PR libstdc++/56278
[official-gcc.git] / gcc / ira-costs.c
blob1de006129ed0575727b96b3c3affdc465fef1532
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hard-reg-set.h"
26 #include "rtl.h"
27 #include "expr.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "basic-block.h"
31 #include "regs.h"
32 #include "addresses.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "reload.h"
36 #include "diagnostic-core.h"
37 #include "target.h"
38 #include "params.h"
39 #include "ira-int.h"
41 /* The flags is set up every time when we calculate pseudo register
42 classes through function ira_set_pseudo_classes. */
43 static bool pseudo_classes_defined_p = false;
45 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
46 static bool allocno_p;
48 /* Number of elements in array `costs'. */
49 static int cost_elements_num;
51 /* The `costs' struct records the cost of using hard registers of each
52 class considered for the calculation and of using memory for each
53 allocno or pseudo. */
54 struct costs
56 int mem_cost;
57 /* Costs for register classes start here. We process only some
58 allocno classes. */
59 int cost[1];
62 #define max_struct_costs_size \
63 (this_target_ira_int->x_max_struct_costs_size)
64 #define init_cost \
65 (this_target_ira_int->x_init_cost)
66 #define temp_costs \
67 (this_target_ira_int->x_temp_costs)
68 #define op_costs \
69 (this_target_ira_int->x_op_costs)
70 #define this_op_costs \
71 (this_target_ira_int->x_this_op_costs)
73 /* Costs of each class for each allocno or pseudo. */
74 static struct costs *costs;
76 /* Accumulated costs of each class for each allocno. */
77 static struct costs *total_allocno_costs;
79 /* It is the current size of struct costs. */
80 static int struct_costs_size;
82 /* Return pointer to structure containing costs of allocno or pseudo
83 with given NUM in array ARR. */
84 #define COSTS(arr, num) \
85 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
87 /* Return index in COSTS when processing reg with REGNO. */
88 #define COST_INDEX(regno) (allocno_p \
89 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
90 : (int) regno)
92 /* Record register class preferences of each allocno or pseudo. Null
93 value means no preferences. It happens on the 1st iteration of the
94 cost calculation. */
95 static enum reg_class *pref;
97 /* Allocated buffers for pref. */
98 static enum reg_class *pref_buffer;
100 /* Record allocno class of each allocno with the same regno. */
101 static enum reg_class *regno_aclass;
103 /* Record cost gains for not allocating a register with an invariant
104 equivalence. */
105 static int *regno_equiv_gains;
107 /* Execution frequency of the current insn. */
108 static int frequency;
112 /* Info about reg classes whose costs are calculated for a pseudo. */
113 struct cost_classes
115 /* Number of the cost classes in the subsequent array. */
116 int num;
117 /* Container of the cost classes. */
118 enum reg_class classes[N_REG_CLASSES];
119 /* Map reg class -> index of the reg class in the previous array.
120 -1 if it is not a cost classe. */
121 int index[N_REG_CLASSES];
122 /* Map hard regno index of first class in array CLASSES containing
123 the hard regno, -1 otherwise. */
124 int hard_regno_index[FIRST_PSEUDO_REGISTER];
127 /* Types of pointers to the structure above. */
128 typedef struct cost_classes *cost_classes_t;
129 typedef const struct cost_classes *const_cost_classes_t;
131 /* Info about cost classes for each pseudo. */
132 static cost_classes_t *regno_cost_classes;
134 /* Returns hash value for cost classes info V. */
135 static hashval_t
136 cost_classes_hash (const void *v)
138 const_cost_classes_t hv = (const_cost_classes_t) v;
140 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
143 /* Compares cost classes info V1 and V2. */
144 static int
145 cost_classes_eq (const void *v1, const void *v2)
147 const_cost_classes_t hv1 = (const_cost_classes_t) v1;
148 const_cost_classes_t hv2 = (const_cost_classes_t) v2;
150 return hv1->num == hv2->num && memcmp (hv1->classes, hv2->classes,
151 sizeof (enum reg_class) * hv1->num);
154 /* Delete cost classes info V from the hash table. */
155 static void
156 cost_classes_del (void *v)
158 ira_free (v);
161 /* Hash table of unique cost classes. */
162 static htab_t cost_classes_htab;
164 /* Map allocno class -> cost classes for pseudo of given allocno
165 class. */
166 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
168 /* Map mode -> cost classes for pseudo of give mode. */
169 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
171 /* Initialize info about the cost classes for each pseudo. */
172 static void
173 initiate_regno_cost_classes (void)
175 int size = sizeof (cost_classes_t) * max_reg_num ();
177 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
178 memset (regno_cost_classes, 0, size);
179 memset (cost_classes_aclass_cache, 0,
180 sizeof (cost_classes_t) * N_REG_CLASSES);
181 memset (cost_classes_mode_cache, 0,
182 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
183 cost_classes_htab
184 = htab_create (200, cost_classes_hash, cost_classes_eq, cost_classes_del);
187 /* Create new cost classes from cost classes FROM and set up members
188 index and hard_regno_index. Return the new classes. The function
189 implements some common code of two functions
190 setup_regno_cost_classes_by_aclass and
191 setup_regno_cost_classes_by_mode. */
192 static cost_classes_t
193 setup_cost_classes (cost_classes_t from)
195 cost_classes_t classes_ptr;
196 enum reg_class cl;
197 int i, j, hard_regno;
199 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
200 classes_ptr->num = from->num;
201 for (i = 0; i < N_REG_CLASSES; i++)
202 classes_ptr->index[i] = -1;
203 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
204 classes_ptr->hard_regno_index[i] = -1;
205 for (i = 0; i < from->num; i++)
207 cl = classes_ptr->classes[i] = from->classes[i];
208 classes_ptr->index[cl] = i;
209 for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
211 hard_regno = ira_class_hard_regs[cl][j];
212 if (classes_ptr->hard_regno_index[hard_regno] < 0)
213 classes_ptr->hard_regno_index[hard_regno] = i;
216 return classes_ptr;
219 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
220 This function is used when we know an initial approximation of
221 allocno class of the pseudo already, e.g. on the second iteration
222 of class cost calculation or after class cost calculation in
223 register-pressure sensitive insn scheduling or register-pressure
224 sensitive loop-invariant motion. */
225 static void
226 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
228 static struct cost_classes classes;
229 cost_classes_t classes_ptr;
230 enum reg_class cl;
231 int i;
232 PTR *slot;
233 HARD_REG_SET temp, temp2;
234 bool exclude_p;
236 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
238 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
239 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
240 /* We exclude classes from consideration which are subsets of
241 ACLASS only if ACLASS is an uniform class. */
242 exclude_p = ira_uniform_class_p[aclass];
243 classes.num = 0;
244 for (i = 0; i < ira_important_classes_num; i++)
246 cl = ira_important_classes[i];
247 if (exclude_p)
249 /* Exclude non-uniform classes which are subsets of
250 ACLASS. */
251 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
252 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
253 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
254 continue;
256 classes.classes[classes.num++] = cl;
258 slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
259 if (*slot == NULL)
261 classes_ptr = setup_cost_classes (&classes);
262 *slot = classes_ptr;
264 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
266 regno_cost_classes[regno] = classes_ptr;
269 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
270 decrease number of cost classes for the pseudo, if hard registers
271 of some important classes can not hold a value of MODE. So the
272 pseudo can not get hard register of some important classes and cost
273 calculation for such important classes is only waisting CPU
274 time. */
275 static void
276 setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
278 static struct cost_classes classes;
279 cost_classes_t classes_ptr;
280 enum reg_class cl;
281 int i;
282 PTR *slot;
283 HARD_REG_SET temp;
285 if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
287 classes.num = 0;
288 for (i = 0; i < ira_important_classes_num; i++)
290 cl = ira_important_classes[i];
291 COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
292 IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
293 if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
294 continue;
295 classes.classes[classes.num++] = cl;
297 slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
298 if (*slot == NULL)
300 classes_ptr = setup_cost_classes (&classes);
301 *slot = classes_ptr;
303 else
304 classes_ptr = (cost_classes_t) *slot;
305 cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
307 regno_cost_classes[regno] = classes_ptr;
310 /* Finilize info about the cost classes for each pseudo. */
311 static void
312 finish_regno_cost_classes (void)
314 ira_free (regno_cost_classes);
315 htab_delete (cost_classes_htab);
320 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
321 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
322 be a pseudo register. */
323 static int
324 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
325 secondary_reload_info *prev_sri)
327 secondary_reload_info sri;
328 reg_class_t secondary_class = NO_REGS;
330 /* If X is a SCRATCH, there is actually nothing to move since we are
331 assuming optimal allocation. */
332 if (GET_CODE (x) == SCRATCH)
333 return 0;
335 /* Get the class we will actually use for a reload. */
336 rclass = targetm.preferred_reload_class (x, rclass);
338 /* If we need a secondary reload for an intermediate, the cost is
339 that to load the input into the intermediate register, then to
340 copy it. */
341 sri.prev_sri = prev_sri;
342 sri.extra_cost = 0;
343 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
345 if (secondary_class != NO_REGS)
347 ira_init_register_move_cost_if_necessary (mode);
348 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
349 + sri.extra_cost
350 + copy_cost (x, mode, secondary_class, to_p, &sri));
353 /* For memory, use the memory move cost, for (hard) registers, use
354 the cost to move between the register classes, and use 2 for
355 everything else (constants). */
356 if (MEM_P (x) || rclass == NO_REGS)
357 return sri.extra_cost
358 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
359 else if (REG_P (x))
361 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
363 ira_init_register_move_cost_if_necessary (mode);
364 return (sri.extra_cost
365 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
367 else
368 /* If this is a constant, we may eventually want to call rtx_cost
369 here. */
370 return sri.extra_cost + COSTS_N_INSNS (1);
375 /* Record the cost of using memory or hard registers of various
376 classes for the operands in INSN.
378 N_ALTS is the number of alternatives.
379 N_OPS is the number of operands.
380 OPS is an array of the operands.
381 MODES are the modes of the operands, in case any are VOIDmode.
382 CONSTRAINTS are the constraints to use for the operands. This array
383 is modified by this procedure.
385 This procedure works alternative by alternative. For each
386 alternative we assume that we will be able to allocate all allocnos
387 to their ideal register class and calculate the cost of using that
388 alternative. Then we compute, for each operand that is a
389 pseudo-register, the cost of having the allocno allocated to each
390 register class and using it in that alternative. To this cost is
391 added the cost of the alternative.
393 The cost of each class for this insn is its lowest cost among all
394 the alternatives. */
395 static void
396 record_reg_classes (int n_alts, int n_ops, rtx *ops,
397 enum machine_mode *modes, const char **constraints,
398 rtx insn, enum reg_class *pref)
400 int alt;
401 int i, j, k;
402 rtx set;
403 int insn_allows_mem[MAX_RECOG_OPERANDS];
405 for (i = 0; i < n_ops; i++)
406 insn_allows_mem[i] = 0;
408 /* Process each alternative, each time minimizing an operand's cost
409 with the cost for each operand in that alternative. */
410 for (alt = 0; alt < n_alts; alt++)
412 enum reg_class classes[MAX_RECOG_OPERANDS];
413 int allows_mem[MAX_RECOG_OPERANDS];
414 enum reg_class rclass;
415 int alt_fail = 0;
416 int alt_cost = 0, op_cost_add;
418 if (!recog_data.alternative_enabled_p[alt])
420 for (i = 0; i < recog_data.n_operands; i++)
421 constraints[i] = skip_alternative (constraints[i]);
423 continue;
426 for (i = 0; i < n_ops; i++)
428 unsigned char c;
429 const char *p = constraints[i];
430 rtx op = ops[i];
431 enum machine_mode mode = modes[i];
432 int allows_addr = 0;
433 int win = 0;
435 /* Initially show we know nothing about the register class. */
436 classes[i] = NO_REGS;
437 allows_mem[i] = 0;
439 /* If this operand has no constraints at all, we can
440 conclude nothing about it since anything is valid. */
441 if (*p == 0)
443 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
444 memset (this_op_costs[i], 0, struct_costs_size);
445 continue;
448 /* If this alternative is only relevant when this operand
449 matches a previous operand, we do different things
450 depending on whether this operand is a allocno-reg or not.
451 We must process any modifiers for the operand before we
452 can make this test. */
453 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
454 p++;
456 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
458 /* Copy class and whether memory is allowed from the
459 matching alternative. Then perform any needed cost
460 computations and/or adjustments. */
461 j = p[0] - '0';
462 classes[i] = classes[j];
463 allows_mem[i] = allows_mem[j];
464 if (allows_mem[i])
465 insn_allows_mem[i] = 1;
467 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
469 /* If this matches the other operand, we have no
470 added cost and we win. */
471 if (rtx_equal_p (ops[j], op))
472 win = 1;
473 /* If we can put the other operand into a register,
474 add to the cost of this alternative the cost to
475 copy this operand to the register used for the
476 other operand. */
477 else if (classes[j] != NO_REGS)
479 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
480 win = 1;
483 else if (! REG_P (ops[j])
484 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
486 /* This op is an allocno but the one it matches is
487 not. */
489 /* If we can't put the other operand into a
490 register, this alternative can't be used. */
492 if (classes[j] == NO_REGS)
493 alt_fail = 1;
494 /* Otherwise, add to the cost of this alternative
495 the cost to copy the other operand to the hard
496 register used for this operand. */
497 else
498 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
500 else
502 /* The costs of this operand are not the same as the
503 other operand since move costs are not symmetric.
504 Moreover, if we cannot tie them, this alternative
505 needs to do a copy, which is one insn. */
506 struct costs *pp = this_op_costs[i];
507 int *pp_costs = pp->cost;
508 cost_classes_t cost_classes_ptr
509 = regno_cost_classes[REGNO (op)];
510 enum reg_class *cost_classes = cost_classes_ptr->classes;
511 bool in_p = recog_data.operand_type[i] != OP_OUT;
512 bool out_p = recog_data.operand_type[i] != OP_IN;
513 enum reg_class op_class = classes[i];
514 move_table *move_in_cost, *move_out_cost;
516 ira_init_register_move_cost_if_necessary (mode);
517 if (! in_p)
519 ira_assert (out_p);
520 move_out_cost = ira_may_move_out_cost[mode];
521 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
523 rclass = cost_classes[k];
524 pp_costs[k]
525 = move_out_cost[op_class][rclass] * frequency;
528 else if (! out_p)
530 ira_assert (in_p);
531 move_in_cost = ira_may_move_in_cost[mode];
532 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
534 rclass = cost_classes[k];
535 pp_costs[k]
536 = move_in_cost[rclass][op_class] * frequency;
539 else
541 move_in_cost = ira_may_move_in_cost[mode];
542 move_out_cost = ira_may_move_out_cost[mode];
543 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
545 rclass = cost_classes[k];
546 pp_costs[k] = ((move_in_cost[rclass][op_class]
547 + move_out_cost[op_class][rclass])
548 * frequency);
552 /* If the alternative actually allows memory, make
553 things a bit cheaper since we won't need an extra
554 insn to load it. */
555 pp->mem_cost
556 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
557 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
558 - allows_mem[i]) * frequency;
560 /* If we have assigned a class to this allocno in
561 our first pass, add a cost to this alternative
562 corresponding to what we would add if this
563 allocno were not in the appropriate class. */
564 if (pref)
566 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
568 if (pref_class == NO_REGS)
569 alt_cost
570 += ((out_p
571 ? ira_memory_move_cost[mode][op_class][0] : 0)
572 + (in_p
573 ? ira_memory_move_cost[mode][op_class][1]
574 : 0));
575 else if (ira_reg_class_intersect
576 [pref_class][op_class] == NO_REGS)
577 alt_cost
578 += ira_register_move_cost[mode][pref_class][op_class];
580 if (REGNO (ops[i]) != REGNO (ops[j])
581 && ! find_reg_note (insn, REG_DEAD, op))
582 alt_cost += 2;
584 /* This is in place of ordinary cost computation for
585 this operand, so skip to the end of the
586 alternative (should be just one character). */
587 while (*p && *p++ != ',')
590 constraints[i] = p;
591 continue;
595 /* Scan all the constraint letters. See if the operand
596 matches any of the constraints. Collect the valid
597 register classes and see if this operand accepts
598 memory. */
599 while ((c = *p))
601 switch (c)
603 case ',':
604 break;
605 case '*':
606 /* Ignore the next letter for this pass. */
607 c = *++p;
608 break;
610 case '?':
611 alt_cost += 2;
612 case '!': case '#': case '&':
613 case '0': case '1': case '2': case '3': case '4':
614 case '5': case '6': case '7': case '8': case '9':
615 break;
617 case 'p':
618 allows_addr = 1;
619 win = address_operand (op, GET_MODE (op));
620 /* We know this operand is an address, so we want it
621 to be allocated to a register that can be the
622 base of an address, i.e. BASE_REG_CLASS. */
623 classes[i]
624 = ira_reg_class_subunion[classes[i]]
625 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
626 ADDRESS, SCRATCH)];
627 break;
629 case 'm': case 'o': case 'V':
630 /* It doesn't seem worth distinguishing between
631 offsettable and non-offsettable addresses
632 here. */
633 insn_allows_mem[i] = allows_mem[i] = 1;
634 if (MEM_P (op))
635 win = 1;
636 break;
638 case '<':
639 if (MEM_P (op)
640 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
641 || GET_CODE (XEXP (op, 0)) == POST_DEC))
642 win = 1;
643 break;
645 case '>':
646 if (MEM_P (op)
647 && (GET_CODE (XEXP (op, 0)) == PRE_INC
648 || GET_CODE (XEXP (op, 0)) == POST_INC))
649 win = 1;
650 break;
652 case 'E':
653 case 'F':
654 if (CONST_DOUBLE_AS_FLOAT_P (op)
655 || (GET_CODE (op) == CONST_VECTOR
656 && (GET_MODE_CLASS (GET_MODE (op))
657 == MODE_VECTOR_FLOAT)))
658 win = 1;
659 break;
661 case 'G':
662 case 'H':
663 if (CONST_DOUBLE_AS_FLOAT_P (op)
664 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
665 win = 1;
666 break;
668 case 's':
669 if (CONST_SCALAR_INT_P (op))
670 break;
672 case 'i':
673 if (CONSTANT_P (op)
674 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
675 win = 1;
676 break;
678 case 'n':
679 if (CONST_SCALAR_INT_P (op))
680 win = 1;
681 break;
683 case 'I':
684 case 'J':
685 case 'K':
686 case 'L':
687 case 'M':
688 case 'N':
689 case 'O':
690 case 'P':
691 if (CONST_INT_P (op)
692 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
693 win = 1;
694 break;
696 case 'X':
697 win = 1;
698 break;
700 case 'g':
701 if (MEM_P (op)
702 || (CONSTANT_P (op)
703 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
704 win = 1;
705 insn_allows_mem[i] = allows_mem[i] = 1;
706 case 'r':
707 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
708 break;
710 default:
711 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
712 classes[i] = ira_reg_class_subunion[classes[i]]
713 [REG_CLASS_FROM_CONSTRAINT (c, p)];
714 #ifdef EXTRA_CONSTRAINT_STR
715 else if (EXTRA_CONSTRAINT_STR (op, c, p))
716 win = 1;
718 if (EXTRA_MEMORY_CONSTRAINT (c, p))
720 /* Every MEM can be reloaded to fit. */
721 insn_allows_mem[i] = allows_mem[i] = 1;
722 if (MEM_P (op))
723 win = 1;
725 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
727 /* Every address can be reloaded to fit. */
728 allows_addr = 1;
729 if (address_operand (op, GET_MODE (op)))
730 win = 1;
731 /* We know this operand is an address, so we
732 want it to be allocated to a hard register
733 that can be the base of an address,
734 i.e. BASE_REG_CLASS. */
735 classes[i]
736 = ira_reg_class_subunion[classes[i]]
737 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
738 ADDRESS, SCRATCH)];
740 #endif
741 break;
743 p += CONSTRAINT_LEN (c, p);
744 if (c == ',')
745 break;
748 constraints[i] = p;
750 /* How we account for this operand now depends on whether it
751 is a pseudo register or not. If it is, we first check if
752 any register classes are valid. If not, we ignore this
753 alternative, since we want to assume that all allocnos get
754 allocated for register preferencing. If some register
755 class is valid, compute the costs of moving the allocno
756 into that class. */
757 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
759 if (classes[i] == NO_REGS)
761 /* We must always fail if the operand is a REG, but
762 we did not find a suitable class.
764 Otherwise we may perform an uninitialized read
765 from this_op_costs after the `continue' statement
766 below. */
767 alt_fail = 1;
769 else
771 unsigned int regno = REGNO (op);
772 struct costs *pp = this_op_costs[i];
773 int *pp_costs = pp->cost;
774 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
775 enum reg_class *cost_classes = cost_classes_ptr->classes;
776 bool in_p = recog_data.operand_type[i] != OP_OUT;
777 bool out_p = recog_data.operand_type[i] != OP_IN;
778 enum reg_class op_class = classes[i];
779 move_table *move_in_cost, *move_out_cost;
781 ira_init_register_move_cost_if_necessary (mode);
782 if (! in_p)
784 ira_assert (out_p);
785 move_out_cost = ira_may_move_out_cost[mode];
786 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
788 rclass = cost_classes[k];
789 pp_costs[k]
790 = move_out_cost[op_class][rclass] * frequency;
793 else if (! out_p)
795 ira_assert (in_p);
796 move_in_cost = ira_may_move_in_cost[mode];
797 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
799 rclass = cost_classes[k];
800 pp_costs[k]
801 = move_in_cost[rclass][op_class] * frequency;
804 else
806 move_in_cost = ira_may_move_in_cost[mode];
807 move_out_cost = ira_may_move_out_cost[mode];
808 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
810 rclass = cost_classes[k];
811 pp_costs[k] = ((move_in_cost[rclass][op_class]
812 + move_out_cost[op_class][rclass])
813 * frequency);
817 /* If the alternative actually allows memory, make
818 things a bit cheaper since we won't need an extra
819 insn to load it. */
820 pp->mem_cost
821 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
822 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
823 - allows_mem[i]) * frequency;
824 /* If we have assigned a class to this allocno in
825 our first pass, add a cost to this alternative
826 corresponding to what we would add if this
827 allocno were not in the appropriate class. */
828 if (pref)
830 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
832 if (pref_class == NO_REGS)
833 alt_cost
834 += ((out_p
835 ? ira_memory_move_cost[mode][op_class][0] : 0)
836 + (in_p
837 ? ira_memory_move_cost[mode][op_class][1]
838 : 0));
839 else if (ira_reg_class_intersect[pref_class][op_class]
840 == NO_REGS)
841 alt_cost += ira_register_move_cost[mode][pref_class][op_class];
846 /* Otherwise, if this alternative wins, either because we
847 have already determined that or if we have a hard
848 register of the proper class, there is no cost for this
849 alternative. */
850 else if (win || (REG_P (op)
851 && reg_fits_class_p (op, classes[i],
852 0, GET_MODE (op))))
855 /* If registers are valid, the cost of this alternative
856 includes copying the object to and/or from a
857 register. */
858 else if (classes[i] != NO_REGS)
860 if (recog_data.operand_type[i] != OP_OUT)
861 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
863 if (recog_data.operand_type[i] != OP_IN)
864 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
866 /* The only other way this alternative can be used is if
867 this is a constant that could be placed into memory. */
868 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
869 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
870 else
871 alt_fail = 1;
874 if (alt_fail)
875 continue;
877 op_cost_add = alt_cost * frequency;
878 /* Finally, update the costs with the information we've
879 calculated about this alternative. */
880 for (i = 0; i < n_ops; i++)
881 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
883 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
884 int *pp_costs = pp->cost, *qq_costs = qq->cost;
885 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
886 cost_classes_t cost_classes_ptr
887 = regno_cost_classes[REGNO (ops[i])];
889 pp->mem_cost = MIN (pp->mem_cost,
890 (qq->mem_cost + op_cost_add) * scale);
892 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
893 pp_costs[k]
894 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
898 if (allocno_p)
899 for (i = 0; i < n_ops; i++)
901 ira_allocno_t a;
902 rtx op = ops[i];
904 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
905 continue;
906 a = ira_curr_regno_allocno_map [REGNO (op)];
907 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
908 ALLOCNO_BAD_SPILL_P (a) = true;
911 /* If this insn is a single set copying operand 1 to operand 0 and
912 one operand is an allocno with the other a hard reg or an allocno
913 that prefers a hard register that is in its own register class
914 then we may want to adjust the cost of that register class to -1.
916 Avoid the adjustment if the source does not die to avoid
917 stressing of register allocator by preferrencing two colliding
918 registers into single class.
920 Also avoid the adjustment if a copy between hard registers of the
921 class is expensive (ten times the cost of a default copy is
922 considered arbitrarily expensive). This avoids losing when the
923 preferred class is very expensive as the source of a copy
924 instruction. */
925 if ((set = single_set (insn)) != 0
926 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
927 && REG_P (ops[0]) && REG_P (ops[1])
928 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
929 for (i = 0; i <= 1; i++)
930 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER
931 && REGNO (ops[!i]) < FIRST_PSEUDO_REGISTER)
933 unsigned int regno = REGNO (ops[i]);
934 unsigned int other_regno = REGNO (ops[!i]);
935 enum machine_mode mode = GET_MODE (ops[!i]);
936 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
937 enum reg_class *cost_classes = cost_classes_ptr->classes;
938 reg_class_t rclass;
939 int nr;
941 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
943 rclass = cost_classes[k];
944 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
945 && (reg_class_size[(int) rclass]
946 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
948 if (reg_class_size[rclass] == 1)
949 op_costs[i]->cost[k] = -frequency;
950 else
952 for (nr = 0;
953 nr < hard_regno_nregs[other_regno][mode];
954 nr++)
955 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
956 other_regno + nr))
957 break;
959 if (nr == hard_regno_nregs[other_regno][mode])
960 op_costs[i]->cost[k] = -frequency;
969 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
970 static inline bool
971 ok_for_index_p_nonstrict (rtx reg)
973 unsigned regno = REGNO (reg);
975 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
978 /* A version of regno_ok_for_base_p for use here, when all
979 pseudo-registers should count as OK. Arguments as for
980 regno_ok_for_base_p. */
981 static inline bool
982 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
983 enum rtx_code outer_code, enum rtx_code index_code)
985 unsigned regno = REGNO (reg);
987 if (regno >= FIRST_PSEUDO_REGISTER)
988 return true;
989 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
992 /* Record the pseudo registers we must reload into hard registers in a
993 subexpression of a memory address, X.
995 If CONTEXT is 0, we are looking at the base part of an address,
996 otherwise we are looking at the index part.
998 MODE and AS are the mode and address space of the memory reference;
999 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1000 These four arguments are passed down to base_reg_class.
1002 SCALE is twice the amount to multiply the cost by (it is twice so
1003 we can represent half-cost adjustments). */
1004 static void
1005 record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
1006 int context, enum rtx_code outer_code,
1007 enum rtx_code index_code, int scale)
1009 enum rtx_code code = GET_CODE (x);
1010 enum reg_class rclass;
1012 if (context == 1)
1013 rclass = INDEX_REG_CLASS;
1014 else
1015 rclass = base_reg_class (mode, as, outer_code, index_code);
1017 switch (code)
1019 case CONST_INT:
1020 case CONST:
1021 case CC0:
1022 case PC:
1023 case SYMBOL_REF:
1024 case LABEL_REF:
1025 return;
1027 case PLUS:
1028 /* When we have an address that is a sum, we must determine
1029 whether registers are "base" or "index" regs. If there is a
1030 sum of two registers, we must choose one to be the "base".
1031 Luckily, we can use the REG_POINTER to make a good choice
1032 most of the time. We only need to do this on machines that
1033 can have two registers in an address and where the base and
1034 index register classes are different.
1036 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1037 but that seems bogus since it should only be set when we are
1038 sure the register is being used as a pointer. */
1040 rtx arg0 = XEXP (x, 0);
1041 rtx arg1 = XEXP (x, 1);
1042 enum rtx_code code0 = GET_CODE (arg0);
1043 enum rtx_code code1 = GET_CODE (arg1);
1045 /* Look inside subregs. */
1046 if (code0 == SUBREG)
1047 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1048 if (code1 == SUBREG)
1049 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1051 /* If this machine only allows one register per address, it
1052 must be in the first operand. */
1053 if (MAX_REGS_PER_ADDRESS == 1)
1054 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1056 /* If index and base registers are the same on this machine,
1057 just record registers in any non-constant operands. We
1058 assume here, as well as in the tests below, that all
1059 addresses are in canonical form. */
1060 else if (INDEX_REG_CLASS
1061 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1063 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1064 if (! CONSTANT_P (arg1))
1065 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1068 /* If the second operand is a constant integer, it doesn't
1069 change what class the first operand must be. */
1070 else if (CONST_SCALAR_INT_P (arg1))
1071 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1072 /* If the second operand is a symbolic constant, the first
1073 operand must be an index register. */
1074 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1075 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1076 /* If both operands are registers but one is already a hard
1077 register of index or reg-base class, give the other the
1078 class that the hard register is not. */
1079 else if (code0 == REG && code1 == REG
1080 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1081 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1082 || ok_for_index_p_nonstrict (arg0)))
1083 record_address_regs (mode, as, arg1,
1084 ok_for_base_p_nonstrict (arg0, mode, as,
1085 PLUS, REG) ? 1 : 0,
1086 PLUS, REG, scale);
1087 else if (code0 == REG && code1 == REG
1088 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1089 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1090 || ok_for_index_p_nonstrict (arg1)))
1091 record_address_regs (mode, as, arg0,
1092 ok_for_base_p_nonstrict (arg1, mode, as,
1093 PLUS, REG) ? 1 : 0,
1094 PLUS, REG, scale);
1095 /* If one operand is known to be a pointer, it must be the
1096 base with the other operand the index. Likewise if the
1097 other operand is a MULT. */
1098 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1100 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1101 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1103 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1105 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1106 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1108 /* Otherwise, count equal chances that each might be a base or
1109 index register. This case should be rare. */
1110 else
1112 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1113 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1114 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1115 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1118 break;
1120 /* Double the importance of an allocno that is incremented or
1121 decremented, since it would take two extra insns if it ends
1122 up in the wrong place. */
1123 case POST_MODIFY:
1124 case PRE_MODIFY:
1125 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1126 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1127 if (REG_P (XEXP (XEXP (x, 1), 1)))
1128 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1129 2 * scale);
1130 break;
1132 case POST_INC:
1133 case PRE_INC:
1134 case POST_DEC:
1135 case PRE_DEC:
1136 /* Double the importance of an allocno that is incremented or
1137 decremented, since it would take two extra insns if it ends
1138 up in the wrong place. */
1139 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1140 break;
1142 case REG:
1144 struct costs *pp;
1145 int *pp_costs;
1146 enum reg_class i;
1147 int k, regno, add_cost;
1148 cost_classes_t cost_classes_ptr;
1149 enum reg_class *cost_classes;
1150 move_table *move_in_cost;
1152 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1153 break;
1155 regno = REGNO (x);
1156 if (allocno_p)
1157 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1158 pp = COSTS (costs, COST_INDEX (regno));
1159 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1160 if (INT_MAX - add_cost < pp->mem_cost)
1161 pp->mem_cost = INT_MAX;
1162 else
1163 pp->mem_cost += add_cost;
1164 cost_classes_ptr = regno_cost_classes[regno];
1165 cost_classes = cost_classes_ptr->classes;
1166 pp_costs = pp->cost;
1167 ira_init_register_move_cost_if_necessary (Pmode);
1168 move_in_cost = ira_may_move_in_cost[Pmode];
1169 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1171 i = cost_classes[k];
1172 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1173 if (INT_MAX - add_cost < pp_costs[k])
1174 pp_costs[k] = INT_MAX;
1175 else
1176 pp_costs[k] += add_cost;
1179 break;
1181 default:
1183 const char *fmt = GET_RTX_FORMAT (code);
1184 int i;
1185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1186 if (fmt[i] == 'e')
1187 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1188 scale);
1195 /* Calculate the costs of insn operands. */
1196 static void
1197 record_operand_costs (rtx insn, enum reg_class *pref)
1199 const char *constraints[MAX_RECOG_OPERANDS];
1200 enum machine_mode modes[MAX_RECOG_OPERANDS];
1201 int i;
1203 for (i = 0; i < recog_data.n_operands; i++)
1205 constraints[i] = recog_data.constraints[i];
1206 modes[i] = recog_data.operand_mode[i];
1209 /* If we get here, we are set up to record the costs of all the
1210 operands for this insn. Start by initializing the costs. Then
1211 handle any address registers. Finally record the desired classes
1212 for any allocnos, doing it twice if some pair of operands are
1213 commutative. */
1214 for (i = 0; i < recog_data.n_operands; i++)
1216 memcpy (op_costs[i], init_cost, struct_costs_size);
1218 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1219 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1221 if (MEM_P (recog_data.operand[i]))
1222 record_address_regs (GET_MODE (recog_data.operand[i]),
1223 MEM_ADDR_SPACE (recog_data.operand[i]),
1224 XEXP (recog_data.operand[i], 0),
1225 0, MEM, SCRATCH, frequency * 2);
1226 else if (constraints[i][0] == 'p'
1227 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
1228 constraints[i]))
1229 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1230 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1231 frequency * 2);
1234 /* Check for commutative in a separate loop so everything will have
1235 been initialized. We must do this even if one operand is a
1236 constant--see addsi3 in m68k.md. */
1237 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1238 if (constraints[i][0] == '%')
1240 const char *xconstraints[MAX_RECOG_OPERANDS];
1241 int j;
1243 /* Handle commutative operands by swapping the constraints.
1244 We assume the modes are the same. */
1245 for (j = 0; j < recog_data.n_operands; j++)
1246 xconstraints[j] = constraints[j];
1248 xconstraints[i] = constraints[i+1];
1249 xconstraints[i+1] = constraints[i];
1250 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1251 recog_data.operand, modes,
1252 xconstraints, insn, pref);
1254 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1255 recog_data.operand, modes,
1256 constraints, insn, pref);
1261 /* Process one insn INSN. Scan it and record each time it would save
1262 code to put a certain allocnos in a certain class. Return the last
1263 insn processed, so that the scan can be continued from there. */
1264 static rtx
1265 scan_one_insn (rtx insn)
1267 enum rtx_code pat_code;
1268 rtx set, note;
1269 int i, k;
1270 bool counted_mem;
1272 if (!NONDEBUG_INSN_P (insn))
1273 return insn;
1275 pat_code = GET_CODE (PATTERN (insn));
1276 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT
1277 || pat_code == ADDR_VEC || pat_code == ADDR_DIFF_VEC)
1278 return insn;
1280 counted_mem = false;
1281 set = single_set (insn);
1282 extract_insn (insn);
1284 /* If this insn loads a parameter from its stack slot, then it
1285 represents a savings, rather than a cost, if the parameter is
1286 stored in memory. Record this fact.
1288 Similarly if we're loading other constants from memory (constant
1289 pool, TOC references, small data areas, etc) and this is the only
1290 assignment to the destination pseudo.
1292 Don't do this if SET_SRC (set) isn't a general operand, if it is
1293 a memory requiring special instructions to load it, decreasing
1294 mem_cost might result in it being loaded using the specialized
1295 instruction into a register, then stored into stack and loaded
1296 again from the stack. See PR52208. */
1297 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1298 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1299 && ((MEM_P (XEXP (note, 0)))
1300 || (CONSTANT_P (XEXP (note, 0))
1301 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1302 XEXP (note, 0))
1303 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1304 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1306 enum reg_class cl = GENERAL_REGS;
1307 rtx reg = SET_DEST (set);
1308 int num = COST_INDEX (REGNO (reg));
1310 COSTS (costs, num)->mem_cost
1311 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1312 record_address_regs (GET_MODE (SET_SRC (set)),
1313 MEM_ADDR_SPACE (SET_SRC (set)),
1314 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1315 frequency * 2);
1316 counted_mem = true;
1319 record_operand_costs (insn, pref);
1321 /* Now add the cost for each operand to the total costs for its
1322 allocno. */
1323 for (i = 0; i < recog_data.n_operands; i++)
1324 if (REG_P (recog_data.operand[i])
1325 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1327 int regno = REGNO (recog_data.operand[i]);
1328 struct costs *p = COSTS (costs, COST_INDEX (regno));
1329 struct costs *q = op_costs[i];
1330 int *p_costs = p->cost, *q_costs = q->cost;
1331 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1332 int add_cost;
1334 /* If the already accounted for the memory "cost" above, don't
1335 do so again. */
1336 if (!counted_mem)
1338 add_cost = q->mem_cost;
1339 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1340 p->mem_cost = INT_MAX;
1341 else
1342 p->mem_cost += add_cost;
1344 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1346 add_cost = q_costs[k];
1347 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1348 p_costs[k] = INT_MAX;
1349 else
1350 p_costs[k] += add_cost;
1354 return insn;
1359 /* Print allocnos costs to file F. */
1360 static void
1361 print_allocno_costs (FILE *f)
1363 int k;
1364 ira_allocno_t a;
1365 ira_allocno_iterator ai;
1367 ira_assert (allocno_p);
1368 fprintf (f, "\n");
1369 FOR_EACH_ALLOCNO (a, ai)
1371 int i, rclass;
1372 basic_block bb;
1373 int regno = ALLOCNO_REGNO (a);
1374 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1375 enum reg_class *cost_classes = cost_classes_ptr->classes;
1377 i = ALLOCNO_NUM (a);
1378 fprintf (f, " a%d(r%d,", i, regno);
1379 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1380 fprintf (f, "b%d", bb->index);
1381 else
1382 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1383 fprintf (f, ") costs:");
1384 for (k = 0; k < cost_classes_ptr->num; k++)
1386 rclass = cost_classes[k];
1387 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1388 #ifdef CANNOT_CHANGE_MODE_CLASS
1389 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1390 #endif
1393 fprintf (f, " %s:%d", reg_class_names[rclass],
1394 COSTS (costs, i)->cost[k]);
1395 if (flag_ira_region == IRA_REGION_ALL
1396 || flag_ira_region == IRA_REGION_MIXED)
1397 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1400 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1401 if (flag_ira_region == IRA_REGION_ALL
1402 || flag_ira_region == IRA_REGION_MIXED)
1403 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1404 fprintf (f, "\n");
1408 /* Print pseudo costs to file F. */
1409 static void
1410 print_pseudo_costs (FILE *f)
1412 int regno, k;
1413 int rclass;
1414 cost_classes_t cost_classes_ptr;
1415 enum reg_class *cost_classes;
1417 ira_assert (! allocno_p);
1418 fprintf (f, "\n");
1419 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1421 if (REG_N_REFS (regno) <= 0)
1422 continue;
1423 cost_classes_ptr = regno_cost_classes[regno];
1424 cost_classes = cost_classes_ptr->classes;
1425 fprintf (f, " r%d costs:", regno);
1426 for (k = 0; k < cost_classes_ptr->num; k++)
1428 rclass = cost_classes[k];
1429 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1430 #ifdef CANNOT_CHANGE_MODE_CLASS
1431 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1432 #endif
1434 fprintf (f, " %s:%d", reg_class_names[rclass],
1435 COSTS (costs, regno)->cost[k]);
1437 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1441 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1442 costs. */
1443 static void
1444 process_bb_for_costs (basic_block bb)
1446 rtx insn;
1448 frequency = REG_FREQ_FROM_BB (bb);
1449 if (frequency == 0)
1450 frequency = 1;
1451 FOR_BB_INSNS (bb, insn)
1452 insn = scan_one_insn (insn);
1455 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1456 costs. */
1457 static void
1458 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1460 basic_block bb;
1462 bb = loop_tree_node->bb;
1463 if (bb != NULL)
1464 process_bb_for_costs (bb);
1467 /* Find costs of register classes and memory for allocnos or pseudos
1468 and their best costs. Set up preferred, alternative and allocno
1469 classes for pseudos. */
1470 static void
1471 find_costs_and_classes (FILE *dump_file)
1473 int i, k, start, max_cost_classes_num;
1474 int pass;
1475 basic_block bb;
1476 enum reg_class *regno_best_class;
1478 init_recog ();
1479 regno_best_class
1480 = (enum reg_class *) ira_allocate (max_reg_num ()
1481 * sizeof (enum reg_class));
1482 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1483 regno_best_class[i] = NO_REGS;
1484 if (!resize_reg_info () && allocno_p
1485 && pseudo_classes_defined_p && flag_expensive_optimizations)
1487 ira_allocno_t a;
1488 ira_allocno_iterator ai;
1490 pref = pref_buffer;
1491 max_cost_classes_num = 1;
1492 FOR_EACH_ALLOCNO (a, ai)
1494 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1495 setup_regno_cost_classes_by_aclass
1496 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1497 max_cost_classes_num
1498 = MAX (max_cost_classes_num,
1499 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1501 start = 1;
1503 else
1505 pref = NULL;
1506 max_cost_classes_num = ira_important_classes_num;
1507 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1508 if (regno_reg_rtx[i] != NULL_RTX)
1509 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1510 else
1511 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1512 start = 0;
1514 if (allocno_p)
1515 /* Clear the flag for the next compiled function. */
1516 pseudo_classes_defined_p = false;
1517 /* Normally we scan the insns once and determine the best class to
1518 use for each allocno. However, if -fexpensive-optimizations are
1519 on, we do so twice, the second time using the tentative best
1520 classes to guide the selection. */
1521 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1523 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1524 fprintf (dump_file,
1525 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1527 if (pass != start)
1529 max_cost_classes_num = 1;
1530 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1532 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1533 max_cost_classes_num
1534 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1538 struct_costs_size
1539 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1540 /* Zero out our accumulation of the cost of each class for each
1541 allocno. */
1542 memset (costs, 0, cost_elements_num * struct_costs_size);
1544 if (allocno_p)
1546 /* Scan the instructions and record each time it would save code
1547 to put a certain allocno in a certain class. */
1548 ira_traverse_loop_tree (true, ira_loop_tree_root,
1549 process_bb_node_for_costs, NULL);
1551 memcpy (total_allocno_costs, costs,
1552 max_struct_costs_size * ira_allocnos_num);
1554 else
1556 basic_block bb;
1558 FOR_EACH_BB (bb)
1559 process_bb_for_costs (bb);
1562 if (pass == 0)
1563 pref = pref_buffer;
1565 /* Now for each allocno look at how desirable each class is and
1566 find which class is preferred. */
1567 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1569 ira_allocno_t a, parent_a;
1570 int rclass, a_num, parent_a_num, add_cost;
1571 ira_loop_tree_node_t parent;
1572 int best_cost, allocno_cost;
1573 enum reg_class best, alt_class;
1574 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1575 enum reg_class *cost_classes = cost_classes_ptr->classes;
1576 int *i_costs = temp_costs->cost;
1577 int i_mem_cost;
1578 int equiv_savings = regno_equiv_gains[i];
1580 if (! allocno_p)
1582 if (regno_reg_rtx[i] == NULL_RTX)
1583 continue;
1584 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1585 i_mem_cost = temp_costs->mem_cost;
1587 else
1589 if (ira_regno_allocno_map[i] == NULL)
1590 continue;
1591 memset (temp_costs, 0, struct_costs_size);
1592 i_mem_cost = 0;
1593 /* Find cost of all allocnos with the same regno. */
1594 for (a = ira_regno_allocno_map[i];
1595 a != NULL;
1596 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1598 int *a_costs, *p_costs;
1600 a_num = ALLOCNO_NUM (a);
1601 if ((flag_ira_region == IRA_REGION_ALL
1602 || flag_ira_region == IRA_REGION_MIXED)
1603 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1604 && (parent_a = parent->regno_allocno_map[i]) != NULL
1605 /* There are no caps yet. */
1606 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1607 (a)->border_allocnos,
1608 ALLOCNO_NUM (a)))
1610 /* Propagate costs to upper levels in the region
1611 tree. */
1612 parent_a_num = ALLOCNO_NUM (parent_a);
1613 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1614 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1615 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1617 add_cost = a_costs[k];
1618 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1619 p_costs[k] = INT_MAX;
1620 else
1621 p_costs[k] += add_cost;
1623 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1624 if (add_cost > 0
1625 && (INT_MAX - add_cost
1626 < COSTS (total_allocno_costs,
1627 parent_a_num)->mem_cost))
1628 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1629 = INT_MAX;
1630 else
1631 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1632 += add_cost;
1634 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1635 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1637 a_costs = COSTS (costs, a_num)->cost;
1638 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1640 add_cost = a_costs[k];
1641 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1642 i_costs[k] = INT_MAX;
1643 else
1644 i_costs[k] += add_cost;
1646 add_cost = COSTS (costs, a_num)->mem_cost;
1647 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1648 i_mem_cost = INT_MAX;
1649 else
1650 i_mem_cost += add_cost;
1653 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1654 i_mem_cost = 0;
1655 else if (equiv_savings < 0)
1656 i_mem_cost = -equiv_savings;
1657 else if (equiv_savings > 0)
1659 i_mem_cost = 0;
1660 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1661 i_costs[k] += equiv_savings;
1664 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1665 best = ALL_REGS;
1666 alt_class = NO_REGS;
1667 /* Find best common class for all allocnos with the same
1668 regno. */
1669 for (k = 0; k < cost_classes_ptr->num; k++)
1671 rclass = cost_classes[k];
1672 /* Ignore classes that are too small or invalid for this
1673 operand. */
1674 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1675 #ifdef CANNOT_CHANGE_MODE_CLASS
1676 || invalid_mode_change_p (i, (enum reg_class) rclass)
1677 #endif
1679 continue;
1680 if (i_costs[k] < best_cost)
1682 best_cost = i_costs[k];
1683 best = (enum reg_class) rclass;
1685 else if (i_costs[k] == best_cost)
1686 best = ira_reg_class_subunion[best][rclass];
1687 if (pass == flag_expensive_optimizations
1688 /* We still prefer registers to memory even at this
1689 stage if their costs are the same. We will make
1690 a final decision during assigning hard registers
1691 when we have all info including more accurate
1692 costs which might be affected by assigning hard
1693 registers to other pseudos because the pseudos
1694 involved in moves can be coalesced. */
1695 && i_costs[k] <= i_mem_cost
1696 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1697 > reg_class_size[alt_class]))
1698 alt_class = reg_class_subunion[alt_class][rclass];
1700 alt_class = ira_allocno_class_translate[alt_class];
1701 if (best_cost > i_mem_cost)
1702 regno_aclass[i] = NO_REGS;
1703 else
1705 /* Make the common class the biggest class of best and
1706 alt_class. */
1707 regno_aclass[i]
1708 = ira_reg_class_superunion[best][alt_class];
1709 ira_assert (regno_aclass[i] != NO_REGS
1710 && ira_reg_allocno_class_p[regno_aclass[i]]);
1712 if (pass == flag_expensive_optimizations)
1714 if (best_cost > i_mem_cost)
1715 best = alt_class = NO_REGS;
1716 else if (best == alt_class)
1717 alt_class = NO_REGS;
1718 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1719 if ((!allocno_p || internal_flag_ira_verbose > 2)
1720 && dump_file != NULL)
1721 fprintf (dump_file,
1722 " r%d: preferred %s, alternative %s, allocno %s\n",
1723 i, reg_class_names[best], reg_class_names[alt_class],
1724 reg_class_names[regno_aclass[i]]);
1726 regno_best_class[i] = best;
1727 if (! allocno_p)
1729 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1730 continue;
1732 for (a = ira_regno_allocno_map[i];
1733 a != NULL;
1734 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1736 a_num = ALLOCNO_NUM (a);
1737 if (regno_aclass[i] == NO_REGS)
1738 best = NO_REGS;
1739 else
1741 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1742 int *a_costs = COSTS (costs, a_num)->cost;
1744 /* Finding best class which is subset of the common
1745 class. */
1746 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1747 allocno_cost = best_cost;
1748 best = ALL_REGS;
1749 for (k = 0; k < cost_classes_ptr->num; k++)
1751 rclass = cost_classes[k];
1752 if (! ira_class_subset_p[rclass][regno_aclass[i]])
1753 continue;
1754 /* Ignore classes that are too small or invalid
1755 for this operand. */
1756 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1757 #ifdef CANNOT_CHANGE_MODE_CLASS
1758 || invalid_mode_change_p (i, (enum reg_class) rclass)
1759 #endif
1762 else if (total_a_costs[k] < best_cost)
1764 best_cost = total_a_costs[k];
1765 allocno_cost = a_costs[k];
1766 best = (enum reg_class) rclass;
1768 else if (total_a_costs[k] == best_cost)
1770 best = ira_reg_class_subunion[best][rclass];
1771 allocno_cost = MAX (allocno_cost, a_costs[k]);
1774 ALLOCNO_CLASS_COST (a) = allocno_cost;
1776 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1777 && (pass == 0 || pref[a_num] != best))
1779 fprintf (dump_file, " a%d (r%d,", a_num, i);
1780 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1781 fprintf (dump_file, "b%d", bb->index);
1782 else
1783 fprintf (dump_file, "l%d",
1784 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1785 fprintf (dump_file, ") best %s, allocno %s\n",
1786 reg_class_names[best],
1787 reg_class_names[regno_aclass[i]]);
1789 pref[a_num] = best;
1793 if (internal_flag_ira_verbose > 4 && dump_file)
1795 if (allocno_p)
1796 print_allocno_costs (dump_file);
1797 else
1798 print_pseudo_costs (dump_file);
1799 fprintf (dump_file,"\n");
1802 ira_free (regno_best_class);
1807 /* Process moves involving hard regs to modify allocno hard register
1808 costs. We can do this only after determining allocno class. If a
1809 hard register forms a register class, than moves with the hard
1810 register are already taken into account in class costs for the
1811 allocno. */
1812 static void
1813 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1815 int i, freq, cost, src_regno, dst_regno, hard_regno;
1816 bool to_p;
1817 ira_allocno_t a;
1818 enum reg_class rclass, hard_reg_class;
1819 enum machine_mode mode;
1820 basic_block bb;
1821 rtx insn, set, src, dst;
1823 bb = loop_tree_node->bb;
1824 if (bb == NULL)
1825 return;
1826 freq = REG_FREQ_FROM_BB (bb);
1827 if (freq == 0)
1828 freq = 1;
1829 FOR_BB_INSNS (bb, insn)
1831 if (!NONDEBUG_INSN_P (insn))
1832 continue;
1833 set = single_set (insn);
1834 if (set == NULL_RTX)
1835 continue;
1836 dst = SET_DEST (set);
1837 src = SET_SRC (set);
1838 if (! REG_P (dst) || ! REG_P (src))
1839 continue;
1840 dst_regno = REGNO (dst);
1841 src_regno = REGNO (src);
1842 if (dst_regno >= FIRST_PSEUDO_REGISTER
1843 && src_regno < FIRST_PSEUDO_REGISTER)
1845 hard_regno = src_regno;
1846 to_p = true;
1847 a = ira_curr_regno_allocno_map[dst_regno];
1849 else if (src_regno >= FIRST_PSEUDO_REGISTER
1850 && dst_regno < FIRST_PSEUDO_REGISTER)
1852 hard_regno = dst_regno;
1853 to_p = false;
1854 a = ira_curr_regno_allocno_map[src_regno];
1856 else
1857 continue;
1858 rclass = ALLOCNO_CLASS (a);
1859 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1860 continue;
1861 i = ira_class_hard_reg_index[rclass][hard_regno];
1862 if (i < 0)
1863 continue;
1864 mode = ALLOCNO_MODE (a);
1865 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1866 ira_init_register_move_cost_if_necessary (mode);
1867 cost
1868 = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1869 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1870 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1871 ALLOCNO_CLASS_COST (a));
1872 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1873 rclass, 0);
1874 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1875 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1876 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1877 ALLOCNO_HARD_REG_COSTS (a)[i]);
1881 /* After we find hard register and memory costs for allocnos, define
1882 its class and modify hard register cost because insns moving
1883 allocno to/from hard registers. */
1884 static void
1885 setup_allocno_class_and_costs (void)
1887 int i, j, n, regno, hard_regno, num;
1888 int *reg_costs;
1889 enum reg_class aclass, rclass;
1890 ira_allocno_t a;
1891 ira_allocno_iterator ai;
1892 cost_classes_t cost_classes_ptr;
1894 ira_assert (allocno_p);
1895 FOR_EACH_ALLOCNO (a, ai)
1897 i = ALLOCNO_NUM (a);
1898 regno = ALLOCNO_REGNO (a);
1899 aclass = regno_aclass[regno];
1900 cost_classes_ptr = regno_cost_classes[regno];
1901 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
1902 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1903 ira_set_allocno_class (a, aclass);
1904 if (aclass == NO_REGS)
1905 continue;
1906 if (optimize && ALLOCNO_CLASS (a) != pref[i])
1908 n = ira_class_hard_regs_num[aclass];
1909 ALLOCNO_HARD_REG_COSTS (a)
1910 = reg_costs = ira_allocate_cost_vector (aclass);
1911 for (j = n - 1; j >= 0; j--)
1913 hard_regno = ira_class_hard_regs[aclass][j];
1914 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
1915 reg_costs[j] = ALLOCNO_CLASS_COST (a);
1916 else
1918 rclass = REGNO_REG_CLASS (hard_regno);
1919 num = cost_classes_ptr->index[rclass];
1920 if (num < 0)
1922 num = cost_classes_ptr->hard_regno_index[hard_regno];
1923 ira_assert (num >= 0);
1925 reg_costs[j] = COSTS (costs, i)->cost[num];
1930 if (optimize)
1931 ira_traverse_loop_tree (true, ira_loop_tree_root,
1932 process_bb_node_for_hard_reg_moves, NULL);
1937 /* Function called once during compiler work. */
1938 void
1939 ira_init_costs_once (void)
1941 int i;
1943 init_cost = NULL;
1944 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1946 op_costs[i] = NULL;
1947 this_op_costs[i] = NULL;
1949 temp_costs = NULL;
1952 /* Free allocated temporary cost vectors. */
1953 static void
1954 free_ira_costs (void)
1956 int i;
1958 free (init_cost);
1959 init_cost = NULL;
1960 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1962 free (op_costs[i]);
1963 free (this_op_costs[i]);
1964 op_costs[i] = this_op_costs[i] = NULL;
1966 free (temp_costs);
1967 temp_costs = NULL;
1970 /* This is called each time register related information is
1971 changed. */
1972 void
1973 ira_init_costs (void)
1975 int i;
1977 free_ira_costs ();
1978 max_struct_costs_size
1979 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
1980 /* Don't use ira_allocate because vectors live through several IRA
1981 calls. */
1982 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
1983 init_cost->mem_cost = 1000000;
1984 for (i = 0; i < ira_important_classes_num; i++)
1985 init_cost->cost[i] = 1000000;
1986 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1988 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1989 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1991 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
1994 /* Function called once at the end of compiler work. */
1995 void
1996 ira_finish_costs_once (void)
1998 free_ira_costs ();
2003 /* Common initialization function for ira_costs and
2004 ira_set_pseudo_classes. */
2005 static void
2006 init_costs (void)
2008 init_subregs_of_mode ();
2009 costs = (struct costs *) ira_allocate (max_struct_costs_size
2010 * cost_elements_num);
2011 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2012 * cost_elements_num);
2013 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2014 * max_reg_num ());
2015 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2016 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2019 /* Common finalization function for ira_costs and
2020 ira_set_pseudo_classes. */
2021 static void
2022 finish_costs (void)
2024 finish_subregs_of_mode ();
2025 ira_free (regno_equiv_gains);
2026 ira_free (regno_aclass);
2027 ira_free (pref_buffer);
2028 ira_free (costs);
2031 /* Entry function which defines register class, memory and hard
2032 register costs for each allocno. */
2033 void
2034 ira_costs (void)
2036 allocno_p = true;
2037 cost_elements_num = ira_allocnos_num;
2038 init_costs ();
2039 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2040 * ira_allocnos_num);
2041 initiate_regno_cost_classes ();
2042 calculate_elim_costs_all_insns ();
2043 find_costs_and_classes (ira_dump_file);
2044 setup_allocno_class_and_costs ();
2045 finish_regno_cost_classes ();
2046 finish_costs ();
2047 ira_free (total_allocno_costs);
2050 /* Entry function which defines classes for pseudos.
2051 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2052 void
2053 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2055 allocno_p = false;
2056 internal_flag_ira_verbose = flag_ira_verbose;
2057 cost_elements_num = max_reg_num ();
2058 init_costs ();
2059 initiate_regno_cost_classes ();
2060 find_costs_and_classes (dump_file);
2061 finish_regno_cost_classes ();
2062 if (define_pseudo_classes)
2063 pseudo_classes_defined_p = true;
2065 finish_costs ();
2070 /* Change hard register costs for allocnos which lives through
2071 function calls. This is called only when we found all intersected
2072 calls during building allocno live ranges. */
2073 void
2074 ira_tune_allocno_costs (void)
2076 int j, n, regno;
2077 int cost, min_cost, *reg_costs;
2078 enum reg_class aclass, rclass;
2079 enum machine_mode mode;
2080 ira_allocno_t a;
2081 ira_allocno_iterator ai;
2082 ira_allocno_object_iterator oi;
2083 ira_object_t obj;
2084 bool skip_p;
2086 FOR_EACH_ALLOCNO (a, ai)
2088 aclass = ALLOCNO_CLASS (a);
2089 if (aclass == NO_REGS)
2090 continue;
2091 mode = ALLOCNO_MODE (a);
2092 n = ira_class_hard_regs_num[aclass];
2093 min_cost = INT_MAX;
2094 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2095 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2097 ira_allocate_and_set_costs
2098 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2099 ALLOCNO_CLASS_COST (a));
2100 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2101 for (j = n - 1; j >= 0; j--)
2103 regno = ira_class_hard_regs[aclass][j];
2104 skip_p = false;
2105 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2107 if (ira_hard_reg_set_intersection_p (regno, mode,
2108 OBJECT_CONFLICT_HARD_REGS
2109 (obj)))
2111 skip_p = true;
2112 break;
2115 if (skip_p)
2116 continue;
2117 rclass = REGNO_REG_CLASS (regno);
2118 cost = 0;
2119 if (ira_hard_reg_set_intersection_p (regno, mode, call_used_reg_set)
2120 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
2121 cost += (ALLOCNO_CALL_FREQ (a)
2122 * (ira_memory_move_cost[mode][rclass][0]
2123 + ira_memory_move_cost[mode][rclass][1]));
2124 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2125 cost += ((ira_memory_move_cost[mode][rclass][0]
2126 + ira_memory_move_cost[mode][rclass][1])
2127 * ALLOCNO_FREQ (a)
2128 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2129 #endif
2130 if (INT_MAX - cost < reg_costs[j])
2131 reg_costs[j] = INT_MAX;
2132 else
2133 reg_costs[j] += cost;
2134 if (min_cost > reg_costs[j])
2135 min_cost = reg_costs[j];
2138 if (min_cost != INT_MAX)
2139 ALLOCNO_CLASS_COST (a) = min_cost;
2141 /* Some targets allow pseudos to be allocated to unaligned sequences
2142 of hard registers. However, selecting an unaligned sequence can
2143 unnecessarily restrict later allocations. So increase the cost of
2144 unaligned hard regs to encourage the use of aligned hard regs. */
2146 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2148 if (nregs > 1)
2150 ira_allocate_and_set_costs
2151 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2152 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2153 for (j = n - 1; j >= 0; j--)
2155 regno = ira_non_ordered_class_hard_regs[aclass][j];
2156 if ((regno % nregs) != 0)
2158 int index = ira_class_hard_reg_index[aclass][regno];
2159 ira_assert (index != -1);
2160 reg_costs[index] += ALLOCNO_FREQ (a);
2168 /* Add COST to the estimated gain for eliminating REGNO with its
2169 equivalence. If COST is zero, record that no such elimination is
2170 possible. */
2172 void
2173 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2175 if (cost == 0)
2176 regno_equiv_gains[regno] = 0;
2177 else
2178 regno_equiv_gains[regno] += cost;