1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
29 #include "hard-reg-set.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
40 #include "typeclass.h"
42 #include "langhooks.h"
45 #include "tree-iterator.h"
46 #include "tree-flow.h"
48 #include "common/common-target.h"
51 #include "diagnostic.h"
52 #include "ssaexpand.h"
53 #include "target-globals.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
76 #define STACK_PUSH_CODE PRE_INC
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
89 /* This structure is used by move_by_pieces to describe the move to
91 struct move_by_pieces_d
100 int explicit_inc_from
;
101 unsigned HOST_WIDE_INT len
;
102 HOST_WIDE_INT offset
;
106 /* This structure is used by store_by_pieces to describe the clear to
109 struct store_by_pieces_d
115 unsigned HOST_WIDE_INT len
;
116 HOST_WIDE_INT offset
;
117 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
122 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
123 struct move_by_pieces_d
*);
124 static bool block_move_libcall_safe_for_call_parm (void);
125 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
);
126 static tree
emit_block_move_libcall_fn (int);
127 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
128 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
129 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
130 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
131 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
132 struct store_by_pieces_d
*);
133 static tree
clear_storage_libcall_fn (int);
134 static rtx
compress_float_constant (rtx
, rtx
);
135 static rtx
get_subtarget (rtx
);
136 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
137 HOST_WIDE_INT
, enum machine_mode
,
138 tree
, int, alias_set_type
);
139 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
140 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
141 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
142 enum machine_mode
, tree
, alias_set_type
, bool);
144 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
146 static int is_aligning_offset (const_tree
, const_tree
);
147 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
148 enum expand_modifier
);
149 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
150 static rtx
do_store_flag (sepops
, rtx
, enum machine_mode
);
152 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
154 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
, int);
155 static rtx
const_vector_from_tree (tree
);
156 static void write_complex_part (rtx
, rtx
, bool);
158 /* This macro is used to determine whether move_by_pieces should be called
159 to perform a structure copy. */
160 #ifndef MOVE_BY_PIECES_P
161 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
162 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
163 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
166 /* This macro is used to determine whether clear_by_pieces should be
167 called to clear storage. */
168 #ifndef CLEAR_BY_PIECES_P
169 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
170 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
171 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
174 /* This macro is used to determine whether store_by_pieces should be
175 called to "memset" storage with byte values other than zero. */
176 #ifndef SET_BY_PIECES_P
177 #define SET_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
179 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
182 /* This macro is used to determine whether store_by_pieces should be
183 called to "memcpy" storage when the source is a constant string. */
184 #ifndef STORE_BY_PIECES_P
185 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
190 /* This is run to set up which modes can be used
191 directly in memory and to initialize the block move optab. It is run
192 at the beginning of compilation and when the target is reinitialized. */
195 init_expr_target (void)
198 enum machine_mode mode
;
203 /* Try indexing by frame ptr and try by stack ptr.
204 It is known that on the Convex the stack ptr isn't a valid index.
205 With luck, one or the other is valid on any machine. */
206 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
207 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
209 /* A scratch register we can modify in-place below to avoid
210 useless RTL allocations. */
211 reg
= gen_rtx_REG (VOIDmode
, -1);
213 insn
= rtx_alloc (INSN
);
214 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
215 PATTERN (insn
) = pat
;
217 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
218 mode
= (enum machine_mode
) ((int) mode
+ 1))
222 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
223 PUT_MODE (mem
, mode
);
224 PUT_MODE (mem1
, mode
);
225 PUT_MODE (reg
, mode
);
227 /* See if there is some register that can be used in this mode and
228 directly loaded or stored from memory. */
230 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
231 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
232 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
235 if (! HARD_REGNO_MODE_OK (regno
, mode
))
238 SET_REGNO (reg
, regno
);
241 SET_DEST (pat
) = reg
;
242 if (recog (pat
, insn
, &num_clobbers
) >= 0)
243 direct_load
[(int) mode
] = 1;
245 SET_SRC (pat
) = mem1
;
246 SET_DEST (pat
) = reg
;
247 if (recog (pat
, insn
, &num_clobbers
) >= 0)
248 direct_load
[(int) mode
] = 1;
251 SET_DEST (pat
) = mem
;
252 if (recog (pat
, insn
, &num_clobbers
) >= 0)
253 direct_store
[(int) mode
] = 1;
256 SET_DEST (pat
) = mem1
;
257 if (recog (pat
, insn
, &num_clobbers
) >= 0)
258 direct_store
[(int) mode
] = 1;
262 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
264 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
265 mode
= GET_MODE_WIDER_MODE (mode
))
267 enum machine_mode srcmode
;
268 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
269 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
273 ic
= can_extend_p (mode
, srcmode
, 0);
274 if (ic
== CODE_FOR_nothing
)
277 PUT_MODE (mem
, srcmode
);
279 if (insn_operand_matches (ic
, 1, mem
))
280 float_extend_from_mem
[mode
][srcmode
] = true;
285 /* This is run at the start of compiling a function. */
290 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
293 /* Copy data from FROM to TO, where the machine modes are not the same.
294 Both modes may be integer, or both may be floating, or both may be
296 UNSIGNEDP should be nonzero if FROM is an unsigned type.
297 This causes zero-extension instead of sign-extension. */
300 convert_move (rtx to
, rtx from
, int unsignedp
)
302 enum machine_mode to_mode
= GET_MODE (to
);
303 enum machine_mode from_mode
= GET_MODE (from
);
304 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
305 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
309 /* rtx code for making an equivalent value. */
310 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
311 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
314 gcc_assert (to_real
== from_real
);
315 gcc_assert (to_mode
!= BLKmode
);
316 gcc_assert (from_mode
!= BLKmode
);
318 /* If the source and destination are already the same, then there's
323 /* If FROM is a SUBREG that indicates that we have already done at least
324 the required extension, strip it. We don't handle such SUBREGs as
327 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
328 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
329 >= GET_MODE_PRECISION (to_mode
))
330 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
331 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
333 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
335 if (to_mode
== from_mode
336 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
338 emit_move_insn (to
, from
);
342 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
344 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
346 if (VECTOR_MODE_P (to_mode
))
347 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
349 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
351 emit_move_insn (to
, from
);
355 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
357 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
358 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
367 gcc_assert ((GET_MODE_PRECISION (from_mode
)
368 != GET_MODE_PRECISION (to_mode
))
369 || (DECIMAL_FLOAT_MODE_P (from_mode
)
370 != DECIMAL_FLOAT_MODE_P (to_mode
)));
372 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
373 /* Conversion between decimal float and binary float, same size. */
374 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
375 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
380 /* Try converting directly if the insn is supported. */
382 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
383 if (code
!= CODE_FOR_nothing
)
385 emit_unop_insn (code
, to
, from
,
386 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
390 /* Otherwise use a libcall. */
391 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
393 /* Is this conversion implemented yet? */
394 gcc_assert (libcall
);
397 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
399 insns
= get_insns ();
401 emit_libcall_block (insns
, to
, value
,
402 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
404 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
408 /* Handle pointer conversion. */ /* SPEE 900220. */
409 /* Targets are expected to provide conversion insns between PxImode and
410 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
411 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
413 enum machine_mode full_mode
414 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
416 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
417 != CODE_FOR_nothing
);
419 if (full_mode
!= from_mode
)
420 from
= convert_to_mode (full_mode
, from
, unsignedp
);
421 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
425 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
428 enum machine_mode full_mode
429 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
430 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
431 enum insn_code icode
;
433 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
434 gcc_assert (icode
!= CODE_FOR_nothing
);
436 if (to_mode
== full_mode
)
438 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
442 new_from
= gen_reg_rtx (full_mode
);
443 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
445 /* else proceed to integer conversions below. */
446 from_mode
= full_mode
;
450 /* Make sure both are fixed-point modes or both are not. */
451 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
452 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
453 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
455 /* If we widen from_mode to to_mode and they are in the same class,
456 we won't saturate the result.
457 Otherwise, always saturate the result to play safe. */
458 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
459 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
460 expand_fixed_convert (to
, from
, 0, 0);
462 expand_fixed_convert (to
, from
, 0, 1);
466 /* Now both modes are integers. */
468 /* Handle expanding beyond a word. */
469 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
470 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
477 enum machine_mode lowpart_mode
;
478 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
480 /* Try converting directly if the insn is supported. */
481 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
484 /* If FROM is a SUBREG, put it into a register. Do this
485 so that we always generate the same set of insns for
486 better cse'ing; if an intermediate assignment occurred,
487 we won't be doing the operation directly on the SUBREG. */
488 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
489 from
= force_reg (from_mode
, from
);
490 emit_unop_insn (code
, to
, from
, equiv_code
);
493 /* Next, try converting via full word. */
494 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
495 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
496 != CODE_FOR_nothing
))
498 rtx word_to
= gen_reg_rtx (word_mode
);
501 if (reg_overlap_mentioned_p (to
, from
))
502 from
= force_reg (from_mode
, from
);
505 convert_move (word_to
, from
, unsignedp
);
506 emit_unop_insn (code
, to
, word_to
, equiv_code
);
510 /* No special multiword conversion insn; do it by hand. */
513 /* Since we will turn this into a no conflict block, we must ensure the
514 the source does not overlap the target so force it into an isolated
515 register when maybe so. Likewise for any MEM input, since the
516 conversion sequence might require several references to it and we
517 must ensure we're getting the same value every time. */
519 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
520 from
= force_reg (from_mode
, from
);
522 /* Get a copy of FROM widened to a word, if necessary. */
523 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
524 lowpart_mode
= word_mode
;
526 lowpart_mode
= from_mode
;
528 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
530 lowpart
= gen_lowpart (lowpart_mode
, to
);
531 emit_move_insn (lowpart
, lowfrom
);
533 /* Compute the value to put in each remaining word. */
535 fill_value
= const0_rtx
;
537 fill_value
= emit_store_flag (gen_reg_rtx (word_mode
),
538 LT
, lowfrom
, const0_rtx
,
541 /* Fill the remaining words. */
542 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
544 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
545 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
547 gcc_assert (subword
);
549 if (fill_value
!= subword
)
550 emit_move_insn (subword
, fill_value
);
553 insns
= get_insns ();
560 /* Truncating multi-word to a word or less. */
561 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
562 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
565 && ! MEM_VOLATILE_P (from
)
566 && direct_load
[(int) to_mode
]
567 && ! mode_dependent_address_p (XEXP (from
, 0),
568 MEM_ADDR_SPACE (from
)))
570 || GET_CODE (from
) == SUBREG
))
571 from
= force_reg (from_mode
, from
);
572 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
576 /* Now follow all the conversions between integers
577 no more than a word long. */
579 /* For truncation, usually we can just refer to FROM in a narrower mode. */
580 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
581 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
584 && ! MEM_VOLATILE_P (from
)
585 && direct_load
[(int) to_mode
]
586 && ! mode_dependent_address_p (XEXP (from
, 0),
587 MEM_ADDR_SPACE (from
)))
589 || GET_CODE (from
) == SUBREG
))
590 from
= force_reg (from_mode
, from
);
591 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
592 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
593 from
= copy_to_reg (from
);
594 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
598 /* Handle extension. */
599 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
601 /* Convert directly if that works. */
602 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
605 emit_unop_insn (code
, to
, from
, equiv_code
);
610 enum machine_mode intermediate
;
614 /* Search for a mode to convert via. */
615 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
616 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
617 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
619 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
620 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
621 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
622 != CODE_FOR_nothing
))
624 convert_move (to
, convert_to_mode (intermediate
, from
,
625 unsignedp
), unsignedp
);
629 /* No suitable intermediate mode.
630 Generate what we need with shifts. */
631 shift_amount
= (GET_MODE_PRECISION (to_mode
)
632 - GET_MODE_PRECISION (from_mode
));
633 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
634 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
636 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
639 emit_move_insn (to
, tmp
);
644 /* Support special truncate insns for certain modes. */
645 if (convert_optab_handler (trunc_optab
, to_mode
,
646 from_mode
) != CODE_FOR_nothing
)
648 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
653 /* Handle truncation of volatile memrefs, and so on;
654 the things that couldn't be truncated directly,
655 and for which there was no special instruction.
657 ??? Code above formerly short-circuited this, for most integer
658 mode pairs, with a force_reg in from_mode followed by a recursive
659 call to this routine. Appears always to have been wrong. */
660 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
662 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
663 emit_move_insn (to
, temp
);
667 /* Mode combination is not recognized. */
671 /* Return an rtx for a value that would result
672 from converting X to mode MODE.
673 Both X and MODE may be floating, or both integer.
674 UNSIGNEDP is nonzero if X is an unsigned value.
675 This can be done by referring to a part of X in place
676 or by copying to a new temporary with conversion. */
679 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
681 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
684 /* Return an rtx for a value that would result
685 from converting X from mode OLDMODE to mode MODE.
686 Both modes may be floating, or both integer.
687 UNSIGNEDP is nonzero if X is an unsigned value.
689 This can be done by referring to a part of X in place
690 or by copying to a new temporary with conversion.
692 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
695 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
699 /* If FROM is a SUBREG that indicates that we have already done at least
700 the required extension, strip it. */
702 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
703 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
704 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
705 x
= gen_lowpart (mode
, x
);
707 if (GET_MODE (x
) != VOIDmode
)
708 oldmode
= GET_MODE (x
);
713 /* There is one case that we must handle specially: If we are converting
714 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
715 we are to interpret the constant as unsigned, gen_lowpart will do
716 the wrong if the constant appears negative. What we want to do is
717 make the high-order word of the constant zero, not all ones. */
719 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
720 && GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_DOUBLE_INT
721 && CONST_INT_P (x
) && INTVAL (x
) < 0)
723 double_int val
= double_int::from_uhwi (INTVAL (x
));
725 /* We need to zero extend VAL. */
726 if (oldmode
!= VOIDmode
)
727 val
= val
.zext (GET_MODE_BITSIZE (oldmode
));
729 return immed_double_int_const (val
, mode
);
732 /* We can do this with a gen_lowpart if both desired and current modes
733 are integer, and this is either a constant integer, a register, or a
734 non-volatile MEM. Except for the constant case where MODE is no
735 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
738 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
)
739 || (GET_MODE_CLASS (mode
) == MODE_INT
740 && GET_MODE_CLASS (oldmode
) == MODE_INT
741 && (CONST_DOUBLE_AS_INT_P (x
)
742 || (GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
743 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
744 && direct_load
[(int) mode
])
746 && (! HARD_REGISTER_P (x
)
747 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
748 && TRULY_NOOP_TRUNCATION_MODES_P (mode
,
751 /* ?? If we don't know OLDMODE, we have to assume here that
752 X does not need sign- or zero-extension. This may not be
753 the case, but it's the best we can do. */
754 if (CONST_INT_P (x
) && oldmode
!= VOIDmode
755 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (oldmode
))
757 HOST_WIDE_INT val
= INTVAL (x
);
759 /* We must sign or zero-extend in this case. Start by
760 zero-extending, then sign extend if we need to. */
761 val
&= GET_MODE_MASK (oldmode
);
763 && val_signbit_known_set_p (oldmode
, val
))
764 val
|= ~GET_MODE_MASK (oldmode
);
766 return gen_int_mode (val
, mode
);
769 return gen_lowpart (mode
, x
);
772 /* Converting from integer constant into mode is always equivalent to an
774 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
776 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
777 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
780 temp
= gen_reg_rtx (mode
);
781 convert_move (temp
, x
, unsignedp
);
785 /* Return the largest alignment we can use for doing a move (or store)
786 of MAX_PIECES. ALIGN is the largest alignment we could use. */
789 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
791 enum machine_mode tmode
;
793 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
794 if (align
>= GET_MODE_ALIGNMENT (tmode
))
795 align
= GET_MODE_ALIGNMENT (tmode
);
798 enum machine_mode tmode
, xmode
;
800 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
802 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
803 if (GET_MODE_SIZE (tmode
) > max_pieces
804 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
807 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
813 /* Return the widest integer mode no wider than SIZE. If no such mode
814 can be found, return VOIDmode. */
816 static enum machine_mode
817 widest_int_mode_for_size (unsigned int size
)
819 enum machine_mode tmode
, mode
= VOIDmode
;
821 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
822 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
823 if (GET_MODE_SIZE (tmode
) < size
)
829 /* STORE_MAX_PIECES is the number of bytes at a time that we can
830 store efficiently. Due to internal GCC limitations, this is
831 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
832 for an immediate constant. */
834 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
836 /* Determine whether the LEN bytes can be moved by using several move
837 instructions. Return nonzero if a call to move_by_pieces should
841 can_move_by_pieces (unsigned HOST_WIDE_INT len ATTRIBUTE_UNUSED
,
842 unsigned int align ATTRIBUTE_UNUSED
)
844 return MOVE_BY_PIECES_P (len
, align
);
847 /* Generate several move instructions to copy LEN bytes from block FROM to
848 block TO. (These are MEM rtx's with BLKmode).
850 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
851 used to push FROM to the stack.
853 ALIGN is maximum stack alignment we can assume.
855 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
856 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
860 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
861 unsigned int align
, int endp
)
863 struct move_by_pieces_d data
;
864 enum machine_mode to_addr_mode
;
865 enum machine_mode from_addr_mode
= get_address_mode (from
);
866 rtx to_addr
, from_addr
= XEXP (from
, 0);
867 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
868 enum insn_code icode
;
870 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
873 data
.from_addr
= from_addr
;
876 to_addr_mode
= get_address_mode (to
);
877 to_addr
= XEXP (to
, 0);
880 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
881 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
883 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
887 to_addr_mode
= VOIDmode
;
891 #ifdef STACK_GROWS_DOWNWARD
897 data
.to_addr
= to_addr
;
900 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
901 || GET_CODE (from_addr
) == POST_INC
902 || GET_CODE (from_addr
) == POST_DEC
);
904 data
.explicit_inc_from
= 0;
905 data
.explicit_inc_to
= 0;
906 if (data
.reverse
) data
.offset
= len
;
909 /* If copying requires more than two move insns,
910 copy addresses to registers (to make displacements shorter)
911 and use post-increment if available. */
912 if (!(data
.autinc_from
&& data
.autinc_to
)
913 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
915 /* Find the mode of the largest move...
916 MODE might not be used depending on the definitions of the
917 USE_* macros below. */
918 enum machine_mode mode ATTRIBUTE_UNUSED
919 = widest_int_mode_for_size (max_size
);
921 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
923 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
924 plus_constant (from_addr_mode
,
926 data
.autinc_from
= 1;
927 data
.explicit_inc_from
= -1;
929 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
931 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
932 data
.autinc_from
= 1;
933 data
.explicit_inc_from
= 1;
935 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
936 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
937 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
939 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
940 plus_constant (to_addr_mode
,
943 data
.explicit_inc_to
= -1;
945 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
947 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
949 data
.explicit_inc_to
= 1;
951 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
952 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
955 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
957 /* First move what we can in the largest integer mode, then go to
958 successively smaller modes. */
960 while (max_size
> 1 && data
.len
> 0)
962 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
964 if (mode
== VOIDmode
)
967 icode
= optab_handler (mov_optab
, mode
);
968 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
969 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
971 max_size
= GET_MODE_SIZE (mode
);
974 /* The code above should have handled everything. */
975 gcc_assert (!data
.len
);
981 gcc_assert (!data
.reverse
);
986 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
987 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
989 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
990 plus_constant (to_addr_mode
,
994 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1001 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1009 /* Return number of insns required to move L bytes by pieces.
1010 ALIGN (in bits) is maximum alignment we can assume. */
1012 unsigned HOST_WIDE_INT
1013 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1014 unsigned int max_size
)
1016 unsigned HOST_WIDE_INT n_insns
= 0;
1018 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1020 while (max_size
> 1 && l
> 0)
1022 enum machine_mode mode
;
1023 enum insn_code icode
;
1025 mode
= widest_int_mode_for_size (max_size
);
1027 if (mode
== VOIDmode
)
1030 icode
= optab_handler (mov_optab
, mode
);
1031 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1032 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1034 max_size
= GET_MODE_SIZE (mode
);
1041 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1042 with move instructions for mode MODE. GENFUN is the gen_... function
1043 to make a move insn for that mode. DATA has all the other info. */
1046 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1047 struct move_by_pieces_d
*data
)
1049 unsigned int size
= GET_MODE_SIZE (mode
);
1050 rtx to1
= NULL_RTX
, from1
;
1052 while (data
->len
>= size
)
1055 data
->offset
-= size
;
1059 if (data
->autinc_to
)
1060 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1063 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1066 if (data
->autinc_from
)
1067 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1070 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1072 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1073 emit_insn (gen_add2_insn (data
->to_addr
,
1074 GEN_INT (-(HOST_WIDE_INT
)size
)));
1075 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1076 emit_insn (gen_add2_insn (data
->from_addr
,
1077 GEN_INT (-(HOST_WIDE_INT
)size
)));
1080 emit_insn ((*genfun
) (to1
, from1
));
1083 #ifdef PUSH_ROUNDING
1084 emit_single_push_insn (mode
, from1
, NULL
);
1090 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1091 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1092 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1093 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1095 if (! data
->reverse
)
1096 data
->offset
+= size
;
1102 /* Emit code to move a block Y to a block X. This may be done with
1103 string-move instructions, with multiple scalar move instructions,
1104 or with a library call.
1106 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1107 SIZE is an rtx that says how long they are.
1108 ALIGN is the maximum alignment we can assume they have.
1109 METHOD describes what kind of copy this is, and what mechanisms may be used.
1111 Return the address of the new block, if memcpy is called and returns it,
1115 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1116 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1123 if (CONST_INT_P (size
)
1124 && INTVAL (size
) == 0)
1129 case BLOCK_OP_NORMAL
:
1130 case BLOCK_OP_TAILCALL
:
1131 may_use_call
= true;
1134 case BLOCK_OP_CALL_PARM
:
1135 may_use_call
= block_move_libcall_safe_for_call_parm ();
1137 /* Make inhibit_defer_pop nonzero around the library call
1138 to force it to pop the arguments right away. */
1142 case BLOCK_OP_NO_LIBCALL
:
1143 may_use_call
= false;
1150 gcc_assert (MEM_P (x
) && MEM_P (y
));
1151 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1152 gcc_assert (align
>= BITS_PER_UNIT
);
1154 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1155 block copy is more efficient for other large modes, e.g. DCmode. */
1156 x
= adjust_address (x
, BLKmode
, 0);
1157 y
= adjust_address (y
, BLKmode
, 0);
1159 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1160 can be incorrect is coming from __builtin_memcpy. */
1161 if (CONST_INT_P (size
))
1163 x
= shallow_copy_rtx (x
);
1164 y
= shallow_copy_rtx (y
);
1165 set_mem_size (x
, INTVAL (size
));
1166 set_mem_size (y
, INTVAL (size
));
1169 if (CONST_INT_P (size
) && MOVE_BY_PIECES_P (INTVAL (size
), align
))
1170 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1171 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1172 expected_align
, expected_size
))
1174 else if (may_use_call
1175 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1176 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1178 /* Since x and y are passed to a libcall, mark the corresponding
1179 tree EXPR as addressable. */
1180 tree y_expr
= MEM_EXPR (y
);
1181 tree x_expr
= MEM_EXPR (x
);
1183 mark_addressable (y_expr
);
1185 mark_addressable (x_expr
);
1186 retval
= emit_block_move_via_libcall (x
, y
, size
,
1187 method
== BLOCK_OP_TAILCALL
);
1191 emit_block_move_via_loop (x
, y
, size
, align
);
1193 if (method
== BLOCK_OP_CALL_PARM
)
1200 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1202 return emit_block_move_hints (x
, y
, size
, method
, 0, -1);
1205 /* A subroutine of emit_block_move. Returns true if calling the
1206 block move libcall will not clobber any parameters which may have
1207 already been placed on the stack. */
1210 block_move_libcall_safe_for_call_parm (void)
1212 #if defined (REG_PARM_STACK_SPACE)
1216 /* If arguments are pushed on the stack, then they're safe. */
1220 /* If registers go on the stack anyway, any argument is sure to clobber
1221 an outgoing argument. */
1222 #if defined (REG_PARM_STACK_SPACE)
1223 fn
= emit_block_move_libcall_fn (false);
1224 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1225 depend on its argument. */
1227 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1228 && REG_PARM_STACK_SPACE (fn
) != 0)
1232 /* If any argument goes in memory, then it might clobber an outgoing
1235 CUMULATIVE_ARGS args_so_far_v
;
1236 cumulative_args_t args_so_far
;
1239 fn
= emit_block_move_libcall_fn (false);
1240 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1241 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1243 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1244 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1246 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1247 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1249 if (!tmp
|| !REG_P (tmp
))
1251 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1253 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1260 /* A subroutine of emit_block_move. Expand a movmem pattern;
1261 return true if successful. */
1264 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1265 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1267 int save_volatile_ok
= volatile_ok
;
1268 enum machine_mode mode
;
1270 if (expected_align
< align
)
1271 expected_align
= align
;
1273 /* Since this is a move insn, we don't care about volatility. */
1276 /* Try the most limited insn first, because there's no point
1277 including more than one in the machine description unless
1278 the more limited one has some advantage. */
1280 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1281 mode
= GET_MODE_WIDER_MODE (mode
))
1283 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1285 if (code
!= CODE_FOR_nothing
1286 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1287 here because if SIZE is less than the mode mask, as it is
1288 returned by the macro, it will definitely be less than the
1289 actual mode mask. */
1290 && ((CONST_INT_P (size
)
1291 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1292 <= (GET_MODE_MASK (mode
) >> 1)))
1293 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
))
1295 struct expand_operand ops
[6];
1298 /* ??? When called via emit_block_move_for_call, it'd be
1299 nice if there were some way to inform the backend, so
1300 that it doesn't fail the expansion because it thinks
1301 emitting the libcall would be more efficient. */
1302 nops
= insn_data
[(int) code
].n_generator_args
;
1303 gcc_assert (nops
== 4 || nops
== 6);
1305 create_fixed_operand (&ops
[0], x
);
1306 create_fixed_operand (&ops
[1], y
);
1307 /* The check above guarantees that this size conversion is valid. */
1308 create_convert_operand_to (&ops
[2], size
, mode
, true);
1309 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1312 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1313 create_integer_operand (&ops
[5], expected_size
);
1315 if (maybe_expand_insn (code
, nops
, ops
))
1317 volatile_ok
= save_volatile_ok
;
1323 volatile_ok
= save_volatile_ok
;
1327 /* A subroutine of emit_block_move. Expand a call to memcpy.
1328 Return the return value from memcpy, 0 otherwise. */
1331 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1333 rtx dst_addr
, src_addr
;
1334 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1335 enum machine_mode size_mode
;
1338 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1339 pseudos. We can then place those new pseudos into a VAR_DECL and
1342 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1343 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1345 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1346 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1348 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1349 src_tree
= make_tree (ptr_type_node
, src_addr
);
1351 size_mode
= TYPE_MODE (sizetype
);
1353 size
= convert_to_mode (size_mode
, size
, 1);
1354 size
= copy_to_mode_reg (size_mode
, size
);
1356 /* It is incorrect to use the libcall calling conventions to call
1357 memcpy in this context. This could be a user call to memcpy and
1358 the user may wish to examine the return value from memcpy. For
1359 targets where libcalls and normal calls have different conventions
1360 for returning pointers, we could end up generating incorrect code. */
1362 size_tree
= make_tree (sizetype
, size
);
1364 fn
= emit_block_move_libcall_fn (true);
1365 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1366 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1368 retval
= expand_normal (call_expr
);
1373 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1374 for the function we use for block copies. */
1376 static GTY(()) tree block_move_fn
;
1379 init_block_move_fn (const char *asmspec
)
1383 tree args
, fn
, attrs
, attr_args
;
1385 fn
= get_identifier ("memcpy");
1386 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1387 const_ptr_type_node
, sizetype
,
1390 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1391 DECL_EXTERNAL (fn
) = 1;
1392 TREE_PUBLIC (fn
) = 1;
1393 DECL_ARTIFICIAL (fn
) = 1;
1394 TREE_NOTHROW (fn
) = 1;
1395 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1396 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1398 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1399 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1401 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1407 set_user_assembler_name (block_move_fn
, asmspec
);
1411 emit_block_move_libcall_fn (int for_call
)
1413 static bool emitted_extern
;
1416 init_block_move_fn (NULL
);
1418 if (for_call
&& !emitted_extern
)
1420 emitted_extern
= true;
1421 make_decl_rtl (block_move_fn
);
1424 return block_move_fn
;
1427 /* A subroutine of emit_block_move. Copy the data via an explicit
1428 loop. This is used only when libcalls are forbidden. */
1429 /* ??? It'd be nice to copy in hunks larger than QImode. */
1432 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1433 unsigned int align ATTRIBUTE_UNUSED
)
1435 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1436 enum machine_mode x_addr_mode
= get_address_mode (x
);
1437 enum machine_mode y_addr_mode
= get_address_mode (y
);
1438 enum machine_mode iter_mode
;
1440 iter_mode
= GET_MODE (size
);
1441 if (iter_mode
== VOIDmode
)
1442 iter_mode
= word_mode
;
1444 top_label
= gen_label_rtx ();
1445 cmp_label
= gen_label_rtx ();
1446 iter
= gen_reg_rtx (iter_mode
);
1448 emit_move_insn (iter
, const0_rtx
);
1450 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1451 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1452 do_pending_stack_adjust ();
1454 emit_jump (cmp_label
);
1455 emit_label (top_label
);
1457 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1458 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1460 if (x_addr_mode
!= y_addr_mode
)
1461 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1462 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1464 x
= change_address (x
, QImode
, x_addr
);
1465 y
= change_address (y
, QImode
, y_addr
);
1467 emit_move_insn (x
, y
);
1469 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1470 true, OPTAB_LIB_WIDEN
);
1472 emit_move_insn (iter
, tmp
);
1474 emit_label (cmp_label
);
1476 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1477 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1480 /* Copy all or part of a value X into registers starting at REGNO.
1481 The number of registers to be filled is NREGS. */
1484 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1487 #ifdef HAVE_load_multiple
1495 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1496 x
= validize_mem (force_const_mem (mode
, x
));
1498 /* See if the machine can do this with a load multiple insn. */
1499 #ifdef HAVE_load_multiple
1500 if (HAVE_load_multiple
)
1502 last
= get_last_insn ();
1503 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1511 delete_insns_since (last
);
1515 for (i
= 0; i
< nregs
; i
++)
1516 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1517 operand_subword_force (x
, i
, mode
));
1520 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1521 The number of registers to be filled is NREGS. */
1524 move_block_from_reg (int regno
, rtx x
, int nregs
)
1531 /* See if the machine can do this with a store multiple insn. */
1532 #ifdef HAVE_store_multiple
1533 if (HAVE_store_multiple
)
1535 rtx last
= get_last_insn ();
1536 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1544 delete_insns_since (last
);
1548 for (i
= 0; i
< nregs
; i
++)
1550 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1554 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1558 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1559 ORIG, where ORIG is a non-consecutive group of registers represented by
1560 a PARALLEL. The clone is identical to the original except in that the
1561 original set of registers is replaced by a new set of pseudo registers.
1562 The new set has the same modes as the original set. */
1565 gen_group_rtx (rtx orig
)
1570 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1572 length
= XVECLEN (orig
, 0);
1573 tmps
= XALLOCAVEC (rtx
, length
);
1575 /* Skip a NULL entry in first slot. */
1576 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1581 for (; i
< length
; i
++)
1583 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1584 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1586 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1589 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1592 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1593 except that values are placed in TMPS[i], and must later be moved
1594 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1597 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1601 enum machine_mode m
= GET_MODE (orig_src
);
1603 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1606 && !SCALAR_INT_MODE_P (m
)
1607 && !MEM_P (orig_src
)
1608 && GET_CODE (orig_src
) != CONCAT
)
1610 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1611 if (imode
== BLKmode
)
1612 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1614 src
= gen_reg_rtx (imode
);
1615 if (imode
!= BLKmode
)
1616 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1617 emit_move_insn (src
, orig_src
);
1618 /* ...and back again. */
1619 if (imode
!= BLKmode
)
1620 src
= gen_lowpart (imode
, src
);
1621 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1625 /* Check for a NULL entry, used to indicate that the parameter goes
1626 both on the stack and in registers. */
1627 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1632 /* Process the pieces. */
1633 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1635 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1636 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1637 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1640 /* Handle trailing fragments that run over the size of the struct. */
1641 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1643 /* Arrange to shift the fragment to where it belongs.
1644 extract_bit_field loads to the lsb of the reg. */
1646 #ifdef BLOCK_REG_PADDING
1647 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1648 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1653 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1654 bytelen
= ssize
- bytepos
;
1655 gcc_assert (bytelen
> 0);
1658 /* If we won't be loading directly from memory, protect the real source
1659 from strange tricks we might play; but make sure that the source can
1660 be loaded directly into the destination. */
1662 if (!MEM_P (orig_src
)
1663 && (!CONSTANT_P (orig_src
)
1664 || (GET_MODE (orig_src
) != mode
1665 && GET_MODE (orig_src
) != VOIDmode
)))
1667 if (GET_MODE (orig_src
) == VOIDmode
)
1668 src
= gen_reg_rtx (mode
);
1670 src
= gen_reg_rtx (GET_MODE (orig_src
));
1672 emit_move_insn (src
, orig_src
);
1675 /* Optimize the access just a bit. */
1677 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1678 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1679 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1680 && bytelen
== GET_MODE_SIZE (mode
))
1682 tmps
[i
] = gen_reg_rtx (mode
);
1683 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1685 else if (COMPLEX_MODE_P (mode
)
1686 && GET_MODE (src
) == mode
1687 && bytelen
== GET_MODE_SIZE (mode
))
1688 /* Let emit_move_complex do the bulk of the work. */
1690 else if (GET_CODE (src
) == CONCAT
)
1692 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1693 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1695 if ((bytepos
== 0 && bytelen
== slen0
)
1696 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1698 /* The following assumes that the concatenated objects all
1699 have the same size. In this case, a simple calculation
1700 can be used to determine the object and the bit field
1702 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1703 if (! CONSTANT_P (tmps
[i
])
1704 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1705 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1706 (bytepos
% slen0
) * BITS_PER_UNIT
,
1707 1, false, NULL_RTX
, mode
, mode
);
1713 gcc_assert (!bytepos
);
1714 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1715 emit_move_insn (mem
, src
);
1716 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1717 0, 1, false, NULL_RTX
, mode
, mode
);
1720 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1721 SIMD register, which is currently broken. While we get GCC
1722 to emit proper RTL for these cases, let's dump to memory. */
1723 else if (VECTOR_MODE_P (GET_MODE (dst
))
1726 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1729 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1730 emit_move_insn (mem
, src
);
1731 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1733 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1734 && XVECLEN (dst
, 0) > 1)
1735 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1736 else if (CONSTANT_P (src
))
1738 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1746 gcc_assert (2 * len
== ssize
);
1747 split_double (src
, &first
, &second
);
1754 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1757 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1758 bytepos
* BITS_PER_UNIT
, 1, false, NULL_RTX
,
1762 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1767 /* Emit code to move a block SRC of type TYPE to a block DST,
1768 where DST is non-consecutive registers represented by a PARALLEL.
1769 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1773 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1778 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1779 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1781 /* Copy the extracted pieces into the proper (probable) hard regs. */
1782 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1784 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1787 emit_move_insn (d
, tmps
[i
]);
1791 /* Similar, but load SRC into new pseudos in a format that looks like
1792 PARALLEL. This can later be fed to emit_group_move to get things
1793 in the right place. */
1796 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1801 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1802 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1804 /* Convert the vector to look just like the original PARALLEL, except
1805 with the computed values. */
1806 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1808 rtx e
= XVECEXP (parallel
, 0, i
);
1809 rtx d
= XEXP (e
, 0);
1813 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1814 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1816 RTVEC_ELT (vec
, i
) = e
;
1819 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1822 /* Emit code to move a block SRC to block DST, where SRC and DST are
1823 non-consecutive groups of registers, each represented by a PARALLEL. */
1826 emit_group_move (rtx dst
, rtx src
)
1830 gcc_assert (GET_CODE (src
) == PARALLEL
1831 && GET_CODE (dst
) == PARALLEL
1832 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1834 /* Skip first entry if NULL. */
1835 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1836 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1837 XEXP (XVECEXP (src
, 0, i
), 0));
1840 /* Move a group of registers represented by a PARALLEL into pseudos. */
1843 emit_group_move_into_temps (rtx src
)
1845 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1848 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1850 rtx e
= XVECEXP (src
, 0, i
);
1851 rtx d
= XEXP (e
, 0);
1854 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1855 RTVEC_ELT (vec
, i
) = e
;
1858 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1861 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1862 where SRC is non-consecutive registers represented by a PARALLEL.
1863 SSIZE represents the total size of block ORIG_DST, or -1 if not
1867 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1870 int start
, finish
, i
;
1871 enum machine_mode m
= GET_MODE (orig_dst
);
1873 gcc_assert (GET_CODE (src
) == PARALLEL
);
1875 if (!SCALAR_INT_MODE_P (m
)
1876 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1878 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1879 if (imode
== BLKmode
)
1880 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1882 dst
= gen_reg_rtx (imode
);
1883 emit_group_store (dst
, src
, type
, ssize
);
1884 if (imode
!= BLKmode
)
1885 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1886 emit_move_insn (orig_dst
, dst
);
1890 /* Check for a NULL entry, used to indicate that the parameter goes
1891 both on the stack and in registers. */
1892 if (XEXP (XVECEXP (src
, 0, 0), 0))
1896 finish
= XVECLEN (src
, 0);
1898 tmps
= XALLOCAVEC (rtx
, finish
);
1900 /* Copy the (probable) hard regs into pseudos. */
1901 for (i
= start
; i
< finish
; i
++)
1903 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1904 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1906 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1907 emit_move_insn (tmps
[i
], reg
);
1913 /* If we won't be storing directly into memory, protect the real destination
1914 from strange tricks we might play. */
1916 if (GET_CODE (dst
) == PARALLEL
)
1920 /* We can get a PARALLEL dst if there is a conditional expression in
1921 a return statement. In that case, the dst and src are the same,
1922 so no action is necessary. */
1923 if (rtx_equal_p (dst
, src
))
1926 /* It is unclear if we can ever reach here, but we may as well handle
1927 it. Allocate a temporary, and split this into a store/load to/from
1930 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1931 emit_group_store (temp
, src
, type
, ssize
);
1932 emit_group_load (dst
, temp
, type
, ssize
);
1935 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1937 enum machine_mode outer
= GET_MODE (dst
);
1938 enum machine_mode inner
;
1939 HOST_WIDE_INT bytepos
;
1943 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1944 dst
= gen_reg_rtx (outer
);
1946 /* Make life a bit easier for combine. */
1947 /* If the first element of the vector is the low part
1948 of the destination mode, use a paradoxical subreg to
1949 initialize the destination. */
1952 inner
= GET_MODE (tmps
[start
]);
1953 bytepos
= subreg_lowpart_offset (inner
, outer
);
1954 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1956 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1960 emit_move_insn (dst
, temp
);
1967 /* If the first element wasn't the low part, try the last. */
1969 && start
< finish
- 1)
1971 inner
= GET_MODE (tmps
[finish
- 1]);
1972 bytepos
= subreg_lowpart_offset (inner
, outer
);
1973 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
1975 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
1979 emit_move_insn (dst
, temp
);
1986 /* Otherwise, simply initialize the result to zero. */
1988 emit_move_insn (dst
, CONST0_RTX (outer
));
1991 /* Process the pieces. */
1992 for (i
= start
; i
< finish
; i
++)
1994 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
1995 enum machine_mode mode
= GET_MODE (tmps
[i
]);
1996 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1997 unsigned int adj_bytelen
= bytelen
;
2000 /* Handle trailing fragments that run over the size of the struct. */
2001 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2002 adj_bytelen
= ssize
- bytepos
;
2004 if (GET_CODE (dst
) == CONCAT
)
2006 if (bytepos
+ adj_bytelen
2007 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2008 dest
= XEXP (dst
, 0);
2009 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2011 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2012 dest
= XEXP (dst
, 1);
2016 enum machine_mode dest_mode
= GET_MODE (dest
);
2017 enum machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2019 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2021 if (GET_MODE_ALIGNMENT (dest_mode
)
2022 >= GET_MODE_ALIGNMENT (tmp_mode
))
2024 dest
= assign_stack_temp (dest_mode
,
2025 GET_MODE_SIZE (dest_mode
));
2026 emit_move_insn (adjust_address (dest
,
2034 dest
= assign_stack_temp (tmp_mode
,
2035 GET_MODE_SIZE (tmp_mode
));
2036 emit_move_insn (dest
, tmps
[i
]);
2037 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2043 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2045 /* store_bit_field always takes its value from the lsb.
2046 Move the fragment to the lsb if it's not already there. */
2048 #ifdef BLOCK_REG_PADDING
2049 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2050 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2056 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2057 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2060 bytelen
= adj_bytelen
;
2063 /* Optimize the access just a bit. */
2065 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2066 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2067 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2068 && bytelen
== GET_MODE_SIZE (mode
))
2069 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2071 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2072 0, 0, mode
, tmps
[i
]);
2075 /* Copy from the pseudo into the (probable) hard reg. */
2076 if (orig_dst
!= dst
)
2077 emit_move_insn (orig_dst
, dst
);
2080 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2081 of the value stored in X. */
2084 maybe_emit_group_store (rtx x
, tree type
)
2086 enum machine_mode mode
= TYPE_MODE (type
);
2087 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2088 if (GET_CODE (x
) == PARALLEL
)
2090 rtx result
= gen_reg_rtx (mode
);
2091 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2097 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2099 This is used on targets that return BLKmode values in registers. */
2102 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2104 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2105 rtx src
= NULL
, dst
= NULL
;
2106 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2107 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2108 enum machine_mode mode
= GET_MODE (srcreg
);
2109 enum machine_mode tmode
= GET_MODE (target
);
2110 enum machine_mode copy_mode
;
2112 /* BLKmode registers created in the back-end shouldn't have survived. */
2113 gcc_assert (mode
!= BLKmode
);
2115 /* If the structure doesn't take up a whole number of words, see whether
2116 SRCREG is padded on the left or on the right. If it's on the left,
2117 set PADDING_CORRECTION to the number of bits to skip.
2119 In most ABIs, the structure will be returned at the least end of
2120 the register, which translates to right padding on little-endian
2121 targets and left padding on big-endian targets. The opposite
2122 holds if the structure is returned at the most significant
2123 end of the register. */
2124 if (bytes
% UNITS_PER_WORD
!= 0
2125 && (targetm
.calls
.return_in_msb (type
)
2127 : BYTES_BIG_ENDIAN
))
2129 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2131 /* We can use a single move if we have an exact mode for the size. */
2132 else if (MEM_P (target
)
2133 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2134 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2135 && bytes
== GET_MODE_SIZE (mode
))
2137 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2141 /* And if we additionally have the same mode for a register. */
2142 else if (REG_P (target
)
2143 && GET_MODE (target
) == mode
2144 && bytes
== GET_MODE_SIZE (mode
))
2146 emit_move_insn (target
, srcreg
);
2150 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2151 into a new pseudo which is a full word. */
2152 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2154 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2158 /* Copy the structure BITSIZE bits at a time. If the target lives in
2159 memory, take care of not reading/writing past its end by selecting
2160 a copy mode suited to BITSIZE. This should always be possible given
2163 If the target lives in register, make sure not to select a copy mode
2164 larger than the mode of the register.
2166 We could probably emit more efficient code for machines which do not use
2167 strict alignment, but it doesn't seem worth the effort at the current
2170 copy_mode
= word_mode
;
2173 enum machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2174 if (mem_mode
!= BLKmode
)
2175 copy_mode
= mem_mode
;
2177 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2180 for (bitpos
= 0, xbitpos
= padding_correction
;
2181 bitpos
< bytes
* BITS_PER_UNIT
;
2182 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2184 /* We need a new source operand each time xbitpos is on a
2185 word boundary and when xbitpos == padding_correction
2186 (the first time through). */
2187 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2188 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2190 /* We need a new destination operand each time bitpos is on
2192 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2194 else if (bitpos
% BITS_PER_WORD
== 0)
2195 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2197 /* Use xbitpos for the source extraction (right justified) and
2198 bitpos for the destination store (left justified). */
2199 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2200 extract_bit_field (src
, bitsize
,
2201 xbitpos
% BITS_PER_WORD
, 1, false,
2202 NULL_RTX
, copy_mode
, copy_mode
));
2206 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2207 register if it contains any data, otherwise return null.
2209 This is used on targets that return BLKmode values in registers. */
2212 copy_blkmode_to_reg (enum machine_mode mode
, tree src
)
2215 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2216 unsigned int bitsize
;
2217 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2218 enum machine_mode dst_mode
;
2220 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2222 x
= expand_normal (src
);
2224 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2228 /* If the structure doesn't take up a whole number of words, see
2229 whether the register value should be padded on the left or on
2230 the right. Set PADDING_CORRECTION to the number of padding
2231 bits needed on the left side.
2233 In most ABIs, the structure will be returned at the least end of
2234 the register, which translates to right padding on little-endian
2235 targets and left padding on big-endian targets. The opposite
2236 holds if the structure is returned at the most significant
2237 end of the register. */
2238 if (bytes
% UNITS_PER_WORD
!= 0
2239 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2241 : BYTES_BIG_ENDIAN
))
2242 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2245 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2246 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2247 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2249 /* Copy the structure BITSIZE bits at a time. */
2250 for (bitpos
= 0, xbitpos
= padding_correction
;
2251 bitpos
< bytes
* BITS_PER_UNIT
;
2252 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2254 /* We need a new destination pseudo each time xbitpos is
2255 on a word boundary and when xbitpos == padding_correction
2256 (the first time through). */
2257 if (xbitpos
% BITS_PER_WORD
== 0
2258 || xbitpos
== padding_correction
)
2260 /* Generate an appropriate register. */
2261 dst_word
= gen_reg_rtx (word_mode
);
2262 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2264 /* Clear the destination before we move anything into it. */
2265 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2268 /* We need a new source operand each time bitpos is on a word
2270 if (bitpos
% BITS_PER_WORD
== 0)
2271 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2273 /* Use bitpos for the source extraction (left justified) and
2274 xbitpos for the destination store (right justified). */
2275 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2277 extract_bit_field (src_word
, bitsize
,
2278 bitpos
% BITS_PER_WORD
, 1, false,
2279 NULL_RTX
, word_mode
, word_mode
));
2282 if (mode
== BLKmode
)
2284 /* Find the smallest integer mode large enough to hold the
2285 entire structure. */
2286 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2288 mode
= GET_MODE_WIDER_MODE (mode
))
2289 /* Have we found a large enough mode? */
2290 if (GET_MODE_SIZE (mode
) >= bytes
)
2293 /* A suitable mode should have been found. */
2294 gcc_assert (mode
!= VOIDmode
);
2297 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2298 dst_mode
= word_mode
;
2301 dst
= gen_reg_rtx (dst_mode
);
2303 for (i
= 0; i
< n_regs
; i
++)
2304 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2306 if (mode
!= dst_mode
)
2307 dst
= gen_lowpart (mode
, dst
);
2312 /* Add a USE expression for REG to the (possibly empty) list pointed
2313 to by CALL_FUSAGE. REG must denote a hard register. */
2316 use_reg_mode (rtx
*call_fusage
, rtx reg
, enum machine_mode mode
)
2318 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2321 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2324 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2325 starting at REGNO. All of these registers must be hard registers. */
2328 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2332 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2334 for (i
= 0; i
< nregs
; i
++)
2335 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2338 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2339 PARALLEL REGS. This is for calls that pass values in multiple
2340 non-contiguous locations. The Irix 6 ABI has examples of this. */
2343 use_group_regs (rtx
*call_fusage
, rtx regs
)
2347 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2349 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2351 /* A NULL entry means the parameter goes both on the stack and in
2352 registers. This can also be a MEM for targets that pass values
2353 partially on the stack and partially in registers. */
2354 if (reg
!= 0 && REG_P (reg
))
2355 use_reg (call_fusage
, reg
);
2359 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2360 assigment and the code of the expresion on the RHS is CODE. Return
2364 get_def_for_expr (tree name
, enum tree_code code
)
2368 if (TREE_CODE (name
) != SSA_NAME
)
2371 def_stmt
= get_gimple_for_ssa_name (name
);
2373 || gimple_assign_rhs_code (def_stmt
) != code
)
2379 #ifdef HAVE_conditional_move
2380 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2381 assigment and the class of the expresion on the RHS is CLASS. Return
2385 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2389 if (TREE_CODE (name
) != SSA_NAME
)
2392 def_stmt
= get_gimple_for_ssa_name (name
);
2394 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2402 /* Determine whether the LEN bytes generated by CONSTFUN can be
2403 stored to memory using several move instructions. CONSTFUNDATA is
2404 a pointer which will be passed as argument in every CONSTFUN call.
2405 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2406 a memset operation and false if it's a copy of a constant string.
2407 Return nonzero if a call to store_by_pieces should succeed. */
2410 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2411 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2412 void *constfundata
, unsigned int align
, bool memsetp
)
2414 unsigned HOST_WIDE_INT l
;
2415 unsigned int max_size
;
2416 HOST_WIDE_INT offset
= 0;
2417 enum machine_mode mode
;
2418 enum insn_code icode
;
2420 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2421 rtx cst ATTRIBUTE_UNUSED
;
2427 ? SET_BY_PIECES_P (len
, align
)
2428 : STORE_BY_PIECES_P (len
, align
)))
2431 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2433 /* We would first store what we can in the largest integer mode, then go to
2434 successively smaller modes. */
2437 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2441 max_size
= STORE_MAX_PIECES
+ 1;
2442 while (max_size
> 1 && l
> 0)
2444 mode
= widest_int_mode_for_size (max_size
);
2446 if (mode
== VOIDmode
)
2449 icode
= optab_handler (mov_optab
, mode
);
2450 if (icode
!= CODE_FOR_nothing
2451 && align
>= GET_MODE_ALIGNMENT (mode
))
2453 unsigned int size
= GET_MODE_SIZE (mode
);
2460 cst
= (*constfun
) (constfundata
, offset
, mode
);
2461 if (!targetm
.legitimate_constant_p (mode
, cst
))
2471 max_size
= GET_MODE_SIZE (mode
);
2474 /* The code above should have handled everything. */
2481 /* Generate several move instructions to store LEN bytes generated by
2482 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2483 pointer which will be passed as argument in every CONSTFUN call.
2484 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2485 a memset operation and false if it's a copy of a constant string.
2486 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2487 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2491 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2492 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2493 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2495 enum machine_mode to_addr_mode
= get_address_mode (to
);
2496 struct store_by_pieces_d data
;
2500 gcc_assert (endp
!= 2);
2505 ? SET_BY_PIECES_P (len
, align
)
2506 : STORE_BY_PIECES_P (len
, align
));
2507 data
.constfun
= constfun
;
2508 data
.constfundata
= constfundata
;
2511 store_by_pieces_1 (&data
, align
);
2516 gcc_assert (!data
.reverse
);
2521 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2522 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2524 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2525 plus_constant (to_addr_mode
,
2529 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2536 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2544 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2545 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2548 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2550 struct store_by_pieces_d data
;
2555 data
.constfun
= clear_by_pieces_1
;
2556 data
.constfundata
= NULL
;
2559 store_by_pieces_1 (&data
, align
);
2562 /* Callback routine for clear_by_pieces.
2563 Return const0_rtx unconditionally. */
2566 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2567 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2568 enum machine_mode mode ATTRIBUTE_UNUSED
)
2573 /* Subroutine of clear_by_pieces and store_by_pieces.
2574 Generate several move instructions to store LEN bytes of block TO. (A MEM
2575 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2578 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2579 unsigned int align ATTRIBUTE_UNUSED
)
2581 enum machine_mode to_addr_mode
= get_address_mode (data
->to
);
2582 rtx to_addr
= XEXP (data
->to
, 0);
2583 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2584 enum insn_code icode
;
2587 data
->to_addr
= to_addr
;
2589 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2590 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2592 data
->explicit_inc_to
= 0;
2594 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2596 data
->offset
= data
->len
;
2598 /* If storing requires more than two move insns,
2599 copy addresses to registers (to make displacements shorter)
2600 and use post-increment if available. */
2601 if (!data
->autinc_to
2602 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2604 /* Determine the main mode we'll be using.
2605 MODE might not be used depending on the definitions of the
2606 USE_* macros below. */
2607 enum machine_mode mode ATTRIBUTE_UNUSED
2608 = widest_int_mode_for_size (max_size
);
2610 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2612 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2613 plus_constant (to_addr_mode
,
2616 data
->autinc_to
= 1;
2617 data
->explicit_inc_to
= -1;
2620 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2621 && ! data
->autinc_to
)
2623 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2624 data
->autinc_to
= 1;
2625 data
->explicit_inc_to
= 1;
2628 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2629 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2632 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2634 /* First store what we can in the largest integer mode, then go to
2635 successively smaller modes. */
2637 while (max_size
> 1 && data
->len
> 0)
2639 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
2641 if (mode
== VOIDmode
)
2644 icode
= optab_handler (mov_optab
, mode
);
2645 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2646 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2648 max_size
= GET_MODE_SIZE (mode
);
2651 /* The code above should have handled everything. */
2652 gcc_assert (!data
->len
);
2655 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2656 with move instructions for mode MODE. GENFUN is the gen_... function
2657 to make a move insn for that mode. DATA has all the other info. */
2660 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2661 struct store_by_pieces_d
*data
)
2663 unsigned int size
= GET_MODE_SIZE (mode
);
2666 while (data
->len
>= size
)
2669 data
->offset
-= size
;
2671 if (data
->autinc_to
)
2672 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2675 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2677 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2678 emit_insn (gen_add2_insn (data
->to_addr
,
2679 GEN_INT (-(HOST_WIDE_INT
) size
)));
2681 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2682 emit_insn ((*genfun
) (to1
, cst
));
2684 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2685 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2687 if (! data
->reverse
)
2688 data
->offset
+= size
;
2694 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2695 its length in bytes. */
2698 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2699 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2701 enum machine_mode mode
= GET_MODE (object
);
2704 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2706 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2707 just move a zero. Otherwise, do this a piece at a time. */
2709 && CONST_INT_P (size
)
2710 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2712 rtx zero
= CONST0_RTX (mode
);
2715 emit_move_insn (object
, zero
);
2719 if (COMPLEX_MODE_P (mode
))
2721 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2724 write_complex_part (object
, zero
, 0);
2725 write_complex_part (object
, zero
, 1);
2731 if (size
== const0_rtx
)
2734 align
= MEM_ALIGN (object
);
2736 if (CONST_INT_P (size
)
2737 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2738 clear_by_pieces (object
, INTVAL (size
), align
);
2739 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2740 expected_align
, expected_size
))
2742 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2743 return set_storage_via_libcall (object
, size
, const0_rtx
,
2744 method
== BLOCK_OP_TAILCALL
);
2752 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2754 return clear_storage_hints (object
, size
, method
, 0, -1);
2758 /* A subroutine of clear_storage. Expand a call to memset.
2759 Return the return value of memset, 0 otherwise. */
2762 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2764 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2765 enum machine_mode size_mode
;
2768 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2769 place those into new pseudos into a VAR_DECL and use them later. */
2771 object
= copy_addr_to_reg (XEXP (object
, 0));
2773 size_mode
= TYPE_MODE (sizetype
);
2774 size
= convert_to_mode (size_mode
, size
, 1);
2775 size
= copy_to_mode_reg (size_mode
, size
);
2777 /* It is incorrect to use the libcall calling conventions to call
2778 memset in this context. This could be a user call to memset and
2779 the user may wish to examine the return value from memset. For
2780 targets where libcalls and normal calls have different conventions
2781 for returning pointers, we could end up generating incorrect code. */
2783 object_tree
= make_tree (ptr_type_node
, object
);
2784 if (!CONST_INT_P (val
))
2785 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2786 size_tree
= make_tree (sizetype
, size
);
2787 val_tree
= make_tree (integer_type_node
, val
);
2789 fn
= clear_storage_libcall_fn (true);
2790 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2791 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2793 retval
= expand_normal (call_expr
);
2798 /* A subroutine of set_storage_via_libcall. Create the tree node
2799 for the function we use for block clears. */
2801 tree block_clear_fn
;
2804 init_block_clear_fn (const char *asmspec
)
2806 if (!block_clear_fn
)
2810 fn
= get_identifier ("memset");
2811 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2812 integer_type_node
, sizetype
,
2815 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2816 DECL_EXTERNAL (fn
) = 1;
2817 TREE_PUBLIC (fn
) = 1;
2818 DECL_ARTIFICIAL (fn
) = 1;
2819 TREE_NOTHROW (fn
) = 1;
2820 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2821 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2823 block_clear_fn
= fn
;
2827 set_user_assembler_name (block_clear_fn
, asmspec
);
2831 clear_storage_libcall_fn (int for_call
)
2833 static bool emitted_extern
;
2835 if (!block_clear_fn
)
2836 init_block_clear_fn (NULL
);
2838 if (for_call
&& !emitted_extern
)
2840 emitted_extern
= true;
2841 make_decl_rtl (block_clear_fn
);
2844 return block_clear_fn
;
2847 /* Expand a setmem pattern; return true if successful. */
2850 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2851 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2853 /* Try the most limited insn first, because there's no point
2854 including more than one in the machine description unless
2855 the more limited one has some advantage. */
2857 enum machine_mode mode
;
2859 if (expected_align
< align
)
2860 expected_align
= align
;
2862 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2863 mode
= GET_MODE_WIDER_MODE (mode
))
2865 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2867 if (code
!= CODE_FOR_nothing
2868 /* We don't need MODE to be narrower than
2869 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2870 the mode mask, as it is returned by the macro, it will
2871 definitely be less than the actual mode mask. */
2872 && ((CONST_INT_P (size
)
2873 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2874 <= (GET_MODE_MASK (mode
) >> 1)))
2875 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
))
2877 struct expand_operand ops
[6];
2880 nops
= insn_data
[(int) code
].n_generator_args
;
2881 gcc_assert (nops
== 4 || nops
== 6);
2883 create_fixed_operand (&ops
[0], object
);
2884 /* The check above guarantees that this size conversion is valid. */
2885 create_convert_operand_to (&ops
[1], size
, mode
, true);
2886 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2887 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2890 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2891 create_integer_operand (&ops
[5], expected_size
);
2893 if (maybe_expand_insn (code
, nops
, ops
))
2902 /* Write to one of the components of the complex value CPLX. Write VAL to
2903 the real part if IMAG_P is false, and the imaginary part if its true. */
2906 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2908 enum machine_mode cmode
;
2909 enum machine_mode imode
;
2912 if (GET_CODE (cplx
) == CONCAT
)
2914 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2918 cmode
= GET_MODE (cplx
);
2919 imode
= GET_MODE_INNER (cmode
);
2920 ibitsize
= GET_MODE_BITSIZE (imode
);
2922 /* For MEMs simplify_gen_subreg may generate an invalid new address
2923 because, e.g., the original address is considered mode-dependent
2924 by the target, which restricts simplify_subreg from invoking
2925 adjust_address_nv. Instead of preparing fallback support for an
2926 invalid address, we call adjust_address_nv directly. */
2929 emit_move_insn (adjust_address_nv (cplx
, imode
,
2930 imag_p
? GET_MODE_SIZE (imode
) : 0),
2935 /* If the sub-object is at least word sized, then we know that subregging
2936 will work. This special case is important, since store_bit_field
2937 wants to operate on integer modes, and there's rarely an OImode to
2938 correspond to TCmode. */
2939 if (ibitsize
>= BITS_PER_WORD
2940 /* For hard regs we have exact predicates. Assume we can split
2941 the original object if it spans an even number of hard regs.
2942 This special case is important for SCmode on 64-bit platforms
2943 where the natural size of floating-point regs is 32-bit. */
2945 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2946 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2948 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2949 imag_p
? GET_MODE_SIZE (imode
) : 0);
2952 emit_move_insn (part
, val
);
2956 /* simplify_gen_subreg may fail for sub-word MEMs. */
2957 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2960 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
2963 /* Extract one of the components of the complex value CPLX. Extract the
2964 real part if IMAG_P is false, and the imaginary part if it's true. */
2967 read_complex_part (rtx cplx
, bool imag_p
)
2969 enum machine_mode cmode
, imode
;
2972 if (GET_CODE (cplx
) == CONCAT
)
2973 return XEXP (cplx
, imag_p
);
2975 cmode
= GET_MODE (cplx
);
2976 imode
= GET_MODE_INNER (cmode
);
2977 ibitsize
= GET_MODE_BITSIZE (imode
);
2979 /* Special case reads from complex constants that got spilled to memory. */
2980 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2982 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2983 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2985 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2986 if (CONSTANT_CLASS_P (part
))
2987 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2991 /* For MEMs simplify_gen_subreg may generate an invalid new address
2992 because, e.g., the original address is considered mode-dependent
2993 by the target, which restricts simplify_subreg from invoking
2994 adjust_address_nv. Instead of preparing fallback support for an
2995 invalid address, we call adjust_address_nv directly. */
2997 return adjust_address_nv (cplx
, imode
,
2998 imag_p
? GET_MODE_SIZE (imode
) : 0);
3000 /* If the sub-object is at least word sized, then we know that subregging
3001 will work. This special case is important, since extract_bit_field
3002 wants to operate on integer modes, and there's rarely an OImode to
3003 correspond to TCmode. */
3004 if (ibitsize
>= BITS_PER_WORD
3005 /* For hard regs we have exact predicates. Assume we can split
3006 the original object if it spans an even number of hard regs.
3007 This special case is important for SCmode on 64-bit platforms
3008 where the natural size of floating-point regs is 32-bit. */
3010 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3011 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3013 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3014 imag_p
? GET_MODE_SIZE (imode
) : 0);
3018 /* simplify_gen_subreg may fail for sub-word MEMs. */
3019 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3022 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3023 true, false, NULL_RTX
, imode
, imode
);
3026 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3027 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3028 represented in NEW_MODE. If FORCE is true, this will never happen, as
3029 we'll force-create a SUBREG if needed. */
3032 emit_move_change_mode (enum machine_mode new_mode
,
3033 enum machine_mode old_mode
, rtx x
, bool force
)
3037 if (push_operand (x
, GET_MODE (x
)))
3039 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3040 MEM_COPY_ATTRIBUTES (ret
, x
);
3044 /* We don't have to worry about changing the address since the
3045 size in bytes is supposed to be the same. */
3046 if (reload_in_progress
)
3048 /* Copy the MEM to change the mode and move any
3049 substitutions from the old MEM to the new one. */
3050 ret
= adjust_address_nv (x
, new_mode
, 0);
3051 copy_replacements (x
, ret
);
3054 ret
= adjust_address (x
, new_mode
, 0);
3058 /* Note that we do want simplify_subreg's behavior of validating
3059 that the new mode is ok for a hard register. If we were to use
3060 simplify_gen_subreg, we would create the subreg, but would
3061 probably run into the target not being able to implement it. */
3062 /* Except, of course, when FORCE is true, when this is exactly what
3063 we want. Which is needed for CCmodes on some targets. */
3065 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3067 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3073 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3074 an integer mode of the same size as MODE. Returns the instruction
3075 emitted, or NULL if such a move could not be generated. */
3078 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
3080 enum machine_mode imode
;
3081 enum insn_code code
;
3083 /* There must exist a mode of the exact size we require. */
3084 imode
= int_mode_for_mode (mode
);
3085 if (imode
== BLKmode
)
3088 /* The target must support moves in this mode. */
3089 code
= optab_handler (mov_optab
, imode
);
3090 if (code
== CODE_FOR_nothing
)
3093 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3096 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3099 return emit_insn (GEN_FCN (code
) (x
, y
));
3102 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3103 Return an equivalent MEM that does not use an auto-increment. */
3106 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
3108 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3109 HOST_WIDE_INT adjust
;
3112 adjust
= GET_MODE_SIZE (mode
);
3113 #ifdef PUSH_ROUNDING
3114 adjust
= PUSH_ROUNDING (adjust
);
3116 if (code
== PRE_DEC
|| code
== POST_DEC
)
3118 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3120 rtx expr
= XEXP (XEXP (x
, 0), 1);
3123 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3124 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3125 val
= INTVAL (XEXP (expr
, 1));
3126 if (GET_CODE (expr
) == MINUS
)
3128 gcc_assert (adjust
== val
|| adjust
== -val
);
3132 /* Do not use anti_adjust_stack, since we don't want to update
3133 stack_pointer_delta. */
3134 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3135 GEN_INT (adjust
), stack_pointer_rtx
,
3136 0, OPTAB_LIB_WIDEN
);
3137 if (temp
!= stack_pointer_rtx
)
3138 emit_move_insn (stack_pointer_rtx
, temp
);
3145 temp
= stack_pointer_rtx
;
3150 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3156 return replace_equiv_address (x
, temp
);
3159 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3160 X is known to satisfy push_operand, and MODE is known to be complex.
3161 Returns the last instruction emitted. */
3164 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3166 enum machine_mode submode
= GET_MODE_INNER (mode
);
3169 #ifdef PUSH_ROUNDING
3170 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3172 /* In case we output to the stack, but the size is smaller than the
3173 machine can push exactly, we need to use move instructions. */
3174 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3176 x
= emit_move_resolve_push (mode
, x
);
3177 return emit_move_insn (x
, y
);
3181 /* Note that the real part always precedes the imag part in memory
3182 regardless of machine's endianness. */
3183 switch (GET_CODE (XEXP (x
, 0)))
3197 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3198 read_complex_part (y
, imag_first
));
3199 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3200 read_complex_part (y
, !imag_first
));
3203 /* A subroutine of emit_move_complex. Perform the move from Y to X
3204 via two moves of the parts. Returns the last instruction emitted. */
3207 emit_move_complex_parts (rtx x
, rtx y
)
3209 /* Show the output dies here. This is necessary for SUBREGs
3210 of pseudos since we cannot track their lifetimes correctly;
3211 hard regs shouldn't appear here except as return values. */
3212 if (!reload_completed
&& !reload_in_progress
3213 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3216 write_complex_part (x
, read_complex_part (y
, false), false);
3217 write_complex_part (x
, read_complex_part (y
, true), true);
3219 return get_last_insn ();
3222 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3223 MODE is known to be complex. Returns the last instruction emitted. */
3226 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3230 /* Need to take special care for pushes, to maintain proper ordering
3231 of the data, and possibly extra padding. */
3232 if (push_operand (x
, mode
))
3233 return emit_move_complex_push (mode
, x
, y
);
3235 /* See if we can coerce the target into moving both values at once. */
3237 /* Move floating point as parts. */
3238 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3239 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
)
3241 /* Not possible if the values are inherently not adjacent. */
3242 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3244 /* Is possible if both are registers (or subregs of registers). */
3245 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3247 /* If one of the operands is a memory, and alignment constraints
3248 are friendly enough, we may be able to do combined memory operations.
3249 We do not attempt this if Y is a constant because that combination is
3250 usually better with the by-parts thing below. */
3251 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3252 && (!STRICT_ALIGNMENT
3253 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3262 /* For memory to memory moves, optimal behavior can be had with the
3263 existing block move logic. */
3264 if (MEM_P (x
) && MEM_P (y
))
3266 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3267 BLOCK_OP_NO_LIBCALL
);
3268 return get_last_insn ();
3271 ret
= emit_move_via_integer (mode
, x
, y
, true);
3276 return emit_move_complex_parts (x
, y
);
3279 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3280 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3283 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3287 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3290 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3291 if (code
!= CODE_FOR_nothing
)
3293 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3294 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3295 return emit_insn (GEN_FCN (code
) (x
, y
));
3299 /* Otherwise, find the MODE_INT mode of the same width. */
3300 ret
= emit_move_via_integer (mode
, x
, y
, false);
3301 gcc_assert (ret
!= NULL
);
3305 /* Return true if word I of OP lies entirely in the
3306 undefined bits of a paradoxical subreg. */
3309 undefined_operand_subword_p (const_rtx op
, int i
)
3311 enum machine_mode innermode
, innermostmode
;
3313 if (GET_CODE (op
) != SUBREG
)
3315 innermode
= GET_MODE (op
);
3316 innermostmode
= GET_MODE (SUBREG_REG (op
));
3317 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3318 /* The SUBREG_BYTE represents offset, as if the value were stored in
3319 memory, except for a paradoxical subreg where we define
3320 SUBREG_BYTE to be 0; undo this exception as in
3322 if (SUBREG_BYTE (op
) == 0
3323 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3325 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3326 if (WORDS_BIG_ENDIAN
)
3327 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3328 if (BYTES_BIG_ENDIAN
)
3329 offset
+= difference
% UNITS_PER_WORD
;
3331 if (offset
>= GET_MODE_SIZE (innermostmode
)
3332 || offset
<= -GET_MODE_SIZE (word_mode
))
3337 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3338 MODE is any multi-word or full-word mode that lacks a move_insn
3339 pattern. Note that you will get better code if you define such
3340 patterns, even if they must turn into multiple assembler instructions. */
3343 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3350 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3352 /* If X is a push on the stack, do the push now and replace
3353 X with a reference to the stack pointer. */
3354 if (push_operand (x
, mode
))
3355 x
= emit_move_resolve_push (mode
, x
);
3357 /* If we are in reload, see if either operand is a MEM whose address
3358 is scheduled for replacement. */
3359 if (reload_in_progress
&& MEM_P (x
)
3360 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3361 x
= replace_equiv_address_nv (x
, inner
);
3362 if (reload_in_progress
&& MEM_P (y
)
3363 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3364 y
= replace_equiv_address_nv (y
, inner
);
3368 need_clobber
= false;
3370 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3373 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3376 /* Do not generate code for a move if it would come entirely
3377 from the undefined bits of a paradoxical subreg. */
3378 if (undefined_operand_subword_p (y
, i
))
3381 ypart
= operand_subword (y
, i
, 1, mode
);
3383 /* If we can't get a part of Y, put Y into memory if it is a
3384 constant. Otherwise, force it into a register. Then we must
3385 be able to get a part of Y. */
3386 if (ypart
== 0 && CONSTANT_P (y
))
3388 y
= use_anchored_address (force_const_mem (mode
, y
));
3389 ypart
= operand_subword (y
, i
, 1, mode
);
3391 else if (ypart
== 0)
3392 ypart
= operand_subword_force (y
, i
, mode
);
3394 gcc_assert (xpart
&& ypart
);
3396 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3398 last_insn
= emit_move_insn (xpart
, ypart
);
3404 /* Show the output dies here. This is necessary for SUBREGs
3405 of pseudos since we cannot track their lifetimes correctly;
3406 hard regs shouldn't appear here except as return values.
3407 We never want to emit such a clobber after reload. */
3409 && ! (reload_in_progress
|| reload_completed
)
3410 && need_clobber
!= 0)
3418 /* Low level part of emit_move_insn.
3419 Called just like emit_move_insn, but assumes X and Y
3420 are basically valid. */
3423 emit_move_insn_1 (rtx x
, rtx y
)
3425 enum machine_mode mode
= GET_MODE (x
);
3426 enum insn_code code
;
3428 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3430 code
= optab_handler (mov_optab
, mode
);
3431 if (code
!= CODE_FOR_nothing
)
3432 return emit_insn (GEN_FCN (code
) (x
, y
));
3434 /* Expand complex moves by moving real part and imag part. */
3435 if (COMPLEX_MODE_P (mode
))
3436 return emit_move_complex (mode
, x
, y
);
3438 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3439 || ALL_FIXED_POINT_MODE_P (mode
))
3441 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3443 /* If we can't find an integer mode, use multi words. */
3447 return emit_move_multi_word (mode
, x
, y
);
3450 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3451 return emit_move_ccmode (mode
, x
, y
);
3453 /* Try using a move pattern for the corresponding integer mode. This is
3454 only safe when simplify_subreg can convert MODE constants into integer
3455 constants. At present, it can only do this reliably if the value
3456 fits within a HOST_WIDE_INT. */
3457 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3459 rtx ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3463 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3468 return emit_move_multi_word (mode
, x
, y
);
3471 /* Generate code to copy Y into X.
3472 Both Y and X must have the same mode, except that
3473 Y can be a constant with VOIDmode.
3474 This mode cannot be BLKmode; use emit_block_move for that.
3476 Return the last instruction emitted. */
3479 emit_move_insn (rtx x
, rtx y
)
3481 enum machine_mode mode
= GET_MODE (x
);
3482 rtx y_cst
= NULL_RTX
;
3485 gcc_assert (mode
!= BLKmode
3486 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3491 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3492 && (last_insn
= compress_float_constant (x
, y
)))
3497 if (!targetm
.legitimate_constant_p (mode
, y
))
3499 y
= force_const_mem (mode
, y
);
3501 /* If the target's cannot_force_const_mem prevented the spill,
3502 assume that the target's move expanders will also take care
3503 of the non-legitimate constant. */
3507 y
= use_anchored_address (y
);
3511 /* If X or Y are memory references, verify that their addresses are valid
3514 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3516 && ! push_operand (x
, GET_MODE (x
))))
3517 x
= validize_mem (x
);
3520 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3521 MEM_ADDR_SPACE (y
)))
3522 y
= validize_mem (y
);
3524 gcc_assert (mode
!= BLKmode
);
3526 last_insn
= emit_move_insn_1 (x
, y
);
3528 if (y_cst
&& REG_P (x
)
3529 && (set
= single_set (last_insn
)) != NULL_RTX
3530 && SET_DEST (set
) == x
3531 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3532 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3537 /* If Y is representable exactly in a narrower mode, and the target can
3538 perform the extension directly from constant or memory, then emit the
3539 move as an extension. */
3542 compress_float_constant (rtx x
, rtx y
)
3544 enum machine_mode dstmode
= GET_MODE (x
);
3545 enum machine_mode orig_srcmode
= GET_MODE (y
);
3546 enum machine_mode srcmode
;
3548 int oldcost
, newcost
;
3549 bool speed
= optimize_insn_for_speed_p ();
3551 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3553 if (targetm
.legitimate_constant_p (dstmode
, y
))
3554 oldcost
= set_src_cost (y
, speed
);
3556 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3558 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3559 srcmode
!= orig_srcmode
;
3560 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3563 rtx trunc_y
, last_insn
;
3565 /* Skip if the target can't extend this way. */
3566 ic
= can_extend_p (dstmode
, srcmode
, 0);
3567 if (ic
== CODE_FOR_nothing
)
3570 /* Skip if the narrowed value isn't exact. */
3571 if (! exact_real_truncate (srcmode
, &r
))
3574 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3576 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3578 /* Skip if the target needs extra instructions to perform
3580 if (!insn_operand_matches (ic
, 1, trunc_y
))
3582 /* This is valid, but may not be cheaper than the original. */
3583 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3585 if (oldcost
< newcost
)
3588 else if (float_extend_from_mem
[dstmode
][srcmode
])
3590 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3591 /* This is valid, but may not be cheaper than the original. */
3592 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3594 if (oldcost
< newcost
)
3596 trunc_y
= validize_mem (trunc_y
);
3601 /* For CSE's benefit, force the compressed constant pool entry
3602 into a new pseudo. This constant may be used in different modes,
3603 and if not, combine will put things back together for us. */
3604 trunc_y
= force_reg (srcmode
, trunc_y
);
3605 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3606 last_insn
= get_last_insn ();
3609 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3617 /* Pushing data onto the stack. */
3619 /* Push a block of length SIZE (perhaps variable)
3620 and return an rtx to address the beginning of the block.
3621 The value may be virtual_outgoing_args_rtx.
3623 EXTRA is the number of bytes of padding to push in addition to SIZE.
3624 BELOW nonzero means this padding comes at low addresses;
3625 otherwise, the padding comes at high addresses. */
3628 push_block (rtx size
, int extra
, int below
)
3632 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3633 if (CONSTANT_P (size
))
3634 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3635 else if (REG_P (size
) && extra
== 0)
3636 anti_adjust_stack (size
);
3639 temp
= copy_to_mode_reg (Pmode
, size
);
3641 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3642 temp
, 0, OPTAB_LIB_WIDEN
);
3643 anti_adjust_stack (temp
);
3646 #ifndef STACK_GROWS_DOWNWARD
3652 temp
= virtual_outgoing_args_rtx
;
3653 if (extra
!= 0 && below
)
3654 temp
= plus_constant (Pmode
, temp
, extra
);
3658 if (CONST_INT_P (size
))
3659 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3660 -INTVAL (size
) - (below
? 0 : extra
));
3661 else if (extra
!= 0 && !below
)
3662 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3663 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3666 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3667 negate_rtx (Pmode
, size
));
3670 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3673 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3676 mem_autoinc_base (rtx mem
)
3680 rtx addr
= XEXP (mem
, 0);
3681 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3682 return XEXP (addr
, 0);
3687 /* A utility routine used here, in reload, and in try_split. The insns
3688 after PREV up to and including LAST are known to adjust the stack,
3689 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3690 placing notes as appropriate. PREV may be NULL, indicating the
3691 entire insn sequence prior to LAST should be scanned.
3693 The set of allowed stack pointer modifications is small:
3694 (1) One or more auto-inc style memory references (aka pushes),
3695 (2) One or more addition/subtraction with the SP as destination,
3696 (3) A single move insn with the SP as destination,
3697 (4) A call_pop insn,
3698 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3700 Insns in the sequence that do not modify the SP are ignored,
3701 except for noreturn calls.
3703 The return value is the amount of adjustment that can be trivially
3704 verified, via immediate operand or auto-inc. If the adjustment
3705 cannot be trivially extracted, the return value is INT_MIN. */
3708 find_args_size_adjust (rtx insn
)
3713 pat
= PATTERN (insn
);
3716 /* Look for a call_pop pattern. */
3719 /* We have to allow non-call_pop patterns for the case
3720 of emit_single_push_insn of a TLS address. */
3721 if (GET_CODE (pat
) != PARALLEL
)
3724 /* All call_pop have a stack pointer adjust in the parallel.
3725 The call itself is always first, and the stack adjust is
3726 usually last, so search from the end. */
3727 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3729 set
= XVECEXP (pat
, 0, i
);
3730 if (GET_CODE (set
) != SET
)
3732 dest
= SET_DEST (set
);
3733 if (dest
== stack_pointer_rtx
)
3736 /* We'd better have found the stack pointer adjust. */
3739 /* Fall through to process the extracted SET and DEST
3740 as if it was a standalone insn. */
3742 else if (GET_CODE (pat
) == SET
)
3744 else if ((set
= single_set (insn
)) != NULL
)
3746 else if (GET_CODE (pat
) == PARALLEL
)
3748 /* ??? Some older ports use a parallel with a stack adjust
3749 and a store for a PUSH_ROUNDING pattern, rather than a
3750 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3751 /* ??? See h8300 and m68k, pushqi1. */
3752 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3754 set
= XVECEXP (pat
, 0, i
);
3755 if (GET_CODE (set
) != SET
)
3757 dest
= SET_DEST (set
);
3758 if (dest
== stack_pointer_rtx
)
3761 /* We do not expect an auto-inc of the sp in the parallel. */
3762 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3763 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3764 != stack_pointer_rtx
);
3772 dest
= SET_DEST (set
);
3774 /* Look for direct modifications of the stack pointer. */
3775 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3777 /* Look for a trivial adjustment, otherwise assume nothing. */
3778 /* Note that the SPU restore_stack_block pattern refers to
3779 the stack pointer in V4SImode. Consider that non-trivial. */
3780 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3781 && GET_CODE (SET_SRC (set
)) == PLUS
3782 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3783 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3784 return INTVAL (XEXP (SET_SRC (set
), 1));
3785 /* ??? Reload can generate no-op moves, which will be cleaned
3786 up later. Recognize it and continue searching. */
3787 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3790 return HOST_WIDE_INT_MIN
;
3796 /* Otherwise only think about autoinc patterns. */
3797 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3800 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3801 != stack_pointer_rtx
);
3803 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3804 mem
= SET_SRC (set
);
3808 addr
= XEXP (mem
, 0);
3809 switch (GET_CODE (addr
))
3813 return GET_MODE_SIZE (GET_MODE (mem
));
3816 return -GET_MODE_SIZE (GET_MODE (mem
));
3819 addr
= XEXP (addr
, 1);
3820 gcc_assert (GET_CODE (addr
) == PLUS
);
3821 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3822 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3823 return INTVAL (XEXP (addr
, 1));
3831 fixup_args_size_notes (rtx prev
, rtx last
, int end_args_size
)
3833 int args_size
= end_args_size
;
3834 bool saw_unknown
= false;
3837 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3839 HOST_WIDE_INT this_delta
;
3841 if (!NONDEBUG_INSN_P (insn
))
3844 this_delta
= find_args_size_adjust (insn
);
3845 if (this_delta
== 0)
3848 || ACCUMULATE_OUTGOING_ARGS
3849 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3853 gcc_assert (!saw_unknown
);
3854 if (this_delta
== HOST_WIDE_INT_MIN
)
3857 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3858 #ifdef STACK_GROWS_DOWNWARD
3859 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
3861 args_size
-= this_delta
;
3864 return saw_unknown
? INT_MIN
: args_size
;
3867 #ifdef PUSH_ROUNDING
3868 /* Emit single push insn. */
3871 emit_single_push_insn_1 (enum machine_mode mode
, rtx x
, tree type
)
3874 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3876 enum insn_code icode
;
3878 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3879 /* If there is push pattern, use it. Otherwise try old way of throwing
3880 MEM representing push operation to move expander. */
3881 icode
= optab_handler (push_optab
, mode
);
3882 if (icode
!= CODE_FOR_nothing
)
3884 struct expand_operand ops
[1];
3886 create_input_operand (&ops
[0], x
, mode
);
3887 if (maybe_expand_insn (icode
, 1, ops
))
3890 if (GET_MODE_SIZE (mode
) == rounded_size
)
3891 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3892 /* If we are to pad downward, adjust the stack pointer first and
3893 then store X into the stack location using an offset. This is
3894 because emit_move_insn does not know how to pad; it does not have
3896 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3898 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3899 HOST_WIDE_INT offset
;
3901 emit_move_insn (stack_pointer_rtx
,
3902 expand_binop (Pmode
,
3903 #ifdef STACK_GROWS_DOWNWARD
3909 GEN_INT (rounded_size
),
3910 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3912 offset
= (HOST_WIDE_INT
) padding_size
;
3913 #ifdef STACK_GROWS_DOWNWARD
3914 if (STACK_PUSH_CODE
== POST_DEC
)
3915 /* We have already decremented the stack pointer, so get the
3917 offset
+= (HOST_WIDE_INT
) rounded_size
;
3919 if (STACK_PUSH_CODE
== POST_INC
)
3920 /* We have already incremented the stack pointer, so get the
3922 offset
-= (HOST_WIDE_INT
) rounded_size
;
3924 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3928 #ifdef STACK_GROWS_DOWNWARD
3929 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3930 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3931 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3933 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3934 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3935 GEN_INT (rounded_size
));
3937 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3940 dest
= gen_rtx_MEM (mode
, dest_addr
);
3944 set_mem_attributes (dest
, type
, 1);
3946 if (flag_optimize_sibling_calls
)
3947 /* Function incoming arguments may overlap with sibling call
3948 outgoing arguments and we cannot allow reordering of reads
3949 from function arguments with stores to outgoing arguments
3950 of sibling calls. */
3951 set_mem_alias_set (dest
, 0);
3953 emit_move_insn (dest
, x
);
3956 /* Emit and annotate a single push insn. */
3959 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3961 int delta
, old_delta
= stack_pointer_delta
;
3962 rtx prev
= get_last_insn ();
3965 emit_single_push_insn_1 (mode
, x
, type
);
3967 last
= get_last_insn ();
3969 /* Notice the common case where we emitted exactly one insn. */
3970 if (PREV_INSN (last
) == prev
)
3972 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
3976 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
3977 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
3981 /* Generate code to push X onto the stack, assuming it has mode MODE and
3983 MODE is redundant except when X is a CONST_INT (since they don't
3985 SIZE is an rtx for the size of data to be copied (in bytes),
3986 needed only if X is BLKmode.
3988 ALIGN (in bits) is maximum alignment we can assume.
3990 If PARTIAL and REG are both nonzero, then copy that many of the first
3991 bytes of X into registers starting with REG, and push the rest of X.
3992 The amount of space pushed is decreased by PARTIAL bytes.
3993 REG must be a hard register in this case.
3994 If REG is zero but PARTIAL is not, take any all others actions for an
3995 argument partially in registers, but do not actually load any
3998 EXTRA is the amount in bytes of extra space to leave next to this arg.
3999 This is ignored if an argument block has already been allocated.
4001 On a machine that lacks real push insns, ARGS_ADDR is the address of
4002 the bottom of the argument block for this call. We use indexing off there
4003 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4004 argument block has not been preallocated.
4006 ARGS_SO_FAR is the size of args previously pushed for this call.
4008 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4009 for arguments passed in registers. If nonzero, it will be the number
4010 of bytes required. */
4013 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
4014 unsigned int align
, int partial
, rtx reg
, int extra
,
4015 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4019 enum direction stack_direction
4020 #ifdef STACK_GROWS_DOWNWARD
4026 /* Decide where to pad the argument: `downward' for below,
4027 `upward' for above, or `none' for don't pad it.
4028 Default is below for small data on big-endian machines; else above. */
4029 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4031 /* Invert direction if stack is post-decrement.
4033 if (STACK_PUSH_CODE
== POST_DEC
)
4034 if (where_pad
!= none
)
4035 where_pad
= (where_pad
== downward
? upward
: downward
);
4040 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4042 /* Copy a block into the stack, entirely or partially. */
4049 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4050 used
= partial
- offset
;
4052 if (mode
!= BLKmode
)
4054 /* A value is to be stored in an insufficiently aligned
4055 stack slot; copy via a suitably aligned slot if
4057 size
= GEN_INT (GET_MODE_SIZE (mode
));
4058 if (!MEM_P (xinner
))
4060 temp
= assign_temp (type
, 1, 1);
4061 emit_move_insn (temp
, xinner
);
4068 /* USED is now the # of bytes we need not copy to the stack
4069 because registers will take care of them. */
4072 xinner
= adjust_address (xinner
, BLKmode
, used
);
4074 /* If the partial register-part of the arg counts in its stack size,
4075 skip the part of stack space corresponding to the registers.
4076 Otherwise, start copying to the beginning of the stack space,
4077 by setting SKIP to 0. */
4078 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4080 #ifdef PUSH_ROUNDING
4081 /* Do it with several push insns if that doesn't take lots of insns
4082 and if there is no difficulty with push insns that skip bytes
4083 on the stack for alignment purposes. */
4086 && CONST_INT_P (size
)
4088 && MEM_ALIGN (xinner
) >= align
4089 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
4090 /* Here we avoid the case of a structure whose weak alignment
4091 forces many pushes of a small amount of data,
4092 and such small pushes do rounding that causes trouble. */
4093 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4094 || align
>= BIGGEST_ALIGNMENT
4095 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4096 == (align
/ BITS_PER_UNIT
)))
4097 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4099 /* Push padding now if padding above and stack grows down,
4100 or if padding below and stack grows up.
4101 But if space already allocated, this has already been done. */
4102 if (extra
&& args_addr
== 0
4103 && where_pad
!= none
&& where_pad
!= stack_direction
)
4104 anti_adjust_stack (GEN_INT (extra
));
4106 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4109 #endif /* PUSH_ROUNDING */
4113 /* Otherwise make space on the stack and copy the data
4114 to the address of that space. */
4116 /* Deduct words put into registers from the size we must copy. */
4119 if (CONST_INT_P (size
))
4120 size
= GEN_INT (INTVAL (size
) - used
);
4122 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4123 GEN_INT (used
), NULL_RTX
, 0,
4127 /* Get the address of the stack space.
4128 In this case, we do not deal with EXTRA separately.
4129 A single stack adjust will do. */
4132 temp
= push_block (size
, extra
, where_pad
== downward
);
4135 else if (CONST_INT_P (args_so_far
))
4136 temp
= memory_address (BLKmode
,
4137 plus_constant (Pmode
, args_addr
,
4138 skip
+ INTVAL (args_so_far
)));
4140 temp
= memory_address (BLKmode
,
4141 plus_constant (Pmode
,
4142 gen_rtx_PLUS (Pmode
,
4147 if (!ACCUMULATE_OUTGOING_ARGS
)
4149 /* If the source is referenced relative to the stack pointer,
4150 copy it to another register to stabilize it. We do not need
4151 to do this if we know that we won't be changing sp. */
4153 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4154 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4155 temp
= copy_to_reg (temp
);
4158 target
= gen_rtx_MEM (BLKmode
, temp
);
4160 /* We do *not* set_mem_attributes here, because incoming arguments
4161 may overlap with sibling call outgoing arguments and we cannot
4162 allow reordering of reads from function arguments with stores
4163 to outgoing arguments of sibling calls. We do, however, want
4164 to record the alignment of the stack slot. */
4165 /* ALIGN may well be better aligned than TYPE, e.g. due to
4166 PARM_BOUNDARY. Assume the caller isn't lying. */
4167 set_mem_align (target
, align
);
4169 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4172 else if (partial
> 0)
4174 /* Scalar partly in registers. */
4176 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4179 /* # bytes of start of argument
4180 that we must make space for but need not store. */
4181 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4182 int args_offset
= INTVAL (args_so_far
);
4185 /* Push padding now if padding above and stack grows down,
4186 or if padding below and stack grows up.
4187 But if space already allocated, this has already been done. */
4188 if (extra
&& args_addr
== 0
4189 && where_pad
!= none
&& where_pad
!= stack_direction
)
4190 anti_adjust_stack (GEN_INT (extra
));
4192 /* If we make space by pushing it, we might as well push
4193 the real data. Otherwise, we can leave OFFSET nonzero
4194 and leave the space uninitialized. */
4198 /* Now NOT_STACK gets the number of words that we don't need to
4199 allocate on the stack. Convert OFFSET to words too. */
4200 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4201 offset
/= UNITS_PER_WORD
;
4203 /* If the partial register-part of the arg counts in its stack size,
4204 skip the part of stack space corresponding to the registers.
4205 Otherwise, start copying to the beginning of the stack space,
4206 by setting SKIP to 0. */
4207 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4209 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4210 x
= validize_mem (force_const_mem (mode
, x
));
4212 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4213 SUBREGs of such registers are not allowed. */
4214 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4215 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4216 x
= copy_to_reg (x
);
4218 /* Loop over all the words allocated on the stack for this arg. */
4219 /* We can do it by words, because any scalar bigger than a word
4220 has a size a multiple of a word. */
4221 #ifndef PUSH_ARGS_REVERSED
4222 for (i
= not_stack
; i
< size
; i
++)
4224 for (i
= size
- 1; i
>= not_stack
; i
--)
4226 if (i
>= not_stack
+ offset
)
4227 emit_push_insn (operand_subword_force (x
, i
, mode
),
4228 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4230 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4232 reg_parm_stack_space
, alignment_pad
);
4239 /* Push padding now if padding above and stack grows down,
4240 or if padding below and stack grows up.
4241 But if space already allocated, this has already been done. */
4242 if (extra
&& args_addr
== 0
4243 && where_pad
!= none
&& where_pad
!= stack_direction
)
4244 anti_adjust_stack (GEN_INT (extra
));
4246 #ifdef PUSH_ROUNDING
4247 if (args_addr
== 0 && PUSH_ARGS
)
4248 emit_single_push_insn (mode
, x
, type
);
4252 if (CONST_INT_P (args_so_far
))
4254 = memory_address (mode
,
4255 plus_constant (Pmode
, args_addr
,
4256 INTVAL (args_so_far
)));
4258 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4260 dest
= gen_rtx_MEM (mode
, addr
);
4262 /* We do *not* set_mem_attributes here, because incoming arguments
4263 may overlap with sibling call outgoing arguments and we cannot
4264 allow reordering of reads from function arguments with stores
4265 to outgoing arguments of sibling calls. We do, however, want
4266 to record the alignment of the stack slot. */
4267 /* ALIGN may well be better aligned than TYPE, e.g. due to
4268 PARM_BOUNDARY. Assume the caller isn't lying. */
4269 set_mem_align (dest
, align
);
4271 emit_move_insn (dest
, x
);
4275 /* If part should go in registers, copy that part
4276 into the appropriate registers. Do this now, at the end,
4277 since mem-to-mem copies above may do function calls. */
4278 if (partial
> 0 && reg
!= 0)
4280 /* Handle calls that pass values in multiple non-contiguous locations.
4281 The Irix 6 ABI has examples of this. */
4282 if (GET_CODE (reg
) == PARALLEL
)
4283 emit_group_load (reg
, x
, type
, -1);
4286 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4287 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4291 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4292 anti_adjust_stack (GEN_INT (extra
));
4294 if (alignment_pad
&& args_addr
== 0)
4295 anti_adjust_stack (alignment_pad
);
4298 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4302 get_subtarget (rtx x
)
4306 /* Only registers can be subtargets. */
4308 /* Don't use hard regs to avoid extending their life. */
4309 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4313 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4314 FIELD is a bitfield. Returns true if the optimization was successful,
4315 and there's nothing else to do. */
4318 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4319 unsigned HOST_WIDE_INT bitpos
,
4320 unsigned HOST_WIDE_INT bitregion_start
,
4321 unsigned HOST_WIDE_INT bitregion_end
,
4322 enum machine_mode mode1
, rtx str_rtx
,
4325 enum machine_mode str_mode
= GET_MODE (str_rtx
);
4326 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4331 enum tree_code code
;
4333 if (mode1
!= VOIDmode
4334 || bitsize
>= BITS_PER_WORD
4335 || str_bitsize
> BITS_PER_WORD
4336 || TREE_SIDE_EFFECTS (to
)
4337 || TREE_THIS_VOLATILE (to
))
4341 if (TREE_CODE (src
) != SSA_NAME
)
4343 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4346 srcstmt
= get_gimple_for_ssa_name (src
);
4348 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4351 code
= gimple_assign_rhs_code (srcstmt
);
4353 op0
= gimple_assign_rhs1 (srcstmt
);
4355 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4356 to find its initialization. Hopefully the initialization will
4357 be from a bitfield load. */
4358 if (TREE_CODE (op0
) == SSA_NAME
)
4360 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4362 /* We want to eventually have OP0 be the same as TO, which
4363 should be a bitfield. */
4365 || !is_gimple_assign (op0stmt
)
4366 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4368 op0
= gimple_assign_rhs1 (op0stmt
);
4371 op1
= gimple_assign_rhs2 (srcstmt
);
4373 if (!operand_equal_p (to
, op0
, 0))
4376 if (MEM_P (str_rtx
))
4378 unsigned HOST_WIDE_INT offset1
;
4380 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4381 str_mode
= word_mode
;
4382 str_mode
= get_best_mode (bitsize
, bitpos
,
4383 bitregion_start
, bitregion_end
,
4384 MEM_ALIGN (str_rtx
), str_mode
, 0);
4385 if (str_mode
== VOIDmode
)
4387 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4390 bitpos
%= str_bitsize
;
4391 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4392 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4394 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4397 /* If the bit field covers the whole REG/MEM, store_field
4398 will likely generate better code. */
4399 if (bitsize
>= str_bitsize
)
4402 /* We can't handle fields split across multiple entities. */
4403 if (bitpos
+ bitsize
> str_bitsize
)
4406 if (BYTES_BIG_ENDIAN
)
4407 bitpos
= str_bitsize
- bitpos
- bitsize
;
4413 /* For now, just optimize the case of the topmost bitfield
4414 where we don't need to do any masking and also
4415 1 bit bitfields where xor can be used.
4416 We might win by one instruction for the other bitfields
4417 too if insv/extv instructions aren't used, so that
4418 can be added later. */
4419 if (bitpos
+ bitsize
!= str_bitsize
4420 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4423 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4424 value
= convert_modes (str_mode
,
4425 TYPE_MODE (TREE_TYPE (op1
)), value
,
4426 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4428 /* We may be accessing data outside the field, which means
4429 we can alias adjacent data. */
4430 if (MEM_P (str_rtx
))
4432 str_rtx
= shallow_copy_rtx (str_rtx
);
4433 set_mem_alias_set (str_rtx
, 0);
4434 set_mem_expr (str_rtx
, 0);
4437 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4438 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4440 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4443 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4444 result
= expand_binop (str_mode
, binop
, str_rtx
,
4445 value
, str_rtx
, 1, OPTAB_WIDEN
);
4446 if (result
!= str_rtx
)
4447 emit_move_insn (str_rtx
, result
);
4452 if (TREE_CODE (op1
) != INTEGER_CST
)
4454 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4455 value
= convert_modes (str_mode
,
4456 TYPE_MODE (TREE_TYPE (op1
)), value
,
4457 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4459 /* We may be accessing data outside the field, which means
4460 we can alias adjacent data. */
4461 if (MEM_P (str_rtx
))
4463 str_rtx
= shallow_copy_rtx (str_rtx
);
4464 set_mem_alias_set (str_rtx
, 0);
4465 set_mem_expr (str_rtx
, 0);
4468 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4469 if (bitpos
+ bitsize
!= str_bitsize
)
4471 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1);
4472 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4474 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4475 result
= expand_binop (str_mode
, binop
, str_rtx
,
4476 value
, str_rtx
, 1, OPTAB_WIDEN
);
4477 if (result
!= str_rtx
)
4478 emit_move_insn (str_rtx
, result
);
4488 /* In the C++ memory model, consecutive bit fields in a structure are
4489 considered one memory location.
4491 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4492 returns the bit range of consecutive bits in which this COMPONENT_REF
4493 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4494 and *OFFSET may be adjusted in the process.
4496 If the access does not need to be restricted, 0 is returned in both
4497 *BITSTART and *BITEND. */
4500 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4501 unsigned HOST_WIDE_INT
*bitend
,
4503 HOST_WIDE_INT
*bitpos
,
4506 HOST_WIDE_INT bitoffset
;
4509 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4511 field
= TREE_OPERAND (exp
, 1);
4512 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4513 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4514 need to limit the range we can access. */
4517 *bitstart
= *bitend
= 0;
4521 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4522 part of a larger bit field, then the representative does not serve any
4523 useful purpose. This can occur in Ada. */
4524 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4526 enum machine_mode rmode
;
4527 HOST_WIDE_INT rbitsize
, rbitpos
;
4531 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4532 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4533 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4535 *bitstart
= *bitend
= 0;
4540 /* Compute the adjustment to bitpos from the offset of the field
4541 relative to the representative. DECL_FIELD_OFFSET of field and
4542 repr are the same by construction if they are not constants,
4543 see finish_bitfield_layout. */
4544 if (host_integerp (DECL_FIELD_OFFSET (field
), 1)
4545 && host_integerp (DECL_FIELD_OFFSET (repr
), 1))
4546 bitoffset
= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
4547 - tree_low_cst (DECL_FIELD_OFFSET (repr
), 1)) * BITS_PER_UNIT
;
4550 bitoffset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
4551 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr
), 1));
4553 /* If the adjustment is larger than bitpos, we would have a negative bit
4554 position for the lower bound and this may wreak havoc later. This can
4555 occur only if we have a non-null offset, so adjust offset and bitpos
4556 to make the lower bound non-negative. */
4557 if (bitoffset
> *bitpos
)
4559 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4561 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4562 gcc_assert (*offset
!= NULL_TREE
);
4566 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4570 *bitstart
= *bitpos
- bitoffset
;
4572 *bitend
= *bitstart
+ tree_low_cst (DECL_SIZE (repr
), 1) - 1;
4575 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4576 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4577 DECL_RTL was not set yet, return NORTL. */
4580 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4582 if (TREE_CODE (addr
) != ADDR_EXPR
)
4585 tree base
= TREE_OPERAND (addr
, 0);
4588 || TREE_ADDRESSABLE (base
)
4589 || DECL_MODE (base
) == BLKmode
)
4592 if (!DECL_RTL_SET_P (base
))
4595 return (!MEM_P (DECL_RTL (base
)));
4598 /* Returns true if the MEM_REF REF refers to an object that does not
4599 reside in memory and has non-BLKmode. */
4602 mem_ref_refers_to_non_mem_p (tree ref
)
4604 tree base
= TREE_OPERAND (ref
, 0);
4605 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4608 /* Return TRUE iff OP is an ADDR_EXPR of a DECL that's not
4609 addressable. This is very much like mem_ref_refers_to_non_mem_p,
4610 but instead of the MEM_REF, it takes its base, and it doesn't
4611 assume a DECL is in memory just because its RTL is not set yet. */
4614 addr_expr_of_non_mem_decl_p (tree op
)
4616 return addr_expr_of_non_mem_decl_p_1 (op
, true);
4619 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4620 is true, try generating a nontemporal store. */
4623 expand_assignment (tree to
, tree from
, bool nontemporal
)
4627 enum machine_mode mode
;
4629 enum insn_code icode
;
4631 /* Don't crash if the lhs of the assignment was erroneous. */
4632 if (TREE_CODE (to
) == ERROR_MARK
)
4634 expand_normal (from
);
4638 /* Optimize away no-op moves without side-effects. */
4639 if (operand_equal_p (to
, from
, 0))
4642 /* Handle misaligned stores. */
4643 mode
= TYPE_MODE (TREE_TYPE (to
));
4644 if ((TREE_CODE (to
) == MEM_REF
4645 || TREE_CODE (to
) == TARGET_MEM_REF
)
4647 && !mem_ref_refers_to_non_mem_p (to
)
4648 && ((align
= get_object_alignment (to
))
4649 < GET_MODE_ALIGNMENT (mode
))
4650 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4651 != CODE_FOR_nothing
)
4652 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4656 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4657 reg
= force_not_mem (reg
);
4658 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4660 if (icode
!= CODE_FOR_nothing
)
4662 struct expand_operand ops
[2];
4664 create_fixed_operand (&ops
[0], mem
);
4665 create_input_operand (&ops
[1], reg
, mode
);
4666 /* The movmisalign<mode> pattern cannot fail, else the assignment
4667 would silently be omitted. */
4668 expand_insn (icode
, 2, ops
);
4671 store_bit_field (mem
, GET_MODE_BITSIZE (mode
),
4672 0, 0, 0, mode
, reg
);
4676 /* Assignment of a structure component needs special treatment
4677 if the structure component's rtx is not simply a MEM.
4678 Assignment of an array element at a constant index, and assignment of
4679 an array element in an unaligned packed structure field, has the same
4680 problem. Same for (partially) storing into a non-memory object. */
4681 if (handled_component_p (to
)
4682 || (TREE_CODE (to
) == MEM_REF
4683 && mem_ref_refers_to_non_mem_p (to
))
4684 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4686 enum machine_mode mode1
;
4687 HOST_WIDE_INT bitsize
, bitpos
;
4688 unsigned HOST_WIDE_INT bitregion_start
= 0;
4689 unsigned HOST_WIDE_INT bitregion_end
= 0;
4698 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4699 &unsignedp
, &volatilep
, true);
4701 if (TREE_CODE (to
) == COMPONENT_REF
4702 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4703 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4705 /* If we are going to use store_bit_field and extract_bit_field,
4706 make sure to_rtx will be safe for multiple use. */
4707 mode
= TYPE_MODE (TREE_TYPE (tem
));
4708 if (TREE_CODE (tem
) == MEM_REF
4710 && ((align
= get_object_alignment (tem
))
4711 < GET_MODE_ALIGNMENT (mode
))
4712 && ((icode
= optab_handler (movmisalign_optab
, mode
))
4713 != CODE_FOR_nothing
))
4715 struct expand_operand ops
[2];
4718 to_rtx
= gen_reg_rtx (mode
);
4719 mem
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4721 /* If the misaligned store doesn't overwrite all bits, perform
4722 rmw cycle on MEM. */
4723 if (bitsize
!= GET_MODE_BITSIZE (mode
))
4725 create_input_operand (&ops
[0], to_rtx
, mode
);
4726 create_fixed_operand (&ops
[1], mem
);
4727 /* The movmisalign<mode> pattern cannot fail, else the assignment
4728 would silently be omitted. */
4729 expand_insn (icode
, 2, ops
);
4731 mem
= copy_rtx (mem
);
4737 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4740 /* If the bitfield is volatile, we want to access it in the
4741 field's mode, not the computed mode.
4742 If a MEM has VOIDmode (external with incomplete type),
4743 use BLKmode for it instead. */
4746 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
4747 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4748 else if (GET_MODE (to_rtx
) == VOIDmode
)
4749 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4754 enum machine_mode address_mode
;
4757 if (!MEM_P (to_rtx
))
4759 /* We can get constant negative offsets into arrays with broken
4760 user code. Translate this to a trap instead of ICEing. */
4761 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4762 expand_builtin_trap ();
4763 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4766 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4767 address_mode
= get_address_mode (to_rtx
);
4768 if (GET_MODE (offset_rtx
) != address_mode
)
4769 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4771 /* A constant address in TO_RTX can have VOIDmode, we must not try
4772 to call force_reg for that case. Avoid that case. */
4774 && GET_MODE (to_rtx
) == BLKmode
4775 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4777 && (bitpos
% bitsize
) == 0
4778 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4779 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4781 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4785 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4786 highest_pow2_factor_for_target (to
,
4790 /* No action is needed if the target is not a memory and the field
4791 lies completely outside that target. This can occur if the source
4792 code contains an out-of-bounds access to a small array. */
4794 && GET_MODE (to_rtx
) != BLKmode
4795 && (unsigned HOST_WIDE_INT
) bitpos
4796 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4798 expand_normal (from
);
4801 /* Handle expand_expr of a complex value returning a CONCAT. */
4802 else if (GET_CODE (to_rtx
) == CONCAT
)
4804 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4805 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4807 && bitsize
== mode_bitsize
)
4808 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4809 else if (bitsize
== mode_bitsize
/ 2
4810 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4811 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4813 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4814 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4815 bitregion_start
, bitregion_end
,
4817 get_alias_set (to
), nontemporal
);
4818 else if (bitpos
>= mode_bitsize
/ 2)
4819 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4820 bitpos
- mode_bitsize
/ 2,
4821 bitregion_start
, bitregion_end
,
4823 get_alias_set (to
), nontemporal
);
4824 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4827 result
= expand_normal (from
);
4828 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4829 TYPE_MODE (TREE_TYPE (from
)), 0);
4830 emit_move_insn (XEXP (to_rtx
, 0),
4831 read_complex_part (from_rtx
, false));
4832 emit_move_insn (XEXP (to_rtx
, 1),
4833 read_complex_part (from_rtx
, true));
4837 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4838 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4839 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4840 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4841 result
= store_field (temp
, bitsize
, bitpos
,
4842 bitregion_start
, bitregion_end
,
4844 get_alias_set (to
), nontemporal
);
4845 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4846 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4853 /* If the field is at offset zero, we could have been given the
4854 DECL_RTX of the parent struct. Don't munge it. */
4855 to_rtx
= shallow_copy_rtx (to_rtx
);
4857 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4859 /* Deal with volatile and readonly fields. The former is only
4860 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4862 MEM_VOLATILE_P (to_rtx
) = 1;
4865 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4866 bitregion_start
, bitregion_end
,
4871 result
= store_field (to_rtx
, bitsize
, bitpos
,
4872 bitregion_start
, bitregion_end
,
4874 get_alias_set (to
), nontemporal
);
4879 struct expand_operand ops
[2];
4881 create_fixed_operand (&ops
[0], mem
);
4882 create_input_operand (&ops
[1], to_rtx
, mode
);
4883 /* The movmisalign<mode> pattern cannot fail, else the assignment
4884 would silently be omitted. */
4885 expand_insn (icode
, 2, ops
);
4889 preserve_temp_slots (result
);
4894 /* If the rhs is a function call and its value is not an aggregate,
4895 call the function before we start to compute the lhs.
4896 This is needed for correct code for cases such as
4897 val = setjmp (buf) on machines where reference to val
4898 requires loading up part of an address in a separate insn.
4900 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4901 since it might be a promoted variable where the zero- or sign- extension
4902 needs to be done. Handling this in the normal way is safe because no
4903 computation is done before the call. The same is true for SSA names. */
4904 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4905 && COMPLETE_TYPE_P (TREE_TYPE (from
))
4906 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4907 && ! (((TREE_CODE (to
) == VAR_DECL
4908 || TREE_CODE (to
) == PARM_DECL
4909 || TREE_CODE (to
) == RESULT_DECL
)
4910 && REG_P (DECL_RTL (to
)))
4911 || TREE_CODE (to
) == SSA_NAME
))
4916 value
= expand_normal (from
);
4918 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4920 /* Handle calls that return values in multiple non-contiguous locations.
4921 The Irix 6 ABI has examples of this. */
4922 if (GET_CODE (to_rtx
) == PARALLEL
)
4924 if (GET_CODE (value
) == PARALLEL
)
4925 emit_group_move (to_rtx
, value
);
4927 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4928 int_size_in_bytes (TREE_TYPE (from
)));
4930 else if (GET_CODE (value
) == PARALLEL
)
4931 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
4932 int_size_in_bytes (TREE_TYPE (from
)));
4933 else if (GET_MODE (to_rtx
) == BLKmode
)
4935 /* Handle calls that return BLKmode values in registers. */
4937 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
4939 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4943 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4944 value
= convert_memory_address_addr_space
4945 (GET_MODE (to_rtx
), value
,
4946 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
4948 emit_move_insn (to_rtx
, value
);
4950 preserve_temp_slots (to_rtx
);
4955 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
4956 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4958 /* Don't move directly into a return register. */
4959 if (TREE_CODE (to
) == RESULT_DECL
4960 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4966 /* If the source is itself a return value, it still is in a pseudo at
4967 this point so we can move it back to the return register directly. */
4969 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
4970 && TREE_CODE (from
) != CALL_EXPR
)
4971 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
4973 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
4975 /* Handle calls that return values in multiple non-contiguous locations.
4976 The Irix 6 ABI has examples of this. */
4977 if (GET_CODE (to_rtx
) == PARALLEL
)
4979 if (GET_CODE (temp
) == PARALLEL
)
4980 emit_group_move (to_rtx
, temp
);
4982 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4983 int_size_in_bytes (TREE_TYPE (from
)));
4986 emit_move_insn (to_rtx
, temp
);
4988 preserve_temp_slots (to_rtx
);
4993 /* In case we are returning the contents of an object which overlaps
4994 the place the value is being stored, use a safe function when copying
4995 a value through a pointer into a structure value return block. */
4996 if (TREE_CODE (to
) == RESULT_DECL
4997 && TREE_CODE (from
) == INDIRECT_REF
4998 && ADDR_SPACE_GENERIC_P
4999 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5000 && refs_may_alias_p (to
, from
)
5001 && cfun
->returns_struct
5002 && !cfun
->returns_pcc_struct
)
5007 size
= expr_size (from
);
5008 from_rtx
= expand_normal (from
);
5010 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
5011 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
5012 XEXP (from_rtx
, 0), Pmode
,
5013 convert_to_mode (TYPE_MODE (sizetype
),
5014 size
, TYPE_UNSIGNED (sizetype
)),
5015 TYPE_MODE (sizetype
));
5017 preserve_temp_slots (to_rtx
);
5022 /* Compute FROM and store the value in the rtx we got. */
5025 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
5026 preserve_temp_slots (result
);
5031 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5032 succeeded, false otherwise. */
5035 emit_storent_insn (rtx to
, rtx from
)
5037 struct expand_operand ops
[2];
5038 enum machine_mode mode
= GET_MODE (to
);
5039 enum insn_code code
= optab_handler (storent_optab
, mode
);
5041 if (code
== CODE_FOR_nothing
)
5044 create_fixed_operand (&ops
[0], to
);
5045 create_input_operand (&ops
[1], from
, mode
);
5046 return maybe_expand_insn (code
, 2, ops
);
5049 /* Generate code for computing expression EXP,
5050 and storing the value into TARGET.
5052 If the mode is BLKmode then we may return TARGET itself.
5053 It turns out that in BLKmode it doesn't cause a problem.
5054 because C has no operators that could combine two different
5055 assignments into the same BLKmode object with different values
5056 with no sequence point. Will other languages need this to
5059 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5060 stack, and block moves may need to be treated specially.
5062 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5065 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5068 rtx alt_rtl
= NULL_RTX
;
5069 location_t loc
= curr_insn_location ();
5071 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5073 /* C++ can generate ?: expressions with a throw expression in one
5074 branch and an rvalue in the other. Here, we resolve attempts to
5075 store the throw expression's nonexistent result. */
5076 gcc_assert (!call_param_p
);
5077 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5080 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5082 /* Perform first part of compound expression, then assign from second
5084 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5085 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5086 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5089 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5091 /* For conditional expression, get safe form of the target. Then
5092 test the condition, doing the appropriate assignment on either
5093 side. This avoids the creation of unnecessary temporaries.
5094 For non-BLKmode, it is more efficient not to do this. */
5096 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
5098 do_pending_stack_adjust ();
5100 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5101 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5103 emit_jump_insn (gen_jump (lab2
));
5106 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5113 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5114 /* If this is a scalar in a register that is stored in a wider mode
5115 than the declared mode, compute the result into its declared mode
5116 and then convert to the wider mode. Our value is the computed
5119 rtx inner_target
= 0;
5121 /* We can do the conversion inside EXP, which will often result
5122 in some optimizations. Do the conversion in two steps: first
5123 change the signedness, if needed, then the extend. But don't
5124 do this if the type of EXP is a subtype of something else
5125 since then the conversion might involve more than just
5126 converting modes. */
5127 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5128 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5129 && GET_MODE_PRECISION (GET_MODE (target
))
5130 == TYPE_PRECISION (TREE_TYPE (exp
)))
5132 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
5133 != SUBREG_PROMOTED_UNSIGNED_P (target
))
5135 /* Some types, e.g. Fortran's logical*4, won't have a signed
5136 version, so use the mode instead. */
5138 = (signed_or_unsigned_type_for
5139 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)));
5141 ntype
= lang_hooks
.types
.type_for_mode
5142 (TYPE_MODE (TREE_TYPE (exp
)),
5143 SUBREG_PROMOTED_UNSIGNED_P (target
));
5145 exp
= fold_convert_loc (loc
, ntype
, exp
);
5148 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5149 (GET_MODE (SUBREG_REG (target
)),
5150 SUBREG_PROMOTED_UNSIGNED_P (target
)),
5153 inner_target
= SUBREG_REG (target
);
5156 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5157 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5159 /* If TEMP is a VOIDmode constant, use convert_modes to make
5160 sure that we properly convert it. */
5161 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5163 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5164 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
5165 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5166 GET_MODE (target
), temp
,
5167 SUBREG_PROMOTED_UNSIGNED_P (target
));
5170 convert_move (SUBREG_REG (target
), temp
,
5171 SUBREG_PROMOTED_UNSIGNED_P (target
));
5175 else if ((TREE_CODE (exp
) == STRING_CST
5176 || (TREE_CODE (exp
) == MEM_REF
5177 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5178 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5180 && integer_zerop (TREE_OPERAND (exp
, 1))))
5181 && !nontemporal
&& !call_param_p
5184 /* Optimize initialization of an array with a STRING_CST. */
5185 HOST_WIDE_INT exp_len
, str_copy_len
;
5187 tree str
= TREE_CODE (exp
) == STRING_CST
5188 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5190 exp_len
= int_expr_size (exp
);
5194 if (TREE_STRING_LENGTH (str
) <= 0)
5197 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5198 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5201 str_copy_len
= TREE_STRING_LENGTH (str
);
5202 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5203 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5205 str_copy_len
+= STORE_MAX_PIECES
- 1;
5206 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5208 str_copy_len
= MIN (str_copy_len
, exp_len
);
5209 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5210 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5211 MEM_ALIGN (target
), false))
5216 dest_mem
= store_by_pieces (dest_mem
,
5217 str_copy_len
, builtin_strncpy_read_str
,
5219 TREE_STRING_POINTER (str
)),
5220 MEM_ALIGN (target
), false,
5221 exp_len
> str_copy_len
? 1 : 0);
5222 if (exp_len
> str_copy_len
)
5223 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5224 GEN_INT (exp_len
- str_copy_len
),
5233 /* If we want to use a nontemporal store, force the value to
5235 tmp_target
= nontemporal
? NULL_RTX
: target
;
5236 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5238 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5242 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5243 the same as that of TARGET, adjust the constant. This is needed, for
5244 example, in case it is a CONST_DOUBLE and we want only a word-sized
5246 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5247 && TREE_CODE (exp
) != ERROR_MARK
5248 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5249 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5250 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5252 /* If value was not generated in the target, store it there.
5253 Convert the value to TARGET's type first if necessary and emit the
5254 pending incrementations that have been queued when expanding EXP.
5255 Note that we cannot emit the whole queue blindly because this will
5256 effectively disable the POST_INC optimization later.
5258 If TEMP and TARGET compare equal according to rtx_equal_p, but
5259 one or both of them are volatile memory refs, we have to distinguish
5261 - expand_expr has used TARGET. In this case, we must not generate
5262 another copy. This can be detected by TARGET being equal according
5264 - expand_expr has not used TARGET - that means that the source just
5265 happens to have the same RTX form. Since temp will have been created
5266 by expand_expr, it will compare unequal according to == .
5267 We must generate a copy in this case, to reach the correct number
5268 of volatile memory references. */
5270 if ((! rtx_equal_p (temp
, target
)
5271 || (temp
!= target
&& (side_effects_p (temp
)
5272 || side_effects_p (target
))))
5273 && TREE_CODE (exp
) != ERROR_MARK
5274 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5275 but TARGET is not valid memory reference, TEMP will differ
5276 from TARGET although it is really the same location. */
5278 && rtx_equal_p (alt_rtl
, target
)
5279 && !side_effects_p (alt_rtl
)
5280 && !side_effects_p (target
))
5281 /* If there's nothing to copy, don't bother. Don't call
5282 expr_size unless necessary, because some front-ends (C++)
5283 expr_size-hook must not be given objects that are not
5284 supposed to be bit-copied or bit-initialized. */
5285 && expr_size (exp
) != const0_rtx
)
5287 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5289 if (GET_MODE (target
) == BLKmode
)
5291 /* Handle calls that return BLKmode values in registers. */
5292 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5293 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5295 store_bit_field (target
,
5296 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5297 0, 0, 0, GET_MODE (temp
), temp
);
5300 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5303 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5305 /* Handle copying a string constant into an array. The string
5306 constant may be shorter than the array. So copy just the string's
5307 actual length, and clear the rest. First get the size of the data
5308 type of the string, which is actually the size of the target. */
5309 rtx size
= expr_size (exp
);
5311 if (CONST_INT_P (size
)
5312 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5313 emit_block_move (target
, temp
, size
,
5315 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5318 enum machine_mode pointer_mode
5319 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5320 enum machine_mode address_mode
= get_address_mode (target
);
5322 /* Compute the size of the data to copy from the string. */
5324 = size_binop_loc (loc
, MIN_EXPR
,
5325 make_tree (sizetype
, size
),
5326 size_int (TREE_STRING_LENGTH (exp
)));
5328 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5330 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5333 /* Copy that much. */
5334 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5335 TYPE_UNSIGNED (sizetype
));
5336 emit_block_move (target
, temp
, copy_size_rtx
,
5338 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5340 /* Figure out how much is left in TARGET that we have to clear.
5341 Do all calculations in pointer_mode. */
5342 if (CONST_INT_P (copy_size_rtx
))
5344 size
= plus_constant (address_mode
, size
,
5345 -INTVAL (copy_size_rtx
));
5346 target
= adjust_address (target
, BLKmode
,
5347 INTVAL (copy_size_rtx
));
5351 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5352 copy_size_rtx
, NULL_RTX
, 0,
5355 if (GET_MODE (copy_size_rtx
) != address_mode
)
5356 copy_size_rtx
= convert_to_mode (address_mode
,
5358 TYPE_UNSIGNED (sizetype
));
5360 target
= offset_address (target
, copy_size_rtx
,
5361 highest_pow2_factor (copy_size
));
5362 label
= gen_label_rtx ();
5363 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5364 GET_MODE (size
), 0, label
);
5367 if (size
!= const0_rtx
)
5368 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5374 /* Handle calls that return values in multiple non-contiguous locations.
5375 The Irix 6 ABI has examples of this. */
5376 else if (GET_CODE (target
) == PARALLEL
)
5378 if (GET_CODE (temp
) == PARALLEL
)
5379 emit_group_move (target
, temp
);
5381 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5382 int_size_in_bytes (TREE_TYPE (exp
)));
5384 else if (GET_CODE (temp
) == PARALLEL
)
5385 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5386 int_size_in_bytes (TREE_TYPE (exp
)));
5387 else if (GET_MODE (temp
) == BLKmode
)
5388 emit_block_move (target
, temp
, expr_size (exp
),
5390 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5391 /* If we emit a nontemporal store, there is nothing else to do. */
5392 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5396 temp
= force_operand (temp
, target
);
5398 emit_move_insn (target
, temp
);
5405 /* Return true if field F of structure TYPE is a flexible array. */
5408 flexible_array_member_p (const_tree f
, const_tree type
)
5413 return (DECL_CHAIN (f
) == NULL
5414 && TREE_CODE (tf
) == ARRAY_TYPE
5416 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5417 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5418 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5419 && int_size_in_bytes (type
) >= 0);
5422 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5423 must have in order for it to completely initialize a value of type TYPE.
5424 Return -1 if the number isn't known.
5426 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5428 static HOST_WIDE_INT
5429 count_type_elements (const_tree type
, bool for_ctor_p
)
5431 switch (TREE_CODE (type
))
5437 nelts
= array_type_nelts (type
);
5438 if (nelts
&& host_integerp (nelts
, 1))
5440 unsigned HOST_WIDE_INT n
;
5442 n
= tree_low_cst (nelts
, 1) + 1;
5443 if (n
== 0 || for_ctor_p
)
5446 return n
* count_type_elements (TREE_TYPE (type
), false);
5448 return for_ctor_p
? -1 : 1;
5453 unsigned HOST_WIDE_INT n
;
5457 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5458 if (TREE_CODE (f
) == FIELD_DECL
)
5461 n
+= count_type_elements (TREE_TYPE (f
), false);
5462 else if (!flexible_array_member_p (f
, type
))
5463 /* Don't count flexible arrays, which are not supposed
5464 to be initialized. */
5472 case QUAL_UNION_TYPE
:
5477 gcc_assert (!for_ctor_p
);
5478 /* Estimate the number of scalars in each field and pick the
5479 maximum. Other estimates would do instead; the idea is simply
5480 to make sure that the estimate is not sensitive to the ordering
5483 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5484 if (TREE_CODE (f
) == FIELD_DECL
)
5486 m
= count_type_elements (TREE_TYPE (f
), false);
5487 /* If the field doesn't span the whole union, add an extra
5488 scalar for the rest. */
5489 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5490 TYPE_SIZE (type
)) != 1)
5502 return TYPE_VECTOR_SUBPARTS (type
);
5506 case FIXED_POINT_TYPE
:
5511 case REFERENCE_TYPE
:
5527 /* Helper for categorize_ctor_elements. Identical interface. */
5530 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5531 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5533 unsigned HOST_WIDE_INT idx
;
5534 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5535 tree value
, purpose
, elt_type
;
5537 /* Whether CTOR is a valid constant initializer, in accordance with what
5538 initializer_constant_valid_p does. If inferred from the constructor
5539 elements, true until proven otherwise. */
5540 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5541 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5546 elt_type
= NULL_TREE
;
5548 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5550 HOST_WIDE_INT mult
= 1;
5552 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5554 tree lo_index
= TREE_OPERAND (purpose
, 0);
5555 tree hi_index
= TREE_OPERAND (purpose
, 1);
5557 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
5558 mult
= (tree_low_cst (hi_index
, 1)
5559 - tree_low_cst (lo_index
, 1) + 1);
5562 elt_type
= TREE_TYPE (value
);
5564 switch (TREE_CODE (value
))
5568 HOST_WIDE_INT nz
= 0, ic
= 0;
5570 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5573 nz_elts
+= mult
* nz
;
5574 init_elts
+= mult
* ic
;
5576 if (const_from_elts_p
&& const_p
)
5577 const_p
= const_elt_p
;
5584 if (!initializer_zerop (value
))
5590 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5591 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5595 if (!initializer_zerop (TREE_REALPART (value
)))
5597 if (!initializer_zerop (TREE_IMAGPART (value
)))
5605 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5607 tree v
= VECTOR_CST_ELT (value
, i
);
5608 if (!initializer_zerop (v
))
5617 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5618 nz_elts
+= mult
* tc
;
5619 init_elts
+= mult
* tc
;
5621 if (const_from_elts_p
&& const_p
)
5622 const_p
= initializer_constant_valid_p (value
, elt_type
)
5629 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5630 num_fields
, elt_type
))
5631 *p_complete
= false;
5633 *p_nz_elts
+= nz_elts
;
5634 *p_init_elts
+= init_elts
;
5639 /* Examine CTOR to discover:
5640 * how many scalar fields are set to nonzero values,
5641 and place it in *P_NZ_ELTS;
5642 * how many scalar fields in total are in CTOR,
5643 and place it in *P_ELT_COUNT.
5644 * whether the constructor is complete -- in the sense that every
5645 meaningful byte is explicitly given a value --
5646 and place it in *P_COMPLETE.
5648 Return whether or not CTOR is a valid static constant initializer, the same
5649 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5652 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5653 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5659 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5662 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5663 of which had type LAST_TYPE. Each element was itself a complete
5664 initializer, in the sense that every meaningful byte was explicitly
5665 given a value. Return true if the same is true for the constructor
5669 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5670 const_tree last_type
)
5672 if (TREE_CODE (type
) == UNION_TYPE
5673 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5678 gcc_assert (num_elts
== 1 && last_type
);
5680 /* ??? We could look at each element of the union, and find the
5681 largest element. Which would avoid comparing the size of the
5682 initialized element against any tail padding in the union.
5683 Doesn't seem worth the effort... */
5684 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5687 return count_type_elements (type
, true) == num_elts
;
5690 /* Return 1 if EXP contains mostly (3/4) zeros. */
5693 mostly_zeros_p (const_tree exp
)
5695 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5697 HOST_WIDE_INT nz_elts
, init_elts
;
5700 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5701 return !complete_p
|| nz_elts
< init_elts
/ 4;
5704 return initializer_zerop (exp
);
5707 /* Return 1 if EXP contains all zeros. */
5710 all_zeros_p (const_tree exp
)
5712 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5714 HOST_WIDE_INT nz_elts
, init_elts
;
5717 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5718 return nz_elts
== 0;
5721 return initializer_zerop (exp
);
5724 /* Helper function for store_constructor.
5725 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5726 CLEARED is as for store_constructor.
5727 ALIAS_SET is the alias set to use for any stores.
5729 This provides a recursive shortcut back to store_constructor when it isn't
5730 necessary to go through store_field. This is so that we can pass through
5731 the cleared field to let store_constructor know that we may not have to
5732 clear a substructure if the outer structure has already been cleared. */
5735 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5736 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
5737 tree exp
, int cleared
, alias_set_type alias_set
)
5739 if (TREE_CODE (exp
) == CONSTRUCTOR
5740 /* We can only call store_constructor recursively if the size and
5741 bit position are on a byte boundary. */
5742 && bitpos
% BITS_PER_UNIT
== 0
5743 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5744 /* If we have a nonzero bitpos for a register target, then we just
5745 let store_field do the bitfield handling. This is unlikely to
5746 generate unnecessary clear instructions anyways. */
5747 && (bitpos
== 0 || MEM_P (target
)))
5751 = adjust_address (target
,
5752 GET_MODE (target
) == BLKmode
5754 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5755 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5758 /* Update the alias set, if required. */
5759 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5760 && MEM_ALIAS_SET (target
) != 0)
5762 target
= copy_rtx (target
);
5763 set_mem_alias_set (target
, alias_set
);
5766 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5769 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5772 /* Store the value of constructor EXP into the rtx TARGET.
5773 TARGET is either a REG or a MEM; we know it cannot conflict, since
5774 safe_from_p has been called.
5775 CLEARED is true if TARGET is known to have been zero'd.
5776 SIZE is the number of bytes of TARGET we are allowed to modify: this
5777 may not be the same as the size of EXP if we are assigning to a field
5778 which has been packed to exclude padding bits. */
5781 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5783 tree type
= TREE_TYPE (exp
);
5784 #ifdef WORD_REGISTER_OPERATIONS
5785 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5788 switch (TREE_CODE (type
))
5792 case QUAL_UNION_TYPE
:
5794 unsigned HOST_WIDE_INT idx
;
5797 /* If size is zero or the target is already cleared, do nothing. */
5798 if (size
== 0 || cleared
)
5800 /* We either clear the aggregate or indicate the value is dead. */
5801 else if ((TREE_CODE (type
) == UNION_TYPE
5802 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5803 && ! CONSTRUCTOR_ELTS (exp
))
5804 /* If the constructor is empty, clear the union. */
5806 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5810 /* If we are building a static constructor into a register,
5811 set the initial value as zero so we can fold the value into
5812 a constant. But if more than one register is involved,
5813 this probably loses. */
5814 else if (REG_P (target
) && TREE_STATIC (exp
)
5815 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5817 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5821 /* If the constructor has fewer fields than the structure or
5822 if we are initializing the structure to mostly zeros, clear
5823 the whole structure first. Don't do this if TARGET is a
5824 register whose mode size isn't equal to SIZE since
5825 clear_storage can't handle this case. */
5827 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
5828 != fields_length (type
))
5829 || mostly_zeros_p (exp
))
5831 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5834 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5838 if (REG_P (target
) && !cleared
)
5839 emit_clobber (target
);
5841 /* Store each element of the constructor into the
5842 corresponding field of TARGET. */
5843 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5845 enum machine_mode mode
;
5846 HOST_WIDE_INT bitsize
;
5847 HOST_WIDE_INT bitpos
= 0;
5849 rtx to_rtx
= target
;
5851 /* Just ignore missing fields. We cleared the whole
5852 structure, above, if any fields are missing. */
5856 if (cleared
&& initializer_zerop (value
))
5859 if (host_integerp (DECL_SIZE (field
), 1))
5860 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
5864 mode
= DECL_MODE (field
);
5865 if (DECL_BIT_FIELD (field
))
5868 offset
= DECL_FIELD_OFFSET (field
);
5869 if (host_integerp (offset
, 0)
5870 && host_integerp (bit_position (field
), 0))
5872 bitpos
= int_bit_position (field
);
5876 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
5880 enum machine_mode address_mode
;
5884 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5885 make_tree (TREE_TYPE (exp
),
5888 offset_rtx
= expand_normal (offset
);
5889 gcc_assert (MEM_P (to_rtx
));
5891 address_mode
= get_address_mode (to_rtx
);
5892 if (GET_MODE (offset_rtx
) != address_mode
)
5893 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5895 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5896 highest_pow2_factor (offset
));
5899 #ifdef WORD_REGISTER_OPERATIONS
5900 /* If this initializes a field that is smaller than a
5901 word, at the start of a word, try to widen it to a full
5902 word. This special case allows us to output C++ member
5903 function initializations in a form that the optimizers
5906 && bitsize
< BITS_PER_WORD
5907 && bitpos
% BITS_PER_WORD
== 0
5908 && GET_MODE_CLASS (mode
) == MODE_INT
5909 && TREE_CODE (value
) == INTEGER_CST
5911 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5913 tree type
= TREE_TYPE (value
);
5915 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5917 type
= lang_hooks
.types
.type_for_mode
5918 (word_mode
, TYPE_UNSIGNED (type
));
5919 value
= fold_convert (type
, value
);
5922 if (BYTES_BIG_ENDIAN
)
5924 = fold_build2 (LSHIFT_EXPR
, type
, value
,
5925 build_int_cst (type
,
5926 BITS_PER_WORD
- bitsize
));
5927 bitsize
= BITS_PER_WORD
;
5932 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5933 && DECL_NONADDRESSABLE_P (field
))
5935 to_rtx
= copy_rtx (to_rtx
);
5936 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5939 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5941 get_alias_set (TREE_TYPE (field
)));
5948 unsigned HOST_WIDE_INT i
;
5951 tree elttype
= TREE_TYPE (type
);
5953 HOST_WIDE_INT minelt
= 0;
5954 HOST_WIDE_INT maxelt
= 0;
5956 domain
= TYPE_DOMAIN (type
);
5957 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5958 && TYPE_MAX_VALUE (domain
)
5959 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5960 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5962 /* If we have constant bounds for the range of the type, get them. */
5965 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5966 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5969 /* If the constructor has fewer elements than the array, clear
5970 the whole array first. Similarly if this is static
5971 constructor of a non-BLKmode object. */
5974 else if (REG_P (target
) && TREE_STATIC (exp
))
5978 unsigned HOST_WIDE_INT idx
;
5980 HOST_WIDE_INT count
= 0, zero_count
= 0;
5981 need_to_clear
= ! const_bounds_p
;
5983 /* This loop is a more accurate version of the loop in
5984 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5985 is also needed to check for missing elements. */
5986 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
5988 HOST_WIDE_INT this_node_count
;
5993 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5995 tree lo_index
= TREE_OPERAND (index
, 0);
5996 tree hi_index
= TREE_OPERAND (index
, 1);
5998 if (! host_integerp (lo_index
, 1)
5999 || ! host_integerp (hi_index
, 1))
6005 this_node_count
= (tree_low_cst (hi_index
, 1)
6006 - tree_low_cst (lo_index
, 1) + 1);
6009 this_node_count
= 1;
6011 count
+= this_node_count
;
6012 if (mostly_zeros_p (value
))
6013 zero_count
+= this_node_count
;
6016 /* Clear the entire array first if there are any missing
6017 elements, or if the incidence of zero elements is >=
6020 && (count
< maxelt
- minelt
+ 1
6021 || 4 * zero_count
>= 3 * count
))
6025 if (need_to_clear
&& size
> 0)
6028 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6030 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6034 if (!cleared
&& REG_P (target
))
6035 /* Inform later passes that the old value is dead. */
6036 emit_clobber (target
);
6038 /* Store each element of the constructor into the
6039 corresponding element of TARGET, determined by counting the
6041 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6043 enum machine_mode mode
;
6044 HOST_WIDE_INT bitsize
;
6045 HOST_WIDE_INT bitpos
;
6046 rtx xtarget
= target
;
6048 if (cleared
&& initializer_zerop (value
))
6051 mode
= TYPE_MODE (elttype
);
6052 if (mode
== BLKmode
)
6053 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
6054 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
6057 bitsize
= GET_MODE_BITSIZE (mode
);
6059 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6061 tree lo_index
= TREE_OPERAND (index
, 0);
6062 tree hi_index
= TREE_OPERAND (index
, 1);
6063 rtx index_r
, pos_rtx
;
6064 HOST_WIDE_INT lo
, hi
, count
;
6067 /* If the range is constant and "small", unroll the loop. */
6069 && host_integerp (lo_index
, 0)
6070 && host_integerp (hi_index
, 0)
6071 && (lo
= tree_low_cst (lo_index
, 0),
6072 hi
= tree_low_cst (hi_index
, 0),
6073 count
= hi
- lo
+ 1,
6076 || (host_integerp (TYPE_SIZE (elttype
), 1)
6077 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
6080 lo
-= minelt
; hi
-= minelt
;
6081 for (; lo
<= hi
; lo
++)
6083 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
6086 && !MEM_KEEP_ALIAS_SET_P (target
)
6087 && TREE_CODE (type
) == ARRAY_TYPE
6088 && TYPE_NONALIASED_COMPONENT (type
))
6090 target
= copy_rtx (target
);
6091 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6094 store_constructor_field
6095 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6096 get_alias_set (elttype
));
6101 rtx loop_start
= gen_label_rtx ();
6102 rtx loop_end
= gen_label_rtx ();
6105 expand_normal (hi_index
);
6107 index
= build_decl (EXPR_LOCATION (exp
),
6108 VAR_DECL
, NULL_TREE
, domain
);
6109 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6110 SET_DECL_RTL (index
, index_r
);
6111 store_expr (lo_index
, index_r
, 0, false);
6113 /* Build the head of the loop. */
6114 do_pending_stack_adjust ();
6115 emit_label (loop_start
);
6117 /* Assign value to element index. */
6119 fold_convert (ssizetype
,
6120 fold_build2 (MINUS_EXPR
,
6123 TYPE_MIN_VALUE (domain
)));
6126 size_binop (MULT_EXPR
, position
,
6127 fold_convert (ssizetype
,
6128 TYPE_SIZE_UNIT (elttype
)));
6130 pos_rtx
= expand_normal (position
);
6131 xtarget
= offset_address (target
, pos_rtx
,
6132 highest_pow2_factor (position
));
6133 xtarget
= adjust_address (xtarget
, mode
, 0);
6134 if (TREE_CODE (value
) == CONSTRUCTOR
)
6135 store_constructor (value
, xtarget
, cleared
,
6136 bitsize
/ BITS_PER_UNIT
);
6138 store_expr (value
, xtarget
, 0, false);
6140 /* Generate a conditional jump to exit the loop. */
6141 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6143 jumpif (exit_cond
, loop_end
, -1);
6145 /* Update the loop counter, and jump to the head of
6147 expand_assignment (index
,
6148 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6149 index
, integer_one_node
),
6152 emit_jump (loop_start
);
6154 /* Build the end of the loop. */
6155 emit_label (loop_end
);
6158 else if ((index
!= 0 && ! host_integerp (index
, 0))
6159 || ! host_integerp (TYPE_SIZE (elttype
), 1))
6164 index
= ssize_int (1);
6167 index
= fold_convert (ssizetype
,
6168 fold_build2 (MINUS_EXPR
,
6171 TYPE_MIN_VALUE (domain
)));
6174 size_binop (MULT_EXPR
, index
,
6175 fold_convert (ssizetype
,
6176 TYPE_SIZE_UNIT (elttype
)));
6177 xtarget
= offset_address (target
,
6178 expand_normal (position
),
6179 highest_pow2_factor (position
));
6180 xtarget
= adjust_address (xtarget
, mode
, 0);
6181 store_expr (value
, xtarget
, 0, false);
6186 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
6187 * tree_low_cst (TYPE_SIZE (elttype
), 1));
6189 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
6191 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6192 && TREE_CODE (type
) == ARRAY_TYPE
6193 && TYPE_NONALIASED_COMPONENT (type
))
6195 target
= copy_rtx (target
);
6196 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6198 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6199 cleared
, get_alias_set (elttype
));
6207 unsigned HOST_WIDE_INT idx
;
6208 constructor_elt
*ce
;
6211 int icode
= CODE_FOR_nothing
;
6212 tree elttype
= TREE_TYPE (type
);
6213 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
6214 enum machine_mode eltmode
= TYPE_MODE (elttype
);
6215 HOST_WIDE_INT bitsize
;
6216 HOST_WIDE_INT bitpos
;
6217 rtvec vector
= NULL
;
6219 alias_set_type alias
;
6221 gcc_assert (eltmode
!= BLKmode
);
6223 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6224 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6226 enum machine_mode mode
= GET_MODE (target
);
6228 icode
= (int) optab_handler (vec_init_optab
, mode
);
6229 if (icode
!= CODE_FOR_nothing
)
6233 vector
= rtvec_alloc (n_elts
);
6234 for (i
= 0; i
< n_elts
; i
++)
6235 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6239 /* If the constructor has fewer elements than the vector,
6240 clear the whole array first. Similarly if this is static
6241 constructor of a non-BLKmode object. */
6244 else if (REG_P (target
) && TREE_STATIC (exp
))
6248 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6251 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6253 int n_elts_here
= tree_low_cst
6254 (int_const_binop (TRUNC_DIV_EXPR
,
6255 TYPE_SIZE (TREE_TYPE (value
)),
6256 TYPE_SIZE (elttype
)), 1);
6258 count
+= n_elts_here
;
6259 if (mostly_zeros_p (value
))
6260 zero_count
+= n_elts_here
;
6263 /* Clear the entire vector first if there are any missing elements,
6264 or if the incidence of zero elements is >= 75%. */
6265 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6268 if (need_to_clear
&& size
> 0 && !vector
)
6271 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6273 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6277 /* Inform later passes that the old value is dead. */
6278 if (!cleared
&& !vector
&& REG_P (target
))
6279 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6282 alias
= MEM_ALIAS_SET (target
);
6284 alias
= get_alias_set (elttype
);
6286 /* Store each element of the constructor into the corresponding
6287 element of TARGET, determined by counting the elements. */
6288 for (idx
= 0, i
= 0;
6289 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6290 idx
++, i
+= bitsize
/ elt_size
)
6292 HOST_WIDE_INT eltpos
;
6293 tree value
= ce
->value
;
6295 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
6296 if (cleared
&& initializer_zerop (value
))
6300 eltpos
= tree_low_cst (ce
->index
, 1);
6306 /* Vector CONSTRUCTORs should only be built from smaller
6307 vectors in the case of BLKmode vectors. */
6308 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6309 RTVEC_ELT (vector
, eltpos
)
6310 = expand_normal (value
);
6314 enum machine_mode value_mode
=
6315 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6316 ? TYPE_MODE (TREE_TYPE (value
))
6318 bitpos
= eltpos
* elt_size
;
6319 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6320 value
, cleared
, alias
);
6325 emit_insn (GEN_FCN (icode
)
6327 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6336 /* Store the value of EXP (an expression tree)
6337 into a subfield of TARGET which has mode MODE and occupies
6338 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6339 If MODE is VOIDmode, it means that we are storing into a bit-field.
6341 BITREGION_START is bitpos of the first bitfield in this region.
6342 BITREGION_END is the bitpos of the ending bitfield in this region.
6343 These two fields are 0, if the C++ memory model does not apply,
6344 or we are not interested in keeping track of bitfield regions.
6346 Always return const0_rtx unless we have something particular to
6349 ALIAS_SET is the alias set for the destination. This value will
6350 (in general) be different from that for TARGET, since TARGET is a
6351 reference to the containing structure.
6353 If NONTEMPORAL is true, try generating a nontemporal store. */
6356 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6357 unsigned HOST_WIDE_INT bitregion_start
,
6358 unsigned HOST_WIDE_INT bitregion_end
,
6359 enum machine_mode mode
, tree exp
,
6360 alias_set_type alias_set
, bool nontemporal
)
6362 if (TREE_CODE (exp
) == ERROR_MARK
)
6365 /* If we have nothing to store, do nothing unless the expression has
6368 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6370 if (GET_CODE (target
) == CONCAT
)
6372 /* We're storing into a struct containing a single __complex. */
6374 gcc_assert (!bitpos
);
6375 return store_expr (exp
, target
, 0, nontemporal
);
6378 /* If the structure is in a register or if the component
6379 is a bit field, we cannot use addressing to access it.
6380 Use bit-field techniques or SUBREG to store in it. */
6382 if (mode
== VOIDmode
6383 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6384 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6385 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6387 || GET_CODE (target
) == SUBREG
6388 /* If the field isn't aligned enough to store as an ordinary memref,
6389 store it as a bit field. */
6391 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6392 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6393 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6394 || (bitpos
% BITS_PER_UNIT
!= 0)))
6395 || (bitsize
>= 0 && mode
!= BLKmode
6396 && GET_MODE_BITSIZE (mode
) > bitsize
)
6397 /* If the RHS and field are a constant size and the size of the
6398 RHS isn't the same size as the bitfield, we must use bitfield
6401 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6402 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6403 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6404 decl we must use bitfield operations. */
6406 && TREE_CODE (exp
) == MEM_REF
6407 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6408 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6409 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6410 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6415 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6416 implies a mask operation. If the precision is the same size as
6417 the field we're storing into, that mask is redundant. This is
6418 particularly common with bit field assignments generated by the
6420 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6423 tree type
= TREE_TYPE (exp
);
6424 if (INTEGRAL_TYPE_P (type
)
6425 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6426 && bitsize
== TYPE_PRECISION (type
))
6428 tree op
= gimple_assign_rhs1 (nop_def
);
6429 type
= TREE_TYPE (op
);
6430 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6435 temp
= expand_normal (exp
);
6437 /* If BITSIZE is narrower than the size of the type of EXP
6438 we will be narrowing TEMP. Normally, what's wanted are the
6439 low-order bits. However, if EXP's type is a record and this is
6440 big-endian machine, we want the upper BITSIZE bits. */
6441 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6442 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6443 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6444 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6445 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6448 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6449 if (mode
!= VOIDmode
&& mode
!= BLKmode
6450 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6451 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6453 /* If the modes of TEMP and TARGET are both BLKmode, both
6454 must be in memory and BITPOS must be aligned on a byte
6455 boundary. If so, we simply do a block copy. Likewise
6456 for a BLKmode-like TARGET. */
6457 if (GET_MODE (temp
) == BLKmode
6458 && (GET_MODE (target
) == BLKmode
6460 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6461 && (bitpos
% BITS_PER_UNIT
) == 0
6462 && (bitsize
% BITS_PER_UNIT
) == 0)))
6464 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6465 && (bitpos
% BITS_PER_UNIT
) == 0);
6467 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6468 emit_block_move (target
, temp
,
6469 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6476 /* Handle calls that return values in multiple non-contiguous locations.
6477 The Irix 6 ABI has examples of this. */
6478 if (GET_CODE (temp
) == PARALLEL
)
6480 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6482 if (mode
== BLKmode
)
6483 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6484 temp_target
= gen_reg_rtx (mode
);
6485 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6488 else if (mode
== BLKmode
)
6490 /* Handle calls that return BLKmode values in registers. */
6491 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6493 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6494 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6499 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6501 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6502 temp_target
= gen_reg_rtx (mode
);
6504 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6505 false, temp_target
, mode
, mode
);
6510 /* Store the value in the bitfield. */
6511 store_bit_field (target
, bitsize
, bitpos
,
6512 bitregion_start
, bitregion_end
,
6519 /* Now build a reference to just the desired component. */
6520 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6522 if (to_rtx
== target
)
6523 to_rtx
= copy_rtx (to_rtx
);
6525 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6526 set_mem_alias_set (to_rtx
, alias_set
);
6528 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6532 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6533 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6534 codes and find the ultimate containing object, which we return.
6536 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6537 bit position, and *PUNSIGNEDP to the signedness of the field.
6538 If the position of the field is variable, we store a tree
6539 giving the variable offset (in units) in *POFFSET.
6540 This offset is in addition to the bit position.
6541 If the position is not variable, we store 0 in *POFFSET.
6543 If any of the extraction expressions is volatile,
6544 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6546 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6547 Otherwise, it is a mode that can be used to access the field.
6549 If the field describes a variable-sized object, *PMODE is set to
6550 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6551 this case, but the address of the object can be found.
6553 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6554 look through nodes that serve as markers of a greater alignment than
6555 the one that can be deduced from the expression. These nodes make it
6556 possible for front-ends to prevent temporaries from being created by
6557 the middle-end on alignment considerations. For that purpose, the
6558 normal operating mode at high-level is to always pass FALSE so that
6559 the ultimate containing object is really returned; moreover, the
6560 associated predicate handled_component_p will always return TRUE
6561 on these nodes, thus indicating that they are essentially handled
6562 by get_inner_reference. TRUE should only be passed when the caller
6563 is scanning the expression in order to build another representation
6564 and specifically knows how to handle these nodes; as such, this is
6565 the normal operating mode in the RTL expanders. */
6568 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6569 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6570 enum machine_mode
*pmode
, int *punsignedp
,
6571 int *pvolatilep
, bool keep_aligning
)
6574 enum machine_mode mode
= VOIDmode
;
6575 bool blkmode_bitfield
= false;
6576 tree offset
= size_zero_node
;
6577 double_int bit_offset
= double_int_zero
;
6579 /* First get the mode, signedness, and size. We do this from just the
6580 outermost expression. */
6582 if (TREE_CODE (exp
) == COMPONENT_REF
)
6584 tree field
= TREE_OPERAND (exp
, 1);
6585 size_tree
= DECL_SIZE (field
);
6586 if (!DECL_BIT_FIELD (field
))
6587 mode
= DECL_MODE (field
);
6588 else if (DECL_MODE (field
) == BLKmode
)
6589 blkmode_bitfield
= true;
6590 else if (TREE_THIS_VOLATILE (exp
)
6591 && flag_strict_volatile_bitfields
> 0)
6592 /* Volatile bitfields should be accessed in the mode of the
6593 field's type, not the mode computed based on the bit
6595 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6597 *punsignedp
= DECL_UNSIGNED (field
);
6599 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6601 size_tree
= TREE_OPERAND (exp
, 1);
6602 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6603 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6605 /* For vector types, with the correct size of access, use the mode of
6607 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6608 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6609 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6610 mode
= TYPE_MODE (TREE_TYPE (exp
));
6614 mode
= TYPE_MODE (TREE_TYPE (exp
));
6615 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6617 if (mode
== BLKmode
)
6618 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6620 *pbitsize
= GET_MODE_BITSIZE (mode
);
6625 if (! host_integerp (size_tree
, 1))
6626 mode
= BLKmode
, *pbitsize
= -1;
6628 *pbitsize
= tree_low_cst (size_tree
, 1);
6631 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6632 and find the ultimate containing object. */
6635 switch (TREE_CODE (exp
))
6638 bit_offset
+= tree_to_double_int (TREE_OPERAND (exp
, 2));
6643 tree field
= TREE_OPERAND (exp
, 1);
6644 tree this_offset
= component_ref_field_offset (exp
);
6646 /* If this field hasn't been filled in yet, don't go past it.
6647 This should only happen when folding expressions made during
6648 type construction. */
6649 if (this_offset
== 0)
6652 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6653 bit_offset
+= tree_to_double_int (DECL_FIELD_BIT_OFFSET (field
));
6655 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6660 case ARRAY_RANGE_REF
:
6662 tree index
= TREE_OPERAND (exp
, 1);
6663 tree low_bound
= array_ref_low_bound (exp
);
6664 tree unit_size
= array_ref_element_size (exp
);
6666 /* We assume all arrays have sizes that are a multiple of a byte.
6667 First subtract the lower bound, if any, in the type of the
6668 index, then convert to sizetype and multiply by the size of
6669 the array element. */
6670 if (! integer_zerop (low_bound
))
6671 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6674 offset
= size_binop (PLUS_EXPR
, offset
,
6675 size_binop (MULT_EXPR
,
6676 fold_convert (sizetype
, index
),
6685 bit_offset
+= double_int::from_uhwi (*pbitsize
);
6688 case VIEW_CONVERT_EXPR
:
6689 if (keep_aligning
&& STRICT_ALIGNMENT
6690 && (TYPE_ALIGN (TREE_TYPE (exp
))
6691 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6692 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6693 < BIGGEST_ALIGNMENT
)
6694 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6695 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6700 /* Hand back the decl for MEM[&decl, off]. */
6701 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6703 tree off
= TREE_OPERAND (exp
, 1);
6704 if (!integer_zerop (off
))
6706 double_int boff
, coff
= mem_ref_offset (exp
);
6707 boff
= coff
.alshift (BITS_PER_UNIT
== 8
6708 ? 3 : exact_log2 (BITS_PER_UNIT
),
6709 HOST_BITS_PER_DOUBLE_INT
);
6712 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6720 /* If any reference in the chain is volatile, the effect is volatile. */
6721 if (TREE_THIS_VOLATILE (exp
))
6724 exp
= TREE_OPERAND (exp
, 0);
6728 /* If OFFSET is constant, see if we can return the whole thing as a
6729 constant bit position. Make sure to handle overflow during
6731 if (TREE_CODE (offset
) == INTEGER_CST
)
6733 double_int tem
= tree_to_double_int (offset
);
6734 tem
= tem
.sext (TYPE_PRECISION (sizetype
));
6735 tem
= tem
.alshift (BITS_PER_UNIT
== 8 ? 3 : exact_log2 (BITS_PER_UNIT
),
6736 HOST_BITS_PER_DOUBLE_INT
);
6738 if (tem
.fits_shwi ())
6740 *pbitpos
= tem
.to_shwi ();
6741 *poffset
= offset
= NULL_TREE
;
6745 /* Otherwise, split it up. */
6748 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6749 if (bit_offset
.is_negative ())
6752 = double_int::mask (BITS_PER_UNIT
== 8
6753 ? 3 : exact_log2 (BITS_PER_UNIT
));
6754 double_int tem
= bit_offset
.and_not (mask
);
6755 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6756 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6758 tem
= tem
.arshift (BITS_PER_UNIT
== 8
6759 ? 3 : exact_log2 (BITS_PER_UNIT
),
6760 HOST_BITS_PER_DOUBLE_INT
);
6761 offset
= size_binop (PLUS_EXPR
, offset
,
6762 double_int_to_tree (sizetype
, tem
));
6765 *pbitpos
= bit_offset
.to_shwi ();
6769 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6770 if (mode
== VOIDmode
6772 && (*pbitpos
% BITS_PER_UNIT
) == 0
6773 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6781 /* Return a tree of sizetype representing the size, in bytes, of the element
6782 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6785 array_ref_element_size (tree exp
)
6787 tree aligned_size
= TREE_OPERAND (exp
, 3);
6788 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6789 location_t loc
= EXPR_LOCATION (exp
);
6791 /* If a size was specified in the ARRAY_REF, it's the size measured
6792 in alignment units of the element type. So multiply by that value. */
6795 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6796 sizetype from another type of the same width and signedness. */
6797 if (TREE_TYPE (aligned_size
) != sizetype
)
6798 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6799 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6800 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6803 /* Otherwise, take the size from that of the element type. Substitute
6804 any PLACEHOLDER_EXPR that we have. */
6806 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6809 /* Return a tree representing the lower bound of the array mentioned in
6810 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6813 array_ref_low_bound (tree exp
)
6815 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6817 /* If a lower bound is specified in EXP, use it. */
6818 if (TREE_OPERAND (exp
, 2))
6819 return TREE_OPERAND (exp
, 2);
6821 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6822 substituting for a PLACEHOLDER_EXPR as needed. */
6823 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6824 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6826 /* Otherwise, return a zero of the appropriate type. */
6827 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6830 /* Returns true if REF is an array reference to an array at the end of
6831 a structure. If this is the case, the array may be allocated larger
6832 than its upper bound implies. */
6835 array_at_struct_end_p (tree ref
)
6837 if (TREE_CODE (ref
) != ARRAY_REF
6838 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
6841 while (handled_component_p (ref
))
6843 /* If the reference chain contains a component reference to a
6844 non-union type and there follows another field the reference
6845 is not at the end of a structure. */
6846 if (TREE_CODE (ref
) == COMPONENT_REF
6847 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
6849 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
6850 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
6851 nextf
= DECL_CHAIN (nextf
);
6856 ref
= TREE_OPERAND (ref
, 0);
6859 /* If the reference is based on a declared entity, the size of the array
6860 is constrained by its given domain. */
6867 /* Return a tree representing the upper bound of the array mentioned in
6868 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6871 array_ref_up_bound (tree exp
)
6873 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6875 /* If there is a domain type and it has an upper bound, use it, substituting
6876 for a PLACEHOLDER_EXPR as needed. */
6877 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
6878 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
6880 /* Otherwise fail. */
6884 /* Return a tree representing the offset, in bytes, of the field referenced
6885 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6888 component_ref_field_offset (tree exp
)
6890 tree aligned_offset
= TREE_OPERAND (exp
, 2);
6891 tree field
= TREE_OPERAND (exp
, 1);
6892 location_t loc
= EXPR_LOCATION (exp
);
6894 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6895 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6899 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6900 sizetype from another type of the same width and signedness. */
6901 if (TREE_TYPE (aligned_offset
) != sizetype
)
6902 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
6903 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
6904 size_int (DECL_OFFSET_ALIGN (field
)
6908 /* Otherwise, take the offset from that of the field. Substitute
6909 any PLACEHOLDER_EXPR that we have. */
6911 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
6914 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6916 static unsigned HOST_WIDE_INT
6917 target_align (const_tree target
)
6919 /* We might have a chain of nested references with intermediate misaligning
6920 bitfields components, so need to recurse to find out. */
6922 unsigned HOST_WIDE_INT this_align
, outer_align
;
6924 switch (TREE_CODE (target
))
6930 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
6931 outer_align
= target_align (TREE_OPERAND (target
, 0));
6932 return MIN (this_align
, outer_align
);
6935 case ARRAY_RANGE_REF
:
6936 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6937 outer_align
= target_align (TREE_OPERAND (target
, 0));
6938 return MIN (this_align
, outer_align
);
6941 case NON_LVALUE_EXPR
:
6942 case VIEW_CONVERT_EXPR
:
6943 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6944 outer_align
= target_align (TREE_OPERAND (target
, 0));
6945 return MAX (this_align
, outer_align
);
6948 return TYPE_ALIGN (TREE_TYPE (target
));
6953 /* Given an rtx VALUE that may contain additions and multiplications, return
6954 an equivalent value that just refers to a register, memory, or constant.
6955 This is done by generating instructions to perform the arithmetic and
6956 returning a pseudo-register containing the value.
6958 The returned value may be a REG, SUBREG, MEM or constant. */
6961 force_operand (rtx value
, rtx target
)
6964 /* Use subtarget as the target for operand 0 of a binary operation. */
6965 rtx subtarget
= get_subtarget (target
);
6966 enum rtx_code code
= GET_CODE (value
);
6968 /* Check for subreg applied to an expression produced by loop optimizer. */
6970 && !REG_P (SUBREG_REG (value
))
6971 && !MEM_P (SUBREG_REG (value
)))
6974 = simplify_gen_subreg (GET_MODE (value
),
6975 force_reg (GET_MODE (SUBREG_REG (value
)),
6976 force_operand (SUBREG_REG (value
),
6978 GET_MODE (SUBREG_REG (value
)),
6979 SUBREG_BYTE (value
));
6980 code
= GET_CODE (value
);
6983 /* Check for a PIC address load. */
6984 if ((code
== PLUS
|| code
== MINUS
)
6985 && XEXP (value
, 0) == pic_offset_table_rtx
6986 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
6987 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
6988 || GET_CODE (XEXP (value
, 1)) == CONST
))
6991 subtarget
= gen_reg_rtx (GET_MODE (value
));
6992 emit_move_insn (subtarget
, value
);
6996 if (ARITHMETIC_P (value
))
6998 op2
= XEXP (value
, 1);
6999 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7001 if (code
== MINUS
&& CONST_INT_P (op2
))
7004 op2
= negate_rtx (GET_MODE (value
), op2
);
7007 /* Check for an addition with OP2 a constant integer and our first
7008 operand a PLUS of a virtual register and something else. In that
7009 case, we want to emit the sum of the virtual register and the
7010 constant first and then add the other value. This allows virtual
7011 register instantiation to simply modify the constant rather than
7012 creating another one around this addition. */
7013 if (code
== PLUS
&& CONST_INT_P (op2
)
7014 && GET_CODE (XEXP (value
, 0)) == PLUS
7015 && REG_P (XEXP (XEXP (value
, 0), 0))
7016 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7017 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7019 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7020 XEXP (XEXP (value
, 0), 0), op2
,
7021 subtarget
, 0, OPTAB_LIB_WIDEN
);
7022 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7023 force_operand (XEXP (XEXP (value
,
7025 target
, 0, OPTAB_LIB_WIDEN
);
7028 op1
= force_operand (XEXP (value
, 0), subtarget
);
7029 op2
= force_operand (op2
, NULL_RTX
);
7033 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7035 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7036 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7037 target
, 1, OPTAB_LIB_WIDEN
);
7039 return expand_divmod (0,
7040 FLOAT_MODE_P (GET_MODE (value
))
7041 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7042 GET_MODE (value
), op1
, op2
, target
, 0);
7044 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7047 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7050 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7053 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7054 target
, 0, OPTAB_LIB_WIDEN
);
7056 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7057 target
, 1, OPTAB_LIB_WIDEN
);
7060 if (UNARY_P (value
))
7063 target
= gen_reg_rtx (GET_MODE (value
));
7064 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7071 case FLOAT_TRUNCATE
:
7072 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7077 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7081 case UNSIGNED_FLOAT
:
7082 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7086 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7090 #ifdef INSN_SCHEDULING
7091 /* On machines that have insn scheduling, we want all memory reference to be
7092 explicit, so we need to deal with such paradoxical SUBREGs. */
7093 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7095 = simplify_gen_subreg (GET_MODE (value
),
7096 force_reg (GET_MODE (SUBREG_REG (value
)),
7097 force_operand (SUBREG_REG (value
),
7099 GET_MODE (SUBREG_REG (value
)),
7100 SUBREG_BYTE (value
));
7106 /* Subroutine of expand_expr: return nonzero iff there is no way that
7107 EXP can reference X, which is being modified. TOP_P is nonzero if this
7108 call is going to be used to determine whether we need a temporary
7109 for EXP, as opposed to a recursive call to this function.
7111 It is always safe for this routine to return zero since it merely
7112 searches for optimization opportunities. */
7115 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7121 /* If EXP has varying size, we MUST use a target since we currently
7122 have no way of allocating temporaries of variable size
7123 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7124 So we assume here that something at a higher level has prevented a
7125 clash. This is somewhat bogus, but the best we can do. Only
7126 do this when X is BLKmode and when we are at the top level. */
7127 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7128 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7129 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7130 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7131 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7133 && GET_MODE (x
) == BLKmode
)
7134 /* If X is in the outgoing argument area, it is always safe. */
7136 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7137 || (GET_CODE (XEXP (x
, 0)) == PLUS
7138 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7141 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7142 find the underlying pseudo. */
7143 if (GET_CODE (x
) == SUBREG
)
7146 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7150 /* Now look at our tree code and possibly recurse. */
7151 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7153 case tcc_declaration
:
7154 exp_rtl
= DECL_RTL_IF_SET (exp
);
7160 case tcc_exceptional
:
7161 if (TREE_CODE (exp
) == TREE_LIST
)
7165 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7167 exp
= TREE_CHAIN (exp
);
7170 if (TREE_CODE (exp
) != TREE_LIST
)
7171 return safe_from_p (x
, exp
, 0);
7174 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7176 constructor_elt
*ce
;
7177 unsigned HOST_WIDE_INT idx
;
7179 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7180 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7181 || !safe_from_p (x
, ce
->value
, 0))
7185 else if (TREE_CODE (exp
) == ERROR_MARK
)
7186 return 1; /* An already-visited SAVE_EXPR? */
7191 /* The only case we look at here is the DECL_INITIAL inside a
7193 return (TREE_CODE (exp
) != DECL_EXPR
7194 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7195 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7196 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7199 case tcc_comparison
:
7200 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7205 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7207 case tcc_expression
:
7210 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7211 the expression. If it is set, we conflict iff we are that rtx or
7212 both are in memory. Otherwise, we check all operands of the
7213 expression recursively. */
7215 switch (TREE_CODE (exp
))
7218 /* If the operand is static or we are static, we can't conflict.
7219 Likewise if we don't conflict with the operand at all. */
7220 if (staticp (TREE_OPERAND (exp
, 0))
7221 || TREE_STATIC (exp
)
7222 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7225 /* Otherwise, the only way this can conflict is if we are taking
7226 the address of a DECL a that address if part of X, which is
7228 exp
= TREE_OPERAND (exp
, 0);
7231 if (!DECL_RTL_SET_P (exp
)
7232 || !MEM_P (DECL_RTL (exp
)))
7235 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7241 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7242 get_alias_set (exp
)))
7247 /* Assume that the call will clobber all hard registers and
7249 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7254 case WITH_CLEANUP_EXPR
:
7255 case CLEANUP_POINT_EXPR
:
7256 /* Lowered by gimplify.c. */
7260 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7266 /* If we have an rtx, we do not need to scan our operands. */
7270 nops
= TREE_OPERAND_LENGTH (exp
);
7271 for (i
= 0; i
< nops
; i
++)
7272 if (TREE_OPERAND (exp
, i
) != 0
7273 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7279 /* Should never get a type here. */
7283 /* If we have an rtl, find any enclosed object. Then see if we conflict
7287 if (GET_CODE (exp_rtl
) == SUBREG
)
7289 exp_rtl
= SUBREG_REG (exp_rtl
);
7291 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7295 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7296 are memory and they conflict. */
7297 return ! (rtx_equal_p (x
, exp_rtl
)
7298 || (MEM_P (x
) && MEM_P (exp_rtl
)
7299 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7302 /* If we reach here, it is safe. */
7307 /* Return the highest power of two that EXP is known to be a multiple of.
7308 This is used in updating alignment of MEMs in array references. */
7310 unsigned HOST_WIDE_INT
7311 highest_pow2_factor (const_tree exp
)
7313 unsigned HOST_WIDE_INT c0
, c1
;
7315 switch (TREE_CODE (exp
))
7318 /* We can find the lowest bit that's a one. If the low
7319 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
7320 We need to handle this case since we can find it in a COND_EXPR,
7321 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
7322 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
7324 if (TREE_OVERFLOW (exp
))
7325 return BIGGEST_ALIGNMENT
;
7328 /* Note: tree_low_cst is intentionally not used here,
7329 we don't care about the upper bits. */
7330 c0
= TREE_INT_CST_LOW (exp
);
7332 return c0
? c0
: BIGGEST_ALIGNMENT
;
7336 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
7337 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7338 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7339 return MIN (c0
, c1
);
7342 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7343 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7346 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
7348 if (integer_pow2p (TREE_OPERAND (exp
, 1))
7349 && host_integerp (TREE_OPERAND (exp
, 1), 1))
7351 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7352 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
7353 return MAX (1, c0
/ c1
);
7358 /* The highest power of two of a bit-and expression is the maximum of
7359 that of its operands. We typically get here for a complex LHS and
7360 a constant negative power of two on the RHS to force an explicit
7361 alignment, so don't bother looking at the LHS. */
7362 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
7366 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
7369 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
7372 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7373 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
7374 return MIN (c0
, c1
);
7383 /* Similar, except that the alignment requirements of TARGET are
7384 taken into account. Assume it is at least as aligned as its
7385 type, unless it is a COMPONENT_REF in which case the layout of
7386 the structure gives the alignment. */
7388 static unsigned HOST_WIDE_INT
7389 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7391 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7392 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7394 return MAX (factor
, talign
);
7397 #ifdef HAVE_conditional_move
7398 /* Convert the tree comparison code TCODE to the rtl one where the
7399 signedness is UNSIGNEDP. */
7401 static enum rtx_code
7402 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7414 code
= unsignedp
? LTU
: LT
;
7417 code
= unsignedp
? LEU
: LE
;
7420 code
= unsignedp
? GTU
: GT
;
7423 code
= unsignedp
? GEU
: GE
;
7425 case UNORDERED_EXPR
:
7457 /* Subroutine of expand_expr. Expand the two operands of a binary
7458 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7459 The value may be stored in TARGET if TARGET is nonzero. The
7460 MODIFIER argument is as documented by expand_expr. */
7463 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7464 enum expand_modifier modifier
)
7466 if (! safe_from_p (target
, exp1
, 1))
7468 if (operand_equal_p (exp0
, exp1
, 0))
7470 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7471 *op1
= copy_rtx (*op0
);
7475 /* If we need to preserve evaluation order, copy exp0 into its own
7476 temporary variable so that it can't be clobbered by exp1. */
7477 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7478 exp0
= save_expr (exp0
);
7479 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7480 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7485 /* Return a MEM that contains constant EXP. DEFER is as for
7486 output_constant_def and MODIFIER is as for expand_expr. */
7489 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7493 mem
= output_constant_def (exp
, defer
);
7494 if (modifier
!= EXPAND_INITIALIZER
)
7495 mem
= use_anchored_address (mem
);
7499 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7500 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7503 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
7504 enum expand_modifier modifier
, addr_space_t as
)
7506 rtx result
, subtarget
;
7508 HOST_WIDE_INT bitsize
, bitpos
;
7509 int volatilep
, unsignedp
;
7510 enum machine_mode mode1
;
7512 /* If we are taking the address of a constant and are at the top level,
7513 we have to use output_constant_def since we can't call force_const_mem
7515 /* ??? This should be considered a front-end bug. We should not be
7516 generating ADDR_EXPR of something that isn't an LVALUE. The only
7517 exception here is STRING_CST. */
7518 if (CONSTANT_CLASS_P (exp
))
7520 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7521 if (modifier
< EXPAND_SUM
)
7522 result
= force_operand (result
, target
);
7526 /* Everything must be something allowed by is_gimple_addressable. */
7527 switch (TREE_CODE (exp
))
7530 /* This case will happen via recursion for &a->b. */
7531 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7535 tree tem
= TREE_OPERAND (exp
, 0);
7536 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7537 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7538 return expand_expr (tem
, target
, tmode
, modifier
);
7542 /* Expand the initializer like constants above. */
7543 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7545 if (modifier
< EXPAND_SUM
)
7546 result
= force_operand (result
, target
);
7550 /* The real part of the complex number is always first, therefore
7551 the address is the same as the address of the parent object. */
7554 inner
= TREE_OPERAND (exp
, 0);
7558 /* The imaginary part of the complex number is always second.
7559 The expression is therefore always offset by the size of the
7562 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7563 inner
= TREE_OPERAND (exp
, 0);
7567 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7568 expand_expr, as that can have various side effects; LABEL_DECLs for
7569 example, may not have their DECL_RTL set yet. Expand the rtl of
7570 CONSTRUCTORs too, which should yield a memory reference for the
7571 constructor's contents. Assume language specific tree nodes can
7572 be expanded in some interesting way. */
7573 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7575 || TREE_CODE (exp
) == CONSTRUCTOR
7576 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7578 result
= expand_expr (exp
, target
, tmode
,
7579 modifier
== EXPAND_INITIALIZER
7580 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7582 /* If the DECL isn't in memory, then the DECL wasn't properly
7583 marked TREE_ADDRESSABLE, which will be either a front-end
7584 or a tree optimizer bug. */
7586 if (TREE_ADDRESSABLE (exp
)
7588 && ! targetm
.calls
.allocate_stack_slots_for_args())
7590 error ("local frame unavailable (naked function?)");
7594 gcc_assert (MEM_P (result
));
7595 result
= XEXP (result
, 0);
7597 /* ??? Is this needed anymore? */
7599 TREE_USED (exp
) = 1;
7601 if (modifier
!= EXPAND_INITIALIZER
7602 && modifier
!= EXPAND_CONST_ADDRESS
7603 && modifier
!= EXPAND_SUM
)
7604 result
= force_operand (result
, target
);
7608 /* Pass FALSE as the last argument to get_inner_reference although
7609 we are expanding to RTL. The rationale is that we know how to
7610 handle "aligning nodes" here: we can just bypass them because
7611 they won't change the final object whose address will be returned
7612 (they actually exist only for that purpose). */
7613 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7614 &mode1
, &unsignedp
, &volatilep
, false);
7618 /* We must have made progress. */
7619 gcc_assert (inner
!= exp
);
7621 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7622 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7623 inner alignment, force the inner to be sufficiently aligned. */
7624 if (CONSTANT_CLASS_P (inner
)
7625 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7627 inner
= copy_node (inner
);
7628 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7629 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7630 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7632 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7638 if (modifier
!= EXPAND_NORMAL
)
7639 result
= force_operand (result
, NULL
);
7640 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7641 modifier
== EXPAND_INITIALIZER
7642 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7644 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7645 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7647 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7648 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7651 subtarget
= bitpos
? NULL_RTX
: target
;
7652 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7653 1, OPTAB_LIB_WIDEN
);
7659 /* Someone beforehand should have rejected taking the address
7660 of such an object. */
7661 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7663 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7664 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7665 if (modifier
< EXPAND_SUM
)
7666 result
= force_operand (result
, target
);
7672 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7673 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7676 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
7677 enum expand_modifier modifier
)
7679 addr_space_t as
= ADDR_SPACE_GENERIC
;
7680 enum machine_mode address_mode
= Pmode
;
7681 enum machine_mode pointer_mode
= ptr_mode
;
7682 enum machine_mode rmode
;
7685 /* Target mode of VOIDmode says "whatever's natural". */
7686 if (tmode
== VOIDmode
)
7687 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7689 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7691 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7692 address_mode
= targetm
.addr_space
.address_mode (as
);
7693 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7696 /* We can get called with some Weird Things if the user does silliness
7697 like "(short) &a". In that case, convert_memory_address won't do
7698 the right thing, so ignore the given target mode. */
7699 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7700 tmode
= address_mode
;
7702 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7703 tmode
, modifier
, as
);
7705 /* Despite expand_expr claims concerning ignoring TMODE when not
7706 strictly convenient, stuff breaks if we don't honor it. Note
7707 that combined with the above, we only do this for pointer modes. */
7708 rmode
= GET_MODE (result
);
7709 if (rmode
== VOIDmode
)
7712 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7717 /* Generate code for computing CONSTRUCTOR EXP.
7718 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7719 is TRUE, instead of creating a temporary variable in memory
7720 NULL is returned and the caller needs to handle it differently. */
7723 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7724 bool avoid_temp_mem
)
7726 tree type
= TREE_TYPE (exp
);
7727 enum machine_mode mode
= TYPE_MODE (type
);
7729 /* Try to avoid creating a temporary at all. This is possible
7730 if all of the initializer is zero.
7731 FIXME: try to handle all [0..255] initializers we can handle
7733 if (TREE_STATIC (exp
)
7734 && !TREE_ADDRESSABLE (exp
)
7735 && target
!= 0 && mode
== BLKmode
7736 && all_zeros_p (exp
))
7738 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7742 /* All elts simple constants => refer to a constant in memory. But
7743 if this is a non-BLKmode mode, let it store a field at a time
7744 since that should make a CONST_INT or CONST_DOUBLE when we
7745 fold. Likewise, if we have a target we can use, it is best to
7746 store directly into the target unless the type is large enough
7747 that memcpy will be used. If we are making an initializer and
7748 all operands are constant, put it in memory as well.
7750 FIXME: Avoid trying to fill vector constructors piece-meal.
7751 Output them with output_constant_def below unless we're sure
7752 they're zeros. This should go away when vector initializers
7753 are treated like VECTOR_CST instead of arrays. */
7754 if ((TREE_STATIC (exp
)
7755 && ((mode
== BLKmode
7756 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7757 || TREE_ADDRESSABLE (exp
)
7758 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
7759 && (! MOVE_BY_PIECES_P
7760 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
7762 && ! mostly_zeros_p (exp
))))
7763 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7764 && TREE_CONSTANT (exp
)))
7771 constructor
= expand_expr_constant (exp
, 1, modifier
);
7773 if (modifier
!= EXPAND_CONST_ADDRESS
7774 && modifier
!= EXPAND_INITIALIZER
7775 && modifier
!= EXPAND_SUM
)
7776 constructor
= validize_mem (constructor
);
7781 /* Handle calls that pass values in multiple non-contiguous
7782 locations. The Irix 6 ABI has examples of this. */
7783 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7784 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7790 = assign_temp (build_qualified_type (type
, (TYPE_QUALS (type
)
7791 | (TREE_READONLY (exp
)
7792 * TYPE_QUAL_CONST
))),
7793 TREE_ADDRESSABLE (exp
), 1);
7796 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7801 /* expand_expr: generate code for computing expression EXP.
7802 An rtx for the computed value is returned. The value is never null.
7803 In the case of a void EXP, const0_rtx is returned.
7805 The value may be stored in TARGET if TARGET is nonzero.
7806 TARGET is just a suggestion; callers must assume that
7807 the rtx returned may not be the same as TARGET.
7809 If TARGET is CONST0_RTX, it means that the value will be ignored.
7811 If TMODE is not VOIDmode, it suggests generating the
7812 result in mode TMODE. But this is done only when convenient.
7813 Otherwise, TMODE is ignored and the value generated in its natural mode.
7814 TMODE is just a suggestion; callers must assume that
7815 the rtx returned may not have mode TMODE.
7817 Note that TARGET may have neither TMODE nor MODE. In that case, it
7818 probably will not be used.
7820 If MODIFIER is EXPAND_SUM then when EXP is an addition
7821 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7822 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7823 products as above, or REG or MEM, or constant.
7824 Ordinarily in such cases we would output mul or add instructions
7825 and then return a pseudo reg containing the sum.
7827 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7828 it also marks a label as absolutely required (it can't be dead).
7829 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7830 This is used for outputting expressions used in initializers.
7832 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7833 with a constant address even if that address is not normally legitimate.
7834 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7836 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7837 a call parameter. Such targets require special care as we haven't yet
7838 marked TARGET so that it's safe from being trashed by libcalls. We
7839 don't want to use TARGET for anything but the final result;
7840 Intermediate values must go elsewhere. Additionally, calls to
7841 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7843 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7844 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7845 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7846 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7850 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
7851 enum expand_modifier modifier
, rtx
*alt_rtl
)
7855 /* Handle ERROR_MARK before anybody tries to access its type. */
7856 if (TREE_CODE (exp
) == ERROR_MARK
7857 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7859 ret
= CONST0_RTX (tmode
);
7860 return ret
? ret
: const0_rtx
;
7863 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7867 /* Try to expand the conditional expression which is represented by
7868 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7869 return the rtl reg which repsents the result. Otherwise return
7873 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
7874 tree treeop1 ATTRIBUTE_UNUSED
,
7875 tree treeop2 ATTRIBUTE_UNUSED
)
7877 #ifdef HAVE_conditional_move
7879 rtx op00
, op01
, op1
, op2
;
7880 enum rtx_code comparison_code
;
7881 enum machine_mode comparison_mode
;
7884 tree type
= TREE_TYPE (treeop1
);
7885 int unsignedp
= TYPE_UNSIGNED (type
);
7886 enum machine_mode mode
= TYPE_MODE (type
);
7888 /* If we cannot do a conditional move on the mode, try doing it
7889 with the promoted mode. */
7890 if (!can_conditionally_move_p (mode
))
7892 mode
= promote_mode (type
, mode
, &unsignedp
);
7893 if (!can_conditionally_move_p (mode
))
7895 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
7898 temp
= assign_temp (type
, 0, 1);
7901 expand_operands (treeop1
, treeop2
,
7902 temp
, &op1
, &op2
, EXPAND_NORMAL
);
7904 if (TREE_CODE (treeop0
) == SSA_NAME
7905 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
7907 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
7908 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
7909 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
7910 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
7911 comparison_mode
= TYPE_MODE (type
);
7912 unsignedp
= TYPE_UNSIGNED (type
);
7913 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7915 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
7917 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
7918 enum tree_code cmpcode
= TREE_CODE (treeop0
);
7919 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
7920 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
7921 unsignedp
= TYPE_UNSIGNED (type
);
7922 comparison_mode
= TYPE_MODE (type
);
7923 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7927 op00
= expand_normal (treeop0
);
7929 comparison_code
= NE
;
7930 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
7933 if (GET_MODE (op1
) != mode
)
7934 op1
= gen_lowpart (mode
, op1
);
7936 if (GET_MODE (op2
) != mode
)
7937 op2
= gen_lowpart (mode
, op2
);
7939 /* Try to emit the conditional move. */
7940 insn
= emit_conditional_move (temp
, comparison_code
,
7941 op00
, op01
, comparison_mode
,
7945 /* If we could do the conditional move, emit the sequence,
7949 rtx seq
= get_insns ();
7955 /* Otherwise discard the sequence and fall back to code with
7963 expand_expr_real_2 (sepops ops
, rtx target
, enum machine_mode tmode
,
7964 enum expand_modifier modifier
)
7966 rtx op0
, op1
, op2
, temp
;
7969 enum machine_mode mode
;
7970 enum tree_code code
= ops
->code
;
7972 rtx subtarget
, original_target
;
7974 bool reduce_bit_field
;
7975 location_t loc
= ops
->location
;
7976 tree treeop0
, treeop1
, treeop2
;
7977 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7978 ? reduce_to_bit_field_precision ((expr), \
7984 mode
= TYPE_MODE (type
);
7985 unsignedp
= TYPE_UNSIGNED (type
);
7991 /* We should be called only on simple (binary or unary) expressions,
7992 exactly those that are valid in gimple expressions that aren't
7993 GIMPLE_SINGLE_RHS (or invalid). */
7994 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
7995 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
7996 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
7998 ignore
= (target
== const0_rtx
7999 || ((CONVERT_EXPR_CODE_P (code
)
8000 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8001 && TREE_CODE (type
) == VOID_TYPE
));
8003 /* We should be called only if we need the result. */
8004 gcc_assert (!ignore
);
8006 /* An operation in what may be a bit-field type needs the
8007 result to be reduced to the precision of the bit-field type,
8008 which is narrower than that of the type's mode. */
8009 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8010 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8012 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8015 /* Use subtarget as the target for operand 0 of a binary operation. */
8016 subtarget
= get_subtarget (target
);
8017 original_target
= target
;
8021 case NON_LVALUE_EXPR
:
8024 if (treeop0
== error_mark_node
)
8027 if (TREE_CODE (type
) == UNION_TYPE
)
8029 tree valtype
= TREE_TYPE (treeop0
);
8031 /* If both input and output are BLKmode, this conversion isn't doing
8032 anything except possibly changing memory attribute. */
8033 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8035 rtx result
= expand_expr (treeop0
, target
, tmode
,
8038 result
= copy_rtx (result
);
8039 set_mem_attributes (result
, type
, 0);
8045 if (TYPE_MODE (type
) != BLKmode
)
8046 target
= gen_reg_rtx (TYPE_MODE (type
));
8048 target
= assign_temp (type
, 1, 1);
8052 /* Store data into beginning of memory target. */
8053 store_expr (treeop0
,
8054 adjust_address (target
, TYPE_MODE (valtype
), 0),
8055 modifier
== EXPAND_STACK_PARM
,
8060 gcc_assert (REG_P (target
));
8062 /* Store this field into a union of the proper type. */
8063 store_field (target
,
8064 MIN ((int_size_in_bytes (TREE_TYPE
8067 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8068 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8071 /* Return the entire union. */
8075 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8077 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8080 /* If the signedness of the conversion differs and OP0 is
8081 a promoted SUBREG, clear that indication since we now
8082 have to do the proper extension. */
8083 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8084 && GET_CODE (op0
) == SUBREG
)
8085 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8087 return REDUCE_BIT_FIELD (op0
);
8090 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8091 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8092 if (GET_MODE (op0
) == mode
)
8095 /* If OP0 is a constant, just convert it into the proper mode. */
8096 else if (CONSTANT_P (op0
))
8098 tree inner_type
= TREE_TYPE (treeop0
);
8099 enum machine_mode inner_mode
= GET_MODE (op0
);
8101 if (inner_mode
== VOIDmode
)
8102 inner_mode
= TYPE_MODE (inner_type
);
8104 if (modifier
== EXPAND_INITIALIZER
)
8105 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8106 subreg_lowpart_offset (mode
,
8109 op0
= convert_modes (mode
, inner_mode
, op0
,
8110 TYPE_UNSIGNED (inner_type
));
8113 else if (modifier
== EXPAND_INITIALIZER
)
8114 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8116 else if (target
== 0)
8117 op0
= convert_to_mode (mode
, op0
,
8118 TYPE_UNSIGNED (TREE_TYPE
8122 convert_move (target
, op0
,
8123 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8127 return REDUCE_BIT_FIELD (op0
);
8129 case ADDR_SPACE_CONVERT_EXPR
:
8131 tree treeop0_type
= TREE_TYPE (treeop0
);
8133 addr_space_t as_from
;
8135 gcc_assert (POINTER_TYPE_P (type
));
8136 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8138 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8139 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8141 /* Conversions between pointers to the same address space should
8142 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8143 gcc_assert (as_to
!= as_from
);
8145 /* Ask target code to handle conversion between pointers
8146 to overlapping address spaces. */
8147 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8148 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8150 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8151 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8156 /* For disjoint address spaces, converting anything but
8157 a null pointer invokes undefined behaviour. We simply
8158 always return a null pointer here. */
8159 return CONST0_RTX (mode
);
8162 case POINTER_PLUS_EXPR
:
8163 /* Even though the sizetype mode and the pointer's mode can be different
8164 expand is able to handle this correctly and get the correct result out
8165 of the PLUS_EXPR code. */
8166 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8167 if sizetype precision is smaller than pointer precision. */
8168 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8169 treeop1
= fold_convert_loc (loc
, type
,
8170 fold_convert_loc (loc
, ssizetype
,
8172 /* If sizetype precision is larger than pointer precision, truncate the
8173 offset to have matching modes. */
8174 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8175 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8178 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8179 something else, make sure we add the register to the constant and
8180 then to the other thing. This case can occur during strength
8181 reduction and doing it this way will produce better code if the
8182 frame pointer or argument pointer is eliminated.
8184 fold-const.c will ensure that the constant is always in the inner
8185 PLUS_EXPR, so the only case we need to do anything about is if
8186 sp, ap, or fp is our second argument, in which case we must swap
8187 the innermost first argument and our second argument. */
8189 if (TREE_CODE (treeop0
) == PLUS_EXPR
8190 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8191 && TREE_CODE (treeop1
) == VAR_DECL
8192 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8193 || DECL_RTL (treeop1
) == stack_pointer_rtx
8194 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8199 /* If the result is to be ptr_mode and we are adding an integer to
8200 something, we might be forming a constant. So try to use
8201 plus_constant. If it produces a sum and we can't accept it,
8202 use force_operand. This allows P = &ARR[const] to generate
8203 efficient code on machines where a SYMBOL_REF is not a valid
8206 If this is an EXPAND_SUM call, always return the sum. */
8207 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8208 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8210 if (modifier
== EXPAND_STACK_PARM
)
8212 if (TREE_CODE (treeop0
) == INTEGER_CST
8213 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8214 && TREE_CONSTANT (treeop1
))
8218 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8220 /* Use immed_double_const to ensure that the constant is
8221 truncated according to the mode of OP1, then sign extended
8222 to a HOST_WIDE_INT. Using the constant directly can result
8223 in non-canonical RTL in a 64x32 cross compile. */
8225 = immed_double_const (TREE_INT_CST_LOW (treeop0
),
8227 TYPE_MODE (TREE_TYPE (treeop1
)));
8228 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8229 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8230 op1
= force_operand (op1
, target
);
8231 return REDUCE_BIT_FIELD (op1
);
8234 else if (TREE_CODE (treeop1
) == INTEGER_CST
8235 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8236 && TREE_CONSTANT (treeop0
))
8240 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8241 (modifier
== EXPAND_INITIALIZER
8242 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8243 if (! CONSTANT_P (op0
))
8245 op1
= expand_expr (treeop1
, NULL_RTX
,
8246 VOIDmode
, modifier
);
8247 /* Return a PLUS if modifier says it's OK. */
8248 if (modifier
== EXPAND_SUM
8249 || modifier
== EXPAND_INITIALIZER
)
8250 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8253 /* Use immed_double_const to ensure that the constant is
8254 truncated according to the mode of OP1, then sign extended
8255 to a HOST_WIDE_INT. Using the constant directly can result
8256 in non-canonical RTL in a 64x32 cross compile. */
8258 = immed_double_const (TREE_INT_CST_LOW (treeop1
),
8260 TYPE_MODE (TREE_TYPE (treeop0
)));
8261 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8262 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8263 op0
= force_operand (op0
, target
);
8264 return REDUCE_BIT_FIELD (op0
);
8268 /* Use TER to expand pointer addition of a negated value
8269 as pointer subtraction. */
8270 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8271 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8272 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8273 && TREE_CODE (treeop1
) == SSA_NAME
8274 && TYPE_MODE (TREE_TYPE (treeop0
))
8275 == TYPE_MODE (TREE_TYPE (treeop1
)))
8277 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8280 treeop1
= gimple_assign_rhs1 (def
);
8286 /* No sense saving up arithmetic to be done
8287 if it's all in the wrong mode to form part of an address.
8288 And force_operand won't know whether to sign-extend or
8290 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8291 || mode
!= ptr_mode
)
8293 expand_operands (treeop0
, treeop1
,
8294 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8295 if (op0
== const0_rtx
)
8297 if (op1
== const0_rtx
)
8302 expand_operands (treeop0
, treeop1
,
8303 subtarget
, &op0
, &op1
, modifier
);
8304 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8308 /* For initializers, we are allowed to return a MINUS of two
8309 symbolic constants. Here we handle all cases when both operands
8311 /* Handle difference of two symbolic constants,
8312 for the sake of an initializer. */
8313 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8314 && really_constant_p (treeop0
)
8315 && really_constant_p (treeop1
))
8317 expand_operands (treeop0
, treeop1
,
8318 NULL_RTX
, &op0
, &op1
, modifier
);
8320 /* If the last operand is a CONST_INT, use plus_constant of
8321 the negated constant. Else make the MINUS. */
8322 if (CONST_INT_P (op1
))
8323 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8326 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8329 /* No sense saving up arithmetic to be done
8330 if it's all in the wrong mode to form part of an address.
8331 And force_operand won't know whether to sign-extend or
8333 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8334 || mode
!= ptr_mode
)
8337 expand_operands (treeop0
, treeop1
,
8338 subtarget
, &op0
, &op1
, modifier
);
8340 /* Convert A - const to A + (-const). */
8341 if (CONST_INT_P (op1
))
8343 op1
= negate_rtx (mode
, op1
);
8344 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8349 case WIDEN_MULT_PLUS_EXPR
:
8350 case WIDEN_MULT_MINUS_EXPR
:
8351 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8352 op2
= expand_normal (treeop2
);
8353 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8357 case WIDEN_MULT_EXPR
:
8358 /* If first operand is constant, swap them.
8359 Thus the following special case checks need only
8360 check the second operand. */
8361 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8368 /* First, check if we have a multiplication of one signed and one
8369 unsigned operand. */
8370 if (TREE_CODE (treeop1
) != INTEGER_CST
8371 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8372 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8374 enum machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8375 this_optab
= usmul_widen_optab
;
8376 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8377 != CODE_FOR_nothing
)
8379 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8380 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8383 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8388 /* Check for a multiplication with matching signedness. */
8389 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8390 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8391 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8392 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8394 tree op0type
= TREE_TYPE (treeop0
);
8395 enum machine_mode innermode
= TYPE_MODE (op0type
);
8396 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8397 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8398 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8400 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8402 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8403 != CODE_FOR_nothing
)
8405 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8407 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8408 unsignedp
, this_optab
);
8409 return REDUCE_BIT_FIELD (temp
);
8411 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8413 && innermode
== word_mode
)
8416 op0
= expand_normal (treeop0
);
8417 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8418 op1
= convert_modes (innermode
, mode
,
8419 expand_normal (treeop1
), unsignedp
);
8421 op1
= expand_normal (treeop1
);
8422 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8423 unsignedp
, OPTAB_LIB_WIDEN
);
8424 hipart
= gen_highpart (innermode
, temp
);
8425 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8429 emit_move_insn (hipart
, htem
);
8430 return REDUCE_BIT_FIELD (temp
);
8434 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8435 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8436 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8437 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8441 optab opt
= fma_optab
;
8444 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8446 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8448 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8451 gcc_assert (fn
!= NULL_TREE
);
8452 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8453 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8456 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8457 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8462 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8465 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8466 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8469 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8472 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8475 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8478 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8482 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8484 op2
= expand_normal (treeop2
);
8485 op1
= expand_normal (treeop1
);
8487 return expand_ternary_op (TYPE_MODE (type
), opt
,
8488 op0
, op1
, op2
, target
, 0);
8492 /* If this is a fixed-point operation, then we cannot use the code
8493 below because "expand_mult" doesn't support sat/no-sat fixed-point
8495 if (ALL_FIXED_POINT_MODE_P (mode
))
8498 /* If first operand is constant, swap them.
8499 Thus the following special case checks need only
8500 check the second operand. */
8501 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8508 /* Attempt to return something suitable for generating an
8509 indexed address, for machines that support that. */
8511 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8512 && host_integerp (treeop1
, 0))
8514 tree exp1
= treeop1
;
8516 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8520 op0
= force_operand (op0
, NULL_RTX
);
8522 op0
= copy_to_mode_reg (mode
, op0
);
8524 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8525 gen_int_mode (tree_low_cst (exp1
, 0),
8526 TYPE_MODE (TREE_TYPE (exp1
)))));
8529 if (modifier
== EXPAND_STACK_PARM
)
8532 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8533 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8535 case TRUNC_DIV_EXPR
:
8536 case FLOOR_DIV_EXPR
:
8538 case ROUND_DIV_EXPR
:
8539 case EXACT_DIV_EXPR
:
8540 /* If this is a fixed-point operation, then we cannot use the code
8541 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8543 if (ALL_FIXED_POINT_MODE_P (mode
))
8546 if (modifier
== EXPAND_STACK_PARM
)
8548 /* Possible optimization: compute the dividend with EXPAND_SUM
8549 then if the divisor is constant can optimize the case
8550 where some terms of the dividend have coeffs divisible by it. */
8551 expand_operands (treeop0
, treeop1
,
8552 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8553 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8558 case MULT_HIGHPART_EXPR
:
8559 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8560 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8564 case TRUNC_MOD_EXPR
:
8565 case FLOOR_MOD_EXPR
:
8567 case ROUND_MOD_EXPR
:
8568 if (modifier
== EXPAND_STACK_PARM
)
8570 expand_operands (treeop0
, treeop1
,
8571 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8572 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8574 case FIXED_CONVERT_EXPR
:
8575 op0
= expand_normal (treeop0
);
8576 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8577 target
= gen_reg_rtx (mode
);
8579 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8580 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8581 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8582 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8584 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8587 case FIX_TRUNC_EXPR
:
8588 op0
= expand_normal (treeop0
);
8589 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8590 target
= gen_reg_rtx (mode
);
8591 expand_fix (target
, op0
, unsignedp
);
8595 op0
= expand_normal (treeop0
);
8596 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8597 target
= gen_reg_rtx (mode
);
8598 /* expand_float can't figure out what to do if FROM has VOIDmode.
8599 So give it the correct mode. With -O, cse will optimize this. */
8600 if (GET_MODE (op0
) == VOIDmode
)
8601 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8603 expand_float (target
, op0
,
8604 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8608 op0
= expand_expr (treeop0
, subtarget
,
8609 VOIDmode
, EXPAND_NORMAL
);
8610 if (modifier
== EXPAND_STACK_PARM
)
8612 temp
= expand_unop (mode
,
8613 optab_for_tree_code (NEGATE_EXPR
, type
,
8617 return REDUCE_BIT_FIELD (temp
);
8620 op0
= expand_expr (treeop0
, subtarget
,
8621 VOIDmode
, EXPAND_NORMAL
);
8622 if (modifier
== EXPAND_STACK_PARM
)
8625 /* ABS_EXPR is not valid for complex arguments. */
8626 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8627 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8629 /* Unsigned abs is simply the operand. Testing here means we don't
8630 risk generating incorrect code below. */
8631 if (TYPE_UNSIGNED (type
))
8634 return expand_abs (mode
, op0
, target
, unsignedp
,
8635 safe_from_p (target
, treeop0
, 1));
8639 target
= original_target
;
8641 || modifier
== EXPAND_STACK_PARM
8642 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8643 || GET_MODE (target
) != mode
8645 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8646 target
= gen_reg_rtx (mode
);
8647 expand_operands (treeop0
, treeop1
,
8648 target
, &op0
, &op1
, EXPAND_NORMAL
);
8650 /* First try to do it with a special MIN or MAX instruction.
8651 If that does not win, use a conditional jump to select the proper
8653 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8654 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8659 /* At this point, a MEM target is no longer useful; we will get better
8662 if (! REG_P (target
))
8663 target
= gen_reg_rtx (mode
);
8665 /* If op1 was placed in target, swap op0 and op1. */
8666 if (target
!= op0
&& target
== op1
)
8673 /* We generate better code and avoid problems with op1 mentioning
8674 target by forcing op1 into a pseudo if it isn't a constant. */
8675 if (! CONSTANT_P (op1
))
8676 op1
= force_reg (mode
, op1
);
8679 enum rtx_code comparison_code
;
8682 if (code
== MAX_EXPR
)
8683 comparison_code
= unsignedp
? GEU
: GE
;
8685 comparison_code
= unsignedp
? LEU
: LE
;
8687 /* Canonicalize to comparisons against 0. */
8688 if (op1
== const1_rtx
)
8690 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8691 or (a != 0 ? a : 1) for unsigned.
8692 For MIN we are safe converting (a <= 1 ? a : 1)
8693 into (a <= 0 ? a : 1) */
8694 cmpop1
= const0_rtx
;
8695 if (code
== MAX_EXPR
)
8696 comparison_code
= unsignedp
? NE
: GT
;
8698 if (op1
== constm1_rtx
&& !unsignedp
)
8700 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8701 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8702 cmpop1
= const0_rtx
;
8703 if (code
== MIN_EXPR
)
8704 comparison_code
= LT
;
8706 #ifdef HAVE_conditional_move
8707 /* Use a conditional move if possible. */
8708 if (can_conditionally_move_p (mode
))
8712 /* ??? Same problem as in expmed.c: emit_conditional_move
8713 forces a stack adjustment via compare_from_rtx, and we
8714 lose the stack adjustment if the sequence we are about
8715 to create is discarded. */
8716 do_pending_stack_adjust ();
8720 /* Try to emit the conditional move. */
8721 insn
= emit_conditional_move (target
, comparison_code
,
8726 /* If we could do the conditional move, emit the sequence,
8730 rtx seq
= get_insns ();
8736 /* Otherwise discard the sequence and fall back to code with
8742 emit_move_insn (target
, op0
);
8744 temp
= gen_label_rtx ();
8745 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8746 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8749 emit_move_insn (target
, op1
);
8754 op0
= expand_expr (treeop0
, subtarget
,
8755 VOIDmode
, EXPAND_NORMAL
);
8756 if (modifier
== EXPAND_STACK_PARM
)
8758 /* In case we have to reduce the result to bitfield precision
8759 for unsigned bitfield expand this as XOR with a proper constant
8761 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8762 temp
= expand_binop (mode
, xor_optab
, op0
,
8763 immed_double_int_const
8764 (double_int::mask (TYPE_PRECISION (type
)), mode
),
8765 target
, 1, OPTAB_LIB_WIDEN
);
8767 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8771 /* ??? Can optimize bitwise operations with one arg constant.
8772 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8773 and (a bitwise1 b) bitwise2 b (etc)
8774 but that is probably not worth while. */
8783 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8784 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8785 == TYPE_PRECISION (type
)));
8790 /* If this is a fixed-point operation, then we cannot use the code
8791 below because "expand_shift" doesn't support sat/no-sat fixed-point
8793 if (ALL_FIXED_POINT_MODE_P (mode
))
8796 if (! safe_from_p (subtarget
, treeop1
, 1))
8798 if (modifier
== EXPAND_STACK_PARM
)
8800 op0
= expand_expr (treeop0
, subtarget
,
8801 VOIDmode
, EXPAND_NORMAL
);
8802 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
8804 if (code
== LSHIFT_EXPR
)
8805 temp
= REDUCE_BIT_FIELD (temp
);
8808 /* Could determine the answer when only additive constants differ. Also,
8809 the addition of one can be handled by changing the condition. */
8816 case UNORDERED_EXPR
:
8824 temp
= do_store_flag (ops
,
8825 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8826 tmode
!= VOIDmode
? tmode
: mode
);
8830 /* Use a compare and a jump for BLKmode comparisons, or for function
8831 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8834 || modifier
== EXPAND_STACK_PARM
8835 || ! safe_from_p (target
, treeop0
, 1)
8836 || ! safe_from_p (target
, treeop1
, 1)
8837 /* Make sure we don't have a hard reg (such as function's return
8838 value) live across basic blocks, if not optimizing. */
8839 || (!optimize
&& REG_P (target
)
8840 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8841 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8843 emit_move_insn (target
, const0_rtx
);
8845 op1
= gen_label_rtx ();
8846 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
8848 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
8849 emit_move_insn (target
, constm1_rtx
);
8851 emit_move_insn (target
, const1_rtx
);
8857 /* Get the rtx code of the operands. */
8858 op0
= expand_normal (treeop0
);
8859 op1
= expand_normal (treeop1
);
8862 target
= gen_reg_rtx (TYPE_MODE (type
));
8864 /* If target overlaps with op1, then either we need to force
8865 op1 into a pseudo (if target also overlaps with op0),
8866 or write the complex parts in reverse order. */
8867 switch (GET_CODE (target
))
8870 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
8872 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
8874 complex_expr_force_op1
:
8875 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
8876 emit_move_insn (temp
, op1
);
8880 complex_expr_swap_order
:
8881 /* Move the imaginary (op1) and real (op0) parts to their
8883 write_complex_part (target
, op1
, true);
8884 write_complex_part (target
, op0
, false);
8890 temp
= adjust_address_nv (target
,
8891 GET_MODE_INNER (GET_MODE (target
)), 0);
8892 if (reg_overlap_mentioned_p (temp
, op1
))
8894 enum machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
8895 temp
= adjust_address_nv (target
, imode
,
8896 GET_MODE_SIZE (imode
));
8897 if (reg_overlap_mentioned_p (temp
, op0
))
8898 goto complex_expr_force_op1
;
8899 goto complex_expr_swap_order
;
8903 if (reg_overlap_mentioned_p (target
, op1
))
8905 if (reg_overlap_mentioned_p (target
, op0
))
8906 goto complex_expr_force_op1
;
8907 goto complex_expr_swap_order
;
8912 /* Move the real (op0) and imaginary (op1) parts to their location. */
8913 write_complex_part (target
, op0
, false);
8914 write_complex_part (target
, op1
, true);
8918 case WIDEN_SUM_EXPR
:
8920 tree oprnd0
= treeop0
;
8921 tree oprnd1
= treeop1
;
8923 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8924 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
8929 case REDUC_MAX_EXPR
:
8930 case REDUC_MIN_EXPR
:
8931 case REDUC_PLUS_EXPR
:
8933 op0
= expand_normal (treeop0
);
8934 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8935 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
8940 case VEC_LSHIFT_EXPR
:
8941 case VEC_RSHIFT_EXPR
:
8943 target
= expand_vec_shift_expr (ops
, target
);
8947 case VEC_UNPACK_HI_EXPR
:
8948 case VEC_UNPACK_LO_EXPR
:
8950 op0
= expand_normal (treeop0
);
8951 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
8957 case VEC_UNPACK_FLOAT_HI_EXPR
:
8958 case VEC_UNPACK_FLOAT_LO_EXPR
:
8960 op0
= expand_normal (treeop0
);
8961 /* The signedness is determined from input operand. */
8962 temp
= expand_widen_pattern_expr
8963 (ops
, op0
, NULL_RTX
, NULL_RTX
,
8964 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8970 case VEC_WIDEN_MULT_HI_EXPR
:
8971 case VEC_WIDEN_MULT_LO_EXPR
:
8972 case VEC_WIDEN_MULT_EVEN_EXPR
:
8973 case VEC_WIDEN_MULT_ODD_EXPR
:
8974 case VEC_WIDEN_LSHIFT_HI_EXPR
:
8975 case VEC_WIDEN_LSHIFT_LO_EXPR
:
8976 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8977 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
8979 gcc_assert (target
);
8982 case VEC_PACK_TRUNC_EXPR
:
8983 case VEC_PACK_SAT_EXPR
:
8984 case VEC_PACK_FIX_TRUNC_EXPR
:
8985 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8989 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
8990 op2
= expand_normal (treeop2
);
8992 /* Careful here: if the target doesn't support integral vector modes,
8993 a constant selection vector could wind up smooshed into a normal
8994 integral constant. */
8995 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
8997 tree sel_type
= TREE_TYPE (treeop2
);
8998 enum machine_mode vmode
8999 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9000 TYPE_VECTOR_SUBPARTS (sel_type
));
9001 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9002 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9003 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9006 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9008 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9014 tree oprnd0
= treeop0
;
9015 tree oprnd1
= treeop1
;
9016 tree oprnd2
= treeop2
;
9019 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9020 op2
= expand_normal (oprnd2
);
9021 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9026 case REALIGN_LOAD_EXPR
:
9028 tree oprnd0
= treeop0
;
9029 tree oprnd1
= treeop1
;
9030 tree oprnd2
= treeop2
;
9033 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9034 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9035 op2
= expand_normal (oprnd2
);
9036 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9043 /* A COND_EXPR with its type being VOID_TYPE represents a
9044 conditional jump and is handled in
9045 expand_gimple_cond_expr. */
9046 gcc_assert (!VOID_TYPE_P (type
));
9048 /* Note that COND_EXPRs whose type is a structure or union
9049 are required to be constructed to contain assignments of
9050 a temporary variable, so that we can evaluate them here
9051 for side effect only. If type is void, we must do likewise. */
9053 gcc_assert (!TREE_ADDRESSABLE (type
)
9055 && TREE_TYPE (treeop1
) != void_type_node
9056 && TREE_TYPE (treeop2
) != void_type_node
);
9058 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9062 /* If we are not to produce a result, we have no target. Otherwise,
9063 if a target was specified use it; it will not be used as an
9064 intermediate target unless it is safe. If no target, use a
9067 if (modifier
!= EXPAND_STACK_PARM
9069 && safe_from_p (original_target
, treeop0
, 1)
9070 && GET_MODE (original_target
) == mode
9071 && !MEM_P (original_target
))
9072 temp
= original_target
;
9074 temp
= assign_temp (type
, 0, 1);
9076 do_pending_stack_adjust ();
9078 op0
= gen_label_rtx ();
9079 op1
= gen_label_rtx ();
9080 jumpifnot (treeop0
, op0
, -1);
9081 store_expr (treeop1
, temp
,
9082 modifier
== EXPAND_STACK_PARM
,
9085 emit_jump_insn (gen_jump (op1
));
9088 store_expr (treeop2
, temp
,
9089 modifier
== EXPAND_STACK_PARM
,
9097 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9104 /* Here to do an ordinary binary operator. */
9106 expand_operands (treeop0
, treeop1
,
9107 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9109 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9111 if (modifier
== EXPAND_STACK_PARM
)
9113 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9114 unsignedp
, OPTAB_LIB_WIDEN
);
9116 /* Bitwise operations do not need bitfield reduction as we expect their
9117 operands being properly truncated. */
9118 if (code
== BIT_XOR_EXPR
9119 || code
== BIT_AND_EXPR
9120 || code
== BIT_IOR_EXPR
)
9122 return REDUCE_BIT_FIELD (temp
);
9124 #undef REDUCE_BIT_FIELD
9127 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
9128 enum expand_modifier modifier
, rtx
*alt_rtl
)
9130 rtx op0
, op1
, temp
, decl_rtl
;
9133 enum machine_mode mode
;
9134 enum tree_code code
= TREE_CODE (exp
);
9135 rtx subtarget
, original_target
;
9138 bool reduce_bit_field
;
9139 location_t loc
= EXPR_LOCATION (exp
);
9140 struct separate_ops ops
;
9141 tree treeop0
, treeop1
, treeop2
;
9142 tree ssa_name
= NULL_TREE
;
9145 type
= TREE_TYPE (exp
);
9146 mode
= TYPE_MODE (type
);
9147 unsignedp
= TYPE_UNSIGNED (type
);
9149 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9150 if (!VL_EXP_CLASS_P (exp
))
9151 switch (TREE_CODE_LENGTH (code
))
9154 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9155 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9156 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9166 ignore
= (target
== const0_rtx
9167 || ((CONVERT_EXPR_CODE_P (code
)
9168 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9169 && TREE_CODE (type
) == VOID_TYPE
));
9171 /* An operation in what may be a bit-field type needs the
9172 result to be reduced to the precision of the bit-field type,
9173 which is narrower than that of the type's mode. */
9174 reduce_bit_field
= (!ignore
9175 && INTEGRAL_TYPE_P (type
)
9176 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9178 /* If we are going to ignore this result, we need only do something
9179 if there is a side-effect somewhere in the expression. If there
9180 is, short-circuit the most common cases here. Note that we must
9181 not call expand_expr with anything but const0_rtx in case this
9182 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9186 if (! TREE_SIDE_EFFECTS (exp
))
9189 /* Ensure we reference a volatile object even if value is ignored, but
9190 don't do this if all we are doing is taking its address. */
9191 if (TREE_THIS_VOLATILE (exp
)
9192 && TREE_CODE (exp
) != FUNCTION_DECL
9193 && mode
!= VOIDmode
&& mode
!= BLKmode
9194 && modifier
!= EXPAND_CONST_ADDRESS
)
9196 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9202 if (TREE_CODE_CLASS (code
) == tcc_unary
9203 || code
== BIT_FIELD_REF
9204 || code
== COMPONENT_REF
9205 || code
== INDIRECT_REF
)
9206 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9209 else if (TREE_CODE_CLASS (code
) == tcc_binary
9210 || TREE_CODE_CLASS (code
) == tcc_comparison
9211 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9213 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9214 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9221 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9224 /* Use subtarget as the target for operand 0 of a binary operation. */
9225 subtarget
= get_subtarget (target
);
9226 original_target
= target
;
9232 tree function
= decl_function_context (exp
);
9234 temp
= label_rtx (exp
);
9235 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9237 if (function
!= current_function_decl
9239 LABEL_REF_NONLOCAL_P (temp
) = 1;
9241 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9246 /* ??? ivopts calls expander, without any preparation from
9247 out-of-ssa. So fake instructions as if this was an access to the
9248 base variable. This unnecessarily allocates a pseudo, see how we can
9249 reuse it, if partition base vars have it set already. */
9250 if (!currently_expanding_to_rtl
)
9252 tree var
= SSA_NAME_VAR (exp
);
9253 if (var
&& DECL_RTL_SET_P (var
))
9254 return DECL_RTL (var
);
9255 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9256 LAST_VIRTUAL_REGISTER
+ 1);
9259 g
= get_gimple_for_ssa_name (exp
);
9260 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9262 && modifier
== EXPAND_INITIALIZER
9263 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9264 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9265 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9266 g
= SSA_NAME_DEF_STMT (exp
);
9270 location_t saved_loc
= curr_insn_location ();
9272 set_curr_insn_location (gimple_location (g
));
9273 r
= expand_expr_real (gimple_assign_rhs_to_tree (g
), target
,
9274 tmode
, modifier
, NULL
);
9275 set_curr_insn_location (saved_loc
);
9276 if (REG_P (r
) && !REG_EXPR (r
))
9277 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9282 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9283 exp
= SSA_NAME_VAR (ssa_name
);
9284 goto expand_decl_rtl
;
9288 /* If a static var's type was incomplete when the decl was written,
9289 but the type is complete now, lay out the decl now. */
9290 if (DECL_SIZE (exp
) == 0
9291 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9292 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9293 layout_decl (exp
, 0);
9295 /* ... fall through ... */
9299 decl_rtl
= DECL_RTL (exp
);
9301 gcc_assert (decl_rtl
);
9302 decl_rtl
= copy_rtx (decl_rtl
);
9303 /* Record writes to register variables. */
9304 if (modifier
== EXPAND_WRITE
9306 && HARD_REGISTER_P (decl_rtl
))
9307 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9308 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9310 /* Ensure variable marked as used even if it doesn't go through
9311 a parser. If it hasn't be used yet, write out an external
9313 TREE_USED (exp
) = 1;
9315 /* Show we haven't gotten RTL for this yet. */
9318 /* Variables inherited from containing functions should have
9319 been lowered by this point. */
9320 context
= decl_function_context (exp
);
9321 gcc_assert (!context
9322 || context
== current_function_decl
9323 || TREE_STATIC (exp
)
9324 || DECL_EXTERNAL (exp
)
9325 /* ??? C++ creates functions that are not TREE_STATIC. */
9326 || TREE_CODE (exp
) == FUNCTION_DECL
);
9328 /* This is the case of an array whose size is to be determined
9329 from its initializer, while the initializer is still being parsed.
9330 ??? We aren't parsing while expanding anymore. */
9332 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9333 temp
= validize_mem (decl_rtl
);
9335 /* If DECL_RTL is memory, we are in the normal case and the
9336 address is not valid, get the address into a register. */
9338 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9341 *alt_rtl
= decl_rtl
;
9342 decl_rtl
= use_anchored_address (decl_rtl
);
9343 if (modifier
!= EXPAND_CONST_ADDRESS
9344 && modifier
!= EXPAND_SUM
9345 && !memory_address_addr_space_p (DECL_MODE (exp
),
9347 MEM_ADDR_SPACE (decl_rtl
)))
9348 temp
= replace_equiv_address (decl_rtl
,
9349 copy_rtx (XEXP (decl_rtl
, 0)));
9352 /* If we got something, return it. But first, set the alignment
9353 if the address is a register. */
9356 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9357 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9362 /* If the mode of DECL_RTL does not match that of the decl,
9363 there are two cases: we are dealing with a BLKmode value
9364 that is returned in a register, or we are dealing with
9365 a promoted value. In the latter case, return a SUBREG
9366 of the wanted mode, but mark it so that we know that it
9367 was already extended. */
9368 if (REG_P (decl_rtl
)
9369 && DECL_MODE (exp
) != BLKmode
9370 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9372 enum machine_mode pmode
;
9374 /* Get the signedness to be used for this variable. Ensure we get
9375 the same mode we got when the variable was declared. */
9376 if (code
== SSA_NAME
9377 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9378 && gimple_code (g
) == GIMPLE_CALL
)
9380 gcc_assert (!gimple_call_internal_p (g
));
9381 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9382 gimple_call_fntype (g
),
9386 pmode
= promote_decl_mode (exp
, &unsignedp
);
9387 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9389 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9390 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9391 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
9398 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
9399 TREE_INT_CST_HIGH (exp
), mode
);
9405 tree tmp
= NULL_TREE
;
9406 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9407 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9408 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9409 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9410 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9411 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9412 return const_vector_from_tree (exp
);
9413 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9415 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9417 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9421 vec
<constructor_elt
, va_gc
> *v
;
9423 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9424 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9425 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9426 tmp
= build_constructor (type
, v
);
9428 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9433 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9436 /* If optimized, generate immediate CONST_DOUBLE
9437 which will be turned into memory by reload if necessary.
9439 We used to force a register so that loop.c could see it. But
9440 this does not allow gen_* patterns to perform optimizations with
9441 the constants. It also produces two insns in cases like "x = 1.0;".
9442 On most machines, floating-point constants are not permitted in
9443 many insns, so we'd end up copying it to a register in any case.
9445 Now, we do the copying in expand_binop, if appropriate. */
9446 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9447 TYPE_MODE (TREE_TYPE (exp
)));
9450 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9451 TYPE_MODE (TREE_TYPE (exp
)));
9454 /* Handle evaluating a complex constant in a CONCAT target. */
9455 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9457 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9460 rtarg
= XEXP (original_target
, 0);
9461 itarg
= XEXP (original_target
, 1);
9463 /* Move the real and imaginary parts separately. */
9464 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9465 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9468 emit_move_insn (rtarg
, op0
);
9470 emit_move_insn (itarg
, op1
);
9472 return original_target
;
9475 /* ... fall through ... */
9478 temp
= expand_expr_constant (exp
, 1, modifier
);
9480 /* temp contains a constant address.
9481 On RISC machines where a constant address isn't valid,
9482 make some insns to get that address into a register. */
9483 if (modifier
!= EXPAND_CONST_ADDRESS
9484 && modifier
!= EXPAND_INITIALIZER
9485 && modifier
!= EXPAND_SUM
9486 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9487 MEM_ADDR_SPACE (temp
)))
9488 return replace_equiv_address (temp
,
9489 copy_rtx (XEXP (temp
, 0)));
9495 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
9497 if (!SAVE_EXPR_RESOLVED_P (exp
))
9499 /* We can indeed still hit this case, typically via builtin
9500 expanders calling save_expr immediately before expanding
9501 something. Assume this means that we only have to deal
9502 with non-BLKmode values. */
9503 gcc_assert (GET_MODE (ret
) != BLKmode
);
9505 val
= build_decl (curr_insn_location (),
9506 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9507 DECL_ARTIFICIAL (val
) = 1;
9508 DECL_IGNORED_P (val
) = 1;
9510 TREE_OPERAND (exp
, 0) = treeop0
;
9511 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9513 if (!CONSTANT_P (ret
))
9514 ret
= copy_to_reg (ret
);
9515 SET_DECL_RTL (val
, ret
);
9523 /* If we don't need the result, just ensure we evaluate any
9527 unsigned HOST_WIDE_INT idx
;
9530 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9531 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9536 return expand_constructor (exp
, target
, modifier
, false);
9538 case TARGET_MEM_REF
:
9541 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9542 struct mem_address addr
;
9543 enum insn_code icode
;
9546 get_address_description (exp
, &addr
);
9547 op0
= addr_for_mem_ref (&addr
, as
, true);
9548 op0
= memory_address_addr_space (mode
, op0
, as
);
9549 temp
= gen_rtx_MEM (mode
, op0
);
9550 set_mem_attributes (temp
, exp
, 0);
9551 set_mem_addr_space (temp
, as
);
9552 align
= get_object_alignment (exp
);
9553 if (modifier
!= EXPAND_WRITE
9555 && align
< GET_MODE_ALIGNMENT (mode
)
9556 /* If the target does not have special handling for unaligned
9557 loads of mode then it can use regular moves for them. */
9558 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9559 != CODE_FOR_nothing
))
9561 struct expand_operand ops
[2];
9563 /* We've already validated the memory, and we're creating a
9564 new pseudo destination. The predicates really can't fail,
9565 nor can the generator. */
9566 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9567 create_fixed_operand (&ops
[1], temp
);
9568 expand_insn (icode
, 2, ops
);
9569 return ops
[0].value
;
9577 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9578 enum machine_mode address_mode
;
9579 tree base
= TREE_OPERAND (exp
, 0);
9581 enum insn_code icode
;
9583 /* Handle expansion of non-aliased memory with non-BLKmode. That
9584 might end up in a register. */
9585 if (mem_ref_refers_to_non_mem_p (exp
))
9587 HOST_WIDE_INT offset
= mem_ref_offset (exp
).low
;
9590 base
= TREE_OPERAND (base
, 0);
9592 && host_integerp (TYPE_SIZE (TREE_TYPE (exp
)), 1)
9593 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9594 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp
)))))
9595 return expand_expr (build1 (VIEW_CONVERT_EXPR
,
9596 TREE_TYPE (exp
), base
),
9597 target
, tmode
, modifier
);
9598 bit_offset
= bitsize_int (offset
* BITS_PER_UNIT
);
9599 bftype
= TREE_TYPE (base
);
9600 if (TYPE_MODE (TREE_TYPE (exp
)) != BLKmode
)
9601 bftype
= TREE_TYPE (exp
);
9604 temp
= assign_stack_temp (DECL_MODE (base
),
9605 GET_MODE_SIZE (DECL_MODE (base
)));
9606 store_expr (base
, temp
, 0, false);
9607 temp
= adjust_address (temp
, BLKmode
, offset
);
9608 set_mem_size (temp
, int_size_in_bytes (TREE_TYPE (exp
)));
9611 return expand_expr (build3 (BIT_FIELD_REF
, bftype
,
9613 TYPE_SIZE (TREE_TYPE (exp
)),
9615 target
, tmode
, modifier
);
9617 address_mode
= targetm
.addr_space
.address_mode (as
);
9618 base
= TREE_OPERAND (exp
, 0);
9619 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9621 tree mask
= gimple_assign_rhs2 (def_stmt
);
9622 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9623 gimple_assign_rhs1 (def_stmt
), mask
);
9624 TREE_OPERAND (exp
, 0) = base
;
9626 align
= get_object_alignment (exp
);
9627 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9628 op0
= memory_address_addr_space (address_mode
, op0
, as
);
9629 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9632 = immed_double_int_const (mem_ref_offset (exp
), address_mode
);
9633 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9635 op0
= memory_address_addr_space (mode
, op0
, as
);
9636 temp
= gen_rtx_MEM (mode
, op0
);
9637 set_mem_attributes (temp
, exp
, 0);
9638 set_mem_addr_space (temp
, as
);
9639 if (TREE_THIS_VOLATILE (exp
))
9640 MEM_VOLATILE_P (temp
) = 1;
9641 if (modifier
!= EXPAND_WRITE
9643 && align
< GET_MODE_ALIGNMENT (mode
))
9645 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9646 != CODE_FOR_nothing
)
9648 struct expand_operand ops
[2];
9650 /* We've already validated the memory, and we're creating a
9651 new pseudo destination. The predicates really can't fail,
9652 nor can the generator. */
9653 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9654 create_fixed_operand (&ops
[1], temp
);
9655 expand_insn (icode
, 2, ops
);
9656 return ops
[0].value
;
9658 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9659 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9660 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9661 true, (modifier
== EXPAND_STACK_PARM
9662 ? NULL_RTX
: target
),
9671 tree array
= treeop0
;
9672 tree index
= treeop1
;
9674 /* Fold an expression like: "foo"[2].
9675 This is not done in fold so it won't happen inside &.
9676 Don't fold if this is for wide characters since it's too
9677 difficult to do correctly and this is a very rare case. */
9679 if (modifier
!= EXPAND_CONST_ADDRESS
9680 && modifier
!= EXPAND_INITIALIZER
9681 && modifier
!= EXPAND_MEMORY
)
9683 tree t
= fold_read_from_constant_string (exp
);
9686 return expand_expr (t
, target
, tmode
, modifier
);
9689 /* If this is a constant index into a constant array,
9690 just get the value from the array. Handle both the cases when
9691 we have an explicit constructor and when our operand is a variable
9692 that was declared const. */
9694 if (modifier
!= EXPAND_CONST_ADDRESS
9695 && modifier
!= EXPAND_INITIALIZER
9696 && modifier
!= EXPAND_MEMORY
9697 && TREE_CODE (array
) == CONSTRUCTOR
9698 && ! TREE_SIDE_EFFECTS (array
)
9699 && TREE_CODE (index
) == INTEGER_CST
)
9701 unsigned HOST_WIDE_INT ix
;
9704 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9706 if (tree_int_cst_equal (field
, index
))
9708 if (!TREE_SIDE_EFFECTS (value
))
9709 return expand_expr (fold (value
), target
, tmode
, modifier
);
9714 else if (optimize
>= 1
9715 && modifier
!= EXPAND_CONST_ADDRESS
9716 && modifier
!= EXPAND_INITIALIZER
9717 && modifier
!= EXPAND_MEMORY
9718 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9719 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
9720 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
9721 && const_value_known_p (array
))
9723 if (TREE_CODE (index
) == INTEGER_CST
)
9725 tree init
= DECL_INITIAL (array
);
9727 if (TREE_CODE (init
) == CONSTRUCTOR
)
9729 unsigned HOST_WIDE_INT ix
;
9732 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
9734 if (tree_int_cst_equal (field
, index
))
9736 if (TREE_SIDE_EFFECTS (value
))
9739 if (TREE_CODE (value
) == CONSTRUCTOR
)
9741 /* If VALUE is a CONSTRUCTOR, this
9742 optimization is only useful if
9743 this doesn't store the CONSTRUCTOR
9744 into memory. If it does, it is more
9745 efficient to just load the data from
9746 the array directly. */
9747 rtx ret
= expand_constructor (value
, target
,
9749 if (ret
== NULL_RTX
)
9753 return expand_expr (fold (value
), target
, tmode
,
9757 else if(TREE_CODE (init
) == STRING_CST
)
9759 tree index1
= index
;
9760 tree low_bound
= array_ref_low_bound (exp
);
9761 index1
= fold_convert_loc (loc
, sizetype
,
9764 /* Optimize the special-case of a zero lower bound.
9766 We convert the low_bound to sizetype to avoid some problems
9767 with constant folding. (E.g. suppose the lower bound is 1,
9768 and its mode is QI. Without the conversion,l (ARRAY
9769 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
9770 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
9772 if (! integer_zerop (low_bound
))
9773 index1
= size_diffop_loc (loc
, index1
,
9774 fold_convert_loc (loc
, sizetype
,
9777 if (0 > compare_tree_int (index1
,
9778 TREE_STRING_LENGTH (init
)))
9780 tree type
= TREE_TYPE (TREE_TYPE (init
));
9781 enum machine_mode mode
= TYPE_MODE (type
);
9783 if (GET_MODE_CLASS (mode
) == MODE_INT
9784 && GET_MODE_SIZE (mode
) == 1)
9785 return gen_int_mode (TREE_STRING_POINTER (init
)
9786 [TREE_INT_CST_LOW (index1
)],
9793 goto normal_inner_ref
;
9796 /* If the operand is a CONSTRUCTOR, we can just extract the
9797 appropriate field if it is present. */
9798 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
9800 unsigned HOST_WIDE_INT idx
;
9803 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
9805 if (field
== treeop1
9806 /* We can normally use the value of the field in the
9807 CONSTRUCTOR. However, if this is a bitfield in
9808 an integral mode that we can fit in a HOST_WIDE_INT,
9809 we must mask only the number of bits in the bitfield,
9810 since this is done implicitly by the constructor. If
9811 the bitfield does not meet either of those conditions,
9812 we can't do this optimization. */
9813 && (! DECL_BIT_FIELD (field
)
9814 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
9815 && (GET_MODE_PRECISION (DECL_MODE (field
))
9816 <= HOST_BITS_PER_WIDE_INT
))))
9818 if (DECL_BIT_FIELD (field
)
9819 && modifier
== EXPAND_STACK_PARM
)
9821 op0
= expand_expr (value
, target
, tmode
, modifier
);
9822 if (DECL_BIT_FIELD (field
))
9824 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
9825 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
9827 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
9829 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
9830 op0
= expand_and (imode
, op0
, op1
, target
);
9834 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
9836 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
9838 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
9846 goto normal_inner_ref
;
9849 case ARRAY_RANGE_REF
:
9852 enum machine_mode mode1
, mode2
;
9853 HOST_WIDE_INT bitsize
, bitpos
;
9855 int volatilep
= 0, must_force_mem
;
9856 bool packedp
= false;
9857 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
9858 &mode1
, &unsignedp
, &volatilep
, true);
9859 rtx orig_op0
, memloc
;
9860 bool mem_attrs_from_type
= false;
9862 /* If we got back the original object, something is wrong. Perhaps
9863 we are evaluating an expression too early. In any event, don't
9864 infinitely recurse. */
9865 gcc_assert (tem
!= exp
);
9867 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp
, 0)))
9868 || (TREE_CODE (TREE_OPERAND (exp
, 1)) == FIELD_DECL
9869 && DECL_PACKED (TREE_OPERAND (exp
, 1))))
9872 /* If TEM's type is a union of variable size, pass TARGET to the inner
9873 computation, since it will need a temporary and TARGET is known
9874 to have to do. This occurs in unchecked conversion in Ada. */
9877 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
9878 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
9879 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
9881 && modifier
!= EXPAND_STACK_PARM
9882 ? target
: NULL_RTX
),
9884 (modifier
== EXPAND_INITIALIZER
9885 || modifier
== EXPAND_CONST_ADDRESS
9886 || modifier
== EXPAND_STACK_PARM
)
9887 ? modifier
: EXPAND_NORMAL
);
9890 /* If the bitfield is volatile, we want to access it in the
9891 field's mode, not the computed mode.
9892 If a MEM has VOIDmode (external with incomplete type),
9893 use BLKmode for it instead. */
9896 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
9897 op0
= adjust_address (op0
, mode1
, 0);
9898 else if (GET_MODE (op0
) == VOIDmode
)
9899 op0
= adjust_address (op0
, BLKmode
, 0);
9903 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
9905 /* If we have either an offset, a BLKmode result, or a reference
9906 outside the underlying object, we must force it to memory.
9907 Such a case can occur in Ada if we have unchecked conversion
9908 of an expression from a scalar type to an aggregate type or
9909 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9910 passed a partially uninitialized object or a view-conversion
9911 to a larger size. */
9912 must_force_mem
= (offset
9914 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
9916 /* Handle CONCAT first. */
9917 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
9920 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
9923 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
9926 op0
= XEXP (op0
, 0);
9927 mode2
= GET_MODE (op0
);
9929 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
9930 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
9934 op0
= XEXP (op0
, 1);
9936 mode2
= GET_MODE (op0
);
9939 /* Otherwise force into memory. */
9943 /* If this is a constant, put it in a register if it is a legitimate
9944 constant and we don't need a memory reference. */
9945 if (CONSTANT_P (op0
)
9947 && targetm
.legitimate_constant_p (mode2
, op0
)
9949 op0
= force_reg (mode2
, op0
);
9951 /* Otherwise, if this is a constant, try to force it to the constant
9952 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9953 is a legitimate constant. */
9954 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
9955 op0
= validize_mem (memloc
);
9957 /* Otherwise, if this is a constant or the object is not in memory
9958 and need be, put it there. */
9959 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
9961 tree nt
= build_qualified_type (TREE_TYPE (tem
),
9962 (TYPE_QUALS (TREE_TYPE (tem
))
9963 | TYPE_QUAL_CONST
));
9964 memloc
= assign_temp (nt
, 1, 1);
9965 emit_move_insn (memloc
, op0
);
9967 mem_attrs_from_type
= true;
9972 enum machine_mode address_mode
;
9973 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
9976 gcc_assert (MEM_P (op0
));
9978 address_mode
= get_address_mode (op0
);
9979 if (GET_MODE (offset_rtx
) != address_mode
)
9980 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
9982 if (GET_MODE (op0
) == BLKmode
9983 /* A constant address in OP0 can have VOIDmode, we must
9984 not try to call force_reg in that case. */
9985 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
9987 && (bitpos
% bitsize
) == 0
9988 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
9989 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
9991 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
9995 op0
= offset_address (op0
, offset_rtx
,
9996 highest_pow2_factor (offset
));
9999 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10000 record its alignment as BIGGEST_ALIGNMENT. */
10001 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
10002 && is_aligning_offset (offset
, tem
))
10003 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10005 /* Don't forget about volatility even if this is a bitfield. */
10006 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10008 if (op0
== orig_op0
)
10009 op0
= copy_rtx (op0
);
10011 MEM_VOLATILE_P (op0
) = 1;
10014 /* In cases where an aligned union has an unaligned object
10015 as a field, we might be extracting a BLKmode value from
10016 an integer-mode (e.g., SImode) object. Handle this case
10017 by doing the extract into an object as wide as the field
10018 (which we know to be the width of a basic mode), then
10019 storing into memory, and changing the mode to BLKmode. */
10020 if (mode1
== VOIDmode
10021 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10022 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10023 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10024 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10025 && modifier
!= EXPAND_CONST_ADDRESS
10026 && modifier
!= EXPAND_INITIALIZER
10027 && modifier
!= EXPAND_MEMORY
)
10028 /* If the field is volatile, we always want an aligned
10029 access. Do this in following two situations:
10030 1. the access is not already naturally
10031 aligned, otherwise "normal" (non-bitfield) volatile fields
10032 become non-addressable.
10033 2. the bitsize is narrower than the access size. Need
10034 to extract bitfields from the access. */
10035 || (volatilep
&& flag_strict_volatile_bitfields
> 0
10036 && (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0
10037 || (mode1
!= BLKmode
10038 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)))
10039 /* If the field isn't aligned enough to fetch as a memref,
10040 fetch it as a bit field. */
10041 || (mode1
!= BLKmode
10042 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10043 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10045 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10046 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10047 && ((modifier
== EXPAND_CONST_ADDRESS
10048 || modifier
== EXPAND_INITIALIZER
)
10050 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10051 || (bitpos
% BITS_PER_UNIT
!= 0)))
10052 /* If the type and the field are a constant size and the
10053 size of the type isn't the same size as the bitfield,
10054 we must use bitfield operations. */
10056 && TYPE_SIZE (TREE_TYPE (exp
))
10057 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10058 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10061 enum machine_mode ext_mode
= mode
;
10063 if (ext_mode
== BLKmode
10064 && ! (target
!= 0 && MEM_P (op0
)
10066 && bitpos
% BITS_PER_UNIT
== 0))
10067 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10069 if (ext_mode
== BLKmode
)
10072 target
= assign_temp (type
, 1, 1);
10077 /* In this case, BITPOS must start at a byte boundary and
10078 TARGET, if specified, must be a MEM. */
10079 gcc_assert (MEM_P (op0
)
10080 && (!target
|| MEM_P (target
))
10081 && !(bitpos
% BITS_PER_UNIT
));
10083 emit_block_move (target
,
10084 adjust_address (op0
, VOIDmode
,
10085 bitpos
/ BITS_PER_UNIT
),
10086 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10088 (modifier
== EXPAND_STACK_PARM
10089 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10094 op0
= validize_mem (op0
);
10096 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10097 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10099 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
, packedp
,
10100 (modifier
== EXPAND_STACK_PARM
10101 ? NULL_RTX
: target
),
10102 ext_mode
, ext_mode
);
10104 /* If the result is a record type and BITSIZE is narrower than
10105 the mode of OP0, an integral mode, and this is a big endian
10106 machine, we must put the field into the high-order bits. */
10107 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10108 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10109 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10110 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10111 GET_MODE_BITSIZE (GET_MODE (op0
))
10112 - bitsize
, op0
, 1);
10114 /* If the result type is BLKmode, store the data into a temporary
10115 of the appropriate type, but with the mode corresponding to the
10116 mode for the data we have (op0's mode). It's tempting to make
10117 this a constant type, since we know it's only being stored once,
10118 but that can cause problems if we are taking the address of this
10119 COMPONENT_REF because the MEM of any reference via that address
10120 will have flags corresponding to the type, which will not
10121 necessarily be constant. */
10122 if (mode
== BLKmode
)
10126 new_rtx
= assign_stack_temp_for_type (ext_mode
,
10127 GET_MODE_BITSIZE (ext_mode
),
10129 emit_move_insn (new_rtx
, op0
);
10130 op0
= copy_rtx (new_rtx
);
10131 PUT_MODE (op0
, BLKmode
);
10137 /* If the result is BLKmode, use that to access the object
10139 if (mode
== BLKmode
)
10142 /* Get a reference to just this component. */
10143 if (modifier
== EXPAND_CONST_ADDRESS
10144 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10145 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10147 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10149 if (op0
== orig_op0
)
10150 op0
= copy_rtx (op0
);
10152 /* If op0 is a temporary because of forcing to memory, pass only the
10153 type to set_mem_attributes so that the original expression is never
10154 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10155 if (mem_attrs_from_type
)
10156 set_mem_attributes (op0
, type
, 0);
10158 set_mem_attributes (op0
, exp
, 0);
10160 if (REG_P (XEXP (op0
, 0)))
10161 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10163 MEM_VOLATILE_P (op0
) |= volatilep
;
10164 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10165 || modifier
== EXPAND_CONST_ADDRESS
10166 || modifier
== EXPAND_INITIALIZER
)
10168 else if (target
== 0)
10169 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10171 convert_move (target
, op0
, unsignedp
);
10176 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10179 /* All valid uses of __builtin_va_arg_pack () are removed during
10181 if (CALL_EXPR_VA_ARG_PACK (exp
))
10182 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10184 tree fndecl
= get_callee_fndecl (exp
), attr
;
10187 && (attr
= lookup_attribute ("error",
10188 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10189 error ("%Kcall to %qs declared with attribute error: %s",
10190 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10191 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10193 && (attr
= lookup_attribute ("warning",
10194 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10195 warning_at (tree_nonartificial_location (exp
),
10196 0, "%Kcall to %qs declared with attribute warning: %s",
10197 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10198 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10200 /* Check for a built-in function. */
10201 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10203 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10204 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10207 return expand_call (exp
, target
, ignore
);
10209 case VIEW_CONVERT_EXPR
:
10212 /* If we are converting to BLKmode, try to avoid an intermediate
10213 temporary by fetching an inner memory reference. */
10214 if (mode
== BLKmode
10215 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10216 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10217 && handled_component_p (treeop0
))
10219 enum machine_mode mode1
;
10220 HOST_WIDE_INT bitsize
, bitpos
;
10225 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10226 &offset
, &mode1
, &unsignedp
, &volatilep
,
10230 /* ??? We should work harder and deal with non-zero offsets. */
10232 && (bitpos
% BITS_PER_UNIT
) == 0
10234 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) == 0)
10236 /* See the normal_inner_ref case for the rationale. */
10238 = expand_expr (tem
,
10239 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10240 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10242 && modifier
!= EXPAND_STACK_PARM
10243 ? target
: NULL_RTX
),
10245 (modifier
== EXPAND_INITIALIZER
10246 || modifier
== EXPAND_CONST_ADDRESS
10247 || modifier
== EXPAND_STACK_PARM
)
10248 ? modifier
: EXPAND_NORMAL
);
10250 if (MEM_P (orig_op0
))
10254 /* Get a reference to just this component. */
10255 if (modifier
== EXPAND_CONST_ADDRESS
10256 || modifier
== EXPAND_SUM
10257 || modifier
== EXPAND_INITIALIZER
)
10258 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10260 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10262 if (op0
== orig_op0
)
10263 op0
= copy_rtx (op0
);
10265 set_mem_attributes (op0
, treeop0
, 0);
10266 if (REG_P (XEXP (op0
, 0)))
10267 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10269 MEM_VOLATILE_P (op0
) |= volatilep
;
10275 op0
= expand_expr (treeop0
,
10276 NULL_RTX
, VOIDmode
, modifier
);
10278 /* If the input and output modes are both the same, we are done. */
10279 if (mode
== GET_MODE (op0
))
10281 /* If neither mode is BLKmode, and both modes are the same size
10282 then we can use gen_lowpart. */
10283 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10284 && (GET_MODE_PRECISION (mode
)
10285 == GET_MODE_PRECISION (GET_MODE (op0
)))
10286 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10288 if (GET_CODE (op0
) == SUBREG
)
10289 op0
= force_reg (GET_MODE (op0
), op0
);
10290 temp
= gen_lowpart_common (mode
, op0
);
10295 if (!REG_P (op0
) && !MEM_P (op0
))
10296 op0
= force_reg (GET_MODE (op0
), op0
);
10297 op0
= gen_lowpart (mode
, op0
);
10300 /* If both types are integral, convert from one mode to the other. */
10301 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10302 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10303 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10304 /* As a last resort, spill op0 to memory, and reload it in a
10306 else if (!MEM_P (op0
))
10308 /* If the operand is not a MEM, force it into memory. Since we
10309 are going to be changing the mode of the MEM, don't call
10310 force_const_mem for constants because we don't allow pool
10311 constants to change mode. */
10312 tree inner_type
= TREE_TYPE (treeop0
);
10314 gcc_assert (!TREE_ADDRESSABLE (exp
));
10316 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10318 = assign_stack_temp_for_type
10319 (TYPE_MODE (inner_type
),
10320 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10322 emit_move_insn (target
, op0
);
10326 /* At this point, OP0 is in the correct mode. If the output type is
10327 such that the operand is known to be aligned, indicate that it is.
10328 Otherwise, we need only be concerned about alignment for non-BLKmode
10332 enum insn_code icode
;
10334 if (TYPE_ALIGN_OK (type
))
10336 /* ??? Copying the MEM without substantially changing it might
10337 run afoul of the code handling volatile memory references in
10338 store_expr, which assumes that TARGET is returned unmodified
10339 if it has been used. */
10340 op0
= copy_rtx (op0
);
10341 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10343 else if (mode
!= BLKmode
10344 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
)
10345 /* If the target does have special handling for unaligned
10346 loads of mode then use them. */
10347 && ((icode
= optab_handler (movmisalign_optab
, mode
))
10348 != CODE_FOR_nothing
))
10352 op0
= adjust_address (op0
, mode
, 0);
10353 /* We've already validated the memory, and we're creating a
10354 new pseudo destination. The predicates really can't
10356 reg
= gen_reg_rtx (mode
);
10358 /* Nor can the insn generator. */
10359 insn
= GEN_FCN (icode
) (reg
, op0
);
10363 else if (STRICT_ALIGNMENT
10365 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10367 tree inner_type
= TREE_TYPE (treeop0
);
10368 HOST_WIDE_INT temp_size
10369 = MAX (int_size_in_bytes (inner_type
),
10370 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10372 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10373 rtx new_with_op0_mode
10374 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10376 gcc_assert (!TREE_ADDRESSABLE (exp
));
10378 if (GET_MODE (op0
) == BLKmode
)
10379 emit_block_move (new_with_op0_mode
, op0
,
10380 GEN_INT (GET_MODE_SIZE (mode
)),
10381 (modifier
== EXPAND_STACK_PARM
10382 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10384 emit_move_insn (new_with_op0_mode
, op0
);
10389 op0
= adjust_address (op0
, mode
, 0);
10396 tree lhs
= treeop0
;
10397 tree rhs
= treeop1
;
10398 gcc_assert (ignore
);
10400 /* Check for |= or &= of a bitfield of size one into another bitfield
10401 of size 1. In this case, (unless we need the result of the
10402 assignment) we can do this more efficiently with a
10403 test followed by an assignment, if necessary.
10405 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10406 things change so we do, this code should be enhanced to
10408 if (TREE_CODE (lhs
) == COMPONENT_REF
10409 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10410 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10411 && TREE_OPERAND (rhs
, 0) == lhs
10412 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10413 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10414 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10416 rtx label
= gen_label_rtx ();
10417 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10418 do_jump (TREE_OPERAND (rhs
, 1),
10420 value
? 0 : label
, -1);
10421 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10423 do_pending_stack_adjust ();
10424 emit_label (label
);
10428 expand_assignment (lhs
, rhs
, false);
10433 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10435 case REALPART_EXPR
:
10436 op0
= expand_normal (treeop0
);
10437 return read_complex_part (op0
, false);
10439 case IMAGPART_EXPR
:
10440 op0
= expand_normal (treeop0
);
10441 return read_complex_part (op0
, true);
10448 /* Expanded in cfgexpand.c. */
10449 gcc_unreachable ();
10451 case TRY_CATCH_EXPR
:
10453 case EH_FILTER_EXPR
:
10454 case TRY_FINALLY_EXPR
:
10455 /* Lowered by tree-eh.c. */
10456 gcc_unreachable ();
10458 case WITH_CLEANUP_EXPR
:
10459 case CLEANUP_POINT_EXPR
:
10461 case CASE_LABEL_EXPR
:
10466 case COMPOUND_EXPR
:
10467 case PREINCREMENT_EXPR
:
10468 case PREDECREMENT_EXPR
:
10469 case POSTINCREMENT_EXPR
:
10470 case POSTDECREMENT_EXPR
:
10473 case COMPOUND_LITERAL_EXPR
:
10474 /* Lowered by gimplify.c. */
10475 gcc_unreachable ();
10478 /* Function descriptors are not valid except for as
10479 initialization constants, and should not be expanded. */
10480 gcc_unreachable ();
10482 case WITH_SIZE_EXPR
:
10483 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10484 have pulled out the size to use in whatever context it needed. */
10485 return expand_expr_real (treeop0
, original_target
, tmode
,
10486 modifier
, alt_rtl
);
10489 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10493 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10494 signedness of TYPE), possibly returning the result in TARGET. */
10496 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10498 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10499 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10501 /* For constant values, reduce using build_int_cst_type. */
10502 if (CONST_INT_P (exp
))
10504 HOST_WIDE_INT value
= INTVAL (exp
);
10505 tree t
= build_int_cst_type (type
, value
);
10506 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10508 else if (TYPE_UNSIGNED (type
))
10510 rtx mask
= immed_double_int_const (double_int::mask (prec
),
10512 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
10516 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10517 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10518 exp
, count
, target
, 0);
10519 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10520 exp
, count
, target
, 0);
10524 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10525 when applied to the address of EXP produces an address known to be
10526 aligned more than BIGGEST_ALIGNMENT. */
10529 is_aligning_offset (const_tree offset
, const_tree exp
)
10531 /* Strip off any conversions. */
10532 while (CONVERT_EXPR_P (offset
))
10533 offset
= TREE_OPERAND (offset
, 0);
10535 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10536 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10537 if (TREE_CODE (offset
) != BIT_AND_EXPR
10538 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
10539 || compare_tree_int (TREE_OPERAND (offset
, 1),
10540 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10541 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
10544 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10545 It must be NEGATE_EXPR. Then strip any more conversions. */
10546 offset
= TREE_OPERAND (offset
, 0);
10547 while (CONVERT_EXPR_P (offset
))
10548 offset
= TREE_OPERAND (offset
, 0);
10550 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10553 offset
= TREE_OPERAND (offset
, 0);
10554 while (CONVERT_EXPR_P (offset
))
10555 offset
= TREE_OPERAND (offset
, 0);
10557 /* This must now be the address of EXP. */
10558 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10561 /* Return the tree node if an ARG corresponds to a string constant or zero
10562 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10563 in bytes within the string that ARG is accessing. The type of the
10564 offset will be `sizetype'. */
10567 string_constant (tree arg
, tree
*ptr_offset
)
10569 tree array
, offset
, lower_bound
;
10572 if (TREE_CODE (arg
) == ADDR_EXPR
)
10574 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10576 *ptr_offset
= size_zero_node
;
10577 return TREE_OPERAND (arg
, 0);
10579 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10581 array
= TREE_OPERAND (arg
, 0);
10582 offset
= size_zero_node
;
10584 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10586 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10587 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10588 if (TREE_CODE (array
) != STRING_CST
10589 && TREE_CODE (array
) != VAR_DECL
)
10592 /* Check if the array has a nonzero lower bound. */
10593 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10594 if (!integer_zerop (lower_bound
))
10596 /* If the offset and base aren't both constants, return 0. */
10597 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10599 if (TREE_CODE (offset
) != INTEGER_CST
)
10601 /* Adjust offset by the lower bound. */
10602 offset
= size_diffop (fold_convert (sizetype
, offset
),
10603 fold_convert (sizetype
, lower_bound
));
10606 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10608 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10609 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10610 if (TREE_CODE (array
) != ADDR_EXPR
)
10612 array
= TREE_OPERAND (array
, 0);
10613 if (TREE_CODE (array
) != STRING_CST
10614 && TREE_CODE (array
) != VAR_DECL
)
10620 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10622 tree arg0
= TREE_OPERAND (arg
, 0);
10623 tree arg1
= TREE_OPERAND (arg
, 1);
10628 if (TREE_CODE (arg0
) == ADDR_EXPR
10629 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10630 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10632 array
= TREE_OPERAND (arg0
, 0);
10635 else if (TREE_CODE (arg1
) == ADDR_EXPR
10636 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10637 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10639 array
= TREE_OPERAND (arg1
, 0);
10648 if (TREE_CODE (array
) == STRING_CST
)
10650 *ptr_offset
= fold_convert (sizetype
, offset
);
10653 else if (TREE_CODE (array
) == VAR_DECL
10654 || TREE_CODE (array
) == CONST_DECL
)
10658 /* Variables initialized to string literals can be handled too. */
10659 if (!const_value_known_p (array
)
10660 || !DECL_INITIAL (array
)
10661 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
10664 /* Avoid const char foo[4] = "abcde"; */
10665 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10666 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10667 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
10668 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10671 /* If variable is bigger than the string literal, OFFSET must be constant
10672 and inside of the bounds of the string literal. */
10673 offset
= fold_convert (sizetype
, offset
);
10674 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10675 && (! host_integerp (offset
, 1)
10676 || compare_tree_int (offset
, length
) >= 0))
10679 *ptr_offset
= offset
;
10680 return DECL_INITIAL (array
);
10686 /* Generate code to calculate OPS, and exploded expression
10687 using a store-flag instruction and return an rtx for the result.
10688 OPS reflects a comparison.
10690 If TARGET is nonzero, store the result there if convenient.
10692 Return zero if there is no suitable set-flag instruction
10693 available on this machine.
10695 Once expand_expr has been called on the arguments of the comparison,
10696 we are committed to doing the store flag, since it is not safe to
10697 re-evaluate the expression. We emit the store-flag insn by calling
10698 emit_store_flag, but only expand the arguments if we have a reason
10699 to believe that emit_store_flag will be successful. If we think that
10700 it will, but it isn't, we have to simulate the store-flag with a
10701 set/jump/set sequence. */
10704 do_store_flag (sepops ops
, rtx target
, enum machine_mode mode
)
10706 enum rtx_code code
;
10707 tree arg0
, arg1
, type
;
10709 enum machine_mode operand_mode
;
10712 rtx subtarget
= target
;
10713 location_t loc
= ops
->location
;
10718 /* Don't crash if the comparison was erroneous. */
10719 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
10722 type
= TREE_TYPE (arg0
);
10723 operand_mode
= TYPE_MODE (type
);
10724 unsignedp
= TYPE_UNSIGNED (type
);
10726 /* We won't bother with BLKmode store-flag operations because it would mean
10727 passing a lot of information to emit_store_flag. */
10728 if (operand_mode
== BLKmode
)
10731 /* We won't bother with store-flag operations involving function pointers
10732 when function pointers must be canonicalized before comparisons. */
10733 #ifdef HAVE_canonicalize_funcptr_for_compare
10734 if (HAVE_canonicalize_funcptr_for_compare
10735 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
10736 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
10738 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
10739 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
10740 == FUNCTION_TYPE
))))
10747 /* For vector typed comparisons emit code to generate the desired
10748 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10749 expander for this. */
10750 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
10752 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
10753 tree if_true
= constant_boolean_node (true, ops
->type
);
10754 tree if_false
= constant_boolean_node (false, ops
->type
);
10755 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
10758 /* Get the rtx comparison code to use. We know that EXP is a comparison
10759 operation of some type. Some comparisons against 1 and -1 can be
10760 converted to comparisons with zero. Do so here so that the tests
10761 below will be aware that we have a comparison with zero. These
10762 tests will not catch constants in the first operand, but constants
10763 are rarely passed as the first operand. */
10774 if (integer_onep (arg1
))
10775 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
10777 code
= unsignedp
? LTU
: LT
;
10780 if (! unsignedp
&& integer_all_onesp (arg1
))
10781 arg1
= integer_zero_node
, code
= LT
;
10783 code
= unsignedp
? LEU
: LE
;
10786 if (! unsignedp
&& integer_all_onesp (arg1
))
10787 arg1
= integer_zero_node
, code
= GE
;
10789 code
= unsignedp
? GTU
: GT
;
10792 if (integer_onep (arg1
))
10793 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
10795 code
= unsignedp
? GEU
: GE
;
10798 case UNORDERED_EXPR
:
10824 gcc_unreachable ();
10827 /* Put a constant second. */
10828 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
10829 || TREE_CODE (arg0
) == FIXED_CST
)
10831 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
10832 code
= swap_condition (code
);
10835 /* If this is an equality or inequality test of a single bit, we can
10836 do this by shifting the bit being tested to the low-order bit and
10837 masking the result with the constant 1. If the condition was EQ,
10838 we xor it with 1. This does not require an scc insn and is faster
10839 than an scc insn even if we have it.
10841 The code to make this transformation was moved into fold_single_bit_test,
10842 so we just call into the folder and expand its result. */
10844 if ((code
== NE
|| code
== EQ
)
10845 && integer_zerop (arg1
)
10846 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
10848 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
10850 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
10852 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
10853 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
10854 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
10855 gimple_assign_rhs1 (srcstmt
),
10856 gimple_assign_rhs2 (srcstmt
));
10857 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
10859 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
10863 if (! get_subtarget (target
)
10864 || GET_MODE (subtarget
) != operand_mode
)
10867 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10870 target
= gen_reg_rtx (mode
);
10872 /* Try a cstore if possible. */
10873 return emit_store_flag_force (target
, code
, op0
, op1
,
10874 operand_mode
, unsignedp
,
10875 (TYPE_PRECISION (ops
->type
) == 1
10876 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
10880 /* Stubs in case we haven't got a casesi insn. */
10881 #ifndef HAVE_casesi
10882 # define HAVE_casesi 0
10883 # define gen_casesi(a, b, c, d, e) (0)
10884 # define CODE_FOR_casesi CODE_FOR_nothing
10887 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10888 0 otherwise (i.e. if there is no casesi instruction).
10890 DEFAULT_PROBABILITY is the probability of jumping to the default
10893 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
10894 rtx table_label
, rtx default_label
, rtx fallback_label
,
10895 int default_probability
)
10897 struct expand_operand ops
[5];
10898 enum machine_mode index_mode
= SImode
;
10899 rtx op1
, op2
, index
;
10904 /* Convert the index to SImode. */
10905 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
10907 enum machine_mode omode
= TYPE_MODE (index_type
);
10908 rtx rangertx
= expand_normal (range
);
10910 /* We must handle the endpoints in the original mode. */
10911 index_expr
= build2 (MINUS_EXPR
, index_type
,
10912 index_expr
, minval
);
10913 minval
= integer_zero_node
;
10914 index
= expand_normal (index_expr
);
10916 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
10917 omode
, 1, default_label
,
10918 default_probability
);
10919 /* Now we can safely truncate. */
10920 index
= convert_to_mode (index_mode
, index
, 0);
10924 if (TYPE_MODE (index_type
) != index_mode
)
10926 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
10927 index_expr
= fold_convert (index_type
, index_expr
);
10930 index
= expand_normal (index_expr
);
10933 do_pending_stack_adjust ();
10935 op1
= expand_normal (minval
);
10936 op2
= expand_normal (range
);
10938 create_input_operand (&ops
[0], index
, index_mode
);
10939 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
10940 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
10941 create_fixed_operand (&ops
[3], table_label
);
10942 create_fixed_operand (&ops
[4], (default_label
10944 : fallback_label
));
10945 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
10949 /* Attempt to generate a tablejump instruction; same concept. */
10950 #ifndef HAVE_tablejump
10951 #define HAVE_tablejump 0
10952 #define gen_tablejump(x, y) (0)
10955 /* Subroutine of the next function.
10957 INDEX is the value being switched on, with the lowest value
10958 in the table already subtracted.
10959 MODE is its expected mode (needed if INDEX is constant).
10960 RANGE is the length of the jump table.
10961 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10963 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10964 index value is out of range.
10965 DEFAULT_PROBABILITY is the probability of jumping to
10966 the default label. */
10969 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
10970 rtx default_label
, int default_probability
)
10974 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
10975 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
10977 /* Do an unsigned comparison (in the proper mode) between the index
10978 expression and the value which represents the length of the range.
10979 Since we just finished subtracting the lower bound of the range
10980 from the index expression, this comparison allows us to simultaneously
10981 check that the original index expression value is both greater than
10982 or equal to the minimum value of the range and less than or equal to
10983 the maximum value of the range. */
10986 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
10987 default_label
, default_probability
);
10990 /* If index is in range, it must fit in Pmode.
10991 Convert to Pmode so we can index with it. */
10993 index
= convert_to_mode (Pmode
, index
, 1);
10995 /* Don't let a MEM slip through, because then INDEX that comes
10996 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10997 and break_out_memory_refs will go to work on it and mess it up. */
10998 #ifdef PIC_CASE_VECTOR_ADDRESS
10999 if (flag_pic
&& !REG_P (index
))
11000 index
= copy_to_mode_reg (Pmode
, index
);
11003 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11004 GET_MODE_SIZE, because this indicates how large insns are. The other
11005 uses should all be Pmode, because they are addresses. This code
11006 could fail if addresses and insns are not the same size. */
11007 index
= gen_rtx_PLUS (Pmode
,
11008 gen_rtx_MULT (Pmode
, index
,
11009 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
11010 gen_rtx_LABEL_REF (Pmode
, table_label
));
11011 #ifdef PIC_CASE_VECTOR_ADDRESS
11013 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11016 index
= memory_address (CASE_VECTOR_MODE
, index
);
11017 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11018 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11019 convert_move (temp
, vector
, 0);
11021 emit_jump_insn (gen_tablejump (temp
, table_label
));
11023 /* If we are generating PIC code or if the table is PC-relative, the
11024 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11025 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11030 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11031 rtx table_label
, rtx default_label
, int default_probability
)
11035 if (! HAVE_tablejump
)
11038 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11039 fold_convert (index_type
, index_expr
),
11040 fold_convert (index_type
, minval
));
11041 index
= expand_normal (index_expr
);
11042 do_pending_stack_adjust ();
11044 do_tablejump (index
, TYPE_MODE (index_type
),
11045 convert_modes (TYPE_MODE (index_type
),
11046 TYPE_MODE (TREE_TYPE (range
)),
11047 expand_normal (range
),
11048 TYPE_UNSIGNED (TREE_TYPE (range
))),
11049 table_label
, default_label
, default_probability
);
11053 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11055 const_vector_from_tree (tree exp
)
11061 enum machine_mode inner
, mode
;
11063 mode
= TYPE_MODE (TREE_TYPE (exp
));
11065 if (initializer_zerop (exp
))
11066 return CONST0_RTX (mode
);
11068 units
= GET_MODE_NUNITS (mode
);
11069 inner
= GET_MODE_INNER (mode
);
11071 v
= rtvec_alloc (units
);
11073 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11075 elt
= VECTOR_CST_ELT (exp
, i
);
11077 if (TREE_CODE (elt
) == REAL_CST
)
11078 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11080 else if (TREE_CODE (elt
) == FIXED_CST
)
11081 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11084 RTVEC_ELT (v
, i
) = immed_double_int_const (tree_to_double_int (elt
),
11088 return gen_rtx_CONST_VECTOR (mode
, v
);
11091 /* Build a decl for a personality function given a language prefix. */
11094 build_personality_function (const char *lang
)
11096 const char *unwind_and_version
;
11100 switch (targetm_common
.except_unwind_info (&global_options
))
11105 unwind_and_version
= "_sj0";
11109 unwind_and_version
= "_v0";
11112 unwind_and_version
= "_seh0";
11115 gcc_unreachable ();
11118 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11120 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11121 long_long_unsigned_type_node
,
11122 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11123 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11124 get_identifier (name
), type
);
11125 DECL_ARTIFICIAL (decl
) = 1;
11126 DECL_EXTERNAL (decl
) = 1;
11127 TREE_PUBLIC (decl
) = 1;
11129 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11130 are the flags assigned by targetm.encode_section_info. */
11131 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11136 /* Extracts the personality function of DECL and returns the corresponding
11140 get_personality_function (tree decl
)
11142 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11143 enum eh_personality_kind pk
;
11145 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11146 if (pk
== eh_personality_none
)
11150 && pk
== eh_personality_any
)
11151 personality
= lang_hooks
.eh_personality ();
11153 if (pk
== eh_personality_lang
)
11154 gcc_assert (personality
!= NULL_TREE
);
11156 return XEXP (DECL_RTL (personality
), 0);
11159 #include "gt-expr.h"