PR libstdc++/56278
[official-gcc.git] / gcc / function.c
blob4ce2259ef719ab118bf73d8fea177f1f75d853ef
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "output.h"
51 #include "basic-block.h"
52 #include "hashtab.h"
53 #include "ggc.h"
54 #include "tm_p.h"
55 #include "langhooks.h"
56 #include "target.h"
57 #include "common/common-target.h"
58 #include "gimple.h"
59 #include "tree-pass.h"
60 #include "predict.h"
61 #include "df.h"
62 #include "params.h"
63 #include "bb-reorder.h"
65 /* So we can assign to cfun in this file. */
66 #undef cfun
68 #ifndef STACK_ALIGNMENT_NEEDED
69 #define STACK_ALIGNMENT_NEEDED 1
70 #endif
72 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
74 /* Some systems use __main in a way incompatible with its use in gcc, in these
75 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
76 give the same symbol without quotes for an alternative entry point. You
77 must define both, or neither. */
78 #ifndef NAME__MAIN
79 #define NAME__MAIN "__main"
80 #endif
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
91 /* Nonzero once virtual register instantiation has been done.
92 assign_stack_local uses frame_pointer_rtx when this is nonzero.
93 calls.c:emit_library_call_value_1 uses it to set up
94 post-instantiation libcalls. */
95 int virtuals_instantiated;
97 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
98 static GTY(()) int funcdef_no;
100 /* These variables hold pointers to functions to create and destroy
101 target specific, per-function data structures. */
102 struct machine_function * (*init_machine_status) (void);
104 /* The currently compiled function. */
105 struct function *cfun = 0;
107 /* These hashes record the prologue and epilogue insns. */
108 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
109 htab_t prologue_insn_hash;
110 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
111 htab_t epilogue_insn_hash;
114 htab_t types_used_by_vars_hash = NULL;
115 vec<tree, va_gc> *types_used_by_cur_var_decl;
117 /* Forward declarations. */
119 static struct temp_slot *find_temp_slot_from_address (rtx);
120 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
121 static void pad_below (struct args_size *, enum machine_mode, tree);
122 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
123 static int all_blocks (tree, tree *);
124 static tree *get_block_vector (tree, int *);
125 extern tree debug_find_var_in_block_tree (tree, tree);
126 /* We always define `record_insns' even if it's not used so that we
127 can always export `prologue_epilogue_contains'. */
128 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
129 static bool contains (const_rtx, htab_t);
130 static void prepare_function_start (void);
131 static void do_clobber_return_reg (rtx, void *);
132 static void do_use_return_reg (rtx, void *);
133 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
135 /* Stack of nested functions. */
136 /* Keep track of the cfun stack. */
138 typedef struct function *function_p;
140 static vec<function_p> function_context_stack;
142 /* Save the current context for compilation of a nested function.
143 This is called from language-specific code. */
145 void
146 push_function_context (void)
148 if (cfun == 0)
149 allocate_struct_function (NULL, false);
151 function_context_stack.safe_push (cfun);
152 set_cfun (NULL);
155 /* Restore the last saved context, at the end of a nested function.
156 This function is called from language-specific code. */
158 void
159 pop_function_context (void)
161 struct function *p = function_context_stack.pop ();
162 set_cfun (p);
163 current_function_decl = p->decl;
165 /* Reset variables that have known state during rtx generation. */
166 virtuals_instantiated = 0;
167 generating_concat_p = 1;
170 /* Clear out all parts of the state in F that can safely be discarded
171 after the function has been parsed, but not compiled, to let
172 garbage collection reclaim the memory. */
174 void
175 free_after_parsing (struct function *f)
177 f->language = 0;
180 /* Clear out all parts of the state in F that can safely be discarded
181 after the function has been compiled, to let garbage collection
182 reclaim the memory. */
184 void
185 free_after_compilation (struct function *f)
187 prologue_insn_hash = NULL;
188 epilogue_insn_hash = NULL;
190 free (crtl->emit.regno_pointer_align);
192 memset (crtl, 0, sizeof (struct rtl_data));
193 f->eh = NULL;
194 f->machine = NULL;
195 f->cfg = NULL;
197 regno_reg_rtx = NULL;
200 /* Return size needed for stack frame based on slots so far allocated.
201 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
202 the caller may have to do that. */
204 HOST_WIDE_INT
205 get_frame_size (void)
207 if (FRAME_GROWS_DOWNWARD)
208 return -frame_offset;
209 else
210 return frame_offset;
213 /* Issue an error message and return TRUE if frame OFFSET overflows in
214 the signed target pointer arithmetics for function FUNC. Otherwise
215 return FALSE. */
217 bool
218 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
220 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
222 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
223 /* Leave room for the fixed part of the frame. */
224 - 64 * UNITS_PER_WORD)
226 error_at (DECL_SOURCE_LOCATION (func),
227 "total size of local objects too large");
228 return TRUE;
231 return FALSE;
234 /* Return stack slot alignment in bits for TYPE and MODE. */
236 static unsigned int
237 get_stack_local_alignment (tree type, enum machine_mode mode)
239 unsigned int alignment;
241 if (mode == BLKmode)
242 alignment = BIGGEST_ALIGNMENT;
243 else
244 alignment = GET_MODE_ALIGNMENT (mode);
246 /* Allow the frond-end to (possibly) increase the alignment of this
247 stack slot. */
248 if (! type)
249 type = lang_hooks.types.type_for_mode (mode, 0);
251 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
254 /* Determine whether it is possible to fit a stack slot of size SIZE and
255 alignment ALIGNMENT into an area in the stack frame that starts at
256 frame offset START and has a length of LENGTH. If so, store the frame
257 offset to be used for the stack slot in *POFFSET and return true;
258 return false otherwise. This function will extend the frame size when
259 given a start/length pair that lies at the end of the frame. */
261 static bool
262 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
263 HOST_WIDE_INT size, unsigned int alignment,
264 HOST_WIDE_INT *poffset)
266 HOST_WIDE_INT this_frame_offset;
267 int frame_off, frame_alignment, frame_phase;
269 /* Calculate how many bytes the start of local variables is off from
270 stack alignment. */
271 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
272 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
273 frame_phase = frame_off ? frame_alignment - frame_off : 0;
275 /* Round the frame offset to the specified alignment. */
277 /* We must be careful here, since FRAME_OFFSET might be negative and
278 division with a negative dividend isn't as well defined as we might
279 like. So we instead assume that ALIGNMENT is a power of two and
280 use logical operations which are unambiguous. */
281 if (FRAME_GROWS_DOWNWARD)
282 this_frame_offset
283 = (FLOOR_ROUND (start + length - size - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
286 else
287 this_frame_offset
288 = (CEIL_ROUND (start - frame_phase,
289 (unsigned HOST_WIDE_INT) alignment)
290 + frame_phase);
292 /* See if it fits. If this space is at the edge of the frame,
293 consider extending the frame to make it fit. Our caller relies on
294 this when allocating a new slot. */
295 if (frame_offset == start && this_frame_offset < frame_offset)
296 frame_offset = this_frame_offset;
297 else if (this_frame_offset < start)
298 return false;
299 else if (start + length == frame_offset
300 && this_frame_offset + size > start + length)
301 frame_offset = this_frame_offset + size;
302 else if (this_frame_offset + size > start + length)
303 return false;
305 *poffset = this_frame_offset;
306 return true;
309 /* Create a new frame_space structure describing free space in the stack
310 frame beginning at START and ending at END, and chain it into the
311 function's frame_space_list. */
313 static void
314 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
316 struct frame_space *space = ggc_alloc_frame_space ();
317 space->next = crtl->frame_space_list;
318 crtl->frame_space_list = space;
319 space->start = start;
320 space->length = end - start;
323 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
324 with machine mode MODE.
326 ALIGN controls the amount of alignment for the address of the slot:
327 0 means according to MODE,
328 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
329 -2 means use BITS_PER_UNIT,
330 positive specifies alignment boundary in bits.
332 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
333 alignment and ASLK_RECORD_PAD bit set if we should remember
334 extra space we allocated for alignment purposes. When we are
335 called from assign_stack_temp_for_type, it is not set so we don't
336 track the same stack slot in two independent lists.
338 We do not round to stack_boundary here. */
341 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
342 int align, int kind)
344 rtx x, addr;
345 int bigend_correction = 0;
346 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
347 unsigned int alignment, alignment_in_bits;
349 if (align == 0)
351 alignment = get_stack_local_alignment (NULL, mode);
352 alignment /= BITS_PER_UNIT;
354 else if (align == -1)
356 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
357 size = CEIL_ROUND (size, alignment);
359 else if (align == -2)
360 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
361 else
362 alignment = align / BITS_PER_UNIT;
364 alignment_in_bits = alignment * BITS_PER_UNIT;
366 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
367 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
369 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
370 alignment = alignment_in_bits / BITS_PER_UNIT;
373 if (SUPPORTS_STACK_ALIGNMENT)
375 if (crtl->stack_alignment_estimated < alignment_in_bits)
377 if (!crtl->stack_realign_processed)
378 crtl->stack_alignment_estimated = alignment_in_bits;
379 else
381 /* If stack is realigned and stack alignment value
382 hasn't been finalized, it is OK not to increase
383 stack_alignment_estimated. The bigger alignment
384 requirement is recorded in stack_alignment_needed
385 below. */
386 gcc_assert (!crtl->stack_realign_finalized);
387 if (!crtl->stack_realign_needed)
389 /* It is OK to reduce the alignment as long as the
390 requested size is 0 or the estimated stack
391 alignment >= mode alignment. */
392 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
393 || size == 0
394 || (crtl->stack_alignment_estimated
395 >= GET_MODE_ALIGNMENT (mode)));
396 alignment_in_bits = crtl->stack_alignment_estimated;
397 alignment = alignment_in_bits / BITS_PER_UNIT;
403 if (crtl->stack_alignment_needed < alignment_in_bits)
404 crtl->stack_alignment_needed = alignment_in_bits;
405 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
406 crtl->max_used_stack_slot_alignment = alignment_in_bits;
408 if (mode != BLKmode || size != 0)
410 if (kind & ASLK_RECORD_PAD)
412 struct frame_space **psp;
414 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
416 struct frame_space *space = *psp;
417 if (!try_fit_stack_local (space->start, space->length, size,
418 alignment, &slot_offset))
419 continue;
420 *psp = space->next;
421 if (slot_offset > space->start)
422 add_frame_space (space->start, slot_offset);
423 if (slot_offset + size < space->start + space->length)
424 add_frame_space (slot_offset + size,
425 space->start + space->length);
426 goto found_space;
430 else if (!STACK_ALIGNMENT_NEEDED)
432 slot_offset = frame_offset;
433 goto found_space;
436 old_frame_offset = frame_offset;
438 if (FRAME_GROWS_DOWNWARD)
440 frame_offset -= size;
441 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
443 if (kind & ASLK_RECORD_PAD)
445 if (slot_offset > frame_offset)
446 add_frame_space (frame_offset, slot_offset);
447 if (slot_offset + size < old_frame_offset)
448 add_frame_space (slot_offset + size, old_frame_offset);
451 else
453 frame_offset += size;
454 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
456 if (kind & ASLK_RECORD_PAD)
458 if (slot_offset > old_frame_offset)
459 add_frame_space (old_frame_offset, slot_offset);
460 if (slot_offset + size < frame_offset)
461 add_frame_space (slot_offset + size, frame_offset);
465 found_space:
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
469 bigend_correction = size - GET_MODE_SIZE (mode);
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (virtuals_instantiated)
474 addr = plus_constant (Pmode, frame_pointer_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (slot_offset + bigend_correction,
482 Pmode));
484 x = gen_rtx_MEM (mode, addr);
485 set_mem_align (x, alignment_in_bits);
486 MEM_NOTRAP_P (x) = 1;
488 stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
491 if (frame_offset_overflow (frame_offset, current_function_decl))
492 frame_offset = 0;
494 return x;
497 /* Wrap up assign_stack_local_1 with last parameter as false. */
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
502 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
505 /* In order to evaluate some expressions, such as function calls returning
506 structures in memory, we need to temporarily allocate stack locations.
507 We record each allocated temporary in the following structure.
509 Associated with each temporary slot is a nesting level. When we pop up
510 one level, all temporaries associated with the previous level are freed.
511 Normally, all temporaries are freed after the execution of the statement
512 in which they were created. However, if we are inside a ({...}) grouping,
513 the result may be in a temporary and hence must be preserved. If the
514 result could be in a temporary, we preserve it if we can determine which
515 one it is in. If we cannot determine which temporary may contain the
516 result, all temporaries are preserved. A temporary is preserved by
517 pretending it was allocated at the previous nesting level. */
519 struct GTY(()) temp_slot {
520 /* Points to next temporary slot. */
521 struct temp_slot *next;
522 /* Points to previous temporary slot. */
523 struct temp_slot *prev;
524 /* The rtx to used to reference the slot. */
525 rtx slot;
526 /* The size, in units, of the slot. */
527 HOST_WIDE_INT size;
528 /* The type of the object in the slot, or zero if it doesn't correspond
529 to a type. We use this to determine whether a slot can be reused.
530 It can be reused if objects of the type of the new slot will always
531 conflict with objects of the type of the old slot. */
532 tree type;
533 /* The alignment (in bits) of the slot. */
534 unsigned int align;
535 /* Nonzero if this temporary is currently in use. */
536 char in_use;
537 /* Nesting level at which this slot is being used. */
538 int level;
539 /* The offset of the slot from the frame_pointer, including extra space
540 for alignment. This info is for combine_temp_slots. */
541 HOST_WIDE_INT base_offset;
542 /* The size of the slot, including extra space for alignment. This
543 info is for combine_temp_slots. */
544 HOST_WIDE_INT full_size;
547 /* A table of addresses that represent a stack slot. The table is a mapping
548 from address RTXen to a temp slot. */
549 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
550 static size_t n_temp_slots_in_use;
552 /* Entry for the above hash table. */
553 struct GTY(()) temp_slot_address_entry {
554 hashval_t hash;
555 rtx address;
556 struct temp_slot *temp_slot;
559 /* Removes temporary slot TEMP from LIST. */
561 static void
562 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
564 if (temp->next)
565 temp->next->prev = temp->prev;
566 if (temp->prev)
567 temp->prev->next = temp->next;
568 else
569 *list = temp->next;
571 temp->prev = temp->next = NULL;
574 /* Inserts temporary slot TEMP to LIST. */
576 static void
577 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
579 temp->next = *list;
580 if (*list)
581 (*list)->prev = temp;
582 temp->prev = NULL;
583 *list = temp;
586 /* Returns the list of used temp slots at LEVEL. */
588 static struct temp_slot **
589 temp_slots_at_level (int level)
591 if (level >= (int) vec_safe_length (used_temp_slots))
592 vec_safe_grow_cleared (used_temp_slots, level + 1);
594 return &(*used_temp_slots)[level];
597 /* Returns the maximal temporary slot level. */
599 static int
600 max_slot_level (void)
602 if (!used_temp_slots)
603 return -1;
605 return used_temp_slots->length () - 1;
608 /* Moves temporary slot TEMP to LEVEL. */
610 static void
611 move_slot_to_level (struct temp_slot *temp, int level)
613 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
614 insert_slot_to_list (temp, temp_slots_at_level (level));
615 temp->level = level;
618 /* Make temporary slot TEMP available. */
620 static void
621 make_slot_available (struct temp_slot *temp)
623 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
624 insert_slot_to_list (temp, &avail_temp_slots);
625 temp->in_use = 0;
626 temp->level = -1;
627 n_temp_slots_in_use--;
630 /* Compute the hash value for an address -> temp slot mapping.
631 The value is cached on the mapping entry. */
632 static hashval_t
633 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
635 int do_not_record = 0;
636 return hash_rtx (t->address, GET_MODE (t->address),
637 &do_not_record, NULL, false);
640 /* Return the hash value for an address -> temp slot mapping. */
641 static hashval_t
642 temp_slot_address_hash (const void *p)
644 const struct temp_slot_address_entry *t;
645 t = (const struct temp_slot_address_entry *) p;
646 return t->hash;
649 /* Compare two address -> temp slot mapping entries. */
650 static int
651 temp_slot_address_eq (const void *p1, const void *p2)
653 const struct temp_slot_address_entry *t1, *t2;
654 t1 = (const struct temp_slot_address_entry *) p1;
655 t2 = (const struct temp_slot_address_entry *) p2;
656 return exp_equiv_p (t1->address, t2->address, 0, true);
659 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
660 static void
661 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
663 void **slot;
664 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
665 t->address = address;
666 t->temp_slot = temp_slot;
667 t->hash = temp_slot_address_compute_hash (t);
668 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
669 *slot = t;
672 /* Remove an address -> temp slot mapping entry if the temp slot is
673 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
674 static int
675 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
677 const struct temp_slot_address_entry *t;
678 t = (const struct temp_slot_address_entry *) *slot;
679 if (! t->temp_slot->in_use)
680 htab_clear_slot (temp_slot_address_table, slot);
681 return 1;
684 /* Remove all mappings of addresses to unused temp slots. */
685 static void
686 remove_unused_temp_slot_addresses (void)
688 /* Use quicker clearing if there aren't any active temp slots. */
689 if (n_temp_slots_in_use)
690 htab_traverse (temp_slot_address_table,
691 remove_unused_temp_slot_addresses_1,
692 NULL);
693 else
694 htab_empty (temp_slot_address_table);
697 /* Find the temp slot corresponding to the object at address X. */
699 static struct temp_slot *
700 find_temp_slot_from_address (rtx x)
702 struct temp_slot *p;
703 struct temp_slot_address_entry tmp, *t;
705 /* First try the easy way:
706 See if X exists in the address -> temp slot mapping. */
707 tmp.address = x;
708 tmp.temp_slot = NULL;
709 tmp.hash = temp_slot_address_compute_hash (&tmp);
710 t = (struct temp_slot_address_entry *)
711 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
712 if (t)
713 return t->temp_slot;
715 /* If we have a sum involving a register, see if it points to a temp
716 slot. */
717 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
718 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
719 return p;
720 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
721 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
722 return p;
724 /* Last resort: Address is a virtual stack var address. */
725 if (GET_CODE (x) == PLUS
726 && XEXP (x, 0) == virtual_stack_vars_rtx
727 && CONST_INT_P (XEXP (x, 1)))
729 int i;
730 for (i = max_slot_level (); i >= 0; i--)
731 for (p = *temp_slots_at_level (i); p; p = p->next)
733 if (INTVAL (XEXP (x, 1)) >= p->base_offset
734 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
735 return p;
739 return NULL;
742 /* Allocate a temporary stack slot and record it for possible later
743 reuse.
745 MODE is the machine mode to be given to the returned rtx.
747 SIZE is the size in units of the space required. We do no rounding here
748 since assign_stack_local will do any required rounding.
750 TYPE is the type that will be used for the stack slot. */
753 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
754 tree type)
756 unsigned int align;
757 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
758 rtx slot;
760 /* If SIZE is -1 it means that somebody tried to allocate a temporary
761 of a variable size. */
762 gcc_assert (size != -1);
764 align = get_stack_local_alignment (type, mode);
766 /* Try to find an available, already-allocated temporary of the proper
767 mode which meets the size and alignment requirements. Choose the
768 smallest one with the closest alignment.
770 If assign_stack_temp is called outside of the tree->rtl expansion,
771 we cannot reuse the stack slots (that may still refer to
772 VIRTUAL_STACK_VARS_REGNUM). */
773 if (!virtuals_instantiated)
775 for (p = avail_temp_slots; p; p = p->next)
777 if (p->align >= align && p->size >= size
778 && GET_MODE (p->slot) == mode
779 && objects_must_conflict_p (p->type, type)
780 && (best_p == 0 || best_p->size > p->size
781 || (best_p->size == p->size && best_p->align > p->align)))
783 if (p->align == align && p->size == size)
785 selected = p;
786 cut_slot_from_list (selected, &avail_temp_slots);
787 best_p = 0;
788 break;
790 best_p = p;
795 /* Make our best, if any, the one to use. */
796 if (best_p)
798 selected = best_p;
799 cut_slot_from_list (selected, &avail_temp_slots);
801 /* If there are enough aligned bytes left over, make them into a new
802 temp_slot so that the extra bytes don't get wasted. Do this only
803 for BLKmode slots, so that we can be sure of the alignment. */
804 if (GET_MODE (best_p->slot) == BLKmode)
806 int alignment = best_p->align / BITS_PER_UNIT;
807 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
809 if (best_p->size - rounded_size >= alignment)
811 p = ggc_alloc_temp_slot ();
812 p->in_use = 0;
813 p->size = best_p->size - rounded_size;
814 p->base_offset = best_p->base_offset + rounded_size;
815 p->full_size = best_p->full_size - rounded_size;
816 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
817 p->align = best_p->align;
818 p->type = best_p->type;
819 insert_slot_to_list (p, &avail_temp_slots);
821 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
822 stack_slot_list);
824 best_p->size = rounded_size;
825 best_p->full_size = rounded_size;
830 /* If we still didn't find one, make a new temporary. */
831 if (selected == 0)
833 HOST_WIDE_INT frame_offset_old = frame_offset;
835 p = ggc_alloc_temp_slot ();
837 /* We are passing an explicit alignment request to assign_stack_local.
838 One side effect of that is assign_stack_local will not round SIZE
839 to ensure the frame offset remains suitably aligned.
841 So for requests which depended on the rounding of SIZE, we go ahead
842 and round it now. We also make sure ALIGNMENT is at least
843 BIGGEST_ALIGNMENT. */
844 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
845 p->slot = assign_stack_local_1 (mode,
846 (mode == BLKmode
847 ? CEIL_ROUND (size,
848 (int) align
849 / BITS_PER_UNIT)
850 : size),
851 align, 0);
853 p->align = align;
855 /* The following slot size computation is necessary because we don't
856 know the actual size of the temporary slot until assign_stack_local
857 has performed all the frame alignment and size rounding for the
858 requested temporary. Note that extra space added for alignment
859 can be either above or below this stack slot depending on which
860 way the frame grows. We include the extra space if and only if it
861 is above this slot. */
862 if (FRAME_GROWS_DOWNWARD)
863 p->size = frame_offset_old - frame_offset;
864 else
865 p->size = size;
867 /* Now define the fields used by combine_temp_slots. */
868 if (FRAME_GROWS_DOWNWARD)
870 p->base_offset = frame_offset;
871 p->full_size = frame_offset_old - frame_offset;
873 else
875 p->base_offset = frame_offset_old;
876 p->full_size = frame_offset - frame_offset_old;
879 selected = p;
882 p = selected;
883 p->in_use = 1;
884 p->type = type;
885 p->level = temp_slot_level;
886 n_temp_slots_in_use++;
888 pp = temp_slots_at_level (p->level);
889 insert_slot_to_list (p, pp);
890 insert_temp_slot_address (XEXP (p->slot, 0), p);
892 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
893 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
894 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
896 /* If we know the alias set for the memory that will be used, use
897 it. If there's no TYPE, then we don't know anything about the
898 alias set for the memory. */
899 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
900 set_mem_align (slot, align);
902 /* If a type is specified, set the relevant flags. */
903 if (type != 0)
904 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
905 MEM_NOTRAP_P (slot) = 1;
907 return slot;
910 /* Allocate a temporary stack slot and record it for possible later
911 reuse. First two arguments are same as in preceding function. */
914 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
916 return assign_stack_temp_for_type (mode, size, NULL_TREE);
919 /* Assign a temporary.
920 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
921 and so that should be used in error messages. In either case, we
922 allocate of the given type.
923 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
924 it is 0 if a register is OK.
925 DONT_PROMOTE is 1 if we should not promote values in register
926 to wider modes. */
929 assign_temp (tree type_or_decl, int memory_required,
930 int dont_promote ATTRIBUTE_UNUSED)
932 tree type, decl;
933 enum machine_mode mode;
934 #ifdef PROMOTE_MODE
935 int unsignedp;
936 #endif
938 if (DECL_P (type_or_decl))
939 decl = type_or_decl, type = TREE_TYPE (decl);
940 else
941 decl = NULL, type = type_or_decl;
943 mode = TYPE_MODE (type);
944 #ifdef PROMOTE_MODE
945 unsignedp = TYPE_UNSIGNED (type);
946 #endif
948 if (mode == BLKmode || memory_required)
950 HOST_WIDE_INT size = int_size_in_bytes (type);
951 rtx tmp;
953 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
954 problems with allocating the stack space. */
955 if (size == 0)
956 size = 1;
958 /* Unfortunately, we don't yet know how to allocate variable-sized
959 temporaries. However, sometimes we can find a fixed upper limit on
960 the size, so try that instead. */
961 else if (size == -1)
962 size = max_int_size_in_bytes (type);
964 /* The size of the temporary may be too large to fit into an integer. */
965 /* ??? Not sure this should happen except for user silliness, so limit
966 this to things that aren't compiler-generated temporaries. The
967 rest of the time we'll die in assign_stack_temp_for_type. */
968 if (decl && size == -1
969 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
971 error ("size of variable %q+D is too large", decl);
972 size = 1;
975 tmp = assign_stack_temp_for_type (mode, size, type);
976 return tmp;
979 #ifdef PROMOTE_MODE
980 if (! dont_promote)
981 mode = promote_mode (type, mode, &unsignedp);
982 #endif
984 return gen_reg_rtx (mode);
987 /* Combine temporary stack slots which are adjacent on the stack.
989 This allows for better use of already allocated stack space. This is only
990 done for BLKmode slots because we can be sure that we won't have alignment
991 problems in this case. */
993 static void
994 combine_temp_slots (void)
996 struct temp_slot *p, *q, *next, *next_q;
997 int num_slots;
999 /* We can't combine slots, because the information about which slot
1000 is in which alias set will be lost. */
1001 if (flag_strict_aliasing)
1002 return;
1004 /* If there are a lot of temp slots, don't do anything unless
1005 high levels of optimization. */
1006 if (! flag_expensive_optimizations)
1007 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1008 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1009 return;
1011 for (p = avail_temp_slots; p; p = next)
1013 int delete_p = 0;
1015 next = p->next;
1017 if (GET_MODE (p->slot) != BLKmode)
1018 continue;
1020 for (q = p->next; q; q = next_q)
1022 int delete_q = 0;
1024 next_q = q->next;
1026 if (GET_MODE (q->slot) != BLKmode)
1027 continue;
1029 if (p->base_offset + p->full_size == q->base_offset)
1031 /* Q comes after P; combine Q into P. */
1032 p->size += q->size;
1033 p->full_size += q->full_size;
1034 delete_q = 1;
1036 else if (q->base_offset + q->full_size == p->base_offset)
1038 /* P comes after Q; combine P into Q. */
1039 q->size += p->size;
1040 q->full_size += p->full_size;
1041 delete_p = 1;
1042 break;
1044 if (delete_q)
1045 cut_slot_from_list (q, &avail_temp_slots);
1048 /* Either delete P or advance past it. */
1049 if (delete_p)
1050 cut_slot_from_list (p, &avail_temp_slots);
1054 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1055 slot that previously was known by OLD_RTX. */
1057 void
1058 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1060 struct temp_slot *p;
1062 if (rtx_equal_p (old_rtx, new_rtx))
1063 return;
1065 p = find_temp_slot_from_address (old_rtx);
1067 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1068 NEW_RTX is a register, see if one operand of the PLUS is a
1069 temporary location. If so, NEW_RTX points into it. Otherwise,
1070 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1071 in common between them. If so, try a recursive call on those
1072 values. */
1073 if (p == 0)
1075 if (GET_CODE (old_rtx) != PLUS)
1076 return;
1078 if (REG_P (new_rtx))
1080 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1081 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1082 return;
1084 else if (GET_CODE (new_rtx) != PLUS)
1085 return;
1087 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1091 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1092 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1093 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1094 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1096 return;
1099 /* Otherwise add an alias for the temp's address. */
1100 insert_temp_slot_address (new_rtx, p);
1103 /* If X could be a reference to a temporary slot, mark that slot as
1104 belonging to the to one level higher than the current level. If X
1105 matched one of our slots, just mark that one. Otherwise, we can't
1106 easily predict which it is, so upgrade all of them.
1108 This is called when an ({...}) construct occurs and a statement
1109 returns a value in memory. */
1111 void
1112 preserve_temp_slots (rtx x)
1114 struct temp_slot *p = 0, *next;
1116 if (x == 0)
1117 return;
1119 /* If X is a register that is being used as a pointer, see if we have
1120 a temporary slot we know it points to. */
1121 if (REG_P (x) && REG_POINTER (x))
1122 p = find_temp_slot_from_address (x);
1124 /* If X is not in memory or is at a constant address, it cannot be in
1125 a temporary slot. */
1126 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1127 return;
1129 /* First see if we can find a match. */
1130 if (p == 0)
1131 p = find_temp_slot_from_address (XEXP (x, 0));
1133 if (p != 0)
1135 if (p->level == temp_slot_level)
1136 move_slot_to_level (p, temp_slot_level - 1);
1137 return;
1140 /* Otherwise, preserve all non-kept slots at this level. */
1141 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1143 next = p->next;
1144 move_slot_to_level (p, temp_slot_level - 1);
1148 /* Free all temporaries used so far. This is normally called at the
1149 end of generating code for a statement. */
1151 void
1152 free_temp_slots (void)
1154 struct temp_slot *p, *next;
1155 bool some_available = false;
1157 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1159 next = p->next;
1160 make_slot_available (p);
1161 some_available = true;
1164 if (some_available)
1166 remove_unused_temp_slot_addresses ();
1167 combine_temp_slots ();
1171 /* Push deeper into the nesting level for stack temporaries. */
1173 void
1174 push_temp_slots (void)
1176 temp_slot_level++;
1179 /* Pop a temporary nesting level. All slots in use in the current level
1180 are freed. */
1182 void
1183 pop_temp_slots (void)
1185 free_temp_slots ();
1186 temp_slot_level--;
1189 /* Initialize temporary slots. */
1191 void
1192 init_temp_slots (void)
1194 /* We have not allocated any temporaries yet. */
1195 avail_temp_slots = 0;
1196 vec_alloc (used_temp_slots, 0);
1197 temp_slot_level = 0;
1198 n_temp_slots_in_use = 0;
1200 /* Set up the table to map addresses to temp slots. */
1201 if (! temp_slot_address_table)
1202 temp_slot_address_table = htab_create_ggc (32,
1203 temp_slot_address_hash,
1204 temp_slot_address_eq,
1205 NULL);
1206 else
1207 htab_empty (temp_slot_address_table);
1210 /* Functions and data structures to keep track of the values hard regs
1211 had at the start of the function. */
1213 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1214 and has_hard_reg_initial_val.. */
1215 typedef struct GTY(()) initial_value_pair {
1216 rtx hard_reg;
1217 rtx pseudo;
1218 } initial_value_pair;
1219 /* ??? This could be a VEC but there is currently no way to define an
1220 opaque VEC type. This could be worked around by defining struct
1221 initial_value_pair in function.h. */
1222 typedef struct GTY(()) initial_value_struct {
1223 int num_entries;
1224 int max_entries;
1225 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1226 } initial_value_struct;
1228 /* If a pseudo represents an initial hard reg (or expression), return
1229 it, else return NULL_RTX. */
1232 get_hard_reg_initial_reg (rtx reg)
1234 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1235 int i;
1237 if (ivs == 0)
1238 return NULL_RTX;
1240 for (i = 0; i < ivs->num_entries; i++)
1241 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1242 return ivs->entries[i].hard_reg;
1244 return NULL_RTX;
1247 /* Make sure that there's a pseudo register of mode MODE that stores the
1248 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1251 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1253 struct initial_value_struct *ivs;
1254 rtx rv;
1256 rv = has_hard_reg_initial_val (mode, regno);
1257 if (rv)
1258 return rv;
1260 ivs = crtl->hard_reg_initial_vals;
1261 if (ivs == 0)
1263 ivs = ggc_alloc_initial_value_struct ();
1264 ivs->num_entries = 0;
1265 ivs->max_entries = 5;
1266 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1267 crtl->hard_reg_initial_vals = ivs;
1270 if (ivs->num_entries >= ivs->max_entries)
1272 ivs->max_entries += 5;
1273 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1274 ivs->max_entries);
1277 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1278 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1280 return ivs->entries[ivs->num_entries++].pseudo;
1283 /* See if get_hard_reg_initial_val has been used to create a pseudo
1284 for the initial value of hard register REGNO in mode MODE. Return
1285 the associated pseudo if so, otherwise return NULL. */
1288 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1290 struct initial_value_struct *ivs;
1291 int i;
1293 ivs = crtl->hard_reg_initial_vals;
1294 if (ivs != 0)
1295 for (i = 0; i < ivs->num_entries; i++)
1296 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1297 && REGNO (ivs->entries[i].hard_reg) == regno)
1298 return ivs->entries[i].pseudo;
1300 return NULL_RTX;
1303 unsigned int
1304 emit_initial_value_sets (void)
1306 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1307 int i;
1308 rtx seq;
1310 if (ivs == 0)
1311 return 0;
1313 start_sequence ();
1314 for (i = 0; i < ivs->num_entries; i++)
1315 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1316 seq = get_insns ();
1317 end_sequence ();
1319 emit_insn_at_entry (seq);
1320 return 0;
1323 /* Return the hardreg-pseudoreg initial values pair entry I and
1324 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1325 bool
1326 initial_value_entry (int i, rtx *hreg, rtx *preg)
1328 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1329 if (!ivs || i >= ivs->num_entries)
1330 return false;
1332 *hreg = ivs->entries[i].hard_reg;
1333 *preg = ivs->entries[i].pseudo;
1334 return true;
1337 /* These routines are responsible for converting virtual register references
1338 to the actual hard register references once RTL generation is complete.
1340 The following four variables are used for communication between the
1341 routines. They contain the offsets of the virtual registers from their
1342 respective hard registers. */
1344 static int in_arg_offset;
1345 static int var_offset;
1346 static int dynamic_offset;
1347 static int out_arg_offset;
1348 static int cfa_offset;
1350 /* In most machines, the stack pointer register is equivalent to the bottom
1351 of the stack. */
1353 #ifndef STACK_POINTER_OFFSET
1354 #define STACK_POINTER_OFFSET 0
1355 #endif
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1361 #ifndef STACK_DYNAMIC_OFFSET
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1371 #if defined(REG_PARM_STACK_SPACE)
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1396 if (x == virtual_incoming_args_rtx)
1398 if (stack_realign_drap)
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1428 else
1429 return NULL_RTX;
1431 *poffset = offset;
1432 return new_rtx;
1435 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1436 Instantiate any virtual registers present inside of *LOC. The expression
1437 is simplified, as much as possible, but is not to be considered "valid"
1438 in any sense implied by the target. If any change is made, set CHANGED
1439 to true. */
1441 static int
1442 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1444 HOST_WIDE_INT offset;
1445 bool *changed = (bool *) data;
1446 rtx x, new_rtx;
1448 x = *loc;
1449 if (x == 0)
1450 return 0;
1452 switch (GET_CODE (x))
1454 case REG:
1455 new_rtx = instantiate_new_reg (x, &offset);
1456 if (new_rtx)
1458 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1459 if (changed)
1460 *changed = true;
1462 return -1;
1464 case PLUS:
1465 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1466 if (new_rtx)
1468 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1469 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1470 if (changed)
1471 *changed = true;
1472 return -1;
1475 /* FIXME -- from old code */
1476 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1477 we can commute the PLUS and SUBREG because pointers into the
1478 frame are well-behaved. */
1479 break;
1481 default:
1482 break;
1485 return 0;
1488 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1489 matches the predicate for insn CODE operand OPERAND. */
1491 static int
1492 safe_insn_predicate (int code, int operand, rtx x)
1494 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1497 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1498 registers present inside of insn. The result will be a valid insn. */
1500 static void
1501 instantiate_virtual_regs_in_insn (rtx insn)
1503 HOST_WIDE_INT offset;
1504 int insn_code, i;
1505 bool any_change = false;
1506 rtx set, new_rtx, x, seq;
1508 /* There are some special cases to be handled first. */
1509 set = single_set (insn);
1510 if (set)
1512 /* We're allowed to assign to a virtual register. This is interpreted
1513 to mean that the underlying register gets assigned the inverse
1514 transformation. This is used, for example, in the handling of
1515 non-local gotos. */
1516 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1517 if (new_rtx)
1519 start_sequence ();
1521 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1522 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1523 GEN_INT (-offset));
1524 x = force_operand (x, new_rtx);
1525 if (x != new_rtx)
1526 emit_move_insn (new_rtx, x);
1528 seq = get_insns ();
1529 end_sequence ();
1531 emit_insn_before (seq, insn);
1532 delete_insn (insn);
1533 return;
1536 /* Handle a straight copy from a virtual register by generating a
1537 new add insn. The difference between this and falling through
1538 to the generic case is avoiding a new pseudo and eliminating a
1539 move insn in the initial rtl stream. */
1540 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1541 if (new_rtx && offset != 0
1542 && REG_P (SET_DEST (set))
1543 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1545 start_sequence ();
1547 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1548 new_rtx, GEN_INT (offset), SET_DEST (set),
1549 1, OPTAB_LIB_WIDEN);
1550 if (x != SET_DEST (set))
1551 emit_move_insn (SET_DEST (set), x);
1553 seq = get_insns ();
1554 end_sequence ();
1556 emit_insn_before (seq, insn);
1557 delete_insn (insn);
1558 return;
1561 extract_insn (insn);
1562 insn_code = INSN_CODE (insn);
1564 /* Handle a plus involving a virtual register by determining if the
1565 operands remain valid if they're modified in place. */
1566 if (GET_CODE (SET_SRC (set)) == PLUS
1567 && recog_data.n_operands >= 3
1568 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1569 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1570 && CONST_INT_P (recog_data.operand[2])
1571 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1573 offset += INTVAL (recog_data.operand[2]);
1575 /* If the sum is zero, then replace with a plain move. */
1576 if (offset == 0
1577 && REG_P (SET_DEST (set))
1578 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1580 start_sequence ();
1581 emit_move_insn (SET_DEST (set), new_rtx);
1582 seq = get_insns ();
1583 end_sequence ();
1585 emit_insn_before (seq, insn);
1586 delete_insn (insn);
1587 return;
1590 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1592 /* Using validate_change and apply_change_group here leaves
1593 recog_data in an invalid state. Since we know exactly what
1594 we want to check, do those two by hand. */
1595 if (safe_insn_predicate (insn_code, 1, new_rtx)
1596 && safe_insn_predicate (insn_code, 2, x))
1598 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1599 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1600 any_change = true;
1602 /* Fall through into the regular operand fixup loop in
1603 order to take care of operands other than 1 and 2. */
1607 else
1609 extract_insn (insn);
1610 insn_code = INSN_CODE (insn);
1613 /* In the general case, we expect virtual registers to appear only in
1614 operands, and then only as either bare registers or inside memories. */
1615 for (i = 0; i < recog_data.n_operands; ++i)
1617 x = recog_data.operand[i];
1618 switch (GET_CODE (x))
1620 case MEM:
1622 rtx addr = XEXP (x, 0);
1623 bool changed = false;
1625 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1626 if (!changed)
1627 continue;
1629 start_sequence ();
1630 x = replace_equiv_address (x, addr);
1631 /* It may happen that the address with the virtual reg
1632 was valid (e.g. based on the virtual stack reg, which might
1633 be acceptable to the predicates with all offsets), whereas
1634 the address now isn't anymore, for instance when the address
1635 is still offsetted, but the base reg isn't virtual-stack-reg
1636 anymore. Below we would do a force_reg on the whole operand,
1637 but this insn might actually only accept memory. Hence,
1638 before doing that last resort, try to reload the address into
1639 a register, so this operand stays a MEM. */
1640 if (!safe_insn_predicate (insn_code, i, x))
1642 addr = force_reg (GET_MODE (addr), addr);
1643 x = replace_equiv_address (x, addr);
1645 seq = get_insns ();
1646 end_sequence ();
1647 if (seq)
1648 emit_insn_before (seq, insn);
1650 break;
1652 case REG:
1653 new_rtx = instantiate_new_reg (x, &offset);
1654 if (new_rtx == NULL)
1655 continue;
1656 if (offset == 0)
1657 x = new_rtx;
1658 else
1660 start_sequence ();
1662 /* Careful, special mode predicates may have stuff in
1663 insn_data[insn_code].operand[i].mode that isn't useful
1664 to us for computing a new value. */
1665 /* ??? Recognize address_operand and/or "p" constraints
1666 to see if (plus new offset) is a valid before we put
1667 this through expand_simple_binop. */
1668 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1669 GEN_INT (offset), NULL_RTX,
1670 1, OPTAB_LIB_WIDEN);
1671 seq = get_insns ();
1672 end_sequence ();
1673 emit_insn_before (seq, insn);
1675 break;
1677 case SUBREG:
1678 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1679 if (new_rtx == NULL)
1680 continue;
1681 if (offset != 0)
1683 start_sequence ();
1684 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1685 GEN_INT (offset), NULL_RTX,
1686 1, OPTAB_LIB_WIDEN);
1687 seq = get_insns ();
1688 end_sequence ();
1689 emit_insn_before (seq, insn);
1691 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1692 GET_MODE (new_rtx), SUBREG_BYTE (x));
1693 gcc_assert (x);
1694 break;
1696 default:
1697 continue;
1700 /* At this point, X contains the new value for the operand.
1701 Validate the new value vs the insn predicate. Note that
1702 asm insns will have insn_code -1 here. */
1703 if (!safe_insn_predicate (insn_code, i, x))
1705 start_sequence ();
1706 if (REG_P (x))
1708 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1709 x = copy_to_reg (x);
1711 else
1712 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1713 seq = get_insns ();
1714 end_sequence ();
1715 if (seq)
1716 emit_insn_before (seq, insn);
1719 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1720 any_change = true;
1723 if (any_change)
1725 /* Propagate operand changes into the duplicates. */
1726 for (i = 0; i < recog_data.n_dups; ++i)
1727 *recog_data.dup_loc[i]
1728 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1730 /* Force re-recognition of the instruction for validation. */
1731 INSN_CODE (insn) = -1;
1734 if (asm_noperands (PATTERN (insn)) >= 0)
1736 if (!check_asm_operands (PATTERN (insn)))
1738 error_for_asm (insn, "impossible constraint in %<asm%>");
1739 /* For asm goto, instead of fixing up all the edges
1740 just clear the template and clear input operands
1741 (asm goto doesn't have any output operands). */
1742 if (JUMP_P (insn))
1744 rtx asm_op = extract_asm_operands (PATTERN (insn));
1745 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1746 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1747 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1749 else
1750 delete_insn (insn);
1753 else
1755 if (recog_memoized (insn) < 0)
1756 fatal_insn_not_found (insn);
1760 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1761 do any instantiation required. */
1763 void
1764 instantiate_decl_rtl (rtx x)
1766 rtx addr;
1768 if (x == 0)
1769 return;
1771 /* If this is a CONCAT, recurse for the pieces. */
1772 if (GET_CODE (x) == CONCAT)
1774 instantiate_decl_rtl (XEXP (x, 0));
1775 instantiate_decl_rtl (XEXP (x, 1));
1776 return;
1779 /* If this is not a MEM, no need to do anything. Similarly if the
1780 address is a constant or a register that is not a virtual register. */
1781 if (!MEM_P (x))
1782 return;
1784 addr = XEXP (x, 0);
1785 if (CONSTANT_P (addr)
1786 || (REG_P (addr)
1787 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1788 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1789 return;
1791 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1794 /* Helper for instantiate_decls called via walk_tree: Process all decls
1795 in the given DECL_VALUE_EXPR. */
1797 static tree
1798 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1800 tree t = *tp;
1801 if (! EXPR_P (t))
1803 *walk_subtrees = 0;
1804 if (DECL_P (t))
1806 if (DECL_RTL_SET_P (t))
1807 instantiate_decl_rtl (DECL_RTL (t));
1808 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1809 && DECL_INCOMING_RTL (t))
1810 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1811 if ((TREE_CODE (t) == VAR_DECL
1812 || TREE_CODE (t) == RESULT_DECL)
1813 && DECL_HAS_VALUE_EXPR_P (t))
1815 tree v = DECL_VALUE_EXPR (t);
1816 walk_tree (&v, instantiate_expr, NULL, NULL);
1820 return NULL;
1823 /* Subroutine of instantiate_decls: Process all decls in the given
1824 BLOCK node and all its subblocks. */
1826 static void
1827 instantiate_decls_1 (tree let)
1829 tree t;
1831 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1833 if (DECL_RTL_SET_P (t))
1834 instantiate_decl_rtl (DECL_RTL (t));
1835 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1837 tree v = DECL_VALUE_EXPR (t);
1838 walk_tree (&v, instantiate_expr, NULL, NULL);
1842 /* Process all subblocks. */
1843 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1844 instantiate_decls_1 (t);
1847 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1848 all virtual registers in their DECL_RTL's. */
1850 static void
1851 instantiate_decls (tree fndecl)
1853 tree decl;
1854 unsigned ix;
1856 /* Process all parameters of the function. */
1857 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1859 instantiate_decl_rtl (DECL_RTL (decl));
1860 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1861 if (DECL_HAS_VALUE_EXPR_P (decl))
1863 tree v = DECL_VALUE_EXPR (decl);
1864 walk_tree (&v, instantiate_expr, NULL, NULL);
1868 if ((decl = DECL_RESULT (fndecl))
1869 && TREE_CODE (decl) == RESULT_DECL)
1871 if (DECL_RTL_SET_P (decl))
1872 instantiate_decl_rtl (DECL_RTL (decl));
1873 if (DECL_HAS_VALUE_EXPR_P (decl))
1875 tree v = DECL_VALUE_EXPR (decl);
1876 walk_tree (&v, instantiate_expr, NULL, NULL);
1880 /* Now process all variables defined in the function or its subblocks. */
1881 instantiate_decls_1 (DECL_INITIAL (fndecl));
1883 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1884 if (DECL_RTL_SET_P (decl))
1885 instantiate_decl_rtl (DECL_RTL (decl));
1886 vec_free (cfun->local_decls);
1889 /* Pass through the INSNS of function FNDECL and convert virtual register
1890 references to hard register references. */
1892 static unsigned int
1893 instantiate_virtual_regs (void)
1895 rtx insn;
1897 /* Compute the offsets to use for this function. */
1898 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1899 var_offset = STARTING_FRAME_OFFSET;
1900 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1901 out_arg_offset = STACK_POINTER_OFFSET;
1902 #ifdef FRAME_POINTER_CFA_OFFSET
1903 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1904 #else
1905 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1906 #endif
1908 /* Initialize recognition, indicating that volatile is OK. */
1909 init_recog ();
1911 /* Scan through all the insns, instantiating every virtual register still
1912 present. */
1913 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1914 if (INSN_P (insn))
1916 /* These patterns in the instruction stream can never be recognized.
1917 Fortunately, they shouldn't contain virtual registers either. */
1918 if (GET_CODE (PATTERN (insn)) == USE
1919 || GET_CODE (PATTERN (insn)) == CLOBBER
1920 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1921 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1922 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1923 continue;
1924 else if (DEBUG_INSN_P (insn))
1925 for_each_rtx (&INSN_VAR_LOCATION (insn),
1926 instantiate_virtual_regs_in_rtx, NULL);
1927 else
1928 instantiate_virtual_regs_in_insn (insn);
1930 if (INSN_DELETED_P (insn))
1931 continue;
1933 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1935 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1936 if (CALL_P (insn))
1937 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1938 instantiate_virtual_regs_in_rtx, NULL);
1941 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1942 instantiate_decls (current_function_decl);
1944 targetm.instantiate_decls ();
1946 /* Indicate that, from now on, assign_stack_local should use
1947 frame_pointer_rtx. */
1948 virtuals_instantiated = 1;
1950 return 0;
1953 struct rtl_opt_pass pass_instantiate_virtual_regs =
1956 RTL_PASS,
1957 "vregs", /* name */
1958 OPTGROUP_NONE, /* optinfo_flags */
1959 NULL, /* gate */
1960 instantiate_virtual_regs, /* execute */
1961 NULL, /* sub */
1962 NULL, /* next */
1963 0, /* static_pass_number */
1964 TV_NONE, /* tv_id */
1965 0, /* properties_required */
1966 0, /* properties_provided */
1967 0, /* properties_destroyed */
1968 0, /* todo_flags_start */
1969 0 /* todo_flags_finish */
1974 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1975 This means a type for which function calls must pass an address to the
1976 function or get an address back from the function.
1977 EXP may be a type node or an expression (whose type is tested). */
1980 aggregate_value_p (const_tree exp, const_tree fntype)
1982 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1983 int i, regno, nregs;
1984 rtx reg;
1986 if (fntype)
1987 switch (TREE_CODE (fntype))
1989 case CALL_EXPR:
1991 tree fndecl = get_callee_fndecl (fntype);
1992 fntype = (fndecl
1993 ? TREE_TYPE (fndecl)
1994 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1996 break;
1997 case FUNCTION_DECL:
1998 fntype = TREE_TYPE (fntype);
1999 break;
2000 case FUNCTION_TYPE:
2001 case METHOD_TYPE:
2002 break;
2003 case IDENTIFIER_NODE:
2004 fntype = NULL_TREE;
2005 break;
2006 default:
2007 /* We don't expect other tree types here. */
2008 gcc_unreachable ();
2011 if (VOID_TYPE_P (type))
2012 return 0;
2014 /* If a record should be passed the same as its first (and only) member
2015 don't pass it as an aggregate. */
2016 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2017 return aggregate_value_p (first_field (type), fntype);
2019 /* If the front end has decided that this needs to be passed by
2020 reference, do so. */
2021 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2022 && DECL_BY_REFERENCE (exp))
2023 return 1;
2025 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2026 if (fntype && TREE_ADDRESSABLE (fntype))
2027 return 1;
2029 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2030 and thus can't be returned in registers. */
2031 if (TREE_ADDRESSABLE (type))
2032 return 1;
2034 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2035 return 1;
2037 if (targetm.calls.return_in_memory (type, fntype))
2038 return 1;
2040 /* Make sure we have suitable call-clobbered regs to return
2041 the value in; if not, we must return it in memory. */
2042 reg = hard_function_value (type, 0, fntype, 0);
2044 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2045 it is OK. */
2046 if (!REG_P (reg))
2047 return 0;
2049 regno = REGNO (reg);
2050 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2051 for (i = 0; i < nregs; i++)
2052 if (! call_used_regs[regno + i])
2053 return 1;
2055 return 0;
2058 /* Return true if we should assign DECL a pseudo register; false if it
2059 should live on the local stack. */
2061 bool
2062 use_register_for_decl (const_tree decl)
2064 if (!targetm.calls.allocate_stack_slots_for_args())
2065 return true;
2067 /* Honor volatile. */
2068 if (TREE_SIDE_EFFECTS (decl))
2069 return false;
2071 /* Honor addressability. */
2072 if (TREE_ADDRESSABLE (decl))
2073 return false;
2075 /* Only register-like things go in registers. */
2076 if (DECL_MODE (decl) == BLKmode)
2077 return false;
2079 /* If -ffloat-store specified, don't put explicit float variables
2080 into registers. */
2081 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2082 propagates values across these stores, and it probably shouldn't. */
2083 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2084 return false;
2086 /* If we're not interested in tracking debugging information for
2087 this decl, then we can certainly put it in a register. */
2088 if (DECL_IGNORED_P (decl))
2089 return true;
2091 if (optimize)
2092 return true;
2094 if (!DECL_REGISTER (decl))
2095 return false;
2097 switch (TREE_CODE (TREE_TYPE (decl)))
2099 case RECORD_TYPE:
2100 case UNION_TYPE:
2101 case QUAL_UNION_TYPE:
2102 /* When not optimizing, disregard register keyword for variables with
2103 types containing methods, otherwise the methods won't be callable
2104 from the debugger. */
2105 if (TYPE_METHODS (TREE_TYPE (decl)))
2106 return false;
2107 break;
2108 default:
2109 break;
2112 return true;
2115 /* Return true if TYPE should be passed by invisible reference. */
2117 bool
2118 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2119 tree type, bool named_arg)
2121 if (type)
2123 /* If this type contains non-trivial constructors, then it is
2124 forbidden for the middle-end to create any new copies. */
2125 if (TREE_ADDRESSABLE (type))
2126 return true;
2128 /* GCC post 3.4 passes *all* variable sized types by reference. */
2129 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2130 return true;
2132 /* If a record type should be passed the same as its first (and only)
2133 member, use the type and mode of that member. */
2134 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2136 type = TREE_TYPE (first_field (type));
2137 mode = TYPE_MODE (type);
2141 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2142 type, named_arg);
2145 /* Return true if TYPE, which is passed by reference, should be callee
2146 copied instead of caller copied. */
2148 bool
2149 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2150 tree type, bool named_arg)
2152 if (type && TREE_ADDRESSABLE (type))
2153 return false;
2154 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2155 named_arg);
2158 /* Structures to communicate between the subroutines of assign_parms.
2159 The first holds data persistent across all parameters, the second
2160 is cleared out for each parameter. */
2162 struct assign_parm_data_all
2164 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2165 should become a job of the target or otherwise encapsulated. */
2166 CUMULATIVE_ARGS args_so_far_v;
2167 cumulative_args_t args_so_far;
2168 struct args_size stack_args_size;
2169 tree function_result_decl;
2170 tree orig_fnargs;
2171 rtx first_conversion_insn;
2172 rtx last_conversion_insn;
2173 HOST_WIDE_INT pretend_args_size;
2174 HOST_WIDE_INT extra_pretend_bytes;
2175 int reg_parm_stack_space;
2178 struct assign_parm_data_one
2180 tree nominal_type;
2181 tree passed_type;
2182 rtx entry_parm;
2183 rtx stack_parm;
2184 enum machine_mode nominal_mode;
2185 enum machine_mode passed_mode;
2186 enum machine_mode promoted_mode;
2187 struct locate_and_pad_arg_data locate;
2188 int partial;
2189 BOOL_BITFIELD named_arg : 1;
2190 BOOL_BITFIELD passed_pointer : 1;
2191 BOOL_BITFIELD on_stack : 1;
2192 BOOL_BITFIELD loaded_in_reg : 1;
2195 /* A subroutine of assign_parms. Initialize ALL. */
2197 static void
2198 assign_parms_initialize_all (struct assign_parm_data_all *all)
2200 tree fntype ATTRIBUTE_UNUSED;
2202 memset (all, 0, sizeof (*all));
2204 fntype = TREE_TYPE (current_function_decl);
2206 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2207 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2208 #else
2209 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2210 current_function_decl, -1);
2211 #endif
2212 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2214 #ifdef REG_PARM_STACK_SPACE
2215 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2216 #endif
2219 /* If ARGS contains entries with complex types, split the entry into two
2220 entries of the component type. Return a new list of substitutions are
2221 needed, else the old list. */
2223 static void
2224 split_complex_args (vec<tree> *args)
2226 unsigned i;
2227 tree p;
2229 FOR_EACH_VEC_ELT (*args, i, p)
2231 tree type = TREE_TYPE (p);
2232 if (TREE_CODE (type) == COMPLEX_TYPE
2233 && targetm.calls.split_complex_arg (type))
2235 tree decl;
2236 tree subtype = TREE_TYPE (type);
2237 bool addressable = TREE_ADDRESSABLE (p);
2239 /* Rewrite the PARM_DECL's type with its component. */
2240 p = copy_node (p);
2241 TREE_TYPE (p) = subtype;
2242 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2243 DECL_MODE (p) = VOIDmode;
2244 DECL_SIZE (p) = NULL;
2245 DECL_SIZE_UNIT (p) = NULL;
2246 /* If this arg must go in memory, put it in a pseudo here.
2247 We can't allow it to go in memory as per normal parms,
2248 because the usual place might not have the imag part
2249 adjacent to the real part. */
2250 DECL_ARTIFICIAL (p) = addressable;
2251 DECL_IGNORED_P (p) = addressable;
2252 TREE_ADDRESSABLE (p) = 0;
2253 layout_decl (p, 0);
2254 (*args)[i] = p;
2256 /* Build a second synthetic decl. */
2257 decl = build_decl (EXPR_LOCATION (p),
2258 PARM_DECL, NULL_TREE, subtype);
2259 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2260 DECL_ARTIFICIAL (decl) = addressable;
2261 DECL_IGNORED_P (decl) = addressable;
2262 layout_decl (decl, 0);
2263 args->safe_insert (++i, decl);
2268 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2269 the hidden struct return argument, and (abi willing) complex args.
2270 Return the new parameter list. */
2272 static vec<tree>
2273 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2275 tree fndecl = current_function_decl;
2276 tree fntype = TREE_TYPE (fndecl);
2277 vec<tree> fnargs = vNULL;
2278 tree arg;
2280 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2281 fnargs.safe_push (arg);
2283 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2285 /* If struct value address is treated as the first argument, make it so. */
2286 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2287 && ! cfun->returns_pcc_struct
2288 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2290 tree type = build_pointer_type (TREE_TYPE (fntype));
2291 tree decl;
2293 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2294 PARM_DECL, get_identifier (".result_ptr"), type);
2295 DECL_ARG_TYPE (decl) = type;
2296 DECL_ARTIFICIAL (decl) = 1;
2297 DECL_NAMELESS (decl) = 1;
2298 TREE_CONSTANT (decl) = 1;
2300 DECL_CHAIN (decl) = all->orig_fnargs;
2301 all->orig_fnargs = decl;
2302 fnargs.safe_insert (0, decl);
2304 all->function_result_decl = decl;
2307 /* If the target wants to split complex arguments into scalars, do so. */
2308 if (targetm.calls.split_complex_arg)
2309 split_complex_args (&fnargs);
2311 return fnargs;
2314 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2315 data for the parameter. Incorporate ABI specifics such as pass-by-
2316 reference and type promotion. */
2318 static void
2319 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2320 struct assign_parm_data_one *data)
2322 tree nominal_type, passed_type;
2323 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2324 int unsignedp;
2326 memset (data, 0, sizeof (*data));
2328 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2329 if (!cfun->stdarg)
2330 data->named_arg = 1; /* No variadic parms. */
2331 else if (DECL_CHAIN (parm))
2332 data->named_arg = 1; /* Not the last non-variadic parm. */
2333 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2334 data->named_arg = 1; /* Only variadic ones are unnamed. */
2335 else
2336 data->named_arg = 0; /* Treat as variadic. */
2338 nominal_type = TREE_TYPE (parm);
2339 passed_type = DECL_ARG_TYPE (parm);
2341 /* Look out for errors propagating this far. Also, if the parameter's
2342 type is void then its value doesn't matter. */
2343 if (TREE_TYPE (parm) == error_mark_node
2344 /* This can happen after weird syntax errors
2345 or if an enum type is defined among the parms. */
2346 || TREE_CODE (parm) != PARM_DECL
2347 || passed_type == NULL
2348 || VOID_TYPE_P (nominal_type))
2350 nominal_type = passed_type = void_type_node;
2351 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2352 goto egress;
2355 /* Find mode of arg as it is passed, and mode of arg as it should be
2356 during execution of this function. */
2357 passed_mode = TYPE_MODE (passed_type);
2358 nominal_mode = TYPE_MODE (nominal_type);
2360 /* If the parm is to be passed as a transparent union or record, use the
2361 type of the first field for the tests below. We have already verified
2362 that the modes are the same. */
2363 if ((TREE_CODE (passed_type) == UNION_TYPE
2364 || TREE_CODE (passed_type) == RECORD_TYPE)
2365 && TYPE_TRANSPARENT_AGGR (passed_type))
2366 passed_type = TREE_TYPE (first_field (passed_type));
2368 /* See if this arg was passed by invisible reference. */
2369 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2370 passed_type, data->named_arg))
2372 passed_type = nominal_type = build_pointer_type (passed_type);
2373 data->passed_pointer = true;
2374 passed_mode = nominal_mode = Pmode;
2377 /* Find mode as it is passed by the ABI. */
2378 unsignedp = TYPE_UNSIGNED (passed_type);
2379 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2380 TREE_TYPE (current_function_decl), 0);
2382 egress:
2383 data->nominal_type = nominal_type;
2384 data->passed_type = passed_type;
2385 data->nominal_mode = nominal_mode;
2386 data->passed_mode = passed_mode;
2387 data->promoted_mode = promoted_mode;
2390 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2392 static void
2393 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2394 struct assign_parm_data_one *data, bool no_rtl)
2396 int varargs_pretend_bytes = 0;
2398 targetm.calls.setup_incoming_varargs (all->args_so_far,
2399 data->promoted_mode,
2400 data->passed_type,
2401 &varargs_pretend_bytes, no_rtl);
2403 /* If the back-end has requested extra stack space, record how much is
2404 needed. Do not change pretend_args_size otherwise since it may be
2405 nonzero from an earlier partial argument. */
2406 if (varargs_pretend_bytes > 0)
2407 all->pretend_args_size = varargs_pretend_bytes;
2410 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2411 the incoming location of the current parameter. */
2413 static void
2414 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2415 struct assign_parm_data_one *data)
2417 HOST_WIDE_INT pretend_bytes = 0;
2418 rtx entry_parm;
2419 bool in_regs;
2421 if (data->promoted_mode == VOIDmode)
2423 data->entry_parm = data->stack_parm = const0_rtx;
2424 return;
2427 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2428 data->promoted_mode,
2429 data->passed_type,
2430 data->named_arg);
2432 if (entry_parm == 0)
2433 data->promoted_mode = data->passed_mode;
2435 /* Determine parm's home in the stack, in case it arrives in the stack
2436 or we should pretend it did. Compute the stack position and rtx where
2437 the argument arrives and its size.
2439 There is one complexity here: If this was a parameter that would
2440 have been passed in registers, but wasn't only because it is
2441 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2442 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2443 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2444 as it was the previous time. */
2445 in_regs = entry_parm != 0;
2446 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2447 in_regs = true;
2448 #endif
2449 if (!in_regs && !data->named_arg)
2451 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2453 rtx tem;
2454 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2455 data->promoted_mode,
2456 data->passed_type, true);
2457 in_regs = tem != NULL;
2461 /* If this parameter was passed both in registers and in the stack, use
2462 the copy on the stack. */
2463 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2464 data->passed_type))
2465 entry_parm = 0;
2467 if (entry_parm)
2469 int partial;
2471 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2472 data->promoted_mode,
2473 data->passed_type,
2474 data->named_arg);
2475 data->partial = partial;
2477 /* The caller might already have allocated stack space for the
2478 register parameters. */
2479 if (partial != 0 && all->reg_parm_stack_space == 0)
2481 /* Part of this argument is passed in registers and part
2482 is passed on the stack. Ask the prologue code to extend
2483 the stack part so that we can recreate the full value.
2485 PRETEND_BYTES is the size of the registers we need to store.
2486 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2487 stack space that the prologue should allocate.
2489 Internally, gcc assumes that the argument pointer is aligned
2490 to STACK_BOUNDARY bits. This is used both for alignment
2491 optimizations (see init_emit) and to locate arguments that are
2492 aligned to more than PARM_BOUNDARY bits. We must preserve this
2493 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2494 a stack boundary. */
2496 /* We assume at most one partial arg, and it must be the first
2497 argument on the stack. */
2498 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2500 pretend_bytes = partial;
2501 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2503 /* We want to align relative to the actual stack pointer, so
2504 don't include this in the stack size until later. */
2505 all->extra_pretend_bytes = all->pretend_args_size;
2509 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2510 entry_parm ? data->partial : 0, current_function_decl,
2511 &all->stack_args_size, &data->locate);
2513 /* Update parm_stack_boundary if this parameter is passed in the
2514 stack. */
2515 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2516 crtl->parm_stack_boundary = data->locate.boundary;
2518 /* Adjust offsets to include the pretend args. */
2519 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2520 data->locate.slot_offset.constant += pretend_bytes;
2521 data->locate.offset.constant += pretend_bytes;
2523 data->entry_parm = entry_parm;
2526 /* A subroutine of assign_parms. If there is actually space on the stack
2527 for this parm, count it in stack_args_size and return true. */
2529 static bool
2530 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2531 struct assign_parm_data_one *data)
2533 /* Trivially true if we've no incoming register. */
2534 if (data->entry_parm == NULL)
2536 /* Also true if we're partially in registers and partially not,
2537 since we've arranged to drop the entire argument on the stack. */
2538 else if (data->partial != 0)
2540 /* Also true if the target says that it's passed in both registers
2541 and on the stack. */
2542 else if (GET_CODE (data->entry_parm) == PARALLEL
2543 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2545 /* Also true if the target says that there's stack allocated for
2546 all register parameters. */
2547 else if (all->reg_parm_stack_space > 0)
2549 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2550 else
2551 return false;
2553 all->stack_args_size.constant += data->locate.size.constant;
2554 if (data->locate.size.var)
2555 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2557 return true;
2560 /* A subroutine of assign_parms. Given that this parameter is allocated
2561 stack space by the ABI, find it. */
2563 static void
2564 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2566 rtx offset_rtx, stack_parm;
2567 unsigned int align, boundary;
2569 /* If we're passing this arg using a reg, make its stack home the
2570 aligned stack slot. */
2571 if (data->entry_parm)
2572 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2573 else
2574 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2576 stack_parm = crtl->args.internal_arg_pointer;
2577 if (offset_rtx != const0_rtx)
2578 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2579 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2581 if (!data->passed_pointer)
2583 set_mem_attributes (stack_parm, parm, 1);
2584 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2585 while promoted mode's size is needed. */
2586 if (data->promoted_mode != BLKmode
2587 && data->promoted_mode != DECL_MODE (parm))
2589 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2590 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2592 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2593 data->promoted_mode);
2594 if (offset)
2595 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2600 boundary = data->locate.boundary;
2601 align = BITS_PER_UNIT;
2603 /* If we're padding upward, we know that the alignment of the slot
2604 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2605 intentionally forcing upward padding. Otherwise we have to come
2606 up with a guess at the alignment based on OFFSET_RTX. */
2607 if (data->locate.where_pad != downward || data->entry_parm)
2608 align = boundary;
2609 else if (CONST_INT_P (offset_rtx))
2611 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2612 align = align & -align;
2614 set_mem_align (stack_parm, align);
2616 if (data->entry_parm)
2617 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2619 data->stack_parm = stack_parm;
2622 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2623 always valid and contiguous. */
2625 static void
2626 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2628 rtx entry_parm = data->entry_parm;
2629 rtx stack_parm = data->stack_parm;
2631 /* If this parm was passed part in regs and part in memory, pretend it
2632 arrived entirely in memory by pushing the register-part onto the stack.
2633 In the special case of a DImode or DFmode that is split, we could put
2634 it together in a pseudoreg directly, but for now that's not worth
2635 bothering with. */
2636 if (data->partial != 0)
2638 /* Handle calls that pass values in multiple non-contiguous
2639 locations. The Irix 6 ABI has examples of this. */
2640 if (GET_CODE (entry_parm) == PARALLEL)
2641 emit_group_store (validize_mem (stack_parm), entry_parm,
2642 data->passed_type,
2643 int_size_in_bytes (data->passed_type));
2644 else
2646 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2647 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2648 data->partial / UNITS_PER_WORD);
2651 entry_parm = stack_parm;
2654 /* If we didn't decide this parm came in a register, by default it came
2655 on the stack. */
2656 else if (entry_parm == NULL)
2657 entry_parm = stack_parm;
2659 /* When an argument is passed in multiple locations, we can't make use
2660 of this information, but we can save some copying if the whole argument
2661 is passed in a single register. */
2662 else if (GET_CODE (entry_parm) == PARALLEL
2663 && data->nominal_mode != BLKmode
2664 && data->passed_mode != BLKmode)
2666 size_t i, len = XVECLEN (entry_parm, 0);
2668 for (i = 0; i < len; i++)
2669 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2670 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2671 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2672 == data->passed_mode)
2673 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2675 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2676 break;
2680 data->entry_parm = entry_parm;
2683 /* A subroutine of assign_parms. Reconstitute any values which were
2684 passed in multiple registers and would fit in a single register. */
2686 static void
2687 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2689 rtx entry_parm = data->entry_parm;
2691 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2692 This can be done with register operations rather than on the
2693 stack, even if we will store the reconstituted parameter on the
2694 stack later. */
2695 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2697 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2698 emit_group_store (parmreg, entry_parm, data->passed_type,
2699 GET_MODE_SIZE (GET_MODE (entry_parm)));
2700 entry_parm = parmreg;
2703 data->entry_parm = entry_parm;
2706 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2707 always valid and properly aligned. */
2709 static void
2710 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2712 rtx stack_parm = data->stack_parm;
2714 /* If we can't trust the parm stack slot to be aligned enough for its
2715 ultimate type, don't use that slot after entry. We'll make another
2716 stack slot, if we need one. */
2717 if (stack_parm
2718 && ((STRICT_ALIGNMENT
2719 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2720 || (data->nominal_type
2721 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2722 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2723 stack_parm = NULL;
2725 /* If parm was passed in memory, and we need to convert it on entry,
2726 don't store it back in that same slot. */
2727 else if (data->entry_parm == stack_parm
2728 && data->nominal_mode != BLKmode
2729 && data->nominal_mode != data->passed_mode)
2730 stack_parm = NULL;
2732 /* If stack protection is in effect for this function, don't leave any
2733 pointers in their passed stack slots. */
2734 else if (crtl->stack_protect_guard
2735 && (flag_stack_protect == 2
2736 || data->passed_pointer
2737 || POINTER_TYPE_P (data->nominal_type)))
2738 stack_parm = NULL;
2740 data->stack_parm = stack_parm;
2743 /* A subroutine of assign_parms. Return true if the current parameter
2744 should be stored as a BLKmode in the current frame. */
2746 static bool
2747 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2749 if (data->nominal_mode == BLKmode)
2750 return true;
2751 if (GET_MODE (data->entry_parm) == BLKmode)
2752 return true;
2754 #ifdef BLOCK_REG_PADDING
2755 /* Only assign_parm_setup_block knows how to deal with register arguments
2756 that are padded at the least significant end. */
2757 if (REG_P (data->entry_parm)
2758 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2759 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2760 == (BYTES_BIG_ENDIAN ? upward : downward)))
2761 return true;
2762 #endif
2764 return false;
2767 /* A subroutine of assign_parms. Arrange for the parameter to be
2768 present and valid in DATA->STACK_RTL. */
2770 static void
2771 assign_parm_setup_block (struct assign_parm_data_all *all,
2772 tree parm, struct assign_parm_data_one *data)
2774 rtx entry_parm = data->entry_parm;
2775 rtx stack_parm = data->stack_parm;
2776 HOST_WIDE_INT size;
2777 HOST_WIDE_INT size_stored;
2779 if (GET_CODE (entry_parm) == PARALLEL)
2780 entry_parm = emit_group_move_into_temps (entry_parm);
2782 size = int_size_in_bytes (data->passed_type);
2783 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2784 if (stack_parm == 0)
2786 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2787 stack_parm = assign_stack_local (BLKmode, size_stored,
2788 DECL_ALIGN (parm));
2789 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2790 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2791 set_mem_attributes (stack_parm, parm, 1);
2794 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2795 calls that pass values in multiple non-contiguous locations. */
2796 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2798 rtx mem;
2800 /* Note that we will be storing an integral number of words.
2801 So we have to be careful to ensure that we allocate an
2802 integral number of words. We do this above when we call
2803 assign_stack_local if space was not allocated in the argument
2804 list. If it was, this will not work if PARM_BOUNDARY is not
2805 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2806 if it becomes a problem. Exception is when BLKmode arrives
2807 with arguments not conforming to word_mode. */
2809 if (data->stack_parm == 0)
2811 else if (GET_CODE (entry_parm) == PARALLEL)
2813 else
2814 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2816 mem = validize_mem (stack_parm);
2818 /* Handle values in multiple non-contiguous locations. */
2819 if (GET_CODE (entry_parm) == PARALLEL)
2821 push_to_sequence2 (all->first_conversion_insn,
2822 all->last_conversion_insn);
2823 emit_group_store (mem, entry_parm, data->passed_type, size);
2824 all->first_conversion_insn = get_insns ();
2825 all->last_conversion_insn = get_last_insn ();
2826 end_sequence ();
2829 else if (size == 0)
2832 /* If SIZE is that of a mode no bigger than a word, just use
2833 that mode's store operation. */
2834 else if (size <= UNITS_PER_WORD)
2836 enum machine_mode mode
2837 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2839 if (mode != BLKmode
2840 #ifdef BLOCK_REG_PADDING
2841 && (size == UNITS_PER_WORD
2842 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2843 != (BYTES_BIG_ENDIAN ? upward : downward)))
2844 #endif
2847 rtx reg;
2849 /* We are really truncating a word_mode value containing
2850 SIZE bytes into a value of mode MODE. If such an
2851 operation requires no actual instructions, we can refer
2852 to the value directly in mode MODE, otherwise we must
2853 start with the register in word_mode and explicitly
2854 convert it. */
2855 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2856 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2857 else
2859 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2860 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2862 emit_move_insn (change_address (mem, mode, 0), reg);
2865 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2866 machine must be aligned to the left before storing
2867 to memory. Note that the previous test doesn't
2868 handle all cases (e.g. SIZE == 3). */
2869 else if (size != UNITS_PER_WORD
2870 #ifdef BLOCK_REG_PADDING
2871 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2872 == downward)
2873 #else
2874 && BYTES_BIG_ENDIAN
2875 #endif
2878 rtx tem, x;
2879 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2880 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2882 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2883 tem = change_address (mem, word_mode, 0);
2884 emit_move_insn (tem, x);
2886 else
2887 move_block_from_reg (REGNO (entry_parm), mem,
2888 size_stored / UNITS_PER_WORD);
2890 else
2891 move_block_from_reg (REGNO (entry_parm), mem,
2892 size_stored / UNITS_PER_WORD);
2894 else if (data->stack_parm == 0)
2896 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2897 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2898 BLOCK_OP_NORMAL);
2899 all->first_conversion_insn = get_insns ();
2900 all->last_conversion_insn = get_last_insn ();
2901 end_sequence ();
2904 data->stack_parm = stack_parm;
2905 SET_DECL_RTL (parm, stack_parm);
2908 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2909 parameter. Get it there. Perform all ABI specified conversions. */
2911 static void
2912 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2913 struct assign_parm_data_one *data)
2915 rtx parmreg, validated_mem;
2916 rtx equiv_stack_parm;
2917 enum machine_mode promoted_nominal_mode;
2918 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2919 bool did_conversion = false;
2920 bool need_conversion, moved;
2922 /* Store the parm in a pseudoregister during the function, but we may
2923 need to do it in a wider mode. Using 2 here makes the result
2924 consistent with promote_decl_mode and thus expand_expr_real_1. */
2925 promoted_nominal_mode
2926 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2927 TREE_TYPE (current_function_decl), 2);
2929 parmreg = gen_reg_rtx (promoted_nominal_mode);
2931 if (!DECL_ARTIFICIAL (parm))
2932 mark_user_reg (parmreg);
2934 /* If this was an item that we received a pointer to,
2935 set DECL_RTL appropriately. */
2936 if (data->passed_pointer)
2938 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2939 set_mem_attributes (x, parm, 1);
2940 SET_DECL_RTL (parm, x);
2942 else
2943 SET_DECL_RTL (parm, parmreg);
2945 assign_parm_remove_parallels (data);
2947 /* Copy the value into the register, thus bridging between
2948 assign_parm_find_data_types and expand_expr_real_1. */
2950 equiv_stack_parm = data->stack_parm;
2951 validated_mem = validize_mem (data->entry_parm);
2953 need_conversion = (data->nominal_mode != data->passed_mode
2954 || promoted_nominal_mode != data->promoted_mode);
2955 moved = false;
2957 if (need_conversion
2958 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2959 && data->nominal_mode == data->passed_mode
2960 && data->nominal_mode == GET_MODE (data->entry_parm))
2962 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2963 mode, by the caller. We now have to convert it to
2964 NOMINAL_MODE, if different. However, PARMREG may be in
2965 a different mode than NOMINAL_MODE if it is being stored
2966 promoted.
2968 If ENTRY_PARM is a hard register, it might be in a register
2969 not valid for operating in its mode (e.g., an odd-numbered
2970 register for a DFmode). In that case, moves are the only
2971 thing valid, so we can't do a convert from there. This
2972 occurs when the calling sequence allow such misaligned
2973 usages.
2975 In addition, the conversion may involve a call, which could
2976 clobber parameters which haven't been copied to pseudo
2977 registers yet.
2979 First, we try to emit an insn which performs the necessary
2980 conversion. We verify that this insn does not clobber any
2981 hard registers. */
2983 enum insn_code icode;
2984 rtx op0, op1;
2986 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2987 unsignedp);
2989 op0 = parmreg;
2990 op1 = validated_mem;
2991 if (icode != CODE_FOR_nothing
2992 && insn_operand_matches (icode, 0, op0)
2993 && insn_operand_matches (icode, 1, op1))
2995 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2996 rtx insn, insns, t = op1;
2997 HARD_REG_SET hardregs;
2999 start_sequence ();
3000 /* If op1 is a hard register that is likely spilled, first
3001 force it into a pseudo, otherwise combiner might extend
3002 its lifetime too much. */
3003 if (GET_CODE (t) == SUBREG)
3004 t = SUBREG_REG (t);
3005 if (REG_P (t)
3006 && HARD_REGISTER_P (t)
3007 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3008 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3010 t = gen_reg_rtx (GET_MODE (op1));
3011 emit_move_insn (t, op1);
3013 else
3014 t = op1;
3015 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3016 data->passed_mode, unsignedp);
3017 emit_insn (insn);
3018 insns = get_insns ();
3020 moved = true;
3021 CLEAR_HARD_REG_SET (hardregs);
3022 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3024 if (INSN_P (insn))
3025 note_stores (PATTERN (insn), record_hard_reg_sets,
3026 &hardregs);
3027 if (!hard_reg_set_empty_p (hardregs))
3028 moved = false;
3031 end_sequence ();
3033 if (moved)
3035 emit_insn (insns);
3036 if (equiv_stack_parm != NULL_RTX)
3037 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3038 equiv_stack_parm);
3043 if (moved)
3044 /* Nothing to do. */
3046 else if (need_conversion)
3048 /* We did not have an insn to convert directly, or the sequence
3049 generated appeared unsafe. We must first copy the parm to a
3050 pseudo reg, and save the conversion until after all
3051 parameters have been moved. */
3053 int save_tree_used;
3054 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3056 emit_move_insn (tempreg, validated_mem);
3058 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3059 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3061 if (GET_CODE (tempreg) == SUBREG
3062 && GET_MODE (tempreg) == data->nominal_mode
3063 && REG_P (SUBREG_REG (tempreg))
3064 && data->nominal_mode == data->passed_mode
3065 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3066 && GET_MODE_SIZE (GET_MODE (tempreg))
3067 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3069 /* The argument is already sign/zero extended, so note it
3070 into the subreg. */
3071 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3072 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3075 /* TREE_USED gets set erroneously during expand_assignment. */
3076 save_tree_used = TREE_USED (parm);
3077 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3078 TREE_USED (parm) = save_tree_used;
3079 all->first_conversion_insn = get_insns ();
3080 all->last_conversion_insn = get_last_insn ();
3081 end_sequence ();
3083 did_conversion = true;
3085 else
3086 emit_move_insn (parmreg, validated_mem);
3088 /* If we were passed a pointer but the actual value can safely live
3089 in a register, put it in one. */
3090 if (data->passed_pointer
3091 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3092 /* If by-reference argument was promoted, demote it. */
3093 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3094 || use_register_for_decl (parm)))
3096 /* We can't use nominal_mode, because it will have been set to
3097 Pmode above. We must use the actual mode of the parm. */
3098 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3099 mark_user_reg (parmreg);
3101 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3103 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3104 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3106 push_to_sequence2 (all->first_conversion_insn,
3107 all->last_conversion_insn);
3108 emit_move_insn (tempreg, DECL_RTL (parm));
3109 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3110 emit_move_insn (parmreg, tempreg);
3111 all->first_conversion_insn = get_insns ();
3112 all->last_conversion_insn = get_last_insn ();
3113 end_sequence ();
3115 did_conversion = true;
3117 else
3118 emit_move_insn (parmreg, DECL_RTL (parm));
3120 SET_DECL_RTL (parm, parmreg);
3122 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3123 now the parm. */
3124 data->stack_parm = NULL;
3127 /* Mark the register as eliminable if we did no conversion and it was
3128 copied from memory at a fixed offset, and the arg pointer was not
3129 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3130 offset formed an invalid address, such memory-equivalences as we
3131 make here would screw up life analysis for it. */
3132 if (data->nominal_mode == data->passed_mode
3133 && !did_conversion
3134 && data->stack_parm != 0
3135 && MEM_P (data->stack_parm)
3136 && data->locate.offset.var == 0
3137 && reg_mentioned_p (virtual_incoming_args_rtx,
3138 XEXP (data->stack_parm, 0)))
3140 rtx linsn = get_last_insn ();
3141 rtx sinsn, set;
3143 /* Mark complex types separately. */
3144 if (GET_CODE (parmreg) == CONCAT)
3146 enum machine_mode submode
3147 = GET_MODE_INNER (GET_MODE (parmreg));
3148 int regnor = REGNO (XEXP (parmreg, 0));
3149 int regnoi = REGNO (XEXP (parmreg, 1));
3150 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3151 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3152 GET_MODE_SIZE (submode));
3154 /* Scan backwards for the set of the real and
3155 imaginary parts. */
3156 for (sinsn = linsn; sinsn != 0;
3157 sinsn = prev_nonnote_insn (sinsn))
3159 set = single_set (sinsn);
3160 if (set == 0)
3161 continue;
3163 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3164 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3165 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3166 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3169 else
3170 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3173 /* For pointer data type, suggest pointer register. */
3174 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3175 mark_reg_pointer (parmreg,
3176 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3179 /* A subroutine of assign_parms. Allocate stack space to hold the current
3180 parameter. Get it there. Perform all ABI specified conversions. */
3182 static void
3183 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3184 struct assign_parm_data_one *data)
3186 /* Value must be stored in the stack slot STACK_PARM during function
3187 execution. */
3188 bool to_conversion = false;
3190 assign_parm_remove_parallels (data);
3192 if (data->promoted_mode != data->nominal_mode)
3194 /* Conversion is required. */
3195 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3197 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3199 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3200 to_conversion = true;
3202 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3203 TYPE_UNSIGNED (TREE_TYPE (parm)));
3205 if (data->stack_parm)
3207 int offset = subreg_lowpart_offset (data->nominal_mode,
3208 GET_MODE (data->stack_parm));
3209 /* ??? This may need a big-endian conversion on sparc64. */
3210 data->stack_parm
3211 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3212 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3213 set_mem_offset (data->stack_parm,
3214 MEM_OFFSET (data->stack_parm) + offset);
3218 if (data->entry_parm != data->stack_parm)
3220 rtx src, dest;
3222 if (data->stack_parm == 0)
3224 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3225 GET_MODE (data->entry_parm),
3226 TYPE_ALIGN (data->passed_type));
3227 data->stack_parm
3228 = assign_stack_local (GET_MODE (data->entry_parm),
3229 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3230 align);
3231 set_mem_attributes (data->stack_parm, parm, 1);
3234 dest = validize_mem (data->stack_parm);
3235 src = validize_mem (data->entry_parm);
3237 if (MEM_P (src))
3239 /* Use a block move to handle potentially misaligned entry_parm. */
3240 if (!to_conversion)
3241 push_to_sequence2 (all->first_conversion_insn,
3242 all->last_conversion_insn);
3243 to_conversion = true;
3245 emit_block_move (dest, src,
3246 GEN_INT (int_size_in_bytes (data->passed_type)),
3247 BLOCK_OP_NORMAL);
3249 else
3250 emit_move_insn (dest, src);
3253 if (to_conversion)
3255 all->first_conversion_insn = get_insns ();
3256 all->last_conversion_insn = get_last_insn ();
3257 end_sequence ();
3260 SET_DECL_RTL (parm, data->stack_parm);
3263 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3264 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3266 static void
3267 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3268 vec<tree> fnargs)
3270 tree parm;
3271 tree orig_fnargs = all->orig_fnargs;
3272 unsigned i = 0;
3274 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3276 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3277 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3279 rtx tmp, real, imag;
3280 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3282 real = DECL_RTL (fnargs[i]);
3283 imag = DECL_RTL (fnargs[i + 1]);
3284 if (inner != GET_MODE (real))
3286 real = gen_lowpart_SUBREG (inner, real);
3287 imag = gen_lowpart_SUBREG (inner, imag);
3290 if (TREE_ADDRESSABLE (parm))
3292 rtx rmem, imem;
3293 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3294 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3295 DECL_MODE (parm),
3296 TYPE_ALIGN (TREE_TYPE (parm)));
3298 /* split_complex_arg put the real and imag parts in
3299 pseudos. Move them to memory. */
3300 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3301 set_mem_attributes (tmp, parm, 1);
3302 rmem = adjust_address_nv (tmp, inner, 0);
3303 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3304 push_to_sequence2 (all->first_conversion_insn,
3305 all->last_conversion_insn);
3306 emit_move_insn (rmem, real);
3307 emit_move_insn (imem, imag);
3308 all->first_conversion_insn = get_insns ();
3309 all->last_conversion_insn = get_last_insn ();
3310 end_sequence ();
3312 else
3313 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3314 SET_DECL_RTL (parm, tmp);
3316 real = DECL_INCOMING_RTL (fnargs[i]);
3317 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3318 if (inner != GET_MODE (real))
3320 real = gen_lowpart_SUBREG (inner, real);
3321 imag = gen_lowpart_SUBREG (inner, imag);
3323 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3324 set_decl_incoming_rtl (parm, tmp, false);
3325 i++;
3330 /* Assign RTL expressions to the function's parameters. This may involve
3331 copying them into registers and using those registers as the DECL_RTL. */
3333 static void
3334 assign_parms (tree fndecl)
3336 struct assign_parm_data_all all;
3337 tree parm;
3338 vec<tree> fnargs;
3339 unsigned i;
3341 crtl->args.internal_arg_pointer
3342 = targetm.calls.internal_arg_pointer ();
3344 assign_parms_initialize_all (&all);
3345 fnargs = assign_parms_augmented_arg_list (&all);
3347 FOR_EACH_VEC_ELT (fnargs, i, parm)
3349 struct assign_parm_data_one data;
3351 /* Extract the type of PARM; adjust it according to ABI. */
3352 assign_parm_find_data_types (&all, parm, &data);
3354 /* Early out for errors and void parameters. */
3355 if (data.passed_mode == VOIDmode)
3357 SET_DECL_RTL (parm, const0_rtx);
3358 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3359 continue;
3362 /* Estimate stack alignment from parameter alignment. */
3363 if (SUPPORTS_STACK_ALIGNMENT)
3365 unsigned int align
3366 = targetm.calls.function_arg_boundary (data.promoted_mode,
3367 data.passed_type);
3368 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3369 align);
3370 if (TYPE_ALIGN (data.nominal_type) > align)
3371 align = MINIMUM_ALIGNMENT (data.nominal_type,
3372 TYPE_MODE (data.nominal_type),
3373 TYPE_ALIGN (data.nominal_type));
3374 if (crtl->stack_alignment_estimated < align)
3376 gcc_assert (!crtl->stack_realign_processed);
3377 crtl->stack_alignment_estimated = align;
3381 if (cfun->stdarg && !DECL_CHAIN (parm))
3382 assign_parms_setup_varargs (&all, &data, false);
3384 /* Find out where the parameter arrives in this function. */
3385 assign_parm_find_entry_rtl (&all, &data);
3387 /* Find out where stack space for this parameter might be. */
3388 if (assign_parm_is_stack_parm (&all, &data))
3390 assign_parm_find_stack_rtl (parm, &data);
3391 assign_parm_adjust_entry_rtl (&data);
3394 /* Record permanently how this parm was passed. */
3395 if (data.passed_pointer)
3397 rtx incoming_rtl
3398 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3399 data.entry_parm);
3400 set_decl_incoming_rtl (parm, incoming_rtl, true);
3402 else
3403 set_decl_incoming_rtl (parm, data.entry_parm, false);
3405 /* Update info on where next arg arrives in registers. */
3406 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3407 data.passed_type, data.named_arg);
3409 assign_parm_adjust_stack_rtl (&data);
3411 if (assign_parm_setup_block_p (&data))
3412 assign_parm_setup_block (&all, parm, &data);
3413 else if (data.passed_pointer || use_register_for_decl (parm))
3414 assign_parm_setup_reg (&all, parm, &data);
3415 else
3416 assign_parm_setup_stack (&all, parm, &data);
3419 if (targetm.calls.split_complex_arg)
3420 assign_parms_unsplit_complex (&all, fnargs);
3422 fnargs.release ();
3424 /* Output all parameter conversion instructions (possibly including calls)
3425 now that all parameters have been copied out of hard registers. */
3426 emit_insn (all.first_conversion_insn);
3428 /* Estimate reload stack alignment from scalar return mode. */
3429 if (SUPPORTS_STACK_ALIGNMENT)
3431 if (DECL_RESULT (fndecl))
3433 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3434 enum machine_mode mode = TYPE_MODE (type);
3436 if (mode != BLKmode
3437 && mode != VOIDmode
3438 && !AGGREGATE_TYPE_P (type))
3440 unsigned int align = GET_MODE_ALIGNMENT (mode);
3441 if (crtl->stack_alignment_estimated < align)
3443 gcc_assert (!crtl->stack_realign_processed);
3444 crtl->stack_alignment_estimated = align;
3450 /* If we are receiving a struct value address as the first argument, set up
3451 the RTL for the function result. As this might require code to convert
3452 the transmitted address to Pmode, we do this here to ensure that possible
3453 preliminary conversions of the address have been emitted already. */
3454 if (all.function_result_decl)
3456 tree result = DECL_RESULT (current_function_decl);
3457 rtx addr = DECL_RTL (all.function_result_decl);
3458 rtx x;
3460 if (DECL_BY_REFERENCE (result))
3462 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3463 x = addr;
3465 else
3467 SET_DECL_VALUE_EXPR (result,
3468 build1 (INDIRECT_REF, TREE_TYPE (result),
3469 all.function_result_decl));
3470 addr = convert_memory_address (Pmode, addr);
3471 x = gen_rtx_MEM (DECL_MODE (result), addr);
3472 set_mem_attributes (x, result, 1);
3475 DECL_HAS_VALUE_EXPR_P (result) = 1;
3477 SET_DECL_RTL (result, x);
3480 /* We have aligned all the args, so add space for the pretend args. */
3481 crtl->args.pretend_args_size = all.pretend_args_size;
3482 all.stack_args_size.constant += all.extra_pretend_bytes;
3483 crtl->args.size = all.stack_args_size.constant;
3485 /* Adjust function incoming argument size for alignment and
3486 minimum length. */
3488 #ifdef REG_PARM_STACK_SPACE
3489 crtl->args.size = MAX (crtl->args.size,
3490 REG_PARM_STACK_SPACE (fndecl));
3491 #endif
3493 crtl->args.size = CEIL_ROUND (crtl->args.size,
3494 PARM_BOUNDARY / BITS_PER_UNIT);
3496 #ifdef ARGS_GROW_DOWNWARD
3497 crtl->args.arg_offset_rtx
3498 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3499 : expand_expr (size_diffop (all.stack_args_size.var,
3500 size_int (-all.stack_args_size.constant)),
3501 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3502 #else
3503 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3504 #endif
3506 /* See how many bytes, if any, of its args a function should try to pop
3507 on return. */
3509 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3510 TREE_TYPE (fndecl),
3511 crtl->args.size);
3513 /* For stdarg.h function, save info about
3514 regs and stack space used by the named args. */
3516 crtl->args.info = all.args_so_far_v;
3518 /* Set the rtx used for the function return value. Put this in its
3519 own variable so any optimizers that need this information don't have
3520 to include tree.h. Do this here so it gets done when an inlined
3521 function gets output. */
3523 crtl->return_rtx
3524 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3525 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3527 /* If scalar return value was computed in a pseudo-reg, or was a named
3528 return value that got dumped to the stack, copy that to the hard
3529 return register. */
3530 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3532 tree decl_result = DECL_RESULT (fndecl);
3533 rtx decl_rtl = DECL_RTL (decl_result);
3535 if (REG_P (decl_rtl)
3536 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3537 : DECL_REGISTER (decl_result))
3539 rtx real_decl_rtl;
3541 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3542 fndecl, true);
3543 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3544 /* The delay slot scheduler assumes that crtl->return_rtx
3545 holds the hard register containing the return value, not a
3546 temporary pseudo. */
3547 crtl->return_rtx = real_decl_rtl;
3552 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3553 For all seen types, gimplify their sizes. */
3555 static tree
3556 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3558 tree t = *tp;
3560 *walk_subtrees = 0;
3561 if (TYPE_P (t))
3563 if (POINTER_TYPE_P (t))
3564 *walk_subtrees = 1;
3565 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3566 && !TYPE_SIZES_GIMPLIFIED (t))
3568 gimplify_type_sizes (t, (gimple_seq *) data);
3569 *walk_subtrees = 1;
3573 return NULL;
3576 /* Gimplify the parameter list for current_function_decl. This involves
3577 evaluating SAVE_EXPRs of variable sized parameters and generating code
3578 to implement callee-copies reference parameters. Returns a sequence of
3579 statements to add to the beginning of the function. */
3581 gimple_seq
3582 gimplify_parameters (void)
3584 struct assign_parm_data_all all;
3585 tree parm;
3586 gimple_seq stmts = NULL;
3587 vec<tree> fnargs;
3588 unsigned i;
3590 assign_parms_initialize_all (&all);
3591 fnargs = assign_parms_augmented_arg_list (&all);
3593 FOR_EACH_VEC_ELT (fnargs, i, parm)
3595 struct assign_parm_data_one data;
3597 /* Extract the type of PARM; adjust it according to ABI. */
3598 assign_parm_find_data_types (&all, parm, &data);
3600 /* Early out for errors and void parameters. */
3601 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3602 continue;
3604 /* Update info on where next arg arrives in registers. */
3605 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3606 data.passed_type, data.named_arg);
3608 /* ??? Once upon a time variable_size stuffed parameter list
3609 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3610 turned out to be less than manageable in the gimple world.
3611 Now we have to hunt them down ourselves. */
3612 walk_tree_without_duplicates (&data.passed_type,
3613 gimplify_parm_type, &stmts);
3615 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3617 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3618 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3621 if (data.passed_pointer)
3623 tree type = TREE_TYPE (data.passed_type);
3624 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3625 type, data.named_arg))
3627 tree local, t;
3629 /* For constant-sized objects, this is trivial; for
3630 variable-sized objects, we have to play games. */
3631 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3632 && !(flag_stack_check == GENERIC_STACK_CHECK
3633 && compare_tree_int (DECL_SIZE_UNIT (parm),
3634 STACK_CHECK_MAX_VAR_SIZE) > 0))
3636 local = create_tmp_var (type, get_name (parm));
3637 DECL_IGNORED_P (local) = 0;
3638 /* If PARM was addressable, move that flag over
3639 to the local copy, as its address will be taken,
3640 not the PARMs. Keep the parms address taken
3641 as we'll query that flag during gimplification. */
3642 if (TREE_ADDRESSABLE (parm))
3643 TREE_ADDRESSABLE (local) = 1;
3644 else if (TREE_CODE (type) == COMPLEX_TYPE
3645 || TREE_CODE (type) == VECTOR_TYPE)
3646 DECL_GIMPLE_REG_P (local) = 1;
3648 else
3650 tree ptr_type, addr;
3652 ptr_type = build_pointer_type (type);
3653 addr = create_tmp_reg (ptr_type, get_name (parm));
3654 DECL_IGNORED_P (addr) = 0;
3655 local = build_fold_indirect_ref (addr);
3657 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3658 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3659 size_int (DECL_ALIGN (parm)));
3661 /* The call has been built for a variable-sized object. */
3662 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3663 t = fold_convert (ptr_type, t);
3664 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3665 gimplify_and_add (t, &stmts);
3668 gimplify_assign (local, parm, &stmts);
3670 SET_DECL_VALUE_EXPR (parm, local);
3671 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3676 fnargs.release ();
3678 return stmts;
3681 /* Compute the size and offset from the start of the stacked arguments for a
3682 parm passed in mode PASSED_MODE and with type TYPE.
3684 INITIAL_OFFSET_PTR points to the current offset into the stacked
3685 arguments.
3687 The starting offset and size for this parm are returned in
3688 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3689 nonzero, the offset is that of stack slot, which is returned in
3690 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3691 padding required from the initial offset ptr to the stack slot.
3693 IN_REGS is nonzero if the argument will be passed in registers. It will
3694 never be set if REG_PARM_STACK_SPACE is not defined.
3696 FNDECL is the function in which the argument was defined.
3698 There are two types of rounding that are done. The first, controlled by
3699 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3700 argument list to be aligned to the specific boundary (in bits). This
3701 rounding affects the initial and starting offsets, but not the argument
3702 size.
3704 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3705 optionally rounds the size of the parm to PARM_BOUNDARY. The
3706 initial offset is not affected by this rounding, while the size always
3707 is and the starting offset may be. */
3709 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3710 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3711 callers pass in the total size of args so far as
3712 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3714 void
3715 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3716 int partial, tree fndecl ATTRIBUTE_UNUSED,
3717 struct args_size *initial_offset_ptr,
3718 struct locate_and_pad_arg_data *locate)
3720 tree sizetree;
3721 enum direction where_pad;
3722 unsigned int boundary, round_boundary;
3723 int reg_parm_stack_space = 0;
3724 int part_size_in_regs;
3726 #ifdef REG_PARM_STACK_SPACE
3727 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3729 /* If we have found a stack parm before we reach the end of the
3730 area reserved for registers, skip that area. */
3731 if (! in_regs)
3733 if (reg_parm_stack_space > 0)
3735 if (initial_offset_ptr->var)
3737 initial_offset_ptr->var
3738 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3739 ssize_int (reg_parm_stack_space));
3740 initial_offset_ptr->constant = 0;
3742 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3743 initial_offset_ptr->constant = reg_parm_stack_space;
3746 #endif /* REG_PARM_STACK_SPACE */
3748 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3750 sizetree
3751 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3752 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3753 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3754 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3755 type);
3756 locate->where_pad = where_pad;
3758 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3759 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3760 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3762 locate->boundary = boundary;
3764 if (SUPPORTS_STACK_ALIGNMENT)
3766 /* stack_alignment_estimated can't change after stack has been
3767 realigned. */
3768 if (crtl->stack_alignment_estimated < boundary)
3770 if (!crtl->stack_realign_processed)
3771 crtl->stack_alignment_estimated = boundary;
3772 else
3774 /* If stack is realigned and stack alignment value
3775 hasn't been finalized, it is OK not to increase
3776 stack_alignment_estimated. The bigger alignment
3777 requirement is recorded in stack_alignment_needed
3778 below. */
3779 gcc_assert (!crtl->stack_realign_finalized
3780 && crtl->stack_realign_needed);
3785 /* Remember if the outgoing parameter requires extra alignment on the
3786 calling function side. */
3787 if (crtl->stack_alignment_needed < boundary)
3788 crtl->stack_alignment_needed = boundary;
3789 if (crtl->preferred_stack_boundary < boundary)
3790 crtl->preferred_stack_boundary = boundary;
3792 #ifdef ARGS_GROW_DOWNWARD
3793 locate->slot_offset.constant = -initial_offset_ptr->constant;
3794 if (initial_offset_ptr->var)
3795 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3796 initial_offset_ptr->var);
3799 tree s2 = sizetree;
3800 if (where_pad != none
3801 && (!host_integerp (sizetree, 1)
3802 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3803 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3804 SUB_PARM_SIZE (locate->slot_offset, s2);
3807 locate->slot_offset.constant += part_size_in_regs;
3809 if (!in_regs
3810 #ifdef REG_PARM_STACK_SPACE
3811 || REG_PARM_STACK_SPACE (fndecl) > 0
3812 #endif
3814 pad_to_arg_alignment (&locate->slot_offset, boundary,
3815 &locate->alignment_pad);
3817 locate->size.constant = (-initial_offset_ptr->constant
3818 - locate->slot_offset.constant);
3819 if (initial_offset_ptr->var)
3820 locate->size.var = size_binop (MINUS_EXPR,
3821 size_binop (MINUS_EXPR,
3822 ssize_int (0),
3823 initial_offset_ptr->var),
3824 locate->slot_offset.var);
3826 /* Pad_below needs the pre-rounded size to know how much to pad
3827 below. */
3828 locate->offset = locate->slot_offset;
3829 if (where_pad == downward)
3830 pad_below (&locate->offset, passed_mode, sizetree);
3832 #else /* !ARGS_GROW_DOWNWARD */
3833 if (!in_regs
3834 #ifdef REG_PARM_STACK_SPACE
3835 || REG_PARM_STACK_SPACE (fndecl) > 0
3836 #endif
3838 pad_to_arg_alignment (initial_offset_ptr, boundary,
3839 &locate->alignment_pad);
3840 locate->slot_offset = *initial_offset_ptr;
3842 #ifdef PUSH_ROUNDING
3843 if (passed_mode != BLKmode)
3844 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3845 #endif
3847 /* Pad_below needs the pre-rounded size to know how much to pad below
3848 so this must be done before rounding up. */
3849 locate->offset = locate->slot_offset;
3850 if (where_pad == downward)
3851 pad_below (&locate->offset, passed_mode, sizetree);
3853 if (where_pad != none
3854 && (!host_integerp (sizetree, 1)
3855 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3856 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3858 ADD_PARM_SIZE (locate->size, sizetree);
3860 locate->size.constant -= part_size_in_regs;
3861 #endif /* ARGS_GROW_DOWNWARD */
3863 #ifdef FUNCTION_ARG_OFFSET
3864 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3865 #endif
3868 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3869 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3871 static void
3872 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3873 struct args_size *alignment_pad)
3875 tree save_var = NULL_TREE;
3876 HOST_WIDE_INT save_constant = 0;
3877 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3878 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3880 #ifdef SPARC_STACK_BOUNDARY_HACK
3881 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3882 the real alignment of %sp. However, when it does this, the
3883 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3884 if (SPARC_STACK_BOUNDARY_HACK)
3885 sp_offset = 0;
3886 #endif
3888 if (boundary > PARM_BOUNDARY)
3890 save_var = offset_ptr->var;
3891 save_constant = offset_ptr->constant;
3894 alignment_pad->var = NULL_TREE;
3895 alignment_pad->constant = 0;
3897 if (boundary > BITS_PER_UNIT)
3899 if (offset_ptr->var)
3901 tree sp_offset_tree = ssize_int (sp_offset);
3902 tree offset = size_binop (PLUS_EXPR,
3903 ARGS_SIZE_TREE (*offset_ptr),
3904 sp_offset_tree);
3905 #ifdef ARGS_GROW_DOWNWARD
3906 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3907 #else
3908 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3909 #endif
3911 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3912 /* ARGS_SIZE_TREE includes constant term. */
3913 offset_ptr->constant = 0;
3914 if (boundary > PARM_BOUNDARY)
3915 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3916 save_var);
3918 else
3920 offset_ptr->constant = -sp_offset +
3921 #ifdef ARGS_GROW_DOWNWARD
3922 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3923 #else
3924 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3925 #endif
3926 if (boundary > PARM_BOUNDARY)
3927 alignment_pad->constant = offset_ptr->constant - save_constant;
3932 static void
3933 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3935 if (passed_mode != BLKmode)
3937 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3938 offset_ptr->constant
3939 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3940 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3941 - GET_MODE_SIZE (passed_mode));
3943 else
3945 if (TREE_CODE (sizetree) != INTEGER_CST
3946 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3948 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3949 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3950 /* Add it in. */
3951 ADD_PARM_SIZE (*offset_ptr, s2);
3952 SUB_PARM_SIZE (*offset_ptr, sizetree);
3958 /* True if register REGNO was alive at a place where `setjmp' was
3959 called and was set more than once or is an argument. Such regs may
3960 be clobbered by `longjmp'. */
3962 static bool
3963 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3965 /* There appear to be cases where some local vars never reach the
3966 backend but have bogus regnos. */
3967 if (regno >= max_reg_num ())
3968 return false;
3970 return ((REG_N_SETS (regno) > 1
3971 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3972 && REGNO_REG_SET_P (setjmp_crosses, regno));
3975 /* Walk the tree of blocks describing the binding levels within a
3976 function and warn about variables the might be killed by setjmp or
3977 vfork. This is done after calling flow_analysis before register
3978 allocation since that will clobber the pseudo-regs to hard
3979 regs. */
3981 static void
3982 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3984 tree decl, sub;
3986 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3988 if (TREE_CODE (decl) == VAR_DECL
3989 && DECL_RTL_SET_P (decl)
3990 && REG_P (DECL_RTL (decl))
3991 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3992 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3993 " %<longjmp%> or %<vfork%>", decl);
3996 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3997 setjmp_vars_warning (setjmp_crosses, sub);
4000 /* Do the appropriate part of setjmp_vars_warning
4001 but for arguments instead of local variables. */
4003 static void
4004 setjmp_args_warning (bitmap setjmp_crosses)
4006 tree decl;
4007 for (decl = DECL_ARGUMENTS (current_function_decl);
4008 decl; decl = DECL_CHAIN (decl))
4009 if (DECL_RTL (decl) != 0
4010 && REG_P (DECL_RTL (decl))
4011 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4012 warning (OPT_Wclobbered,
4013 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4014 decl);
4017 /* Generate warning messages for variables live across setjmp. */
4019 void
4020 generate_setjmp_warnings (void)
4022 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4024 if (n_basic_blocks == NUM_FIXED_BLOCKS
4025 || bitmap_empty_p (setjmp_crosses))
4026 return;
4028 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4029 setjmp_args_warning (setjmp_crosses);
4033 /* Reverse the order of elements in the fragment chain T of blocks,
4034 and return the new head of the chain (old last element).
4035 In addition to that clear BLOCK_SAME_RANGE flags when needed
4036 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4037 its super fragment origin. */
4039 static tree
4040 block_fragments_nreverse (tree t)
4042 tree prev = 0, block, next, prev_super = 0;
4043 tree super = BLOCK_SUPERCONTEXT (t);
4044 if (BLOCK_FRAGMENT_ORIGIN (super))
4045 super = BLOCK_FRAGMENT_ORIGIN (super);
4046 for (block = t; block; block = next)
4048 next = BLOCK_FRAGMENT_CHAIN (block);
4049 BLOCK_FRAGMENT_CHAIN (block) = prev;
4050 if ((prev && !BLOCK_SAME_RANGE (prev))
4051 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4052 != prev_super))
4053 BLOCK_SAME_RANGE (block) = 0;
4054 prev_super = BLOCK_SUPERCONTEXT (block);
4055 BLOCK_SUPERCONTEXT (block) = super;
4056 prev = block;
4058 t = BLOCK_FRAGMENT_ORIGIN (t);
4059 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4060 != prev_super)
4061 BLOCK_SAME_RANGE (t) = 0;
4062 BLOCK_SUPERCONTEXT (t) = super;
4063 return prev;
4066 /* Reverse the order of elements in the chain T of blocks,
4067 and return the new head of the chain (old last element).
4068 Also do the same on subblocks and reverse the order of elements
4069 in BLOCK_FRAGMENT_CHAIN as well. */
4071 static tree
4072 blocks_nreverse_all (tree t)
4074 tree prev = 0, block, next;
4075 for (block = t; block; block = next)
4077 next = BLOCK_CHAIN (block);
4078 BLOCK_CHAIN (block) = prev;
4079 if (BLOCK_FRAGMENT_CHAIN (block)
4080 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4082 BLOCK_FRAGMENT_CHAIN (block)
4083 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4084 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4085 BLOCK_SAME_RANGE (block) = 0;
4087 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4088 prev = block;
4090 return prev;
4094 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4095 and create duplicate blocks. */
4096 /* ??? Need an option to either create block fragments or to create
4097 abstract origin duplicates of a source block. It really depends
4098 on what optimization has been performed. */
4100 void
4101 reorder_blocks (void)
4103 tree block = DECL_INITIAL (current_function_decl);
4104 vec<tree> block_stack;
4106 if (block == NULL_TREE)
4107 return;
4109 block_stack.create (10);
4111 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4112 clear_block_marks (block);
4114 /* Prune the old trees away, so that they don't get in the way. */
4115 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4116 BLOCK_CHAIN (block) = NULL_TREE;
4118 /* Recreate the block tree from the note nesting. */
4119 reorder_blocks_1 (get_insns (), block, &block_stack);
4120 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4122 block_stack.release ();
4125 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4127 void
4128 clear_block_marks (tree block)
4130 while (block)
4132 TREE_ASM_WRITTEN (block) = 0;
4133 clear_block_marks (BLOCK_SUBBLOCKS (block));
4134 block = BLOCK_CHAIN (block);
4138 static void
4139 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4141 rtx insn;
4142 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4144 for (insn = insns; insn; insn = NEXT_INSN (insn))
4146 if (NOTE_P (insn))
4148 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4150 tree block = NOTE_BLOCK (insn);
4151 tree origin;
4153 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4154 origin = block;
4156 if (prev_end)
4157 BLOCK_SAME_RANGE (prev_end) = 0;
4158 prev_end = NULL_TREE;
4160 /* If we have seen this block before, that means it now
4161 spans multiple address regions. Create a new fragment. */
4162 if (TREE_ASM_WRITTEN (block))
4164 tree new_block = copy_node (block);
4166 BLOCK_SAME_RANGE (new_block) = 0;
4167 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4168 BLOCK_FRAGMENT_CHAIN (new_block)
4169 = BLOCK_FRAGMENT_CHAIN (origin);
4170 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4172 NOTE_BLOCK (insn) = new_block;
4173 block = new_block;
4176 if (prev_beg == current_block && prev_beg)
4177 BLOCK_SAME_RANGE (block) = 1;
4179 prev_beg = origin;
4181 BLOCK_SUBBLOCKS (block) = 0;
4182 TREE_ASM_WRITTEN (block) = 1;
4183 /* When there's only one block for the entire function,
4184 current_block == block and we mustn't do this, it
4185 will cause infinite recursion. */
4186 if (block != current_block)
4188 tree super;
4189 if (block != origin)
4190 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4191 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4192 (origin))
4193 == current_block);
4194 if (p_block_stack->is_empty ())
4195 super = current_block;
4196 else
4198 super = p_block_stack->last ();
4199 gcc_assert (super == current_block
4200 || BLOCK_FRAGMENT_ORIGIN (super)
4201 == current_block);
4203 BLOCK_SUPERCONTEXT (block) = super;
4204 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4205 BLOCK_SUBBLOCKS (current_block) = block;
4206 current_block = origin;
4208 p_block_stack->safe_push (block);
4210 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4212 NOTE_BLOCK (insn) = p_block_stack->pop ();
4213 current_block = BLOCK_SUPERCONTEXT (current_block);
4214 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4215 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4216 prev_beg = NULL_TREE;
4217 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4218 ? NOTE_BLOCK (insn) : NULL_TREE;
4221 else
4223 prev_beg = NULL_TREE;
4224 if (prev_end)
4225 BLOCK_SAME_RANGE (prev_end) = 0;
4226 prev_end = NULL_TREE;
4231 /* Reverse the order of elements in the chain T of blocks,
4232 and return the new head of the chain (old last element). */
4234 tree
4235 blocks_nreverse (tree t)
4237 tree prev = 0, block, next;
4238 for (block = t; block; block = next)
4240 next = BLOCK_CHAIN (block);
4241 BLOCK_CHAIN (block) = prev;
4242 prev = block;
4244 return prev;
4247 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4248 by modifying the last node in chain 1 to point to chain 2. */
4250 tree
4251 block_chainon (tree op1, tree op2)
4253 tree t1;
4255 if (!op1)
4256 return op2;
4257 if (!op2)
4258 return op1;
4260 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4261 continue;
4262 BLOCK_CHAIN (t1) = op2;
4264 #ifdef ENABLE_TREE_CHECKING
4266 tree t2;
4267 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4268 gcc_assert (t2 != t1);
4270 #endif
4272 return op1;
4275 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4276 non-NULL, list them all into VECTOR, in a depth-first preorder
4277 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4278 blocks. */
4280 static int
4281 all_blocks (tree block, tree *vector)
4283 int n_blocks = 0;
4285 while (block)
4287 TREE_ASM_WRITTEN (block) = 0;
4289 /* Record this block. */
4290 if (vector)
4291 vector[n_blocks] = block;
4293 ++n_blocks;
4295 /* Record the subblocks, and their subblocks... */
4296 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4297 vector ? vector + n_blocks : 0);
4298 block = BLOCK_CHAIN (block);
4301 return n_blocks;
4304 /* Return a vector containing all the blocks rooted at BLOCK. The
4305 number of elements in the vector is stored in N_BLOCKS_P. The
4306 vector is dynamically allocated; it is the caller's responsibility
4307 to call `free' on the pointer returned. */
4309 static tree *
4310 get_block_vector (tree block, int *n_blocks_p)
4312 tree *block_vector;
4314 *n_blocks_p = all_blocks (block, NULL);
4315 block_vector = XNEWVEC (tree, *n_blocks_p);
4316 all_blocks (block, block_vector);
4318 return block_vector;
4321 static GTY(()) int next_block_index = 2;
4323 /* Set BLOCK_NUMBER for all the blocks in FN. */
4325 void
4326 number_blocks (tree fn)
4328 int i;
4329 int n_blocks;
4330 tree *block_vector;
4332 /* For SDB and XCOFF debugging output, we start numbering the blocks
4333 from 1 within each function, rather than keeping a running
4334 count. */
4335 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4336 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4337 next_block_index = 1;
4338 #endif
4340 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4342 /* The top-level BLOCK isn't numbered at all. */
4343 for (i = 1; i < n_blocks; ++i)
4344 /* We number the blocks from two. */
4345 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4347 free (block_vector);
4349 return;
4352 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4354 DEBUG_FUNCTION tree
4355 debug_find_var_in_block_tree (tree var, tree block)
4357 tree t;
4359 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4360 if (t == var)
4361 return block;
4363 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4365 tree ret = debug_find_var_in_block_tree (var, t);
4366 if (ret)
4367 return ret;
4370 return NULL_TREE;
4373 /* Keep track of whether we're in a dummy function context. If we are,
4374 we don't want to invoke the set_current_function hook, because we'll
4375 get into trouble if the hook calls target_reinit () recursively or
4376 when the initial initialization is not yet complete. */
4378 static bool in_dummy_function;
4380 /* Invoke the target hook when setting cfun. Update the optimization options
4381 if the function uses different options than the default. */
4383 static void
4384 invoke_set_current_function_hook (tree fndecl)
4386 if (!in_dummy_function)
4388 tree opts = ((fndecl)
4389 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4390 : optimization_default_node);
4392 if (!opts)
4393 opts = optimization_default_node;
4395 /* Change optimization options if needed. */
4396 if (optimization_current_node != opts)
4398 optimization_current_node = opts;
4399 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4402 targetm.set_current_function (fndecl);
4406 /* cfun should never be set directly; use this function. */
4408 void
4409 set_cfun (struct function *new_cfun)
4411 if (cfun != new_cfun)
4413 cfun = new_cfun;
4414 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4418 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4420 static vec<function_p> cfun_stack;
4422 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4423 current_function_decl accordingly. */
4425 void
4426 push_cfun (struct function *new_cfun)
4428 gcc_assert ((!cfun && !current_function_decl)
4429 || (cfun && current_function_decl == cfun->decl));
4430 cfun_stack.safe_push (cfun);
4431 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4432 set_cfun (new_cfun);
4435 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4437 void
4438 pop_cfun (void)
4440 struct function *new_cfun = cfun_stack.pop ();
4441 /* When in_dummy_function, we do have a cfun but current_function_decl is
4442 NULL. We also allow pushing NULL cfun and subsequently changing
4443 current_function_decl to something else and have both restored by
4444 pop_cfun. */
4445 gcc_checking_assert (in_dummy_function
4446 || !cfun
4447 || current_function_decl == cfun->decl);
4448 set_cfun (new_cfun);
4449 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4452 /* Return value of funcdef and increase it. */
4454 get_next_funcdef_no (void)
4456 return funcdef_no++;
4459 /* Return value of funcdef. */
4461 get_last_funcdef_no (void)
4463 return funcdef_no;
4466 /* Allocate a function structure for FNDECL and set its contents
4467 to the defaults. Set cfun to the newly-allocated object.
4468 Some of the helper functions invoked during initialization assume
4469 that cfun has already been set. Therefore, assign the new object
4470 directly into cfun and invoke the back end hook explicitly at the
4471 very end, rather than initializing a temporary and calling set_cfun
4472 on it.
4474 ABSTRACT_P is true if this is a function that will never be seen by
4475 the middle-end. Such functions are front-end concepts (like C++
4476 function templates) that do not correspond directly to functions
4477 placed in object files. */
4479 void
4480 allocate_struct_function (tree fndecl, bool abstract_p)
4482 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4484 cfun = ggc_alloc_cleared_function ();
4486 init_eh_for_function ();
4488 if (init_machine_status)
4489 cfun->machine = (*init_machine_status) ();
4491 #ifdef OVERRIDE_ABI_FORMAT
4492 OVERRIDE_ABI_FORMAT (fndecl);
4493 #endif
4495 if (fndecl != NULL_TREE)
4497 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4498 cfun->decl = fndecl;
4499 current_function_funcdef_no = get_next_funcdef_no ();
4502 invoke_set_current_function_hook (fndecl);
4504 if (fndecl != NULL_TREE)
4506 tree result = DECL_RESULT (fndecl);
4507 if (!abstract_p && aggregate_value_p (result, fndecl))
4509 #ifdef PCC_STATIC_STRUCT_RETURN
4510 cfun->returns_pcc_struct = 1;
4511 #endif
4512 cfun->returns_struct = 1;
4515 cfun->stdarg = stdarg_p (fntype);
4517 /* Assume all registers in stdarg functions need to be saved. */
4518 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4519 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4521 /* ??? This could be set on a per-function basis by the front-end
4522 but is this worth the hassle? */
4523 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4527 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4528 instead of just setting it. */
4530 void
4531 push_struct_function (tree fndecl)
4533 /* When in_dummy_function we might be in the middle of a pop_cfun and
4534 current_function_decl and cfun may not match. */
4535 gcc_assert (in_dummy_function
4536 || (!cfun && !current_function_decl)
4537 || (cfun && current_function_decl == cfun->decl));
4538 cfun_stack.safe_push (cfun);
4539 current_function_decl = fndecl;
4540 allocate_struct_function (fndecl, false);
4543 /* Reset crtl and other non-struct-function variables to defaults as
4544 appropriate for emitting rtl at the start of a function. */
4546 static void
4547 prepare_function_start (void)
4549 gcc_assert (!crtl->emit.x_last_insn);
4550 init_temp_slots ();
4551 init_emit ();
4552 init_varasm_status ();
4553 init_expr ();
4554 default_rtl_profile ();
4556 if (flag_stack_usage_info)
4558 cfun->su = ggc_alloc_cleared_stack_usage ();
4559 cfun->su->static_stack_size = -1;
4562 cse_not_expected = ! optimize;
4564 /* Caller save not needed yet. */
4565 caller_save_needed = 0;
4567 /* We haven't done register allocation yet. */
4568 reg_renumber = 0;
4570 /* Indicate that we have not instantiated virtual registers yet. */
4571 virtuals_instantiated = 0;
4573 /* Indicate that we want CONCATs now. */
4574 generating_concat_p = 1;
4576 /* Indicate we have no need of a frame pointer yet. */
4577 frame_pointer_needed = 0;
4580 /* Initialize the rtl expansion mechanism so that we can do simple things
4581 like generate sequences. This is used to provide a context during global
4582 initialization of some passes. You must call expand_dummy_function_end
4583 to exit this context. */
4585 void
4586 init_dummy_function_start (void)
4588 gcc_assert (!in_dummy_function);
4589 in_dummy_function = true;
4590 push_struct_function (NULL_TREE);
4591 prepare_function_start ();
4594 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4595 and initialize static variables for generating RTL for the statements
4596 of the function. */
4598 void
4599 init_function_start (tree subr)
4601 if (subr && DECL_STRUCT_FUNCTION (subr))
4602 set_cfun (DECL_STRUCT_FUNCTION (subr));
4603 else
4604 allocate_struct_function (subr, false);
4605 prepare_function_start ();
4606 decide_function_section (subr);
4608 /* Warn if this value is an aggregate type,
4609 regardless of which calling convention we are using for it. */
4610 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4611 warning (OPT_Waggregate_return, "function returns an aggregate");
4615 void
4616 expand_main_function (void)
4618 #if (defined(INVOKE__main) \
4619 || (!defined(HAS_INIT_SECTION) \
4620 && !defined(INIT_SECTION_ASM_OP) \
4621 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4622 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4623 #endif
4626 /* Expand code to initialize the stack_protect_guard. This is invoked at
4627 the beginning of a function to be protected. */
4629 #ifndef HAVE_stack_protect_set
4630 # define HAVE_stack_protect_set 0
4631 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4632 #endif
4634 void
4635 stack_protect_prologue (void)
4637 tree guard_decl = targetm.stack_protect_guard ();
4638 rtx x, y;
4640 x = expand_normal (crtl->stack_protect_guard);
4641 y = expand_normal (guard_decl);
4643 /* Allow the target to copy from Y to X without leaking Y into a
4644 register. */
4645 if (HAVE_stack_protect_set)
4647 rtx insn = gen_stack_protect_set (x, y);
4648 if (insn)
4650 emit_insn (insn);
4651 return;
4655 /* Otherwise do a straight move. */
4656 emit_move_insn (x, y);
4659 /* Expand code to verify the stack_protect_guard. This is invoked at
4660 the end of a function to be protected. */
4662 #ifndef HAVE_stack_protect_test
4663 # define HAVE_stack_protect_test 0
4664 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4665 #endif
4667 void
4668 stack_protect_epilogue (void)
4670 tree guard_decl = targetm.stack_protect_guard ();
4671 rtx label = gen_label_rtx ();
4672 rtx x, y, tmp;
4674 x = expand_normal (crtl->stack_protect_guard);
4675 y = expand_normal (guard_decl);
4677 /* Allow the target to compare Y with X without leaking either into
4678 a register. */
4679 switch (HAVE_stack_protect_test != 0)
4681 case 1:
4682 tmp = gen_stack_protect_test (x, y, label);
4683 if (tmp)
4685 emit_insn (tmp);
4686 break;
4688 /* FALLTHRU */
4690 default:
4691 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4692 break;
4695 /* The noreturn predictor has been moved to the tree level. The rtl-level
4696 predictors estimate this branch about 20%, which isn't enough to get
4697 things moved out of line. Since this is the only extant case of adding
4698 a noreturn function at the rtl level, it doesn't seem worth doing ought
4699 except adding the prediction by hand. */
4700 tmp = get_last_insn ();
4701 if (JUMP_P (tmp))
4702 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4704 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4705 free_temp_slots ();
4706 emit_label (label);
4709 /* Start the RTL for a new function, and set variables used for
4710 emitting RTL.
4711 SUBR is the FUNCTION_DECL node.
4712 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4713 the function's parameters, which must be run at any return statement. */
4715 void
4716 expand_function_start (tree subr)
4718 /* Make sure volatile mem refs aren't considered
4719 valid operands of arithmetic insns. */
4720 init_recog_no_volatile ();
4722 crtl->profile
4723 = (profile_flag
4724 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4726 crtl->limit_stack
4727 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4729 /* Make the label for return statements to jump to. Do not special
4730 case machines with special return instructions -- they will be
4731 handled later during jump, ifcvt, or epilogue creation. */
4732 return_label = gen_label_rtx ();
4734 /* Initialize rtx used to return the value. */
4735 /* Do this before assign_parms so that we copy the struct value address
4736 before any library calls that assign parms might generate. */
4738 /* Decide whether to return the value in memory or in a register. */
4739 if (aggregate_value_p (DECL_RESULT (subr), subr))
4741 /* Returning something that won't go in a register. */
4742 rtx value_address = 0;
4744 #ifdef PCC_STATIC_STRUCT_RETURN
4745 if (cfun->returns_pcc_struct)
4747 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4748 value_address = assemble_static_space (size);
4750 else
4751 #endif
4753 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4754 /* Expect to be passed the address of a place to store the value.
4755 If it is passed as an argument, assign_parms will take care of
4756 it. */
4757 if (sv)
4759 value_address = gen_reg_rtx (Pmode);
4760 emit_move_insn (value_address, sv);
4763 if (value_address)
4765 rtx x = value_address;
4766 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4768 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4769 set_mem_attributes (x, DECL_RESULT (subr), 1);
4771 SET_DECL_RTL (DECL_RESULT (subr), x);
4774 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4775 /* If return mode is void, this decl rtl should not be used. */
4776 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4777 else
4779 /* Compute the return values into a pseudo reg, which we will copy
4780 into the true return register after the cleanups are done. */
4781 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4782 if (TYPE_MODE (return_type) != BLKmode
4783 && targetm.calls.return_in_msb (return_type))
4784 /* expand_function_end will insert the appropriate padding in
4785 this case. Use the return value's natural (unpadded) mode
4786 within the function proper. */
4787 SET_DECL_RTL (DECL_RESULT (subr),
4788 gen_reg_rtx (TYPE_MODE (return_type)));
4789 else
4791 /* In order to figure out what mode to use for the pseudo, we
4792 figure out what the mode of the eventual return register will
4793 actually be, and use that. */
4794 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4796 /* Structures that are returned in registers are not
4797 aggregate_value_p, so we may see a PARALLEL or a REG. */
4798 if (REG_P (hard_reg))
4799 SET_DECL_RTL (DECL_RESULT (subr),
4800 gen_reg_rtx (GET_MODE (hard_reg)));
4801 else
4803 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4804 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4808 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4809 result to the real return register(s). */
4810 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4813 /* Initialize rtx for parameters and local variables.
4814 In some cases this requires emitting insns. */
4815 assign_parms (subr);
4817 /* If function gets a static chain arg, store it. */
4818 if (cfun->static_chain_decl)
4820 tree parm = cfun->static_chain_decl;
4821 rtx local, chain, insn;
4823 local = gen_reg_rtx (Pmode);
4824 chain = targetm.calls.static_chain (current_function_decl, true);
4826 set_decl_incoming_rtl (parm, chain, false);
4827 SET_DECL_RTL (parm, local);
4828 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4830 insn = emit_move_insn (local, chain);
4832 /* Mark the register as eliminable, similar to parameters. */
4833 if (MEM_P (chain)
4834 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4835 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4838 /* If the function receives a non-local goto, then store the
4839 bits we need to restore the frame pointer. */
4840 if (cfun->nonlocal_goto_save_area)
4842 tree t_save;
4843 rtx r_save;
4845 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4846 gcc_assert (DECL_RTL_SET_P (var));
4848 t_save = build4 (ARRAY_REF,
4849 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4850 cfun->nonlocal_goto_save_area,
4851 integer_zero_node, NULL_TREE, NULL_TREE);
4852 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4853 gcc_assert (GET_MODE (r_save) == Pmode);
4855 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4856 update_nonlocal_goto_save_area ();
4859 /* The following was moved from init_function_start.
4860 The move is supposed to make sdb output more accurate. */
4861 /* Indicate the beginning of the function body,
4862 as opposed to parm setup. */
4863 emit_note (NOTE_INSN_FUNCTION_BEG);
4865 gcc_assert (NOTE_P (get_last_insn ()));
4867 parm_birth_insn = get_last_insn ();
4869 if (crtl->profile)
4871 #ifdef PROFILE_HOOK
4872 PROFILE_HOOK (current_function_funcdef_no);
4873 #endif
4876 /* If we are doing generic stack checking, the probe should go here. */
4877 if (flag_stack_check == GENERIC_STACK_CHECK)
4878 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4881 /* Undo the effects of init_dummy_function_start. */
4882 void
4883 expand_dummy_function_end (void)
4885 gcc_assert (in_dummy_function);
4887 /* End any sequences that failed to be closed due to syntax errors. */
4888 while (in_sequence_p ())
4889 end_sequence ();
4891 /* Outside function body, can't compute type's actual size
4892 until next function's body starts. */
4894 free_after_parsing (cfun);
4895 free_after_compilation (cfun);
4896 pop_cfun ();
4897 in_dummy_function = false;
4900 /* Call DOIT for each hard register used as a return value from
4901 the current function. */
4903 void
4904 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4906 rtx outgoing = crtl->return_rtx;
4908 if (! outgoing)
4909 return;
4911 if (REG_P (outgoing))
4912 (*doit) (outgoing, arg);
4913 else if (GET_CODE (outgoing) == PARALLEL)
4915 int i;
4917 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4919 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4921 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4922 (*doit) (x, arg);
4927 static void
4928 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4930 emit_clobber (reg);
4933 void
4934 clobber_return_register (void)
4936 diddle_return_value (do_clobber_return_reg, NULL);
4938 /* In case we do use pseudo to return value, clobber it too. */
4939 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4941 tree decl_result = DECL_RESULT (current_function_decl);
4942 rtx decl_rtl = DECL_RTL (decl_result);
4943 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4945 do_clobber_return_reg (decl_rtl, NULL);
4950 static void
4951 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4953 emit_use (reg);
4956 static void
4957 use_return_register (void)
4959 diddle_return_value (do_use_return_reg, NULL);
4962 /* Possibly warn about unused parameters. */
4963 void
4964 do_warn_unused_parameter (tree fn)
4966 tree decl;
4968 for (decl = DECL_ARGUMENTS (fn);
4969 decl; decl = DECL_CHAIN (decl))
4970 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4971 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4972 && !TREE_NO_WARNING (decl))
4973 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4976 static GTY(()) rtx initial_trampoline;
4978 /* Generate RTL for the end of the current function. */
4980 void
4981 expand_function_end (void)
4983 rtx clobber_after;
4985 /* If arg_pointer_save_area was referenced only from a nested
4986 function, we will not have initialized it yet. Do that now. */
4987 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4988 get_arg_pointer_save_area ();
4990 /* If we are doing generic stack checking and this function makes calls,
4991 do a stack probe at the start of the function to ensure we have enough
4992 space for another stack frame. */
4993 if (flag_stack_check == GENERIC_STACK_CHECK)
4995 rtx insn, seq;
4997 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4998 if (CALL_P (insn))
5000 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5001 start_sequence ();
5002 if (STACK_CHECK_MOVING_SP)
5003 anti_adjust_stack_and_probe (max_frame_size, true);
5004 else
5005 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5006 seq = get_insns ();
5007 end_sequence ();
5008 set_insn_locations (seq, prologue_location);
5009 emit_insn_before (seq, stack_check_probe_note);
5010 break;
5014 /* End any sequences that failed to be closed due to syntax errors. */
5015 while (in_sequence_p ())
5016 end_sequence ();
5018 clear_pending_stack_adjust ();
5019 do_pending_stack_adjust ();
5021 /* Output a linenumber for the end of the function.
5022 SDB depends on this. */
5023 set_curr_insn_location (input_location);
5025 /* Before the return label (if any), clobber the return
5026 registers so that they are not propagated live to the rest of
5027 the function. This can only happen with functions that drop
5028 through; if there had been a return statement, there would
5029 have either been a return rtx, or a jump to the return label.
5031 We delay actual code generation after the current_function_value_rtx
5032 is computed. */
5033 clobber_after = get_last_insn ();
5035 /* Output the label for the actual return from the function. */
5036 emit_label (return_label);
5038 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5040 /* Let except.c know where it should emit the call to unregister
5041 the function context for sjlj exceptions. */
5042 if (flag_exceptions)
5043 sjlj_emit_function_exit_after (get_last_insn ());
5045 else
5047 /* We want to ensure that instructions that may trap are not
5048 moved into the epilogue by scheduling, because we don't
5049 always emit unwind information for the epilogue. */
5050 if (cfun->can_throw_non_call_exceptions)
5051 emit_insn (gen_blockage ());
5054 /* If this is an implementation of throw, do what's necessary to
5055 communicate between __builtin_eh_return and the epilogue. */
5056 expand_eh_return ();
5058 /* If scalar return value was computed in a pseudo-reg, or was a named
5059 return value that got dumped to the stack, copy that to the hard
5060 return register. */
5061 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5063 tree decl_result = DECL_RESULT (current_function_decl);
5064 rtx decl_rtl = DECL_RTL (decl_result);
5066 if (REG_P (decl_rtl)
5067 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5068 : DECL_REGISTER (decl_result))
5070 rtx real_decl_rtl = crtl->return_rtx;
5072 /* This should be set in assign_parms. */
5073 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5075 /* If this is a BLKmode structure being returned in registers,
5076 then use the mode computed in expand_return. Note that if
5077 decl_rtl is memory, then its mode may have been changed,
5078 but that crtl->return_rtx has not. */
5079 if (GET_MODE (real_decl_rtl) == BLKmode)
5080 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5082 /* If a non-BLKmode return value should be padded at the least
5083 significant end of the register, shift it left by the appropriate
5084 amount. BLKmode results are handled using the group load/store
5085 machinery. */
5086 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5087 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5089 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5090 REGNO (real_decl_rtl)),
5091 decl_rtl);
5092 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5094 /* If a named return value dumped decl_return to memory, then
5095 we may need to re-do the PROMOTE_MODE signed/unsigned
5096 extension. */
5097 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5099 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5100 promote_function_mode (TREE_TYPE (decl_result),
5101 GET_MODE (decl_rtl), &unsignedp,
5102 TREE_TYPE (current_function_decl), 1);
5104 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5106 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5108 /* If expand_function_start has created a PARALLEL for decl_rtl,
5109 move the result to the real return registers. Otherwise, do
5110 a group load from decl_rtl for a named return. */
5111 if (GET_CODE (decl_rtl) == PARALLEL)
5112 emit_group_move (real_decl_rtl, decl_rtl);
5113 else
5114 emit_group_load (real_decl_rtl, decl_rtl,
5115 TREE_TYPE (decl_result),
5116 int_size_in_bytes (TREE_TYPE (decl_result)));
5118 /* In the case of complex integer modes smaller than a word, we'll
5119 need to generate some non-trivial bitfield insertions. Do that
5120 on a pseudo and not the hard register. */
5121 else if (GET_CODE (decl_rtl) == CONCAT
5122 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5123 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5125 int old_generating_concat_p;
5126 rtx tmp;
5128 old_generating_concat_p = generating_concat_p;
5129 generating_concat_p = 0;
5130 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5131 generating_concat_p = old_generating_concat_p;
5133 emit_move_insn (tmp, decl_rtl);
5134 emit_move_insn (real_decl_rtl, tmp);
5136 else
5137 emit_move_insn (real_decl_rtl, decl_rtl);
5141 /* If returning a structure, arrange to return the address of the value
5142 in a place where debuggers expect to find it.
5144 If returning a structure PCC style,
5145 the caller also depends on this value.
5146 And cfun->returns_pcc_struct is not necessarily set. */
5147 if (cfun->returns_struct
5148 || cfun->returns_pcc_struct)
5150 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5151 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5152 rtx outgoing;
5154 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5155 type = TREE_TYPE (type);
5156 else
5157 value_address = XEXP (value_address, 0);
5159 outgoing = targetm.calls.function_value (build_pointer_type (type),
5160 current_function_decl, true);
5162 /* Mark this as a function return value so integrate will delete the
5163 assignment and USE below when inlining this function. */
5164 REG_FUNCTION_VALUE_P (outgoing) = 1;
5166 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5167 value_address = convert_memory_address (GET_MODE (outgoing),
5168 value_address);
5170 emit_move_insn (outgoing, value_address);
5172 /* Show return register used to hold result (in this case the address
5173 of the result. */
5174 crtl->return_rtx = outgoing;
5177 /* Emit the actual code to clobber return register. */
5179 rtx seq;
5181 start_sequence ();
5182 clobber_return_register ();
5183 seq = get_insns ();
5184 end_sequence ();
5186 emit_insn_after (seq, clobber_after);
5189 /* Output the label for the naked return from the function. */
5190 if (naked_return_label)
5191 emit_label (naked_return_label);
5193 /* @@@ This is a kludge. We want to ensure that instructions that
5194 may trap are not moved into the epilogue by scheduling, because
5195 we don't always emit unwind information for the epilogue. */
5196 if (cfun->can_throw_non_call_exceptions
5197 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5198 emit_insn (gen_blockage ());
5200 /* If stack protection is enabled for this function, check the guard. */
5201 if (crtl->stack_protect_guard)
5202 stack_protect_epilogue ();
5204 /* If we had calls to alloca, and this machine needs
5205 an accurate stack pointer to exit the function,
5206 insert some code to save and restore the stack pointer. */
5207 if (! EXIT_IGNORE_STACK
5208 && cfun->calls_alloca)
5210 rtx tem = 0, seq;
5212 start_sequence ();
5213 emit_stack_save (SAVE_FUNCTION, &tem);
5214 seq = get_insns ();
5215 end_sequence ();
5216 emit_insn_before (seq, parm_birth_insn);
5218 emit_stack_restore (SAVE_FUNCTION, tem);
5221 /* ??? This should no longer be necessary since stupid is no longer with
5222 us, but there are some parts of the compiler (eg reload_combine, and
5223 sh mach_dep_reorg) that still try and compute their own lifetime info
5224 instead of using the general framework. */
5225 use_return_register ();
5229 get_arg_pointer_save_area (void)
5231 rtx ret = arg_pointer_save_area;
5233 if (! ret)
5235 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5236 arg_pointer_save_area = ret;
5239 if (! crtl->arg_pointer_save_area_init)
5241 rtx seq;
5243 /* Save the arg pointer at the beginning of the function. The
5244 generated stack slot may not be a valid memory address, so we
5245 have to check it and fix it if necessary. */
5246 start_sequence ();
5247 emit_move_insn (validize_mem (ret),
5248 crtl->args.internal_arg_pointer);
5249 seq = get_insns ();
5250 end_sequence ();
5252 push_topmost_sequence ();
5253 emit_insn_after (seq, entry_of_function ());
5254 pop_topmost_sequence ();
5256 crtl->arg_pointer_save_area_init = true;
5259 return ret;
5262 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5263 for the first time. */
5265 static void
5266 record_insns (rtx insns, rtx end, htab_t *hashp)
5268 rtx tmp;
5269 htab_t hash = *hashp;
5271 if (hash == NULL)
5272 *hashp = hash
5273 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5275 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5277 void **slot = htab_find_slot (hash, tmp, INSERT);
5278 gcc_assert (*slot == NULL);
5279 *slot = tmp;
5283 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5284 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5285 insn, then record COPY as well. */
5287 void
5288 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5290 htab_t hash;
5291 void **slot;
5293 hash = epilogue_insn_hash;
5294 if (!hash || !htab_find (hash, insn))
5296 hash = prologue_insn_hash;
5297 if (!hash || !htab_find (hash, insn))
5298 return;
5301 slot = htab_find_slot (hash, copy, INSERT);
5302 gcc_assert (*slot == NULL);
5303 *slot = copy;
5306 /* Set the location of the insn chain starting at INSN to LOC. */
5307 static void
5308 set_insn_locations (rtx insn, int loc)
5310 while (insn != NULL_RTX)
5312 if (INSN_P (insn))
5313 INSN_LOCATION (insn) = loc;
5314 insn = NEXT_INSN (insn);
5318 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5319 we can be running after reorg, SEQUENCE rtl is possible. */
5321 static bool
5322 contains (const_rtx insn, htab_t hash)
5324 if (hash == NULL)
5325 return false;
5327 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5329 int i;
5330 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5331 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5332 return true;
5333 return false;
5336 return htab_find (hash, insn) != NULL;
5340 prologue_epilogue_contains (const_rtx insn)
5342 if (contains (insn, prologue_insn_hash))
5343 return 1;
5344 if (contains (insn, epilogue_insn_hash))
5345 return 1;
5346 return 0;
5349 #ifdef HAVE_simple_return
5351 /* Return true if INSN requires the stack frame to be set up.
5352 PROLOGUE_USED contains the hard registers used in the function
5353 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5354 prologue to set up for the function. */
5355 bool
5356 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5357 HARD_REG_SET set_up_by_prologue)
5359 df_ref *df_rec;
5360 HARD_REG_SET hardregs;
5361 unsigned regno;
5363 if (CALL_P (insn))
5364 return !SIBLING_CALL_P (insn);
5366 /* We need a frame to get the unique CFA expected by the unwinder. */
5367 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5368 return true;
5370 CLEAR_HARD_REG_SET (hardregs);
5371 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5373 rtx dreg = DF_REF_REG (*df_rec);
5375 if (!REG_P (dreg))
5376 continue;
5378 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5379 REGNO (dreg));
5381 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5382 return true;
5383 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5384 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5385 if (TEST_HARD_REG_BIT (hardregs, regno)
5386 && df_regs_ever_live_p (regno))
5387 return true;
5389 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5391 rtx reg = DF_REF_REG (*df_rec);
5393 if (!REG_P (reg))
5394 continue;
5396 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5397 REGNO (reg));
5399 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5400 return true;
5402 return false;
5405 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5406 and if BB is its only predecessor. Return that block if so,
5407 otherwise return null. */
5409 static basic_block
5410 next_block_for_reg (basic_block bb, int regno, int end_regno)
5412 edge e, live_edge;
5413 edge_iterator ei;
5414 bitmap live;
5415 int i;
5417 live_edge = NULL;
5418 FOR_EACH_EDGE (e, ei, bb->succs)
5420 live = df_get_live_in (e->dest);
5421 for (i = regno; i < end_regno; i++)
5422 if (REGNO_REG_SET_P (live, i))
5424 if (live_edge && live_edge != e)
5425 return NULL;
5426 live_edge = e;
5430 /* We can sometimes encounter dead code. Don't try to move it
5431 into the exit block. */
5432 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5433 return NULL;
5435 /* Reject targets of abnormal edges. This is needed for correctness
5436 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5437 exception edges even though it is generally treated as call-saved
5438 for the majority of the compilation. Moving across abnormal edges
5439 isn't going to be interesting for shrink-wrap usage anyway. */
5440 if (live_edge->flags & EDGE_ABNORMAL)
5441 return NULL;
5443 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5444 return NULL;
5446 return live_edge->dest;
5449 /* Try to move INSN from BB to a successor. Return true on success.
5450 USES and DEFS are the set of registers that are used and defined
5451 after INSN in BB. */
5453 static bool
5454 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5455 const HARD_REG_SET uses,
5456 const HARD_REG_SET defs)
5458 rtx set, src, dest;
5459 bitmap live_out, live_in, bb_uses, bb_defs;
5460 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5461 basic_block next_block;
5463 /* Look for a simple register copy. */
5464 set = single_set (insn);
5465 if (!set)
5466 return false;
5467 src = SET_SRC (set);
5468 dest = SET_DEST (set);
5469 if (!REG_P (dest) || !REG_P (src))
5470 return false;
5472 /* Make sure that the source register isn't defined later in BB. */
5473 sregno = REGNO (src);
5474 end_sregno = END_REGNO (src);
5475 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5476 return false;
5478 /* Make sure that the destination register isn't referenced later in BB. */
5479 dregno = REGNO (dest);
5480 end_dregno = END_REGNO (dest);
5481 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5482 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5483 return false;
5485 /* See whether there is a successor block to which we could move INSN. */
5486 next_block = next_block_for_reg (bb, dregno, end_dregno);
5487 if (!next_block)
5488 return false;
5490 /* At this point we are committed to moving INSN, but let's try to
5491 move it as far as we can. */
5494 live_out = df_get_live_out (bb);
5495 live_in = df_get_live_in (next_block);
5496 bb = next_block;
5498 /* Check whether BB uses DEST or clobbers DEST. We need to add
5499 INSN to BB if so. Either way, DEST is no longer live on entry,
5500 except for any part that overlaps SRC (next loop). */
5501 bb_uses = &DF_LR_BB_INFO (bb)->use;
5502 bb_defs = &DF_LR_BB_INFO (bb)->def;
5503 for (i = dregno; i < end_dregno; i++)
5505 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5506 next_block = NULL;
5507 CLEAR_REGNO_REG_SET (live_out, i);
5508 CLEAR_REGNO_REG_SET (live_in, i);
5511 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5512 Either way, SRC is now live on entry. */
5513 for (i = sregno; i < end_sregno; i++)
5515 if (REGNO_REG_SET_P (bb_defs, i))
5516 next_block = NULL;
5517 SET_REGNO_REG_SET (live_out, i);
5518 SET_REGNO_REG_SET (live_in, i);
5521 /* If we don't need to add the move to BB, look for a single
5522 successor block. */
5523 if (next_block)
5524 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5526 while (next_block);
5528 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5529 (next loop). */
5530 for (i = dregno; i < end_dregno; i++)
5532 CLEAR_REGNO_REG_SET (bb_uses, i);
5533 SET_REGNO_REG_SET (bb_defs, i);
5536 /* BB now uses SRC. */
5537 for (i = sregno; i < end_sregno; i++)
5538 SET_REGNO_REG_SET (bb_uses, i);
5540 emit_insn_after (PATTERN (insn), bb_note (bb));
5541 delete_insn (insn);
5542 return true;
5545 /* Look for register copies in the first block of the function, and move
5546 them down into successor blocks if the register is used only on one
5547 path. This exposes more opportunities for shrink-wrapping. These
5548 kinds of sets often occur when incoming argument registers are moved
5549 to call-saved registers because their values are live across one or
5550 more calls during the function. */
5552 static void
5553 prepare_shrink_wrap (basic_block entry_block)
5555 rtx insn, curr, x;
5556 HARD_REG_SET uses, defs;
5557 df_ref *ref;
5559 CLEAR_HARD_REG_SET (uses);
5560 CLEAR_HARD_REG_SET (defs);
5561 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5562 if (NONDEBUG_INSN_P (insn)
5563 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5565 /* Add all defined registers to DEFs. */
5566 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5568 x = DF_REF_REG (*ref);
5569 if (REG_P (x) && HARD_REGISTER_P (x))
5570 SET_HARD_REG_BIT (defs, REGNO (x));
5573 /* Add all used registers to USESs. */
5574 for (ref = DF_INSN_USES (insn); *ref; ref++)
5576 x = DF_REF_REG (*ref);
5577 if (REG_P (x) && HARD_REGISTER_P (x))
5578 SET_HARD_REG_BIT (uses, REGNO (x));
5583 #endif
5585 #ifdef HAVE_return
5586 /* Insert use of return register before the end of BB. */
5588 static void
5589 emit_use_return_register_into_block (basic_block bb)
5591 rtx seq;
5592 start_sequence ();
5593 use_return_register ();
5594 seq = get_insns ();
5595 end_sequence ();
5596 emit_insn_before (seq, BB_END (bb));
5600 /* Create a return pattern, either simple_return or return, depending on
5601 simple_p. */
5603 static rtx
5604 gen_return_pattern (bool simple_p)
5606 #ifdef HAVE_simple_return
5607 return simple_p ? gen_simple_return () : gen_return ();
5608 #else
5609 gcc_assert (!simple_p);
5610 return gen_return ();
5611 #endif
5614 /* Insert an appropriate return pattern at the end of block BB. This
5615 also means updating block_for_insn appropriately. SIMPLE_P is
5616 the same as in gen_return_pattern and passed to it. */
5618 static void
5619 emit_return_into_block (bool simple_p, basic_block bb)
5621 rtx jump, pat;
5622 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5623 pat = PATTERN (jump);
5624 if (GET_CODE (pat) == PARALLEL)
5625 pat = XVECEXP (pat, 0, 0);
5626 gcc_assert (ANY_RETURN_P (pat));
5627 JUMP_LABEL (jump) = pat;
5629 #endif
5631 /* Set JUMP_LABEL for a return insn. */
5633 void
5634 set_return_jump_label (rtx returnjump)
5636 rtx pat = PATTERN (returnjump);
5637 if (GET_CODE (pat) == PARALLEL)
5638 pat = XVECEXP (pat, 0, 0);
5639 if (ANY_RETURN_P (pat))
5640 JUMP_LABEL (returnjump) = pat;
5641 else
5642 JUMP_LABEL (returnjump) = ret_rtx;
5645 #ifdef HAVE_simple_return
5646 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5647 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5648 static void
5649 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5650 bitmap_head *need_prologue)
5652 edge_iterator ei;
5653 edge e;
5654 rtx insn = BB_END (bb);
5656 /* We know BB has a single successor, so there is no need to copy a
5657 simple jump at the end of BB. */
5658 if (simplejump_p (insn))
5659 insn = PREV_INSN (insn);
5661 start_sequence ();
5662 duplicate_insn_chain (BB_HEAD (bb), insn);
5663 if (dump_file)
5665 unsigned count = 0;
5666 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5667 if (active_insn_p (insn))
5668 ++count;
5669 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5670 bb->index, copy_bb->index, count);
5672 insn = get_insns ();
5673 end_sequence ();
5674 emit_insn_before (insn, before);
5676 /* Redirect all the paths that need no prologue into copy_bb. */
5677 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5678 if (!bitmap_bit_p (need_prologue, e->src->index))
5680 int freq = EDGE_FREQUENCY (e);
5681 copy_bb->count += e->count;
5682 copy_bb->frequency += EDGE_FREQUENCY (e);
5683 e->dest->count -= e->count;
5684 if (e->dest->count < 0)
5685 e->dest->count = 0;
5686 e->dest->frequency -= freq;
5687 if (e->dest->frequency < 0)
5688 e->dest->frequency = 0;
5689 redirect_edge_and_branch_force (e, copy_bb);
5690 continue;
5692 else
5693 ei_next (&ei);
5695 #endif
5697 #if defined (HAVE_return) || defined (HAVE_simple_return)
5698 /* Return true if there are any active insns between HEAD and TAIL. */
5699 static bool
5700 active_insn_between (rtx head, rtx tail)
5702 while (tail)
5704 if (active_insn_p (tail))
5705 return true;
5706 if (tail == head)
5707 return false;
5708 tail = PREV_INSN (tail);
5710 return false;
5713 /* LAST_BB is a block that exits, and empty of active instructions.
5714 Examine its predecessors for jumps that can be converted to
5715 (conditional) returns. */
5716 static vec<edge>
5717 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5718 vec<edge> unconverted ATTRIBUTE_UNUSED)
5720 int i;
5721 basic_block bb;
5722 rtx label;
5723 edge_iterator ei;
5724 edge e;
5725 vec<basic_block> src_bbs;
5727 src_bbs.create (EDGE_COUNT (last_bb->preds));
5728 FOR_EACH_EDGE (e, ei, last_bb->preds)
5729 if (e->src != ENTRY_BLOCK_PTR)
5730 src_bbs.quick_push (e->src);
5732 label = BB_HEAD (last_bb);
5734 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5736 rtx jump = BB_END (bb);
5738 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5739 continue;
5741 e = find_edge (bb, last_bb);
5743 /* If we have an unconditional jump, we can replace that
5744 with a simple return instruction. */
5745 if (simplejump_p (jump))
5747 /* The use of the return register might be present in the exit
5748 fallthru block. Either:
5749 - removing the use is safe, and we should remove the use in
5750 the exit fallthru block, or
5751 - removing the use is not safe, and we should add it here.
5752 For now, we conservatively choose the latter. Either of the
5753 2 helps in crossjumping. */
5754 emit_use_return_register_into_block (bb);
5756 emit_return_into_block (simple_p, bb);
5757 delete_insn (jump);
5760 /* If we have a conditional jump branching to the last
5761 block, we can try to replace that with a conditional
5762 return instruction. */
5763 else if (condjump_p (jump))
5765 rtx dest;
5767 if (simple_p)
5768 dest = simple_return_rtx;
5769 else
5770 dest = ret_rtx;
5771 if (!redirect_jump (jump, dest, 0))
5773 #ifdef HAVE_simple_return
5774 if (simple_p)
5776 if (dump_file)
5777 fprintf (dump_file,
5778 "Failed to redirect bb %d branch.\n", bb->index);
5779 unconverted.safe_push (e);
5781 #endif
5782 continue;
5785 /* See comment in simplejump_p case above. */
5786 emit_use_return_register_into_block (bb);
5788 /* If this block has only one successor, it both jumps
5789 and falls through to the fallthru block, so we can't
5790 delete the edge. */
5791 if (single_succ_p (bb))
5792 continue;
5794 else
5796 #ifdef HAVE_simple_return
5797 if (simple_p)
5799 if (dump_file)
5800 fprintf (dump_file,
5801 "Failed to redirect bb %d branch.\n", bb->index);
5802 unconverted.safe_push (e);
5804 #endif
5805 continue;
5808 /* Fix up the CFG for the successful change we just made. */
5809 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5810 e->flags &= ~EDGE_CROSSING;
5812 src_bbs.release ();
5813 return unconverted;
5816 /* Emit a return insn for the exit fallthru block. */
5817 static basic_block
5818 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5820 basic_block last_bb = exit_fallthru_edge->src;
5822 if (JUMP_P (BB_END (last_bb)))
5824 last_bb = split_edge (exit_fallthru_edge);
5825 exit_fallthru_edge = single_succ_edge (last_bb);
5827 emit_barrier_after (BB_END (last_bb));
5828 emit_return_into_block (simple_p, last_bb);
5829 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5830 return last_bb;
5832 #endif
5835 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5836 this into place with notes indicating where the prologue ends and where
5837 the epilogue begins. Update the basic block information when possible.
5839 Notes on epilogue placement:
5840 There are several kinds of edges to the exit block:
5841 * a single fallthru edge from LAST_BB
5842 * possibly, edges from blocks containing sibcalls
5843 * possibly, fake edges from infinite loops
5845 The epilogue is always emitted on the fallthru edge from the last basic
5846 block in the function, LAST_BB, into the exit block.
5848 If LAST_BB is empty except for a label, it is the target of every
5849 other basic block in the function that ends in a return. If a
5850 target has a return or simple_return pattern (possibly with
5851 conditional variants), these basic blocks can be changed so that a
5852 return insn is emitted into them, and their target is adjusted to
5853 the real exit block.
5855 Notes on shrink wrapping: We implement a fairly conservative
5856 version of shrink-wrapping rather than the textbook one. We only
5857 generate a single prologue and a single epilogue. This is
5858 sufficient to catch a number of interesting cases involving early
5859 exits.
5861 First, we identify the blocks that require the prologue to occur before
5862 them. These are the ones that modify a call-saved register, or reference
5863 any of the stack or frame pointer registers. To simplify things, we then
5864 mark everything reachable from these blocks as also requiring a prologue.
5865 This takes care of loops automatically, and avoids the need to examine
5866 whether MEMs reference the frame, since it is sufficient to check for
5867 occurrences of the stack or frame pointer.
5869 We then compute the set of blocks for which the need for a prologue
5870 is anticipatable (borrowing terminology from the shrink-wrapping
5871 description in Muchnick's book). These are the blocks which either
5872 require a prologue themselves, or those that have only successors
5873 where the prologue is anticipatable. The prologue needs to be
5874 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5875 is not. For the moment, we ensure that only one such edge exists.
5877 The epilogue is placed as described above, but we make a
5878 distinction between inserting return and simple_return patterns
5879 when modifying other blocks that end in a return. Blocks that end
5880 in a sibcall omit the sibcall_epilogue if the block is not in
5881 ANTIC. */
5883 static void
5884 thread_prologue_and_epilogue_insns (void)
5886 bool inserted;
5887 #ifdef HAVE_simple_return
5888 vec<edge> unconverted_simple_returns = vNULL;
5889 bool nonempty_prologue;
5890 bitmap_head bb_flags;
5891 unsigned max_grow_size;
5892 #endif
5893 rtx returnjump;
5894 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5895 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5896 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5897 edge_iterator ei;
5899 df_analyze ();
5901 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5903 inserted = false;
5904 seq = NULL_RTX;
5905 epilogue_end = NULL_RTX;
5906 returnjump = NULL_RTX;
5908 /* Can't deal with multiple successors of the entry block at the
5909 moment. Function should always have at least one entry
5910 point. */
5911 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5912 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5913 orig_entry_edge = entry_edge;
5915 split_prologue_seq = NULL_RTX;
5916 if (flag_split_stack
5917 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5918 == NULL))
5920 #ifndef HAVE_split_stack_prologue
5921 gcc_unreachable ();
5922 #else
5923 gcc_assert (HAVE_split_stack_prologue);
5925 start_sequence ();
5926 emit_insn (gen_split_stack_prologue ());
5927 split_prologue_seq = get_insns ();
5928 end_sequence ();
5930 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5931 set_insn_locations (split_prologue_seq, prologue_location);
5932 #endif
5935 prologue_seq = NULL_RTX;
5936 #ifdef HAVE_prologue
5937 if (HAVE_prologue)
5939 start_sequence ();
5940 seq = gen_prologue ();
5941 emit_insn (seq);
5943 /* Insert an explicit USE for the frame pointer
5944 if the profiling is on and the frame pointer is required. */
5945 if (crtl->profile && frame_pointer_needed)
5946 emit_use (hard_frame_pointer_rtx);
5948 /* Retain a map of the prologue insns. */
5949 record_insns (seq, NULL, &prologue_insn_hash);
5950 emit_note (NOTE_INSN_PROLOGUE_END);
5952 /* Ensure that instructions are not moved into the prologue when
5953 profiling is on. The call to the profiling routine can be
5954 emitted within the live range of a call-clobbered register. */
5955 if (!targetm.profile_before_prologue () && crtl->profile)
5956 emit_insn (gen_blockage ());
5958 prologue_seq = get_insns ();
5959 end_sequence ();
5960 set_insn_locations (prologue_seq, prologue_location);
5962 #endif
5964 #ifdef HAVE_simple_return
5965 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5967 /* Try to perform a kind of shrink-wrapping, making sure the
5968 prologue/epilogue is emitted only around those parts of the
5969 function that require it. */
5971 nonempty_prologue = false;
5972 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5973 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5975 nonempty_prologue = true;
5976 break;
5979 if (flag_shrink_wrap && HAVE_simple_return
5980 && (targetm.profile_before_prologue () || !crtl->profile)
5981 && nonempty_prologue && !crtl->calls_eh_return)
5983 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5984 struct hard_reg_set_container set_up_by_prologue;
5985 rtx p_insn;
5986 vec<basic_block> vec;
5987 basic_block bb;
5988 bitmap_head bb_antic_flags;
5989 bitmap_head bb_on_list;
5990 bitmap_head bb_tail;
5992 if (dump_file)
5993 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5995 /* Compute the registers set and used in the prologue. */
5996 CLEAR_HARD_REG_SET (prologue_clobbered);
5997 CLEAR_HARD_REG_SET (prologue_used);
5998 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
6000 HARD_REG_SET this_used;
6001 if (!NONDEBUG_INSN_P (p_insn))
6002 continue;
6004 CLEAR_HARD_REG_SET (this_used);
6005 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6006 &this_used);
6007 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6008 IOR_HARD_REG_SET (prologue_used, this_used);
6009 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6010 &prologue_clobbered);
6013 prepare_shrink_wrap (entry_edge->dest);
6015 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6016 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6017 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6019 /* Find the set of basic blocks that require a stack frame,
6020 and blocks that are too big to be duplicated. */
6022 vec.create (n_basic_blocks);
6024 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6025 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6026 STACK_POINTER_REGNUM);
6027 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6028 if (frame_pointer_needed)
6029 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6030 HARD_FRAME_POINTER_REGNUM);
6031 if (pic_offset_table_rtx)
6032 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6033 PIC_OFFSET_TABLE_REGNUM);
6034 if (crtl->drap_reg)
6035 add_to_hard_reg_set (&set_up_by_prologue.set,
6036 GET_MODE (crtl->drap_reg),
6037 REGNO (crtl->drap_reg));
6038 if (targetm.set_up_by_prologue)
6039 targetm.set_up_by_prologue (&set_up_by_prologue);
6041 /* We don't use a different max size depending on
6042 optimize_bb_for_speed_p because increasing shrink-wrapping
6043 opportunities by duplicating tail blocks can actually result
6044 in an overall decrease in code size. */
6045 max_grow_size = get_uncond_jump_length ();
6046 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6048 FOR_EACH_BB (bb)
6050 rtx insn;
6051 unsigned size = 0;
6053 FOR_BB_INSNS (bb, insn)
6054 if (NONDEBUG_INSN_P (insn))
6056 if (requires_stack_frame_p (insn, prologue_used,
6057 set_up_by_prologue.set))
6059 if (bb == entry_edge->dest)
6060 goto fail_shrinkwrap;
6061 bitmap_set_bit (&bb_flags, bb->index);
6062 vec.quick_push (bb);
6063 break;
6065 else if (size <= max_grow_size)
6067 size += get_attr_min_length (insn);
6068 if (size > max_grow_size)
6069 bitmap_set_bit (&bb_on_list, bb->index);
6074 /* Blocks that really need a prologue, or are too big for tails. */
6075 bitmap_ior_into (&bb_on_list, &bb_flags);
6077 /* For every basic block that needs a prologue, mark all blocks
6078 reachable from it, so as to ensure they are also seen as
6079 requiring a prologue. */
6080 while (!vec.is_empty ())
6082 basic_block tmp_bb = vec.pop ();
6084 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6085 if (e->dest != EXIT_BLOCK_PTR
6086 && bitmap_set_bit (&bb_flags, e->dest->index))
6087 vec.quick_push (e->dest);
6090 /* Find the set of basic blocks that need no prologue, have a
6091 single successor, can be duplicated, meet a max size
6092 requirement, and go to the exit via like blocks. */
6093 vec.quick_push (EXIT_BLOCK_PTR);
6094 while (!vec.is_empty ())
6096 basic_block tmp_bb = vec.pop ();
6098 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6099 if (single_succ_p (e->src)
6100 && !bitmap_bit_p (&bb_on_list, e->src->index)
6101 && can_duplicate_block_p (e->src))
6103 edge pe;
6104 edge_iterator pei;
6106 /* If there is predecessor of e->src which doesn't
6107 need prologue and the edge is complex,
6108 we might not be able to redirect the branch
6109 to a copy of e->src. */
6110 FOR_EACH_EDGE (pe, pei, e->src->preds)
6111 if ((pe->flags & EDGE_COMPLEX) != 0
6112 && !bitmap_bit_p (&bb_flags, pe->src->index))
6113 break;
6114 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6115 vec.quick_push (e->src);
6119 /* Now walk backwards from every block that is marked as needing
6120 a prologue to compute the bb_antic_flags bitmap. Exclude
6121 tail blocks; They can be duplicated to be used on paths not
6122 needing a prologue. */
6123 bitmap_clear (&bb_on_list);
6124 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6125 FOR_EACH_BB (bb)
6127 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6128 continue;
6129 FOR_EACH_EDGE (e, ei, bb->preds)
6130 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6131 && bitmap_set_bit (&bb_on_list, e->src->index))
6132 vec.quick_push (e->src);
6134 while (!vec.is_empty ())
6136 basic_block tmp_bb = vec.pop ();
6137 bool all_set = true;
6139 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6140 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6141 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6143 all_set = false;
6144 break;
6147 if (all_set)
6149 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6150 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6151 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6152 && bitmap_set_bit (&bb_on_list, e->src->index))
6153 vec.quick_push (e->src);
6156 /* Find exactly one edge that leads to a block in ANTIC from
6157 a block that isn't. */
6158 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6159 FOR_EACH_BB (bb)
6161 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6162 continue;
6163 FOR_EACH_EDGE (e, ei, bb->preds)
6164 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6166 if (entry_edge != orig_entry_edge)
6168 entry_edge = orig_entry_edge;
6169 if (dump_file)
6170 fprintf (dump_file, "More than one candidate edge.\n");
6171 goto fail_shrinkwrap;
6173 if (dump_file)
6174 fprintf (dump_file, "Found candidate edge for "
6175 "shrink-wrapping, %d->%d.\n", e->src->index,
6176 e->dest->index);
6177 entry_edge = e;
6181 if (entry_edge != orig_entry_edge)
6183 /* Test whether the prologue is known to clobber any register
6184 (other than FP or SP) which are live on the edge. */
6185 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6186 if (frame_pointer_needed)
6187 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6188 REG_SET_TO_HARD_REG_SET (live_on_edge,
6189 df_get_live_in (entry_edge->dest));
6190 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6192 entry_edge = orig_entry_edge;
6193 if (dump_file)
6194 fprintf (dump_file,
6195 "Shrink-wrapping aborted due to clobber.\n");
6198 if (entry_edge != orig_entry_edge)
6200 crtl->shrink_wrapped = true;
6201 if (dump_file)
6202 fprintf (dump_file, "Performing shrink-wrapping.\n");
6204 /* Find tail blocks reachable from both blocks needing a
6205 prologue and blocks not needing a prologue. */
6206 if (!bitmap_empty_p (&bb_tail))
6207 FOR_EACH_BB (bb)
6209 bool some_pro, some_no_pro;
6210 if (!bitmap_bit_p (&bb_tail, bb->index))
6211 continue;
6212 some_pro = some_no_pro = false;
6213 FOR_EACH_EDGE (e, ei, bb->preds)
6215 if (bitmap_bit_p (&bb_flags, e->src->index))
6216 some_pro = true;
6217 else
6218 some_no_pro = true;
6220 if (some_pro && some_no_pro)
6221 vec.quick_push (bb);
6222 else
6223 bitmap_clear_bit (&bb_tail, bb->index);
6225 /* Find the head of each tail. */
6226 while (!vec.is_empty ())
6228 basic_block tbb = vec.pop ();
6230 if (!bitmap_bit_p (&bb_tail, tbb->index))
6231 continue;
6233 while (single_succ_p (tbb))
6235 tbb = single_succ (tbb);
6236 bitmap_clear_bit (&bb_tail, tbb->index);
6239 /* Now duplicate the tails. */
6240 if (!bitmap_empty_p (&bb_tail))
6241 FOR_EACH_BB_REVERSE (bb)
6243 basic_block copy_bb, tbb;
6244 rtx insert_point;
6245 int eflags;
6247 if (!bitmap_clear_bit (&bb_tail, bb->index))
6248 continue;
6250 /* Create a copy of BB, instructions and all, for
6251 use on paths that don't need a prologue.
6252 Ideal placement of the copy is on a fall-thru edge
6253 or after a block that would jump to the copy. */
6254 FOR_EACH_EDGE (e, ei, bb->preds)
6255 if (!bitmap_bit_p (&bb_flags, e->src->index)
6256 && single_succ_p (e->src))
6257 break;
6258 if (e)
6260 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6261 NULL_RTX, e->src);
6262 BB_COPY_PARTITION (copy_bb, e->src);
6264 else
6266 /* Otherwise put the copy at the end of the function. */
6267 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6268 EXIT_BLOCK_PTR->prev_bb);
6269 BB_COPY_PARTITION (copy_bb, bb);
6272 insert_point = emit_note_after (NOTE_INSN_DELETED,
6273 BB_END (copy_bb));
6274 emit_barrier_after (BB_END (copy_bb));
6276 tbb = bb;
6277 while (1)
6279 dup_block_and_redirect (tbb, copy_bb, insert_point,
6280 &bb_flags);
6281 tbb = single_succ (tbb);
6282 if (tbb == EXIT_BLOCK_PTR)
6283 break;
6284 e = split_block (copy_bb, PREV_INSN (insert_point));
6285 copy_bb = e->dest;
6288 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6289 We have yet to add a simple_return to the tails,
6290 as we'd like to first convert_jumps_to_returns in
6291 case the block is no longer used after that. */
6292 eflags = EDGE_FAKE;
6293 if (CALL_P (PREV_INSN (insert_point))
6294 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6295 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6296 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6298 /* verify_flow_info doesn't like a note after a
6299 sibling call. */
6300 delete_insn (insert_point);
6301 if (bitmap_empty_p (&bb_tail))
6302 break;
6306 fail_shrinkwrap:
6307 bitmap_clear (&bb_tail);
6308 bitmap_clear (&bb_antic_flags);
6309 bitmap_clear (&bb_on_list);
6310 vec.release ();
6312 #endif
6314 if (split_prologue_seq != NULL_RTX)
6316 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6317 inserted = true;
6319 if (prologue_seq != NULL_RTX)
6321 insert_insn_on_edge (prologue_seq, entry_edge);
6322 inserted = true;
6325 /* If the exit block has no non-fake predecessors, we don't need
6326 an epilogue. */
6327 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6328 if ((e->flags & EDGE_FAKE) == 0)
6329 break;
6330 if (e == NULL)
6331 goto epilogue_done;
6333 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6335 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6337 /* If we're allowed to generate a simple return instruction, then by
6338 definition we don't need a full epilogue. If the last basic
6339 block before the exit block does not contain active instructions,
6340 examine its predecessors and try to emit (conditional) return
6341 instructions. */
6342 #ifdef HAVE_simple_return
6343 if (entry_edge != orig_entry_edge)
6345 if (optimize)
6347 unsigned i, last;
6349 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6350 (but won't remove). Stop at end of current preds. */
6351 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6352 for (i = 0; i < last; i++)
6354 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6355 if (LABEL_P (BB_HEAD (e->src))
6356 && !bitmap_bit_p (&bb_flags, e->src->index)
6357 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6358 unconverted_simple_returns
6359 = convert_jumps_to_returns (e->src, true,
6360 unconverted_simple_returns);
6364 if (exit_fallthru_edge != NULL
6365 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6366 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6368 basic_block last_bb;
6370 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6371 returnjump = BB_END (last_bb);
6372 exit_fallthru_edge = NULL;
6375 #endif
6376 #ifdef HAVE_return
6377 if (HAVE_return)
6379 if (exit_fallthru_edge == NULL)
6380 goto epilogue_done;
6382 if (optimize)
6384 basic_block last_bb = exit_fallthru_edge->src;
6386 if (LABEL_P (BB_HEAD (last_bb))
6387 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6388 convert_jumps_to_returns (last_bb, false, vNULL);
6390 if (EDGE_COUNT (last_bb->preds) != 0
6391 && single_succ_p (last_bb))
6393 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6394 epilogue_end = returnjump = BB_END (last_bb);
6395 #ifdef HAVE_simple_return
6396 /* Emitting the return may add a basic block.
6397 Fix bb_flags for the added block. */
6398 if (last_bb != exit_fallthru_edge->src)
6399 bitmap_set_bit (&bb_flags, last_bb->index);
6400 #endif
6401 goto epilogue_done;
6405 #endif
6407 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6408 this marker for the splits of EH_RETURN patterns, and nothing else
6409 uses the flag in the meantime. */
6410 epilogue_completed = 1;
6412 #ifdef HAVE_eh_return
6413 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6414 some targets, these get split to a special version of the epilogue
6415 code. In order to be able to properly annotate these with unwind
6416 info, try to split them now. If we get a valid split, drop an
6417 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6418 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6420 rtx prev, last, trial;
6422 if (e->flags & EDGE_FALLTHRU)
6423 continue;
6424 last = BB_END (e->src);
6425 if (!eh_returnjump_p (last))
6426 continue;
6428 prev = PREV_INSN (last);
6429 trial = try_split (PATTERN (last), last, 1);
6430 if (trial == last)
6431 continue;
6433 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6434 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6436 #endif
6438 /* If nothing falls through into the exit block, we don't need an
6439 epilogue. */
6441 if (exit_fallthru_edge == NULL)
6442 goto epilogue_done;
6444 #ifdef HAVE_epilogue
6445 if (HAVE_epilogue)
6447 start_sequence ();
6448 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6449 seq = gen_epilogue ();
6450 if (seq)
6451 emit_jump_insn (seq);
6453 /* Retain a map of the epilogue insns. */
6454 record_insns (seq, NULL, &epilogue_insn_hash);
6455 set_insn_locations (seq, epilogue_location);
6457 seq = get_insns ();
6458 returnjump = get_last_insn ();
6459 end_sequence ();
6461 insert_insn_on_edge (seq, exit_fallthru_edge);
6462 inserted = true;
6464 if (JUMP_P (returnjump))
6465 set_return_jump_label (returnjump);
6467 else
6468 #endif
6470 basic_block cur_bb;
6472 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6473 goto epilogue_done;
6474 /* We have a fall-through edge to the exit block, the source is not
6475 at the end of the function, and there will be an assembler epilogue
6476 at the end of the function.
6477 We can't use force_nonfallthru here, because that would try to
6478 use return. Inserting a jump 'by hand' is extremely messy, so
6479 we take advantage of cfg_layout_finalize using
6480 fixup_fallthru_exit_predecessor. */
6481 cfg_layout_initialize (0);
6482 FOR_EACH_BB (cur_bb)
6483 if (cur_bb->index >= NUM_FIXED_BLOCKS
6484 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6485 cur_bb->aux = cur_bb->next_bb;
6486 cfg_layout_finalize ();
6489 epilogue_done:
6491 default_rtl_profile ();
6493 if (inserted)
6495 sbitmap blocks;
6497 commit_edge_insertions ();
6499 /* Look for basic blocks within the prologue insns. */
6500 blocks = sbitmap_alloc (last_basic_block);
6501 bitmap_clear (blocks);
6502 bitmap_set_bit (blocks, entry_edge->dest->index);
6503 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6504 find_many_sub_basic_blocks (blocks);
6505 sbitmap_free (blocks);
6507 /* The epilogue insns we inserted may cause the exit edge to no longer
6508 be fallthru. */
6509 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6511 if (((e->flags & EDGE_FALLTHRU) != 0)
6512 && returnjump_p (BB_END (e->src)))
6513 e->flags &= ~EDGE_FALLTHRU;
6517 #ifdef HAVE_simple_return
6518 /* If there were branches to an empty LAST_BB which we tried to
6519 convert to conditional simple_returns, but couldn't for some
6520 reason, create a block to hold a simple_return insn and redirect
6521 those remaining edges. */
6522 if (!unconverted_simple_returns.is_empty ())
6524 basic_block simple_return_block_hot = NULL;
6525 basic_block simple_return_block_cold = NULL;
6526 edge pending_edge_hot = NULL;
6527 edge pending_edge_cold = NULL;
6528 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6529 int i;
6531 gcc_assert (entry_edge != orig_entry_edge);
6533 /* See if we can reuse the last insn that was emitted for the
6534 epilogue. */
6535 if (returnjump != NULL_RTX
6536 && JUMP_LABEL (returnjump) == simple_return_rtx)
6538 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6539 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6540 simple_return_block_hot = e->dest;
6541 else
6542 simple_return_block_cold = e->dest;
6545 /* Also check returns we might need to add to tail blocks. */
6546 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6547 if (EDGE_COUNT (e->src->preds) != 0
6548 && (e->flags & EDGE_FAKE) != 0
6549 && !bitmap_bit_p (&bb_flags, e->src->index))
6551 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6552 pending_edge_hot = e;
6553 else
6554 pending_edge_cold = e;
6557 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6559 basic_block *pdest_bb;
6560 edge pending;
6562 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6564 pdest_bb = &simple_return_block_hot;
6565 pending = pending_edge_hot;
6567 else
6569 pdest_bb = &simple_return_block_cold;
6570 pending = pending_edge_cold;
6573 if (*pdest_bb == NULL && pending != NULL)
6575 emit_return_into_block (true, pending->src);
6576 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6577 *pdest_bb = pending->src;
6579 else if (*pdest_bb == NULL)
6581 basic_block bb;
6582 rtx start;
6584 bb = create_basic_block (NULL, NULL, exit_pred);
6585 BB_COPY_PARTITION (bb, e->src);
6586 start = emit_jump_insn_after (gen_simple_return (),
6587 BB_END (bb));
6588 JUMP_LABEL (start) = simple_return_rtx;
6589 emit_barrier_after (start);
6591 *pdest_bb = bb;
6592 make_edge (bb, EXIT_BLOCK_PTR, 0);
6594 redirect_edge_and_branch_force (e, *pdest_bb);
6596 unconverted_simple_returns.release ();
6599 if (entry_edge != orig_entry_edge)
6601 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6602 if (EDGE_COUNT (e->src->preds) != 0
6603 && (e->flags & EDGE_FAKE) != 0
6604 && !bitmap_bit_p (&bb_flags, e->src->index))
6606 emit_return_into_block (true, e->src);
6607 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6610 #endif
6612 #ifdef HAVE_sibcall_epilogue
6613 /* Emit sibling epilogues before any sibling call sites. */
6614 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6616 basic_block bb = e->src;
6617 rtx insn = BB_END (bb);
6618 rtx ep_seq;
6620 if (!CALL_P (insn)
6621 || ! SIBLING_CALL_P (insn)
6622 #ifdef HAVE_simple_return
6623 || (entry_edge != orig_entry_edge
6624 && !bitmap_bit_p (&bb_flags, bb->index))
6625 #endif
6628 ei_next (&ei);
6629 continue;
6632 ep_seq = gen_sibcall_epilogue ();
6633 if (ep_seq)
6635 start_sequence ();
6636 emit_note (NOTE_INSN_EPILOGUE_BEG);
6637 emit_insn (ep_seq);
6638 seq = get_insns ();
6639 end_sequence ();
6641 /* Retain a map of the epilogue insns. Used in life analysis to
6642 avoid getting rid of sibcall epilogue insns. Do this before we
6643 actually emit the sequence. */
6644 record_insns (seq, NULL, &epilogue_insn_hash);
6645 set_insn_locations (seq, epilogue_location);
6647 emit_insn_before (seq, insn);
6649 ei_next (&ei);
6651 #endif
6653 #ifdef HAVE_epilogue
6654 if (epilogue_end)
6656 rtx insn, next;
6658 /* Similarly, move any line notes that appear after the epilogue.
6659 There is no need, however, to be quite so anal about the existence
6660 of such a note. Also possibly move
6661 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6662 info generation. */
6663 for (insn = epilogue_end; insn; insn = next)
6665 next = NEXT_INSN (insn);
6666 if (NOTE_P (insn)
6667 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6668 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6671 #endif
6673 #ifdef HAVE_simple_return
6674 bitmap_clear (&bb_flags);
6675 #endif
6677 /* Threading the prologue and epilogue changes the artificial refs
6678 in the entry and exit blocks. */
6679 epilogue_completed = 1;
6680 df_update_entry_exit_and_calls ();
6683 /* Reposition the prologue-end and epilogue-begin notes after
6684 instruction scheduling. */
6686 void
6687 reposition_prologue_and_epilogue_notes (void)
6689 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6690 || defined (HAVE_sibcall_epilogue)
6691 /* Since the hash table is created on demand, the fact that it is
6692 non-null is a signal that it is non-empty. */
6693 if (prologue_insn_hash != NULL)
6695 size_t len = htab_elements (prologue_insn_hash);
6696 rtx insn, last = NULL, note = NULL;
6698 /* Scan from the beginning until we reach the last prologue insn. */
6699 /* ??? While we do have the CFG intact, there are two problems:
6700 (1) The prologue can contain loops (typically probing the stack),
6701 which means that the end of the prologue isn't in the first bb.
6702 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6703 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6705 if (NOTE_P (insn))
6707 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6708 note = insn;
6710 else if (contains (insn, prologue_insn_hash))
6712 last = insn;
6713 if (--len == 0)
6714 break;
6718 if (last)
6720 if (note == NULL)
6722 /* Scan forward looking for the PROLOGUE_END note. It should
6723 be right at the beginning of the block, possibly with other
6724 insn notes that got moved there. */
6725 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6727 if (NOTE_P (note)
6728 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6729 break;
6733 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6734 if (LABEL_P (last))
6735 last = NEXT_INSN (last);
6736 reorder_insns (note, note, last);
6740 if (epilogue_insn_hash != NULL)
6742 edge_iterator ei;
6743 edge e;
6745 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6747 rtx insn, first = NULL, note = NULL;
6748 basic_block bb = e->src;
6750 /* Scan from the beginning until we reach the first epilogue insn. */
6751 FOR_BB_INSNS (bb, insn)
6753 if (NOTE_P (insn))
6755 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6757 note = insn;
6758 if (first != NULL)
6759 break;
6762 else if (first == NULL && contains (insn, epilogue_insn_hash))
6764 first = insn;
6765 if (note != NULL)
6766 break;
6770 if (note)
6772 /* If the function has a single basic block, and no real
6773 epilogue insns (e.g. sibcall with no cleanup), the
6774 epilogue note can get scheduled before the prologue
6775 note. If we have frame related prologue insns, having
6776 them scanned during the epilogue will result in a crash.
6777 In this case re-order the epilogue note to just before
6778 the last insn in the block. */
6779 if (first == NULL)
6780 first = BB_END (bb);
6782 if (PREV_INSN (first) != note)
6783 reorder_insns (note, note, PREV_INSN (first));
6787 #endif /* HAVE_prologue or HAVE_epilogue */
6790 /* Returns the name of function declared by FNDECL. */
6791 const char *
6792 fndecl_name (tree fndecl)
6794 if (fndecl == NULL)
6795 return "(nofn)";
6796 return lang_hooks.decl_printable_name (fndecl, 2);
6799 /* Returns the name of function FN. */
6800 const char *
6801 function_name (struct function *fn)
6803 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6804 return fndecl_name (fndecl);
6807 /* Returns the name of the current function. */
6808 const char *
6809 current_function_name (void)
6811 return function_name (cfun);
6815 static unsigned int
6816 rest_of_handle_check_leaf_regs (void)
6818 #ifdef LEAF_REGISTERS
6819 crtl->uses_only_leaf_regs
6820 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6821 #endif
6822 return 0;
6825 /* Insert a TYPE into the used types hash table of CFUN. */
6827 static void
6828 used_types_insert_helper (tree type, struct function *func)
6830 if (type != NULL && func != NULL)
6832 void **slot;
6834 if (func->used_types_hash == NULL)
6835 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6836 htab_eq_pointer, NULL);
6837 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6838 if (*slot == NULL)
6839 *slot = type;
6843 /* Given a type, insert it into the used hash table in cfun. */
6844 void
6845 used_types_insert (tree t)
6847 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6848 if (TYPE_NAME (t))
6849 break;
6850 else
6851 t = TREE_TYPE (t);
6852 if (TREE_CODE (t) == ERROR_MARK)
6853 return;
6854 if (TYPE_NAME (t) == NULL_TREE
6855 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6856 t = TYPE_MAIN_VARIANT (t);
6857 if (debug_info_level > DINFO_LEVEL_NONE)
6859 if (cfun)
6860 used_types_insert_helper (t, cfun);
6861 else
6863 /* So this might be a type referenced by a global variable.
6864 Record that type so that we can later decide to emit its
6865 debug information. */
6866 vec_safe_push (types_used_by_cur_var_decl, t);
6871 /* Helper to Hash a struct types_used_by_vars_entry. */
6873 static hashval_t
6874 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6876 gcc_assert (entry && entry->var_decl && entry->type);
6878 return iterative_hash_object (entry->type,
6879 iterative_hash_object (entry->var_decl, 0));
6882 /* Hash function of the types_used_by_vars_entry hash table. */
6884 hashval_t
6885 types_used_by_vars_do_hash (const void *x)
6887 const struct types_used_by_vars_entry *entry =
6888 (const struct types_used_by_vars_entry *) x;
6890 return hash_types_used_by_vars_entry (entry);
6893 /*Equality function of the types_used_by_vars_entry hash table. */
6896 types_used_by_vars_eq (const void *x1, const void *x2)
6898 const struct types_used_by_vars_entry *e1 =
6899 (const struct types_used_by_vars_entry *) x1;
6900 const struct types_used_by_vars_entry *e2 =
6901 (const struct types_used_by_vars_entry *)x2;
6903 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6906 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6908 void
6909 types_used_by_var_decl_insert (tree type, tree var_decl)
6911 if (type != NULL && var_decl != NULL)
6913 void **slot;
6914 struct types_used_by_vars_entry e;
6915 e.var_decl = var_decl;
6916 e.type = type;
6917 if (types_used_by_vars_hash == NULL)
6918 types_used_by_vars_hash =
6919 htab_create_ggc (37, types_used_by_vars_do_hash,
6920 types_used_by_vars_eq, NULL);
6921 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6922 hash_types_used_by_vars_entry (&e), INSERT);
6923 if (*slot == NULL)
6925 struct types_used_by_vars_entry *entry;
6926 entry = ggc_alloc_types_used_by_vars_entry ();
6927 entry->type = type;
6928 entry->var_decl = var_decl;
6929 *slot = entry;
6934 struct rtl_opt_pass pass_leaf_regs =
6937 RTL_PASS,
6938 "*leaf_regs", /* name */
6939 OPTGROUP_NONE, /* optinfo_flags */
6940 NULL, /* gate */
6941 rest_of_handle_check_leaf_regs, /* execute */
6942 NULL, /* sub */
6943 NULL, /* next */
6944 0, /* static_pass_number */
6945 TV_NONE, /* tv_id */
6946 0, /* properties_required */
6947 0, /* properties_provided */
6948 0, /* properties_destroyed */
6949 0, /* todo_flags_start */
6950 0 /* todo_flags_finish */
6954 static unsigned int
6955 rest_of_handle_thread_prologue_and_epilogue (void)
6957 if (optimize)
6958 cleanup_cfg (CLEANUP_EXPENSIVE);
6960 /* On some machines, the prologue and epilogue code, or parts thereof,
6961 can be represented as RTL. Doing so lets us schedule insns between
6962 it and the rest of the code and also allows delayed branch
6963 scheduling to operate in the epilogue. */
6964 thread_prologue_and_epilogue_insns ();
6966 /* The stack usage info is finalized during prologue expansion. */
6967 if (flag_stack_usage_info)
6968 output_stack_usage ();
6970 return 0;
6973 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6976 RTL_PASS,
6977 "pro_and_epilogue", /* name */
6978 OPTGROUP_NONE, /* optinfo_flags */
6979 NULL, /* gate */
6980 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6981 NULL, /* sub */
6982 NULL, /* next */
6983 0, /* static_pass_number */
6984 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6985 0, /* properties_required */
6986 0, /* properties_provided */
6987 0, /* properties_destroyed */
6988 TODO_verify_flow, /* todo_flags_start */
6989 TODO_df_verify |
6990 TODO_df_finish | TODO_verify_rtl_sharing |
6991 TODO_ggc_collect /* todo_flags_finish */
6996 /* This mini-pass fixes fall-out from SSA in asm statements that have
6997 in-out constraints. Say you start with
6999 orig = inout;
7000 asm ("": "+mr" (inout));
7001 use (orig);
7003 which is transformed very early to use explicit output and match operands:
7005 orig = inout;
7006 asm ("": "=mr" (inout) : "0" (inout));
7007 use (orig);
7009 Or, after SSA and copyprop,
7011 asm ("": "=mr" (inout_2) : "0" (inout_1));
7012 use (inout_1);
7014 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7015 they represent two separate values, so they will get different pseudo
7016 registers during expansion. Then, since the two operands need to match
7017 per the constraints, but use different pseudo registers, reload can
7018 only register a reload for these operands. But reloads can only be
7019 satisfied by hardregs, not by memory, so we need a register for this
7020 reload, just because we are presented with non-matching operands.
7021 So, even though we allow memory for this operand, no memory can be
7022 used for it, just because the two operands don't match. This can
7023 cause reload failures on register-starved targets.
7025 So it's a symptom of reload not being able to use memory for reloads
7026 or, alternatively it's also a symptom of both operands not coming into
7027 reload as matching (in which case the pseudo could go to memory just
7028 fine, as the alternative allows it, and no reload would be necessary).
7029 We fix the latter problem here, by transforming
7031 asm ("": "=mr" (inout_2) : "0" (inout_1));
7033 back to
7035 inout_2 = inout_1;
7036 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7038 static void
7039 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7041 int i;
7042 bool changed = false;
7043 rtx op = SET_SRC (p_sets[0]);
7044 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7045 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7046 bool *output_matched = XALLOCAVEC (bool, noutputs);
7048 memset (output_matched, 0, noutputs * sizeof (bool));
7049 for (i = 0; i < ninputs; i++)
7051 rtx input, output, insns;
7052 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7053 char *end;
7054 int match, j;
7056 if (*constraint == '%')
7057 constraint++;
7059 match = strtoul (constraint, &end, 10);
7060 if (end == constraint)
7061 continue;
7063 gcc_assert (match < noutputs);
7064 output = SET_DEST (p_sets[match]);
7065 input = RTVEC_ELT (inputs, i);
7066 /* Only do the transformation for pseudos. */
7067 if (! REG_P (output)
7068 || rtx_equal_p (output, input)
7069 || (GET_MODE (input) != VOIDmode
7070 && GET_MODE (input) != GET_MODE (output)))
7071 continue;
7073 /* We can't do anything if the output is also used as input,
7074 as we're going to overwrite it. */
7075 for (j = 0; j < ninputs; j++)
7076 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7077 break;
7078 if (j != ninputs)
7079 continue;
7081 /* Avoid changing the same input several times. For
7082 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7083 only change in once (to out1), rather than changing it
7084 first to out1 and afterwards to out2. */
7085 if (i > 0)
7087 for (j = 0; j < noutputs; j++)
7088 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7089 break;
7090 if (j != noutputs)
7091 continue;
7093 output_matched[match] = true;
7095 start_sequence ();
7096 emit_move_insn (output, input);
7097 insns = get_insns ();
7098 end_sequence ();
7099 emit_insn_before (insns, insn);
7101 /* Now replace all mentions of the input with output. We can't
7102 just replace the occurrence in inputs[i], as the register might
7103 also be used in some other input (or even in an address of an
7104 output), which would mean possibly increasing the number of
7105 inputs by one (namely 'output' in addition), which might pose
7106 a too complicated problem for reload to solve. E.g. this situation:
7108 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7110 Here 'input' is used in two occurrences as input (once for the
7111 input operand, once for the address in the second output operand).
7112 If we would replace only the occurrence of the input operand (to
7113 make the matching) we would be left with this:
7115 output = input
7116 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7118 Now we suddenly have two different input values (containing the same
7119 value, but different pseudos) where we formerly had only one.
7120 With more complicated asms this might lead to reload failures
7121 which wouldn't have happen without this pass. So, iterate over
7122 all operands and replace all occurrences of the register used. */
7123 for (j = 0; j < noutputs; j++)
7124 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7125 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7126 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7127 input, output);
7128 for (j = 0; j < ninputs; j++)
7129 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7130 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7131 input, output);
7133 changed = true;
7136 if (changed)
7137 df_insn_rescan (insn);
7140 static unsigned
7141 rest_of_match_asm_constraints (void)
7143 basic_block bb;
7144 rtx insn, pat, *p_sets;
7145 int noutputs;
7147 if (!crtl->has_asm_statement)
7148 return 0;
7150 df_set_flags (DF_DEFER_INSN_RESCAN);
7151 FOR_EACH_BB (bb)
7153 FOR_BB_INSNS (bb, insn)
7155 if (!INSN_P (insn))
7156 continue;
7158 pat = PATTERN (insn);
7159 if (GET_CODE (pat) == PARALLEL)
7160 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7161 else if (GET_CODE (pat) == SET)
7162 p_sets = &PATTERN (insn), noutputs = 1;
7163 else
7164 continue;
7166 if (GET_CODE (*p_sets) == SET
7167 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7168 match_asm_constraints_1 (insn, p_sets, noutputs);
7172 return TODO_df_finish;
7175 struct rtl_opt_pass pass_match_asm_constraints =
7178 RTL_PASS,
7179 "asmcons", /* name */
7180 OPTGROUP_NONE, /* optinfo_flags */
7181 NULL, /* gate */
7182 rest_of_match_asm_constraints, /* execute */
7183 NULL, /* sub */
7184 NULL, /* next */
7185 0, /* static_pass_number */
7186 TV_NONE, /* tv_id */
7187 0, /* properties_required */
7188 0, /* properties_provided */
7189 0, /* properties_destroyed */
7190 0, /* todo_flags_start */
7191 0 /* todo_flags_finish */
7196 #include "gt-function.h"