is constant, and Val is the current constant value.
939 -- Dynamic means that the value is dynamic, and in this case Nod is
940 -- the Node_Id of the expression to compute the value, and Discrim
941 -- means that at least one bound is a discriminant, in which case Nod
942 -- is the expression so far (which will be the body of the function).
945 -- Value of size computed so far. See comments above
947 Vtyp
: Entity_Id
:= Empty
;
948 -- Variant record type for the formal parameter of the
949 -- discriminant function V if Status = Discrim.
951 SU_Convert_Required
: Boolean := False;
952 -- This is set to True if the final result must be converted from
953 -- bits to storage units (rounding up to a storage unit boundary).
955 Storage_Divisor
: Uint
:= UI_From_Int
(SSU
);
956 -- This is the amount that a nonstatic computed size will be divided
957 -- by to convert it from bits to storage units. This is normally
958 -- equal to SSU, but can be reduced in the case of packed components
959 -- that fit evenly into a storage unit.
961 Make_Size_Function
: Boolean := False;
962 -- Indicates whether to request that SO_Ref_From_Expr should
963 -- encapsulate the array size expresion in a function.
965 procedure Discrimify
(N
: in out Node_Id
);
966 -- If N represents a discriminant, then the Size.Status is set to
967 -- Discrim, and Vtyp is set. The parameter N is replaced with the
968 -- proper expression to extract the discriminant value from V.
974 procedure Discrimify
(N
: in out Node_Id
) is
979 if Nkind
(N
) = N_Identifier
980 and then Ekind
(Entity
(N
)) = E_Discriminant
982 Set_Size_Depends_On_Discriminant
(E
);
984 if Size
.Status
/= Discrim
then
985 Decl
:= Parent
(Parent
(Entity
(N
)));
986 Size
:= (Discrim
, Size
.Nod
);
987 Vtyp
:= Defining_Identifier
(Decl
);
993 Make_Selected_Component
(Loc
,
994 Prefix
=> Make_Identifier
(Loc
, Chars
=> Vname
),
995 Selector_Name
=> New_Occurrence_Of
(Entity
(N
), Loc
));
997 -- Set the Etype attributes of the selected name and its prefix.
998 -- Analyze_And_Resolve can't be called here because the Vname
999 -- entity denoted by the prefix will not yet exist (it's created
1000 -- by SO_Ref_From_Expr, called at the end of Layout_Array_Type).
1002 Set_Etype
(Prefix
(N
), Vtyp
);
1007 -- Start of processing for Layout_Array_Type
1010 -- Default alignment is component alignment
1012 if Unknown_Alignment
(E
) then
1013 Set_Alignment
(E
, Alignment
(Ctyp
));
1016 -- Calculate proper type for insertions
1018 if Is_Record_Type
(Underlying_Type
(Scope
(E
))) then
1019 Insert_Typ
:= Underlying_Type
(Scope
(E
));
1024 -- If the component type is a generic formal type then there's no point
1025 -- in determining a size for the array type.
1027 if Is_Generic_Type
(Ctyp
) then
1031 -- Deal with component size if base type
1033 if Ekind
(E
) = E_Array_Type
then
1035 -- Cannot do anything if Esize of component type unknown
1037 if Unknown_Esize
(Ctyp
) then
1041 -- Set component size if not set already
1043 if Unknown_Component_Size
(E
) then
1044 Set_Component_Size
(E
, Esize
(Ctyp
));
1048 -- (RM 13.3 (48)) says that the size of an unconstrained array
1049 -- is implementation defined. We choose to leave it as Unknown
1050 -- here, and the actual behavior is determined by the back end.
1052 if not Is_Constrained
(E
) then
1056 -- Initialize status from component size
1058 if Known_Static_Component_Size
(E
) then
1059 Size
:= (Const
, Component_Size
(E
));
1062 Size
:= (Dynamic
, Expr_From_SO_Ref
(Loc
, Component_Size
(E
)));
1065 -- Loop to process array indices
1067 Indx
:= First_Index
(E
);
1068 while Present
(Indx
) loop
1069 Ityp
:= Etype
(Indx
);
1071 -- If an index of the array is a generic formal type then there's
1072 -- no point in determining a size for the array type.
1074 if Is_Generic_Type
(Ityp
) then
1078 Lo
:= Type_Low_Bound
(Ityp
);
1079 Hi
:= Type_High_Bound
(Ityp
);
1081 -- Value of the current subscript range is statically known
1083 if Compile_Time_Known_Value
(Lo
)
1084 and then Compile_Time_Known_Value
(Hi
)
1086 S
:= Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1;
1088 -- If known flat bound, entire size of array is zero!
1091 Set_Esize
(E
, Uint_0
);
1092 Set_RM_Size
(E
, Uint_0
);
1096 -- If constant, evolve value
1098 if Size
.Status
= Const
then
1099 Size
.Val
:= Size
.Val
* S
;
1101 -- Current value is dynamic
1104 -- An interesting little optimization, if we have a pending
1105 -- conversion from bits to storage units, and the current
1106 -- length is a multiple of the storage unit size, then we
1107 -- can take the factor out here statically, avoiding some
1108 -- extra dynamic computations at the end.
1110 if SU_Convert_Required
and then S
mod SSU
= 0 then
1112 SU_Convert_Required
:= False;
1115 -- Now go ahead and evolve the expression
1118 Assoc_Multiply
(Loc
,
1119 Left_Opnd
=> Size
.Nod
,
1121 Make_Integer_Literal
(Loc
, Intval
=> S
));
1124 -- Value of the current subscript range is dynamic
1127 -- If the current size value is constant, then here is where we
1128 -- make a transition to dynamic values, which are always stored
1129 -- in storage units, However, we do not want to convert to SU's
1130 -- too soon, consider the case of a packed array of single bits,
1131 -- we want to do the SU conversion after computing the size in
1134 if Size
.Status
= Const
then
1136 -- If the current value is a multiple of the storage unit,
1137 -- then most certainly we can do the conversion now, simply
1138 -- by dividing the current value by the storage unit value.
1139 -- If this works, we set SU_Convert_Required to False.
1141 if Size
.Val
mod SSU
= 0 then
1143 (Dynamic
, Make_Integer_Literal
(Loc
, Size
.Val
/ SSU
));
1144 SU_Convert_Required
:= False;
1146 -- If the current value is a factor of the storage unit,
1147 -- then we can use a value of one for the size and reduce
1148 -- the strength of the later division.
1150 elsif SSU
mod Size
.Val
= 0 then
1151 Storage_Divisor
:= SSU
/ Size
.Val
;
1152 Size
:= (Dynamic
, Make_Integer_Literal
(Loc
, Uint_1
));
1153 SU_Convert_Required
:= True;
1155 -- Otherwise, we go ahead and convert the value in bits,
1156 -- and set SU_Convert_Required to True to ensure that the
1157 -- final value is indeed properly converted.
1160 Size
:= (Dynamic
, Make_Integer_Literal
(Loc
, Size
.Val
));
1161 SU_Convert_Required
:= True;
1168 -- Length is hi-lo+1
1170 Len
:= Compute_Length
(Lo
, Hi
);
1172 -- If Len isn't a Length attribute, then its range needs to
1173 -- be checked a possible Max with zero needs to be computed.
1175 if Nkind
(Len
) /= N_Attribute_Reference
1176 or else Attribute_Name
(Len
) /= Name_Length
1184 -- Check possible range of Len
1186 Set_Parent
(Len
, E
);
1187 Determine_Range
(Len
, OK
, LLo
, LHi
);
1189 Len
:= Convert_To
(Standard_Unsigned
, Len
);
1191 -- If range definitely flat or superflat,
1192 -- result size is zero
1194 if OK
and then LHi
<= 0 then
1195 Set_Esize
(E
, Uint_0
);
1196 Set_RM_Size
(E
, Uint_0
);
1200 -- If we cannot verify that range cannot be super-flat,
1201 -- we need a maximum with zero, since length cannot be
1204 if not OK
or else LLo
< 0 then
1206 Make_Attribute_Reference
(Loc
,
1208 New_Occurrence_Of
(Standard_Unsigned
, Loc
),
1209 Attribute_Name
=> Name_Max
,
1210 Expressions
=> New_List
(
1211 Make_Integer_Literal
(Loc
, 0),
1217 -- At this stage, Len has the expression for the length
1220 Assoc_Multiply
(Loc
,
1221 Left_Opnd
=> Size
.Nod
,
1228 -- Here after processing all bounds to set sizes. If the value is
1229 -- a constant, then it is bits, and the only thing we need to do
1230 -- is to check against explicit given size and do alignment adjust.
1232 if Size
.Status
= Const
then
1233 Set_And_Check_Static_Size
(E
, Size
.Val
, Size
.Val
);
1234 Adjust_Esize_Alignment
(E
);
1236 -- Case where the value is dynamic
1239 -- Do convert from bits to SU's if needed
1241 if SU_Convert_Required
then
1243 -- The expression required is:
1244 -- (Size.Nod + Storage_Divisor - 1) / Storage_Divisor
1247 Make_Op_Divide
(Loc
,
1250 Left_Opnd
=> Size
.Nod
,
1251 Right_Opnd
=> Make_Integer_Literal
1252 (Loc
, Storage_Divisor
- 1)),
1253 Right_Opnd
=> Make_Integer_Literal
(Loc
, Storage_Divisor
));
1256 -- If the array entity is not declared at the library level and its
1257 -- not nested within a subprogram that is marked for inlining, then
1258 -- we request that the size expression be encapsulated in a function.
1259 -- Since this expression is not needed in most cases, we prefer not
1260 -- to incur the overhead of the computation on calls to the enclosing
1261 -- subprogram except for subprograms that require the size.
1263 if not Is_Library_Level_Entity
(E
) then
1264 Make_Size_Function
:= True;
1267 Parent_Subp
: Entity_Id
:= Enclosing_Subprogram
(E
);
1270 while Present
(Parent_Subp
) loop
1271 if Is_Inlined
(Parent_Subp
) then
1272 Make_Size_Function
:= False;
1276 Parent_Subp
:= Enclosing_Subprogram
(Parent_Subp
);
1281 -- Now set the dynamic size (the Value_Size is always the same
1282 -- as the Object_Size for arrays whose length is dynamic).
1284 -- ??? If Size.Status = Dynamic, Vtyp will not have been set.
1285 -- The added initialization sets it to Empty now, but is this
1291 (Size
.Nod
, Insert_Typ
, Vtyp
, Make_Func
=> Make_Size_Function
));
1292 Set_RM_Size
(E
, Esize
(E
));
1294 end Layout_Array_Type
;
1300 procedure Layout_Object
(E
: Entity_Id
) is
1301 T
: constant Entity_Id
:= Etype
(E
);
1304 -- Nothing to do if backend does layout
1306 if not Frontend_Layout_On_Target
then
1310 -- Set size if not set for object and known for type. Use the
1311 -- RM_Size if that is known for the type and Esize is not.
1313 if Unknown_Esize
(E
) then
1314 if Known_Esize
(T
) then
1315 Set_Esize
(E
, Esize
(T
));
1317 elsif Known_RM_Size
(T
) then
1318 Set_Esize
(E
, RM_Size
(T
));
1322 -- Set alignment from type if unknown and type alignment known
1324 if Unknown_Alignment
(E
) and then Known_Alignment
(T
) then
1325 Set_Alignment
(E
, Alignment
(T
));
1328 -- Make sure size and alignment are consistent
1330 Adjust_Esize_Alignment
(E
);
1332 -- Final adjustment, if we don't know the alignment, and the Esize
1333 -- was not set by an explicit Object_Size attribute clause, then
1334 -- we reset the Esize to unknown, since we really don't know it.
1336 if Unknown_Alignment
(E
)
1337 and then not Has_Size_Clause
(E
)
1339 Set_Esize
(E
, Uint_0
);
1343 ------------------------
1344 -- Layout_Record_Type --
1345 ------------------------
1347 procedure Layout_Record_Type
(E
: Entity_Id
) is
1348 Loc
: constant Source_Ptr
:= Sloc
(E
);
1352 -- Current component being laid out
1354 Prev_Comp
: Entity_Id
;
1355 -- Previous laid out component
1357 procedure Get_Next_Component_Location
1358 (Prev_Comp
: Entity_Id
;
1360 New_Npos
: out SO_Ref
;
1361 New_Fbit
: out SO_Ref
;
1362 New_NPMax
: out SO_Ref
;
1363 Force_SU
: Boolean);
1364 -- Given the previous component in Prev_Comp, which is already laid
1365 -- out, and the alignment of the following component, lays out the
1366 -- following component, and returns its starting position in New_Npos
1367 -- (Normalized_Position value), New_Fbit (Normalized_First_Bit value),
1368 -- and New_NPMax (Normalized_Position_Max value). If Prev_Comp is empty
1369 -- (no previous component is present), then New_Npos, New_Fbit and
1370 -- New_NPMax are all set to zero on return. This procedure is also
1371 -- used to compute the size of a record or variant by giving it the
1372 -- last component, and the record alignment. Force_SU is used to force
1373 -- the new component location to be aligned on a storage unit boundary,
1374 -- even in a packed record, False means that the new position does not
1375 -- need to be bumped to a storage unit boundary, True means a storage
1376 -- unit boundary is always required.
1378 procedure Layout_Component
(Comp
: Entity_Id
; Prev_Comp
: Entity_Id
);
1379 -- Lays out component Comp, given Prev_Comp, the previously laid-out
1380 -- component (Prev_Comp = Empty if no components laid out yet). The
1381 -- alignment of the record itself is also updated if needed. Both
1382 -- Comp and Prev_Comp can be either components or discriminants.
1384 procedure Layout_Components
1388 RM_Siz
: out SO_Ref
);
1389 -- This procedure lays out the components of the given component list
1390 -- which contains the components starting with From and ending with To.
1391 -- The Next_Entity chain is used to traverse the components. On entry,
1392 -- Prev_Comp is set to the component preceding the list, so that the
1393 -- list is laid out after this component. Prev_Comp is set to Empty if
1394 -- the component list is to be laid out starting at the start of the
1395 -- record. On return, the components are all laid out, and Prev_Comp is
1396 -- set to the last laid out component. On return, Esiz is set to the
1397 -- resulting Object_Size value, which is the length of the record up
1398 -- to and including the last laid out entity. For Esiz, the value is
1399 -- adjusted to match the alignment of the record. RM_Siz is similarly
1400 -- set to the resulting Value_Size value, which is the same length, but
1401 -- not adjusted to meet the alignment. Note that in the case of variant
1402 -- records, Esiz represents the maximum size.
1404 procedure Layout_Non_Variant_Record
;
1405 -- Procedure called to lay out a non-variant record type or subtype
1407 procedure Layout_Variant_Record
;
1408 -- Procedure called to lay out a variant record type. Decl is set to the
1409 -- full type declaration for the variant record.
1411 ---------------------------------
1412 -- Get_Next_Component_Location --
1413 ---------------------------------
1415 procedure Get_Next_Component_Location
1416 (Prev_Comp
: Entity_Id
;
1418 New_Npos
: out SO_Ref
;
1419 New_Fbit
: out SO_Ref
;
1420 New_NPMax
: out SO_Ref
;
1424 -- No previous component, return zero position
1426 if No
(Prev_Comp
) then
1429 New_NPMax
:= Uint_0
;
1433 -- Here we have a previous component
1436 Loc
: constant Source_Ptr
:= Sloc
(Prev_Comp
);
1438 Old_Npos
: constant SO_Ref
:= Normalized_Position
(Prev_Comp
);
1439 Old_Fbit
: constant SO_Ref
:= Normalized_First_Bit
(Prev_Comp
);
1440 Old_NPMax
: constant SO_Ref
:= Normalized_Position_Max
(Prev_Comp
);
1441 Old_Esiz
: constant SO_Ref
:= Esize
(Prev_Comp
);
1443 Old_Maxsz
: Node_Id
;
1444 -- Expression representing maximum size of previous component
1447 -- Case where previous field had a dynamic size
1449 if Is_Dynamic_SO_Ref
(Esize
(Prev_Comp
)) then
1451 -- If the previous field had a dynamic length, then it is
1452 -- required to occupy an integral number of storage units,
1453 -- and start on a storage unit boundary. This means that
1454 -- the Normalized_First_Bit value is zero in the previous
1455 -- component, and the new value is also set to zero.
1459 -- In this case, the new position is given by an expression
1460 -- that is the sum of old normalized position and old size.
1466 Expr_From_SO_Ref
(Loc
, Old_Npos
),
1468 Expr_From_SO_Ref
(Loc
, Old_Esiz
, Prev_Comp
)),
1472 -- Get maximum size of previous component
1474 if Size_Depends_On_Discriminant
(Etype
(Prev_Comp
)) then
1475 Old_Maxsz
:= Get_Max_SU_Size
(Etype
(Prev_Comp
));
1477 Old_Maxsz
:= Expr_From_SO_Ref
(Loc
, Old_Esiz
, Prev_Comp
);
1480 -- Now we can compute the new max position. If the max size
1481 -- is static and the old position is static, then we can
1482 -- compute the new position statically.
1484 if Nkind
(Old_Maxsz
) = N_Integer_Literal
1485 and then Known_Static_Normalized_Position_Max
(Prev_Comp
)
1487 New_NPMax
:= Old_NPMax
+ Intval
(Old_Maxsz
);
1489 -- Otherwise new max position is dynamic
1495 Left_Opnd
=> Expr_From_SO_Ref
(Loc
, Old_NPMax
),
1496 Right_Opnd
=> Old_Maxsz
),
1501 -- Previous field has known static Esize
1504 New_Fbit
:= Old_Fbit
+ Old_Esiz
;
1506 -- Bump New_Fbit to storage unit boundary if required
1508 if New_Fbit
/= 0 and then Force_SU
then
1509 New_Fbit
:= (New_Fbit
+ SSU
- 1) / SSU
* SSU
;
1512 -- If old normalized position is static, we can go ahead
1513 -- and compute the new normalized position directly.
1515 if Known_Static_Normalized_Position
(Prev_Comp
) then
1516 New_Npos
:= Old_Npos
;
1518 if New_Fbit
>= SSU
then
1519 New_Npos
:= New_Npos
+ New_Fbit
/ SSU
;
1520 New_Fbit
:= New_Fbit
mod SSU
;
1523 -- Bump alignment if stricter than prev
1525 if Align
> Alignment
(Etype
(Prev_Comp
)) then
1526 New_Npos
:= (New_Npos
+ Align
- 1) / Align
* Align
;
1529 -- The max position is always equal to the position if
1530 -- the latter is static, since arrays depending on the
1531 -- values of discriminants never have static sizes.
1533 New_NPMax
:= New_Npos
;
1536 -- Case of old normalized position is dynamic
1539 -- If new bit position is within the current storage unit,
1540 -- we can just copy the old position as the result position
1541 -- (we have already set the new first bit value).
1543 if New_Fbit
< SSU
then
1544 New_Npos
:= Old_Npos
;
1545 New_NPMax
:= Old_NPMax
;
1547 -- If new bit position is past the current storage unit, we
1548 -- need to generate a new dynamic value for the position
1549 -- ??? need to deal with alignment
1555 Left_Opnd
=> Expr_From_SO_Ref
(Loc
, Old_Npos
),
1557 Make_Integer_Literal
(Loc
,
1558 Intval
=> New_Fbit
/ SSU
)),
1565 Left_Opnd
=> Expr_From_SO_Ref
(Loc
, Old_NPMax
),
1567 Make_Integer_Literal
(Loc
,
1568 Intval
=> New_Fbit
/ SSU
)),
1571 New_Fbit
:= New_Fbit
mod SSU
;
1576 end Get_Next_Component_Location
;
1578 ----------------------
1579 -- Layout_Component --
1580 ----------------------
1582 procedure Layout_Component
(Comp
: Entity_Id
; Prev_Comp
: Entity_Id
) is
1583 Ctyp
: constant Entity_Id
:= Etype
(Comp
);
1584 ORC
: constant Entity_Id
:= Original_Record_Component
(Comp
);
1591 -- Increase alignment of record if necessary. Note that we do not
1592 -- do this for packed records, which have an alignment of one by
1593 -- default, or for records for which an explicit alignment was
1594 -- specified with an alignment clause.
1596 if not Is_Packed
(E
)
1597 and then not Has_Alignment_Clause
(E
)
1598 and then Alignment
(Ctyp
) > Alignment
(E
)
1600 Set_Alignment
(E
, Alignment
(Ctyp
));
1603 -- If original component set, then use same layout
1605 if Present
(ORC
) and then ORC
/= Comp
then
1606 Set_Normalized_Position
(Comp
, Normalized_Position
(ORC
));
1607 Set_Normalized_First_Bit
(Comp
, Normalized_First_Bit
(ORC
));
1608 Set_Normalized_Position_Max
(Comp
, Normalized_Position_Max
(ORC
));
1609 Set_Component_Bit_Offset
(Comp
, Component_Bit_Offset
(ORC
));
1610 Set_Esize
(Comp
, Esize
(ORC
));
1614 -- Parent field is always at start of record, this will overlap
1615 -- the actual fields that are part of the parent, and that's fine
1617 if Chars
(Comp
) = Name_uParent
then
1618 Set_Normalized_Position
(Comp
, Uint_0
);
1619 Set_Normalized_First_Bit
(Comp
, Uint_0
);
1620 Set_Normalized_Position_Max
(Comp
, Uint_0
);
1621 Set_Component_Bit_Offset
(Comp
, Uint_0
);
1622 Set_Esize
(Comp
, Esize
(Ctyp
));
1626 -- Check case of type of component has a scope of the record we
1627 -- are laying out. When this happens, the type in question is an
1628 -- Itype that has not yet been laid out (that's because such
1629 -- types do not get frozen in the normal manner, because there
1630 -- is no place for the freeze nodes).
1632 if Scope
(Ctyp
) = E
then
1636 -- If component already laid out, then we are done
1638 if Known_Normalized_Position
(Comp
) then
1642 -- Set size of component from type. We use the Esize except in a
1643 -- packed record, where we use the RM_Size (since that is exactly
1644 -- what the RM_Size value, as distinct from the Object_Size is
1647 if Is_Packed
(E
) then
1648 Set_Esize
(Comp
, RM_Size
(Ctyp
));
1650 Set_Esize
(Comp
, Esize
(Ctyp
));
1653 -- Compute the component position from the previous one. See if
1654 -- current component requires being on a storage unit boundary.
1656 -- If record is not packed, we always go to a storage unit boundary
1658 if not Is_Packed
(E
) then
1664 -- Elementary types do not need SU boundary in packed record
1666 if Is_Elementary_Type
(Ctyp
) then
1669 -- Packed array types with a modular packed array type do not
1670 -- force a storage unit boundary (since the code generation
1671 -- treats these as equivalent to the underlying modular type),
1673 elsif Is_Array_Type
(Ctyp
)
1674 and then Is_Bit_Packed_Array
(Ctyp
)
1675 and then Is_Modular_Integer_Type
(Packed_Array_Type
(Ctyp
))
1679 -- Record types with known length less than or equal to the length
1680 -- of long long integer can also be unaligned, since they can be
1681 -- treated as scalars.
1683 elsif Is_Record_Type
(Ctyp
)
1684 and then not Is_Dynamic_SO_Ref
(Esize
(Ctyp
))
1685 and then Esize
(Ctyp
) <= Esize
(Standard_Long_Long_Integer
)
1689 -- All other cases force a storage unit boundary, even when packed
1696 -- Now get the next component location
1698 Get_Next_Component_Location
1699 (Prev_Comp
, Alignment
(Ctyp
), Npos
, Fbit
, NPMax
, Forc
);
1700 Set_Normalized_Position
(Comp
, Npos
);
1701 Set_Normalized_First_Bit
(Comp
, Fbit
);
1702 Set_Normalized_Position_Max
(Comp
, NPMax
);
1704 -- Set Component_Bit_Offset in the static case
1706 if Known_Static_Normalized_Position
(Comp
)
1707 and then Known_Normalized_First_Bit
(Comp
)
1709 Set_Component_Bit_Offset
(Comp
, SSU
* Npos
+ Fbit
);
1711 end Layout_Component
;
1713 -----------------------
1714 -- Layout_Components --
1715 -----------------------
1717 procedure Layout_Components
1721 RM_Siz
: out SO_Ref
)
1728 -- Only lay out components if there are some to lay out!
1730 if Present
(From
) then
1732 -- Lay out components with no component clauses
1736 if Ekind
(Comp
) = E_Component
1737 or else Ekind
(Comp
) = E_Discriminant
1739 -- The compatibility of component clauses with composite
1740 -- types isn't checked in Sem_Ch13, so we check it here.
1742 if Present
(Component_Clause
(Comp
)) then
1743 if Is_Composite_Type
(Etype
(Comp
))
1744 and then Esize
(Comp
) < RM_Size
(Etype
(Comp
))
1746 Error_Msg_Uint_1
:= RM_Size
(Etype
(Comp
));
1748 ("size for & too small, minimum allowed is ^",
1749 Component_Clause
(Comp
),
1754 Layout_Component
(Comp
, Prev_Comp
);
1759 exit when Comp
= To
;
1764 -- Set size fields, both are zero if no components
1766 if No
(Prev_Comp
) then
1770 -- If record subtype with non-static discriminants, then we don't
1771 -- know which variant will be the one which gets chosen. We don't
1772 -- just want to set the maximum size from the base, because the
1773 -- size should depend on the particular variant.
1775 -- What we do is to use the RM_Size of the base type, which has
1776 -- the necessary conditional computation of the size, using the
1777 -- size information for the particular variant chosen. Records
1778 -- with default discriminants for example have an Esize that is
1779 -- set to the maximum of all variants, but that's not what we
1780 -- want for a constrained subtype.
1782 elsif Ekind
(E
) = E_Record_Subtype
1783 and then not Has_Static_Discriminants
(E
)
1786 BT
: constant Node_Id
:= Base_Type
(E
);
1788 Esiz
:= RM_Size
(BT
);
1789 RM_Siz
:= RM_Size
(BT
);
1790 Set_Alignment
(E
, Alignment
(BT
));
1794 -- First the object size, for which we align past the last field
1795 -- to the alignment of the record (the object size is required to
1796 -- be a multiple of the alignment).
1798 Get_Next_Component_Location
1806 -- If the resulting normalized position is a dynamic reference,
1807 -- then the size is dynamic, and is stored in storage units. In
1808 -- this case, we set the RM_Size to the same value, it is simply
1809 -- not worth distinguishing Esize and RM_Size values in the
1810 -- dynamic case, since the RM has nothing to say about them.
1812 -- Note that a size cannot have been given in this case, since
1813 -- size specifications cannot be given for variable length types.
1816 Align
: constant Uint
:= Alignment
(E
);
1819 if Is_Dynamic_SO_Ref
(End_Npos
) then
1822 -- Set the Object_Size allowing for the alignment. In the
1823 -- dynamic case, we must do the actual runtime computation.
1824 -- We can skip this in the non-packed record case if the
1825 -- last component has a smaller alignment than the overall
1826 -- record alignment.
1828 if Is_Dynamic_SO_Ref
(End_NPMax
) then
1832 or else Alignment
(Etype
(Prev_Comp
)) < Align
1834 -- The expression we build is:
1835 -- (expr + align - 1) / align * align
1840 Make_Op_Multiply
(Loc
,
1842 Make_Op_Divide
(Loc
,
1846 Expr_From_SO_Ref
(Loc
, Esiz
),
1848 Make_Integer_Literal
(Loc
,
1849 Intval
=> Align
- 1)),
1851 Make_Integer_Literal
(Loc
, Align
)),
1853 Make_Integer_Literal
(Loc
, Align
)),
1858 -- Here Esiz is static, so we can adjust the alignment
1859 -- directly go give the required aligned value.
1862 Esiz
:= (End_NPMax
+ Align
- 1) / Align
* Align
* SSU
;
1865 -- Case where computed size is static
1868 -- The ending size was computed in Npos in storage units,
1869 -- but the actual size is stored in bits, so adjust
1870 -- accordingly. We also adjust the size to match the
1873 Esiz
:= (End_NPMax
+ Align
- 1) / Align
* Align
* SSU
;
1875 -- Compute the resulting Value_Size (RM_Size). For this
1876 -- purpose we do not force alignment of the record or
1877 -- storage size alignment of the result.
1879 Get_Next_Component_Location
1887 RM_Siz
:= End_Npos
* SSU
+ End_Fbit
;
1888 Set_And_Check_Static_Size
(E
, Esiz
, RM_Siz
);
1892 end Layout_Components
;
1894 -------------------------------
1895 -- Layout_Non_Variant_Record --
1896 -------------------------------
1898 procedure Layout_Non_Variant_Record
is
1902 Layout_Components
(First_Entity
(E
), Last_Entity
(E
), Esiz
, RM_Siz
);
1903 Set_Esize
(E
, Esiz
);
1904 Set_RM_Size
(E
, RM_Siz
);
1905 end Layout_Non_Variant_Record
;
1907 ---------------------------
1908 -- Layout_Variant_Record --
1909 ---------------------------
1911 procedure Layout_Variant_Record
is
1912 Tdef
: constant Node_Id
:= Type_Definition
(Decl
);
1913 First_Discr
: Entity_Id
;
1914 Last_Discr
: Entity_Id
;
1918 RM_Siz_Expr
: Node_Id
:= Empty
;
1919 -- Expression for the evolving RM_Siz value. This is typically a
1920 -- conditional expression which involves tests of discriminant
1921 -- values that are formed as references to the entity V. At
1922 -- the end of scanning all the components, a suitable function
1923 -- is constructed in which V is the parameter.
1925 -----------------------
1926 -- Local Subprograms --
1927 -----------------------
1929 procedure Layout_Component_List
1932 RM_Siz_Expr
: out Node_Id
);
1933 -- Recursive procedure, called to lay out one component list
1934 -- Esiz and RM_Siz_Expr are set to the Object_Size and Value_Size
1935 -- values respectively representing the record size up to and
1936 -- including the last component in the component list (including
1937 -- any variants in this component list). RM_Siz_Expr is returned
1938 -- as an expression which may in the general case involve some
1939 -- references to the discriminants of the current record value,
1940 -- referenced by selecting from the entity V.
1942 ---------------------------
1943 -- Layout_Component_List --
1944 ---------------------------
1946 procedure Layout_Component_List
1949 RM_Siz_Expr
: out Node_Id
)
1951 Citems
: constant List_Id
:= Component_Items
(Clist
);
1952 Vpart
: constant Node_Id
:= Variant_Part
(Clist
);
1956 RMS_Ent
: Entity_Id
;
1959 if Is_Non_Empty_List
(Citems
) then
1961 (From
=> Defining_Identifier
(First
(Citems
)),
1962 To
=> Defining_Identifier
(Last
(Citems
)),
1966 Layout_Components
(Empty
, Empty
, Esiz
, RM_Siz
);
1969 -- Case where no variants are present in the component list
1973 -- The Esiz value has been correctly set by the call to
1974 -- Layout_Components, so there is nothing more to be done.
1976 -- For RM_Siz, we have an SO_Ref value, which we must convert
1977 -- to an appropriate expression.
1979 if Is_Static_SO_Ref
(RM_Siz
) then
1981 Make_Integer_Literal
(Loc
,
1985 RMS_Ent
:= Get_Dynamic_SO_Entity
(RM_Siz
);
1987 -- If the size is represented by a function, then we
1988 -- create an appropriate function call using V as
1989 -- the parameter to the call.
1991 if Is_Discrim_SO_Function
(RMS_Ent
) then
1993 Make_Function_Call
(Loc
,
1994 Name
=> New_Occurrence_Of
(RMS_Ent
, Loc
),
1995 Parameter_Associations
=> New_List
(
1996 Make_Identifier
(Loc
, Chars
=> Vname
)));
1998 -- If the size is represented by a constant, then the
1999 -- expression we want is a reference to this constant
2002 RM_Siz_Expr
:= New_Occurrence_Of
(RMS_Ent
, Loc
);
2006 -- Case where variants are present in this component list
2016 D_Entity
: Entity_Id
;
2019 RM_Siz_Expr
:= Empty
;
2022 Var
:= Last
(Variants
(Vpart
));
2023 while Present
(Var
) loop
2025 Layout_Component_List
2026 (Component_List
(Var
), EsizV
, RM_SizV
);
2028 -- Set the Object_Size. If this is the first variant,
2029 -- we just set the size of this first variant.
2031 if Var
= Last
(Variants
(Vpart
)) then
2034 -- Otherwise the Object_Size is formed as a maximum
2035 -- of Esiz so far from previous variants, and the new
2036 -- Esiz value from the variant we just processed.
2038 -- If both values are static, we can just compute the
2039 -- maximum directly to save building junk nodes.
2041 elsif not Is_Dynamic_SO_Ref
(Esiz
)
2042 and then not Is_Dynamic_SO_Ref
(EsizV
)
2044 Esiz
:= UI_Max
(Esiz
, EsizV
);
2046 -- If either value is dynamic, then we have to generate
2047 -- an appropriate Standard_Unsigned'Max attribute call.
2048 -- If one of the values is static then it needs to be
2049 -- converted from bits to storage units to be compatible
2050 -- with the dynamic value.
2053 if Is_Static_SO_Ref
(Esiz
) then
2054 Esiz
:= (Esiz
+ SSU
- 1) / SSU
;
2057 if Is_Static_SO_Ref
(EsizV
) then
2058 EsizV
:= (EsizV
+ SSU
- 1) / SSU
;
2063 (Make_Attribute_Reference
(Loc
,
2064 Attribute_Name
=> Name_Max
,
2066 New_Occurrence_Of
(Standard_Unsigned
, Loc
),
2067 Expressions
=> New_List
(
2068 Expr_From_SO_Ref
(Loc
, Esiz
),
2069 Expr_From_SO_Ref
(Loc
, EsizV
))),
2074 -- Now deal with Value_Size (RM_Siz). We are aiming at
2075 -- an expression that looks like:
2077 -- if xxDx (V.disc) then rmsiz1
2078 -- else if xxDx (V.disc) then rmsiz2
2081 -- Where rmsiz1, rmsiz2... are the RM_Siz values for the
2082 -- individual variants, and xxDx are the discriminant
2083 -- checking functions generated for the variant type.
2085 -- If this is the first variant, we simply set the
2086 -- result as the expression. Note that this takes
2087 -- care of the others case.
2089 if No
(RM_Siz_Expr
) then
2090 RM_Siz_Expr
:= Bits_To_SU
(RM_SizV
);
2092 -- Otherwise construct the appropriate test
2095 -- The test to be used in general is a call to the
2096 -- discriminant checking function. However, it is
2097 -- definitely worth special casing the very common
2098 -- case where a single value is involved.
2100 Dchoice
:= First
(Discrete_Choices
(Var
));
2102 if No
(Next
(Dchoice
))
2103 and then Nkind
(Dchoice
) /= N_Range
2105 -- Discriminant to be tested
2108 Make_Selected_Component
(Loc
,
2110 Make_Identifier
(Loc
, Chars
=> Vname
),
2113 (Entity
(Name
(Vpart
)), Loc
));
2117 Left_Opnd
=> Discrim
,
2118 Right_Opnd
=> New_Copy
(Dchoice
));
2120 -- Generate a call to the discriminant-checking
2121 -- function for the variant. Note that the result
2122 -- has to be complemented since the function returns
2123 -- False when the passed discriminant value matches.
2126 -- The checking function takes all of the type's
2127 -- discriminants as parameters, so a list of all
2128 -- the selected discriminants must be constructed.
2131 D_Entity
:= First_Discriminant
(E
);
2132 while Present
(D_Entity
) loop
2134 Make_Selected_Component
(Loc
,
2136 Make_Identifier
(Loc
, Chars
=> Vname
),
2142 D_Entity
:= Next_Discriminant
(D_Entity
);
2148 Make_Function_Call
(Loc
,
2151 (Dcheck_Function
(Var
), Loc
),
2152 Parameter_Associations
=>
2157 Make_Conditional_Expression
(Loc
,
2160 (Dtest
, Bits_To_SU
(RM_SizV
), RM_Siz_Expr
));
2167 end Layout_Component_List
;
2169 -- Start of processing for Layout_Variant_Record
2172 -- We need the discriminant checking functions, since we generate
2173 -- calls to these functions for the RM_Size expression, so make
2174 -- sure that these functions have been constructed in time.
2176 Build_Discr_Checking_Funcs
(Decl
);
2178 -- Lay out the discriminants
2180 First_Discr
:= First_Discriminant
(E
);
2181 Last_Discr
:= First_Discr
;
2182 while Present
(Next_Discriminant
(Last_Discr
)) loop
2183 Next_Discriminant
(Last_Discr
);
2187 (From
=> First_Discr
,
2192 -- Lay out the main component list (this will make recursive calls
2193 -- to lay out all component lists nested within variants).
2195 Layout_Component_List
(Component_List
(Tdef
), Esiz
, RM_Siz_Expr
);
2196 Set_Esize
(E
, Esiz
);
2198 -- If the RM_Size is a literal, set its value
2200 if Nkind
(RM_Siz_Expr
) = N_Integer_Literal
then
2201 Set_RM_Size
(E
, Intval
(RM_Siz_Expr
));
2203 -- Otherwise we construct a dynamic SO_Ref
2212 end Layout_Variant_Record
;
2214 -- Start of processing for Layout_Record_Type
2217 -- If this is a cloned subtype, just copy the size fields from the
2218 -- original, nothing else needs to be done in this case, since the
2219 -- components themselves are all shared.
2221 if (Ekind
(E
) = E_Record_Subtype
2223 Ekind
(E
) = E_Class_Wide_Subtype
)
2224 and then Present
(Cloned_Subtype
(E
))
2226 Set_Esize
(E
, Esize
(Cloned_Subtype
(E
)));
2227 Set_RM_Size
(E
, RM_Size
(Cloned_Subtype
(E
)));
2228 Set_Alignment
(E
, Alignment
(Cloned_Subtype
(E
)));
2230 -- Another special case, class-wide types. The RM says that the size
2231 -- of such types is implementation defined (RM 13.3(48)). What we do
2232 -- here is to leave the fields set as unknown values, and the backend
2233 -- determines the actual behavior.
2235 elsif Ekind
(E
) = E_Class_Wide_Type
then
2241 -- Initialize alignment conservatively to 1. This value will
2242 -- be increased as necessary during processing of the record.
2244 if Unknown_Alignment
(E
) then
2245 Set_Alignment
(E
, Uint_1
);
2248 -- Initialize previous component. This is Empty unless there
2249 -- are components which have already been laid out by component
2250 -- clauses. If there are such components, we start our lay out of
2251 -- the remaining components following the last such component.
2255 Comp
:= First_Entity
(E
);
2256 while Present
(Comp
) loop
2257 if (Ekind
(Comp
) = E_Component
2258 or else Ekind
(Comp
) = E_Discriminant
)
2259 and then Present
(Component_Clause
(Comp
))
2263 Component_Bit_Offset
(Comp
) >
2264 Component_Bit_Offset
(Prev_Comp
)
2273 -- We have two separate circuits, one for non-variant records and
2274 -- one for variant records. For non-variant records, we simply go
2275 -- through the list of components. This handles all the non-variant
2276 -- cases including those cases of subtypes where there is no full
2277 -- type declaration, so the tree cannot be used to drive the layout.
2278 -- For variant records, we have to drive the layout from the tree
2279 -- since we need to understand the variant structure in this case.
2281 if Present
(Full_View
(E
)) then
2282 Decl
:= Declaration_Node
(Full_View
(E
));
2284 Decl
:= Declaration_Node
(E
);
2287 -- Scan all the components
2289 if Nkind
(Decl
) = N_Full_Type_Declaration
2290 and then Has_Discriminants
(E
)
2291 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
2292 and then Present
(Component_List
(Type_Definition
(Decl
)))
2294 Present
(Variant_Part
(Component_List
(Type_Definition
(Decl
))))
2296 Layout_Variant_Record
;
2298 Layout_Non_Variant_Record
;
2301 end Layout_Record_Type
;
2307 procedure Layout_Type
(E
: Entity_Id
) is
2309 -- For string literal types, for now, kill the size always, this
2310 -- is because gigi does not like or need the size to be set ???
2312 if Ekind
(E
) = E_String_Literal_Subtype
then
2313 Set_Esize
(E
, Uint_0
);
2314 Set_RM_Size
(E
, Uint_0
);
2318 -- For access types, set size/alignment. This is system address
2319 -- size, except for fat pointers (unconstrained array access types),
2320 -- where the size is two times the address size, to accommodate the
2321 -- two pointers that are required for a fat pointer (data and
2322 -- template). Note that E_Access_Protected_Subprogram_Type is not
2323 -- an access type for this purpose since it is not a pointer but is
2324 -- equivalent to a record. For access subtypes, copy the size from
2325 -- the base type since Gigi represents them the same way.
2327 if Is_Access_Type
(E
) then
2329 -- If Esize already set (e.g. by a size clause), then nothing
2330 -- further to be done here.
2332 if Known_Esize
(E
) then
2335 -- Access to subprogram is a strange beast, and we let the
2336 -- backend figure out what is needed (it may be some kind
2337 -- of fat pointer, including the static link for example.
2339 elsif Ekind
(E
) = E_Access_Protected_Subprogram_Type
then
2342 -- For access subtypes, copy the size information from base type
2344 elsif Ekind
(E
) = E_Access_Subtype
then
2345 Set_Size_Info
(E
, Base_Type
(E
));
2346 Set_RM_Size
(E
, RM_Size
(Base_Type
(E
)));
2348 -- For other access types, we use either address size, or, if
2349 -- a fat pointer is used (pointer-to-unconstrained array case),
2350 -- twice the address size to accommodate a fat pointer.
2354 Desig
: Entity_Id
:= Designated_Type
(E
);
2357 if Is_Private_Type
(Desig
)
2358 and then Present
(Full_View
(Desig
))
2360 Desig
:= Full_View
(Desig
);
2363 if Is_Array_Type
(Desig
)
2364 and then not Is_Constrained
(Desig
)
2365 and then not Has_Completion_In_Body
(Desig
)
2366 and then not Debug_Flag_6
2368 Init_Size
(E
, 2 * System_Address_Size
);
2370 -- Check for bad convention set
2372 if Warn_On_Export_Import
2374 (Convention
(E
) = Convention_C
2376 Convention
(E
) = Convention_CPP
)
2379 ("?this access type does not " &
2380 "correspond to C pointer", E
);
2384 Init_Size
(E
, System_Address_Size
);
2389 -- On VMS, reset size to 32 for convention C access type if no
2390 -- explicit size clause is given and the default size is 64. Really
2391 -- we do not know the size, since depending on options for the VMS
2392 -- compiler, the size of a pointer type can be 32 or 64, but choosing
2393 -- 32 as the default improves compatibility with legacy VMS code.
2395 -- Note: we do not use Has_Size_Clause in the test below, because we
2396 -- want to catch the case of a derived type inheriting a size clause.
2397 -- We want to consider this to be an explicit size clause for this
2398 -- purpose, since it would be weird not to inherit the size in this
2401 if OpenVMS_On_Target
2402 and then (Convention
(E
) = Convention_C
2404 Convention
(E
) = Convention_CPP
)
2405 and then No
(Get_Attribute_Definition_Clause
(E
, Attribute_Size
))
2406 and then Esize
(E
) = 64
2411 Set_Elem_Alignment
(E
);
2413 -- Scalar types: set size and alignment
2415 elsif Is_Scalar_Type
(E
) then
2417 -- For discrete types, the RM_Size and Esize must be set
2418 -- already, since this is part of the earlier processing
2419 -- and the front end is always required to lay out the
2420 -- sizes of such types (since they are available as static
2421 -- attributes). All we do is to check that this rule is
2424 if Is_Discrete_Type
(E
) then
2426 -- If the RM_Size is not set, then here is where we set it
2428 -- Note: an RM_Size of zero looks like not set here, but this
2429 -- is a rare case, and we can simply reset it without any harm.
2431 if not Known_RM_Size
(E
) then
2432 Set_Discrete_RM_Size
(E
);
2435 -- If Esize for a discrete type is not set then set it
2437 if not Known_Esize
(E
) then
2443 -- If size is big enough, set it and exit
2445 if S
>= RM_Size
(E
) then
2449 -- If the RM_Size is greater than 64 (happens only
2450 -- when strange values are specified by the user,
2451 -- then Esize is simply a copy of RM_Size, it will
2452 -- be further refined later on)
2455 Set_Esize
(E
, RM_Size
(E
));
2458 -- Otherwise double possible size and keep trying
2467 -- For non-discrete sclar types, if the RM_Size is not set,
2468 -- then set it now to a copy of the Esize if the Esize is set.
2471 if Known_Esize
(E
) and then Unknown_RM_Size
(E
) then
2472 Set_RM_Size
(E
, Esize
(E
));
2476 Set_Elem_Alignment
(E
);
2478 -- Non-elementary (composite) types
2481 -- If RM_Size is known, set Esize if not known
2483 if Known_RM_Size
(E
) and then Unknown_Esize
(E
) then
2485 -- If the alignment is known, we bump the Esize up to the
2486 -- next alignment boundary if it is not already on one.
2488 if Known_Alignment
(E
) then
2490 A
: constant Uint
:= Alignment_In_Bits
(E
);
2491 S
: constant SO_Ref
:= RM_Size
(E
);
2494 Set_Esize
(E
, (S
* A
+ A
- 1) / A
);
2498 -- If Esize is set, and RM_Size is not, RM_Size is copied from
2499 -- Esize at least for now this seems reasonable, and is in any
2500 -- case needed for compatibility with old versions of gigi.
2501 -- look to be unknown.
2503 elsif Known_Esize
(E
) and then Unknown_RM_Size
(E
) then
2504 Set_RM_Size
(E
, Esize
(E
));
2507 -- For array base types, set component size if object size of
2508 -- the component type is known and is a small power of 2 (8,
2509 -- 16, 32, 64), since this is what will always be used.
2511 if Ekind
(E
) = E_Array_Type
2512 and then Unknown_Component_Size
(E
)
2515 CT
: constant Entity_Id
:= Component_Type
(E
);
2518 -- For some reasons, access types can cause trouble,
2519 -- So let's just do this for discrete types ???
2522 and then Is_Discrete_Type
(CT
)
2523 and then Known_Static_Esize
(CT
)
2526 S
: constant Uint
:= Esize
(CT
);
2534 Set_Component_Size
(E
, Esize
(CT
));
2542 -- Lay out array and record types if front end layout set
2544 if Frontend_Layout_On_Target
then
2545 if Is_Array_Type
(E
) and then not Is_Bit_Packed_Array
(E
) then
2546 Layout_Array_Type
(E
);
2547 elsif Is_Record_Type
(E
) then
2548 Layout_Record_Type
(E
);
2551 -- Case of backend layout, we still do a little in the front end
2554 -- Processing for record types
2556 if Is_Record_Type
(E
) then
2558 -- Special remaining processing for record types with a known
2559 -- size of 16, 32, or 64 bits whose alignment is not yet set.
2560 -- For these types, we set a corresponding alignment matching
2561 -- the size if possible, or as large as possible if not.
2563 if Convention
(E
) = Convention_Ada
2564 and then not Debug_Flag_Q
2566 Set_Composite_Alignment
(E
);
2569 -- Procressing for array types
2571 elsif Is_Array_Type
(E
) then
2573 -- For arrays that are required to be atomic, we do the same
2574 -- processing as described above for short records, since we
2575 -- really need to have the alignment set for the whole array.
2577 if Is_Atomic
(E
) and then not Debug_Flag_Q
then
2578 Set_Composite_Alignment
(E
);
2581 -- For unpacked array types, set an alignment of 1 if we know
2582 -- that the component alignment is not greater than 1. The reason
2583 -- we do this is to avoid unnecessary copying of slices of such
2584 -- arrays when passed to subprogram parameters (see special test
2585 -- in Exp_Ch6.Expand_Actuals).
2587 if not Is_Packed
(E
)
2588 and then Unknown_Alignment
(E
)
2590 if Known_Static_Component_Size
(E
)
2591 and then Component_Size
(E
) = 1
2593 Set_Alignment
(E
, Uint_1
);
2599 -- Final step is to check that Esize and RM_Size are compatible
2601 if Known_Static_Esize
(E
) and then Known_Static_RM_Size
(E
) then
2602 if Esize
(E
) < RM_Size
(E
) then
2604 -- Esize is less than RM_Size. That's not good. First we test
2605 -- whether this was set deliberately with an Object_Size clause
2606 -- and if so, object to the clause.
2608 if Has_Object_Size_Clause
(E
) then
2609 Error_Msg_Uint_1
:= RM_Size
(E
);
2611 ("object size is too small, minimum is ^",
2612 Expression
(Get_Attribute_Definition_Clause
2613 (E
, Attribute_Object_Size
)));
2616 -- Adjust Esize up to RM_Size value
2619 Size
: constant Uint
:= RM_Size
(E
);
2622 Set_Esize
(E
, RM_Size
(E
));
2624 -- For scalar types, increase Object_Size to power of 2,
2625 -- but not less than a storage unit in any case (i.e.,
2626 -- normally this means it will be storage-unit addressable).
2628 if Is_Scalar_Type
(E
) then
2629 if Size
<= System_Storage_Unit
then
2630 Init_Esize
(E
, System_Storage_Unit
);
2631 elsif Size
<= 16 then
2633 elsif Size
<= 32 then
2636 Set_Esize
(E
, (Size
+ 63) / 64 * 64);
2639 -- Finally, make sure that alignment is consistent with
2640 -- the newly assigned size.
2642 while Alignment
(E
) * System_Storage_Unit
< Esize
(E
)
2643 and then Alignment
(E
) < Maximum_Alignment
2645 Set_Alignment
(E
, 2 * Alignment
(E
));
2653 ---------------------
2654 -- Rewrite_Integer --
2655 ---------------------
2657 procedure Rewrite_Integer
(N
: Node_Id
; V
: Uint
) is
2658 Loc
: constant Source_Ptr
:= Sloc
(N
);
2659 Typ
: constant Entity_Id
:= Etype
(N
);
2662 Rewrite
(N
, Make_Integer_Literal
(Loc
, Intval
=> V
));
2664 end Rewrite_Integer
;
2666 -------------------------------
2667 -- Set_And_Check_Static_Size --
2668 -------------------------------
2670 procedure Set_And_Check_Static_Size
2677 procedure Check_Size_Too_Small
(Spec
: Uint
; Min
: Uint
);
2678 -- Spec is the number of bit specified in the size clause, and
2679 -- Min is the minimum computed size. An error is given that the
2680 -- specified size is too small if Spec < Min, and in this case
2681 -- both Esize and RM_Size are set to unknown in E. The error
2682 -- message is posted on node SC.
2684 procedure Check_Unused_Bits
(Spec
: Uint
; Max
: Uint
);
2685 -- Spec is the number of bits specified in the size clause, and
2686 -- Max is the maximum computed size. A warning is given about
2687 -- unused bits if Spec > Max. This warning is posted on node SC.
2689 --------------------------
2690 -- Check_Size_Too_Small --
2691 --------------------------
2693 procedure Check_Size_Too_Small
(Spec
: Uint
; Min
: Uint
) is
2696 Error_Msg_Uint_1
:= Min
;
2698 ("size for & too small, minimum allowed is ^", SC
, E
);
2702 end Check_Size_Too_Small
;
2704 -----------------------
2705 -- Check_Unused_Bits --
2706 -----------------------
2708 procedure Check_Unused_Bits
(Spec
: Uint
; Max
: Uint
) is
2711 Error_Msg_Uint_1
:= Spec
- Max
;
2712 Error_Msg_NE
("?^ bits of & unused", SC
, E
);
2714 end Check_Unused_Bits
;
2716 -- Start of processing for Set_And_Check_Static_Size
2719 -- Case where Object_Size (Esize) is already set by a size clause
2721 if Known_Static_Esize
(E
) then
2722 SC
:= Size_Clause
(E
);
2725 SC
:= Get_Attribute_Definition_Clause
(E
, Attribute_Object_Size
);
2728 -- Perform checks on specified size against computed sizes
2730 if Present
(SC
) then
2731 Check_Unused_Bits
(Esize
(E
), Esiz
);
2732 Check_Size_Too_Small
(Esize
(E
), RM_Siz
);
2736 -- Case where Value_Size (RM_Size) is set by specific Value_Size
2737 -- clause (we do not need to worry about Value_Size being set by
2738 -- a Size clause, since that will have set Esize as well, and we
2739 -- already took care of that case).
2741 if Known_Static_RM_Size
(E
) then
2742 SC
:= Get_Attribute_Definition_Clause
(E
, Attribute_Value_Size
);
2744 -- Perform checks on specified size against computed sizes
2746 if Present
(SC
) then
2747 Check_Unused_Bits
(RM_Size
(E
), Esiz
);
2748 Check_Size_Too_Small
(RM_Size
(E
), RM_Siz
);
2752 -- Set sizes if unknown
2754 if Unknown_Esize
(E
) then
2755 Set_Esize
(E
, Esiz
);
2758 if Unknown_RM_Size
(E
) then
2759 Set_RM_Size
(E
, RM_Siz
);
2761 end Set_And_Check_Static_Size
;
2763 -----------------------------
2764 -- Set_Composite_Alignment --
2765 -----------------------------
2767 procedure Set_Composite_Alignment
(E
: Entity_Id
) is
2772 if Unknown_Alignment
(E
) then
2773 if Known_Static_Esize
(E
) then
2776 elsif Unknown_Esize
(E
)
2777 and then Known_Static_RM_Size
(E
)
2785 -- Size is known, alignment is not set
2787 -- Reset alignment to match size if size is exactly 2, 4, or 8
2790 if Siz
= 2 * System_Storage_Unit
then
2792 elsif Siz
= 4 * System_Storage_Unit
then
2794 elsif Siz
= 8 * System_Storage_Unit
then
2797 -- On VMS, also reset for odd "in between" sizes, e.g. a 17-bit
2798 -- record is given an alignment of 4. This is more consistent with
2799 -- what DEC Ada does.
2801 elsif OpenVMS_On_Target
and then Siz
> System_Storage_Unit
then
2803 if Siz
<= 2 * System_Storage_Unit
then
2805 elsif Siz
<= 4 * System_Storage_Unit
then
2807 elsif Siz
<= 8 * System_Storage_Unit
then
2813 -- No special alignment fiddling needed
2819 -- Here Align is set to the proposed improved alignment
2821 if Align
> Maximum_Alignment
then
2822 Align
:= Maximum_Alignment
;
2825 -- Further processing for record types only to reduce the alignment
2826 -- set by the above processing in some specific cases. We do not
2827 -- do this for atomic records, since we need max alignment there.
2829 if Is_Record_Type
(E
) then
2831 -- For records, there is generally no point in setting alignment
2832 -- higher than word size since we cannot do better than move by
2833 -- words in any case
2835 if Align
> System_Word_Size
/ System_Storage_Unit
then
2836 Align
:= System_Word_Size
/ System_Storage_Unit
;
2839 -- Check components. If any component requires a higher
2840 -- alignment, then we set that higher alignment in any case.
2846 Comp
:= First_Component
(E
);
2847 while Present
(Comp
) loop
2848 if Known_Alignment
(Etype
(Comp
)) then
2850 Calign
: constant Uint
:= Alignment
(Etype
(Comp
));
2853 -- The cases to worry about are when the alignment
2854 -- of the component type is larger than the alignment
2855 -- we have so far, and either there is no component
2856 -- clause for the alignment, or the length set by
2857 -- the component clause matches the alignment set.
2861 (Unknown_Esize
(Comp
)
2862 or else (Known_Static_Esize
(Comp
)
2865 Calign
* System_Storage_Unit
))
2867 Align
:= UI_To_Int
(Calign
);
2872 Next_Component
(Comp
);
2877 -- Set chosen alignment
2879 Set_Alignment
(E
, UI_From_Int
(Align
));
2881 if Known_Static_Esize
(E
)
2882 and then Esize
(E
) < Align
* System_Storage_Unit
2884 Set_Esize
(E
, UI_From_Int
(Align
* System_Storage_Unit
));
2887 end Set_Composite_Alignment
;
2889 --------------------------
2890 -- Set_Discrete_RM_Size --
2891 --------------------------
2893 procedure Set_Discrete_RM_Size
(Def_Id
: Entity_Id
) is
2894 FST
: constant Entity_Id
:= First_Subtype
(Def_Id
);
2897 -- All discrete types except for the base types in standard
2898 -- are constrained, so indicate this by setting Is_Constrained.
2900 Set_Is_Constrained
(Def_Id
);
2902 -- We set generic types to have an unknown size, since the
2903 -- representation of a generic type is irrelevant, in view
2904 -- of the fact that they have nothing to do with code.
2906 if Is_Generic_Type
(Root_Type
(FST
)) then
2907 Set_RM_Size
(Def_Id
, Uint_0
);
2909 -- If the subtype statically matches the first subtype, then
2910 -- it is required to have exactly the same layout. This is
2911 -- required by aliasing considerations.
2913 elsif Def_Id
/= FST
and then
2914 Subtypes_Statically_Match
(Def_Id
, FST
)
2916 Set_RM_Size
(Def_Id
, RM_Size
(FST
));
2917 Set_Size_Info
(Def_Id
, FST
);
2919 -- In all other cases the RM_Size is set to the minimum size.
2920 -- Note that this routine is never called for subtypes for which
2921 -- the RM_Size is set explicitly by an attribute clause.
2924 Set_RM_Size
(Def_Id
, UI_From_Int
(Minimum_Size
(Def_Id
)));
2926 end Set_Discrete_RM_Size
;
2928 ------------------------
2929 -- Set_Elem_Alignment --
2930 ------------------------
2932 procedure Set_Elem_Alignment
(E
: Entity_Id
) is
2934 -- Do not set alignment for packed array types, unless we are doing
2935 -- front end layout, because otherwise this is always handled in the
2938 if Is_Packed_Array_Type
(E
) and then not Frontend_Layout_On_Target
then
2941 -- If there is an alignment clause, then we respect it
2943 elsif Has_Alignment_Clause
(E
) then
2946 -- If the size is not set, then don't attempt to set the alignment. This
2947 -- happens in the backend layout case for access-to-subprogram types.
2949 elsif not Known_Static_Esize
(E
) then
2952 -- For access types, do not set the alignment if the size is less than
2953 -- the allowed minimum size. This avoids cascaded error messages.
2955 elsif Is_Access_Type
(E
)
2956 and then Esize
(E
) < System_Address_Size
2961 -- Here we calculate the alignment as the largest power of two
2962 -- multiple of System.Storage_Unit that does not exceed either
2963 -- the actual size of the type, or the maximum allowed alignment.
2967 UI_To_Int
(Esize
(E
)) / SSU
;
2972 while 2 * A
<= Ttypes
.Maximum_Alignment
2978 -- Now we think we should set the alignment to A, but we
2979 -- skip this if an alignment is already set to a value
2980 -- greater than A (happens for derived types).
2982 -- However, if the alignment is known and too small it
2983 -- must be increased, this happens in a case like:
2985 -- type R is new Character;
2986 -- for R'Size use 16;
2988 -- Here the alignment inherited from Character is 1, but
2989 -- it must be increased to 2 to reflect the increased size.
2991 if Unknown_Alignment
(E
) or else Alignment
(E
) < A
then
2992 Init_Alignment
(E
, A
);
2995 end Set_Elem_Alignment
;
2997 ----------------------
2998 -- SO_Ref_From_Expr --
2999 ----------------------
3001 function SO_Ref_From_Expr
3003 Ins_Type
: Entity_Id
;
3004 Vtype
: Entity_Id
:= Empty
;
3005 Make_Func
: Boolean := False) return Dynamic_SO_Ref
3007 Loc
: constant Source_Ptr
:= Sloc
(Ins_Type
);
3009 K
: constant Entity_Id
:=
3010 Make_Defining_Identifier
(Loc
,
3011 Chars
=> New_Internal_Name
('K'));
3015 Vtype_Primary_View
: Entity_Id
;
3017 function Check_Node_V_Ref
(N
: Node_Id
) return Traverse_Result
;
3018 -- Function used to check one node for reference to V
3020 function Has_V_Ref
is new Traverse_Func
(Check_Node_V_Ref
);
3021 -- Function used to traverse tree to check for reference to V
3023 ----------------------
3024 -- Check_Node_V_Ref --
3025 ----------------------
3027 function Check_Node_V_Ref
(N
: Node_Id
) return Traverse_Result
is
3029 if Nkind
(N
) = N_Identifier
then
3030 if Chars
(N
) = Vname
then
3039 end Check_Node_V_Ref
;
3041 -- Start of processing for SO_Ref_From_Expr
3044 -- Case of expression is an integer literal, in this case we just
3045 -- return the value (which must always be non-negative, since size
3046 -- and offset values can never be negative).
3048 if Nkind
(Expr
) = N_Integer_Literal
then
3049 pragma Assert
(Intval
(Expr
) >= 0);
3050 return Intval
(Expr
);
3053 -- Case where there is a reference to V, create function
3055 if Has_V_Ref
(Expr
) = Abandon
then
3057 pragma Assert
(Present
(Vtype
));
3059 -- Check whether Vtype is a view of a private type and ensure that
3060 -- we use the primary view of the type (which is denoted by its
3061 -- Etype, whether it's the type's partial or full view entity).
3062 -- This is needed to make sure that we use the same (primary) view
3063 -- of the type for all V formals, whether the current view of the
3064 -- type is the partial or full view, so that types will always
3065 -- match on calls from one size function to another.
3067 if Has_Private_Declaration
(Vtype
) then
3068 Vtype_Primary_View
:= Etype
(Vtype
);
3070 Vtype_Primary_View
:= Vtype
;
3073 Set_Is_Discrim_SO_Function
(K
);
3076 Make_Subprogram_Body
(Loc
,
3079 Make_Function_Specification
(Loc
,
3080 Defining_Unit_Name
=> K
,
3081 Parameter_Specifications
=> New_List
(
3082 Make_Parameter_Specification
(Loc
,
3083 Defining_Identifier
=>
3084 Make_Defining_Identifier
(Loc
, Chars
=> Vname
),
3086 New_Occurrence_Of
(Vtype_Primary_View
, Loc
))),
3087 Result_Definition
=>
3088 New_Occurrence_Of
(Standard_Unsigned
, Loc
)),
3090 Declarations
=> Empty_List
,
3092 Handled_Statement_Sequence
=>
3093 Make_Handled_Sequence_Of_Statements
(Loc
,
3094 Statements
=> New_List
(
3095 Make_Return_Statement
(Loc
,
3096 Expression
=> Expr
))));
3098 -- The caller requests that the expression be encapsulated in
3099 -- a parameterless function.
3101 elsif Make_Func
then
3103 Make_Subprogram_Body
(Loc
,
3106 Make_Function_Specification
(Loc
,
3107 Defining_Unit_Name
=> K
,
3108 Parameter_Specifications
=> Empty_List
,
3109 Result_Definition
=>
3110 New_Occurrence_Of
(Standard_Unsigned
, Loc
)),
3112 Declarations
=> Empty_List
,
3114 Handled_Statement_Sequence
=>
3115 Make_Handled_Sequence_Of_Statements
(Loc
,
3116 Statements
=> New_List
(
3117 Make_Return_Statement
(Loc
, Expression
=> Expr
))));
3119 -- No reference to V and function not requested, so create a constant
3123 Make_Object_Declaration
(Loc
,
3124 Defining_Identifier
=> K
,
3125 Object_Definition
=>
3126 New_Occurrence_Of
(Standard_Unsigned
, Loc
),
3127 Constant_Present
=> True,
3128 Expression
=> Expr
);
3131 Append_Freeze_Action
(Ins_Type
, Decl
);
3133 return Create_Dynamic_SO_Ref
(K
);
3134 end SO_Ref_From_Expr
;