PR libstdc++/56278
[official-gcc.git] / gcc / dse.c
blob76e6dc3a9c0776a74e79f6c75e7d6aa1120a812f
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #undef BASELINE
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hash-table.h"
29 #include "tm.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "regset.h"
36 #include "flags.h"
37 #include "df.h"
38 #include "cselib.h"
39 #include "tree-pass.h"
40 #include "alloc-pool.h"
41 #include "alias.h"
42 #include "insn-config.h"
43 #include "expr.h"
44 #include "recog.h"
45 #include "optabs.h"
46 #include "dbgcnt.h"
47 #include "target.h"
48 #include "params.h"
49 #include "tree-flow.h" /* for may_be_aliased */
51 /* This file contains three techniques for performing Dead Store
52 Elimination (dse).
54 * The first technique performs dse locally on any base address. It
55 is based on the cselib which is a local value numbering technique.
56 This technique is local to a basic block but deals with a fairly
57 general addresses.
59 * The second technique performs dse globally but is restricted to
60 base addresses that are either constant or are relative to the
61 frame_pointer.
63 * The third technique, (which is only done after register allocation)
64 processes the spill spill slots. This differs from the second
65 technique because it takes advantage of the fact that spilling is
66 completely free from the effects of aliasing.
68 Logically, dse is a backwards dataflow problem. A store can be
69 deleted if it if cannot be reached in the backward direction by any
70 use of the value being stored. However, the local technique uses a
71 forwards scan of the basic block because cselib requires that the
72 block be processed in that order.
74 The pass is logically broken into 7 steps:
76 0) Initialization.
78 1) The local algorithm, as well as scanning the insns for the two
79 global algorithms.
81 2) Analysis to see if the global algs are necessary. In the case
82 of stores base on a constant address, there must be at least two
83 stores to that address, to make it possible to delete some of the
84 stores. In the case of stores off of the frame or spill related
85 stores, only one store to an address is necessary because those
86 stores die at the end of the function.
88 3) Set up the global dataflow equations based on processing the
89 info parsed in the first step.
91 4) Solve the dataflow equations.
93 5) Delete the insns that the global analysis has indicated are
94 unnecessary.
96 6) Delete insns that store the same value as preceding store
97 where the earlier store couldn't be eliminated.
99 7) Cleanup.
101 This step uses cselib and canon_rtx to build the largest expression
102 possible for each address. This pass is a forwards pass through
103 each basic block. From the point of view of the global technique,
104 the first pass could examine a block in either direction. The
105 forwards ordering is to accommodate cselib.
107 We make a simplifying assumption: addresses fall into four broad
108 categories:
110 1) base has rtx_varies_p == false, offset is constant.
111 2) base has rtx_varies_p == false, offset variable.
112 3) base has rtx_varies_p == true, offset constant.
113 4) base has rtx_varies_p == true, offset variable.
115 The local passes are able to process all 4 kinds of addresses. The
116 global pass only handles 1).
118 The global problem is formulated as follows:
120 A store, S1, to address A, where A is not relative to the stack
121 frame, can be eliminated if all paths from S1 to the end of the
122 function contain another store to A before a read to A.
124 If the address A is relative to the stack frame, a store S2 to A
125 can be eliminated if there are no paths from S2 that reach the
126 end of the function that read A before another store to A. In
127 this case S2 can be deleted if there are paths from S2 to the
128 end of the function that have no reads or writes to A. This
129 second case allows stores to the stack frame to be deleted that
130 would otherwise die when the function returns. This cannot be
131 done if stores_off_frame_dead_at_return is not true. See the doc
132 for that variable for when this variable is false.
134 The global problem is formulated as a backwards set union
135 dataflow problem where the stores are the gens and reads are the
136 kills. Set union problems are rare and require some special
137 handling given our representation of bitmaps. A straightforward
138 implementation requires a lot of bitmaps filled with 1s.
139 These are expensive and cumbersome in our bitmap formulation so
140 care has been taken to avoid large vectors filled with 1s. See
141 the comments in bb_info and in the dataflow confluence functions
142 for details.
144 There are two places for further enhancements to this algorithm:
146 1) The original dse which was embedded in a pass called flow also
147 did local address forwarding. For example in
149 A <- r100
150 ... <- A
152 flow would replace the right hand side of the second insn with a
153 reference to r100. Most of the information is available to add this
154 to this pass. It has not done it because it is a lot of work in
155 the case that either r100 is assigned to between the first and
156 second insn and/or the second insn is a load of part of the value
157 stored by the first insn.
159 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
160 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
161 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
162 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
164 2) The cleaning up of spill code is quite profitable. It currently
165 depends on reading tea leaves and chicken entrails left by reload.
166 This pass depends on reload creating a singleton alias set for each
167 spill slot and telling the next dse pass which of these alias sets
168 are the singletons. Rather than analyze the addresses of the
169 spills, dse's spill processing just does analysis of the loads and
170 stores that use those alias sets. There are three cases where this
171 falls short:
173 a) Reload sometimes creates the slot for one mode of access, and
174 then inserts loads and/or stores for a smaller mode. In this
175 case, the current code just punts on the slot. The proper thing
176 to do is to back out and use one bit vector position for each
177 byte of the entity associated with the slot. This depends on
178 KNOWING that reload always generates the accesses for each of the
179 bytes in some canonical (read that easy to understand several
180 passes after reload happens) way.
182 b) Reload sometimes decides that spill slot it allocated was not
183 large enough for the mode and goes back and allocates more slots
184 with the same mode and alias set. The backout in this case is a
185 little more graceful than (a). In this case the slot is unmarked
186 as being a spill slot and if final address comes out to be based
187 off the frame pointer, the global algorithm handles this slot.
189 c) For any pass that may prespill, there is currently no
190 mechanism to tell the dse pass that the slot being used has the
191 special properties that reload uses. It may be that all that is
192 required is to have those passes make the same calls that reload
193 does, assuming that the alias sets can be manipulated in the same
194 way. */
196 /* There are limits to the size of constant offsets we model for the
197 global problem. There are certainly test cases, that exceed this
198 limit, however, it is unlikely that there are important programs
199 that really have constant offsets this size. */
200 #define MAX_OFFSET (64 * 1024)
202 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
203 on the default obstack because these bitmaps can grow quite large
204 (~2GB for the small (!) test case of PR54146) and we'll hold on to
205 all that memory until the end of the compiler run.
206 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
207 releasing the whole obstack. */
208 static bitmap_obstack dse_bitmap_obstack;
210 /* Obstack for other data. As for above: Kinda nice to be able to
211 throw it all away at the end in one big sweep. */
212 static struct obstack dse_obstack;
214 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
215 static bitmap scratch = NULL;
217 struct insn_info;
219 /* This structure holds information about a candidate store. */
220 struct store_info
223 /* False means this is a clobber. */
224 bool is_set;
226 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
227 bool is_large;
229 /* The id of the mem group of the base address. If rtx_varies_p is
230 true, this is -1. Otherwise, it is the index into the group
231 table. */
232 int group_id;
234 /* This is the cselib value. */
235 cselib_val *cse_base;
237 /* This canonized mem. */
238 rtx mem;
240 /* Canonized MEM address for use by canon_true_dependence. */
241 rtx mem_addr;
243 /* If this is non-zero, it is the alias set of a spill location. */
244 alias_set_type alias_set;
246 /* The offset of the first and byte before the last byte associated
247 with the operation. */
248 HOST_WIDE_INT begin, end;
250 union
252 /* A bitmask as wide as the number of bytes in the word that
253 contains a 1 if the byte may be needed. The store is unused if
254 all of the bits are 0. This is used if IS_LARGE is false. */
255 unsigned HOST_WIDE_INT small_bitmask;
257 struct
259 /* A bitmap with one bit per byte. Cleared bit means the position
260 is needed. Used if IS_LARGE is false. */
261 bitmap bmap;
263 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
264 equal to END - BEGIN, the whole store is unused. */
265 int count;
266 } large;
267 } positions_needed;
269 /* The next store info for this insn. */
270 struct store_info *next;
272 /* The right hand side of the store. This is used if there is a
273 subsequent reload of the mems address somewhere later in the
274 basic block. */
275 rtx rhs;
277 /* If rhs is or holds a constant, this contains that constant,
278 otherwise NULL. */
279 rtx const_rhs;
281 /* Set if this store stores the same constant value as REDUNDANT_REASON
282 insn stored. These aren't eliminated early, because doing that
283 might prevent the earlier larger store to be eliminated. */
284 struct insn_info *redundant_reason;
287 /* Return a bitmask with the first N low bits set. */
289 static unsigned HOST_WIDE_INT
290 lowpart_bitmask (int n)
292 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
293 return mask >> (HOST_BITS_PER_WIDE_INT - n);
296 typedef struct store_info *store_info_t;
297 static alloc_pool cse_store_info_pool;
298 static alloc_pool rtx_store_info_pool;
300 /* This structure holds information about a load. These are only
301 built for rtx bases. */
302 struct read_info
304 /* The id of the mem group of the base address. */
305 int group_id;
307 /* If this is non-zero, it is the alias set of a spill location. */
308 alias_set_type alias_set;
310 /* The offset of the first and byte after the last byte associated
311 with the operation. If begin == end == 0, the read did not have
312 a constant offset. */
313 int begin, end;
315 /* The mem being read. */
316 rtx mem;
318 /* The next read_info for this insn. */
319 struct read_info *next;
321 typedef struct read_info *read_info_t;
322 static alloc_pool read_info_pool;
325 /* One of these records is created for each insn. */
327 struct insn_info
329 /* Set true if the insn contains a store but the insn itself cannot
330 be deleted. This is set if the insn is a parallel and there is
331 more than one non dead output or if the insn is in some way
332 volatile. */
333 bool cannot_delete;
335 /* This field is only used by the global algorithm. It is set true
336 if the insn contains any read of mem except for a (1). This is
337 also set if the insn is a call or has a clobber mem. If the insn
338 contains a wild read, the use_rec will be null. */
339 bool wild_read;
341 /* This is true only for CALL instructions which could potentially read
342 any non-frame memory location. This field is used by the global
343 algorithm. */
344 bool non_frame_wild_read;
346 /* This field is only used for the processing of const functions.
347 These functions cannot read memory, but they can read the stack
348 because that is where they may get their parms. We need to be
349 this conservative because, like the store motion pass, we don't
350 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
351 Moreover, we need to distinguish two cases:
352 1. Before reload (register elimination), the stores related to
353 outgoing arguments are stack pointer based and thus deemed
354 of non-constant base in this pass. This requires special
355 handling but also means that the frame pointer based stores
356 need not be killed upon encountering a const function call.
357 2. After reload, the stores related to outgoing arguments can be
358 either stack pointer or hard frame pointer based. This means
359 that we have no other choice than also killing all the frame
360 pointer based stores upon encountering a const function call.
361 This field is set after reload for const function calls. Having
362 this set is less severe than a wild read, it just means that all
363 the frame related stores are killed rather than all the stores. */
364 bool frame_read;
366 /* This field is only used for the processing of const functions.
367 It is set if the insn may contain a stack pointer based store. */
368 bool stack_pointer_based;
370 /* This is true if any of the sets within the store contains a
371 cselib base. Such stores can only be deleted by the local
372 algorithm. */
373 bool contains_cselib_groups;
375 /* The insn. */
376 rtx insn;
378 /* The list of mem sets or mem clobbers that are contained in this
379 insn. If the insn is deletable, it contains only one mem set.
380 But it could also contain clobbers. Insns that contain more than
381 one mem set are not deletable, but each of those mems are here in
382 order to provide info to delete other insns. */
383 store_info_t store_rec;
385 /* The linked list of mem uses in this insn. Only the reads from
386 rtx bases are listed here. The reads to cselib bases are
387 completely processed during the first scan and so are never
388 created. */
389 read_info_t read_rec;
391 /* The live fixed registers. We assume only fixed registers can
392 cause trouble by being clobbered from an expanded pattern;
393 storing only the live fixed registers (rather than all registers)
394 means less memory needs to be allocated / copied for the individual
395 stores. */
396 regset fixed_regs_live;
398 /* The prev insn in the basic block. */
399 struct insn_info * prev_insn;
401 /* The linked list of insns that are in consideration for removal in
402 the forwards pass through the basic block. This pointer may be
403 trash as it is not cleared when a wild read occurs. The only
404 time it is guaranteed to be correct is when the traversal starts
405 at active_local_stores. */
406 struct insn_info * next_local_store;
409 typedef struct insn_info *insn_info_t;
410 static alloc_pool insn_info_pool;
412 /* The linked list of stores that are under consideration in this
413 basic block. */
414 static insn_info_t active_local_stores;
415 static int active_local_stores_len;
417 struct bb_info
420 /* Pointer to the insn info for the last insn in the block. These
421 are linked so this is how all of the insns are reached. During
422 scanning this is the current insn being scanned. */
423 insn_info_t last_insn;
425 /* The info for the global dataflow problem. */
428 /* This is set if the transfer function should and in the wild_read
429 bitmap before applying the kill and gen sets. That vector knocks
430 out most of the bits in the bitmap and thus speeds up the
431 operations. */
432 bool apply_wild_read;
434 /* The following 4 bitvectors hold information about which positions
435 of which stores are live or dead. They are indexed by
436 get_bitmap_index. */
438 /* The set of store positions that exist in this block before a wild read. */
439 bitmap gen;
441 /* The set of load positions that exist in this block above the
442 same position of a store. */
443 bitmap kill;
445 /* The set of stores that reach the top of the block without being
446 killed by a read.
448 Do not represent the in if it is all ones. Note that this is
449 what the bitvector should logically be initialized to for a set
450 intersection problem. However, like the kill set, this is too
451 expensive. So initially, the in set will only be created for the
452 exit block and any block that contains a wild read. */
453 bitmap in;
455 /* The set of stores that reach the bottom of the block from it's
456 successors.
458 Do not represent the in if it is all ones. Note that this is
459 what the bitvector should logically be initialized to for a set
460 intersection problem. However, like the kill and in set, this is
461 too expensive. So what is done is that the confluence operator
462 just initializes the vector from one of the out sets of the
463 successors of the block. */
464 bitmap out;
466 /* The following bitvector is indexed by the reg number. It
467 contains the set of regs that are live at the current instruction
468 being processed. While it contains info for all of the
469 registers, only the hard registers are actually examined. It is used
470 to assure that shift and/or add sequences that are inserted do not
471 accidentally clobber live hard regs. */
472 bitmap regs_live;
475 typedef struct bb_info *bb_info_t;
476 static alloc_pool bb_info_pool;
478 /* Table to hold all bb_infos. */
479 static bb_info_t *bb_table;
481 /* There is a group_info for each rtx base that is used to reference
482 memory. There are also not many of the rtx bases because they are
483 very limited in scope. */
485 struct group_info
487 /* The actual base of the address. */
488 rtx rtx_base;
490 /* The sequential id of the base. This allows us to have a
491 canonical ordering of these that is not based on addresses. */
492 int id;
494 /* True if there are any positions that are to be processed
495 globally. */
496 bool process_globally;
498 /* True if the base of this group is either the frame_pointer or
499 hard_frame_pointer. */
500 bool frame_related;
502 /* A mem wrapped around the base pointer for the group in order to do
503 read dependency. It must be given BLKmode in order to encompass all
504 the possible offsets from the base. */
505 rtx base_mem;
507 /* Canonized version of base_mem's address. */
508 rtx canon_base_addr;
510 /* These two sets of two bitmaps are used to keep track of how many
511 stores are actually referencing that position from this base. We
512 only do this for rtx bases as this will be used to assign
513 positions in the bitmaps for the global problem. Bit N is set in
514 store1 on the first store for offset N. Bit N is set in store2
515 for the second store to offset N. This is all we need since we
516 only care about offsets that have two or more stores for them.
518 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
519 for 0 and greater offsets.
521 There is one special case here, for stores into the stack frame,
522 we will or store1 into store2 before deciding which stores look
523 at globally. This is because stores to the stack frame that have
524 no other reads before the end of the function can also be
525 deleted. */
526 bitmap store1_n, store1_p, store2_n, store2_p;
528 /* These bitmaps keep track of offsets in this group escape this function.
529 An offset escapes if it corresponds to a named variable whose
530 addressable flag is set. */
531 bitmap escaped_n, escaped_p;
533 /* The positions in this bitmap have the same assignments as the in,
534 out, gen and kill bitmaps. This bitmap is all zeros except for
535 the positions that are occupied by stores for this group. */
536 bitmap group_kill;
538 /* The offset_map is used to map the offsets from this base into
539 positions in the global bitmaps. It is only created after all of
540 the all of stores have been scanned and we know which ones we
541 care about. */
542 int *offset_map_n, *offset_map_p;
543 int offset_map_size_n, offset_map_size_p;
545 typedef struct group_info *group_info_t;
546 typedef const struct group_info *const_group_info_t;
547 static alloc_pool rtx_group_info_pool;
549 /* Index into the rtx_group_vec. */
550 static int rtx_group_next_id;
553 static vec<group_info_t> rtx_group_vec;
556 /* This structure holds the set of changes that are being deferred
557 when removing read operation. See replace_read. */
558 struct deferred_change
561 /* The mem that is being replaced. */
562 rtx *loc;
564 /* The reg it is being replaced with. */
565 rtx reg;
567 struct deferred_change *next;
570 typedef struct deferred_change *deferred_change_t;
571 static alloc_pool deferred_change_pool;
573 static deferred_change_t deferred_change_list = NULL;
575 /* This are used to hold the alias sets of spill variables. Since
576 these are never aliased and there may be a lot of them, it makes
577 sense to treat them specially. This bitvector is only allocated in
578 calls from dse_record_singleton_alias_set which currently is only
579 made during reload1. So when dse is called before reload this
580 mechanism does nothing. */
582 static bitmap clear_alias_sets = NULL;
584 /* The set of clear_alias_sets that have been disqualified because
585 there are loads or stores using a different mode than the alias set
586 was registered with. */
587 static bitmap disqualified_clear_alias_sets = NULL;
589 /* The group that holds all of the clear_alias_sets. */
590 static group_info_t clear_alias_group;
592 /* The modes of the clear_alias_sets. */
593 static htab_t clear_alias_mode_table;
595 /* Hash table element to look up the mode for an alias set. */
596 struct clear_alias_mode_holder
598 alias_set_type alias_set;
599 enum machine_mode mode;
602 static alloc_pool clear_alias_mode_pool;
604 /* This is true except if cfun->stdarg -- i.e. we cannot do
605 this for vararg functions because they play games with the frame. */
606 static bool stores_off_frame_dead_at_return;
608 /* Counter for stats. */
609 static int globally_deleted;
610 static int locally_deleted;
611 static int spill_deleted;
613 static bitmap all_blocks;
615 /* Locations that are killed by calls in the global phase. */
616 static bitmap kill_on_calls;
618 /* The number of bits used in the global bitmaps. */
619 static unsigned int current_position;
622 static bool gate_dse1 (void);
623 static bool gate_dse2 (void);
626 /*----------------------------------------------------------------------------
627 Zeroth step.
629 Initialization.
630 ----------------------------------------------------------------------------*/
633 /* Find the entry associated with ALIAS_SET. */
635 static struct clear_alias_mode_holder *
636 clear_alias_set_lookup (alias_set_type alias_set)
638 struct clear_alias_mode_holder tmp_holder;
639 void **slot;
641 tmp_holder.alias_set = alias_set;
642 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
643 gcc_assert (*slot);
645 return (struct clear_alias_mode_holder *) *slot;
649 /* Hashtable callbacks for maintaining the "bases" field of
650 store_group_info, given that the addresses are function invariants. */
652 struct invariant_group_base_hasher : typed_noop_remove <group_info>
654 typedef group_info value_type;
655 typedef group_info compare_type;
656 static inline hashval_t hash (const value_type *);
657 static inline bool equal (const value_type *, const compare_type *);
660 inline bool
661 invariant_group_base_hasher::equal (const value_type *gi1,
662 const compare_type *gi2)
664 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
667 inline hashval_t
668 invariant_group_base_hasher::hash (const value_type *gi)
670 int do_not_record;
671 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
674 /* Tables of group_info structures, hashed by base value. */
675 static hash_table <invariant_group_base_hasher> rtx_group_table;
678 /* Get the GROUP for BASE. Add a new group if it is not there. */
680 static group_info_t
681 get_group_info (rtx base)
683 struct group_info tmp_gi;
684 group_info_t gi;
685 group_info **slot;
687 if (base)
689 /* Find the store_base_info structure for BASE, creating a new one
690 if necessary. */
691 tmp_gi.rtx_base = base;
692 slot = rtx_group_table.find_slot (&tmp_gi, INSERT);
693 gi = (group_info_t) *slot;
695 else
697 if (!clear_alias_group)
699 clear_alias_group = gi =
700 (group_info_t) pool_alloc (rtx_group_info_pool);
701 memset (gi, 0, sizeof (struct group_info));
702 gi->id = rtx_group_next_id++;
703 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
704 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
705 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
706 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
707 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
708 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
709 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
710 gi->process_globally = false;
711 gi->offset_map_size_n = 0;
712 gi->offset_map_size_p = 0;
713 gi->offset_map_n = NULL;
714 gi->offset_map_p = NULL;
715 rtx_group_vec.safe_push (gi);
717 return clear_alias_group;
720 if (gi == NULL)
722 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
723 gi->rtx_base = base;
724 gi->id = rtx_group_next_id++;
725 gi->base_mem = gen_rtx_MEM (BLKmode, base);
726 gi->canon_base_addr = canon_rtx (base);
727 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
728 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
729 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
730 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
731 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
732 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
733 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
734 gi->process_globally = false;
735 gi->frame_related =
736 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
737 gi->offset_map_size_n = 0;
738 gi->offset_map_size_p = 0;
739 gi->offset_map_n = NULL;
740 gi->offset_map_p = NULL;
741 rtx_group_vec.safe_push (gi);
744 return gi;
748 /* Initialization of data structures. */
750 static void
751 dse_step0 (void)
753 locally_deleted = 0;
754 globally_deleted = 0;
755 spill_deleted = 0;
757 bitmap_obstack_initialize (&dse_bitmap_obstack);
758 gcc_obstack_init (&dse_obstack);
760 scratch = BITMAP_ALLOC (&reg_obstack);
761 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
763 rtx_store_info_pool
764 = create_alloc_pool ("rtx_store_info_pool",
765 sizeof (struct store_info), 100);
766 read_info_pool
767 = create_alloc_pool ("read_info_pool",
768 sizeof (struct read_info), 100);
769 insn_info_pool
770 = create_alloc_pool ("insn_info_pool",
771 sizeof (struct insn_info), 100);
772 bb_info_pool
773 = create_alloc_pool ("bb_info_pool",
774 sizeof (struct bb_info), 100);
775 rtx_group_info_pool
776 = create_alloc_pool ("rtx_group_info_pool",
777 sizeof (struct group_info), 100);
778 deferred_change_pool
779 = create_alloc_pool ("deferred_change_pool",
780 sizeof (struct deferred_change), 10);
782 rtx_group_table.create (11);
784 bb_table = XNEWVEC (bb_info_t, last_basic_block);
785 rtx_group_next_id = 0;
787 stores_off_frame_dead_at_return = !cfun->stdarg;
789 init_alias_analysis ();
791 if (clear_alias_sets)
792 clear_alias_group = get_group_info (NULL);
793 else
794 clear_alias_group = NULL;
799 /*----------------------------------------------------------------------------
800 First step.
802 Scan all of the insns. Any random ordering of the blocks is fine.
803 Each block is scanned in forward order to accommodate cselib which
804 is used to remove stores with non-constant bases.
805 ----------------------------------------------------------------------------*/
807 /* Delete all of the store_info recs from INSN_INFO. */
809 static void
810 free_store_info (insn_info_t insn_info)
812 store_info_t store_info = insn_info->store_rec;
813 while (store_info)
815 store_info_t next = store_info->next;
816 if (store_info->is_large)
817 BITMAP_FREE (store_info->positions_needed.large.bmap);
818 if (store_info->cse_base)
819 pool_free (cse_store_info_pool, store_info);
820 else
821 pool_free (rtx_store_info_pool, store_info);
822 store_info = next;
825 insn_info->cannot_delete = true;
826 insn_info->contains_cselib_groups = false;
827 insn_info->store_rec = NULL;
830 typedef struct
832 rtx first, current;
833 regset fixed_regs_live;
834 bool failure;
835 } note_add_store_info;
837 /* Callback for emit_inc_dec_insn_before via note_stores.
838 Check if a register is clobbered which is live afterwards. */
840 static void
841 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
843 rtx insn;
844 note_add_store_info *info = (note_add_store_info *) data;
845 int r, n;
847 if (!REG_P (loc))
848 return;
850 /* If this register is referenced by the current or an earlier insn,
851 that's OK. E.g. this applies to the register that is being incremented
852 with this addition. */
853 for (insn = info->first;
854 insn != NEXT_INSN (info->current);
855 insn = NEXT_INSN (insn))
856 if (reg_referenced_p (loc, PATTERN (insn)))
857 return;
859 /* If we come here, we have a clobber of a register that's only OK
860 if that register is not live. If we don't have liveness information
861 available, fail now. */
862 if (!info->fixed_regs_live)
864 info->failure = true;
865 return;
867 /* Now check if this is a live fixed register. */
868 r = REGNO (loc);
869 n = hard_regno_nregs[r][GET_MODE (loc)];
870 while (--n >= 0)
871 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
872 info->failure = true;
875 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
876 SRC + SRCOFF before insn ARG. */
878 static int
879 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
880 rtx op ATTRIBUTE_UNUSED,
881 rtx dest, rtx src, rtx srcoff, void *arg)
883 insn_info_t insn_info = (insn_info_t) arg;
884 rtx insn = insn_info->insn, new_insn, cur;
885 note_add_store_info info;
887 /* We can reuse all operands without copying, because we are about
888 to delete the insn that contained it. */
889 if (srcoff)
891 start_sequence ();
892 emit_insn (gen_add3_insn (dest, src, srcoff));
893 new_insn = get_insns ();
894 end_sequence ();
896 else
897 new_insn = gen_move_insn (dest, src);
898 info.first = new_insn;
899 info.fixed_regs_live = insn_info->fixed_regs_live;
900 info.failure = false;
901 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
903 info.current = cur;
904 note_stores (PATTERN (cur), note_add_store, &info);
907 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
908 return it immediately, communicating the failure to its caller. */
909 if (info.failure)
910 return 1;
912 emit_insn_before (new_insn, insn);
914 return -1;
917 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
918 is there, is split into a separate insn.
919 Return true on success (or if there was nothing to do), false on failure. */
921 static bool
922 check_for_inc_dec_1 (insn_info_t insn_info)
924 rtx insn = insn_info->insn;
925 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
926 if (note)
927 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
928 return true;
932 /* Entry point for postreload. If you work on reload_cse, or you need this
933 anywhere else, consider if you can provide register liveness information
934 and add a parameter to this function so that it can be passed down in
935 insn_info.fixed_regs_live. */
936 bool
937 check_for_inc_dec (rtx insn)
939 struct insn_info insn_info;
940 rtx note;
942 insn_info.insn = insn;
943 insn_info.fixed_regs_live = NULL;
944 note = find_reg_note (insn, REG_INC, NULL_RTX);
945 if (note)
946 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
947 return true;
950 /* Delete the insn and free all of the fields inside INSN_INFO. */
952 static void
953 delete_dead_store_insn (insn_info_t insn_info)
955 read_info_t read_info;
957 if (!dbg_cnt (dse))
958 return;
960 if (!check_for_inc_dec_1 (insn_info))
961 return;
962 if (dump_file)
964 fprintf (dump_file, "Locally deleting insn %d ",
965 INSN_UID (insn_info->insn));
966 if (insn_info->store_rec->alias_set)
967 fprintf (dump_file, "alias set %d\n",
968 (int) insn_info->store_rec->alias_set);
969 else
970 fprintf (dump_file, "\n");
973 free_store_info (insn_info);
974 read_info = insn_info->read_rec;
976 while (read_info)
978 read_info_t next = read_info->next;
979 pool_free (read_info_pool, read_info);
980 read_info = next;
982 insn_info->read_rec = NULL;
984 delete_insn (insn_info->insn);
985 locally_deleted++;
986 insn_info->insn = NULL;
988 insn_info->wild_read = false;
991 /* Return whether DECL, a local variable, can possibly escape the current
992 function scope. */
994 static bool
995 local_variable_can_escape (tree decl)
997 if (TREE_ADDRESSABLE (decl))
998 return true;
1000 /* If this is a partitioned variable, we need to consider all the variables
1001 in the partition. This is necessary because a store into one of them can
1002 be replaced with a store into another and this may not change the outcome
1003 of the escape analysis. */
1004 if (cfun->gimple_df->decls_to_pointers != NULL)
1006 void *namep
1007 = pointer_map_contains (cfun->gimple_df->decls_to_pointers, decl);
1008 if (namep)
1009 return TREE_ADDRESSABLE (*(tree *)namep);
1012 return false;
1015 /* Return whether EXPR can possibly escape the current function scope. */
1017 static bool
1018 can_escape (tree expr)
1020 tree base;
1021 if (!expr)
1022 return true;
1023 base = get_base_address (expr);
1024 if (DECL_P (base)
1025 && !may_be_aliased (base)
1026 && !(TREE_CODE (base) == VAR_DECL
1027 && !DECL_EXTERNAL (base)
1028 && !TREE_STATIC (base)
1029 && local_variable_can_escape (base)))
1030 return false;
1031 return true;
1034 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1035 OFFSET and WIDTH. */
1037 static void
1038 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
1039 tree expr)
1041 HOST_WIDE_INT i;
1042 bool expr_escapes = can_escape (expr);
1043 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1044 for (i=offset; i<offset+width; i++)
1046 bitmap store1;
1047 bitmap store2;
1048 bitmap escaped;
1049 int ai;
1050 if (i < 0)
1052 store1 = group->store1_n;
1053 store2 = group->store2_n;
1054 escaped = group->escaped_n;
1055 ai = -i;
1057 else
1059 store1 = group->store1_p;
1060 store2 = group->store2_p;
1061 escaped = group->escaped_p;
1062 ai = i;
1065 if (!bitmap_set_bit (store1, ai))
1066 bitmap_set_bit (store2, ai);
1067 else
1069 if (i < 0)
1071 if (group->offset_map_size_n < ai)
1072 group->offset_map_size_n = ai;
1074 else
1076 if (group->offset_map_size_p < ai)
1077 group->offset_map_size_p = ai;
1080 if (expr_escapes)
1081 bitmap_set_bit (escaped, ai);
1085 static void
1086 reset_active_stores (void)
1088 active_local_stores = NULL;
1089 active_local_stores_len = 0;
1092 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1094 static void
1095 free_read_records (bb_info_t bb_info)
1097 insn_info_t insn_info = bb_info->last_insn;
1098 read_info_t *ptr = &insn_info->read_rec;
1099 while (*ptr)
1101 read_info_t next = (*ptr)->next;
1102 if ((*ptr)->alias_set == 0)
1104 pool_free (read_info_pool, *ptr);
1105 *ptr = next;
1107 else
1108 ptr = &(*ptr)->next;
1112 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1114 static void
1115 add_wild_read (bb_info_t bb_info)
1117 insn_info_t insn_info = bb_info->last_insn;
1118 insn_info->wild_read = true;
1119 free_read_records (bb_info);
1120 reset_active_stores ();
1123 /* Set the BB_INFO so that the last insn is marked as a wild read of
1124 non-frame locations. */
1126 static void
1127 add_non_frame_wild_read (bb_info_t bb_info)
1129 insn_info_t insn_info = bb_info->last_insn;
1130 insn_info->non_frame_wild_read = true;
1131 free_read_records (bb_info);
1132 reset_active_stores ();
1135 /* Return true if X is a constant or one of the registers that behave
1136 as a constant over the life of a function. This is equivalent to
1137 !rtx_varies_p for memory addresses. */
1139 static bool
1140 const_or_frame_p (rtx x)
1142 if (CONSTANT_P (x))
1143 return true;
1145 if (GET_CODE (x) == REG)
1147 /* Note that we have to test for the actual rtx used for the frame
1148 and arg pointers and not just the register number in case we have
1149 eliminated the frame and/or arg pointer and are using it
1150 for pseudos. */
1151 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1152 /* The arg pointer varies if it is not a fixed register. */
1153 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1154 || x == pic_offset_table_rtx)
1155 return true;
1156 return false;
1159 return false;
1162 /* Take all reasonable action to put the address of MEM into the form
1163 that we can do analysis on.
1165 The gold standard is to get the address into the form: address +
1166 OFFSET where address is something that rtx_varies_p considers a
1167 constant. When we can get the address in this form, we can do
1168 global analysis on it. Note that for constant bases, address is
1169 not actually returned, only the group_id. The address can be
1170 obtained from that.
1172 If that fails, we try cselib to get a value we can at least use
1173 locally. If that fails we return false.
1175 The GROUP_ID is set to -1 for cselib bases and the index of the
1176 group for non_varying bases.
1178 FOR_READ is true if this is a mem read and false if not. */
1180 static bool
1181 canon_address (rtx mem,
1182 alias_set_type *alias_set_out,
1183 int *group_id,
1184 HOST_WIDE_INT *offset,
1185 cselib_val **base)
1187 enum machine_mode address_mode = get_address_mode (mem);
1188 rtx mem_address = XEXP (mem, 0);
1189 rtx expanded_address, address;
1190 int expanded;
1192 /* Make sure that cselib is has initialized all of the operands of
1193 the address before asking it to do the subst. */
1195 if (clear_alias_sets)
1197 /* If this is a spill, do not do any further processing. */
1198 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1199 if (dump_file)
1200 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1201 if (bitmap_bit_p (clear_alias_sets, alias_set))
1203 struct clear_alias_mode_holder *entry
1204 = clear_alias_set_lookup (alias_set);
1206 /* If the modes do not match, we cannot process this set. */
1207 if (entry->mode != GET_MODE (mem))
1209 if (dump_file)
1210 fprintf (dump_file,
1211 "disqualifying alias set %d, (%s) != (%s)\n",
1212 (int) alias_set, GET_MODE_NAME (entry->mode),
1213 GET_MODE_NAME (GET_MODE (mem)));
1215 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1216 return false;
1219 *alias_set_out = alias_set;
1220 *group_id = clear_alias_group->id;
1221 return true;
1225 *alias_set_out = 0;
1227 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1229 if (dump_file)
1231 fprintf (dump_file, " mem: ");
1232 print_inline_rtx (dump_file, mem_address, 0);
1233 fprintf (dump_file, "\n");
1236 /* First see if just canon_rtx (mem_address) is const or frame,
1237 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1238 address = NULL_RTX;
1239 for (expanded = 0; expanded < 2; expanded++)
1241 if (expanded)
1243 /* Use cselib to replace all of the reg references with the full
1244 expression. This will take care of the case where we have
1246 r_x = base + offset;
1247 val = *r_x;
1249 by making it into
1251 val = *(base + offset); */
1253 expanded_address = cselib_expand_value_rtx (mem_address,
1254 scratch, 5);
1256 /* If this fails, just go with the address from first
1257 iteration. */
1258 if (!expanded_address)
1259 break;
1261 else
1262 expanded_address = mem_address;
1264 /* Split the address into canonical BASE + OFFSET terms. */
1265 address = canon_rtx (expanded_address);
1267 *offset = 0;
1269 if (dump_file)
1271 if (expanded)
1273 fprintf (dump_file, "\n after cselib_expand address: ");
1274 print_inline_rtx (dump_file, expanded_address, 0);
1275 fprintf (dump_file, "\n");
1278 fprintf (dump_file, "\n after canon_rtx address: ");
1279 print_inline_rtx (dump_file, address, 0);
1280 fprintf (dump_file, "\n");
1283 if (GET_CODE (address) == CONST)
1284 address = XEXP (address, 0);
1286 if (GET_CODE (address) == PLUS
1287 && CONST_INT_P (XEXP (address, 1)))
1289 *offset = INTVAL (XEXP (address, 1));
1290 address = XEXP (address, 0);
1293 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1294 && const_or_frame_p (address))
1296 group_info_t group = get_group_info (address);
1298 if (dump_file)
1299 fprintf (dump_file, " gid=%d offset=%d \n",
1300 group->id, (int)*offset);
1301 *base = NULL;
1302 *group_id = group->id;
1303 return true;
1307 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1308 *group_id = -1;
1310 if (*base == NULL)
1312 if (dump_file)
1313 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1314 return false;
1316 if (dump_file)
1317 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1318 (*base)->uid, (*base)->hash, (int)*offset);
1319 return true;
1323 /* Clear the rhs field from the active_local_stores array. */
1325 static void
1326 clear_rhs_from_active_local_stores (void)
1328 insn_info_t ptr = active_local_stores;
1330 while (ptr)
1332 store_info_t store_info = ptr->store_rec;
1333 /* Skip the clobbers. */
1334 while (!store_info->is_set)
1335 store_info = store_info->next;
1337 store_info->rhs = NULL;
1338 store_info->const_rhs = NULL;
1340 ptr = ptr->next_local_store;
1345 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1347 static inline void
1348 set_position_unneeded (store_info_t s_info, int pos)
1350 if (__builtin_expect (s_info->is_large, false))
1352 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1353 s_info->positions_needed.large.count++;
1355 else
1356 s_info->positions_needed.small_bitmask
1357 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1360 /* Mark the whole store S_INFO as unneeded. */
1362 static inline void
1363 set_all_positions_unneeded (store_info_t s_info)
1365 if (__builtin_expect (s_info->is_large, false))
1367 int pos, end = s_info->end - s_info->begin;
1368 for (pos = 0; pos < end; pos++)
1369 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1370 s_info->positions_needed.large.count = end;
1372 else
1373 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1376 /* Return TRUE if any bytes from S_INFO store are needed. */
1378 static inline bool
1379 any_positions_needed_p (store_info_t s_info)
1381 if (__builtin_expect (s_info->is_large, false))
1382 return (s_info->positions_needed.large.count
1383 < s_info->end - s_info->begin);
1384 else
1385 return (s_info->positions_needed.small_bitmask
1386 != (unsigned HOST_WIDE_INT) 0);
1389 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1390 store are needed. */
1392 static inline bool
1393 all_positions_needed_p (store_info_t s_info, int start, int width)
1395 if (__builtin_expect (s_info->is_large, false))
1397 int end = start + width;
1398 while (start < end)
1399 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1400 return false;
1401 return true;
1403 else
1405 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1406 return (s_info->positions_needed.small_bitmask & mask) == mask;
1411 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1412 HOST_WIDE_INT, basic_block, bool);
1415 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1416 there is a candidate store, after adding it to the appropriate
1417 local store group if so. */
1419 static int
1420 record_store (rtx body, bb_info_t bb_info)
1422 rtx mem, rhs, const_rhs, mem_addr;
1423 HOST_WIDE_INT offset = 0;
1424 HOST_WIDE_INT width = 0;
1425 alias_set_type spill_alias_set;
1426 insn_info_t insn_info = bb_info->last_insn;
1427 store_info_t store_info = NULL;
1428 int group_id;
1429 cselib_val *base = NULL;
1430 insn_info_t ptr, last, redundant_reason;
1431 bool store_is_unused;
1433 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1434 return 0;
1436 mem = SET_DEST (body);
1438 /* If this is not used, then this cannot be used to keep the insn
1439 from being deleted. On the other hand, it does provide something
1440 that can be used to prove that another store is dead. */
1441 store_is_unused
1442 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1444 /* Check whether that value is a suitable memory location. */
1445 if (!MEM_P (mem))
1447 /* If the set or clobber is unused, then it does not effect our
1448 ability to get rid of the entire insn. */
1449 if (!store_is_unused)
1450 insn_info->cannot_delete = true;
1451 return 0;
1454 /* At this point we know mem is a mem. */
1455 if (GET_MODE (mem) == BLKmode)
1457 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1459 if (dump_file)
1460 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1461 add_wild_read (bb_info);
1462 insn_info->cannot_delete = true;
1463 return 0;
1465 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1466 as memset (addr, 0, 36); */
1467 else if (!MEM_SIZE_KNOWN_P (mem)
1468 || MEM_SIZE (mem) <= 0
1469 || MEM_SIZE (mem) > MAX_OFFSET
1470 || GET_CODE (body) != SET
1471 || !CONST_INT_P (SET_SRC (body)))
1473 if (!store_is_unused)
1475 /* If the set or clobber is unused, then it does not effect our
1476 ability to get rid of the entire insn. */
1477 insn_info->cannot_delete = true;
1478 clear_rhs_from_active_local_stores ();
1480 return 0;
1484 /* We can still process a volatile mem, we just cannot delete it. */
1485 if (MEM_VOLATILE_P (mem))
1486 insn_info->cannot_delete = true;
1488 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1490 clear_rhs_from_active_local_stores ();
1491 return 0;
1494 if (GET_MODE (mem) == BLKmode)
1495 width = MEM_SIZE (mem);
1496 else
1497 width = GET_MODE_SIZE (GET_MODE (mem));
1499 if (spill_alias_set)
1501 bitmap store1 = clear_alias_group->store1_p;
1502 bitmap store2 = clear_alias_group->store2_p;
1504 gcc_assert (GET_MODE (mem) != BLKmode);
1506 if (!bitmap_set_bit (store1, spill_alias_set))
1507 bitmap_set_bit (store2, spill_alias_set);
1509 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1510 clear_alias_group->offset_map_size_p = spill_alias_set;
1512 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1514 if (dump_file)
1515 fprintf (dump_file, " processing spill store %d(%s)\n",
1516 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1518 else if (group_id >= 0)
1520 /* In the restrictive case where the base is a constant or the
1521 frame pointer we can do global analysis. */
1523 group_info_t group
1524 = rtx_group_vec[group_id];
1525 tree expr = MEM_EXPR (mem);
1527 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1528 set_usage_bits (group, offset, width, expr);
1530 if (dump_file)
1531 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1532 group_id, (int)offset, (int)(offset+width));
1534 else
1536 if (may_be_sp_based_p (XEXP (mem, 0)))
1537 insn_info->stack_pointer_based = true;
1538 insn_info->contains_cselib_groups = true;
1540 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1541 group_id = -1;
1543 if (dump_file)
1544 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1545 (int)offset, (int)(offset+width));
1548 const_rhs = rhs = NULL_RTX;
1549 if (GET_CODE (body) == SET
1550 /* No place to keep the value after ra. */
1551 && !reload_completed
1552 && (REG_P (SET_SRC (body))
1553 || GET_CODE (SET_SRC (body)) == SUBREG
1554 || CONSTANT_P (SET_SRC (body)))
1555 && !MEM_VOLATILE_P (mem)
1556 /* Sometimes the store and reload is used for truncation and
1557 rounding. */
1558 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1560 rhs = SET_SRC (body);
1561 if (CONSTANT_P (rhs))
1562 const_rhs = rhs;
1563 else if (body == PATTERN (insn_info->insn))
1565 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1566 if (tem && CONSTANT_P (XEXP (tem, 0)))
1567 const_rhs = XEXP (tem, 0);
1569 if (const_rhs == NULL_RTX && REG_P (rhs))
1571 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1573 if (tem && CONSTANT_P (tem))
1574 const_rhs = tem;
1578 /* Check to see if this stores causes some other stores to be
1579 dead. */
1580 ptr = active_local_stores;
1581 last = NULL;
1582 redundant_reason = NULL;
1583 mem = canon_rtx (mem);
1584 /* For alias_set != 0 canon_true_dependence should be never called. */
1585 if (spill_alias_set)
1586 mem_addr = NULL_RTX;
1587 else
1589 if (group_id < 0)
1590 mem_addr = base->val_rtx;
1591 else
1593 group_info_t group
1594 = rtx_group_vec[group_id];
1595 mem_addr = group->canon_base_addr;
1597 if (offset)
1598 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1601 while (ptr)
1603 insn_info_t next = ptr->next_local_store;
1604 store_info_t s_info = ptr->store_rec;
1605 bool del = true;
1607 /* Skip the clobbers. We delete the active insn if this insn
1608 shadows the set. To have been put on the active list, it
1609 has exactly on set. */
1610 while (!s_info->is_set)
1611 s_info = s_info->next;
1613 if (s_info->alias_set != spill_alias_set)
1614 del = false;
1615 else if (s_info->alias_set)
1617 struct clear_alias_mode_holder *entry
1618 = clear_alias_set_lookup (s_info->alias_set);
1619 /* Generally, spills cannot be processed if and of the
1620 references to the slot have a different mode. But if
1621 we are in the same block and mode is exactly the same
1622 between this store and one before in the same block,
1623 we can still delete it. */
1624 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1625 && (GET_MODE (mem) == entry->mode))
1627 del = true;
1628 set_all_positions_unneeded (s_info);
1630 if (dump_file)
1631 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1632 INSN_UID (ptr->insn), (int) s_info->alias_set);
1634 else if ((s_info->group_id == group_id)
1635 && (s_info->cse_base == base))
1637 HOST_WIDE_INT i;
1638 if (dump_file)
1639 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1640 INSN_UID (ptr->insn), s_info->group_id,
1641 (int)s_info->begin, (int)s_info->end);
1643 /* Even if PTR won't be eliminated as unneeded, if both
1644 PTR and this insn store the same constant value, we might
1645 eliminate this insn instead. */
1646 if (s_info->const_rhs
1647 && const_rhs
1648 && offset >= s_info->begin
1649 && offset + width <= s_info->end
1650 && all_positions_needed_p (s_info, offset - s_info->begin,
1651 width))
1653 if (GET_MODE (mem) == BLKmode)
1655 if (GET_MODE (s_info->mem) == BLKmode
1656 && s_info->const_rhs == const_rhs)
1657 redundant_reason = ptr;
1659 else if (s_info->const_rhs == const0_rtx
1660 && const_rhs == const0_rtx)
1661 redundant_reason = ptr;
1662 else
1664 rtx val;
1665 start_sequence ();
1666 val = get_stored_val (s_info, GET_MODE (mem),
1667 offset, offset + width,
1668 BLOCK_FOR_INSN (insn_info->insn),
1669 true);
1670 if (get_insns () != NULL)
1671 val = NULL_RTX;
1672 end_sequence ();
1673 if (val && rtx_equal_p (val, const_rhs))
1674 redundant_reason = ptr;
1678 for (i = MAX (offset, s_info->begin);
1679 i < offset + width && i < s_info->end;
1680 i++)
1681 set_position_unneeded (s_info, i - s_info->begin);
1683 else if (s_info->rhs)
1684 /* Need to see if it is possible for this store to overwrite
1685 the value of store_info. If it is, set the rhs to NULL to
1686 keep it from being used to remove a load. */
1688 if (canon_true_dependence (s_info->mem,
1689 GET_MODE (s_info->mem),
1690 s_info->mem_addr,
1691 mem, mem_addr))
1693 s_info->rhs = NULL;
1694 s_info->const_rhs = NULL;
1698 /* An insn can be deleted if every position of every one of
1699 its s_infos is zero. */
1700 if (any_positions_needed_p (s_info))
1701 del = false;
1703 if (del)
1705 insn_info_t insn_to_delete = ptr;
1707 active_local_stores_len--;
1708 if (last)
1709 last->next_local_store = ptr->next_local_store;
1710 else
1711 active_local_stores = ptr->next_local_store;
1713 if (!insn_to_delete->cannot_delete)
1714 delete_dead_store_insn (insn_to_delete);
1716 else
1717 last = ptr;
1719 ptr = next;
1722 /* Finish filling in the store_info. */
1723 store_info->next = insn_info->store_rec;
1724 insn_info->store_rec = store_info;
1725 store_info->mem = mem;
1726 store_info->alias_set = spill_alias_set;
1727 store_info->mem_addr = mem_addr;
1728 store_info->cse_base = base;
1729 if (width > HOST_BITS_PER_WIDE_INT)
1731 store_info->is_large = true;
1732 store_info->positions_needed.large.count = 0;
1733 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1735 else
1737 store_info->is_large = false;
1738 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1740 store_info->group_id = group_id;
1741 store_info->begin = offset;
1742 store_info->end = offset + width;
1743 store_info->is_set = GET_CODE (body) == SET;
1744 store_info->rhs = rhs;
1745 store_info->const_rhs = const_rhs;
1746 store_info->redundant_reason = redundant_reason;
1748 /* If this is a clobber, we return 0. We will only be able to
1749 delete this insn if there is only one store USED store, but we
1750 can use the clobber to delete other stores earlier. */
1751 return store_info->is_set ? 1 : 0;
1755 static void
1756 dump_insn_info (const char * start, insn_info_t insn_info)
1758 fprintf (dump_file, "%s insn=%d %s\n", start,
1759 INSN_UID (insn_info->insn),
1760 insn_info->store_rec ? "has store" : "naked");
1764 /* If the modes are different and the value's source and target do not
1765 line up, we need to extract the value from lower part of the rhs of
1766 the store, shift it, and then put it into a form that can be shoved
1767 into the read_insn. This function generates a right SHIFT of a
1768 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1769 shift sequence is returned or NULL if we failed to find a
1770 shift. */
1772 static rtx
1773 find_shift_sequence (int access_size,
1774 store_info_t store_info,
1775 enum machine_mode read_mode,
1776 int shift, bool speed, bool require_cst)
1778 enum machine_mode store_mode = GET_MODE (store_info->mem);
1779 enum machine_mode new_mode;
1780 rtx read_reg = NULL;
1782 /* Some machines like the x86 have shift insns for each size of
1783 operand. Other machines like the ppc or the ia-64 may only have
1784 shift insns that shift values within 32 or 64 bit registers.
1785 This loop tries to find the smallest shift insn that will right
1786 justify the value we want to read but is available in one insn on
1787 the machine. */
1789 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1790 MODE_INT);
1791 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1792 new_mode = GET_MODE_WIDER_MODE (new_mode))
1794 rtx target, new_reg, shift_seq, insn, new_lhs;
1795 int cost;
1797 /* If a constant was stored into memory, try to simplify it here,
1798 otherwise the cost of the shift might preclude this optimization
1799 e.g. at -Os, even when no actual shift will be needed. */
1800 if (store_info->const_rhs)
1802 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1803 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1804 store_mode, byte);
1805 if (ret && CONSTANT_P (ret))
1807 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1808 ret, GEN_INT (shift));
1809 if (ret && CONSTANT_P (ret))
1811 byte = subreg_lowpart_offset (read_mode, new_mode);
1812 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1813 if (ret && CONSTANT_P (ret)
1814 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1815 return ret;
1820 if (require_cst)
1821 return NULL_RTX;
1823 /* Try a wider mode if truncating the store mode to NEW_MODE
1824 requires a real instruction. */
1825 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1826 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1827 continue;
1829 /* Also try a wider mode if the necessary punning is either not
1830 desirable or not possible. */
1831 if (!CONSTANT_P (store_info->rhs)
1832 && !MODES_TIEABLE_P (new_mode, store_mode))
1833 continue;
1835 new_reg = gen_reg_rtx (new_mode);
1837 start_sequence ();
1839 /* In theory we could also check for an ashr. Ian Taylor knows
1840 of one dsp where the cost of these two was not the same. But
1841 this really is a rare case anyway. */
1842 target = expand_binop (new_mode, lshr_optab, new_reg,
1843 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1845 shift_seq = get_insns ();
1846 end_sequence ();
1848 if (target != new_reg || shift_seq == NULL)
1849 continue;
1851 cost = 0;
1852 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1853 if (INSN_P (insn))
1854 cost += insn_rtx_cost (PATTERN (insn), speed);
1856 /* The computation up to here is essentially independent
1857 of the arguments and could be precomputed. It may
1858 not be worth doing so. We could precompute if
1859 worthwhile or at least cache the results. The result
1860 technically depends on both SHIFT and ACCESS_SIZE,
1861 but in practice the answer will depend only on ACCESS_SIZE. */
1863 if (cost > COSTS_N_INSNS (1))
1864 continue;
1866 new_lhs = extract_low_bits (new_mode, store_mode,
1867 copy_rtx (store_info->rhs));
1868 if (new_lhs == NULL_RTX)
1869 continue;
1871 /* We found an acceptable shift. Generate a move to
1872 take the value from the store and put it into the
1873 shift pseudo, then shift it, then generate another
1874 move to put in into the target of the read. */
1875 emit_move_insn (new_reg, new_lhs);
1876 emit_insn (shift_seq);
1877 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1878 break;
1881 return read_reg;
1885 /* Call back for note_stores to find the hard regs set or clobbered by
1886 insn. Data is a bitmap of the hardregs set so far. */
1888 static void
1889 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1891 bitmap regs_set = (bitmap) data;
1893 if (REG_P (x)
1894 && HARD_REGISTER_P (x))
1896 unsigned int regno = REGNO (x);
1897 bitmap_set_range (regs_set, regno,
1898 hard_regno_nregs[regno][GET_MODE (x)]);
1902 /* Helper function for replace_read and record_store.
1903 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1904 to one before READ_END bytes read in READ_MODE. Return NULL
1905 if not successful. If REQUIRE_CST is true, return always constant. */
1907 static rtx
1908 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1909 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1910 basic_block bb, bool require_cst)
1912 enum machine_mode store_mode = GET_MODE (store_info->mem);
1913 int shift;
1914 int access_size; /* In bytes. */
1915 rtx read_reg;
1917 /* To get here the read is within the boundaries of the write so
1918 shift will never be negative. Start out with the shift being in
1919 bytes. */
1920 if (store_mode == BLKmode)
1921 shift = 0;
1922 else if (BYTES_BIG_ENDIAN)
1923 shift = store_info->end - read_end;
1924 else
1925 shift = read_begin - store_info->begin;
1927 access_size = shift + GET_MODE_SIZE (read_mode);
1929 /* From now on it is bits. */
1930 shift *= BITS_PER_UNIT;
1932 if (shift)
1933 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1934 optimize_bb_for_speed_p (bb),
1935 require_cst);
1936 else if (store_mode == BLKmode)
1938 /* The store is a memset (addr, const_val, const_size). */
1939 gcc_assert (CONST_INT_P (store_info->rhs));
1940 store_mode = int_mode_for_mode (read_mode);
1941 if (store_mode == BLKmode)
1942 read_reg = NULL_RTX;
1943 else if (store_info->rhs == const0_rtx)
1944 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1945 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1946 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1947 read_reg = NULL_RTX;
1948 else
1950 unsigned HOST_WIDE_INT c
1951 = INTVAL (store_info->rhs)
1952 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1953 int shift = BITS_PER_UNIT;
1954 while (shift < HOST_BITS_PER_WIDE_INT)
1956 c |= (c << shift);
1957 shift <<= 1;
1959 read_reg = gen_int_mode (c, store_mode);
1960 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1963 else if (store_info->const_rhs
1964 && (require_cst
1965 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1966 read_reg = extract_low_bits (read_mode, store_mode,
1967 copy_rtx (store_info->const_rhs));
1968 else
1969 read_reg = extract_low_bits (read_mode, store_mode,
1970 copy_rtx (store_info->rhs));
1971 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1972 read_reg = NULL_RTX;
1973 return read_reg;
1976 /* Take a sequence of:
1977 A <- r1
1979 ... <- A
1981 and change it into
1982 r2 <- r1
1983 A <- r1
1985 ... <- r2
1989 r3 <- extract (r1)
1990 r3 <- r3 >> shift
1991 r2 <- extract (r3)
1992 ... <- r2
1996 r2 <- extract (r1)
1997 ... <- r2
1999 Depending on the alignment and the mode of the store and
2000 subsequent load.
2003 The STORE_INFO and STORE_INSN are for the store and READ_INFO
2004 and READ_INSN are for the read. Return true if the replacement
2005 went ok. */
2007 static bool
2008 replace_read (store_info_t store_info, insn_info_t store_insn,
2009 read_info_t read_info, insn_info_t read_insn, rtx *loc,
2010 bitmap regs_live)
2012 enum machine_mode store_mode = GET_MODE (store_info->mem);
2013 enum machine_mode read_mode = GET_MODE (read_info->mem);
2014 rtx insns, this_insn, read_reg;
2015 basic_block bb;
2017 if (!dbg_cnt (dse))
2018 return false;
2020 /* Create a sequence of instructions to set up the read register.
2021 This sequence goes immediately before the store and its result
2022 is read by the load.
2024 We need to keep this in perspective. We are replacing a read
2025 with a sequence of insns, but the read will almost certainly be
2026 in cache, so it is not going to be an expensive one. Thus, we
2027 are not willing to do a multi insn shift or worse a subroutine
2028 call to get rid of the read. */
2029 if (dump_file)
2030 fprintf (dump_file, "trying to replace %smode load in insn %d"
2031 " from %smode store in insn %d\n",
2032 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2033 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2034 start_sequence ();
2035 bb = BLOCK_FOR_INSN (read_insn->insn);
2036 read_reg = get_stored_val (store_info,
2037 read_mode, read_info->begin, read_info->end,
2038 bb, false);
2039 if (read_reg == NULL_RTX)
2041 end_sequence ();
2042 if (dump_file)
2043 fprintf (dump_file, " -- could not extract bits of stored value\n");
2044 return false;
2046 /* Force the value into a new register so that it won't be clobbered
2047 between the store and the load. */
2048 read_reg = copy_to_mode_reg (read_mode, read_reg);
2049 insns = get_insns ();
2050 end_sequence ();
2052 if (insns != NULL_RTX)
2054 /* Now we have to scan the set of new instructions to see if the
2055 sequence contains and sets of hardregs that happened to be
2056 live at this point. For instance, this can happen if one of
2057 the insns sets the CC and the CC happened to be live at that
2058 point. This does occasionally happen, see PR 37922. */
2059 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2061 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2062 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2064 bitmap_and_into (regs_set, regs_live);
2065 if (!bitmap_empty_p (regs_set))
2067 if (dump_file)
2069 fprintf (dump_file,
2070 "abandoning replacement because sequence clobbers live hardregs:");
2071 df_print_regset (dump_file, regs_set);
2074 BITMAP_FREE (regs_set);
2075 return false;
2077 BITMAP_FREE (regs_set);
2080 if (validate_change (read_insn->insn, loc, read_reg, 0))
2082 deferred_change_t deferred_change =
2083 (deferred_change_t) pool_alloc (deferred_change_pool);
2085 /* Insert this right before the store insn where it will be safe
2086 from later insns that might change it before the read. */
2087 emit_insn_before (insns, store_insn->insn);
2089 /* And now for the kludge part: cselib croaks if you just
2090 return at this point. There are two reasons for this:
2092 1) Cselib has an idea of how many pseudos there are and
2093 that does not include the new ones we just added.
2095 2) Cselib does not know about the move insn we added
2096 above the store_info, and there is no way to tell it
2097 about it, because it has "moved on".
2099 Problem (1) is fixable with a certain amount of engineering.
2100 Problem (2) is requires starting the bb from scratch. This
2101 could be expensive.
2103 So we are just going to have to lie. The move/extraction
2104 insns are not really an issue, cselib did not see them. But
2105 the use of the new pseudo read_insn is a real problem because
2106 cselib has not scanned this insn. The way that we solve this
2107 problem is that we are just going to put the mem back for now
2108 and when we are finished with the block, we undo this. We
2109 keep a table of mems to get rid of. At the end of the basic
2110 block we can put them back. */
2112 *loc = read_info->mem;
2113 deferred_change->next = deferred_change_list;
2114 deferred_change_list = deferred_change;
2115 deferred_change->loc = loc;
2116 deferred_change->reg = read_reg;
2118 /* Get rid of the read_info, from the point of view of the
2119 rest of dse, play like this read never happened. */
2120 read_insn->read_rec = read_info->next;
2121 pool_free (read_info_pool, read_info);
2122 if (dump_file)
2124 fprintf (dump_file, " -- replaced the loaded MEM with ");
2125 print_simple_rtl (dump_file, read_reg);
2126 fprintf (dump_file, "\n");
2128 return true;
2130 else
2132 if (dump_file)
2134 fprintf (dump_file, " -- replacing the loaded MEM with ");
2135 print_simple_rtl (dump_file, read_reg);
2136 fprintf (dump_file, " led to an invalid instruction\n");
2138 return false;
2142 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2143 if LOC is a mem and if it is look at the address and kill any
2144 appropriate stores that may be active. */
2146 static int
2147 check_mem_read_rtx (rtx *loc, void *data)
2149 rtx mem = *loc, mem_addr;
2150 bb_info_t bb_info;
2151 insn_info_t insn_info;
2152 HOST_WIDE_INT offset = 0;
2153 HOST_WIDE_INT width = 0;
2154 alias_set_type spill_alias_set = 0;
2155 cselib_val *base = NULL;
2156 int group_id;
2157 read_info_t read_info;
2159 if (!mem || !MEM_P (mem))
2160 return 0;
2162 bb_info = (bb_info_t) data;
2163 insn_info = bb_info->last_insn;
2165 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2166 || (MEM_VOLATILE_P (mem)))
2168 if (dump_file)
2169 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2170 add_wild_read (bb_info);
2171 insn_info->cannot_delete = true;
2172 return 0;
2175 /* If it is reading readonly mem, then there can be no conflict with
2176 another write. */
2177 if (MEM_READONLY_P (mem))
2178 return 0;
2180 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2182 if (dump_file)
2183 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2184 add_wild_read (bb_info);
2185 return 0;
2188 if (GET_MODE (mem) == BLKmode)
2189 width = -1;
2190 else
2191 width = GET_MODE_SIZE (GET_MODE (mem));
2193 read_info = (read_info_t) pool_alloc (read_info_pool);
2194 read_info->group_id = group_id;
2195 read_info->mem = mem;
2196 read_info->alias_set = spill_alias_set;
2197 read_info->begin = offset;
2198 read_info->end = offset + width;
2199 read_info->next = insn_info->read_rec;
2200 insn_info->read_rec = read_info;
2201 /* For alias_set != 0 canon_true_dependence should be never called. */
2202 if (spill_alias_set)
2203 mem_addr = NULL_RTX;
2204 else
2206 if (group_id < 0)
2207 mem_addr = base->val_rtx;
2208 else
2210 group_info_t group
2211 = rtx_group_vec[group_id];
2212 mem_addr = group->canon_base_addr;
2214 if (offset)
2215 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2218 /* We ignore the clobbers in store_info. The is mildly aggressive,
2219 but there really should not be a clobber followed by a read. */
2221 if (spill_alias_set)
2223 insn_info_t i_ptr = active_local_stores;
2224 insn_info_t last = NULL;
2226 if (dump_file)
2227 fprintf (dump_file, " processing spill load %d\n",
2228 (int) spill_alias_set);
2230 while (i_ptr)
2232 store_info_t store_info = i_ptr->store_rec;
2234 /* Skip the clobbers. */
2235 while (!store_info->is_set)
2236 store_info = store_info->next;
2238 if (store_info->alias_set == spill_alias_set)
2240 if (dump_file)
2241 dump_insn_info ("removing from active", i_ptr);
2243 active_local_stores_len--;
2244 if (last)
2245 last->next_local_store = i_ptr->next_local_store;
2246 else
2247 active_local_stores = i_ptr->next_local_store;
2249 else
2250 last = i_ptr;
2251 i_ptr = i_ptr->next_local_store;
2254 else if (group_id >= 0)
2256 /* This is the restricted case where the base is a constant or
2257 the frame pointer and offset is a constant. */
2258 insn_info_t i_ptr = active_local_stores;
2259 insn_info_t last = NULL;
2261 if (dump_file)
2263 if (width == -1)
2264 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2265 group_id);
2266 else
2267 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2268 group_id, (int)offset, (int)(offset+width));
2271 while (i_ptr)
2273 bool remove = false;
2274 store_info_t store_info = i_ptr->store_rec;
2276 /* Skip the clobbers. */
2277 while (!store_info->is_set)
2278 store_info = store_info->next;
2280 /* There are three cases here. */
2281 if (store_info->group_id < 0)
2282 /* We have a cselib store followed by a read from a
2283 const base. */
2284 remove
2285 = canon_true_dependence (store_info->mem,
2286 GET_MODE (store_info->mem),
2287 store_info->mem_addr,
2288 mem, mem_addr);
2290 else if (group_id == store_info->group_id)
2292 /* This is a block mode load. We may get lucky and
2293 canon_true_dependence may save the day. */
2294 if (width == -1)
2295 remove
2296 = canon_true_dependence (store_info->mem,
2297 GET_MODE (store_info->mem),
2298 store_info->mem_addr,
2299 mem, mem_addr);
2301 /* If this read is just reading back something that we just
2302 stored, rewrite the read. */
2303 else
2305 if (store_info->rhs
2306 && offset >= store_info->begin
2307 && offset + width <= store_info->end
2308 && all_positions_needed_p (store_info,
2309 offset - store_info->begin,
2310 width)
2311 && replace_read (store_info, i_ptr, read_info,
2312 insn_info, loc, bb_info->regs_live))
2313 return 0;
2315 /* The bases are the same, just see if the offsets
2316 overlap. */
2317 if ((offset < store_info->end)
2318 && (offset + width > store_info->begin))
2319 remove = true;
2323 /* else
2324 The else case that is missing here is that the
2325 bases are constant but different. There is nothing
2326 to do here because there is no overlap. */
2328 if (remove)
2330 if (dump_file)
2331 dump_insn_info ("removing from active", i_ptr);
2333 active_local_stores_len--;
2334 if (last)
2335 last->next_local_store = i_ptr->next_local_store;
2336 else
2337 active_local_stores = i_ptr->next_local_store;
2339 else
2340 last = i_ptr;
2341 i_ptr = i_ptr->next_local_store;
2344 else
2346 insn_info_t i_ptr = active_local_stores;
2347 insn_info_t last = NULL;
2348 if (dump_file)
2350 fprintf (dump_file, " processing cselib load mem:");
2351 print_inline_rtx (dump_file, mem, 0);
2352 fprintf (dump_file, "\n");
2355 while (i_ptr)
2357 bool remove = false;
2358 store_info_t store_info = i_ptr->store_rec;
2360 if (dump_file)
2361 fprintf (dump_file, " processing cselib load against insn %d\n",
2362 INSN_UID (i_ptr->insn));
2364 /* Skip the clobbers. */
2365 while (!store_info->is_set)
2366 store_info = store_info->next;
2368 /* If this read is just reading back something that we just
2369 stored, rewrite the read. */
2370 if (store_info->rhs
2371 && store_info->group_id == -1
2372 && store_info->cse_base == base
2373 && width != -1
2374 && offset >= store_info->begin
2375 && offset + width <= store_info->end
2376 && all_positions_needed_p (store_info,
2377 offset - store_info->begin, width)
2378 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2379 bb_info->regs_live))
2380 return 0;
2382 if (!store_info->alias_set)
2383 remove = canon_true_dependence (store_info->mem,
2384 GET_MODE (store_info->mem),
2385 store_info->mem_addr,
2386 mem, mem_addr);
2388 if (remove)
2390 if (dump_file)
2391 dump_insn_info ("removing from active", i_ptr);
2393 active_local_stores_len--;
2394 if (last)
2395 last->next_local_store = i_ptr->next_local_store;
2396 else
2397 active_local_stores = i_ptr->next_local_store;
2399 else
2400 last = i_ptr;
2401 i_ptr = i_ptr->next_local_store;
2404 return 0;
2407 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2408 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2409 true for any part of *LOC. */
2411 static void
2412 check_mem_read_use (rtx *loc, void *data)
2414 for_each_rtx (loc, check_mem_read_rtx, data);
2418 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2419 So far it only handles arguments passed in registers. */
2421 static bool
2422 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2424 CUMULATIVE_ARGS args_so_far_v;
2425 cumulative_args_t args_so_far;
2426 tree arg;
2427 int idx;
2429 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2430 args_so_far = pack_cumulative_args (&args_so_far_v);
2432 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2433 for (idx = 0;
2434 arg != void_list_node && idx < nargs;
2435 arg = TREE_CHAIN (arg), idx++)
2437 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2438 rtx reg, link, tmp;
2439 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2440 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2441 || GET_MODE_CLASS (mode) != MODE_INT)
2442 return false;
2444 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2445 link;
2446 link = XEXP (link, 1))
2447 if (GET_CODE (XEXP (link, 0)) == USE)
2449 args[idx] = XEXP (XEXP (link, 0), 0);
2450 if (REG_P (args[idx])
2451 && REGNO (args[idx]) == REGNO (reg)
2452 && (GET_MODE (args[idx]) == mode
2453 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2454 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2455 <= UNITS_PER_WORD)
2456 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2457 > GET_MODE_SIZE (mode)))))
2458 break;
2460 if (!link)
2461 return false;
2463 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2464 if (GET_MODE (args[idx]) != mode)
2466 if (!tmp || !CONST_INT_P (tmp))
2467 return false;
2468 tmp = gen_int_mode (INTVAL (tmp), mode);
2470 if (tmp)
2471 args[idx] = tmp;
2473 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2475 if (arg != void_list_node || idx != nargs)
2476 return false;
2477 return true;
2480 /* Return a bitmap of the fixed registers contained in IN. */
2482 static bitmap
2483 copy_fixed_regs (const_bitmap in)
2485 bitmap ret;
2487 ret = ALLOC_REG_SET (NULL);
2488 bitmap_and (ret, in, fixed_reg_set_regset);
2489 return ret;
2492 /* Apply record_store to all candidate stores in INSN. Mark INSN
2493 if some part of it is not a candidate store and assigns to a
2494 non-register target. */
2496 static void
2497 scan_insn (bb_info_t bb_info, rtx insn)
2499 rtx body;
2500 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2501 int mems_found = 0;
2502 memset (insn_info, 0, sizeof (struct insn_info));
2504 if (dump_file)
2505 fprintf (dump_file, "\n**scanning insn=%d\n",
2506 INSN_UID (insn));
2508 insn_info->prev_insn = bb_info->last_insn;
2509 insn_info->insn = insn;
2510 bb_info->last_insn = insn_info;
2512 if (DEBUG_INSN_P (insn))
2514 insn_info->cannot_delete = true;
2515 return;
2518 /* Cselib clears the table for this case, so we have to essentially
2519 do the same. */
2520 if (NONJUMP_INSN_P (insn)
2521 && volatile_insn_p (PATTERN (insn)))
2523 add_wild_read (bb_info);
2524 insn_info->cannot_delete = true;
2525 return;
2528 /* Look at all of the uses in the insn. */
2529 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2531 if (CALL_P (insn))
2533 bool const_call;
2534 tree memset_call = NULL_TREE;
2536 insn_info->cannot_delete = true;
2538 /* Const functions cannot do anything bad i.e. read memory,
2539 however, they can read their parameters which may have
2540 been pushed onto the stack.
2541 memset and bzero don't read memory either. */
2542 const_call = RTL_CONST_CALL_P (insn);
2543 if (!const_call)
2545 rtx call = get_call_rtx_from (insn);
2546 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2548 rtx symbol = XEXP (XEXP (call, 0), 0);
2549 if (SYMBOL_REF_DECL (symbol)
2550 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2552 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2553 == BUILT_IN_NORMAL
2554 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2555 == BUILT_IN_MEMSET))
2556 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2557 memset_call = SYMBOL_REF_DECL (symbol);
2561 if (const_call || memset_call)
2563 insn_info_t i_ptr = active_local_stores;
2564 insn_info_t last = NULL;
2566 if (dump_file)
2567 fprintf (dump_file, "%s call %d\n",
2568 const_call ? "const" : "memset", INSN_UID (insn));
2570 /* See the head comment of the frame_read field. */
2571 if (reload_completed)
2572 insn_info->frame_read = true;
2574 /* Loop over the active stores and remove those which are
2575 killed by the const function call. */
2576 while (i_ptr)
2578 bool remove_store = false;
2580 /* The stack pointer based stores are always killed. */
2581 if (i_ptr->stack_pointer_based)
2582 remove_store = true;
2584 /* If the frame is read, the frame related stores are killed. */
2585 else if (insn_info->frame_read)
2587 store_info_t store_info = i_ptr->store_rec;
2589 /* Skip the clobbers. */
2590 while (!store_info->is_set)
2591 store_info = store_info->next;
2593 if (store_info->group_id >= 0
2594 && rtx_group_vec[store_info->group_id]->frame_related)
2595 remove_store = true;
2598 if (remove_store)
2600 if (dump_file)
2601 dump_insn_info ("removing from active", i_ptr);
2603 active_local_stores_len--;
2604 if (last)
2605 last->next_local_store = i_ptr->next_local_store;
2606 else
2607 active_local_stores = i_ptr->next_local_store;
2609 else
2610 last = i_ptr;
2612 i_ptr = i_ptr->next_local_store;
2615 if (memset_call)
2617 rtx args[3];
2618 if (get_call_args (insn, memset_call, args, 3)
2619 && CONST_INT_P (args[1])
2620 && CONST_INT_P (args[2])
2621 && INTVAL (args[2]) > 0)
2623 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2624 set_mem_size (mem, INTVAL (args[2]));
2625 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2626 mems_found += record_store (body, bb_info);
2627 if (dump_file)
2628 fprintf (dump_file, "handling memset as BLKmode store\n");
2629 if (mems_found == 1)
2631 if (active_local_stores_len++
2632 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2634 active_local_stores_len = 1;
2635 active_local_stores = NULL;
2637 insn_info->fixed_regs_live
2638 = copy_fixed_regs (bb_info->regs_live);
2639 insn_info->next_local_store = active_local_stores;
2640 active_local_stores = insn_info;
2646 else
2647 /* Every other call, including pure functions, may read any memory
2648 that is not relative to the frame. */
2649 add_non_frame_wild_read (bb_info);
2651 return;
2654 /* Assuming that there are sets in these insns, we cannot delete
2655 them. */
2656 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2657 || volatile_refs_p (PATTERN (insn))
2658 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2659 || (RTX_FRAME_RELATED_P (insn))
2660 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2661 insn_info->cannot_delete = true;
2663 body = PATTERN (insn);
2664 if (GET_CODE (body) == PARALLEL)
2666 int i;
2667 for (i = 0; i < XVECLEN (body, 0); i++)
2668 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2670 else
2671 mems_found += record_store (body, bb_info);
2673 if (dump_file)
2674 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2675 mems_found, insn_info->cannot_delete ? "true" : "false");
2677 /* If we found some sets of mems, add it into the active_local_stores so
2678 that it can be locally deleted if found dead or used for
2679 replace_read and redundant constant store elimination. Otherwise mark
2680 it as cannot delete. This simplifies the processing later. */
2681 if (mems_found == 1)
2683 if (active_local_stores_len++
2684 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2686 active_local_stores_len = 1;
2687 active_local_stores = NULL;
2689 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2690 insn_info->next_local_store = active_local_stores;
2691 active_local_stores = insn_info;
2693 else
2694 insn_info->cannot_delete = true;
2698 /* Remove BASE from the set of active_local_stores. This is a
2699 callback from cselib that is used to get rid of the stores in
2700 active_local_stores. */
2702 static void
2703 remove_useless_values (cselib_val *base)
2705 insn_info_t insn_info = active_local_stores;
2706 insn_info_t last = NULL;
2708 while (insn_info)
2710 store_info_t store_info = insn_info->store_rec;
2711 bool del = false;
2713 /* If ANY of the store_infos match the cselib group that is
2714 being deleted, then the insn can not be deleted. */
2715 while (store_info)
2717 if ((store_info->group_id == -1)
2718 && (store_info->cse_base == base))
2720 del = true;
2721 break;
2723 store_info = store_info->next;
2726 if (del)
2728 active_local_stores_len--;
2729 if (last)
2730 last->next_local_store = insn_info->next_local_store;
2731 else
2732 active_local_stores = insn_info->next_local_store;
2733 free_store_info (insn_info);
2735 else
2736 last = insn_info;
2738 insn_info = insn_info->next_local_store;
2743 /* Do all of step 1. */
2745 static void
2746 dse_step1 (void)
2748 basic_block bb;
2749 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2751 cselib_init (0);
2752 all_blocks = BITMAP_ALLOC (NULL);
2753 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2754 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2756 FOR_ALL_BB (bb)
2758 insn_info_t ptr;
2759 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2761 memset (bb_info, 0, sizeof (struct bb_info));
2762 bitmap_set_bit (all_blocks, bb->index);
2763 bb_info->regs_live = regs_live;
2765 bitmap_copy (regs_live, DF_LR_IN (bb));
2766 df_simulate_initialize_forwards (bb, regs_live);
2768 bb_table[bb->index] = bb_info;
2769 cselib_discard_hook = remove_useless_values;
2771 if (bb->index >= NUM_FIXED_BLOCKS)
2773 rtx insn;
2775 cse_store_info_pool
2776 = create_alloc_pool ("cse_store_info_pool",
2777 sizeof (struct store_info), 100);
2778 active_local_stores = NULL;
2779 active_local_stores_len = 0;
2780 cselib_clear_table ();
2782 /* Scan the insns. */
2783 FOR_BB_INSNS (bb, insn)
2785 if (INSN_P (insn))
2786 scan_insn (bb_info, insn);
2787 cselib_process_insn (insn);
2788 if (INSN_P (insn))
2789 df_simulate_one_insn_forwards (bb, insn, regs_live);
2792 /* This is something of a hack, because the global algorithm
2793 is supposed to take care of the case where stores go dead
2794 at the end of the function. However, the global
2795 algorithm must take a more conservative view of block
2796 mode reads than the local alg does. So to get the case
2797 where you have a store to the frame followed by a non
2798 overlapping block more read, we look at the active local
2799 stores at the end of the function and delete all of the
2800 frame and spill based ones. */
2801 if (stores_off_frame_dead_at_return
2802 && (EDGE_COUNT (bb->succs) == 0
2803 || (single_succ_p (bb)
2804 && single_succ (bb) == EXIT_BLOCK_PTR
2805 && ! crtl->calls_eh_return)))
2807 insn_info_t i_ptr = active_local_stores;
2808 while (i_ptr)
2810 store_info_t store_info = i_ptr->store_rec;
2812 /* Skip the clobbers. */
2813 while (!store_info->is_set)
2814 store_info = store_info->next;
2815 if (store_info->alias_set && !i_ptr->cannot_delete)
2816 delete_dead_store_insn (i_ptr);
2817 else
2818 if (store_info->group_id >= 0)
2820 group_info_t group
2821 = rtx_group_vec[store_info->group_id];
2822 if (group->frame_related && !i_ptr->cannot_delete)
2823 delete_dead_store_insn (i_ptr);
2826 i_ptr = i_ptr->next_local_store;
2830 /* Get rid of the loads that were discovered in
2831 replace_read. Cselib is finished with this block. */
2832 while (deferred_change_list)
2834 deferred_change_t next = deferred_change_list->next;
2836 /* There is no reason to validate this change. That was
2837 done earlier. */
2838 *deferred_change_list->loc = deferred_change_list->reg;
2839 pool_free (deferred_change_pool, deferred_change_list);
2840 deferred_change_list = next;
2843 /* Get rid of all of the cselib based store_infos in this
2844 block and mark the containing insns as not being
2845 deletable. */
2846 ptr = bb_info->last_insn;
2847 while (ptr)
2849 if (ptr->contains_cselib_groups)
2851 store_info_t s_info = ptr->store_rec;
2852 while (s_info && !s_info->is_set)
2853 s_info = s_info->next;
2854 if (s_info
2855 && s_info->redundant_reason
2856 && s_info->redundant_reason->insn
2857 && !ptr->cannot_delete)
2859 if (dump_file)
2860 fprintf (dump_file, "Locally deleting insn %d "
2861 "because insn %d stores the "
2862 "same value and couldn't be "
2863 "eliminated\n",
2864 INSN_UID (ptr->insn),
2865 INSN_UID (s_info->redundant_reason->insn));
2866 delete_dead_store_insn (ptr);
2868 free_store_info (ptr);
2870 else
2872 store_info_t s_info;
2874 /* Free at least positions_needed bitmaps. */
2875 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2876 if (s_info->is_large)
2878 BITMAP_FREE (s_info->positions_needed.large.bmap);
2879 s_info->is_large = false;
2882 ptr = ptr->prev_insn;
2885 free_alloc_pool (cse_store_info_pool);
2887 bb_info->regs_live = NULL;
2890 BITMAP_FREE (regs_live);
2891 cselib_finish ();
2892 rtx_group_table.empty ();
2896 /*----------------------------------------------------------------------------
2897 Second step.
2899 Assign each byte position in the stores that we are going to
2900 analyze globally to a position in the bitmaps. Returns true if
2901 there are any bit positions assigned.
2902 ----------------------------------------------------------------------------*/
2904 static void
2905 dse_step2_init (void)
2907 unsigned int i;
2908 group_info_t group;
2910 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2912 /* For all non stack related bases, we only consider a store to
2913 be deletable if there are two or more stores for that
2914 position. This is because it takes one store to make the
2915 other store redundant. However, for the stores that are
2916 stack related, we consider them if there is only one store
2917 for the position. We do this because the stack related
2918 stores can be deleted if their is no read between them and
2919 the end of the function.
2921 To make this work in the current framework, we take the stack
2922 related bases add all of the bits from store1 into store2.
2923 This has the effect of making the eligible even if there is
2924 only one store. */
2926 if (stores_off_frame_dead_at_return && group->frame_related)
2928 bitmap_ior_into (group->store2_n, group->store1_n);
2929 bitmap_ior_into (group->store2_p, group->store1_p);
2930 if (dump_file)
2931 fprintf (dump_file, "group %d is frame related ", i);
2934 group->offset_map_size_n++;
2935 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2936 group->offset_map_size_n);
2937 group->offset_map_size_p++;
2938 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2939 group->offset_map_size_p);
2940 group->process_globally = false;
2941 if (dump_file)
2943 fprintf (dump_file, "group %d(%d+%d): ", i,
2944 (int)bitmap_count_bits (group->store2_n),
2945 (int)bitmap_count_bits (group->store2_p));
2946 bitmap_print (dump_file, group->store2_n, "n ", " ");
2947 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2953 /* Init the offset tables for the normal case. */
2955 static bool
2956 dse_step2_nospill (void)
2958 unsigned int i;
2959 group_info_t group;
2960 /* Position 0 is unused because 0 is used in the maps to mean
2961 unused. */
2962 current_position = 1;
2963 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2965 bitmap_iterator bi;
2966 unsigned int j;
2968 if (group == clear_alias_group)
2969 continue;
2971 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2972 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2973 bitmap_clear (group->group_kill);
2975 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2977 bitmap_set_bit (group->group_kill, current_position);
2978 if (bitmap_bit_p (group->escaped_n, j))
2979 bitmap_set_bit (kill_on_calls, current_position);
2980 group->offset_map_n[j] = current_position++;
2981 group->process_globally = true;
2983 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2985 bitmap_set_bit (group->group_kill, current_position);
2986 if (bitmap_bit_p (group->escaped_p, j))
2987 bitmap_set_bit (kill_on_calls, current_position);
2988 group->offset_map_p[j] = current_position++;
2989 group->process_globally = true;
2992 return current_position != 1;
2996 /* Init the offset tables for the spill case. */
2998 static bool
2999 dse_step2_spill (void)
3001 unsigned int j;
3002 group_info_t group = clear_alias_group;
3003 bitmap_iterator bi;
3005 /* Position 0 is unused because 0 is used in the maps to mean
3006 unused. */
3007 current_position = 1;
3009 if (dump_file)
3011 bitmap_print (dump_file, clear_alias_sets,
3012 "clear alias sets ", "\n");
3013 bitmap_print (dump_file, disqualified_clear_alias_sets,
3014 "disqualified clear alias sets ", "\n");
3017 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
3018 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
3019 bitmap_clear (group->group_kill);
3021 /* Remove the disqualified positions from the store2_p set. */
3022 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
3024 /* We do not need to process the store2_n set because
3025 alias_sets are always positive. */
3026 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
3028 bitmap_set_bit (group->group_kill, current_position);
3029 group->offset_map_p[j] = current_position++;
3030 group->process_globally = true;
3033 return current_position != 1;
3038 /*----------------------------------------------------------------------------
3039 Third step.
3041 Build the bit vectors for the transfer functions.
3042 ----------------------------------------------------------------------------*/
3045 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3046 there, return 0. */
3048 static int
3049 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
3051 if (offset < 0)
3053 HOST_WIDE_INT offset_p = -offset;
3054 if (offset_p >= group_info->offset_map_size_n)
3055 return 0;
3056 return group_info->offset_map_n[offset_p];
3058 else
3060 if (offset >= group_info->offset_map_size_p)
3061 return 0;
3062 return group_info->offset_map_p[offset];
3067 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3068 may be NULL. */
3070 static void
3071 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
3073 while (store_info)
3075 HOST_WIDE_INT i;
3076 group_info_t group_info
3077 = rtx_group_vec[store_info->group_id];
3078 if (group_info->process_globally)
3079 for (i = store_info->begin; i < store_info->end; i++)
3081 int index = get_bitmap_index (group_info, i);
3082 if (index != 0)
3084 bitmap_set_bit (gen, index);
3085 if (kill)
3086 bitmap_clear_bit (kill, index);
3089 store_info = store_info->next;
3094 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3095 may be NULL. */
3097 static void
3098 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3100 while (store_info)
3102 if (store_info->alias_set)
3104 int index = get_bitmap_index (clear_alias_group,
3105 store_info->alias_set);
3106 if (index != 0)
3108 bitmap_set_bit (gen, index);
3109 if (kill)
3110 bitmap_clear_bit (kill, index);
3113 store_info = store_info->next;
3118 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3119 may be NULL. */
3121 static void
3122 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3124 read_info_t read_info = insn_info->read_rec;
3125 int i;
3126 group_info_t group;
3128 /* If this insn reads the frame, kill all the frame related stores. */
3129 if (insn_info->frame_read)
3131 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3132 if (group->process_globally && group->frame_related)
3134 if (kill)
3135 bitmap_ior_into (kill, group->group_kill);
3136 bitmap_and_compl_into (gen, group->group_kill);
3139 if (insn_info->non_frame_wild_read)
3141 /* Kill all non-frame related stores. Kill all stores of variables that
3142 escape. */
3143 if (kill)
3144 bitmap_ior_into (kill, kill_on_calls);
3145 bitmap_and_compl_into (gen, kill_on_calls);
3146 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3147 if (group->process_globally && !group->frame_related)
3149 if (kill)
3150 bitmap_ior_into (kill, group->group_kill);
3151 bitmap_and_compl_into (gen, group->group_kill);
3154 while (read_info)
3156 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3158 if (group->process_globally)
3160 if (i == read_info->group_id)
3162 if (read_info->begin > read_info->end)
3164 /* Begin > end for block mode reads. */
3165 if (kill)
3166 bitmap_ior_into (kill, group->group_kill);
3167 bitmap_and_compl_into (gen, group->group_kill);
3169 else
3171 /* The groups are the same, just process the
3172 offsets. */
3173 HOST_WIDE_INT j;
3174 for (j = read_info->begin; j < read_info->end; j++)
3176 int index = get_bitmap_index (group, j);
3177 if (index != 0)
3179 if (kill)
3180 bitmap_set_bit (kill, index);
3181 bitmap_clear_bit (gen, index);
3186 else
3188 /* The groups are different, if the alias sets
3189 conflict, clear the entire group. We only need
3190 to apply this test if the read_info is a cselib
3191 read. Anything with a constant base cannot alias
3192 something else with a different constant
3193 base. */
3194 if ((read_info->group_id < 0)
3195 && canon_true_dependence (group->base_mem,
3196 GET_MODE (group->base_mem),
3197 group->canon_base_addr,
3198 read_info->mem, NULL_RTX))
3200 if (kill)
3201 bitmap_ior_into (kill, group->group_kill);
3202 bitmap_and_compl_into (gen, group->group_kill);
3208 read_info = read_info->next;
3212 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3213 may be NULL. */
3215 static void
3216 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3218 while (read_info)
3220 if (read_info->alias_set)
3222 int index = get_bitmap_index (clear_alias_group,
3223 read_info->alias_set);
3224 if (index != 0)
3226 if (kill)
3227 bitmap_set_bit (kill, index);
3228 bitmap_clear_bit (gen, index);
3232 read_info = read_info->next;
3237 /* Return the insn in BB_INFO before the first wild read or if there
3238 are no wild reads in the block, return the last insn. */
3240 static insn_info_t
3241 find_insn_before_first_wild_read (bb_info_t bb_info)
3243 insn_info_t insn_info = bb_info->last_insn;
3244 insn_info_t last_wild_read = NULL;
3246 while (insn_info)
3248 if (insn_info->wild_read)
3250 last_wild_read = insn_info->prev_insn;
3251 /* Block starts with wild read. */
3252 if (!last_wild_read)
3253 return NULL;
3256 insn_info = insn_info->prev_insn;
3259 if (last_wild_read)
3260 return last_wild_read;
3261 else
3262 return bb_info->last_insn;
3266 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3267 the block in order to build the gen and kill sets for the block.
3268 We start at ptr which may be the last insn in the block or may be
3269 the first insn with a wild read. In the latter case we are able to
3270 skip the rest of the block because it just does not matter:
3271 anything that happens is hidden by the wild read. */
3273 static void
3274 dse_step3_scan (bool for_spills, basic_block bb)
3276 bb_info_t bb_info = bb_table[bb->index];
3277 insn_info_t insn_info;
3279 if (for_spills)
3280 /* There are no wild reads in the spill case. */
3281 insn_info = bb_info->last_insn;
3282 else
3283 insn_info = find_insn_before_first_wild_read (bb_info);
3285 /* In the spill case or in the no_spill case if there is no wild
3286 read in the block, we will need a kill set. */
3287 if (insn_info == bb_info->last_insn)
3289 if (bb_info->kill)
3290 bitmap_clear (bb_info->kill);
3291 else
3292 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3294 else
3295 if (bb_info->kill)
3296 BITMAP_FREE (bb_info->kill);
3298 while (insn_info)
3300 /* There may have been code deleted by the dce pass run before
3301 this phase. */
3302 if (insn_info->insn && INSN_P (insn_info->insn))
3304 /* Process the read(s) last. */
3305 if (for_spills)
3307 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3308 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3310 else
3312 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3313 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3317 insn_info = insn_info->prev_insn;
3322 /* Set the gen set of the exit block, and also any block with no
3323 successors that does not have a wild read. */
3325 static void
3326 dse_step3_exit_block_scan (bb_info_t bb_info)
3328 /* The gen set is all 0's for the exit block except for the
3329 frame_pointer_group. */
3331 if (stores_off_frame_dead_at_return)
3333 unsigned int i;
3334 group_info_t group;
3336 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3338 if (group->process_globally && group->frame_related)
3339 bitmap_ior_into (bb_info->gen, group->group_kill);
3345 /* Find all of the blocks that are not backwards reachable from the
3346 exit block or any block with no successors (BB). These are the
3347 infinite loops or infinite self loops. These blocks will still
3348 have their bits set in UNREACHABLE_BLOCKS. */
3350 static void
3351 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3353 edge e;
3354 edge_iterator ei;
3356 if (bitmap_bit_p (unreachable_blocks, bb->index))
3358 bitmap_clear_bit (unreachable_blocks, bb->index);
3359 FOR_EACH_EDGE (e, ei, bb->preds)
3361 mark_reachable_blocks (unreachable_blocks, e->src);
3366 /* Build the transfer functions for the function. */
3368 static void
3369 dse_step3 (bool for_spills)
3371 basic_block bb;
3372 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3373 sbitmap_iterator sbi;
3374 bitmap all_ones = NULL;
3375 unsigned int i;
3377 bitmap_ones (unreachable_blocks);
3379 FOR_ALL_BB (bb)
3381 bb_info_t bb_info = bb_table[bb->index];
3382 if (bb_info->gen)
3383 bitmap_clear (bb_info->gen);
3384 else
3385 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3387 if (bb->index == ENTRY_BLOCK)
3389 else if (bb->index == EXIT_BLOCK)
3390 dse_step3_exit_block_scan (bb_info);
3391 else
3392 dse_step3_scan (for_spills, bb);
3393 if (EDGE_COUNT (bb->succs) == 0)
3394 mark_reachable_blocks (unreachable_blocks, bb);
3396 /* If this is the second time dataflow is run, delete the old
3397 sets. */
3398 if (bb_info->in)
3399 BITMAP_FREE (bb_info->in);
3400 if (bb_info->out)
3401 BITMAP_FREE (bb_info->out);
3404 /* For any block in an infinite loop, we must initialize the out set
3405 to all ones. This could be expensive, but almost never occurs in
3406 practice. However, it is common in regression tests. */
3407 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3409 if (bitmap_bit_p (all_blocks, i))
3411 bb_info_t bb_info = bb_table[i];
3412 if (!all_ones)
3414 unsigned int j;
3415 group_info_t group;
3417 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3418 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3419 bitmap_ior_into (all_ones, group->group_kill);
3421 if (!bb_info->out)
3423 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3424 bitmap_copy (bb_info->out, all_ones);
3429 if (all_ones)
3430 BITMAP_FREE (all_ones);
3431 sbitmap_free (unreachable_blocks);
3436 /*----------------------------------------------------------------------------
3437 Fourth step.
3439 Solve the bitvector equations.
3440 ----------------------------------------------------------------------------*/
3443 /* Confluence function for blocks with no successors. Create an out
3444 set from the gen set of the exit block. This block logically has
3445 the exit block as a successor. */
3449 static void
3450 dse_confluence_0 (basic_block bb)
3452 bb_info_t bb_info = bb_table[bb->index];
3454 if (bb->index == EXIT_BLOCK)
3455 return;
3457 if (!bb_info->out)
3459 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3460 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3464 /* Propagate the information from the in set of the dest of E to the
3465 out set of the src of E. If the various in or out sets are not
3466 there, that means they are all ones. */
3468 static bool
3469 dse_confluence_n (edge e)
3471 bb_info_t src_info = bb_table[e->src->index];
3472 bb_info_t dest_info = bb_table[e->dest->index];
3474 if (dest_info->in)
3476 if (src_info->out)
3477 bitmap_and_into (src_info->out, dest_info->in);
3478 else
3480 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3481 bitmap_copy (src_info->out, dest_info->in);
3484 return true;
3488 /* Propagate the info from the out to the in set of BB_INDEX's basic
3489 block. There are three cases:
3491 1) The block has no kill set. In this case the kill set is all
3492 ones. It does not matter what the out set of the block is, none of
3493 the info can reach the top. The only thing that reaches the top is
3494 the gen set and we just copy the set.
3496 2) There is a kill set but no out set and bb has successors. In
3497 this case we just return. Eventually an out set will be created and
3498 it is better to wait than to create a set of ones.
3500 3) There is both a kill and out set. We apply the obvious transfer
3501 function.
3504 static bool
3505 dse_transfer_function (int bb_index)
3507 bb_info_t bb_info = bb_table[bb_index];
3509 if (bb_info->kill)
3511 if (bb_info->out)
3513 /* Case 3 above. */
3514 if (bb_info->in)
3515 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3516 bb_info->out, bb_info->kill);
3517 else
3519 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3520 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3521 bb_info->out, bb_info->kill);
3522 return true;
3525 else
3526 /* Case 2 above. */
3527 return false;
3529 else
3531 /* Case 1 above. If there is already an in set, nothing
3532 happens. */
3533 if (bb_info->in)
3534 return false;
3535 else
3537 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3538 bitmap_copy (bb_info->in, bb_info->gen);
3539 return true;
3544 /* Solve the dataflow equations. */
3546 static void
3547 dse_step4 (void)
3549 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3550 dse_confluence_n, dse_transfer_function,
3551 all_blocks, df_get_postorder (DF_BACKWARD),
3552 df_get_n_blocks (DF_BACKWARD));
3553 if (dump_file)
3555 basic_block bb;
3557 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3558 FOR_ALL_BB (bb)
3560 bb_info_t bb_info = bb_table[bb->index];
3562 df_print_bb_index (bb, dump_file);
3563 if (bb_info->in)
3564 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3565 else
3566 fprintf (dump_file, " in: *MISSING*\n");
3567 if (bb_info->gen)
3568 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3569 else
3570 fprintf (dump_file, " gen: *MISSING*\n");
3571 if (bb_info->kill)
3572 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3573 else
3574 fprintf (dump_file, " kill: *MISSING*\n");
3575 if (bb_info->out)
3576 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3577 else
3578 fprintf (dump_file, " out: *MISSING*\n\n");
3585 /*----------------------------------------------------------------------------
3586 Fifth step.
3588 Delete the stores that can only be deleted using the global information.
3589 ----------------------------------------------------------------------------*/
3592 static void
3593 dse_step5_nospill (void)
3595 basic_block bb;
3596 FOR_EACH_BB (bb)
3598 bb_info_t bb_info = bb_table[bb->index];
3599 insn_info_t insn_info = bb_info->last_insn;
3600 bitmap v = bb_info->out;
3602 while (insn_info)
3604 bool deleted = false;
3605 if (dump_file && insn_info->insn)
3607 fprintf (dump_file, "starting to process insn %d\n",
3608 INSN_UID (insn_info->insn));
3609 bitmap_print (dump_file, v, " v: ", "\n");
3612 /* There may have been code deleted by the dce pass run before
3613 this phase. */
3614 if (insn_info->insn
3615 && INSN_P (insn_info->insn)
3616 && (!insn_info->cannot_delete)
3617 && (!bitmap_empty_p (v)))
3619 store_info_t store_info = insn_info->store_rec;
3621 /* Try to delete the current insn. */
3622 deleted = true;
3624 /* Skip the clobbers. */
3625 while (!store_info->is_set)
3626 store_info = store_info->next;
3628 if (store_info->alias_set)
3629 deleted = false;
3630 else
3632 HOST_WIDE_INT i;
3633 group_info_t group_info
3634 = rtx_group_vec[store_info->group_id];
3636 for (i = store_info->begin; i < store_info->end; i++)
3638 int index = get_bitmap_index (group_info, i);
3640 if (dump_file)
3641 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3642 if (index == 0 || !bitmap_bit_p (v, index))
3644 if (dump_file)
3645 fprintf (dump_file, "failing at i = %d\n", (int)i);
3646 deleted = false;
3647 break;
3651 if (deleted)
3653 if (dbg_cnt (dse)
3654 && check_for_inc_dec_1 (insn_info))
3656 delete_insn (insn_info->insn);
3657 insn_info->insn = NULL;
3658 globally_deleted++;
3662 /* We do want to process the local info if the insn was
3663 deleted. For instance, if the insn did a wild read, we
3664 no longer need to trash the info. */
3665 if (insn_info->insn
3666 && INSN_P (insn_info->insn)
3667 && (!deleted))
3669 scan_stores_nospill (insn_info->store_rec, v, NULL);
3670 if (insn_info->wild_read)
3672 if (dump_file)
3673 fprintf (dump_file, "wild read\n");
3674 bitmap_clear (v);
3676 else if (insn_info->read_rec
3677 || insn_info->non_frame_wild_read)
3679 if (dump_file && !insn_info->non_frame_wild_read)
3680 fprintf (dump_file, "regular read\n");
3681 else if (dump_file)
3682 fprintf (dump_file, "non-frame wild read\n");
3683 scan_reads_nospill (insn_info, v, NULL);
3687 insn_info = insn_info->prev_insn;
3693 static void
3694 dse_step5_spill (void)
3696 basic_block bb;
3697 FOR_EACH_BB (bb)
3699 bb_info_t bb_info = bb_table[bb->index];
3700 insn_info_t insn_info = bb_info->last_insn;
3701 bitmap v = bb_info->out;
3703 while (insn_info)
3705 bool deleted = false;
3706 /* There may have been code deleted by the dce pass run before
3707 this phase. */
3708 if (insn_info->insn
3709 && INSN_P (insn_info->insn)
3710 && (!insn_info->cannot_delete)
3711 && (!bitmap_empty_p (v)))
3713 /* Try to delete the current insn. */
3714 store_info_t store_info = insn_info->store_rec;
3715 deleted = true;
3717 while (store_info)
3719 if (store_info->alias_set)
3721 int index = get_bitmap_index (clear_alias_group,
3722 store_info->alias_set);
3723 if (index == 0 || !bitmap_bit_p (v, index))
3725 deleted = false;
3726 break;
3729 else
3730 deleted = false;
3731 store_info = store_info->next;
3733 if (deleted && dbg_cnt (dse)
3734 && check_for_inc_dec_1 (insn_info))
3736 if (dump_file)
3737 fprintf (dump_file, "Spill deleting insn %d\n",
3738 INSN_UID (insn_info->insn));
3739 delete_insn (insn_info->insn);
3740 spill_deleted++;
3741 insn_info->insn = NULL;
3745 if (insn_info->insn
3746 && INSN_P (insn_info->insn)
3747 && (!deleted))
3749 scan_stores_spill (insn_info->store_rec, v, NULL);
3750 scan_reads_spill (insn_info->read_rec, v, NULL);
3753 insn_info = insn_info->prev_insn;
3760 /*----------------------------------------------------------------------------
3761 Sixth step.
3763 Delete stores made redundant by earlier stores (which store the same
3764 value) that couldn't be eliminated.
3765 ----------------------------------------------------------------------------*/
3767 static void
3768 dse_step6 (void)
3770 basic_block bb;
3772 FOR_ALL_BB (bb)
3774 bb_info_t bb_info = bb_table[bb->index];
3775 insn_info_t insn_info = bb_info->last_insn;
3777 while (insn_info)
3779 /* There may have been code deleted by the dce pass run before
3780 this phase. */
3781 if (insn_info->insn
3782 && INSN_P (insn_info->insn)
3783 && !insn_info->cannot_delete)
3785 store_info_t s_info = insn_info->store_rec;
3787 while (s_info && !s_info->is_set)
3788 s_info = s_info->next;
3789 if (s_info
3790 && s_info->redundant_reason
3791 && s_info->redundant_reason->insn
3792 && INSN_P (s_info->redundant_reason->insn))
3794 rtx rinsn = s_info->redundant_reason->insn;
3795 if (dump_file)
3796 fprintf (dump_file, "Locally deleting insn %d "
3797 "because insn %d stores the "
3798 "same value and couldn't be "
3799 "eliminated\n",
3800 INSN_UID (insn_info->insn),
3801 INSN_UID (rinsn));
3802 delete_dead_store_insn (insn_info);
3805 insn_info = insn_info->prev_insn;
3810 /*----------------------------------------------------------------------------
3811 Seventh step.
3813 Destroy everything left standing.
3814 ----------------------------------------------------------------------------*/
3816 static void
3817 dse_step7 (void)
3819 bitmap_obstack_release (&dse_bitmap_obstack);
3820 obstack_free (&dse_obstack, NULL);
3822 if (clear_alias_sets)
3824 BITMAP_FREE (clear_alias_sets);
3825 BITMAP_FREE (disqualified_clear_alias_sets);
3826 free_alloc_pool (clear_alias_mode_pool);
3827 htab_delete (clear_alias_mode_table);
3830 end_alias_analysis ();
3831 free (bb_table);
3832 rtx_group_table.dispose ();
3833 rtx_group_vec.release ();
3834 BITMAP_FREE (all_blocks);
3835 BITMAP_FREE (scratch);
3837 free_alloc_pool (rtx_store_info_pool);
3838 free_alloc_pool (read_info_pool);
3839 free_alloc_pool (insn_info_pool);
3840 free_alloc_pool (bb_info_pool);
3841 free_alloc_pool (rtx_group_info_pool);
3842 free_alloc_pool (deferred_change_pool);
3846 /* -------------------------------------------------------------------------
3848 ------------------------------------------------------------------------- */
3850 /* Callback for running pass_rtl_dse. */
3852 static unsigned int
3853 rest_of_handle_dse (void)
3855 bool did_global = false;
3857 df_set_flags (DF_DEFER_INSN_RESCAN);
3859 /* Need the notes since we must track live hardregs in the forwards
3860 direction. */
3861 df_note_add_problem ();
3862 df_analyze ();
3864 dse_step0 ();
3865 dse_step1 ();
3866 dse_step2_init ();
3867 if (dse_step2_nospill ())
3869 df_set_flags (DF_LR_RUN_DCE);
3870 df_analyze ();
3871 did_global = true;
3872 if (dump_file)
3873 fprintf (dump_file, "doing global processing\n");
3874 dse_step3 (false);
3875 dse_step4 ();
3876 dse_step5_nospill ();
3879 /* For the instance of dse that runs after reload, we make a special
3880 pass to process the spills. These are special in that they are
3881 totally transparent, i.e, there is no aliasing issues that need
3882 to be considered. This means that the wild reads that kill
3883 everything else do not apply here. */
3884 if (clear_alias_sets && dse_step2_spill ())
3886 if (!did_global)
3888 df_set_flags (DF_LR_RUN_DCE);
3889 df_analyze ();
3891 did_global = true;
3892 if (dump_file)
3893 fprintf (dump_file, "doing global spill processing\n");
3894 dse_step3 (true);
3895 dse_step4 ();
3896 dse_step5_spill ();
3899 dse_step6 ();
3900 dse_step7 ();
3902 if (dump_file)
3903 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3904 locally_deleted, globally_deleted, spill_deleted);
3905 return 0;
3908 static bool
3909 gate_dse1 (void)
3911 return optimize > 0 && flag_dse
3912 && dbg_cnt (dse1);
3915 static bool
3916 gate_dse2 (void)
3918 return optimize > 0 && flag_dse
3919 && dbg_cnt (dse2);
3922 struct rtl_opt_pass pass_rtl_dse1 =
3925 RTL_PASS,
3926 "dse1", /* name */
3927 OPTGROUP_NONE, /* optinfo_flags */
3928 gate_dse1, /* gate */
3929 rest_of_handle_dse, /* execute */
3930 NULL, /* sub */
3931 NULL, /* next */
3932 0, /* static_pass_number */
3933 TV_DSE1, /* tv_id */
3934 0, /* properties_required */
3935 0, /* properties_provided */
3936 0, /* properties_destroyed */
3937 0, /* todo_flags_start */
3938 TODO_df_finish | TODO_verify_rtl_sharing |
3939 TODO_ggc_collect /* todo_flags_finish */
3943 struct rtl_opt_pass pass_rtl_dse2 =
3946 RTL_PASS,
3947 "dse2", /* name */
3948 OPTGROUP_NONE, /* optinfo_flags */
3949 gate_dse2, /* gate */
3950 rest_of_handle_dse, /* execute */
3951 NULL, /* sub */
3952 NULL, /* next */
3953 0, /* static_pass_number */
3954 TV_DSE2, /* tv_id */
3955 0, /* properties_required */
3956 0, /* properties_provided */
3957 0, /* properties_destroyed */
3958 0, /* todo_flags_start */
3959 TODO_df_finish | TODO_verify_rtl_sharing |
3960 TODO_ggc_collect /* todo_flags_finish */