PR libstdc++/56278
[official-gcc.git] / gcc / loop-iv.c
blob15f16619863dfd50e093fca171de4f6b8107f7a4
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58 #include "cfgloop.h"
59 #include "expr.h"
60 #include "intl.h"
61 #include "diagnostic-core.h"
62 #include "df.h"
63 #include "hashtab.h"
64 #include "dumpfile.h"
66 /* Possible return values of iv_get_reaching_def. */
68 enum iv_grd_result
70 /* More than one reaching def, or reaching def that does not
71 dominate the use. */
72 GRD_INVALID,
74 /* The use is trivial invariant of the loop, i.e. is not changed
75 inside the loop. */
76 GRD_INVARIANT,
78 /* The use is reached by initial value and a value from the
79 previous iteration. */
80 GRD_MAYBE_BIV,
82 /* The use has single dominating def. */
83 GRD_SINGLE_DOM
86 /* Information about a biv. */
88 struct biv_entry
90 unsigned regno; /* The register of the biv. */
91 struct rtx_iv iv; /* Value of the biv. */
94 static bool clean_slate = true;
96 static unsigned int iv_ref_table_size = 0;
98 /* Table of rtx_ivs indexed by the df_ref uid field. */
99 static struct rtx_iv ** iv_ref_table;
101 /* Induction variable stored at the reference. */
102 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID(REF)]
103 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID(REF)] = (IV)
105 /* The current loop. */
107 static struct loop *current_loop;
109 /* Bivs of the current loop. */
111 static htab_t bivs;
113 static bool iv_analyze_op (rtx, rtx, struct rtx_iv *);
115 /* Return the RTX code corresponding to the IV extend code EXTEND. */
116 static inline enum rtx_code
117 iv_extend_to_rtx_code (enum iv_extend_code extend)
119 switch (extend)
121 case IV_SIGN_EXTEND:
122 return SIGN_EXTEND;
123 case IV_ZERO_EXTEND:
124 return ZERO_EXTEND;
125 case IV_UNKNOWN_EXTEND:
126 return UNKNOWN;
128 gcc_unreachable ();
131 /* Dumps information about IV to FILE. */
133 extern void dump_iv_info (FILE *, struct rtx_iv *);
134 void
135 dump_iv_info (FILE *file, struct rtx_iv *iv)
137 if (!iv->base)
139 fprintf (file, "not simple");
140 return;
143 if (iv->step == const0_rtx
144 && !iv->first_special)
145 fprintf (file, "invariant ");
147 print_rtl (file, iv->base);
148 if (iv->step != const0_rtx)
150 fprintf (file, " + ");
151 print_rtl (file, iv->step);
152 fprintf (file, " * iteration");
154 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
156 if (iv->mode != iv->extend_mode)
157 fprintf (file, " %s to %s",
158 rtx_name[iv_extend_to_rtx_code (iv->extend)],
159 GET_MODE_NAME (iv->extend_mode));
161 if (iv->mult != const1_rtx)
163 fprintf (file, " * ");
164 print_rtl (file, iv->mult);
166 if (iv->delta != const0_rtx)
168 fprintf (file, " + ");
169 print_rtl (file, iv->delta);
171 if (iv->first_special)
172 fprintf (file, " (first special)");
175 /* Generates a subreg to get the least significant part of EXPR (in mode
176 INNER_MODE) to OUTER_MODE. */
179 lowpart_subreg (enum machine_mode outer_mode, rtx expr,
180 enum machine_mode inner_mode)
182 return simplify_gen_subreg (outer_mode, expr, inner_mode,
183 subreg_lowpart_offset (outer_mode, inner_mode));
186 static void
187 check_iv_ref_table_size (void)
189 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE())
191 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
192 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
193 memset (&iv_ref_table[iv_ref_table_size], 0,
194 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
195 iv_ref_table_size = new_size;
200 /* Checks whether REG is a well-behaved register. */
202 static bool
203 simple_reg_p (rtx reg)
205 unsigned r;
207 if (GET_CODE (reg) == SUBREG)
209 if (!subreg_lowpart_p (reg))
210 return false;
211 reg = SUBREG_REG (reg);
214 if (!REG_P (reg))
215 return false;
217 r = REGNO (reg);
218 if (HARD_REGISTER_NUM_P (r))
219 return false;
221 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
222 return false;
224 return true;
227 /* Clears the information about ivs stored in df. */
229 static void
230 clear_iv_info (void)
232 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
233 struct rtx_iv *iv;
235 check_iv_ref_table_size ();
236 for (i = 0; i < n_defs; i++)
238 iv = iv_ref_table[i];
239 if (iv)
241 free (iv);
242 iv_ref_table[i] = NULL;
246 htab_empty (bivs);
249 /* Returns hash value for biv B. */
251 static hashval_t
252 biv_hash (const void *b)
254 return ((const struct biv_entry *) b)->regno;
257 /* Compares biv B and register R. */
259 static int
260 biv_eq (const void *b, const void *r)
262 return ((const struct biv_entry *) b)->regno == REGNO ((const_rtx) r);
265 /* Prepare the data for an induction variable analysis of a LOOP. */
267 void
268 iv_analysis_loop_init (struct loop *loop)
270 basic_block *body = get_loop_body_in_dom_order (loop), bb;
271 bitmap blocks = BITMAP_ALLOC (NULL);
272 unsigned i;
274 current_loop = loop;
276 /* Clear the information from the analysis of the previous loop. */
277 if (clean_slate)
279 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
280 bivs = htab_create (10, biv_hash, biv_eq, free);
281 clean_slate = false;
283 else
284 clear_iv_info ();
286 for (i = 0; i < loop->num_nodes; i++)
288 bb = body[i];
289 bitmap_set_bit (blocks, bb->index);
291 /* Get rid of the ud chains before processing the rescans. Then add
292 the problem back. */
293 df_remove_problem (df_chain);
294 df_process_deferred_rescans ();
295 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
296 df_chain_add_problem (DF_UD_CHAIN);
297 df_note_add_problem ();
298 df_set_blocks (blocks);
299 df_analyze ();
300 if (dump_file)
301 df_dump_region (dump_file);
303 check_iv_ref_table_size ();
304 BITMAP_FREE (blocks);
305 free (body);
308 /* Finds the definition of REG that dominates loop latch and stores
309 it to DEF. Returns false if there is not a single definition
310 dominating the latch. If REG has no definition in loop, DEF
311 is set to NULL and true is returned. */
313 static bool
314 latch_dominating_def (rtx reg, df_ref *def)
316 df_ref single_rd = NULL, adef;
317 unsigned regno = REGNO (reg);
318 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
320 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
322 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
323 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
324 continue;
326 /* More than one reaching definition. */
327 if (single_rd)
328 return false;
330 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
331 return false;
333 single_rd = adef;
336 *def = single_rd;
337 return true;
340 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
342 static enum iv_grd_result
343 iv_get_reaching_def (rtx insn, rtx reg, df_ref *def)
345 df_ref use, adef;
346 basic_block def_bb, use_bb;
347 rtx def_insn;
348 bool dom_p;
350 *def = NULL;
351 if (!simple_reg_p (reg))
352 return GRD_INVALID;
353 if (GET_CODE (reg) == SUBREG)
354 reg = SUBREG_REG (reg);
355 gcc_assert (REG_P (reg));
357 use = df_find_use (insn, reg);
358 gcc_assert (use != NULL);
360 if (!DF_REF_CHAIN (use))
361 return GRD_INVARIANT;
363 /* More than one reaching def. */
364 if (DF_REF_CHAIN (use)->next)
365 return GRD_INVALID;
367 adef = DF_REF_CHAIN (use)->ref;
369 /* We do not handle setting only part of the register. */
370 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
371 return GRD_INVALID;
373 def_insn = DF_REF_INSN (adef);
374 def_bb = DF_REF_BB (adef);
375 use_bb = BLOCK_FOR_INSN (insn);
377 if (use_bb == def_bb)
378 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
379 else
380 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
382 if (dom_p)
384 *def = adef;
385 return GRD_SINGLE_DOM;
388 /* The definition does not dominate the use. This is still OK if
389 this may be a use of a biv, i.e. if the def_bb dominates loop
390 latch. */
391 if (just_once_each_iteration_p (current_loop, def_bb))
392 return GRD_MAYBE_BIV;
394 return GRD_INVALID;
397 /* Sets IV to invariant CST in MODE. Always returns true (just for
398 consistency with other iv manipulation functions that may fail). */
400 static bool
401 iv_constant (struct rtx_iv *iv, rtx cst, enum machine_mode mode)
403 if (mode == VOIDmode)
404 mode = GET_MODE (cst);
406 iv->mode = mode;
407 iv->base = cst;
408 iv->step = const0_rtx;
409 iv->first_special = false;
410 iv->extend = IV_UNKNOWN_EXTEND;
411 iv->extend_mode = iv->mode;
412 iv->delta = const0_rtx;
413 iv->mult = const1_rtx;
415 return true;
418 /* Evaluates application of subreg to MODE on IV. */
420 static bool
421 iv_subreg (struct rtx_iv *iv, enum machine_mode mode)
423 /* If iv is invariant, just calculate the new value. */
424 if (iv->step == const0_rtx
425 && !iv->first_special)
427 rtx val = get_iv_value (iv, const0_rtx);
428 val = lowpart_subreg (mode, val, iv->extend_mode);
430 iv->base = val;
431 iv->extend = IV_UNKNOWN_EXTEND;
432 iv->mode = iv->extend_mode = mode;
433 iv->delta = const0_rtx;
434 iv->mult = const1_rtx;
435 return true;
438 if (iv->extend_mode == mode)
439 return true;
441 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
442 return false;
444 iv->extend = IV_UNKNOWN_EXTEND;
445 iv->mode = mode;
447 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
448 simplify_gen_binary (MULT, iv->extend_mode,
449 iv->base, iv->mult));
450 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
451 iv->mult = const1_rtx;
452 iv->delta = const0_rtx;
453 iv->first_special = false;
455 return true;
458 /* Evaluates application of EXTEND to MODE on IV. */
460 static bool
461 iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, enum machine_mode mode)
463 /* If iv is invariant, just calculate the new value. */
464 if (iv->step == const0_rtx
465 && !iv->first_special)
467 rtx val = get_iv_value (iv, const0_rtx);
468 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
469 val, iv->extend_mode);
470 iv->base = val;
471 iv->extend = IV_UNKNOWN_EXTEND;
472 iv->mode = iv->extend_mode = mode;
473 iv->delta = const0_rtx;
474 iv->mult = const1_rtx;
475 return true;
478 if (mode != iv->extend_mode)
479 return false;
481 if (iv->extend != IV_UNKNOWN_EXTEND
482 && iv->extend != extend)
483 return false;
485 iv->extend = extend;
487 return true;
490 /* Evaluates negation of IV. */
492 static bool
493 iv_neg (struct rtx_iv *iv)
495 if (iv->extend == IV_UNKNOWN_EXTEND)
497 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
498 iv->base, iv->extend_mode);
499 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
500 iv->step, iv->extend_mode);
502 else
504 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
505 iv->delta, iv->extend_mode);
506 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
507 iv->mult, iv->extend_mode);
510 return true;
513 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
515 static bool
516 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
518 enum machine_mode mode;
519 rtx arg;
521 /* Extend the constant to extend_mode of the other operand if necessary. */
522 if (iv0->extend == IV_UNKNOWN_EXTEND
523 && iv0->mode == iv0->extend_mode
524 && iv0->step == const0_rtx
525 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
527 iv0->extend_mode = iv1->extend_mode;
528 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
529 iv0->base, iv0->mode);
531 if (iv1->extend == IV_UNKNOWN_EXTEND
532 && iv1->mode == iv1->extend_mode
533 && iv1->step == const0_rtx
534 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
536 iv1->extend_mode = iv0->extend_mode;
537 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
538 iv1->base, iv1->mode);
541 mode = iv0->extend_mode;
542 if (mode != iv1->extend_mode)
543 return false;
545 if (iv0->extend == IV_UNKNOWN_EXTEND
546 && iv1->extend == IV_UNKNOWN_EXTEND)
548 if (iv0->mode != iv1->mode)
549 return false;
551 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
552 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
554 return true;
557 /* Handle addition of constant. */
558 if (iv1->extend == IV_UNKNOWN_EXTEND
559 && iv1->mode == mode
560 && iv1->step == const0_rtx)
562 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
563 return true;
566 if (iv0->extend == IV_UNKNOWN_EXTEND
567 && iv0->mode == mode
568 && iv0->step == const0_rtx)
570 arg = iv0->base;
571 *iv0 = *iv1;
572 if (op == MINUS
573 && !iv_neg (iv0))
574 return false;
576 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
577 return true;
580 return false;
583 /* Evaluates multiplication of IV by constant CST. */
585 static bool
586 iv_mult (struct rtx_iv *iv, rtx mby)
588 enum machine_mode mode = iv->extend_mode;
590 if (GET_MODE (mby) != VOIDmode
591 && GET_MODE (mby) != mode)
592 return false;
594 if (iv->extend == IV_UNKNOWN_EXTEND)
596 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
597 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
599 else
601 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
602 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
605 return true;
608 /* Evaluates shift of IV by constant CST. */
610 static bool
611 iv_shift (struct rtx_iv *iv, rtx mby)
613 enum machine_mode mode = iv->extend_mode;
615 if (GET_MODE (mby) != VOIDmode
616 && GET_MODE (mby) != mode)
617 return false;
619 if (iv->extend == IV_UNKNOWN_EXTEND)
621 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
622 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
624 else
626 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
627 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
630 return true;
633 /* The recursive part of get_biv_step. Gets the value of the single value
634 defined by DEF wrto initial value of REG inside loop, in shape described
635 at get_biv_step. */
637 static bool
638 get_biv_step_1 (df_ref def, rtx reg,
639 rtx *inner_step, enum machine_mode *inner_mode,
640 enum iv_extend_code *extend, enum machine_mode outer_mode,
641 rtx *outer_step)
643 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
644 rtx next, nextr, tmp;
645 enum rtx_code code;
646 rtx insn = DF_REF_INSN (def);
647 df_ref next_def;
648 enum iv_grd_result res;
650 set = single_set (insn);
651 if (!set)
652 return false;
654 rhs = find_reg_equal_equiv_note (insn);
655 if (rhs)
656 rhs = XEXP (rhs, 0);
657 else
658 rhs = SET_SRC (set);
660 code = GET_CODE (rhs);
661 switch (code)
663 case SUBREG:
664 case REG:
665 next = rhs;
666 break;
668 case PLUS:
669 case MINUS:
670 op0 = XEXP (rhs, 0);
671 op1 = XEXP (rhs, 1);
673 if (code == PLUS && CONSTANT_P (op0))
675 tmp = op0; op0 = op1; op1 = tmp;
678 if (!simple_reg_p (op0)
679 || !CONSTANT_P (op1))
680 return false;
682 if (GET_MODE (rhs) != outer_mode)
684 /* ppc64 uses expressions like
686 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
688 this is equivalent to
690 (set x':DI (plus:DI y:DI 1))
691 (set x:SI (subreg:SI (x':DI)). */
692 if (GET_CODE (op0) != SUBREG)
693 return false;
694 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
695 return false;
698 next = op0;
699 break;
701 case SIGN_EXTEND:
702 case ZERO_EXTEND:
703 if (GET_MODE (rhs) != outer_mode)
704 return false;
706 op0 = XEXP (rhs, 0);
707 if (!simple_reg_p (op0))
708 return false;
710 next = op0;
711 break;
713 default:
714 return false;
717 if (GET_CODE (next) == SUBREG)
719 if (!subreg_lowpart_p (next))
720 return false;
722 nextr = SUBREG_REG (next);
723 if (GET_MODE (nextr) != outer_mode)
724 return false;
726 else
727 nextr = next;
729 res = iv_get_reaching_def (insn, nextr, &next_def);
731 if (res == GRD_INVALID || res == GRD_INVARIANT)
732 return false;
734 if (res == GRD_MAYBE_BIV)
736 if (!rtx_equal_p (nextr, reg))
737 return false;
739 *inner_step = const0_rtx;
740 *extend = IV_UNKNOWN_EXTEND;
741 *inner_mode = outer_mode;
742 *outer_step = const0_rtx;
744 else if (!get_biv_step_1 (next_def, reg,
745 inner_step, inner_mode, extend, outer_mode,
746 outer_step))
747 return false;
749 if (GET_CODE (next) == SUBREG)
751 enum machine_mode amode = GET_MODE (next);
753 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
754 return false;
756 *inner_mode = amode;
757 *inner_step = simplify_gen_binary (PLUS, outer_mode,
758 *inner_step, *outer_step);
759 *outer_step = const0_rtx;
760 *extend = IV_UNKNOWN_EXTEND;
763 switch (code)
765 case REG:
766 case SUBREG:
767 break;
769 case PLUS:
770 case MINUS:
771 if (*inner_mode == outer_mode
772 /* See comment in previous switch. */
773 || GET_MODE (rhs) != outer_mode)
774 *inner_step = simplify_gen_binary (code, outer_mode,
775 *inner_step, op1);
776 else
777 *outer_step = simplify_gen_binary (code, outer_mode,
778 *outer_step, op1);
779 break;
781 case SIGN_EXTEND:
782 case ZERO_EXTEND:
783 gcc_assert (GET_MODE (op0) == *inner_mode
784 && *extend == IV_UNKNOWN_EXTEND
785 && *outer_step == const0_rtx);
787 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
788 break;
790 default:
791 return false;
794 return true;
797 /* Gets the operation on register REG inside loop, in shape
799 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
801 If the operation cannot be described in this shape, return false.
802 LAST_DEF is the definition of REG that dominates loop latch. */
804 static bool
805 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
806 enum machine_mode *inner_mode, enum iv_extend_code *extend,
807 enum machine_mode *outer_mode, rtx *outer_step)
809 *outer_mode = GET_MODE (reg);
811 if (!get_biv_step_1 (last_def, reg,
812 inner_step, inner_mode, extend, *outer_mode,
813 outer_step))
814 return false;
816 gcc_assert ((*inner_mode == *outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
817 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
819 return true;
822 /* Records information that DEF is induction variable IV. */
824 static void
825 record_iv (df_ref def, struct rtx_iv *iv)
827 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
829 *recorded_iv = *iv;
830 check_iv_ref_table_size ();
831 DF_REF_IV_SET (def, recorded_iv);
834 /* If DEF was already analyzed for bivness, store the description of the biv to
835 IV and return true. Otherwise return false. */
837 static bool
838 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
840 struct biv_entry *biv =
841 (struct biv_entry *) htab_find_with_hash (bivs, def, REGNO (def));
843 if (!biv)
844 return false;
846 *iv = biv->iv;
847 return true;
850 static void
851 record_biv (rtx def, struct rtx_iv *iv)
853 struct biv_entry *biv = XNEW (struct biv_entry);
854 void **slot = htab_find_slot_with_hash (bivs, def, REGNO (def), INSERT);
856 biv->regno = REGNO (def);
857 biv->iv = *iv;
858 gcc_assert (!*slot);
859 *slot = biv;
862 /* Determines whether DEF is a biv and if so, stores its description
863 to *IV. */
865 static bool
866 iv_analyze_biv (rtx def, struct rtx_iv *iv)
868 rtx inner_step, outer_step;
869 enum machine_mode inner_mode, outer_mode;
870 enum iv_extend_code extend;
871 df_ref last_def;
873 if (dump_file)
875 fprintf (dump_file, "Analyzing ");
876 print_rtl (dump_file, def);
877 fprintf (dump_file, " for bivness.\n");
880 if (!REG_P (def))
882 if (!CONSTANT_P (def))
883 return false;
885 return iv_constant (iv, def, VOIDmode);
888 if (!latch_dominating_def (def, &last_def))
890 if (dump_file)
891 fprintf (dump_file, " not simple.\n");
892 return false;
895 if (!last_def)
896 return iv_constant (iv, def, VOIDmode);
898 if (analyzed_for_bivness_p (def, iv))
900 if (dump_file)
901 fprintf (dump_file, " already analysed.\n");
902 return iv->base != NULL_RTX;
905 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
906 &outer_mode, &outer_step))
908 iv->base = NULL_RTX;
909 goto end;
912 /* Loop transforms base to es (base + inner_step) + outer_step,
913 where es means extend of subreg between inner_mode and outer_mode.
914 The corresponding induction variable is
916 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
918 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
919 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
920 iv->mode = inner_mode;
921 iv->extend_mode = outer_mode;
922 iv->extend = extend;
923 iv->mult = const1_rtx;
924 iv->delta = outer_step;
925 iv->first_special = inner_mode != outer_mode;
927 end:
928 if (dump_file)
930 fprintf (dump_file, " ");
931 dump_iv_info (dump_file, iv);
932 fprintf (dump_file, "\n");
935 record_biv (def, iv);
936 return iv->base != NULL_RTX;
939 /* Analyzes expression RHS used at INSN and stores the result to *IV.
940 The mode of the induction variable is MODE. */
942 bool
943 iv_analyze_expr (rtx insn, rtx rhs, enum machine_mode mode, struct rtx_iv *iv)
945 rtx mby = NULL_RTX, tmp;
946 rtx op0 = NULL_RTX, op1 = NULL_RTX;
947 struct rtx_iv iv0, iv1;
948 enum rtx_code code = GET_CODE (rhs);
949 enum machine_mode omode = mode;
951 iv->mode = VOIDmode;
952 iv->base = NULL_RTX;
953 iv->step = NULL_RTX;
955 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
957 if (CONSTANT_P (rhs)
958 || REG_P (rhs)
959 || code == SUBREG)
961 if (!iv_analyze_op (insn, rhs, iv))
962 return false;
964 if (iv->mode == VOIDmode)
966 iv->mode = mode;
967 iv->extend_mode = mode;
970 return true;
973 switch (code)
975 case REG:
976 op0 = rhs;
977 break;
979 case SIGN_EXTEND:
980 case ZERO_EXTEND:
981 case NEG:
982 op0 = XEXP (rhs, 0);
983 omode = GET_MODE (op0);
984 break;
986 case PLUS:
987 case MINUS:
988 op0 = XEXP (rhs, 0);
989 op1 = XEXP (rhs, 1);
990 break;
992 case MULT:
993 op0 = XEXP (rhs, 0);
994 mby = XEXP (rhs, 1);
995 if (!CONSTANT_P (mby))
997 tmp = op0;
998 op0 = mby;
999 mby = tmp;
1001 if (!CONSTANT_P (mby))
1002 return false;
1003 break;
1005 case ASHIFT:
1006 op0 = XEXP (rhs, 0);
1007 mby = XEXP (rhs, 1);
1008 if (!CONSTANT_P (mby))
1009 return false;
1010 break;
1012 default:
1013 return false;
1016 if (op0
1017 && !iv_analyze_expr (insn, op0, omode, &iv0))
1018 return false;
1020 if (op1
1021 && !iv_analyze_expr (insn, op1, omode, &iv1))
1022 return false;
1024 switch (code)
1026 case SIGN_EXTEND:
1027 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1028 return false;
1029 break;
1031 case ZERO_EXTEND:
1032 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1033 return false;
1034 break;
1036 case NEG:
1037 if (!iv_neg (&iv0))
1038 return false;
1039 break;
1041 case PLUS:
1042 case MINUS:
1043 if (!iv_add (&iv0, &iv1, code))
1044 return false;
1045 break;
1047 case MULT:
1048 if (!iv_mult (&iv0, mby))
1049 return false;
1050 break;
1052 case ASHIFT:
1053 if (!iv_shift (&iv0, mby))
1054 return false;
1055 break;
1057 default:
1058 break;
1061 *iv = iv0;
1062 return iv->base != NULL_RTX;
1065 /* Analyzes iv DEF and stores the result to *IV. */
1067 static bool
1068 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1070 rtx insn = DF_REF_INSN (def);
1071 rtx reg = DF_REF_REG (def);
1072 rtx set, rhs;
1074 if (dump_file)
1076 fprintf (dump_file, "Analyzing def of ");
1077 print_rtl (dump_file, reg);
1078 fprintf (dump_file, " in insn ");
1079 print_rtl_single (dump_file, insn);
1082 check_iv_ref_table_size ();
1083 if (DF_REF_IV (def))
1085 if (dump_file)
1086 fprintf (dump_file, " already analysed.\n");
1087 *iv = *DF_REF_IV (def);
1088 return iv->base != NULL_RTX;
1091 iv->mode = VOIDmode;
1092 iv->base = NULL_RTX;
1093 iv->step = NULL_RTX;
1095 if (!REG_P (reg))
1096 return false;
1098 set = single_set (insn);
1099 if (!set)
1100 return false;
1102 if (!REG_P (SET_DEST (set)))
1103 return false;
1105 gcc_assert (SET_DEST (set) == reg);
1106 rhs = find_reg_equal_equiv_note (insn);
1107 if (rhs)
1108 rhs = XEXP (rhs, 0);
1109 else
1110 rhs = SET_SRC (set);
1112 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1113 record_iv (def, iv);
1115 if (dump_file)
1117 print_rtl (dump_file, reg);
1118 fprintf (dump_file, " in insn ");
1119 print_rtl_single (dump_file, insn);
1120 fprintf (dump_file, " is ");
1121 dump_iv_info (dump_file, iv);
1122 fprintf (dump_file, "\n");
1125 return iv->base != NULL_RTX;
1128 /* Analyzes operand OP of INSN and stores the result to *IV. */
1130 static bool
1131 iv_analyze_op (rtx insn, rtx op, struct rtx_iv *iv)
1133 df_ref def = NULL;
1134 enum iv_grd_result res;
1136 if (dump_file)
1138 fprintf (dump_file, "Analyzing operand ");
1139 print_rtl (dump_file, op);
1140 fprintf (dump_file, " of insn ");
1141 print_rtl_single (dump_file, insn);
1144 if (function_invariant_p (op))
1145 res = GRD_INVARIANT;
1146 else if (GET_CODE (op) == SUBREG)
1148 if (!subreg_lowpart_p (op))
1149 return false;
1151 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1152 return false;
1154 return iv_subreg (iv, GET_MODE (op));
1156 else
1158 res = iv_get_reaching_def (insn, op, &def);
1159 if (res == GRD_INVALID)
1161 if (dump_file)
1162 fprintf (dump_file, " not simple.\n");
1163 return false;
1167 if (res == GRD_INVARIANT)
1169 iv_constant (iv, op, VOIDmode);
1171 if (dump_file)
1173 fprintf (dump_file, " ");
1174 dump_iv_info (dump_file, iv);
1175 fprintf (dump_file, "\n");
1177 return true;
1180 if (res == GRD_MAYBE_BIV)
1181 return iv_analyze_biv (op, iv);
1183 return iv_analyze_def (def, iv);
1186 /* Analyzes value VAL at INSN and stores the result to *IV. */
1188 bool
1189 iv_analyze (rtx insn, rtx val, struct rtx_iv *iv)
1191 rtx reg;
1193 /* We must find the insn in that val is used, so that we get to UD chains.
1194 Since the function is sometimes called on result of get_condition,
1195 this does not necessarily have to be directly INSN; scan also the
1196 following insns. */
1197 if (simple_reg_p (val))
1199 if (GET_CODE (val) == SUBREG)
1200 reg = SUBREG_REG (val);
1201 else
1202 reg = val;
1204 while (!df_find_use (insn, reg))
1205 insn = NEXT_INSN (insn);
1208 return iv_analyze_op (insn, val, iv);
1211 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1213 bool
1214 iv_analyze_result (rtx insn, rtx def, struct rtx_iv *iv)
1216 df_ref adef;
1218 adef = df_find_def (insn, def);
1219 if (!adef)
1220 return false;
1222 return iv_analyze_def (adef, iv);
1225 /* Checks whether definition of register REG in INSN is a basic induction
1226 variable. IV analysis must have been initialized (via a call to
1227 iv_analysis_loop_init) for this function to produce a result. */
1229 bool
1230 biv_p (rtx insn, rtx reg)
1232 struct rtx_iv iv;
1233 df_ref def, last_def;
1235 if (!simple_reg_p (reg))
1236 return false;
1238 def = df_find_def (insn, reg);
1239 gcc_assert (def != NULL);
1240 if (!latch_dominating_def (reg, &last_def))
1241 return false;
1242 if (last_def != def)
1243 return false;
1245 if (!iv_analyze_biv (reg, &iv))
1246 return false;
1248 return iv.step != const0_rtx;
1251 /* Calculates value of IV at ITERATION-th iteration. */
1254 get_iv_value (struct rtx_iv *iv, rtx iteration)
1256 rtx val;
1258 /* We would need to generate some if_then_else patterns, and so far
1259 it is not needed anywhere. */
1260 gcc_assert (!iv->first_special);
1262 if (iv->step != const0_rtx && iteration != const0_rtx)
1263 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1264 simplify_gen_binary (MULT, iv->extend_mode,
1265 iv->step, iteration));
1266 else
1267 val = iv->base;
1269 if (iv->extend_mode == iv->mode)
1270 return val;
1272 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1274 if (iv->extend == IV_UNKNOWN_EXTEND)
1275 return val;
1277 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1278 iv->extend_mode, val, iv->mode);
1279 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1280 simplify_gen_binary (MULT, iv->extend_mode,
1281 iv->mult, val));
1283 return val;
1286 /* Free the data for an induction variable analysis. */
1288 void
1289 iv_analysis_done (void)
1291 if (!clean_slate)
1293 clear_iv_info ();
1294 clean_slate = true;
1295 df_finish_pass (true);
1296 htab_delete (bivs);
1297 free (iv_ref_table);
1298 iv_ref_table = NULL;
1299 iv_ref_table_size = 0;
1300 bivs = NULL;
1304 /* Computes inverse to X modulo (1 << MOD). */
1306 static unsigned HOST_WIDEST_INT
1307 inverse (unsigned HOST_WIDEST_INT x, int mod)
1309 unsigned HOST_WIDEST_INT mask =
1310 ((unsigned HOST_WIDEST_INT) 1 << (mod - 1) << 1) - 1;
1311 unsigned HOST_WIDEST_INT rslt = 1;
1312 int i;
1314 for (i = 0; i < mod - 1; i++)
1316 rslt = (rslt * x) & mask;
1317 x = (x * x) & mask;
1320 return rslt;
1323 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1325 static int
1326 altered_reg_used (rtx *reg, void *alt)
1328 if (!REG_P (*reg))
1329 return 0;
1331 return REGNO_REG_SET_P ((bitmap) alt, REGNO (*reg));
1334 /* Marks registers altered by EXPR in set ALT. */
1336 static void
1337 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1339 if (GET_CODE (expr) == SUBREG)
1340 expr = SUBREG_REG (expr);
1341 if (!REG_P (expr))
1342 return;
1344 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1347 /* Checks whether RHS is simple enough to process. */
1349 static bool
1350 simple_rhs_p (rtx rhs)
1352 rtx op0, op1;
1354 if (function_invariant_p (rhs)
1355 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1356 return true;
1358 switch (GET_CODE (rhs))
1360 case PLUS:
1361 case MINUS:
1362 case AND:
1363 op0 = XEXP (rhs, 0);
1364 op1 = XEXP (rhs, 1);
1365 /* Allow reg OP const and reg OP reg. */
1366 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1367 && !function_invariant_p (op0))
1368 return false;
1369 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1370 && !function_invariant_p (op1))
1371 return false;
1373 return true;
1375 case ASHIFT:
1376 case ASHIFTRT:
1377 case LSHIFTRT:
1378 case MULT:
1379 op0 = XEXP (rhs, 0);
1380 op1 = XEXP (rhs, 1);
1381 /* Allow reg OP const. */
1382 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1383 return false;
1384 if (!function_invariant_p (op1))
1385 return false;
1387 return true;
1389 default:
1390 return false;
1394 /* If REG has a single definition, replace it with its known value in EXPR.
1395 Callback for for_each_rtx. */
1397 static int
1398 replace_single_def_regs (rtx *reg, void *expr1)
1400 unsigned regno;
1401 df_ref adef;
1402 rtx set, src;
1403 rtx *expr = (rtx *)expr1;
1405 if (!REG_P (*reg))
1406 return 0;
1408 regno = REGNO (*reg);
1409 for (;;)
1411 rtx note;
1412 adef = DF_REG_DEF_CHAIN (regno);
1413 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1414 || DF_REF_IS_ARTIFICIAL (adef))
1415 return -1;
1417 set = single_set (DF_REF_INSN (adef));
1418 if (set == NULL || !REG_P (SET_DEST (set))
1419 || REGNO (SET_DEST (set)) != regno)
1420 return -1;
1422 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1424 if (note && function_invariant_p (XEXP (note, 0)))
1426 src = XEXP (note, 0);
1427 break;
1429 src = SET_SRC (set);
1431 if (REG_P (src))
1433 regno = REGNO (src);
1434 continue;
1436 break;
1438 if (!function_invariant_p (src))
1439 return -1;
1441 *expr = simplify_replace_rtx (*expr, *reg, src);
1442 return 1;
1445 /* A subroutine of simplify_using_initial_values, this function examines INSN
1446 to see if it contains a suitable set that we can use to make a replacement.
1447 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1448 the set; return false otherwise. */
1450 static bool
1451 suitable_set_for_replacement (rtx insn, rtx *dest, rtx *src)
1453 rtx set = single_set (insn);
1454 rtx lhs = NULL_RTX, rhs;
1456 if (!set)
1457 return false;
1459 lhs = SET_DEST (set);
1460 if (!REG_P (lhs))
1461 return false;
1463 rhs = find_reg_equal_equiv_note (insn);
1464 if (rhs)
1465 rhs = XEXP (rhs, 0);
1466 else
1467 rhs = SET_SRC (set);
1469 if (!simple_rhs_p (rhs))
1470 return false;
1472 *dest = lhs;
1473 *src = rhs;
1474 return true;
1477 /* Using the data returned by suitable_set_for_replacement, replace DEST
1478 with SRC in *EXPR and return the new expression. Also call
1479 replace_single_def_regs if the replacement changed something. */
1480 static void
1481 replace_in_expr (rtx *expr, rtx dest, rtx src)
1483 rtx old = *expr;
1484 *expr = simplify_replace_rtx (*expr, dest, src);
1485 if (old == *expr)
1486 return;
1487 while (for_each_rtx (expr, replace_single_def_regs, expr) != 0)
1488 continue;
1491 /* Checks whether A implies B. */
1493 static bool
1494 implies_p (rtx a, rtx b)
1496 rtx op0, op1, opb0, opb1, r;
1497 enum machine_mode mode;
1499 if (GET_CODE (a) == EQ)
1501 op0 = XEXP (a, 0);
1502 op1 = XEXP (a, 1);
1504 if (REG_P (op0))
1506 r = simplify_replace_rtx (b, op0, op1);
1507 if (r == const_true_rtx)
1508 return true;
1511 if (REG_P (op1))
1513 r = simplify_replace_rtx (b, op1, op0);
1514 if (r == const_true_rtx)
1515 return true;
1519 if (b == const_true_rtx)
1520 return true;
1522 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1523 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1524 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1525 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1526 return false;
1528 op0 = XEXP (a, 0);
1529 op1 = XEXP (a, 1);
1530 opb0 = XEXP (b, 0);
1531 opb1 = XEXP (b, 1);
1533 mode = GET_MODE (op0);
1534 if (mode != GET_MODE (opb0))
1535 mode = VOIDmode;
1536 else if (mode == VOIDmode)
1538 mode = GET_MODE (op1);
1539 if (mode != GET_MODE (opb1))
1540 mode = VOIDmode;
1543 /* A < B implies A + 1 <= B. */
1544 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1545 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1548 if (GET_CODE (a) == GT)
1550 r = op0;
1551 op0 = op1;
1552 op1 = r;
1555 if (GET_CODE (b) == GE)
1557 r = opb0;
1558 opb0 = opb1;
1559 opb1 = r;
1562 if (SCALAR_INT_MODE_P (mode)
1563 && rtx_equal_p (op1, opb1)
1564 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1565 return true;
1566 return false;
1569 /* A < B or A > B imply A != B. TODO: Likewise
1570 A + n < B implies A != B + n if neither wraps. */
1571 if (GET_CODE (b) == NE
1572 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1573 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1575 if (rtx_equal_p (op0, opb0)
1576 && rtx_equal_p (op1, opb1))
1577 return true;
1580 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1581 if (GET_CODE (a) == NE
1582 && op1 == const0_rtx)
1584 if ((GET_CODE (b) == GTU
1585 && opb1 == const0_rtx)
1586 || (GET_CODE (b) == GEU
1587 && opb1 == const1_rtx))
1588 return rtx_equal_p (op0, opb0);
1591 /* A != N is equivalent to A - (N + 1) <u -1. */
1592 if (GET_CODE (a) == NE
1593 && CONST_INT_P (op1)
1594 && GET_CODE (b) == LTU
1595 && opb1 == constm1_rtx
1596 && GET_CODE (opb0) == PLUS
1597 && CONST_INT_P (XEXP (opb0, 1))
1598 /* Avoid overflows. */
1599 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1600 != ((unsigned HOST_WIDE_INT)1
1601 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1602 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1603 return rtx_equal_p (op0, XEXP (opb0, 0));
1605 /* Likewise, A != N implies A - N > 0. */
1606 if (GET_CODE (a) == NE
1607 && CONST_INT_P (op1))
1609 if (GET_CODE (b) == GTU
1610 && GET_CODE (opb0) == PLUS
1611 && opb1 == const0_rtx
1612 && CONST_INT_P (XEXP (opb0, 1))
1613 /* Avoid overflows. */
1614 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1615 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1616 && rtx_equal_p (XEXP (opb0, 0), op0))
1617 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1618 if (GET_CODE (b) == GEU
1619 && GET_CODE (opb0) == PLUS
1620 && opb1 == const1_rtx
1621 && CONST_INT_P (XEXP (opb0, 1))
1622 /* Avoid overflows. */
1623 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1624 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1625 && rtx_equal_p (XEXP (opb0, 0), op0))
1626 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1629 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1630 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1631 && CONST_INT_P (op1)
1632 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1633 || INTVAL (op1) >= 0)
1634 && GET_CODE (b) == LTU
1635 && CONST_INT_P (opb1)
1636 && rtx_equal_p (op0, opb0))
1637 return INTVAL (opb1) < 0;
1639 return false;
1642 /* Canonicalizes COND so that
1644 (1) Ensure that operands are ordered according to
1645 swap_commutative_operands_p.
1646 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1647 for GE, GEU, and LEU. */
1650 canon_condition (rtx cond)
1652 rtx tem;
1653 rtx op0, op1;
1654 enum rtx_code code;
1655 enum machine_mode mode;
1657 code = GET_CODE (cond);
1658 op0 = XEXP (cond, 0);
1659 op1 = XEXP (cond, 1);
1661 if (swap_commutative_operands_p (op0, op1))
1663 code = swap_condition (code);
1664 tem = op0;
1665 op0 = op1;
1666 op1 = tem;
1669 mode = GET_MODE (op0);
1670 if (mode == VOIDmode)
1671 mode = GET_MODE (op1);
1672 gcc_assert (mode != VOIDmode);
1674 if (CONST_INT_P (op1)
1675 && GET_MODE_CLASS (mode) != MODE_CC
1676 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1678 HOST_WIDE_INT const_val = INTVAL (op1);
1679 unsigned HOST_WIDE_INT uconst_val = const_val;
1680 unsigned HOST_WIDE_INT max_val
1681 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1683 switch (code)
1685 case LE:
1686 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1687 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1688 break;
1690 /* When cross-compiling, const_val might be sign-extended from
1691 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1692 case GE:
1693 if ((HOST_WIDE_INT) (const_val & max_val)
1694 != (((HOST_WIDE_INT) 1
1695 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1696 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1697 break;
1699 case LEU:
1700 if (uconst_val < max_val)
1701 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1702 break;
1704 case GEU:
1705 if (uconst_val != 0)
1706 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1707 break;
1709 default:
1710 break;
1714 if (op0 != XEXP (cond, 0)
1715 || op1 != XEXP (cond, 1)
1716 || code != GET_CODE (cond)
1717 || GET_MODE (cond) != SImode)
1718 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1720 return cond;
1723 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1724 set of altered regs. */
1726 void
1727 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1729 rtx rev, reve, exp = *expr;
1731 /* If some register gets altered later, we do not really speak about its
1732 value at the time of comparison. */
1733 if (altered
1734 && for_each_rtx (&cond, altered_reg_used, altered))
1735 return;
1737 if (GET_CODE (cond) == EQ
1738 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1740 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1741 return;
1744 if (!COMPARISON_P (exp))
1745 return;
1747 rev = reversed_condition (cond);
1748 reve = reversed_condition (exp);
1750 cond = canon_condition (cond);
1751 exp = canon_condition (exp);
1752 if (rev)
1753 rev = canon_condition (rev);
1754 if (reve)
1755 reve = canon_condition (reve);
1757 if (rtx_equal_p (exp, cond))
1759 *expr = const_true_rtx;
1760 return;
1763 if (rev && rtx_equal_p (exp, rev))
1765 *expr = const0_rtx;
1766 return;
1769 if (implies_p (cond, exp))
1771 *expr = const_true_rtx;
1772 return;
1775 if (reve && implies_p (cond, reve))
1777 *expr = const0_rtx;
1778 return;
1781 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1782 be false. */
1783 if (rev && implies_p (exp, rev))
1785 *expr = const0_rtx;
1786 return;
1789 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1790 if (rev && reve && implies_p (reve, rev))
1792 *expr = const_true_rtx;
1793 return;
1796 /* We would like to have some other tests here. TODO. */
1798 return;
1801 /* Use relationship between A and *B to eventually eliminate *B.
1802 OP is the operation we consider. */
1804 static void
1805 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1807 switch (op)
1809 case AND:
1810 /* If A implies *B, we may replace *B by true. */
1811 if (implies_p (a, *b))
1812 *b = const_true_rtx;
1813 break;
1815 case IOR:
1816 /* If *B implies A, we may replace *B by false. */
1817 if (implies_p (*b, a))
1818 *b = const0_rtx;
1819 break;
1821 default:
1822 gcc_unreachable ();
1826 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1827 operation we consider. */
1829 static void
1830 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1832 rtx elt;
1834 for (elt = tail; elt; elt = XEXP (elt, 1))
1835 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1836 for (elt = tail; elt; elt = XEXP (elt, 1))
1837 eliminate_implied_condition (op, XEXP (elt, 0), head);
1840 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1841 is a list, its elements are assumed to be combined using OP. */
1843 static void
1844 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1846 bool expression_valid;
1847 rtx head, tail, insn, cond_list, last_valid_expr;
1848 rtx neutral, aggr;
1849 regset altered, this_altered;
1850 edge e;
1852 if (!*expr)
1853 return;
1855 if (CONSTANT_P (*expr))
1856 return;
1858 if (GET_CODE (*expr) == EXPR_LIST)
1860 head = XEXP (*expr, 0);
1861 tail = XEXP (*expr, 1);
1863 eliminate_implied_conditions (op, &head, tail);
1865 switch (op)
1867 case AND:
1868 neutral = const_true_rtx;
1869 aggr = const0_rtx;
1870 break;
1872 case IOR:
1873 neutral = const0_rtx;
1874 aggr = const_true_rtx;
1875 break;
1877 default:
1878 gcc_unreachable ();
1881 simplify_using_initial_values (loop, UNKNOWN, &head);
1882 if (head == aggr)
1884 XEXP (*expr, 0) = aggr;
1885 XEXP (*expr, 1) = NULL_RTX;
1886 return;
1888 else if (head == neutral)
1890 *expr = tail;
1891 simplify_using_initial_values (loop, op, expr);
1892 return;
1894 simplify_using_initial_values (loop, op, &tail);
1896 if (tail && XEXP (tail, 0) == aggr)
1898 *expr = tail;
1899 return;
1902 XEXP (*expr, 0) = head;
1903 XEXP (*expr, 1) = tail;
1904 return;
1907 gcc_assert (op == UNKNOWN);
1909 for (;;)
1910 if (for_each_rtx (expr, replace_single_def_regs, expr) == 0)
1911 break;
1912 if (CONSTANT_P (*expr))
1913 return;
1915 e = loop_preheader_edge (loop);
1916 if (e->src == ENTRY_BLOCK_PTR)
1917 return;
1919 altered = ALLOC_REG_SET (&reg_obstack);
1920 this_altered = ALLOC_REG_SET (&reg_obstack);
1922 expression_valid = true;
1923 last_valid_expr = *expr;
1924 cond_list = NULL_RTX;
1925 while (1)
1927 insn = BB_END (e->src);
1928 if (any_condjump_p (insn))
1930 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1932 if (cond && (e->flags & EDGE_FALLTHRU))
1933 cond = reversed_condition (cond);
1934 if (cond)
1936 rtx old = *expr;
1937 simplify_using_condition (cond, expr, altered);
1938 if (old != *expr)
1940 rtx note;
1941 if (CONSTANT_P (*expr))
1942 goto out;
1943 for (note = cond_list; note; note = XEXP (note, 1))
1945 simplify_using_condition (XEXP (note, 0), expr, altered);
1946 if (CONSTANT_P (*expr))
1947 goto out;
1950 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1954 FOR_BB_INSNS_REVERSE (e->src, insn)
1956 rtx src, dest;
1957 rtx old = *expr;
1959 if (!INSN_P (insn))
1960 continue;
1962 CLEAR_REG_SET (this_altered);
1963 note_stores (PATTERN (insn), mark_altered, this_altered);
1964 if (CALL_P (insn))
1966 /* Kill all call clobbered registers. */
1967 unsigned int i;
1968 hard_reg_set_iterator hrsi;
1969 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1970 0, i, hrsi)
1971 SET_REGNO_REG_SET (this_altered, i);
1974 if (suitable_set_for_replacement (insn, &dest, &src))
1976 rtx *pnote, *pnote_next;
1978 replace_in_expr (expr, dest, src);
1979 if (CONSTANT_P (*expr))
1980 goto out;
1982 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1984 rtx note = *pnote;
1985 rtx old_cond = XEXP (note, 0);
1987 pnote_next = &XEXP (note, 1);
1988 replace_in_expr (&XEXP (note, 0), dest, src);
1990 /* We can no longer use a condition that has been simplified
1991 to a constant, and simplify_using_condition will abort if
1992 we try. */
1993 if (CONSTANT_P (XEXP (note, 0)))
1995 *pnote = *pnote_next;
1996 pnote_next = pnote;
1997 free_EXPR_LIST_node (note);
1999 /* Retry simplifications with this condition if either the
2000 expression or the condition changed. */
2001 else if (old_cond != XEXP (note, 0) || old != *expr)
2002 simplify_using_condition (XEXP (note, 0), expr, altered);
2005 else
2007 rtx *pnote, *pnote_next;
2009 /* If we did not use this insn to make a replacement, any overlap
2010 between stores in this insn and our expression will cause the
2011 expression to become invalid. */
2012 if (for_each_rtx (expr, altered_reg_used, this_altered))
2013 goto out;
2015 /* Likewise for the conditions. */
2016 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2018 rtx note = *pnote;
2019 rtx old_cond = XEXP (note, 0);
2021 pnote_next = &XEXP (note, 1);
2022 if (for_each_rtx (&old_cond, altered_reg_used, this_altered))
2024 *pnote = *pnote_next;
2025 pnote_next = pnote;
2026 free_EXPR_LIST_node (note);
2031 if (CONSTANT_P (*expr))
2032 goto out;
2034 IOR_REG_SET (altered, this_altered);
2036 /* If the expression now contains regs that have been altered, we
2037 can't return it to the caller. However, it is still valid for
2038 further simplification, so keep searching to see if we can
2039 eventually turn it into a constant. */
2040 if (for_each_rtx (expr, altered_reg_used, altered))
2041 expression_valid = false;
2042 if (expression_valid)
2043 last_valid_expr = *expr;
2046 if (!single_pred_p (e->src)
2047 || single_pred (e->src) == ENTRY_BLOCK_PTR)
2048 break;
2049 e = single_pred_edge (e->src);
2052 out:
2053 free_EXPR_LIST_list (&cond_list);
2054 if (!CONSTANT_P (*expr))
2055 *expr = last_valid_expr;
2056 FREE_REG_SET (altered);
2057 FREE_REG_SET (this_altered);
2060 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2061 that IV occurs as left operands of comparison COND and its signedness
2062 is SIGNED_P to DESC. */
2064 static void
2065 shorten_into_mode (struct rtx_iv *iv, enum machine_mode mode,
2066 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2068 rtx mmin, mmax, cond_over, cond_under;
2070 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2071 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2072 iv->base, mmin);
2073 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2074 iv->base, mmax);
2076 switch (cond)
2078 case LE:
2079 case LT:
2080 case LEU:
2081 case LTU:
2082 if (cond_under != const0_rtx)
2083 desc->infinite =
2084 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2085 if (cond_over != const0_rtx)
2086 desc->noloop_assumptions =
2087 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2088 break;
2090 case GE:
2091 case GT:
2092 case GEU:
2093 case GTU:
2094 if (cond_over != const0_rtx)
2095 desc->infinite =
2096 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2097 if (cond_under != const0_rtx)
2098 desc->noloop_assumptions =
2099 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2100 break;
2102 case NE:
2103 if (cond_over != const0_rtx)
2104 desc->infinite =
2105 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2106 if (cond_under != const0_rtx)
2107 desc->infinite =
2108 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2109 break;
2111 default:
2112 gcc_unreachable ();
2115 iv->mode = mode;
2116 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2119 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2120 subregs of the same mode if possible (sometimes it is necessary to add
2121 some assumptions to DESC). */
2123 static bool
2124 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2125 enum rtx_code cond, struct niter_desc *desc)
2127 enum machine_mode comp_mode;
2128 bool signed_p;
2130 /* If the ivs behave specially in the first iteration, or are
2131 added/multiplied after extending, we ignore them. */
2132 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2133 return false;
2134 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2135 return false;
2137 /* If there is some extend, it must match signedness of the comparison. */
2138 switch (cond)
2140 case LE:
2141 case LT:
2142 if (iv0->extend == IV_ZERO_EXTEND
2143 || iv1->extend == IV_ZERO_EXTEND)
2144 return false;
2145 signed_p = true;
2146 break;
2148 case LEU:
2149 case LTU:
2150 if (iv0->extend == IV_SIGN_EXTEND
2151 || iv1->extend == IV_SIGN_EXTEND)
2152 return false;
2153 signed_p = false;
2154 break;
2156 case NE:
2157 if (iv0->extend != IV_UNKNOWN_EXTEND
2158 && iv1->extend != IV_UNKNOWN_EXTEND
2159 && iv0->extend != iv1->extend)
2160 return false;
2162 signed_p = false;
2163 if (iv0->extend != IV_UNKNOWN_EXTEND)
2164 signed_p = iv0->extend == IV_SIGN_EXTEND;
2165 if (iv1->extend != IV_UNKNOWN_EXTEND)
2166 signed_p = iv1->extend == IV_SIGN_EXTEND;
2167 break;
2169 default:
2170 gcc_unreachable ();
2173 /* Values of both variables should be computed in the same mode. These
2174 might indeed be different, if we have comparison like
2176 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2178 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2179 in different modes. This does not seem impossible to handle, but
2180 it hardly ever occurs in practice.
2182 The only exception is the case when one of operands is invariant.
2183 For example pentium 3 generates comparisons like
2184 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2185 definitely do not want this prevent the optimization. */
2186 comp_mode = iv0->extend_mode;
2187 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2188 comp_mode = iv1->extend_mode;
2190 if (iv0->extend_mode != comp_mode)
2192 if (iv0->mode != iv0->extend_mode
2193 || iv0->step != const0_rtx)
2194 return false;
2196 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2197 comp_mode, iv0->base, iv0->mode);
2198 iv0->extend_mode = comp_mode;
2201 if (iv1->extend_mode != comp_mode)
2203 if (iv1->mode != iv1->extend_mode
2204 || iv1->step != const0_rtx)
2205 return false;
2207 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2208 comp_mode, iv1->base, iv1->mode);
2209 iv1->extend_mode = comp_mode;
2212 /* Check that both ivs belong to a range of a single mode. If one of the
2213 operands is an invariant, we may need to shorten it into the common
2214 mode. */
2215 if (iv0->mode == iv0->extend_mode
2216 && iv0->step == const0_rtx
2217 && iv0->mode != iv1->mode)
2218 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2220 if (iv1->mode == iv1->extend_mode
2221 && iv1->step == const0_rtx
2222 && iv0->mode != iv1->mode)
2223 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2225 if (iv0->mode != iv1->mode)
2226 return false;
2228 desc->mode = iv0->mode;
2229 desc->signed_p = signed_p;
2231 return true;
2234 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2235 result. This function is called from iv_number_of_iterations with
2236 a number of fields in DESC already filled in. OLD_NITER is the original
2237 expression for the number of iterations, before we tried to simplify it. */
2239 static unsigned HOST_WIDEST_INT
2240 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
2242 rtx niter = desc->niter_expr;
2243 rtx mmin, mmax, cmp;
2244 unsigned HOST_WIDEST_INT nmax, inc;
2245 unsigned HOST_WIDEST_INT andmax = 0;
2247 /* We used to look for constant operand 0 of AND,
2248 but canonicalization should always make this impossible. */
2249 gcc_checking_assert (GET_CODE (niter) != AND
2250 || !CONST_INT_P (XEXP (niter, 0)));
2252 if (GET_CODE (niter) == AND
2253 && CONST_INT_P (XEXP (niter, 1)))
2255 andmax = UINTVAL (XEXP (niter, 1));
2256 niter = XEXP (niter, 0);
2259 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2260 nmax = INTVAL (mmax) - INTVAL (mmin);
2262 if (GET_CODE (niter) == UDIV)
2264 if (!CONST_INT_P (XEXP (niter, 1)))
2265 return nmax;
2266 inc = INTVAL (XEXP (niter, 1));
2267 niter = XEXP (niter, 0);
2269 else
2270 inc = 1;
2272 /* We could use a binary search here, but for now improving the upper
2273 bound by just one eliminates one important corner case. */
2274 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2275 desc->mode, old_niter, mmax);
2276 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2277 if (cmp == const_true_rtx)
2279 nmax--;
2281 if (dump_file)
2282 fprintf (dump_file, ";; improved upper bound by one.\n");
2284 nmax /= inc;
2285 if (andmax)
2286 nmax = MIN (nmax, andmax);
2287 if (dump_file)
2288 fprintf (dump_file, ";; Determined upper bound "HOST_WIDEST_INT_PRINT_DEC".\n",
2289 nmax);
2290 return nmax;
2293 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2294 the result into DESC. Very similar to determine_number_of_iterations
2295 (basically its rtl version), complicated by things like subregs. */
2297 static void
2298 iv_number_of_iterations (struct loop *loop, rtx insn, rtx condition,
2299 struct niter_desc *desc)
2301 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2302 struct rtx_iv iv0, iv1, tmp_iv;
2303 rtx assumption, may_not_xform;
2304 enum rtx_code cond;
2305 enum machine_mode mode, comp_mode;
2306 rtx mmin, mmax, mode_mmin, mode_mmax;
2307 unsigned HOST_WIDEST_INT s, size, d, inv, max;
2308 HOST_WIDEST_INT up, down, inc, step_val;
2309 int was_sharp = false;
2310 rtx old_niter;
2311 bool step_is_pow2;
2313 /* The meaning of these assumptions is this:
2314 if !assumptions
2315 then the rest of information does not have to be valid
2316 if noloop_assumptions then the loop does not roll
2317 if infinite then this exit is never used */
2319 desc->assumptions = NULL_RTX;
2320 desc->noloop_assumptions = NULL_RTX;
2321 desc->infinite = NULL_RTX;
2322 desc->simple_p = true;
2324 desc->const_iter = false;
2325 desc->niter_expr = NULL_RTX;
2327 cond = GET_CODE (condition);
2328 gcc_assert (COMPARISON_P (condition));
2330 mode = GET_MODE (XEXP (condition, 0));
2331 if (mode == VOIDmode)
2332 mode = GET_MODE (XEXP (condition, 1));
2333 /* The constant comparisons should be folded. */
2334 gcc_assert (mode != VOIDmode);
2336 /* We only handle integers or pointers. */
2337 if (GET_MODE_CLASS (mode) != MODE_INT
2338 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2339 goto fail;
2341 op0 = XEXP (condition, 0);
2342 if (!iv_analyze (insn, op0, &iv0))
2343 goto fail;
2344 if (iv0.extend_mode == VOIDmode)
2345 iv0.mode = iv0.extend_mode = mode;
2347 op1 = XEXP (condition, 1);
2348 if (!iv_analyze (insn, op1, &iv1))
2349 goto fail;
2350 if (iv1.extend_mode == VOIDmode)
2351 iv1.mode = iv1.extend_mode = mode;
2353 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2354 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2355 goto fail;
2357 /* Check condition and normalize it. */
2359 switch (cond)
2361 case GE:
2362 case GT:
2363 case GEU:
2364 case GTU:
2365 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2366 cond = swap_condition (cond);
2367 break;
2368 case NE:
2369 case LE:
2370 case LEU:
2371 case LT:
2372 case LTU:
2373 break;
2374 default:
2375 goto fail;
2378 /* Handle extends. This is relatively nontrivial, so we only try in some
2379 easy cases, when we can canonicalize the ivs (possibly by adding some
2380 assumptions) to shape subreg (base + i * step). This function also fills
2381 in desc->mode and desc->signed_p. */
2383 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2384 goto fail;
2386 comp_mode = iv0.extend_mode;
2387 mode = iv0.mode;
2388 size = GET_MODE_BITSIZE (mode);
2389 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2390 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2391 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2393 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2394 goto fail;
2396 /* We can take care of the case of two induction variables chasing each other
2397 if the test is NE. I have never seen a loop using it, but still it is
2398 cool. */
2399 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2401 if (cond != NE)
2402 goto fail;
2404 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2405 iv1.step = const0_rtx;
2408 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2409 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2411 /* This is either infinite loop or the one that ends immediately, depending
2412 on initial values. Unswitching should remove this kind of conditions. */
2413 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2414 goto fail;
2416 if (cond != NE)
2418 if (iv0.step == const0_rtx)
2419 step_val = -INTVAL (iv1.step);
2420 else
2421 step_val = INTVAL (iv0.step);
2423 /* Ignore loops of while (i-- < 10) type. */
2424 if (step_val < 0)
2425 goto fail;
2427 step_is_pow2 = !(step_val & (step_val - 1));
2429 else
2431 /* We do not care about whether the step is power of two in this
2432 case. */
2433 step_is_pow2 = false;
2434 step_val = 0;
2437 /* Some more condition normalization. We must record some assumptions
2438 due to overflows. */
2439 switch (cond)
2441 case LT:
2442 case LTU:
2443 /* We want to take care only of non-sharp relationals; this is easy,
2444 as in cases the overflow would make the transformation unsafe
2445 the loop does not roll. Seemingly it would make more sense to want
2446 to take care of sharp relationals instead, as NE is more similar to
2447 them, but the problem is that here the transformation would be more
2448 difficult due to possibly infinite loops. */
2449 if (iv0.step == const0_rtx)
2451 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2452 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2453 mode_mmax);
2454 if (assumption == const_true_rtx)
2455 goto zero_iter_simplify;
2456 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2457 iv0.base, const1_rtx);
2459 else
2461 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2462 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2463 mode_mmin);
2464 if (assumption == const_true_rtx)
2465 goto zero_iter_simplify;
2466 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2467 iv1.base, constm1_rtx);
2470 if (assumption != const0_rtx)
2471 desc->noloop_assumptions =
2472 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2473 cond = (cond == LT) ? LE : LEU;
2475 /* It will be useful to be able to tell the difference once more in
2476 LE -> NE reduction. */
2477 was_sharp = true;
2478 break;
2479 default: ;
2482 /* Take care of trivially infinite loops. */
2483 if (cond != NE)
2485 if (iv0.step == const0_rtx)
2487 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2488 if (rtx_equal_p (tmp, mode_mmin))
2490 desc->infinite =
2491 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2492 /* Fill in the remaining fields somehow. */
2493 goto zero_iter_simplify;
2496 else
2498 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2499 if (rtx_equal_p (tmp, mode_mmax))
2501 desc->infinite =
2502 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2503 /* Fill in the remaining fields somehow. */
2504 goto zero_iter_simplify;
2509 /* If we can we want to take care of NE conditions instead of size
2510 comparisons, as they are much more friendly (most importantly
2511 this takes care of special handling of loops with step 1). We can
2512 do it if we first check that upper bound is greater or equal to
2513 lower bound, their difference is constant c modulo step and that
2514 there is not an overflow. */
2515 if (cond != NE)
2517 if (iv0.step == const0_rtx)
2518 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2519 else
2520 step = iv0.step;
2521 step = lowpart_subreg (mode, step, comp_mode);
2522 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2523 delta = lowpart_subreg (mode, delta, comp_mode);
2524 delta = simplify_gen_binary (UMOD, mode, delta, step);
2525 may_xform = const0_rtx;
2526 may_not_xform = const_true_rtx;
2528 if (CONST_INT_P (delta))
2530 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2532 /* A special case. We have transformed condition of type
2533 for (i = 0; i < 4; i += 4)
2534 into
2535 for (i = 0; i <= 3; i += 4)
2536 obviously if the test for overflow during that transformation
2537 passed, we cannot overflow here. Most importantly any
2538 loop with sharp end condition and step 1 falls into this
2539 category, so handling this case specially is definitely
2540 worth the troubles. */
2541 may_xform = const_true_rtx;
2543 else if (iv0.step == const0_rtx)
2545 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2546 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2547 bound = lowpart_subreg (mode, bound, comp_mode);
2548 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2549 may_xform = simplify_gen_relational (cond, SImode, mode,
2550 bound, tmp);
2551 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2552 SImode, mode,
2553 bound, tmp);
2555 else
2557 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2558 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2559 bound = lowpart_subreg (mode, bound, comp_mode);
2560 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2561 may_xform = simplify_gen_relational (cond, SImode, mode,
2562 tmp, bound);
2563 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2564 SImode, mode,
2565 tmp, bound);
2569 if (may_xform != const0_rtx)
2571 /* We perform the transformation always provided that it is not
2572 completely senseless. This is OK, as we would need this assumption
2573 to determine the number of iterations anyway. */
2574 if (may_xform != const_true_rtx)
2576 /* If the step is a power of two and the final value we have
2577 computed overflows, the cycle is infinite. Otherwise it
2578 is nontrivial to compute the number of iterations. */
2579 if (step_is_pow2)
2580 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2581 desc->infinite);
2582 else
2583 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2584 desc->assumptions);
2587 /* We are going to lose some information about upper bound on
2588 number of iterations in this step, so record the information
2589 here. */
2590 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2591 if (CONST_INT_P (iv1.base))
2592 up = INTVAL (iv1.base);
2593 else
2594 up = INTVAL (mode_mmax) - inc;
2595 down = INTVAL (CONST_INT_P (iv0.base)
2596 ? iv0.base
2597 : mode_mmin);
2598 max = (up - down) / inc + 1;
2599 if (!desc->infinite
2600 && !desc->assumptions)
2601 record_niter_bound (loop, double_int::from_uhwi (max),
2602 false, true);
2604 if (iv0.step == const0_rtx)
2606 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2607 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2609 else
2611 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2612 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2615 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2616 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2617 assumption = simplify_gen_relational (reverse_condition (cond),
2618 SImode, mode, tmp0, tmp1);
2619 if (assumption == const_true_rtx)
2620 goto zero_iter_simplify;
2621 else if (assumption != const0_rtx)
2622 desc->noloop_assumptions =
2623 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2624 cond = NE;
2628 /* Count the number of iterations. */
2629 if (cond == NE)
2631 /* Everything we do here is just arithmetics modulo size of mode. This
2632 makes us able to do more involved computations of number of iterations
2633 than in other cases. First transform the condition into shape
2634 s * i <> c, with s positive. */
2635 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2636 iv0.base = const0_rtx;
2637 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2638 iv1.step = const0_rtx;
2639 if (INTVAL (iv0.step) < 0)
2641 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, mode);
2642 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, mode);
2644 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2646 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2647 is infinite. Otherwise, the number of iterations is
2648 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2649 s = INTVAL (iv0.step); d = 1;
2650 while (s % 2 != 1)
2652 s /= 2;
2653 d *= 2;
2654 size--;
2656 bound = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1 ) << 1) - 1);
2658 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2659 tmp = simplify_gen_binary (UMOD, mode, tmp1, GEN_INT (d));
2660 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2661 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2663 tmp = simplify_gen_binary (UDIV, mode, tmp1, GEN_INT (d));
2664 inv = inverse (s, size);
2665 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2666 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2668 else
2670 if (iv1.step == const0_rtx)
2671 /* Condition in shape a + s * i <= b
2672 We must know that b + s does not overflow and a <= b + s and then we
2673 can compute number of iterations as (b + s - a) / s. (It might
2674 seem that we in fact could be more clever about testing the b + s
2675 overflow condition using some information about b - a mod s,
2676 but it was already taken into account during LE -> NE transform). */
2678 step = iv0.step;
2679 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2680 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2682 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2683 lowpart_subreg (mode, step,
2684 comp_mode));
2685 if (step_is_pow2)
2687 rtx t0, t1;
2689 /* If s is power of 2, we know that the loop is infinite if
2690 a % s <= b % s and b + s overflows. */
2691 assumption = simplify_gen_relational (reverse_condition (cond),
2692 SImode, mode,
2693 tmp1, bound);
2695 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2696 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2697 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2698 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2699 desc->infinite =
2700 alloc_EXPR_LIST (0, assumption, desc->infinite);
2702 else
2704 assumption = simplify_gen_relational (cond, SImode, mode,
2705 tmp1, bound);
2706 desc->assumptions =
2707 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2710 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2711 tmp = lowpart_subreg (mode, tmp, comp_mode);
2712 assumption = simplify_gen_relational (reverse_condition (cond),
2713 SImode, mode, tmp0, tmp);
2715 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2716 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2718 else
2720 /* Condition in shape a <= b - s * i
2721 We must know that a - s does not overflow and a - s <= b and then
2722 we can again compute number of iterations as (b - (a - s)) / s. */
2723 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2724 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2725 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2727 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2728 lowpart_subreg (mode, step, comp_mode));
2729 if (step_is_pow2)
2731 rtx t0, t1;
2733 /* If s is power of 2, we know that the loop is infinite if
2734 a % s <= b % s and a - s overflows. */
2735 assumption = simplify_gen_relational (reverse_condition (cond),
2736 SImode, mode,
2737 bound, tmp0);
2739 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2740 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2741 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2742 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2743 desc->infinite =
2744 alloc_EXPR_LIST (0, assumption, desc->infinite);
2746 else
2748 assumption = simplify_gen_relational (cond, SImode, mode,
2749 bound, tmp0);
2750 desc->assumptions =
2751 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2754 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2755 tmp = lowpart_subreg (mode, tmp, comp_mode);
2756 assumption = simplify_gen_relational (reverse_condition (cond),
2757 SImode, mode,
2758 tmp, tmp1);
2759 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2760 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2762 if (assumption == const_true_rtx)
2763 goto zero_iter_simplify;
2764 else if (assumption != const0_rtx)
2765 desc->noloop_assumptions =
2766 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2767 delta = simplify_gen_binary (UDIV, mode, delta, step);
2768 desc->niter_expr = delta;
2771 old_niter = desc->niter_expr;
2773 simplify_using_initial_values (loop, AND, &desc->assumptions);
2774 if (desc->assumptions
2775 && XEXP (desc->assumptions, 0) == const0_rtx)
2776 goto fail;
2777 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2778 simplify_using_initial_values (loop, IOR, &desc->infinite);
2779 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2781 /* Rerun the simplification. Consider code (created by copying loop headers)
2783 i = 0;
2785 if (0 < n)
2789 i++;
2790 } while (i < n);
2793 The first pass determines that i = 0, the second pass uses it to eliminate
2794 noloop assumption. */
2796 simplify_using_initial_values (loop, AND, &desc->assumptions);
2797 if (desc->assumptions
2798 && XEXP (desc->assumptions, 0) == const0_rtx)
2799 goto fail;
2800 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2801 simplify_using_initial_values (loop, IOR, &desc->infinite);
2802 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2804 if (desc->noloop_assumptions
2805 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2806 goto zero_iter;
2808 if (CONST_INT_P (desc->niter_expr))
2810 unsigned HOST_WIDEST_INT val = INTVAL (desc->niter_expr);
2812 desc->const_iter = true;
2813 desc->niter = val & GET_MODE_MASK (desc->mode);
2814 if (!desc->infinite
2815 && !desc->assumptions)
2816 record_niter_bound (loop, double_int::from_uhwi (desc->niter),
2817 false, true);
2819 else
2821 max = determine_max_iter (loop, desc, old_niter);
2822 if (!max)
2823 goto zero_iter_simplify;
2824 if (!desc->infinite
2825 && !desc->assumptions)
2826 record_niter_bound (loop, double_int::from_uhwi (max),
2827 false, true);
2829 /* simplify_using_initial_values does a copy propagation on the registers
2830 in the expression for the number of iterations. This prolongs life
2831 ranges of registers and increases register pressure, and usually
2832 brings no gain (and if it happens to do, the cse pass will take care
2833 of it anyway). So prevent this behavior, unless it enabled us to
2834 derive that the number of iterations is a constant. */
2835 desc->niter_expr = old_niter;
2838 return;
2840 zero_iter_simplify:
2841 /* Simplify the assumptions. */
2842 simplify_using_initial_values (loop, AND, &desc->assumptions);
2843 if (desc->assumptions
2844 && XEXP (desc->assumptions, 0) == const0_rtx)
2845 goto fail;
2846 simplify_using_initial_values (loop, IOR, &desc->infinite);
2848 /* Fallthru. */
2849 zero_iter:
2850 desc->const_iter = true;
2851 desc->niter = 0;
2852 record_niter_bound (loop, double_int_zero,
2853 true, true);
2854 desc->noloop_assumptions = NULL_RTX;
2855 desc->niter_expr = const0_rtx;
2856 return;
2858 fail:
2859 desc->simple_p = false;
2860 return;
2863 /* Checks whether E is a simple exit from LOOP and stores its description
2864 into DESC. */
2866 static void
2867 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2869 basic_block exit_bb;
2870 rtx condition, at;
2871 edge ein;
2873 exit_bb = e->src;
2874 desc->simple_p = false;
2876 /* It must belong directly to the loop. */
2877 if (exit_bb->loop_father != loop)
2878 return;
2880 /* It must be tested (at least) once during any iteration. */
2881 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2882 return;
2884 /* It must end in a simple conditional jump. */
2885 if (!any_condjump_p (BB_END (exit_bb)))
2886 return;
2888 ein = EDGE_SUCC (exit_bb, 0);
2889 if (ein == e)
2890 ein = EDGE_SUCC (exit_bb, 1);
2892 desc->out_edge = e;
2893 desc->in_edge = ein;
2895 /* Test whether the condition is suitable. */
2896 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2897 return;
2899 if (ein->flags & EDGE_FALLTHRU)
2901 condition = reversed_condition (condition);
2902 if (!condition)
2903 return;
2906 /* Check that we are able to determine number of iterations and fill
2907 in information about it. */
2908 iv_number_of_iterations (loop, at, condition, desc);
2911 /* Finds a simple exit of LOOP and stores its description into DESC. */
2913 void
2914 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2916 unsigned i;
2917 basic_block *body;
2918 edge e;
2919 struct niter_desc act;
2920 bool any = false;
2921 edge_iterator ei;
2923 desc->simple_p = false;
2924 body = get_loop_body (loop);
2926 for (i = 0; i < loop->num_nodes; i++)
2928 FOR_EACH_EDGE (e, ei, body[i]->succs)
2930 if (flow_bb_inside_loop_p (loop, e->dest))
2931 continue;
2933 check_simple_exit (loop, e, &act);
2934 if (!act.simple_p)
2935 continue;
2937 if (!any)
2938 any = true;
2939 else
2941 /* Prefer constant iterations; the less the better. */
2942 if (!act.const_iter
2943 || (desc->const_iter && act.niter >= desc->niter))
2944 continue;
2946 /* Also if the actual exit may be infinite, while the old one
2947 not, prefer the old one. */
2948 if (act.infinite && !desc->infinite)
2949 continue;
2952 *desc = act;
2956 if (dump_file)
2958 if (desc->simple_p)
2960 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2961 fprintf (dump_file, " simple exit %d -> %d\n",
2962 desc->out_edge->src->index,
2963 desc->out_edge->dest->index);
2964 if (desc->assumptions)
2966 fprintf (dump_file, " assumptions: ");
2967 print_rtl (dump_file, desc->assumptions);
2968 fprintf (dump_file, "\n");
2970 if (desc->noloop_assumptions)
2972 fprintf (dump_file, " does not roll if: ");
2973 print_rtl (dump_file, desc->noloop_assumptions);
2974 fprintf (dump_file, "\n");
2976 if (desc->infinite)
2978 fprintf (dump_file, " infinite if: ");
2979 print_rtl (dump_file, desc->infinite);
2980 fprintf (dump_file, "\n");
2983 fprintf (dump_file, " number of iterations: ");
2984 print_rtl (dump_file, desc->niter_expr);
2985 fprintf (dump_file, "\n");
2987 fprintf (dump_file, " upper bound: %li\n",
2988 (long)max_loop_iterations_int (loop));
2989 fprintf (dump_file, " realistic bound: %li\n",
2990 (long)estimated_loop_iterations_int (loop));
2992 else
2993 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
2996 free (body);
2999 /* Creates a simple loop description of LOOP if it was not computed
3000 already. */
3002 struct niter_desc *
3003 get_simple_loop_desc (struct loop *loop)
3005 struct niter_desc *desc = simple_loop_desc (loop);
3007 if (desc)
3008 return desc;
3010 /* At least desc->infinite is not always initialized by
3011 find_simple_loop_exit. */
3012 desc = XCNEW (struct niter_desc);
3013 iv_analysis_loop_init (loop);
3014 find_simple_exit (loop, desc);
3015 loop->aux = desc;
3017 if (desc->simple_p && (desc->assumptions || desc->infinite))
3019 const char *wording;
3021 /* Assume that no overflow happens and that the loop is finite.
3022 We already warned at the tree level if we ran optimizations there. */
3023 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
3025 if (desc->infinite)
3027 wording =
3028 flag_unsafe_loop_optimizations
3029 ? N_("assuming that the loop is not infinite")
3030 : N_("cannot optimize possibly infinite loops");
3031 warning (OPT_Wunsafe_loop_optimizations, "%s",
3032 gettext (wording));
3034 if (desc->assumptions)
3036 wording =
3037 flag_unsafe_loop_optimizations
3038 ? N_("assuming that the loop counter does not overflow")
3039 : N_("cannot optimize loop, the loop counter may overflow");
3040 warning (OPT_Wunsafe_loop_optimizations, "%s",
3041 gettext (wording));
3045 if (flag_unsafe_loop_optimizations)
3047 desc->assumptions = NULL_RTX;
3048 desc->infinite = NULL_RTX;
3052 return desc;
3055 /* Releases simple loop description for LOOP. */
3057 void
3058 free_simple_loop_desc (struct loop *loop)
3060 struct niter_desc *desc = simple_loop_desc (loop);
3062 if (!desc)
3063 return;
3065 free (desc);
3066 loop->aux = NULL;