PR libstdc++/56278
[official-gcc.git] / gcc / ifcvt.c
blobdd941006535f3dd6fce873bf80bf291fdd12c3fa
1 /* If-conversion support.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "function.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "expr.h"
35 #include "output.h"
36 #include "optabs.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "cfgloop.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "vec.h"
44 #include "pointer-set.h"
45 #include "dbgcnt.h"
47 #ifndef HAVE_conditional_move
48 #define HAVE_conditional_move 0
49 #endif
50 #ifndef HAVE_incscc
51 #define HAVE_incscc 0
52 #endif
53 #ifndef HAVE_decscc
54 #define HAVE_decscc 0
55 #endif
56 #ifndef HAVE_trap
57 #define HAVE_trap 0
58 #endif
60 #ifndef MAX_CONDITIONAL_EXECUTE
61 #define MAX_CONDITIONAL_EXECUTE \
62 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
63 + 1)
64 #endif
66 #define IFCVT_MULTIPLE_DUMPS 1
68 #define NULL_BLOCK ((basic_block) NULL)
70 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
71 static int num_possible_if_blocks;
73 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
74 execution. */
75 static int num_updated_if_blocks;
77 /* # of changes made. */
78 static int num_true_changes;
80 /* Whether conditional execution changes were made. */
81 static int cond_exec_changed_p;
83 /* Forward references. */
84 static int count_bb_insns (const_basic_block);
85 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
86 static rtx first_active_insn (basic_block);
87 static rtx last_active_insn (basic_block, int);
88 static rtx find_active_insn_before (basic_block, rtx);
89 static rtx find_active_insn_after (basic_block, rtx);
90 static basic_block block_fallthru (basic_block);
91 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
92 static rtx cond_exec_get_condition (rtx);
93 static rtx noce_get_condition (rtx, rtx *, bool);
94 static int noce_operand_ok (const_rtx);
95 static void merge_if_block (ce_if_block_t *);
96 static int find_cond_trap (basic_block, edge, edge);
97 static basic_block find_if_header (basic_block, int);
98 static int block_jumps_and_fallthru_p (basic_block, basic_block);
99 static int noce_find_if_block (basic_block, edge, edge, int);
100 static int cond_exec_find_if_block (ce_if_block_t *);
101 static int find_if_case_1 (basic_block, edge, edge);
102 static int find_if_case_2 (basic_block, edge, edge);
103 static int dead_or_predicable (basic_block, basic_block, basic_block,
104 edge, int);
105 static void noce_emit_move_insn (rtx, rtx);
106 static rtx block_has_only_trap (basic_block);
108 /* Count the number of non-jump active insns in BB. */
110 static int
111 count_bb_insns (const_basic_block bb)
113 int count = 0;
114 rtx insn = BB_HEAD (bb);
116 while (1)
118 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
119 count++;
121 if (insn == BB_END (bb))
122 break;
123 insn = NEXT_INSN (insn);
126 return count;
129 /* Determine whether the total insn_rtx_cost on non-jump insns in
130 basic block BB is less than MAX_COST. This function returns
131 false if the cost of any instruction could not be estimated.
133 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
134 as those insns are being speculated. MAX_COST is scaled with SCALE
135 plus a small fudge factor. */
137 static bool
138 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
140 int count = 0;
141 rtx insn = BB_HEAD (bb);
142 bool speed = optimize_bb_for_speed_p (bb);
144 /* Our branch probability/scaling factors are just estimates and don't
145 account for cases where we can get speculation for free and other
146 secondary benefits. So we fudge the scale factor to make speculating
147 appear a little more profitable. */
148 scale += REG_BR_PROB_BASE / 8;
149 max_cost *= scale;
151 while (1)
153 if (NONJUMP_INSN_P (insn))
155 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
156 if (cost == 0)
157 return false;
159 /* If this instruction is the load or set of a "stack" register,
160 such as a floating point register on x87, then the cost of
161 speculatively executing this insn may need to include
162 the additional cost of popping its result off of the
163 register stack. Unfortunately, correctly recognizing and
164 accounting for this additional overhead is tricky, so for
165 now we simply prohibit such speculative execution. */
166 #ifdef STACK_REGS
168 rtx set = single_set (insn);
169 if (set && STACK_REG_P (SET_DEST (set)))
170 return false;
172 #endif
174 count += cost;
175 if (count >= max_cost)
176 return false;
178 else if (CALL_P (insn))
179 return false;
181 if (insn == BB_END (bb))
182 break;
183 insn = NEXT_INSN (insn);
186 return true;
189 /* Return the first non-jump active insn in the basic block. */
191 static rtx
192 first_active_insn (basic_block bb)
194 rtx insn = BB_HEAD (bb);
196 if (LABEL_P (insn))
198 if (insn == BB_END (bb))
199 return NULL_RTX;
200 insn = NEXT_INSN (insn);
203 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
205 if (insn == BB_END (bb))
206 return NULL_RTX;
207 insn = NEXT_INSN (insn);
210 if (JUMP_P (insn))
211 return NULL_RTX;
213 return insn;
216 /* Return the last non-jump active (non-jump) insn in the basic block. */
218 static rtx
219 last_active_insn (basic_block bb, int skip_use_p)
221 rtx insn = BB_END (bb);
222 rtx head = BB_HEAD (bb);
224 while (NOTE_P (insn)
225 || JUMP_P (insn)
226 || DEBUG_INSN_P (insn)
227 || (skip_use_p
228 && NONJUMP_INSN_P (insn)
229 && GET_CODE (PATTERN (insn)) == USE))
231 if (insn == head)
232 return NULL_RTX;
233 insn = PREV_INSN (insn);
236 if (LABEL_P (insn))
237 return NULL_RTX;
239 return insn;
242 /* Return the active insn before INSN inside basic block CURR_BB. */
244 static rtx
245 find_active_insn_before (basic_block curr_bb, rtx insn)
247 if (!insn || insn == BB_HEAD (curr_bb))
248 return NULL_RTX;
250 while ((insn = PREV_INSN (insn)) != NULL_RTX)
252 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
253 break;
255 /* No other active insn all the way to the start of the basic block. */
256 if (insn == BB_HEAD (curr_bb))
257 return NULL_RTX;
260 return insn;
263 /* Return the active insn after INSN inside basic block CURR_BB. */
265 static rtx
266 find_active_insn_after (basic_block curr_bb, rtx insn)
268 if (!insn || insn == BB_END (curr_bb))
269 return NULL_RTX;
271 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
273 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
274 break;
276 /* No other active insn all the way to the end of the basic block. */
277 if (insn == BB_END (curr_bb))
278 return NULL_RTX;
281 return insn;
284 /* Return the basic block reached by falling though the basic block BB. */
286 static basic_block
287 block_fallthru (basic_block bb)
289 edge e = find_fallthru_edge (bb->succs);
291 return (e) ? e->dest : NULL_BLOCK;
294 /* Go through a bunch of insns, converting them to conditional
295 execution format if possible. Return TRUE if all of the non-note
296 insns were processed. */
298 static int
299 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
300 /* if block information */rtx start,
301 /* first insn to look at */rtx end,
302 /* last insn to look at */rtx test,
303 /* conditional execution test */rtx prob_val,
304 /* probability of branch taken. */int mod_ok)
306 int must_be_last = FALSE;
307 rtx insn;
308 rtx xtest;
309 rtx pattern;
311 if (!start || !end)
312 return FALSE;
314 for (insn = start; ; insn = NEXT_INSN (insn))
316 /* dwarf2out can't cope with conditional prologues. */
317 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
318 return FALSE;
320 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
321 goto insn_done;
323 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
325 /* Remove USE insns that get in the way. */
326 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
328 /* ??? Ug. Actually unlinking the thing is problematic,
329 given what we'd have to coordinate with our callers. */
330 SET_INSN_DELETED (insn);
331 goto insn_done;
334 /* Last insn wasn't last? */
335 if (must_be_last)
336 return FALSE;
338 if (modified_in_p (test, insn))
340 if (!mod_ok)
341 return FALSE;
342 must_be_last = TRUE;
345 /* Now build the conditional form of the instruction. */
346 pattern = PATTERN (insn);
347 xtest = copy_rtx (test);
349 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
350 two conditions. */
351 if (GET_CODE (pattern) == COND_EXEC)
353 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
354 return FALSE;
356 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
357 COND_EXEC_TEST (pattern));
358 pattern = COND_EXEC_CODE (pattern);
361 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
363 /* If the machine needs to modify the insn being conditionally executed,
364 say for example to force a constant integer operand into a temp
365 register, do so here. */
366 #ifdef IFCVT_MODIFY_INSN
367 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
368 if (! pattern)
369 return FALSE;
370 #endif
372 validate_change (insn, &PATTERN (insn), pattern, 1);
374 if (CALL_P (insn) && prob_val)
375 validate_change (insn, &REG_NOTES (insn),
376 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
377 REG_NOTES (insn)), 1);
379 insn_done:
380 if (insn == end)
381 break;
384 return TRUE;
387 /* Return the condition for a jump. Do not do any special processing. */
389 static rtx
390 cond_exec_get_condition (rtx jump)
392 rtx test_if, cond;
394 if (any_condjump_p (jump))
395 test_if = SET_SRC (pc_set (jump));
396 else
397 return NULL_RTX;
398 cond = XEXP (test_if, 0);
400 /* If this branches to JUMP_LABEL when the condition is false,
401 reverse the condition. */
402 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
403 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
405 enum rtx_code rev = reversed_comparison_code (cond, jump);
406 if (rev == UNKNOWN)
407 return NULL_RTX;
409 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
410 XEXP (cond, 1));
413 return cond;
416 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
417 to conditional execution. Return TRUE if we were successful at
418 converting the block. */
420 static int
421 cond_exec_process_if_block (ce_if_block_t * ce_info,
422 /* if block information */int do_multiple_p)
424 basic_block test_bb = ce_info->test_bb; /* last test block */
425 basic_block then_bb = ce_info->then_bb; /* THEN */
426 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
427 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
428 rtx then_start; /* first insn in THEN block */
429 rtx then_end; /* last insn + 1 in THEN block */
430 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
431 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
432 int max; /* max # of insns to convert. */
433 int then_mod_ok; /* whether conditional mods are ok in THEN */
434 rtx true_expr; /* test for else block insns */
435 rtx false_expr; /* test for then block insns */
436 rtx true_prob_val; /* probability of else block */
437 rtx false_prob_val; /* probability of then block */
438 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
439 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
440 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
441 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
442 int then_n_insns, else_n_insns, n_insns;
443 enum rtx_code false_code;
445 /* If test is comprised of && or || elements, and we've failed at handling
446 all of them together, just use the last test if it is the special case of
447 && elements without an ELSE block. */
448 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
450 if (else_bb || ! ce_info->and_and_p)
451 return FALSE;
453 ce_info->test_bb = test_bb = ce_info->last_test_bb;
454 ce_info->num_multiple_test_blocks = 0;
455 ce_info->num_and_and_blocks = 0;
456 ce_info->num_or_or_blocks = 0;
459 /* Find the conditional jump to the ELSE or JOIN part, and isolate
460 the test. */
461 test_expr = cond_exec_get_condition (BB_END (test_bb));
462 if (! test_expr)
463 return FALSE;
465 /* If the conditional jump is more than just a conditional jump,
466 then we can not do conditional execution conversion on this block. */
467 if (! onlyjump_p (BB_END (test_bb)))
468 return FALSE;
470 /* Collect the bounds of where we're to search, skipping any labels, jumps
471 and notes at the beginning and end of the block. Then count the total
472 number of insns and see if it is small enough to convert. */
473 then_start = first_active_insn (then_bb);
474 then_end = last_active_insn (then_bb, TRUE);
475 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
476 n_insns = then_n_insns;
477 max = MAX_CONDITIONAL_EXECUTE;
479 if (else_bb)
481 int n_matching;
483 max *= 2;
484 else_start = first_active_insn (else_bb);
485 else_end = last_active_insn (else_bb, TRUE);
486 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
487 n_insns += else_n_insns;
489 /* Look for matching sequences at the head and tail of the two blocks,
490 and limit the range of insns to be converted if possible. */
491 n_matching = flow_find_cross_jump (then_bb, else_bb,
492 &then_first_tail, &else_first_tail,
493 NULL);
494 if (then_first_tail == BB_HEAD (then_bb))
495 then_start = then_end = NULL_RTX;
496 if (else_first_tail == BB_HEAD (else_bb))
497 else_start = else_end = NULL_RTX;
499 if (n_matching > 0)
501 if (then_end)
502 then_end = find_active_insn_before (then_bb, then_first_tail);
503 if (else_end)
504 else_end = find_active_insn_before (else_bb, else_first_tail);
505 n_insns -= 2 * n_matching;
508 if (then_start && else_start)
510 int longest_match = MIN (then_n_insns - n_matching,
511 else_n_insns - n_matching);
512 n_matching
513 = flow_find_head_matching_sequence (then_bb, else_bb,
514 &then_last_head,
515 &else_last_head,
516 longest_match);
518 if (n_matching > 0)
520 rtx insn;
522 /* We won't pass the insns in the head sequence to
523 cond_exec_process_insns, so we need to test them here
524 to make sure that they don't clobber the condition. */
525 for (insn = BB_HEAD (then_bb);
526 insn != NEXT_INSN (then_last_head);
527 insn = NEXT_INSN (insn))
528 if (!LABEL_P (insn) && !NOTE_P (insn)
529 && !DEBUG_INSN_P (insn)
530 && modified_in_p (test_expr, insn))
531 return FALSE;
534 if (then_last_head == then_end)
535 then_start = then_end = NULL_RTX;
536 if (else_last_head == else_end)
537 else_start = else_end = NULL_RTX;
539 if (n_matching > 0)
541 if (then_start)
542 then_start = find_active_insn_after (then_bb, then_last_head);
543 if (else_start)
544 else_start = find_active_insn_after (else_bb, else_last_head);
545 n_insns -= 2 * n_matching;
550 if (n_insns > max)
551 return FALSE;
553 /* Map test_expr/test_jump into the appropriate MD tests to use on
554 the conditionally executed code. */
556 true_expr = test_expr;
558 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
559 if (false_code != UNKNOWN)
560 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
561 XEXP (true_expr, 0), XEXP (true_expr, 1));
562 else
563 false_expr = NULL_RTX;
565 #ifdef IFCVT_MODIFY_TESTS
566 /* If the machine description needs to modify the tests, such as setting a
567 conditional execution register from a comparison, it can do so here. */
568 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
570 /* See if the conversion failed. */
571 if (!true_expr || !false_expr)
572 goto fail;
573 #endif
575 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
576 if (true_prob_val)
578 true_prob_val = XEXP (true_prob_val, 0);
579 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
581 else
582 false_prob_val = NULL_RTX;
584 /* If we have && or || tests, do them here. These tests are in the adjacent
585 blocks after the first block containing the test. */
586 if (ce_info->num_multiple_test_blocks > 0)
588 basic_block bb = test_bb;
589 basic_block last_test_bb = ce_info->last_test_bb;
591 if (! false_expr)
592 goto fail;
596 rtx start, end;
597 rtx t, f;
598 enum rtx_code f_code;
600 bb = block_fallthru (bb);
601 start = first_active_insn (bb);
602 end = last_active_insn (bb, TRUE);
603 if (start
604 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
605 false_prob_val, FALSE))
606 goto fail;
608 /* If the conditional jump is more than just a conditional jump, then
609 we can not do conditional execution conversion on this block. */
610 if (! onlyjump_p (BB_END (bb)))
611 goto fail;
613 /* Find the conditional jump and isolate the test. */
614 t = cond_exec_get_condition (BB_END (bb));
615 if (! t)
616 goto fail;
618 f_code = reversed_comparison_code (t, BB_END (bb));
619 if (f_code == UNKNOWN)
620 goto fail;
622 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
623 if (ce_info->and_and_p)
625 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
626 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
628 else
630 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
631 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
634 /* If the machine description needs to modify the tests, such as
635 setting a conditional execution register from a comparison, it can
636 do so here. */
637 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
638 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
640 /* See if the conversion failed. */
641 if (!t || !f)
642 goto fail;
643 #endif
645 true_expr = t;
646 false_expr = f;
648 while (bb != last_test_bb);
651 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
652 on then THEN block. */
653 then_mod_ok = (else_bb == NULL_BLOCK);
655 /* Go through the THEN and ELSE blocks converting the insns if possible
656 to conditional execution. */
658 if (then_end
659 && (! false_expr
660 || ! cond_exec_process_insns (ce_info, then_start, then_end,
661 false_expr, false_prob_val,
662 then_mod_ok)))
663 goto fail;
665 if (else_bb && else_end
666 && ! cond_exec_process_insns (ce_info, else_start, else_end,
667 true_expr, true_prob_val, TRUE))
668 goto fail;
670 /* If we cannot apply the changes, fail. Do not go through the normal fail
671 processing, since apply_change_group will call cancel_changes. */
672 if (! apply_change_group ())
674 #ifdef IFCVT_MODIFY_CANCEL
675 /* Cancel any machine dependent changes. */
676 IFCVT_MODIFY_CANCEL (ce_info);
677 #endif
678 return FALSE;
681 #ifdef IFCVT_MODIFY_FINAL
682 /* Do any machine dependent final modifications. */
683 IFCVT_MODIFY_FINAL (ce_info);
684 #endif
686 /* Conversion succeeded. */
687 if (dump_file)
688 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
689 n_insns, (n_insns == 1) ? " was" : "s were");
691 /* Merge the blocks! If we had matching sequences, make sure to delete one
692 copy at the appropriate location first: delete the copy in the THEN branch
693 for a tail sequence so that the remaining one is executed last for both
694 branches, and delete the copy in the ELSE branch for a head sequence so
695 that the remaining one is executed first for both branches. */
696 if (then_first_tail)
698 rtx from = then_first_tail;
699 if (!INSN_P (from))
700 from = find_active_insn_after (then_bb, from);
701 delete_insn_chain (from, BB_END (then_bb), false);
703 if (else_last_head)
704 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
706 merge_if_block (ce_info);
707 cond_exec_changed_p = TRUE;
708 return TRUE;
710 fail:
711 #ifdef IFCVT_MODIFY_CANCEL
712 /* Cancel any machine dependent changes. */
713 IFCVT_MODIFY_CANCEL (ce_info);
714 #endif
716 cancel_changes (0);
717 return FALSE;
720 /* Used by noce_process_if_block to communicate with its subroutines.
722 The subroutines know that A and B may be evaluated freely. They
723 know that X is a register. They should insert new instructions
724 before cond_earliest. */
726 struct noce_if_info
728 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
729 basic_block test_bb, then_bb, else_bb, join_bb;
731 /* The jump that ends TEST_BB. */
732 rtx jump;
734 /* The jump condition. */
735 rtx cond;
737 /* New insns should be inserted before this one. */
738 rtx cond_earliest;
740 /* Insns in the THEN and ELSE block. There is always just this
741 one insns in those blocks. The insns are single_set insns.
742 If there was no ELSE block, INSN_B is the last insn before
743 COND_EARLIEST, or NULL_RTX. In the former case, the insn
744 operands are still valid, as if INSN_B was moved down below
745 the jump. */
746 rtx insn_a, insn_b;
748 /* The SET_SRC of INSN_A and INSN_B. */
749 rtx a, b;
751 /* The SET_DEST of INSN_A. */
752 rtx x;
754 /* True if this if block is not canonical. In the canonical form of
755 if blocks, the THEN_BB is the block reached via the fallthru edge
756 from TEST_BB. For the noce transformations, we allow the symmetric
757 form as well. */
758 bool then_else_reversed;
760 /* Estimated cost of the particular branch instruction. */
761 int branch_cost;
764 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
765 static int noce_try_move (struct noce_if_info *);
766 static int noce_try_store_flag (struct noce_if_info *);
767 static int noce_try_addcc (struct noce_if_info *);
768 static int noce_try_store_flag_constants (struct noce_if_info *);
769 static int noce_try_store_flag_mask (struct noce_if_info *);
770 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
771 rtx, rtx, rtx);
772 static int noce_try_cmove (struct noce_if_info *);
773 static int noce_try_cmove_arith (struct noce_if_info *);
774 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
775 static int noce_try_minmax (struct noce_if_info *);
776 static int noce_try_abs (struct noce_if_info *);
777 static int noce_try_sign_mask (struct noce_if_info *);
779 /* Helper function for noce_try_store_flag*. */
781 static rtx
782 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
783 int normalize)
785 rtx cond = if_info->cond;
786 int cond_complex;
787 enum rtx_code code;
789 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
790 || ! general_operand (XEXP (cond, 1), VOIDmode));
792 /* If earliest == jump, or when the condition is complex, try to
793 build the store_flag insn directly. */
795 if (cond_complex)
797 rtx set = pc_set (if_info->jump);
798 cond = XEXP (SET_SRC (set), 0);
799 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
800 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
801 reversep = !reversep;
802 if (if_info->then_else_reversed)
803 reversep = !reversep;
806 if (reversep)
807 code = reversed_comparison_code (cond, if_info->jump);
808 else
809 code = GET_CODE (cond);
811 if ((if_info->cond_earliest == if_info->jump || cond_complex)
812 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
814 rtx tmp;
816 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
817 XEXP (cond, 1));
818 tmp = gen_rtx_SET (VOIDmode, x, tmp);
820 start_sequence ();
821 tmp = emit_insn (tmp);
823 if (recog_memoized (tmp) >= 0)
825 tmp = get_insns ();
826 end_sequence ();
827 emit_insn (tmp);
829 if_info->cond_earliest = if_info->jump;
831 return x;
834 end_sequence ();
837 /* Don't even try if the comparison operands or the mode of X are weird. */
838 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
839 return NULL_RTX;
841 return emit_store_flag (x, code, XEXP (cond, 0),
842 XEXP (cond, 1), VOIDmode,
843 (code == LTU || code == LEU
844 || code == GEU || code == GTU), normalize);
847 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
848 X is the destination/target and Y is the value to copy. */
850 static void
851 noce_emit_move_insn (rtx x, rtx y)
853 enum machine_mode outmode;
854 rtx outer, inner;
855 int bitpos;
857 if (GET_CODE (x) != STRICT_LOW_PART)
859 rtx seq, insn, target;
860 optab ot;
862 start_sequence ();
863 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
864 otherwise construct a suitable SET pattern ourselves. */
865 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
866 ? emit_move_insn (x, y)
867 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
868 seq = get_insns ();
869 end_sequence ();
871 if (recog_memoized (insn) <= 0)
873 if (GET_CODE (x) == ZERO_EXTRACT)
875 rtx op = XEXP (x, 0);
876 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
877 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
879 /* store_bit_field expects START to be relative to
880 BYTES_BIG_ENDIAN and adjusts this value for machines with
881 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
882 invoke store_bit_field again it is necessary to have the START
883 value from the first call. */
884 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
886 if (MEM_P (op))
887 start = BITS_PER_UNIT - start - size;
888 else
890 gcc_assert (REG_P (op));
891 start = BITS_PER_WORD - start - size;
895 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
896 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
897 return;
900 switch (GET_RTX_CLASS (GET_CODE (y)))
902 case RTX_UNARY:
903 ot = code_to_optab (GET_CODE (y));
904 if (ot)
906 start_sequence ();
907 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
908 if (target != NULL_RTX)
910 if (target != x)
911 emit_move_insn (x, target);
912 seq = get_insns ();
914 end_sequence ();
916 break;
918 case RTX_BIN_ARITH:
919 case RTX_COMM_ARITH:
920 ot = code_to_optab (GET_CODE (y));
921 if (ot)
923 start_sequence ();
924 target = expand_binop (GET_MODE (y), ot,
925 XEXP (y, 0), XEXP (y, 1),
926 x, 0, OPTAB_DIRECT);
927 if (target != NULL_RTX)
929 if (target != x)
930 emit_move_insn (x, target);
931 seq = get_insns ();
933 end_sequence ();
935 break;
937 default:
938 break;
942 emit_insn (seq);
943 return;
946 outer = XEXP (x, 0);
947 inner = XEXP (outer, 0);
948 outmode = GET_MODE (outer);
949 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
950 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
951 0, 0, outmode, y);
954 /* Return sequence of instructions generated by if conversion. This
955 function calls end_sequence() to end the current stream, ensures
956 that are instructions are unshared, recognizable non-jump insns.
957 On failure, this function returns a NULL_RTX. */
959 static rtx
960 end_ifcvt_sequence (struct noce_if_info *if_info)
962 rtx insn;
963 rtx seq = get_insns ();
965 set_used_flags (if_info->x);
966 set_used_flags (if_info->cond);
967 unshare_all_rtl_in_chain (seq);
968 end_sequence ();
970 /* Make sure that all of the instructions emitted are recognizable,
971 and that we haven't introduced a new jump instruction.
972 As an exercise for the reader, build a general mechanism that
973 allows proper placement of required clobbers. */
974 for (insn = seq; insn; insn = NEXT_INSN (insn))
975 if (JUMP_P (insn)
976 || recog_memoized (insn) == -1)
977 return NULL_RTX;
979 return seq;
982 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
983 "if (a == b) x = a; else x = b" into "x = b". */
985 static int
986 noce_try_move (struct noce_if_info *if_info)
988 rtx cond = if_info->cond;
989 enum rtx_code code = GET_CODE (cond);
990 rtx y, seq;
992 if (code != NE && code != EQ)
993 return FALSE;
995 /* This optimization isn't valid if either A or B could be a NaN
996 or a signed zero. */
997 if (HONOR_NANS (GET_MODE (if_info->x))
998 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
999 return FALSE;
1001 /* Check whether the operands of the comparison are A and in
1002 either order. */
1003 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1004 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1005 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1006 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1008 y = (code == EQ) ? if_info->a : if_info->b;
1010 /* Avoid generating the move if the source is the destination. */
1011 if (! rtx_equal_p (if_info->x, y))
1013 start_sequence ();
1014 noce_emit_move_insn (if_info->x, y);
1015 seq = end_ifcvt_sequence (if_info);
1016 if (!seq)
1017 return FALSE;
1019 emit_insn_before_setloc (seq, if_info->jump,
1020 INSN_LOCATION (if_info->insn_a));
1022 return TRUE;
1024 return FALSE;
1027 /* Convert "if (test) x = 1; else x = 0".
1029 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1030 tried in noce_try_store_flag_constants after noce_try_cmove has had
1031 a go at the conversion. */
1033 static int
1034 noce_try_store_flag (struct noce_if_info *if_info)
1036 int reversep;
1037 rtx target, seq;
1039 if (CONST_INT_P (if_info->b)
1040 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1041 && if_info->a == const0_rtx)
1042 reversep = 0;
1043 else if (if_info->b == const0_rtx
1044 && CONST_INT_P (if_info->a)
1045 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1046 && (reversed_comparison_code (if_info->cond, if_info->jump)
1047 != UNKNOWN))
1048 reversep = 1;
1049 else
1050 return FALSE;
1052 start_sequence ();
1054 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1055 if (target)
1057 if (target != if_info->x)
1058 noce_emit_move_insn (if_info->x, target);
1060 seq = end_ifcvt_sequence (if_info);
1061 if (! seq)
1062 return FALSE;
1064 emit_insn_before_setloc (seq, if_info->jump,
1065 INSN_LOCATION (if_info->insn_a));
1066 return TRUE;
1068 else
1070 end_sequence ();
1071 return FALSE;
1075 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1077 static int
1078 noce_try_store_flag_constants (struct noce_if_info *if_info)
1080 rtx target, seq;
1081 int reversep;
1082 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1083 int normalize, can_reverse;
1084 enum machine_mode mode;
1086 if (CONST_INT_P (if_info->a)
1087 && CONST_INT_P (if_info->b))
1089 mode = GET_MODE (if_info->x);
1090 ifalse = INTVAL (if_info->a);
1091 itrue = INTVAL (if_info->b);
1093 /* Make sure we can represent the difference between the two values. */
1094 if ((itrue - ifalse > 0)
1095 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1096 return FALSE;
1098 diff = trunc_int_for_mode (itrue - ifalse, mode);
1100 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1101 != UNKNOWN);
1103 reversep = 0;
1104 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1105 normalize = 0;
1106 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1107 && (STORE_FLAG_VALUE == 1
1108 || if_info->branch_cost >= 2))
1109 normalize = 1;
1110 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1111 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1112 normalize = 1, reversep = 1;
1113 else if (itrue == -1
1114 && (STORE_FLAG_VALUE == -1
1115 || if_info->branch_cost >= 2))
1116 normalize = -1;
1117 else if (ifalse == -1 && can_reverse
1118 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1119 normalize = -1, reversep = 1;
1120 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1121 || if_info->branch_cost >= 3)
1122 normalize = -1;
1123 else
1124 return FALSE;
1126 if (reversep)
1128 tmp = itrue; itrue = ifalse; ifalse = tmp;
1129 diff = trunc_int_for_mode (-diff, mode);
1132 start_sequence ();
1133 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1134 if (! target)
1136 end_sequence ();
1137 return FALSE;
1140 /* if (test) x = 3; else x = 4;
1141 => x = 3 + (test == 0); */
1142 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1144 target = expand_simple_binop (mode,
1145 (diff == STORE_FLAG_VALUE
1146 ? PLUS : MINUS),
1147 GEN_INT (ifalse), target, if_info->x, 0,
1148 OPTAB_WIDEN);
1151 /* if (test) x = 8; else x = 0;
1152 => x = (test != 0) << 3; */
1153 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1155 target = expand_simple_binop (mode, ASHIFT,
1156 target, GEN_INT (tmp), if_info->x, 0,
1157 OPTAB_WIDEN);
1160 /* if (test) x = -1; else x = b;
1161 => x = -(test != 0) | b; */
1162 else if (itrue == -1)
1164 target = expand_simple_binop (mode, IOR,
1165 target, GEN_INT (ifalse), if_info->x, 0,
1166 OPTAB_WIDEN);
1169 /* if (test) x = a; else x = b;
1170 => x = (-(test != 0) & (b - a)) + a; */
1171 else
1173 target = expand_simple_binop (mode, AND,
1174 target, GEN_INT (diff), if_info->x, 0,
1175 OPTAB_WIDEN);
1176 if (target)
1177 target = expand_simple_binop (mode, PLUS,
1178 target, GEN_INT (ifalse),
1179 if_info->x, 0, OPTAB_WIDEN);
1182 if (! target)
1184 end_sequence ();
1185 return FALSE;
1188 if (target != if_info->x)
1189 noce_emit_move_insn (if_info->x, target);
1191 seq = end_ifcvt_sequence (if_info);
1192 if (!seq)
1193 return FALSE;
1195 emit_insn_before_setloc (seq, if_info->jump,
1196 INSN_LOCATION (if_info->insn_a));
1197 return TRUE;
1200 return FALSE;
1203 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1204 similarly for "foo--". */
1206 static int
1207 noce_try_addcc (struct noce_if_info *if_info)
1209 rtx target, seq;
1210 int subtract, normalize;
1212 if (GET_CODE (if_info->a) == PLUS
1213 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1214 && (reversed_comparison_code (if_info->cond, if_info->jump)
1215 != UNKNOWN))
1217 rtx cond = if_info->cond;
1218 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1220 /* First try to use addcc pattern. */
1221 if (general_operand (XEXP (cond, 0), VOIDmode)
1222 && general_operand (XEXP (cond, 1), VOIDmode))
1224 start_sequence ();
1225 target = emit_conditional_add (if_info->x, code,
1226 XEXP (cond, 0),
1227 XEXP (cond, 1),
1228 VOIDmode,
1229 if_info->b,
1230 XEXP (if_info->a, 1),
1231 GET_MODE (if_info->x),
1232 (code == LTU || code == GEU
1233 || code == LEU || code == GTU));
1234 if (target)
1236 if (target != if_info->x)
1237 noce_emit_move_insn (if_info->x, target);
1239 seq = end_ifcvt_sequence (if_info);
1240 if (!seq)
1241 return FALSE;
1243 emit_insn_before_setloc (seq, if_info->jump,
1244 INSN_LOCATION (if_info->insn_a));
1245 return TRUE;
1247 end_sequence ();
1250 /* If that fails, construct conditional increment or decrement using
1251 setcc. */
1252 if (if_info->branch_cost >= 2
1253 && (XEXP (if_info->a, 1) == const1_rtx
1254 || XEXP (if_info->a, 1) == constm1_rtx))
1256 start_sequence ();
1257 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1258 subtract = 0, normalize = 0;
1259 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1260 subtract = 1, normalize = 0;
1261 else
1262 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1265 target = noce_emit_store_flag (if_info,
1266 gen_reg_rtx (GET_MODE (if_info->x)),
1267 1, normalize);
1269 if (target)
1270 target = expand_simple_binop (GET_MODE (if_info->x),
1271 subtract ? MINUS : PLUS,
1272 if_info->b, target, if_info->x,
1273 0, OPTAB_WIDEN);
1274 if (target)
1276 if (target != if_info->x)
1277 noce_emit_move_insn (if_info->x, target);
1279 seq = end_ifcvt_sequence (if_info);
1280 if (!seq)
1281 return FALSE;
1283 emit_insn_before_setloc (seq, if_info->jump,
1284 INSN_LOCATION (if_info->insn_a));
1285 return TRUE;
1287 end_sequence ();
1291 return FALSE;
1294 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1296 static int
1297 noce_try_store_flag_mask (struct noce_if_info *if_info)
1299 rtx target, seq;
1300 int reversep;
1302 reversep = 0;
1303 if ((if_info->branch_cost >= 2
1304 || STORE_FLAG_VALUE == -1)
1305 && ((if_info->a == const0_rtx
1306 && rtx_equal_p (if_info->b, if_info->x))
1307 || ((reversep = (reversed_comparison_code (if_info->cond,
1308 if_info->jump)
1309 != UNKNOWN))
1310 && if_info->b == const0_rtx
1311 && rtx_equal_p (if_info->a, if_info->x))))
1313 start_sequence ();
1314 target = noce_emit_store_flag (if_info,
1315 gen_reg_rtx (GET_MODE (if_info->x)),
1316 reversep, -1);
1317 if (target)
1318 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1319 if_info->x,
1320 target, if_info->x, 0,
1321 OPTAB_WIDEN);
1323 if (target)
1325 if (target != if_info->x)
1326 noce_emit_move_insn (if_info->x, target);
1328 seq = end_ifcvt_sequence (if_info);
1329 if (!seq)
1330 return FALSE;
1332 emit_insn_before_setloc (seq, if_info->jump,
1333 INSN_LOCATION (if_info->insn_a));
1334 return TRUE;
1337 end_sequence ();
1340 return FALSE;
1343 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1345 static rtx
1346 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1347 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1349 rtx target ATTRIBUTE_UNUSED;
1350 int unsignedp ATTRIBUTE_UNUSED;
1352 /* If earliest == jump, try to build the cmove insn directly.
1353 This is helpful when combine has created some complex condition
1354 (like for alpha's cmovlbs) that we can't hope to regenerate
1355 through the normal interface. */
1357 if (if_info->cond_earliest == if_info->jump)
1359 rtx tmp;
1361 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1362 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1363 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1365 start_sequence ();
1366 tmp = emit_insn (tmp);
1368 if (recog_memoized (tmp) >= 0)
1370 tmp = get_insns ();
1371 end_sequence ();
1372 emit_insn (tmp);
1374 return x;
1377 end_sequence ();
1380 /* Don't even try if the comparison operands are weird. */
1381 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1382 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1383 return NULL_RTX;
1385 #if HAVE_conditional_move
1386 unsignedp = (code == LTU || code == GEU
1387 || code == LEU || code == GTU);
1389 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1390 vtrue, vfalse, GET_MODE (x),
1391 unsignedp);
1392 if (target)
1393 return target;
1395 /* We might be faced with a situation like:
1397 x = (reg:M TARGET)
1398 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1399 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1401 We can't do a conditional move in mode M, but it's possible that we
1402 could do a conditional move in mode N instead and take a subreg of
1403 the result.
1405 If we can't create new pseudos, though, don't bother. */
1406 if (reload_completed)
1407 return NULL_RTX;
1409 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1411 rtx reg_vtrue = SUBREG_REG (vtrue);
1412 rtx reg_vfalse = SUBREG_REG (vfalse);
1413 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1414 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1415 rtx promoted_target;
1417 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1418 || byte_vtrue != byte_vfalse
1419 || (SUBREG_PROMOTED_VAR_P (vtrue)
1420 != SUBREG_PROMOTED_VAR_P (vfalse))
1421 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1422 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1423 return NULL_RTX;
1425 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1427 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1428 VOIDmode, reg_vtrue, reg_vfalse,
1429 GET_MODE (reg_vtrue), unsignedp);
1430 /* Nope, couldn't do it in that mode either. */
1431 if (!target)
1432 return NULL_RTX;
1434 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1435 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1436 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1437 emit_move_insn (x, target);
1438 return x;
1440 else
1441 return NULL_RTX;
1442 #else
1443 /* We'll never get here, as noce_process_if_block doesn't call the
1444 functions involved. Ifdef code, however, should be discouraged
1445 because it leads to typos in the code not selected. However,
1446 emit_conditional_move won't exist either. */
1447 return NULL_RTX;
1448 #endif
1451 /* Try only simple constants and registers here. More complex cases
1452 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1453 has had a go at it. */
1455 static int
1456 noce_try_cmove (struct noce_if_info *if_info)
1458 enum rtx_code code;
1459 rtx target, seq;
1461 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1462 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1464 start_sequence ();
1466 code = GET_CODE (if_info->cond);
1467 target = noce_emit_cmove (if_info, if_info->x, code,
1468 XEXP (if_info->cond, 0),
1469 XEXP (if_info->cond, 1),
1470 if_info->a, if_info->b);
1472 if (target)
1474 if (target != if_info->x)
1475 noce_emit_move_insn (if_info->x, target);
1477 seq = end_ifcvt_sequence (if_info);
1478 if (!seq)
1479 return FALSE;
1481 emit_insn_before_setloc (seq, if_info->jump,
1482 INSN_LOCATION (if_info->insn_a));
1483 return TRUE;
1485 else
1487 end_sequence ();
1488 return FALSE;
1492 return FALSE;
1495 /* Try more complex cases involving conditional_move. */
1497 static int
1498 noce_try_cmove_arith (struct noce_if_info *if_info)
1500 rtx a = if_info->a;
1501 rtx b = if_info->b;
1502 rtx x = if_info->x;
1503 rtx orig_a, orig_b;
1504 rtx insn_a, insn_b;
1505 rtx tmp, target;
1506 int is_mem = 0;
1507 int insn_cost;
1508 enum rtx_code code;
1510 /* A conditional move from two memory sources is equivalent to a
1511 conditional on their addresses followed by a load. Don't do this
1512 early because it'll screw alias analysis. Note that we've
1513 already checked for no side effects. */
1514 /* ??? FIXME: Magic number 5. */
1515 if (cse_not_expected
1516 && MEM_P (a) && MEM_P (b)
1517 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1518 && if_info->branch_cost >= 5)
1520 enum machine_mode address_mode = get_address_mode (a);
1522 a = XEXP (a, 0);
1523 b = XEXP (b, 0);
1524 x = gen_reg_rtx (address_mode);
1525 is_mem = 1;
1528 /* ??? We could handle this if we knew that a load from A or B could
1529 not trap or fault. This is also true if we've already loaded
1530 from the address along the path from ENTRY. */
1531 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1532 return FALSE;
1534 /* if (test) x = a + b; else x = c - d;
1535 => y = a + b;
1536 x = c - d;
1537 if (test)
1538 x = y;
1541 code = GET_CODE (if_info->cond);
1542 insn_a = if_info->insn_a;
1543 insn_b = if_info->insn_b;
1545 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1546 if insn_rtx_cost can't be estimated. */
1547 if (insn_a)
1549 insn_cost
1550 = insn_rtx_cost (PATTERN (insn_a),
1551 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1552 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1553 return FALSE;
1555 else
1556 insn_cost = 0;
1558 if (insn_b)
1560 insn_cost
1561 += insn_rtx_cost (PATTERN (insn_b),
1562 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1563 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1564 return FALSE;
1567 /* Possibly rearrange operands to make things come out more natural. */
1568 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1570 int reversep = 0;
1571 if (rtx_equal_p (b, x))
1572 reversep = 1;
1573 else if (general_operand (b, GET_MODE (b)))
1574 reversep = 1;
1576 if (reversep)
1578 code = reversed_comparison_code (if_info->cond, if_info->jump);
1579 tmp = a, a = b, b = tmp;
1580 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1584 start_sequence ();
1586 orig_a = a;
1587 orig_b = b;
1589 /* If either operand is complex, load it into a register first.
1590 The best way to do this is to copy the original insn. In this
1591 way we preserve any clobbers etc that the insn may have had.
1592 This is of course not possible in the IS_MEM case. */
1593 if (! general_operand (a, GET_MODE (a)))
1595 rtx set;
1597 if (is_mem)
1599 tmp = gen_reg_rtx (GET_MODE (a));
1600 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1602 else if (! insn_a)
1603 goto end_seq_and_fail;
1604 else
1606 a = gen_reg_rtx (GET_MODE (a));
1607 tmp = copy_rtx (insn_a);
1608 set = single_set (tmp);
1609 SET_DEST (set) = a;
1610 tmp = emit_insn (PATTERN (tmp));
1612 if (recog_memoized (tmp) < 0)
1613 goto end_seq_and_fail;
1615 if (! general_operand (b, GET_MODE (b)))
1617 rtx set, last;
1619 if (is_mem)
1621 tmp = gen_reg_rtx (GET_MODE (b));
1622 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1624 else if (! insn_b)
1625 goto end_seq_and_fail;
1626 else
1628 b = gen_reg_rtx (GET_MODE (b));
1629 tmp = copy_rtx (insn_b);
1630 set = single_set (tmp);
1631 SET_DEST (set) = b;
1632 tmp = PATTERN (tmp);
1635 /* If insn to set up A clobbers any registers B depends on, try to
1636 swap insn that sets up A with the one that sets up B. If even
1637 that doesn't help, punt. */
1638 last = get_last_insn ();
1639 if (last && modified_in_p (orig_b, last))
1641 tmp = emit_insn_before (tmp, get_insns ());
1642 if (modified_in_p (orig_a, tmp))
1643 goto end_seq_and_fail;
1645 else
1646 tmp = emit_insn (tmp);
1648 if (recog_memoized (tmp) < 0)
1649 goto end_seq_and_fail;
1652 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1653 XEXP (if_info->cond, 1), a, b);
1655 if (! target)
1656 goto end_seq_and_fail;
1658 /* If we're handling a memory for above, emit the load now. */
1659 if (is_mem)
1661 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1663 /* Copy over flags as appropriate. */
1664 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1665 MEM_VOLATILE_P (tmp) = 1;
1666 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1667 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1668 set_mem_align (tmp,
1669 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1671 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1672 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1674 noce_emit_move_insn (if_info->x, tmp);
1676 else if (target != x)
1677 noce_emit_move_insn (x, target);
1679 tmp = end_ifcvt_sequence (if_info);
1680 if (!tmp)
1681 return FALSE;
1683 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATION (if_info->insn_a));
1684 return TRUE;
1686 end_seq_and_fail:
1687 end_sequence ();
1688 return FALSE;
1691 /* For most cases, the simplified condition we found is the best
1692 choice, but this is not the case for the min/max/abs transforms.
1693 For these we wish to know that it is A or B in the condition. */
1695 static rtx
1696 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1697 rtx *earliest)
1699 rtx cond, set, insn;
1700 int reverse;
1702 /* If target is already mentioned in the known condition, return it. */
1703 if (reg_mentioned_p (target, if_info->cond))
1705 *earliest = if_info->cond_earliest;
1706 return if_info->cond;
1709 set = pc_set (if_info->jump);
1710 cond = XEXP (SET_SRC (set), 0);
1711 reverse
1712 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1713 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1714 if (if_info->then_else_reversed)
1715 reverse = !reverse;
1717 /* If we're looking for a constant, try to make the conditional
1718 have that constant in it. There are two reasons why it may
1719 not have the constant we want:
1721 1. GCC may have needed to put the constant in a register, because
1722 the target can't compare directly against that constant. For
1723 this case, we look for a SET immediately before the comparison
1724 that puts a constant in that register.
1726 2. GCC may have canonicalized the conditional, for example
1727 replacing "if x < 4" with "if x <= 3". We can undo that (or
1728 make equivalent types of changes) to get the constants we need
1729 if they're off by one in the right direction. */
1731 if (CONST_INT_P (target))
1733 enum rtx_code code = GET_CODE (if_info->cond);
1734 rtx op_a = XEXP (if_info->cond, 0);
1735 rtx op_b = XEXP (if_info->cond, 1);
1736 rtx prev_insn;
1738 /* First, look to see if we put a constant in a register. */
1739 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1740 if (prev_insn
1741 && BLOCK_FOR_INSN (prev_insn)
1742 == BLOCK_FOR_INSN (if_info->cond_earliest)
1743 && INSN_P (prev_insn)
1744 && GET_CODE (PATTERN (prev_insn)) == SET)
1746 rtx src = find_reg_equal_equiv_note (prev_insn);
1747 if (!src)
1748 src = SET_SRC (PATTERN (prev_insn));
1749 if (CONST_INT_P (src))
1751 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1752 op_a = src;
1753 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1754 op_b = src;
1756 if (CONST_INT_P (op_a))
1758 rtx tmp = op_a;
1759 op_a = op_b;
1760 op_b = tmp;
1761 code = swap_condition (code);
1766 /* Now, look to see if we can get the right constant by
1767 adjusting the conditional. */
1768 if (CONST_INT_P (op_b))
1770 HOST_WIDE_INT desired_val = INTVAL (target);
1771 HOST_WIDE_INT actual_val = INTVAL (op_b);
1773 switch (code)
1775 case LT:
1776 if (actual_val == desired_val + 1)
1778 code = LE;
1779 op_b = GEN_INT (desired_val);
1781 break;
1782 case LE:
1783 if (actual_val == desired_val - 1)
1785 code = LT;
1786 op_b = GEN_INT (desired_val);
1788 break;
1789 case GT:
1790 if (actual_val == desired_val - 1)
1792 code = GE;
1793 op_b = GEN_INT (desired_val);
1795 break;
1796 case GE:
1797 if (actual_val == desired_val + 1)
1799 code = GT;
1800 op_b = GEN_INT (desired_val);
1802 break;
1803 default:
1804 break;
1808 /* If we made any changes, generate a new conditional that is
1809 equivalent to what we started with, but has the right
1810 constants in it. */
1811 if (code != GET_CODE (if_info->cond)
1812 || op_a != XEXP (if_info->cond, 0)
1813 || op_b != XEXP (if_info->cond, 1))
1815 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1816 *earliest = if_info->cond_earliest;
1817 return cond;
1821 cond = canonicalize_condition (if_info->jump, cond, reverse,
1822 earliest, target, false, true);
1823 if (! cond || ! reg_mentioned_p (target, cond))
1824 return NULL;
1826 /* We almost certainly searched back to a different place.
1827 Need to re-verify correct lifetimes. */
1829 /* X may not be mentioned in the range (cond_earliest, jump]. */
1830 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1831 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1832 return NULL;
1834 /* A and B may not be modified in the range [cond_earliest, jump). */
1835 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1836 if (INSN_P (insn)
1837 && (modified_in_p (if_info->a, insn)
1838 || modified_in_p (if_info->b, insn)))
1839 return NULL;
1841 return cond;
1844 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1846 static int
1847 noce_try_minmax (struct noce_if_info *if_info)
1849 rtx cond, earliest, target, seq;
1850 enum rtx_code code, op;
1851 int unsignedp;
1853 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1854 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1855 to get the target to tell us... */
1856 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1857 || HONOR_NANS (GET_MODE (if_info->x)))
1858 return FALSE;
1860 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1861 if (!cond)
1862 return FALSE;
1864 /* Verify the condition is of the form we expect, and canonicalize
1865 the comparison code. */
1866 code = GET_CODE (cond);
1867 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1869 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1870 return FALSE;
1872 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1874 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1875 return FALSE;
1876 code = swap_condition (code);
1878 else
1879 return FALSE;
1881 /* Determine what sort of operation this is. Note that the code is for
1882 a taken branch, so the code->operation mapping appears backwards. */
1883 switch (code)
1885 case LT:
1886 case LE:
1887 case UNLT:
1888 case UNLE:
1889 op = SMAX;
1890 unsignedp = 0;
1891 break;
1892 case GT:
1893 case GE:
1894 case UNGT:
1895 case UNGE:
1896 op = SMIN;
1897 unsignedp = 0;
1898 break;
1899 case LTU:
1900 case LEU:
1901 op = UMAX;
1902 unsignedp = 1;
1903 break;
1904 case GTU:
1905 case GEU:
1906 op = UMIN;
1907 unsignedp = 1;
1908 break;
1909 default:
1910 return FALSE;
1913 start_sequence ();
1915 target = expand_simple_binop (GET_MODE (if_info->x), op,
1916 if_info->a, if_info->b,
1917 if_info->x, unsignedp, OPTAB_WIDEN);
1918 if (! target)
1920 end_sequence ();
1921 return FALSE;
1923 if (target != if_info->x)
1924 noce_emit_move_insn (if_info->x, target);
1926 seq = end_ifcvt_sequence (if_info);
1927 if (!seq)
1928 return FALSE;
1930 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1931 if_info->cond = cond;
1932 if_info->cond_earliest = earliest;
1934 return TRUE;
1937 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1938 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1939 etc. */
1941 static int
1942 noce_try_abs (struct noce_if_info *if_info)
1944 rtx cond, earliest, target, seq, a, b, c;
1945 int negate;
1946 bool one_cmpl = false;
1948 /* Reject modes with signed zeros. */
1949 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1950 return FALSE;
1952 /* Recognize A and B as constituting an ABS or NABS. The canonical
1953 form is a branch around the negation, taken when the object is the
1954 first operand of a comparison against 0 that evaluates to true. */
1955 a = if_info->a;
1956 b = if_info->b;
1957 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1958 negate = 0;
1959 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1961 c = a; a = b; b = c;
1962 negate = 1;
1964 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1966 negate = 0;
1967 one_cmpl = true;
1969 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1971 c = a; a = b; b = c;
1972 negate = 1;
1973 one_cmpl = true;
1975 else
1976 return FALSE;
1978 cond = noce_get_alt_condition (if_info, b, &earliest);
1979 if (!cond)
1980 return FALSE;
1982 /* Verify the condition is of the form we expect. */
1983 if (rtx_equal_p (XEXP (cond, 0), b))
1984 c = XEXP (cond, 1);
1985 else if (rtx_equal_p (XEXP (cond, 1), b))
1987 c = XEXP (cond, 0);
1988 negate = !negate;
1990 else
1991 return FALSE;
1993 /* Verify that C is zero. Search one step backward for a
1994 REG_EQUAL note or a simple source if necessary. */
1995 if (REG_P (c))
1997 rtx set, insn = prev_nonnote_insn (earliest);
1998 if (insn
1999 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2000 && (set = single_set (insn))
2001 && rtx_equal_p (SET_DEST (set), c))
2003 rtx note = find_reg_equal_equiv_note (insn);
2004 if (note)
2005 c = XEXP (note, 0);
2006 else
2007 c = SET_SRC (set);
2009 else
2010 return FALSE;
2012 if (MEM_P (c)
2013 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2014 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2015 c = get_pool_constant (XEXP (c, 0));
2017 /* Work around funny ideas get_condition has wrt canonicalization.
2018 Note that these rtx constants are known to be CONST_INT, and
2019 therefore imply integer comparisons. */
2020 if (c == constm1_rtx && GET_CODE (cond) == GT)
2022 else if (c == const1_rtx && GET_CODE (cond) == LT)
2024 else if (c != CONST0_RTX (GET_MODE (b)))
2025 return FALSE;
2027 /* Determine what sort of operation this is. */
2028 switch (GET_CODE (cond))
2030 case LT:
2031 case LE:
2032 case UNLT:
2033 case UNLE:
2034 negate = !negate;
2035 break;
2036 case GT:
2037 case GE:
2038 case UNGT:
2039 case UNGE:
2040 break;
2041 default:
2042 return FALSE;
2045 start_sequence ();
2046 if (one_cmpl)
2047 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2048 if_info->x);
2049 else
2050 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2052 /* ??? It's a quandary whether cmove would be better here, especially
2053 for integers. Perhaps combine will clean things up. */
2054 if (target && negate)
2056 if (one_cmpl)
2057 target = expand_simple_unop (GET_MODE (target), NOT, target,
2058 if_info->x, 0);
2059 else
2060 target = expand_simple_unop (GET_MODE (target), NEG, target,
2061 if_info->x, 0);
2064 if (! target)
2066 end_sequence ();
2067 return FALSE;
2070 if (target != if_info->x)
2071 noce_emit_move_insn (if_info->x, target);
2073 seq = end_ifcvt_sequence (if_info);
2074 if (!seq)
2075 return FALSE;
2077 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2078 if_info->cond = cond;
2079 if_info->cond_earliest = earliest;
2081 return TRUE;
2084 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2086 static int
2087 noce_try_sign_mask (struct noce_if_info *if_info)
2089 rtx cond, t, m, c, seq;
2090 enum machine_mode mode;
2091 enum rtx_code code;
2092 bool t_unconditional;
2094 cond = if_info->cond;
2095 code = GET_CODE (cond);
2096 m = XEXP (cond, 0);
2097 c = XEXP (cond, 1);
2099 t = NULL_RTX;
2100 if (if_info->a == const0_rtx)
2102 if ((code == LT && c == const0_rtx)
2103 || (code == LE && c == constm1_rtx))
2104 t = if_info->b;
2106 else if (if_info->b == const0_rtx)
2108 if ((code == GE && c == const0_rtx)
2109 || (code == GT && c == constm1_rtx))
2110 t = if_info->a;
2113 if (! t || side_effects_p (t))
2114 return FALSE;
2116 /* We currently don't handle different modes. */
2117 mode = GET_MODE (t);
2118 if (GET_MODE (m) != mode)
2119 return FALSE;
2121 /* This is only profitable if T is unconditionally executed/evaluated in the
2122 original insn sequence or T is cheap. The former happens if B is the
2123 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2124 INSN_B which can happen for e.g. conditional stores to memory. For the
2125 cost computation use the block TEST_BB where the evaluation will end up
2126 after the transformation. */
2127 t_unconditional =
2128 (t == if_info->b
2129 && (if_info->insn_b == NULL_RTX
2130 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2131 if (!(t_unconditional
2132 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2133 < COSTS_N_INSNS (2))))
2134 return FALSE;
2136 start_sequence ();
2137 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2138 "(signed) m >> 31" directly. This benefits targets with specialized
2139 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2140 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2141 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2142 : NULL_RTX;
2144 if (!t)
2146 end_sequence ();
2147 return FALSE;
2150 noce_emit_move_insn (if_info->x, t);
2152 seq = end_ifcvt_sequence (if_info);
2153 if (!seq)
2154 return FALSE;
2156 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2157 return TRUE;
2161 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2162 transformations. */
2164 static int
2165 noce_try_bitop (struct noce_if_info *if_info)
2167 rtx cond, x, a, result, seq;
2168 enum machine_mode mode;
2169 enum rtx_code code;
2170 int bitnum;
2172 x = if_info->x;
2173 cond = if_info->cond;
2174 code = GET_CODE (cond);
2176 /* Check for no else condition. */
2177 if (! rtx_equal_p (x, if_info->b))
2178 return FALSE;
2180 /* Check for a suitable condition. */
2181 if (code != NE && code != EQ)
2182 return FALSE;
2183 if (XEXP (cond, 1) != const0_rtx)
2184 return FALSE;
2185 cond = XEXP (cond, 0);
2187 /* ??? We could also handle AND here. */
2188 if (GET_CODE (cond) == ZERO_EXTRACT)
2190 if (XEXP (cond, 1) != const1_rtx
2191 || !CONST_INT_P (XEXP (cond, 2))
2192 || ! rtx_equal_p (x, XEXP (cond, 0)))
2193 return FALSE;
2194 bitnum = INTVAL (XEXP (cond, 2));
2195 mode = GET_MODE (x);
2196 if (BITS_BIG_ENDIAN)
2197 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2198 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2199 return FALSE;
2201 else
2202 return FALSE;
2204 a = if_info->a;
2205 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2207 /* Check for "if (X & C) x = x op C". */
2208 if (! rtx_equal_p (x, XEXP (a, 0))
2209 || !CONST_INT_P (XEXP (a, 1))
2210 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2211 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2212 return FALSE;
2214 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2215 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2216 if (GET_CODE (a) == IOR)
2217 result = (code == NE) ? a : NULL_RTX;
2218 else if (code == NE)
2220 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2221 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2222 result = simplify_gen_binary (IOR, mode, x, result);
2224 else
2226 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2227 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2228 result = simplify_gen_binary (AND, mode, x, result);
2231 else if (GET_CODE (a) == AND)
2233 /* Check for "if (X & C) x &= ~C". */
2234 if (! rtx_equal_p (x, XEXP (a, 0))
2235 || !CONST_INT_P (XEXP (a, 1))
2236 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2237 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2238 return FALSE;
2240 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2241 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2242 result = (code == EQ) ? a : NULL_RTX;
2244 else
2245 return FALSE;
2247 if (result)
2249 start_sequence ();
2250 noce_emit_move_insn (x, result);
2251 seq = end_ifcvt_sequence (if_info);
2252 if (!seq)
2253 return FALSE;
2255 emit_insn_before_setloc (seq, if_info->jump,
2256 INSN_LOCATION (if_info->insn_a));
2258 return TRUE;
2262 /* Similar to get_condition, only the resulting condition must be
2263 valid at JUMP, instead of at EARLIEST.
2265 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2266 THEN block of the caller, and we have to reverse the condition. */
2268 static rtx
2269 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2271 rtx cond, set, tmp;
2272 bool reverse;
2274 if (! any_condjump_p (jump))
2275 return NULL_RTX;
2277 set = pc_set (jump);
2279 /* If this branches to JUMP_LABEL when the condition is false,
2280 reverse the condition. */
2281 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2282 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2284 /* We may have to reverse because the caller's if block is not canonical,
2285 i.e. the THEN block isn't the fallthrough block for the TEST block
2286 (see find_if_header). */
2287 if (then_else_reversed)
2288 reverse = !reverse;
2290 /* If the condition variable is a register and is MODE_INT, accept it. */
2292 cond = XEXP (SET_SRC (set), 0);
2293 tmp = XEXP (cond, 0);
2294 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2295 && (GET_MODE (tmp) != BImode
2296 || !targetm.small_register_classes_for_mode_p (BImode)))
2298 *earliest = jump;
2300 if (reverse)
2301 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2302 GET_MODE (cond), tmp, XEXP (cond, 1));
2303 return cond;
2306 /* Otherwise, fall back on canonicalize_condition to do the dirty
2307 work of manipulating MODE_CC values and COMPARE rtx codes. */
2308 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2309 NULL_RTX, false, true);
2311 /* We don't handle side-effects in the condition, like handling
2312 REG_INC notes and making sure no duplicate conditions are emitted. */
2313 if (tmp != NULL_RTX && side_effects_p (tmp))
2314 return NULL_RTX;
2316 return tmp;
2319 /* Return true if OP is ok for if-then-else processing. */
2321 static int
2322 noce_operand_ok (const_rtx op)
2324 if (side_effects_p (op))
2325 return FALSE;
2327 /* We special-case memories, so handle any of them with
2328 no address side effects. */
2329 if (MEM_P (op))
2330 return ! side_effects_p (XEXP (op, 0));
2332 return ! may_trap_p (op);
2335 /* Return true if a write into MEM may trap or fault. */
2337 static bool
2338 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2340 rtx addr;
2342 if (MEM_READONLY_P (mem))
2343 return true;
2345 if (may_trap_or_fault_p (mem))
2346 return true;
2348 addr = XEXP (mem, 0);
2350 /* Call target hook to avoid the effects of -fpic etc.... */
2351 addr = targetm.delegitimize_address (addr);
2353 while (addr)
2354 switch (GET_CODE (addr))
2356 case CONST:
2357 case PRE_DEC:
2358 case PRE_INC:
2359 case POST_DEC:
2360 case POST_INC:
2361 case POST_MODIFY:
2362 addr = XEXP (addr, 0);
2363 break;
2364 case LO_SUM:
2365 case PRE_MODIFY:
2366 addr = XEXP (addr, 1);
2367 break;
2368 case PLUS:
2369 if (CONST_INT_P (XEXP (addr, 1)))
2370 addr = XEXP (addr, 0);
2371 else
2372 return false;
2373 break;
2374 case LABEL_REF:
2375 return true;
2376 case SYMBOL_REF:
2377 if (SYMBOL_REF_DECL (addr)
2378 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2379 return true;
2380 return false;
2381 default:
2382 return false;
2385 return false;
2388 /* Return whether we can use store speculation for MEM. TOP_BB is the
2389 basic block above the conditional block where we are considering
2390 doing the speculative store. We look for whether MEM is set
2391 unconditionally later in the function. */
2393 static bool
2394 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2396 basic_block dominator;
2398 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2399 dominator != NULL;
2400 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2402 rtx insn;
2404 FOR_BB_INSNS (dominator, insn)
2406 /* If we see something that might be a memory barrier, we
2407 have to stop looking. Even if the MEM is set later in
2408 the function, we still don't want to set it
2409 unconditionally before the barrier. */
2410 if (INSN_P (insn)
2411 && (volatile_insn_p (PATTERN (insn))
2412 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2413 return false;
2415 if (memory_must_be_modified_in_insn_p (mem, insn))
2416 return true;
2417 if (modified_in_p (XEXP (mem, 0), insn))
2418 return false;
2423 return false;
2426 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2427 it without using conditional execution. Return TRUE if we were successful
2428 at converting the block. */
2430 static int
2431 noce_process_if_block (struct noce_if_info *if_info)
2433 basic_block test_bb = if_info->test_bb; /* test block */
2434 basic_block then_bb = if_info->then_bb; /* THEN */
2435 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2436 basic_block join_bb = if_info->join_bb; /* JOIN */
2437 rtx jump = if_info->jump;
2438 rtx cond = if_info->cond;
2439 rtx insn_a, insn_b;
2440 rtx set_a, set_b;
2441 rtx orig_x, x, a, b;
2443 /* We're looking for patterns of the form
2445 (1) if (...) x = a; else x = b;
2446 (2) x = b; if (...) x = a;
2447 (3) if (...) x = a; // as if with an initial x = x.
2449 The later patterns require jumps to be more expensive.
2451 ??? For future expansion, look for multiple X in such patterns. */
2453 /* Look for one of the potential sets. */
2454 insn_a = first_active_insn (then_bb);
2455 if (! insn_a
2456 || insn_a != last_active_insn (then_bb, FALSE)
2457 || (set_a = single_set (insn_a)) == NULL_RTX)
2458 return FALSE;
2460 x = SET_DEST (set_a);
2461 a = SET_SRC (set_a);
2463 /* Look for the other potential set. Make sure we've got equivalent
2464 destinations. */
2465 /* ??? This is overconservative. Storing to two different mems is
2466 as easy as conditionally computing the address. Storing to a
2467 single mem merely requires a scratch memory to use as one of the
2468 destination addresses; often the memory immediately below the
2469 stack pointer is available for this. */
2470 set_b = NULL_RTX;
2471 if (else_bb)
2473 insn_b = first_active_insn (else_bb);
2474 if (! insn_b
2475 || insn_b != last_active_insn (else_bb, FALSE)
2476 || (set_b = single_set (insn_b)) == NULL_RTX
2477 || ! rtx_equal_p (x, SET_DEST (set_b)))
2478 return FALSE;
2480 else
2482 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2483 /* We're going to be moving the evaluation of B down from above
2484 COND_EARLIEST to JUMP. Make sure the relevant data is still
2485 intact. */
2486 if (! insn_b
2487 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2488 || !NONJUMP_INSN_P (insn_b)
2489 || (set_b = single_set (insn_b)) == NULL_RTX
2490 || ! rtx_equal_p (x, SET_DEST (set_b))
2491 || ! noce_operand_ok (SET_SRC (set_b))
2492 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2493 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2494 /* Likewise with X. In particular this can happen when
2495 noce_get_condition looks farther back in the instruction
2496 stream than one might expect. */
2497 || reg_overlap_mentioned_p (x, cond)
2498 || reg_overlap_mentioned_p (x, a)
2499 || modified_between_p (x, insn_b, jump))
2500 insn_b = set_b = NULL_RTX;
2503 /* If x has side effects then only the if-then-else form is safe to
2504 convert. But even in that case we would need to restore any notes
2505 (such as REG_INC) at then end. That can be tricky if
2506 noce_emit_move_insn expands to more than one insn, so disable the
2507 optimization entirely for now if there are side effects. */
2508 if (side_effects_p (x))
2509 return FALSE;
2511 b = (set_b ? SET_SRC (set_b) : x);
2513 /* Only operate on register destinations, and even then avoid extending
2514 the lifetime of hard registers on small register class machines. */
2515 orig_x = x;
2516 if (!REG_P (x)
2517 || (HARD_REGISTER_P (x)
2518 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2520 if (GET_MODE (x) == BLKmode)
2521 return FALSE;
2523 if (GET_CODE (x) == ZERO_EXTRACT
2524 && (!CONST_INT_P (XEXP (x, 1))
2525 || !CONST_INT_P (XEXP (x, 2))))
2526 return FALSE;
2528 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2529 ? XEXP (x, 0) : x));
2532 /* Don't operate on sources that may trap or are volatile. */
2533 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2534 return FALSE;
2536 retry:
2537 /* Set up the info block for our subroutines. */
2538 if_info->insn_a = insn_a;
2539 if_info->insn_b = insn_b;
2540 if_info->x = x;
2541 if_info->a = a;
2542 if_info->b = b;
2544 /* Try optimizations in some approximation of a useful order. */
2545 /* ??? Should first look to see if X is live incoming at all. If it
2546 isn't, we don't need anything but an unconditional set. */
2548 /* Look and see if A and B are really the same. Avoid creating silly
2549 cmove constructs that no one will fix up later. */
2550 if (rtx_equal_p (a, b))
2552 /* If we have an INSN_B, we don't have to create any new rtl. Just
2553 move the instruction that we already have. If we don't have an
2554 INSN_B, that means that A == X, and we've got a noop move. In
2555 that case don't do anything and let the code below delete INSN_A. */
2556 if (insn_b && else_bb)
2558 rtx note;
2560 if (else_bb && insn_b == BB_END (else_bb))
2561 BB_END (else_bb) = PREV_INSN (insn_b);
2562 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2564 /* If there was a REG_EQUAL note, delete it since it may have been
2565 true due to this insn being after a jump. */
2566 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2567 remove_note (insn_b, note);
2569 insn_b = NULL_RTX;
2571 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2572 x must be executed twice. */
2573 else if (insn_b && side_effects_p (orig_x))
2574 return FALSE;
2576 x = orig_x;
2577 goto success;
2580 if (!set_b && MEM_P (orig_x))
2582 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2583 for optimizations if writing to x may trap or fault,
2584 i.e. it's a memory other than a static var or a stack slot,
2585 is misaligned on strict aligned machines or is read-only. If
2586 x is a read-only memory, then the program is valid only if we
2587 avoid the store into it. If there are stores on both the
2588 THEN and ELSE arms, then we can go ahead with the conversion;
2589 either the program is broken, or the condition is always
2590 false such that the other memory is selected. */
2591 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2592 return FALSE;
2594 /* Avoid store speculation: given "if (...) x = a" where x is a
2595 MEM, we only want to do the store if x is always set
2596 somewhere in the function. This avoids cases like
2597 if (pthread_mutex_trylock(mutex))
2598 ++global_variable;
2599 where we only want global_variable to be changed if the mutex
2600 is held. FIXME: This should ideally be expressed directly in
2601 RTL somehow. */
2602 if (!noce_can_store_speculate_p (test_bb, orig_x))
2603 return FALSE;
2606 if (noce_try_move (if_info))
2607 goto success;
2608 if (noce_try_store_flag (if_info))
2609 goto success;
2610 if (noce_try_bitop (if_info))
2611 goto success;
2612 if (noce_try_minmax (if_info))
2613 goto success;
2614 if (noce_try_abs (if_info))
2615 goto success;
2616 if (HAVE_conditional_move
2617 && noce_try_cmove (if_info))
2618 goto success;
2619 if (! targetm.have_conditional_execution ())
2621 if (noce_try_store_flag_constants (if_info))
2622 goto success;
2623 if (noce_try_addcc (if_info))
2624 goto success;
2625 if (noce_try_store_flag_mask (if_info))
2626 goto success;
2627 if (HAVE_conditional_move
2628 && noce_try_cmove_arith (if_info))
2629 goto success;
2630 if (noce_try_sign_mask (if_info))
2631 goto success;
2634 if (!else_bb && set_b)
2636 insn_b = set_b = NULL_RTX;
2637 b = orig_x;
2638 goto retry;
2641 return FALSE;
2643 success:
2645 /* If we used a temporary, fix it up now. */
2646 if (orig_x != x)
2648 rtx seq;
2650 start_sequence ();
2651 noce_emit_move_insn (orig_x, x);
2652 seq = get_insns ();
2653 set_used_flags (orig_x);
2654 unshare_all_rtl_in_chain (seq);
2655 end_sequence ();
2657 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2660 /* The original THEN and ELSE blocks may now be removed. The test block
2661 must now jump to the join block. If the test block and the join block
2662 can be merged, do so. */
2663 if (else_bb)
2665 delete_basic_block (else_bb);
2666 num_true_changes++;
2668 else
2669 remove_edge (find_edge (test_bb, join_bb));
2671 remove_edge (find_edge (then_bb, join_bb));
2672 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2673 delete_basic_block (then_bb);
2674 num_true_changes++;
2676 if (can_merge_blocks_p (test_bb, join_bb))
2678 merge_blocks (test_bb, join_bb);
2679 num_true_changes++;
2682 num_updated_if_blocks++;
2683 return TRUE;
2686 /* Check whether a block is suitable for conditional move conversion.
2687 Every insn must be a simple set of a register to a constant or a
2688 register. For each assignment, store the value in the pointer map
2689 VALS, keyed indexed by register pointer, then store the register
2690 pointer in REGS. COND is the condition we will test. */
2692 static int
2693 check_cond_move_block (basic_block bb,
2694 struct pointer_map_t *vals,
2695 vec<rtx> *regs,
2696 rtx cond)
2698 rtx insn;
2700 /* We can only handle simple jumps at the end of the basic block.
2701 It is almost impossible to update the CFG otherwise. */
2702 insn = BB_END (bb);
2703 if (JUMP_P (insn) && !onlyjump_p (insn))
2704 return FALSE;
2706 FOR_BB_INSNS (bb, insn)
2708 rtx set, dest, src;
2709 void **slot;
2711 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2712 continue;
2713 set = single_set (insn);
2714 if (!set)
2715 return FALSE;
2717 dest = SET_DEST (set);
2718 src = SET_SRC (set);
2719 if (!REG_P (dest)
2720 || (HARD_REGISTER_P (dest)
2721 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2722 return FALSE;
2724 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2725 return FALSE;
2727 if (side_effects_p (src) || side_effects_p (dest))
2728 return FALSE;
2730 if (may_trap_p (src) || may_trap_p (dest))
2731 return FALSE;
2733 /* Don't try to handle this if the source register was
2734 modified earlier in the block. */
2735 if ((REG_P (src)
2736 && pointer_map_contains (vals, src))
2737 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2738 && pointer_map_contains (vals, SUBREG_REG (src))))
2739 return FALSE;
2741 /* Don't try to handle this if the destination register was
2742 modified earlier in the block. */
2743 if (pointer_map_contains (vals, dest))
2744 return FALSE;
2746 /* Don't try to handle this if the condition uses the
2747 destination register. */
2748 if (reg_overlap_mentioned_p (dest, cond))
2749 return FALSE;
2751 /* Don't try to handle this if the source register is modified
2752 later in the block. */
2753 if (!CONSTANT_P (src)
2754 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2755 return FALSE;
2757 slot = pointer_map_insert (vals, (void *) dest);
2758 *slot = (void *) src;
2760 regs->safe_push (dest);
2763 return TRUE;
2766 /* Given a basic block BB suitable for conditional move conversion,
2767 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2768 the register values depending on COND, emit the insns in the block as
2769 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2770 processed. The caller has started a sequence for the conversion.
2771 Return true if successful, false if something goes wrong. */
2773 static bool
2774 cond_move_convert_if_block (struct noce_if_info *if_infop,
2775 basic_block bb, rtx cond,
2776 struct pointer_map_t *then_vals,
2777 struct pointer_map_t *else_vals,
2778 bool else_block_p)
2780 enum rtx_code code;
2781 rtx insn, cond_arg0, cond_arg1;
2783 code = GET_CODE (cond);
2784 cond_arg0 = XEXP (cond, 0);
2785 cond_arg1 = XEXP (cond, 1);
2787 FOR_BB_INSNS (bb, insn)
2789 rtx set, target, dest, t, e;
2790 void **then_slot, **else_slot;
2792 /* ??? Maybe emit conditional debug insn? */
2793 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2794 continue;
2795 set = single_set (insn);
2796 gcc_assert (set && REG_P (SET_DEST (set)));
2798 dest = SET_DEST (set);
2800 then_slot = pointer_map_contains (then_vals, dest);
2801 else_slot = pointer_map_contains (else_vals, dest);
2802 t = then_slot ? (rtx) *then_slot : NULL_RTX;
2803 e = else_slot ? (rtx) *else_slot : NULL_RTX;
2805 if (else_block_p)
2807 /* If this register was set in the then block, we already
2808 handled this case there. */
2809 if (t)
2810 continue;
2811 t = dest;
2812 gcc_assert (e);
2814 else
2816 gcc_assert (t);
2817 if (!e)
2818 e = dest;
2821 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2822 t, e);
2823 if (!target)
2824 return false;
2826 if (target != dest)
2827 noce_emit_move_insn (dest, target);
2830 return true;
2833 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2834 it using only conditional moves. Return TRUE if we were successful at
2835 converting the block. */
2837 static int
2838 cond_move_process_if_block (struct noce_if_info *if_info)
2840 basic_block test_bb = if_info->test_bb;
2841 basic_block then_bb = if_info->then_bb;
2842 basic_block else_bb = if_info->else_bb;
2843 basic_block join_bb = if_info->join_bb;
2844 rtx jump = if_info->jump;
2845 rtx cond = if_info->cond;
2846 rtx seq, loc_insn;
2847 rtx reg;
2848 int c;
2849 struct pointer_map_t *then_vals;
2850 struct pointer_map_t *else_vals;
2851 vec<rtx> then_regs = vNULL;
2852 vec<rtx> else_regs = vNULL;
2853 unsigned int i;
2854 int success_p = FALSE;
2856 /* Build a mapping for each block to the value used for each
2857 register. */
2858 then_vals = pointer_map_create ();
2859 else_vals = pointer_map_create ();
2861 /* Make sure the blocks are suitable. */
2862 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2863 || (else_bb
2864 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2865 goto done;
2867 /* Make sure the blocks can be used together. If the same register
2868 is set in both blocks, and is not set to a constant in both
2869 cases, then both blocks must set it to the same register. We
2870 have already verified that if it is set to a register, that the
2871 source register does not change after the assignment. Also count
2872 the number of registers set in only one of the blocks. */
2873 c = 0;
2874 FOR_EACH_VEC_ELT (then_regs, i, reg)
2876 void **then_slot = pointer_map_contains (then_vals, reg);
2877 void **else_slot = pointer_map_contains (else_vals, reg);
2879 gcc_checking_assert (then_slot);
2880 if (!else_slot)
2881 ++c;
2882 else
2884 rtx then_val = (rtx) *then_slot;
2885 rtx else_val = (rtx) *else_slot;
2886 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2887 && !rtx_equal_p (then_val, else_val))
2888 goto done;
2892 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2893 FOR_EACH_VEC_ELT (else_regs, i, reg)
2895 gcc_checking_assert (pointer_map_contains (else_vals, reg));
2896 if (!pointer_map_contains (then_vals, reg))
2897 ++c;
2900 /* Make sure it is reasonable to convert this block. What matters
2901 is the number of assignments currently made in only one of the
2902 branches, since if we convert we are going to always execute
2903 them. */
2904 if (c > MAX_CONDITIONAL_EXECUTE)
2905 goto done;
2907 /* Try to emit the conditional moves. First do the then block,
2908 then do anything left in the else blocks. */
2909 start_sequence ();
2910 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2911 then_vals, else_vals, false)
2912 || (else_bb
2913 && !cond_move_convert_if_block (if_info, else_bb, cond,
2914 then_vals, else_vals, true)))
2916 end_sequence ();
2917 goto done;
2919 seq = end_ifcvt_sequence (if_info);
2920 if (!seq)
2921 goto done;
2923 loc_insn = first_active_insn (then_bb);
2924 if (!loc_insn)
2926 loc_insn = first_active_insn (else_bb);
2927 gcc_assert (loc_insn);
2929 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
2931 if (else_bb)
2933 delete_basic_block (else_bb);
2934 num_true_changes++;
2936 else
2937 remove_edge (find_edge (test_bb, join_bb));
2939 remove_edge (find_edge (then_bb, join_bb));
2940 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2941 delete_basic_block (then_bb);
2942 num_true_changes++;
2944 if (can_merge_blocks_p (test_bb, join_bb))
2946 merge_blocks (test_bb, join_bb);
2947 num_true_changes++;
2950 num_updated_if_blocks++;
2952 success_p = TRUE;
2954 done:
2955 pointer_map_destroy (then_vals);
2956 pointer_map_destroy (else_vals);
2957 then_regs.release ();
2958 else_regs.release ();
2959 return success_p;
2963 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2964 IF-THEN-ELSE-JOIN block.
2966 If so, we'll try to convert the insns to not require the branch,
2967 using only transformations that do not require conditional execution.
2969 Return TRUE if we were successful at converting the block. */
2971 static int
2972 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2973 int pass)
2975 basic_block then_bb, else_bb, join_bb;
2976 bool then_else_reversed = false;
2977 rtx jump, cond;
2978 rtx cond_earliest;
2979 struct noce_if_info if_info;
2981 /* We only ever should get here before reload. */
2982 gcc_assert (!reload_completed);
2984 /* Recognize an IF-THEN-ELSE-JOIN block. */
2985 if (single_pred_p (then_edge->dest)
2986 && single_succ_p (then_edge->dest)
2987 && single_pred_p (else_edge->dest)
2988 && single_succ_p (else_edge->dest)
2989 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2991 then_bb = then_edge->dest;
2992 else_bb = else_edge->dest;
2993 join_bb = single_succ (then_bb);
2995 /* Recognize an IF-THEN-JOIN block. */
2996 else if (single_pred_p (then_edge->dest)
2997 && single_succ_p (then_edge->dest)
2998 && single_succ (then_edge->dest) == else_edge->dest)
3000 then_bb = then_edge->dest;
3001 else_bb = NULL_BLOCK;
3002 join_bb = else_edge->dest;
3004 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3005 of basic blocks in cfglayout mode does not matter, so the fallthrough
3006 edge can go to any basic block (and not just to bb->next_bb, like in
3007 cfgrtl mode). */
3008 else if (single_pred_p (else_edge->dest)
3009 && single_succ_p (else_edge->dest)
3010 && single_succ (else_edge->dest) == then_edge->dest)
3012 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3013 To make this work, we have to invert the THEN and ELSE blocks
3014 and reverse the jump condition. */
3015 then_bb = else_edge->dest;
3016 else_bb = NULL_BLOCK;
3017 join_bb = single_succ (then_bb);
3018 then_else_reversed = true;
3020 else
3021 /* Not a form we can handle. */
3022 return FALSE;
3024 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3025 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3026 return FALSE;
3027 if (else_bb
3028 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3029 return FALSE;
3031 num_possible_if_blocks++;
3033 if (dump_file)
3035 fprintf (dump_file,
3036 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3037 (else_bb) ? "-ELSE" : "",
3038 pass, test_bb->index, then_bb->index);
3040 if (else_bb)
3041 fprintf (dump_file, ", else %d", else_bb->index);
3043 fprintf (dump_file, ", join %d\n", join_bb->index);
3046 /* If the conditional jump is more than just a conditional
3047 jump, then we can not do if-conversion on this block. */
3048 jump = BB_END (test_bb);
3049 if (! onlyjump_p (jump))
3050 return FALSE;
3052 /* If this is not a standard conditional jump, we can't parse it. */
3053 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3054 if (!cond)
3055 return FALSE;
3057 /* We must be comparing objects whose modes imply the size. */
3058 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3059 return FALSE;
3061 /* Initialize an IF_INFO struct to pass around. */
3062 memset (&if_info, 0, sizeof if_info);
3063 if_info.test_bb = test_bb;
3064 if_info.then_bb = then_bb;
3065 if_info.else_bb = else_bb;
3066 if_info.join_bb = join_bb;
3067 if_info.cond = cond;
3068 if_info.cond_earliest = cond_earliest;
3069 if_info.jump = jump;
3070 if_info.then_else_reversed = then_else_reversed;
3071 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3072 predictable_edge_p (then_edge));
3074 /* Do the real work. */
3076 if (noce_process_if_block (&if_info))
3077 return TRUE;
3079 if (HAVE_conditional_move
3080 && cond_move_process_if_block (&if_info))
3081 return TRUE;
3083 return FALSE;
3087 /* Merge the blocks and mark for local life update. */
3089 static void
3090 merge_if_block (struct ce_if_block * ce_info)
3092 basic_block test_bb = ce_info->test_bb; /* last test block */
3093 basic_block then_bb = ce_info->then_bb; /* THEN */
3094 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3095 basic_block join_bb = ce_info->join_bb; /* join block */
3096 basic_block combo_bb;
3098 /* All block merging is done into the lower block numbers. */
3100 combo_bb = test_bb;
3101 df_set_bb_dirty (test_bb);
3103 /* Merge any basic blocks to handle && and || subtests. Each of
3104 the blocks are on the fallthru path from the predecessor block. */
3105 if (ce_info->num_multiple_test_blocks > 0)
3107 basic_block bb = test_bb;
3108 basic_block last_test_bb = ce_info->last_test_bb;
3109 basic_block fallthru = block_fallthru (bb);
3113 bb = fallthru;
3114 fallthru = block_fallthru (bb);
3115 merge_blocks (combo_bb, bb);
3116 num_true_changes++;
3118 while (bb != last_test_bb);
3121 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3122 label, but it might if there were || tests. That label's count should be
3123 zero, and it normally should be removed. */
3125 if (then_bb)
3127 merge_blocks (combo_bb, then_bb);
3128 num_true_changes++;
3131 /* The ELSE block, if it existed, had a label. That label count
3132 will almost always be zero, but odd things can happen when labels
3133 get their addresses taken. */
3134 if (else_bb)
3136 merge_blocks (combo_bb, else_bb);
3137 num_true_changes++;
3140 /* If there was no join block reported, that means it was not adjacent
3141 to the others, and so we cannot merge them. */
3143 if (! join_bb)
3145 rtx last = BB_END (combo_bb);
3147 /* The outgoing edge for the current COMBO block should already
3148 be correct. Verify this. */
3149 if (EDGE_COUNT (combo_bb->succs) == 0)
3150 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3151 || (NONJUMP_INSN_P (last)
3152 && GET_CODE (PATTERN (last)) == TRAP_IF
3153 && (TRAP_CONDITION (PATTERN (last))
3154 == const_true_rtx)));
3156 else
3157 /* There should still be something at the end of the THEN or ELSE
3158 blocks taking us to our final destination. */
3159 gcc_assert (JUMP_P (last)
3160 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3161 && CALL_P (last)
3162 && SIBLING_CALL_P (last))
3163 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3164 && can_throw_internal (last)));
3167 /* The JOIN block may have had quite a number of other predecessors too.
3168 Since we've already merged the TEST, THEN and ELSE blocks, we should
3169 have only one remaining edge from our if-then-else diamond. If there
3170 is more than one remaining edge, it must come from elsewhere. There
3171 may be zero incoming edges if the THEN block didn't actually join
3172 back up (as with a call to a non-return function). */
3173 else if (EDGE_COUNT (join_bb->preds) < 2
3174 && join_bb != EXIT_BLOCK_PTR)
3176 /* We can merge the JOIN cleanly and update the dataflow try
3177 again on this pass.*/
3178 merge_blocks (combo_bb, join_bb);
3179 num_true_changes++;
3181 else
3183 /* We cannot merge the JOIN. */
3185 /* The outgoing edge for the current COMBO block should already
3186 be correct. Verify this. */
3187 gcc_assert (single_succ_p (combo_bb)
3188 && single_succ (combo_bb) == join_bb);
3190 /* Remove the jump and cruft from the end of the COMBO block. */
3191 if (join_bb != EXIT_BLOCK_PTR)
3192 tidy_fallthru_edge (single_succ_edge (combo_bb));
3195 num_updated_if_blocks++;
3198 /* Find a block ending in a simple IF condition and try to transform it
3199 in some way. When converting a multi-block condition, put the new code
3200 in the first such block and delete the rest. Return a pointer to this
3201 first block if some transformation was done. Return NULL otherwise. */
3203 static basic_block
3204 find_if_header (basic_block test_bb, int pass)
3206 ce_if_block_t ce_info;
3207 edge then_edge;
3208 edge else_edge;
3210 /* The kind of block we're looking for has exactly two successors. */
3211 if (EDGE_COUNT (test_bb->succs) != 2)
3212 return NULL;
3214 then_edge = EDGE_SUCC (test_bb, 0);
3215 else_edge = EDGE_SUCC (test_bb, 1);
3217 if (df_get_bb_dirty (then_edge->dest))
3218 return NULL;
3219 if (df_get_bb_dirty (else_edge->dest))
3220 return NULL;
3222 /* Neither edge should be abnormal. */
3223 if ((then_edge->flags & EDGE_COMPLEX)
3224 || (else_edge->flags & EDGE_COMPLEX))
3225 return NULL;
3227 /* Nor exit the loop. */
3228 if ((then_edge->flags & EDGE_LOOP_EXIT)
3229 || (else_edge->flags & EDGE_LOOP_EXIT))
3230 return NULL;
3232 /* The THEN edge is canonically the one that falls through. */
3233 if (then_edge->flags & EDGE_FALLTHRU)
3235 else if (else_edge->flags & EDGE_FALLTHRU)
3237 edge e = else_edge;
3238 else_edge = then_edge;
3239 then_edge = e;
3241 else
3242 /* Otherwise this must be a multiway branch of some sort. */
3243 return NULL;
3245 memset (&ce_info, 0, sizeof (ce_info));
3246 ce_info.test_bb = test_bb;
3247 ce_info.then_bb = then_edge->dest;
3248 ce_info.else_bb = else_edge->dest;
3249 ce_info.pass = pass;
3251 #ifdef IFCVT_MACHDEP_INIT
3252 IFCVT_MACHDEP_INIT (&ce_info);
3253 #endif
3255 if (!reload_completed
3256 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3257 goto success;
3259 if (reload_completed
3260 && targetm.have_conditional_execution ()
3261 && cond_exec_find_if_block (&ce_info))
3262 goto success;
3264 if (HAVE_trap
3265 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3266 && find_cond_trap (test_bb, then_edge, else_edge))
3267 goto success;
3269 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3270 && (reload_completed || !targetm.have_conditional_execution ()))
3272 if (find_if_case_1 (test_bb, then_edge, else_edge))
3273 goto success;
3274 if (find_if_case_2 (test_bb, then_edge, else_edge))
3275 goto success;
3278 return NULL;
3280 success:
3281 if (dump_file)
3282 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3283 /* Set this so we continue looking. */
3284 cond_exec_changed_p = TRUE;
3285 return ce_info.test_bb;
3288 /* Return true if a block has two edges, one of which falls through to the next
3289 block, and the other jumps to a specific block, so that we can tell if the
3290 block is part of an && test or an || test. Returns either -1 or the number
3291 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3293 static int
3294 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3296 edge cur_edge;
3297 int fallthru_p = FALSE;
3298 int jump_p = FALSE;
3299 rtx insn;
3300 rtx end;
3301 int n_insns = 0;
3302 edge_iterator ei;
3304 if (!cur_bb || !target_bb)
3305 return -1;
3307 /* If no edges, obviously it doesn't jump or fallthru. */
3308 if (EDGE_COUNT (cur_bb->succs) == 0)
3309 return FALSE;
3311 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3313 if (cur_edge->flags & EDGE_COMPLEX)
3314 /* Anything complex isn't what we want. */
3315 return -1;
3317 else if (cur_edge->flags & EDGE_FALLTHRU)
3318 fallthru_p = TRUE;
3320 else if (cur_edge->dest == target_bb)
3321 jump_p = TRUE;
3323 else
3324 return -1;
3327 if ((jump_p & fallthru_p) == 0)
3328 return -1;
3330 /* Don't allow calls in the block, since this is used to group && and ||
3331 together for conditional execution support. ??? we should support
3332 conditional execution support across calls for IA-64 some day, but
3333 for now it makes the code simpler. */
3334 end = BB_END (cur_bb);
3335 insn = BB_HEAD (cur_bb);
3337 while (insn != NULL_RTX)
3339 if (CALL_P (insn))
3340 return -1;
3342 if (INSN_P (insn)
3343 && !JUMP_P (insn)
3344 && !DEBUG_INSN_P (insn)
3345 && GET_CODE (PATTERN (insn)) != USE
3346 && GET_CODE (PATTERN (insn)) != CLOBBER)
3347 n_insns++;
3349 if (insn == end)
3350 break;
3352 insn = NEXT_INSN (insn);
3355 return n_insns;
3358 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3359 block. If so, we'll try to convert the insns to not require the branch.
3360 Return TRUE if we were successful at converting the block. */
3362 static int
3363 cond_exec_find_if_block (struct ce_if_block * ce_info)
3365 basic_block test_bb = ce_info->test_bb;
3366 basic_block then_bb = ce_info->then_bb;
3367 basic_block else_bb = ce_info->else_bb;
3368 basic_block join_bb = NULL_BLOCK;
3369 edge cur_edge;
3370 basic_block next;
3371 edge_iterator ei;
3373 ce_info->last_test_bb = test_bb;
3375 /* We only ever should get here after reload,
3376 and if we have conditional execution. */
3377 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3379 /* Discover if any fall through predecessors of the current test basic block
3380 were && tests (which jump to the else block) or || tests (which jump to
3381 the then block). */
3382 if (single_pred_p (test_bb)
3383 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3385 basic_block bb = single_pred (test_bb);
3386 basic_block target_bb;
3387 int max_insns = MAX_CONDITIONAL_EXECUTE;
3388 int n_insns;
3390 /* Determine if the preceding block is an && or || block. */
3391 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3393 ce_info->and_and_p = TRUE;
3394 target_bb = else_bb;
3396 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3398 ce_info->and_and_p = FALSE;
3399 target_bb = then_bb;
3401 else
3402 target_bb = NULL_BLOCK;
3404 if (target_bb && n_insns <= max_insns)
3406 int total_insns = 0;
3407 int blocks = 0;
3409 ce_info->last_test_bb = test_bb;
3411 /* Found at least one && or || block, look for more. */
3414 ce_info->test_bb = test_bb = bb;
3415 total_insns += n_insns;
3416 blocks++;
3418 if (!single_pred_p (bb))
3419 break;
3421 bb = single_pred (bb);
3422 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3424 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3426 ce_info->num_multiple_test_blocks = blocks;
3427 ce_info->num_multiple_test_insns = total_insns;
3429 if (ce_info->and_and_p)
3430 ce_info->num_and_and_blocks = blocks;
3431 else
3432 ce_info->num_or_or_blocks = blocks;
3436 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3437 other than any || blocks which jump to the THEN block. */
3438 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3439 return FALSE;
3441 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3442 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3444 if (cur_edge->flags & EDGE_COMPLEX)
3445 return FALSE;
3448 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3450 if (cur_edge->flags & EDGE_COMPLEX)
3451 return FALSE;
3454 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3455 if (EDGE_COUNT (then_bb->succs) > 0
3456 && (!single_succ_p (then_bb)
3457 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3458 || (epilogue_completed
3459 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3460 return FALSE;
3462 /* If the THEN block has no successors, conditional execution can still
3463 make a conditional call. Don't do this unless the ELSE block has
3464 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3465 Check for the last insn of the THEN block being an indirect jump, which
3466 is listed as not having any successors, but confuses the rest of the CE
3467 code processing. ??? we should fix this in the future. */
3468 if (EDGE_COUNT (then_bb->succs) == 0)
3470 if (single_pred_p (else_bb))
3472 rtx last_insn = BB_END (then_bb);
3474 while (last_insn
3475 && NOTE_P (last_insn)
3476 && last_insn != BB_HEAD (then_bb))
3477 last_insn = PREV_INSN (last_insn);
3479 if (last_insn
3480 && JUMP_P (last_insn)
3481 && ! simplejump_p (last_insn))
3482 return FALSE;
3484 join_bb = else_bb;
3485 else_bb = NULL_BLOCK;
3487 else
3488 return FALSE;
3491 /* If the THEN block's successor is the other edge out of the TEST block,
3492 then we have an IF-THEN combo without an ELSE. */
3493 else if (single_succ (then_bb) == else_bb)
3495 join_bb = else_bb;
3496 else_bb = NULL_BLOCK;
3499 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3500 has exactly one predecessor and one successor, and the outgoing edge
3501 is not complex, then we have an IF-THEN-ELSE combo. */
3502 else if (single_succ_p (else_bb)
3503 && single_succ (then_bb) == single_succ (else_bb)
3504 && single_pred_p (else_bb)
3505 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3506 && !(epilogue_completed
3507 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3508 join_bb = single_succ (else_bb);
3510 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3511 else
3512 return FALSE;
3514 num_possible_if_blocks++;
3516 if (dump_file)
3518 fprintf (dump_file,
3519 "\nIF-THEN%s block found, pass %d, start block %d "
3520 "[insn %d], then %d [%d]",
3521 (else_bb) ? "-ELSE" : "",
3522 ce_info->pass,
3523 test_bb->index,
3524 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3525 then_bb->index,
3526 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3528 if (else_bb)
3529 fprintf (dump_file, ", else %d [%d]",
3530 else_bb->index,
3531 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3533 fprintf (dump_file, ", join %d [%d]",
3534 join_bb->index,
3535 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3537 if (ce_info->num_multiple_test_blocks > 0)
3538 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3539 ce_info->num_multiple_test_blocks,
3540 (ce_info->and_and_p) ? "&&" : "||",
3541 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3542 ce_info->last_test_bb->index,
3543 ((BB_HEAD (ce_info->last_test_bb))
3544 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3545 : -1));
3547 fputc ('\n', dump_file);
3550 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3551 first condition for free, since we've already asserted that there's a
3552 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3553 we checked the FALLTHRU flag, those are already adjacent to the last IF
3554 block. */
3555 /* ??? As an enhancement, move the ELSE block. Have to deal with
3556 BLOCK notes, if by no other means than backing out the merge if they
3557 exist. Sticky enough I don't want to think about it now. */
3558 next = then_bb;
3559 if (else_bb && (next = next->next_bb) != else_bb)
3560 return FALSE;
3561 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3563 if (else_bb)
3564 join_bb = NULL;
3565 else
3566 return FALSE;
3569 /* Do the real work. */
3571 ce_info->else_bb = else_bb;
3572 ce_info->join_bb = join_bb;
3574 /* If we have && and || tests, try to first handle combining the && and ||
3575 tests into the conditional code, and if that fails, go back and handle
3576 it without the && and ||, which at present handles the && case if there
3577 was no ELSE block. */
3578 if (cond_exec_process_if_block (ce_info, TRUE))
3579 return TRUE;
3581 if (ce_info->num_multiple_test_blocks)
3583 cancel_changes (0);
3585 if (cond_exec_process_if_block (ce_info, FALSE))
3586 return TRUE;
3589 return FALSE;
3592 /* Convert a branch over a trap, or a branch
3593 to a trap, into a conditional trap. */
3595 static int
3596 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3598 basic_block then_bb = then_edge->dest;
3599 basic_block else_bb = else_edge->dest;
3600 basic_block other_bb, trap_bb;
3601 rtx trap, jump, cond, cond_earliest, seq;
3602 enum rtx_code code;
3604 /* Locate the block with the trap instruction. */
3605 /* ??? While we look for no successors, we really ought to allow
3606 EH successors. Need to fix merge_if_block for that to work. */
3607 if ((trap = block_has_only_trap (then_bb)) != NULL)
3608 trap_bb = then_bb, other_bb = else_bb;
3609 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3610 trap_bb = else_bb, other_bb = then_bb;
3611 else
3612 return FALSE;
3614 if (dump_file)
3616 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3617 test_bb->index, trap_bb->index);
3620 /* If this is not a standard conditional jump, we can't parse it. */
3621 jump = BB_END (test_bb);
3622 cond = noce_get_condition (jump, &cond_earliest, false);
3623 if (! cond)
3624 return FALSE;
3626 /* If the conditional jump is more than just a conditional jump, then
3627 we can not do if-conversion on this block. */
3628 if (! onlyjump_p (jump))
3629 return FALSE;
3631 /* We must be comparing objects whose modes imply the size. */
3632 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3633 return FALSE;
3635 /* Reverse the comparison code, if necessary. */
3636 code = GET_CODE (cond);
3637 if (then_bb == trap_bb)
3639 code = reversed_comparison_code (cond, jump);
3640 if (code == UNKNOWN)
3641 return FALSE;
3644 /* Attempt to generate the conditional trap. */
3645 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3646 copy_rtx (XEXP (cond, 1)),
3647 TRAP_CODE (PATTERN (trap)));
3648 if (seq == NULL)
3649 return FALSE;
3651 /* Emit the new insns before cond_earliest. */
3652 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3654 /* Delete the trap block if possible. */
3655 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3656 df_set_bb_dirty (test_bb);
3657 df_set_bb_dirty (then_bb);
3658 df_set_bb_dirty (else_bb);
3660 if (EDGE_COUNT (trap_bb->preds) == 0)
3662 delete_basic_block (trap_bb);
3663 num_true_changes++;
3666 /* Wire together the blocks again. */
3667 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3668 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3669 else
3671 rtx lab, newjump;
3673 lab = JUMP_LABEL (jump);
3674 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3675 LABEL_NUSES (lab) += 1;
3676 JUMP_LABEL (newjump) = lab;
3677 emit_barrier_after (newjump);
3679 delete_insn (jump);
3681 if (can_merge_blocks_p (test_bb, other_bb))
3683 merge_blocks (test_bb, other_bb);
3684 num_true_changes++;
3687 num_updated_if_blocks++;
3688 return TRUE;
3691 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3692 return it. */
3694 static rtx
3695 block_has_only_trap (basic_block bb)
3697 rtx trap;
3699 /* We're not the exit block. */
3700 if (bb == EXIT_BLOCK_PTR)
3701 return NULL_RTX;
3703 /* The block must have no successors. */
3704 if (EDGE_COUNT (bb->succs) > 0)
3705 return NULL_RTX;
3707 /* The only instruction in the THEN block must be the trap. */
3708 trap = first_active_insn (bb);
3709 if (! (trap == BB_END (bb)
3710 && GET_CODE (PATTERN (trap)) == TRAP_IF
3711 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3712 return NULL_RTX;
3714 return trap;
3717 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3718 transformable, but not necessarily the other. There need be no
3719 JOIN block.
3721 Return TRUE if we were successful at converting the block.
3723 Cases we'd like to look at:
3726 if (test) goto over; // x not live
3727 x = a;
3728 goto label;
3729 over:
3731 becomes
3733 x = a;
3734 if (! test) goto label;
3737 if (test) goto E; // x not live
3738 x = big();
3739 goto L;
3741 x = b;
3742 goto M;
3744 becomes
3746 x = b;
3747 if (test) goto M;
3748 x = big();
3749 goto L;
3751 (3) // This one's really only interesting for targets that can do
3752 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3753 // it results in multiple branches on a cache line, which often
3754 // does not sit well with predictors.
3756 if (test1) goto E; // predicted not taken
3757 x = a;
3758 if (test2) goto F;
3761 x = b;
3764 becomes
3766 x = a;
3767 if (test1) goto E;
3768 if (test2) goto F;
3770 Notes:
3772 (A) Don't do (2) if the branch is predicted against the block we're
3773 eliminating. Do it anyway if we can eliminate a branch; this requires
3774 that the sole successor of the eliminated block postdominate the other
3775 side of the if.
3777 (B) With CE, on (3) we can steal from both sides of the if, creating
3779 if (test1) x = a;
3780 if (!test1) x = b;
3781 if (test1) goto J;
3782 if (test2) goto F;
3786 Again, this is most useful if J postdominates.
3788 (C) CE substitutes for helpful life information.
3790 (D) These heuristics need a lot of work. */
3792 /* Tests for case 1 above. */
3794 static int
3795 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3797 basic_block then_bb = then_edge->dest;
3798 basic_block else_bb = else_edge->dest;
3799 basic_block new_bb;
3800 int then_bb_index, then_prob;
3801 rtx else_target = NULL_RTX;
3803 /* If we are partitioning hot/cold basic blocks, we don't want to
3804 mess up unconditional or indirect jumps that cross between hot
3805 and cold sections.
3807 Basic block partitioning may result in some jumps that appear to
3808 be optimizable (or blocks that appear to be mergeable), but which really
3809 must be left untouched (they are required to make it safely across
3810 partition boundaries). See the comments at the top of
3811 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3813 if ((BB_END (then_bb)
3814 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3815 || (BB_END (test_bb)
3816 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3817 || (BB_END (else_bb)
3818 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3819 NULL_RTX)))
3820 return FALSE;
3822 /* THEN has one successor. */
3823 if (!single_succ_p (then_bb))
3824 return FALSE;
3826 /* THEN does not fall through, but is not strange either. */
3827 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3828 return FALSE;
3830 /* THEN has one predecessor. */
3831 if (!single_pred_p (then_bb))
3832 return FALSE;
3834 /* THEN must do something. */
3835 if (forwarder_block_p (then_bb))
3836 return FALSE;
3838 num_possible_if_blocks++;
3839 if (dump_file)
3840 fprintf (dump_file,
3841 "\nIF-CASE-1 found, start %d, then %d\n",
3842 test_bb->index, then_bb->index);
3844 if (then_edge->probability)
3845 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3846 else
3847 then_prob = REG_BR_PROB_BASE / 2;
3849 /* We're speculating from the THEN path, we want to make sure the cost
3850 of speculation is within reason. */
3851 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3852 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3853 predictable_edge_p (then_edge)))))
3854 return FALSE;
3856 if (else_bb == EXIT_BLOCK_PTR)
3858 rtx jump = BB_END (else_edge->src);
3859 gcc_assert (JUMP_P (jump));
3860 else_target = JUMP_LABEL (jump);
3863 /* Registers set are dead, or are predicable. */
3864 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3865 single_succ_edge (then_bb), 1))
3866 return FALSE;
3868 /* Conversion went ok, including moving the insns and fixing up the
3869 jump. Adjust the CFG to match. */
3871 /* We can avoid creating a new basic block if then_bb is immediately
3872 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3873 through to else_bb. */
3875 if (then_bb->next_bb == else_bb
3876 && then_bb->prev_bb == test_bb
3877 && else_bb != EXIT_BLOCK_PTR)
3879 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3880 new_bb = 0;
3882 else if (else_bb == EXIT_BLOCK_PTR)
3883 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3884 else_bb, else_target);
3885 else
3886 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3887 else_bb);
3889 df_set_bb_dirty (test_bb);
3890 df_set_bb_dirty (else_bb);
3892 then_bb_index = then_bb->index;
3893 delete_basic_block (then_bb);
3895 /* Make rest of code believe that the newly created block is the THEN_BB
3896 block we removed. */
3897 if (new_bb)
3899 df_bb_replace (then_bb_index, new_bb);
3900 /* Since the fallthru edge was redirected from test_bb to new_bb,
3901 we need to ensure that new_bb is in the same partition as
3902 test bb (you can not fall through across section boundaries). */
3903 BB_COPY_PARTITION (new_bb, test_bb);
3906 num_true_changes++;
3907 num_updated_if_blocks++;
3909 return TRUE;
3912 /* Test for case 2 above. */
3914 static int
3915 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3917 basic_block then_bb = then_edge->dest;
3918 basic_block else_bb = else_edge->dest;
3919 edge else_succ;
3920 int then_prob, else_prob;
3922 /* We do not want to speculate (empty) loop latches. */
3923 if (current_loops
3924 && else_bb->loop_father->latch == else_bb)
3925 return FALSE;
3927 /* If we are partitioning hot/cold basic blocks, we don't want to
3928 mess up unconditional or indirect jumps that cross between hot
3929 and cold sections.
3931 Basic block partitioning may result in some jumps that appear to
3932 be optimizable (or blocks that appear to be mergeable), but which really
3933 must be left untouched (they are required to make it safely across
3934 partition boundaries). See the comments at the top of
3935 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3937 if ((BB_END (then_bb)
3938 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3939 || (BB_END (test_bb)
3940 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3941 || (BB_END (else_bb)
3942 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3943 NULL_RTX)))
3944 return FALSE;
3946 /* ELSE has one successor. */
3947 if (!single_succ_p (else_bb))
3948 return FALSE;
3949 else
3950 else_succ = single_succ_edge (else_bb);
3952 /* ELSE outgoing edge is not complex. */
3953 if (else_succ->flags & EDGE_COMPLEX)
3954 return FALSE;
3956 /* ELSE has one predecessor. */
3957 if (!single_pred_p (else_bb))
3958 return FALSE;
3960 /* THEN is not EXIT. */
3961 if (then_bb->index < NUM_FIXED_BLOCKS)
3962 return FALSE;
3964 if (else_edge->probability)
3966 else_prob = else_edge->probability;
3967 then_prob = REG_BR_PROB_BASE - else_prob;
3969 else
3971 else_prob = REG_BR_PROB_BASE / 2;
3972 then_prob = REG_BR_PROB_BASE / 2;
3975 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3976 if (else_prob > then_prob)
3978 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3979 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3980 else_succ->dest))
3982 else
3983 return FALSE;
3985 num_possible_if_blocks++;
3986 if (dump_file)
3987 fprintf (dump_file,
3988 "\nIF-CASE-2 found, start %d, else %d\n",
3989 test_bb->index, else_bb->index);
3991 /* We're speculating from the ELSE path, we want to make sure the cost
3992 of speculation is within reason. */
3993 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
3994 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3995 predictable_edge_p (else_edge)))))
3996 return FALSE;
3998 /* Registers set are dead, or are predicable. */
3999 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4000 return FALSE;
4002 /* Conversion went ok, including moving the insns and fixing up the
4003 jump. Adjust the CFG to match. */
4005 df_set_bb_dirty (test_bb);
4006 df_set_bb_dirty (then_bb);
4007 delete_basic_block (else_bb);
4009 num_true_changes++;
4010 num_updated_if_blocks++;
4012 /* ??? We may now fallthru from one of THEN's successors into a join
4013 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4015 return TRUE;
4018 /* Used by the code above to perform the actual rtl transformations.
4019 Return TRUE if successful.
4021 TEST_BB is the block containing the conditional branch. MERGE_BB
4022 is the block containing the code to manipulate. DEST_EDGE is an
4023 edge representing a jump to the join block; after the conversion,
4024 TEST_BB should be branching to its destination.
4025 REVERSEP is true if the sense of the branch should be reversed. */
4027 static int
4028 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4029 basic_block other_bb, edge dest_edge, int reversep)
4031 basic_block new_dest = dest_edge->dest;
4032 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4033 bitmap merge_set = NULL;
4034 /* Number of pending changes. */
4035 int n_validated_changes = 0;
4036 rtx new_dest_label = NULL_RTX;
4038 jump = BB_END (test_bb);
4040 /* Find the extent of the real code in the merge block. */
4041 head = BB_HEAD (merge_bb);
4042 end = BB_END (merge_bb);
4044 while (DEBUG_INSN_P (end) && end != head)
4045 end = PREV_INSN (end);
4047 /* If merge_bb ends with a tablejump, predicating/moving insn's
4048 into test_bb and then deleting merge_bb will result in the jumptable
4049 that follows merge_bb being removed along with merge_bb and then we
4050 get an unresolved reference to the jumptable. */
4051 if (tablejump_p (end, NULL, NULL))
4052 return FALSE;
4054 if (LABEL_P (head))
4055 head = NEXT_INSN (head);
4056 while (DEBUG_INSN_P (head) && head != end)
4057 head = NEXT_INSN (head);
4058 if (NOTE_P (head))
4060 if (head == end)
4062 head = end = NULL_RTX;
4063 goto no_body;
4065 head = NEXT_INSN (head);
4066 while (DEBUG_INSN_P (head) && head != end)
4067 head = NEXT_INSN (head);
4070 if (JUMP_P (end))
4072 if (head == end)
4074 head = end = NULL_RTX;
4075 goto no_body;
4077 end = PREV_INSN (end);
4078 while (DEBUG_INSN_P (end) && end != head)
4079 end = PREV_INSN (end);
4082 /* Disable handling dead code by conditional execution if the machine needs
4083 to do anything funny with the tests, etc. */
4084 #ifndef IFCVT_MODIFY_TESTS
4085 if (targetm.have_conditional_execution ())
4087 /* In the conditional execution case, we have things easy. We know
4088 the condition is reversible. We don't have to check life info
4089 because we're going to conditionally execute the code anyway.
4090 All that's left is making sure the insns involved can actually
4091 be predicated. */
4093 rtx cond, prob_val;
4095 cond = cond_exec_get_condition (jump);
4096 if (! cond)
4097 return FALSE;
4099 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4100 if (prob_val)
4101 prob_val = XEXP (prob_val, 0);
4103 if (reversep)
4105 enum rtx_code rev = reversed_comparison_code (cond, jump);
4106 if (rev == UNKNOWN)
4107 return FALSE;
4108 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4109 XEXP (cond, 1));
4110 if (prob_val)
4111 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4114 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4115 && verify_changes (0))
4116 n_validated_changes = num_validated_changes ();
4117 else
4118 cancel_changes (0);
4120 earliest = jump;
4122 #endif
4124 /* If we allocated new pseudos (e.g. in the conditional move
4125 expander called from noce_emit_cmove), we must resize the
4126 array first. */
4127 if (max_regno < max_reg_num ())
4128 max_regno = max_reg_num ();
4130 /* Try the NCE path if the CE path did not result in any changes. */
4131 if (n_validated_changes == 0)
4133 rtx cond, insn;
4134 regset live;
4135 bool success;
4137 /* In the non-conditional execution case, we have to verify that there
4138 are no trapping operations, no calls, no references to memory, and
4139 that any registers modified are dead at the branch site. */
4141 if (!any_condjump_p (jump))
4142 return FALSE;
4144 /* Find the extent of the conditional. */
4145 cond = noce_get_condition (jump, &earliest, false);
4146 if (!cond)
4147 return FALSE;
4149 live = BITMAP_ALLOC (&reg_obstack);
4150 simulate_backwards_to_point (merge_bb, live, end);
4151 success = can_move_insns_across (head, end, earliest, jump,
4152 merge_bb, live,
4153 df_get_live_in (other_bb), NULL);
4154 BITMAP_FREE (live);
4155 if (!success)
4156 return FALSE;
4158 /* Collect the set of registers set in MERGE_BB. */
4159 merge_set = BITMAP_ALLOC (&reg_obstack);
4161 FOR_BB_INSNS (merge_bb, insn)
4162 if (NONDEBUG_INSN_P (insn))
4163 df_simulate_find_defs (insn, merge_set);
4165 #ifdef HAVE_simple_return
4166 /* If shrink-wrapping, disable this optimization when test_bb is
4167 the first basic block and merge_bb exits. The idea is to not
4168 move code setting up a return register as that may clobber a
4169 register used to pass function parameters, which then must be
4170 saved in caller-saved regs. A caller-saved reg requires the
4171 prologue, killing a shrink-wrap opportunity. */
4172 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4173 && ENTRY_BLOCK_PTR->next_bb == test_bb
4174 && single_succ_p (new_dest)
4175 && single_succ (new_dest) == EXIT_BLOCK_PTR
4176 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4178 regset return_regs;
4179 unsigned int i;
4181 return_regs = BITMAP_ALLOC (&reg_obstack);
4183 /* Start off with the intersection of regs used to pass
4184 params and regs used to return values. */
4185 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4186 if (FUNCTION_ARG_REGNO_P (i)
4187 && targetm.calls.function_value_regno_p (i))
4188 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4190 bitmap_and_into (return_regs, df_get_live_out (ENTRY_BLOCK_PTR));
4191 bitmap_and_into (return_regs, df_get_live_in (EXIT_BLOCK_PTR));
4192 if (!bitmap_empty_p (return_regs))
4194 FOR_BB_INSNS_REVERSE (new_dest, insn)
4195 if (NONDEBUG_INSN_P (insn))
4197 df_ref *def_rec;
4198 unsigned int uid = INSN_UID (insn);
4200 /* If this insn sets any reg in return_regs.. */
4201 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4203 df_ref def = *def_rec;
4204 unsigned r = DF_REF_REGNO (def);
4206 if (bitmap_bit_p (return_regs, r))
4207 break;
4209 /* ..then add all reg uses to the set of regs
4210 we're interested in. */
4211 if (*def_rec)
4212 df_simulate_uses (insn, return_regs);
4214 if (bitmap_intersect_p (merge_set, return_regs))
4216 BITMAP_FREE (return_regs);
4217 BITMAP_FREE (merge_set);
4218 return FALSE;
4221 BITMAP_FREE (return_regs);
4223 #endif
4226 no_body:
4227 /* We don't want to use normal invert_jump or redirect_jump because
4228 we don't want to delete_insn called. Also, we want to do our own
4229 change group management. */
4231 old_dest = JUMP_LABEL (jump);
4232 if (other_bb != new_dest)
4234 if (JUMP_P (BB_END (dest_edge->src)))
4235 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4236 else if (new_dest == EXIT_BLOCK_PTR)
4237 new_dest_label = ret_rtx;
4238 else
4239 new_dest_label = block_label (new_dest);
4241 if (reversep
4242 ? ! invert_jump_1 (jump, new_dest_label)
4243 : ! redirect_jump_1 (jump, new_dest_label))
4244 goto cancel;
4247 if (verify_changes (n_validated_changes))
4248 confirm_change_group ();
4249 else
4250 goto cancel;
4252 if (other_bb != new_dest)
4254 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4256 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4257 if (reversep)
4259 gcov_type count, probability;
4260 count = BRANCH_EDGE (test_bb)->count;
4261 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4262 FALLTHRU_EDGE (test_bb)->count = count;
4263 probability = BRANCH_EDGE (test_bb)->probability;
4264 BRANCH_EDGE (test_bb)->probability
4265 = FALLTHRU_EDGE (test_bb)->probability;
4266 FALLTHRU_EDGE (test_bb)->probability = probability;
4267 update_br_prob_note (test_bb);
4271 /* Move the insns out of MERGE_BB to before the branch. */
4272 if (head != NULL)
4274 rtx insn;
4276 if (end == BB_END (merge_bb))
4277 BB_END (merge_bb) = PREV_INSN (head);
4279 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4280 notes being moved might become invalid. */
4281 insn = head;
4284 rtx note, set;
4286 if (! INSN_P (insn))
4287 continue;
4288 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4289 if (! note)
4290 continue;
4291 set = single_set (insn);
4292 if (!set || !function_invariant_p (SET_SRC (set))
4293 || !function_invariant_p (XEXP (note, 0)))
4294 remove_note (insn, note);
4295 } while (insn != end && (insn = NEXT_INSN (insn)));
4297 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4298 notes referring to the registers being set might become invalid. */
4299 if (merge_set)
4301 unsigned i;
4302 bitmap_iterator bi;
4304 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4305 remove_reg_equal_equiv_notes_for_regno (i);
4307 BITMAP_FREE (merge_set);
4310 reorder_insns (head, end, PREV_INSN (earliest));
4313 /* Remove the jump and edge if we can. */
4314 if (other_bb == new_dest)
4316 delete_insn (jump);
4317 remove_edge (BRANCH_EDGE (test_bb));
4318 /* ??? Can't merge blocks here, as then_bb is still in use.
4319 At minimum, the merge will get done just before bb-reorder. */
4322 return TRUE;
4324 cancel:
4325 cancel_changes (0);
4327 if (merge_set)
4328 BITMAP_FREE (merge_set);
4330 return FALSE;
4333 /* Main entry point for all if-conversion. */
4335 static void
4336 if_convert (void)
4338 basic_block bb;
4339 int pass;
4341 if (optimize == 1)
4343 df_live_add_problem ();
4344 df_live_set_all_dirty ();
4347 num_possible_if_blocks = 0;
4348 num_updated_if_blocks = 0;
4349 num_true_changes = 0;
4351 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4352 mark_loop_exit_edges ();
4353 loop_optimizer_finalize ();
4354 free_dominance_info (CDI_DOMINATORS);
4356 /* Compute postdominators. */
4357 calculate_dominance_info (CDI_POST_DOMINATORS);
4359 df_set_flags (DF_LR_RUN_DCE);
4361 /* Go through each of the basic blocks looking for things to convert. If we
4362 have conditional execution, we make multiple passes to allow us to handle
4363 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4364 pass = 0;
4367 df_analyze ();
4368 /* Only need to do dce on the first pass. */
4369 df_clear_flags (DF_LR_RUN_DCE);
4370 cond_exec_changed_p = FALSE;
4371 pass++;
4373 #ifdef IFCVT_MULTIPLE_DUMPS
4374 if (dump_file && pass > 1)
4375 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4376 #endif
4378 FOR_EACH_BB (bb)
4380 basic_block new_bb;
4381 while (!df_get_bb_dirty (bb)
4382 && (new_bb = find_if_header (bb, pass)) != NULL)
4383 bb = new_bb;
4386 #ifdef IFCVT_MULTIPLE_DUMPS
4387 if (dump_file && cond_exec_changed_p)
4388 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4389 #endif
4391 while (cond_exec_changed_p);
4393 #ifdef IFCVT_MULTIPLE_DUMPS
4394 if (dump_file)
4395 fprintf (dump_file, "\n\n========== no more changes\n");
4396 #endif
4398 free_dominance_info (CDI_POST_DOMINATORS);
4400 if (dump_file)
4401 fflush (dump_file);
4403 clear_aux_for_blocks ();
4405 /* If we allocated new pseudos, we must resize the array for sched1. */
4406 if (max_regno < max_reg_num ())
4407 max_regno = max_reg_num ();
4409 /* Write the final stats. */
4410 if (dump_file && num_possible_if_blocks > 0)
4412 fprintf (dump_file,
4413 "\n%d possible IF blocks searched.\n",
4414 num_possible_if_blocks);
4415 fprintf (dump_file,
4416 "%d IF blocks converted.\n",
4417 num_updated_if_blocks);
4418 fprintf (dump_file,
4419 "%d true changes made.\n\n\n",
4420 num_true_changes);
4423 if (optimize == 1)
4424 df_remove_problem (df_live);
4426 #ifdef ENABLE_CHECKING
4427 verify_flow_info ();
4428 #endif
4431 static bool
4432 gate_handle_if_conversion (void)
4434 return (optimize > 0)
4435 && dbg_cnt (if_conversion);
4438 /* If-conversion and CFG cleanup. */
4439 static unsigned int
4440 rest_of_handle_if_conversion (void)
4442 if (flag_if_conversion)
4444 if (dump_file)
4446 dump_reg_info (dump_file);
4447 dump_flow_info (dump_file, dump_flags);
4449 cleanup_cfg (CLEANUP_EXPENSIVE);
4450 if_convert ();
4453 cleanup_cfg (0);
4454 return 0;
4457 struct rtl_opt_pass pass_rtl_ifcvt =
4460 RTL_PASS,
4461 "ce1", /* name */
4462 OPTGROUP_NONE, /* optinfo_flags */
4463 gate_handle_if_conversion, /* gate */
4464 rest_of_handle_if_conversion, /* execute */
4465 NULL, /* sub */
4466 NULL, /* next */
4467 0, /* static_pass_number */
4468 TV_IFCVT, /* tv_id */
4469 0, /* properties_required */
4470 0, /* properties_provided */
4471 0, /* properties_destroyed */
4472 0, /* todo_flags_start */
4473 TODO_df_finish | TODO_verify_rtl_sharing |
4474 0 /* todo_flags_finish */
4478 static bool
4479 gate_handle_if_after_combine (void)
4481 return optimize > 0 && flag_if_conversion
4482 && dbg_cnt (if_after_combine);
4486 /* Rerun if-conversion, as combine may have simplified things enough
4487 to now meet sequence length restrictions. */
4488 static unsigned int
4489 rest_of_handle_if_after_combine (void)
4491 if_convert ();
4492 return 0;
4495 struct rtl_opt_pass pass_if_after_combine =
4498 RTL_PASS,
4499 "ce2", /* name */
4500 OPTGROUP_NONE, /* optinfo_flags */
4501 gate_handle_if_after_combine, /* gate */
4502 rest_of_handle_if_after_combine, /* execute */
4503 NULL, /* sub */
4504 NULL, /* next */
4505 0, /* static_pass_number */
4506 TV_IFCVT, /* tv_id */
4507 0, /* properties_required */
4508 0, /* properties_provided */
4509 0, /* properties_destroyed */
4510 0, /* todo_flags_start */
4511 TODO_df_finish | TODO_verify_rtl_sharing |
4512 TODO_ggc_collect /* todo_flags_finish */
4517 static bool
4518 gate_handle_if_after_reload (void)
4520 return optimize > 0 && flag_if_conversion2
4521 && dbg_cnt (if_after_reload);
4524 static unsigned int
4525 rest_of_handle_if_after_reload (void)
4527 if_convert ();
4528 return 0;
4532 struct rtl_opt_pass pass_if_after_reload =
4535 RTL_PASS,
4536 "ce3", /* name */
4537 OPTGROUP_NONE, /* optinfo_flags */
4538 gate_handle_if_after_reload, /* gate */
4539 rest_of_handle_if_after_reload, /* execute */
4540 NULL, /* sub */
4541 NULL, /* next */
4542 0, /* static_pass_number */
4543 TV_IFCVT2, /* tv_id */
4544 0, /* properties_required */
4545 0, /* properties_provided */
4546 0, /* properties_destroyed */
4547 0, /* todo_flags_start */
4548 TODO_df_finish | TODO_verify_rtl_sharing |
4549 TODO_ggc_collect /* todo_flags_finish */