1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME COMPONENTS --
5 -- A D A . N U M E R I C S . A U X --
8 -- (Machine Version for x86) --
10 -- Copyright (C) 1998-2006, Free Software Foundation, Inc. --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 2, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
18 -- for more details. You should have received a copy of the GNU General --
19 -- Public License distributed with GNAT; see file COPYING. If not, write --
20 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
21 -- Boston, MA 02110-1301, USA. --
23 -- As a special exception, if other files instantiate generics from this --
24 -- unit, or you link this unit with other files to produce an executable, --
25 -- this unit does not by itself cause the resulting executable to be --
26 -- covered by the GNU General Public License. This exception does not --
27 -- however invalidate any other reasons why the executable file might be --
28 -- covered by the GNU Public License. --
30 -- GNAT was originally developed by the GNAT team at New York University. --
31 -- Extensive contributions were provided by Ada Core Technologies Inc. --
33 ------------------------------------------------------------------------------
35 -- File a-numaux.adb <- 86numaux.adb
37 -- This version of Numerics.Aux is for the IEEE Double Extended floating
38 -- point format on x86.
40 with System
.Machine_Code
; use System
.Machine_Code
;
42 package body Ada
.Numerics
.Aux
is
44 NL
: constant String := ASCII
.LF
& ASCII
.HT
;
46 -----------------------
47 -- Local subprograms --
48 -----------------------
50 function Is_Nan
(X
: Double
) return Boolean;
51 -- Return True iff X is a IEEE NaN value
53 function Logarithmic_Pow
(X
, Y
: Double
) return Double
;
54 -- Implementation of X**Y using Exp and Log functions (binary base)
55 -- to calculate the exponentiation. This is used by Pow for values
56 -- for values of Y in the open interval (-0.25, 0.25)
58 procedure Reduce
(X
: in out Double
; Q
: out Natural);
59 -- Implements reduction of X by Pi/2. Q is the quadrant of the final
60 -- result in the range 0 .. 3. The absolute value of X is at most Pi.
62 pragma Inline
(Is_Nan
);
63 pragma Inline
(Reduce
);
65 --------------------------------
66 -- Basic Elementary Functions --
67 --------------------------------
69 -- This section implements a few elementary functions that are used to
70 -- build the more complex ones. This ordering enables better inlining.
76 function Atan
(X
: Double
) return Double
is
83 Outputs
=> Double
'Asm_Output ("=t", Result
),
84 Inputs
=> Double
'Asm_Input ("0", X
));
86 -- The result value is NaN iff input was invalid
88 if not (Result
= Result
) then
99 function Exp
(X
: Double
) return Double
is
104 & "fmulp %%st, %%st(1)" & NL
-- X * log2 (E)
105 & "fld %%st(0) " & NL
106 & "frndint " & NL
-- Integer (X * Log2 (E))
107 & "fsubr %%st, %%st(1)" & NL
-- Fraction (X * Log2 (E))
109 & "f2xm1 " & NL
-- 2**(...) - 1
111 & "faddp %%st, %%st(1)" & NL
-- 2**(Fraction (X * Log2 (E)))
112 & "fscale " & NL
-- E ** X
114 Outputs
=> Double
'Asm_Output ("=t", Result
),
115 Inputs
=> Double
'Asm_Input ("0", X
));
123 function Is_Nan
(X
: Double
) return Boolean is
125 -- The IEEE NaN values are the only ones that do not equal themselves
134 function Log
(X
: Double
) return Double
is
142 Outputs
=> Double
'Asm_Output ("=t", Result
),
143 Inputs
=> Double
'Asm_Input ("0", X
));
151 procedure Reduce
(X
: in out Double
; Q
: out Natural) is
152 Half_Pi
: constant := Pi
/ 2.0;
153 Two_Over_Pi
: constant := 2.0 / Pi
;
155 HM
: constant := Integer'Min (Double
'Machine_Mantissa / 2, Natural'Size);
156 M
: constant Double
:= 0.5 + 2.0**(1 - HM
); -- Splitting constant
157 P1
: constant Double
:= Double
'Leading_Part (Half_Pi
, HM
);
158 P2
: constant Double
:= Double
'Leading_Part (Half_Pi
- P1
, HM
);
159 P3
: constant Double
:= Double
'Leading_Part (Half_Pi
- P1
- P2
, HM
);
160 P4
: constant Double
:= Double
'Leading_Part (Half_Pi
- P1
- P2
- P3
, HM
);
161 P5
: constant Double
:= Double
'Leading_Part (Half_Pi
- P1
- P2
- P3
163 P6
: constant Double
:= Double
'Model (Half_Pi
- P1
- P2
- P3
- P4
- P5
);
164 K
: Double
:= X
* Two_Over_Pi
;
166 -- For X < 2.0**32, all products below are computed exactly.
167 -- Due to cancellation effects all subtractions are exact as well.
168 -- As no double extended floating-point number has more than 75
169 -- zeros after the binary point, the result will be the correctly
170 -- rounded result of X - K * (Pi / 2.0).
172 while abs K
>= 2.0**HM
loop
173 K
:= K
* M
- (K
* M
- K
);
174 X
:= (((((X
- K
* P1
) - K
* P2
) - K
* P3
)
175 - K
* P4
) - K
* P5
) - K
* P6
;
176 K
:= X
* Two_Over_Pi
;
181 -- K is not a number, because X was not finite
183 raise Constraint_Error
;
186 K
:= Double
'Rounding (K
);
187 Q
:= Integer (K
) mod 4;
188 X
:= (((((X
- K
* P1
) - K
* P2
) - K
* P3
)
189 - K
* P4
) - K
* P5
) - K
* P6
;
196 function Sqrt
(X
: Double
) return Double
is
201 raise Argument_Error
;
204 Asm
(Template
=> "fsqrt",
205 Outputs
=> Double
'Asm_Output ("=t", Result
),
206 Inputs
=> Double
'Asm_Input ("0", X
));
211 --------------------------------
212 -- Other Elementary Functions --
213 --------------------------------
215 -- These are built using the previously implemented basic functions
221 function Acos
(X
: Double
) return Double
is
225 Result
:= 2.0 * Atan
(Sqrt
((1.0 - X
) / (1.0 + X
)));
227 -- The result value is NaN iff input was invalid
229 if Is_Nan
(Result
) then
230 raise Argument_Error
;
240 function Asin
(X
: Double
) return Double
is
244 Result
:= Atan
(X
/ Sqrt
((1.0 - X
) * (1.0 + X
)));
246 -- The result value is NaN iff input was invalid
248 if Is_Nan
(Result
) then
249 raise Argument_Error
;
259 function Cos
(X
: Double
) return Double
is
260 Reduced_X
: Double
:= abs X
;
262 Quadrant
: Natural range 0 .. 3;
265 if Reduced_X
> Pi
/ 4.0 then
266 Reduce
(Reduced_X
, Quadrant
);
270 Asm
(Template
=> "fcos",
271 Outputs
=> Double
'Asm_Output ("=t", Result
),
272 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
274 Asm
(Template
=> "fsin",
275 Outputs
=> Double
'Asm_Output ("=t", Result
),
276 Inputs
=> Double
'Asm_Input ("0", -Reduced_X
));
278 Asm
(Template
=> "fcos ; fchs",
279 Outputs
=> Double
'Asm_Output ("=t", Result
),
280 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
282 Asm
(Template
=> "fsin",
283 Outputs
=> Double
'Asm_Output ("=t", Result
),
284 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
288 Asm
(Template
=> "fcos",
289 Outputs
=> Double
'Asm_Output ("=t", Result
),
290 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
296 ---------------------
297 -- Logarithmic_Pow --
298 ---------------------
300 function Logarithmic_Pow
(X
, Y
: Double
) return Double
is
303 Asm
(Template
=> "" -- X : Y
304 & "fyl2x " & NL
-- Y * Log2 (X)
305 & "fst %%st(1) " & NL
-- Y * Log2 (X) : Y * Log2 (X)
306 & "frndint " & NL
-- Int (...) : Y * Log2 (X)
307 & "fsubr %%st, %%st(1)" & NL
-- Int (...) : Fract (...)
308 & "fxch " & NL
-- Fract (...) : Int (...)
309 & "f2xm1 " & NL
-- 2**Fract (...) - 1 : Int (...)
310 & "fld1 " & NL
-- 1 : 2**Fract (...) - 1 : Int (...)
311 & "faddp %%st, %%st(1)" & NL
-- 2**Fract (...) : Int (...)
312 & "fscale " & NL
-- 2**(Fract (...) + Int (...))
314 Outputs
=> Double
'Asm_Output ("=t", Result
),
316 (Double
'Asm_Input ("0", X
),
317 Double
'Asm_Input ("u", Y
)));
325 function Pow
(X
, Y
: Double
) return Double
is
326 type Mantissa_Type
is mod 2**Double
'Machine_Mantissa;
327 -- Modular type that can hold all bits of the mantissa of Double
329 -- For negative exponents, do divide at the end of the processing
331 Negative_Y
: constant Boolean := Y
< 0.0;
332 Abs_Y
: constant Double
:= abs Y
;
334 -- During this function the following invariant is kept:
335 -- X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor
339 Exp_High
: Double
:= Double
'Floor (Abs_Y
);
342 Exp_Int
: Mantissa_Type
;
344 Factor
: Double
:= 1.0;
347 -- Select algorithm for calculating Pow (integer cases fall through)
349 if Exp_High
>= 2.0**Double
'Machine_Mantissa then
351 -- In case of Y that is IEEE infinity, just raise constraint error
353 if Exp_High
> Double
'Safe_Last then
354 raise Constraint_Error
;
357 -- Large values of Y are even integers and will stay integer
358 -- after division by two.
361 -- Exp_Mid and Exp_Low are zero, so
362 -- X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2)
364 Exp_High
:= Exp_High
/ 2.0;
366 exit when Exp_High
< 2.0**Double
'Machine_Mantissa;
369 elsif Exp_High
/= Abs_Y
then
370 Exp_Low
:= Abs_Y
- Exp_High
;
373 if Exp_Low
/= 0.0 then
375 -- Exp_Low now is in interval (0.0, 1.0)
376 -- Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0;
379 Exp_Low
:= Exp_Low
- Exp_Mid
;
381 if Exp_Low
>= 0.5 then
383 Exp_Low
:= Exp_Low
- 0.5; -- exact
385 if Exp_Low
>= 0.25 then
386 Factor
:= Factor
* Sqrt
(Factor
);
387 Exp_Low
:= Exp_Low
- 0.25; -- exact
390 elsif Exp_Low
>= 0.25 then
391 Factor
:= Sqrt
(Sqrt
(X
));
392 Exp_Low
:= Exp_Low
- 0.25; -- exact
395 -- Exp_Low now is in interval (0.0, 0.25)
397 -- This means it is safe to call Logarithmic_Pow
398 -- for the remaining part.
400 Factor
:= Factor
* Logarithmic_Pow
(X
, Exp_Low
);
407 -- Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa
409 Exp_Int
:= Mantissa_Type
(Exp_High
);
411 -- Standard way for processing integer powers > 0
413 while Exp_Int
> 1 loop
414 if (Exp_Int
and 1) = 1 then
416 -- Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0
418 Factor
:= Factor
* Base
;
421 -- Exp_Int is even and Exp_Int > 0, so
422 -- Base**Y = (Base**2)**(Exp_Int / 2)
425 Exp_Int
:= Exp_Int
/ 2;
428 -- Exp_Int = 1 or Exp_Int = 0
431 Factor
:= Base
* Factor
;
435 Factor
:= 1.0 / Factor
;
445 function Sin
(X
: Double
) return Double
is
446 Reduced_X
: Double
:= X
;
448 Quadrant
: Natural range 0 .. 3;
451 if abs X
> Pi
/ 4.0 then
452 Reduce
(Reduced_X
, Quadrant
);
456 Asm
(Template
=> "fsin",
457 Outputs
=> Double
'Asm_Output ("=t", Result
),
458 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
460 Asm
(Template
=> "fcos",
461 Outputs
=> Double
'Asm_Output ("=t", Result
),
462 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
464 Asm
(Template
=> "fsin",
465 Outputs
=> Double
'Asm_Output ("=t", Result
),
466 Inputs
=> Double
'Asm_Input ("0", -Reduced_X
));
468 Asm
(Template
=> "fcos ; fchs",
469 Outputs
=> Double
'Asm_Output ("=t", Result
),
470 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
474 Asm
(Template
=> "fsin",
475 Outputs
=> Double
'Asm_Output ("=t", Result
),
476 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
486 function Tan
(X
: Double
) return Double
is
487 Reduced_X
: Double
:= X
;
489 Quadrant
: Natural range 0 .. 3;
492 if abs X
> Pi
/ 4.0 then
493 Reduce
(Reduced_X
, Quadrant
);
495 if Quadrant
mod 2 = 0 then
496 Asm
(Template
=> "fptan" & NL
497 & "ffree %%st(0)" & NL
499 Outputs
=> Double
'Asm_Output ("=t", Result
),
500 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
502 Asm
(Template
=> "fsincos" & NL
503 & "fdivp %%st, %%st(1)" & NL
505 Outputs
=> Double
'Asm_Output ("=t", Result
),
506 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
512 & "ffree %%st(0) " & NL
514 Outputs
=> Double
'Asm_Output ("=t", Result
),
515 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
525 function Sinh
(X
: Double
) return Double
is
527 -- Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0
530 return (Exp
(X
) - Exp
(-X
)) / 2.0;
532 return Exp
(X
) / 2.0;
540 function Cosh
(X
: Double
) return Double
is
542 -- Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0
545 return (Exp
(X
) + Exp
(-X
)) / 2.0;
547 return Exp
(X
) / 2.0;
555 function Tanh
(X
: Double
) return Double
is
557 -- Return the Hyperbolic Tangent of x
561 -- Tanh (X) is defined to be ----------- = --------
566 return Double
'Copy_Sign (1.0, X
);
569 return 1.0 / (1.0 + Exp
(-(2.0 * X
))) - 1.0 / (1.0 + Exp
(2.0 * X
));
572 end Ada
.Numerics
.Aux
;