PR libstdc++/56278
[official-gcc.git] / gcc / alias.c
blobe18dd342f6d573d123376cf7b1ccb51cef3a75ef
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "function.h"
29 #include "alias.h"
30 #include "emit-rtl.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "flags.h"
35 #include "diagnostic-core.h"
36 #include "cselib.h"
37 #include "splay-tree.h"
38 #include "ggc.h"
39 #include "langhooks.h"
40 #include "timevar.h"
41 #include "dumpfile.h"
42 #include "target.h"
43 #include "cgraph.h"
44 #include "df.h"
45 #include "tree-ssa-alias.h"
46 #include "pointer-set.h"
47 #include "tree-flow.h"
49 /* The aliasing API provided here solves related but different problems:
51 Say there exists (in c)
53 struct X {
54 struct Y y1;
55 struct Z z2;
56 } x1, *px1, *px2;
58 struct Y y2, *py;
59 struct Z z2, *pz;
62 py = &x1.y1;
63 px2 = &x1;
65 Consider the four questions:
67 Can a store to x1 interfere with px2->y1?
68 Can a store to x1 interfere with px2->z2?
69 Can a store to x1 change the value pointed to by with py?
70 Can a store to x1 change the value pointed to by with pz?
72 The answer to these questions can be yes, yes, yes, and maybe.
74 The first two questions can be answered with a simple examination
75 of the type system. If structure X contains a field of type Y then
76 a store through a pointer to an X can overwrite any field that is
77 contained (recursively) in an X (unless we know that px1 != px2).
79 The last two questions can be solved in the same way as the first
80 two questions but this is too conservative. The observation is
81 that in some cases we can know which (if any) fields are addressed
82 and if those addresses are used in bad ways. This analysis may be
83 language specific. In C, arbitrary operations may be applied to
84 pointers. However, there is some indication that this may be too
85 conservative for some C++ types.
87 The pass ipa-type-escape does this analysis for the types whose
88 instances do not escape across the compilation boundary.
90 Historically in GCC, these two problems were combined and a single
91 data structure that was used to represent the solution to these
92 problems. We now have two similar but different data structures,
93 The data structure to solve the last two questions is similar to
94 the first, but does not contain the fields whose address are never
95 taken. For types that do escape the compilation unit, the data
96 structures will have identical information.
99 /* The alias sets assigned to MEMs assist the back-end in determining
100 which MEMs can alias which other MEMs. In general, two MEMs in
101 different alias sets cannot alias each other, with one important
102 exception. Consider something like:
104 struct S { int i; double d; };
106 a store to an `S' can alias something of either type `int' or type
107 `double'. (However, a store to an `int' cannot alias a `double'
108 and vice versa.) We indicate this via a tree structure that looks
109 like:
110 struct S
113 |/_ _\|
114 int double
116 (The arrows are directed and point downwards.)
117 In this situation we say the alias set for `struct S' is the
118 `superset' and that those for `int' and `double' are `subsets'.
120 To see whether two alias sets can point to the same memory, we must
121 see if either alias set is a subset of the other. We need not trace
122 past immediate descendants, however, since we propagate all
123 grandchildren up one level.
125 Alias set zero is implicitly a superset of all other alias sets.
126 However, this is no actual entry for alias set zero. It is an
127 error to attempt to explicitly construct a subset of zero. */
129 struct GTY(()) alias_set_entry_d {
130 /* The alias set number, as stored in MEM_ALIAS_SET. */
131 alias_set_type alias_set;
133 /* Nonzero if would have a child of zero: this effectively makes this
134 alias set the same as alias set zero. */
135 int has_zero_child;
137 /* The children of the alias set. These are not just the immediate
138 children, but, in fact, all descendants. So, if we have:
140 struct T { struct S s; float f; }
142 continuing our example above, the children here will be all of
143 `int', `double', `float', and `struct S'. */
144 splay_tree GTY((param1_is (int), param2_is (int))) children;
146 typedef struct alias_set_entry_d *alias_set_entry;
148 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
149 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
150 static void record_set (rtx, const_rtx, void *);
151 static int base_alias_check (rtx, rtx, enum machine_mode,
152 enum machine_mode);
153 static rtx find_base_value (rtx);
154 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
155 static int insert_subset_children (splay_tree_node, void*);
156 static alias_set_entry get_alias_set_entry (alias_set_type);
157 static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx, const_rtx, int);
161 static void memory_modified_1 (rtx, const_rtx, void *);
163 /* Set up all info needed to perform alias analysis on memory references. */
165 /* Returns the size in bytes of the mode of X. */
166 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
168 /* Cap the number of passes we make over the insns propagating alias
169 information through set chains.
170 ??? 10 is a completely arbitrary choice. This should be based on the
171 maximum loop depth in the CFG, but we do not have this information
172 available (even if current_loops _is_ available). */
173 #define MAX_ALIAS_LOOP_PASSES 10
175 /* reg_base_value[N] gives an address to which register N is related.
176 If all sets after the first add or subtract to the current value
177 or otherwise modify it so it does not point to a different top level
178 object, reg_base_value[N] is equal to the address part of the source
179 of the first set.
181 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
182 expressions represent three types of base:
184 1. incoming arguments. There is just one ADDRESS to represent all
185 arguments, since we do not know at this level whether accesses
186 based on different arguments can alias. The ADDRESS has id 0.
188 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
189 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
190 Each of these rtxes has a separate ADDRESS associated with it,
191 each with a negative id.
193 GCC is (and is required to be) precise in which register it
194 chooses to access a particular region of stack. We can therefore
195 assume that accesses based on one of these rtxes do not alias
196 accesses based on another of these rtxes.
198 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
199 Each such piece of memory has a separate ADDRESS associated
200 with it, each with an id greater than 0.
202 Accesses based on one ADDRESS do not alias accesses based on other
203 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
204 alias globals either; the ADDRESSes have Pmode to indicate this.
205 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
206 indicate this. */
208 static GTY(()) vec<rtx, va_gc> *reg_base_value;
209 static rtx *new_reg_base_value;
211 /* The single VOIDmode ADDRESS that represents all argument bases.
212 It has id 0. */
213 static GTY(()) rtx arg_base_value;
215 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
216 static int unique_id;
218 /* We preserve the copy of old array around to avoid amount of garbage
219 produced. About 8% of garbage produced were attributed to this
220 array. */
221 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
223 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
224 registers. */
225 #define UNIQUE_BASE_VALUE_SP -1
226 #define UNIQUE_BASE_VALUE_ARGP -2
227 #define UNIQUE_BASE_VALUE_FP -3
228 #define UNIQUE_BASE_VALUE_HFP -4
230 #define static_reg_base_value \
231 (this_target_rtl->x_static_reg_base_value)
233 #define REG_BASE_VALUE(X) \
234 (REGNO (X) < vec_safe_length (reg_base_value) \
235 ? (*reg_base_value)[REGNO (X)] : 0)
237 /* Vector indexed by N giving the initial (unchanging) value known for
238 pseudo-register N. This vector is initialized in init_alias_analysis,
239 and does not change until end_alias_analysis is called. */
240 static GTY(()) vec<rtx, va_gc> *reg_known_value;
242 /* Vector recording for each reg_known_value whether it is due to a
243 REG_EQUIV note. Future passes (viz., reload) may replace the
244 pseudo with the equivalent expression and so we account for the
245 dependences that would be introduced if that happens.
247 The REG_EQUIV notes created in assign_parms may mention the arg
248 pointer, and there are explicit insns in the RTL that modify the
249 arg pointer. Thus we must ensure that such insns don't get
250 scheduled across each other because that would invalidate the
251 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
252 wrong, but solving the problem in the scheduler will likely give
253 better code, so we do it here. */
254 static sbitmap reg_known_equiv_p;
256 /* True when scanning insns from the start of the rtl to the
257 NOTE_INSN_FUNCTION_BEG note. */
258 static bool copying_arguments;
261 /* The splay-tree used to store the various alias set entries. */
262 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
264 /* Build a decomposed reference object for querying the alias-oracle
265 from the MEM rtx and store it in *REF.
266 Returns false if MEM is not suitable for the alias-oracle. */
268 static bool
269 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
271 tree expr = MEM_EXPR (mem);
272 tree base;
274 if (!expr)
275 return false;
277 ao_ref_init (ref, expr);
279 /* Get the base of the reference and see if we have to reject or
280 adjust it. */
281 base = ao_ref_base (ref);
282 if (base == NULL_TREE)
283 return false;
285 /* The tree oracle doesn't like bases that are neither decls
286 nor indirect references of SSA names. */
287 if (!(DECL_P (base)
288 || (TREE_CODE (base) == MEM_REF
289 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
290 || (TREE_CODE (base) == TARGET_MEM_REF
291 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
292 return false;
294 /* If this is a reference based on a partitioned decl replace the
295 base with a MEM_REF of the pointer representative we
296 created during stack slot partitioning. */
297 if (TREE_CODE (base) == VAR_DECL
298 && ! is_global_var (base)
299 && cfun->gimple_df->decls_to_pointers != NULL)
301 void *namep;
302 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
303 if (namep)
304 ref->base = build_simple_mem_ref (*(tree *)namep);
307 ref->ref_alias_set = MEM_ALIAS_SET (mem);
309 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
310 is conservative, so trust it. */
311 if (!MEM_OFFSET_KNOWN_P (mem)
312 || !MEM_SIZE_KNOWN_P (mem))
313 return true;
315 /* If the base decl is a parameter we can have negative MEM_OFFSET in
316 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
317 here. */
318 if (MEM_OFFSET (mem) < 0
319 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
320 return true;
322 /* Otherwise continue and refine size and offset we got from analyzing
323 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
325 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
326 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
328 /* The MEM may extend into adjacent fields, so adjust max_size if
329 necessary. */
330 if (ref->max_size != -1
331 && ref->size > ref->max_size)
332 ref->max_size = ref->size;
334 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
335 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
336 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
337 && (ref->offset < 0
338 || (DECL_P (ref->base)
339 && (!host_integerp (DECL_SIZE (ref->base), 1)
340 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
341 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
342 return false;
344 return true;
347 /* Query the alias-oracle on whether the two memory rtx X and MEM may
348 alias. If TBAA_P is set also apply TBAA. Returns true if the
349 two rtxen may alias, false otherwise. */
351 static bool
352 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
354 ao_ref ref1, ref2;
356 if (!ao_ref_from_mem (&ref1, x)
357 || !ao_ref_from_mem (&ref2, mem))
358 return true;
360 return refs_may_alias_p_1 (&ref1, &ref2,
361 tbaa_p
362 && MEM_ALIAS_SET (x) != 0
363 && MEM_ALIAS_SET (mem) != 0);
366 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
367 such an entry, or NULL otherwise. */
369 static inline alias_set_entry
370 get_alias_set_entry (alias_set_type alias_set)
372 return (*alias_sets)[alias_set];
375 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
376 the two MEMs cannot alias each other. */
378 static inline int
379 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
381 /* Perform a basic sanity check. Namely, that there are no alias sets
382 if we're not using strict aliasing. This helps to catch bugs
383 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
384 where a MEM is allocated in some way other than by the use of
385 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
386 use alias sets to indicate that spilled registers cannot alias each
387 other, we might need to remove this check. */
388 gcc_assert (flag_strict_aliasing
389 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
391 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
394 /* Insert the NODE into the splay tree given by DATA. Used by
395 record_alias_subset via splay_tree_foreach. */
397 static int
398 insert_subset_children (splay_tree_node node, void *data)
400 splay_tree_insert ((splay_tree) data, node->key, node->value);
402 return 0;
405 /* Return true if the first alias set is a subset of the second. */
407 bool
408 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
410 alias_set_entry ase;
412 /* Everything is a subset of the "aliases everything" set. */
413 if (set2 == 0)
414 return true;
416 /* Otherwise, check if set1 is a subset of set2. */
417 ase = get_alias_set_entry (set2);
418 if (ase != 0
419 && (ase->has_zero_child
420 || splay_tree_lookup (ase->children,
421 (splay_tree_key) set1)))
422 return true;
423 return false;
426 /* Return 1 if the two specified alias sets may conflict. */
429 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
431 alias_set_entry ase;
433 /* The easy case. */
434 if (alias_sets_must_conflict_p (set1, set2))
435 return 1;
437 /* See if the first alias set is a subset of the second. */
438 ase = get_alias_set_entry (set1);
439 if (ase != 0
440 && (ase->has_zero_child
441 || splay_tree_lookup (ase->children,
442 (splay_tree_key) set2)))
443 return 1;
445 /* Now do the same, but with the alias sets reversed. */
446 ase = get_alias_set_entry (set2);
447 if (ase != 0
448 && (ase->has_zero_child
449 || splay_tree_lookup (ase->children,
450 (splay_tree_key) set1)))
451 return 1;
453 /* The two alias sets are distinct and neither one is the
454 child of the other. Therefore, they cannot conflict. */
455 return 0;
458 /* Return 1 if the two specified alias sets will always conflict. */
461 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
463 if (set1 == 0 || set2 == 0 || set1 == set2)
464 return 1;
466 return 0;
469 /* Return 1 if any MEM object of type T1 will always conflict (using the
470 dependency routines in this file) with any MEM object of type T2.
471 This is used when allocating temporary storage. If T1 and/or T2 are
472 NULL_TREE, it means we know nothing about the storage. */
475 objects_must_conflict_p (tree t1, tree t2)
477 alias_set_type set1, set2;
479 /* If neither has a type specified, we don't know if they'll conflict
480 because we may be using them to store objects of various types, for
481 example the argument and local variables areas of inlined functions. */
482 if (t1 == 0 && t2 == 0)
483 return 0;
485 /* If they are the same type, they must conflict. */
486 if (t1 == t2
487 /* Likewise if both are volatile. */
488 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
489 return 1;
491 set1 = t1 ? get_alias_set (t1) : 0;
492 set2 = t2 ? get_alias_set (t2) : 0;
494 /* We can't use alias_sets_conflict_p because we must make sure
495 that every subtype of t1 will conflict with every subtype of
496 t2 for which a pair of subobjects of these respective subtypes
497 overlaps on the stack. */
498 return alias_sets_must_conflict_p (set1, set2);
501 /* Return true if all nested component references handled by
502 get_inner_reference in T are such that we should use the alias set
503 provided by the object at the heart of T.
505 This is true for non-addressable components (which don't have their
506 own alias set), as well as components of objects in alias set zero.
507 This later point is a special case wherein we wish to override the
508 alias set used by the component, but we don't have per-FIELD_DECL
509 assignable alias sets. */
511 bool
512 component_uses_parent_alias_set (const_tree t)
514 while (1)
516 /* If we're at the end, it vacuously uses its own alias set. */
517 if (!handled_component_p (t))
518 return false;
520 switch (TREE_CODE (t))
522 case COMPONENT_REF:
523 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
524 return true;
525 break;
527 case ARRAY_REF:
528 case ARRAY_RANGE_REF:
529 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
530 return true;
531 break;
533 case REALPART_EXPR:
534 case IMAGPART_EXPR:
535 break;
537 default:
538 /* Bitfields and casts are never addressable. */
539 return true;
542 t = TREE_OPERAND (t, 0);
543 if (get_alias_set (TREE_TYPE (t)) == 0)
544 return true;
548 /* Return the alias set for the memory pointed to by T, which may be
549 either a type or an expression. Return -1 if there is nothing
550 special about dereferencing T. */
552 static alias_set_type
553 get_deref_alias_set_1 (tree t)
555 /* If we're not doing any alias analysis, just assume everything
556 aliases everything else. */
557 if (!flag_strict_aliasing)
558 return 0;
560 /* All we care about is the type. */
561 if (! TYPE_P (t))
562 t = TREE_TYPE (t);
564 /* If we have an INDIRECT_REF via a void pointer, we don't
565 know anything about what that might alias. Likewise if the
566 pointer is marked that way. */
567 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
568 || TYPE_REF_CAN_ALIAS_ALL (t))
569 return 0;
571 return -1;
574 /* Return the alias set for the memory pointed to by T, which may be
575 either a type or an expression. */
577 alias_set_type
578 get_deref_alias_set (tree t)
580 alias_set_type set = get_deref_alias_set_1 (t);
582 /* Fall back to the alias-set of the pointed-to type. */
583 if (set == -1)
585 if (! TYPE_P (t))
586 t = TREE_TYPE (t);
587 set = get_alias_set (TREE_TYPE (t));
590 return set;
593 /* Return the alias set for T, which may be either a type or an
594 expression. Call language-specific routine for help, if needed. */
596 alias_set_type
597 get_alias_set (tree t)
599 alias_set_type set;
601 /* If we're not doing any alias analysis, just assume everything
602 aliases everything else. Also return 0 if this or its type is
603 an error. */
604 if (! flag_strict_aliasing || t == error_mark_node
605 || (! TYPE_P (t)
606 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
607 return 0;
609 /* We can be passed either an expression or a type. This and the
610 language-specific routine may make mutually-recursive calls to each other
611 to figure out what to do. At each juncture, we see if this is a tree
612 that the language may need to handle specially. First handle things that
613 aren't types. */
614 if (! TYPE_P (t))
616 tree inner;
618 /* Give the language a chance to do something with this tree
619 before we look at it. */
620 STRIP_NOPS (t);
621 set = lang_hooks.get_alias_set (t);
622 if (set != -1)
623 return set;
625 /* Get the base object of the reference. */
626 inner = t;
627 while (handled_component_p (inner))
629 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
630 the type of any component references that wrap it to
631 determine the alias-set. */
632 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
633 t = TREE_OPERAND (inner, 0);
634 inner = TREE_OPERAND (inner, 0);
637 /* Handle pointer dereferences here, they can override the
638 alias-set. */
639 if (INDIRECT_REF_P (inner))
641 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
642 if (set != -1)
643 return set;
645 else if (TREE_CODE (inner) == TARGET_MEM_REF)
646 return get_deref_alias_set (TMR_OFFSET (inner));
647 else if (TREE_CODE (inner) == MEM_REF)
649 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
650 if (set != -1)
651 return set;
654 /* If the innermost reference is a MEM_REF that has a
655 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
656 using the memory access type for determining the alias-set. */
657 if (TREE_CODE (inner) == MEM_REF
658 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
659 != TYPE_MAIN_VARIANT
660 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
661 return get_deref_alias_set (TREE_OPERAND (inner, 1));
663 /* Otherwise, pick up the outermost object that we could have a pointer
664 to, processing conversions as above. */
665 while (component_uses_parent_alias_set (t))
667 t = TREE_OPERAND (t, 0);
668 STRIP_NOPS (t);
671 /* If we've already determined the alias set for a decl, just return
672 it. This is necessary for C++ anonymous unions, whose component
673 variables don't look like union members (boo!). */
674 if (TREE_CODE (t) == VAR_DECL
675 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
676 return MEM_ALIAS_SET (DECL_RTL (t));
678 /* Now all we care about is the type. */
679 t = TREE_TYPE (t);
682 /* Variant qualifiers don't affect the alias set, so get the main
683 variant. */
684 t = TYPE_MAIN_VARIANT (t);
686 /* Always use the canonical type as well. If this is a type that
687 requires structural comparisons to identify compatible types
688 use alias set zero. */
689 if (TYPE_STRUCTURAL_EQUALITY_P (t))
691 /* Allow the language to specify another alias set for this
692 type. */
693 set = lang_hooks.get_alias_set (t);
694 if (set != -1)
695 return set;
696 return 0;
699 t = TYPE_CANONICAL (t);
701 /* The canonical type should not require structural equality checks. */
702 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
704 /* If this is a type with a known alias set, return it. */
705 if (TYPE_ALIAS_SET_KNOWN_P (t))
706 return TYPE_ALIAS_SET (t);
708 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
709 if (!COMPLETE_TYPE_P (t))
711 /* For arrays with unknown size the conservative answer is the
712 alias set of the element type. */
713 if (TREE_CODE (t) == ARRAY_TYPE)
714 return get_alias_set (TREE_TYPE (t));
716 /* But return zero as a conservative answer for incomplete types. */
717 return 0;
720 /* See if the language has special handling for this type. */
721 set = lang_hooks.get_alias_set (t);
722 if (set != -1)
723 return set;
725 /* There are no objects of FUNCTION_TYPE, so there's no point in
726 using up an alias set for them. (There are, of course, pointers
727 and references to functions, but that's different.) */
728 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
729 set = 0;
731 /* Unless the language specifies otherwise, let vector types alias
732 their components. This avoids some nasty type punning issues in
733 normal usage. And indeed lets vectors be treated more like an
734 array slice. */
735 else if (TREE_CODE (t) == VECTOR_TYPE)
736 set = get_alias_set (TREE_TYPE (t));
738 /* Unless the language specifies otherwise, treat array types the
739 same as their components. This avoids the asymmetry we get
740 through recording the components. Consider accessing a
741 character(kind=1) through a reference to a character(kind=1)[1:1].
742 Or consider if we want to assign integer(kind=4)[0:D.1387] and
743 integer(kind=4)[4] the same alias set or not.
744 Just be pragmatic here and make sure the array and its element
745 type get the same alias set assigned. */
746 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
747 set = get_alias_set (TREE_TYPE (t));
749 /* From the former common C and C++ langhook implementation:
751 Unfortunately, there is no canonical form of a pointer type.
752 In particular, if we have `typedef int I', then `int *', and
753 `I *' are different types. So, we have to pick a canonical
754 representative. We do this below.
756 Technically, this approach is actually more conservative that
757 it needs to be. In particular, `const int *' and `int *'
758 should be in different alias sets, according to the C and C++
759 standard, since their types are not the same, and so,
760 technically, an `int **' and `const int **' cannot point at
761 the same thing.
763 But, the standard is wrong. In particular, this code is
764 legal C++:
766 int *ip;
767 int **ipp = &ip;
768 const int* const* cipp = ipp;
769 And, it doesn't make sense for that to be legal unless you
770 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
771 the pointed-to types. This issue has been reported to the
772 C++ committee.
774 In addition to the above canonicalization issue, with LTO
775 we should also canonicalize `T (*)[]' to `T *' avoiding
776 alias issues with pointer-to element types and pointer-to
777 array types.
779 Likewise we need to deal with the situation of incomplete
780 pointed-to types and make `*(struct X **)&a' and
781 `*(struct X {} **)&a' alias. Otherwise we will have to
782 guarantee that all pointer-to incomplete type variants
783 will be replaced by pointer-to complete type variants if
784 they are available.
786 With LTO the convenient situation of using `void *' to
787 access and store any pointer type will also become
788 more apparent (and `void *' is just another pointer-to
789 incomplete type). Assigning alias-set zero to `void *'
790 and all pointer-to incomplete types is a not appealing
791 solution. Assigning an effective alias-set zero only
792 affecting pointers might be - by recording proper subset
793 relationships of all pointer alias-sets.
795 Pointer-to function types are another grey area which
796 needs caution. Globbing them all into one alias-set
797 or the above effective zero set would work.
799 For now just assign the same alias-set to all pointers.
800 That's simple and avoids all the above problems. */
801 else if (POINTER_TYPE_P (t)
802 && t != ptr_type_node)
803 set = get_alias_set (ptr_type_node);
805 /* Otherwise make a new alias set for this type. */
806 else
808 /* Each canonical type gets its own alias set, so canonical types
809 shouldn't form a tree. It doesn't really matter for types
810 we handle specially above, so only check it where it possibly
811 would result in a bogus alias set. */
812 gcc_checking_assert (TYPE_CANONICAL (t) == t);
814 set = new_alias_set ();
817 TYPE_ALIAS_SET (t) = set;
819 /* If this is an aggregate type or a complex type, we must record any
820 component aliasing information. */
821 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
822 record_component_aliases (t);
824 return set;
827 /* Return a brand-new alias set. */
829 alias_set_type
830 new_alias_set (void)
832 if (flag_strict_aliasing)
834 if (alias_sets == 0)
835 vec_safe_push (alias_sets, (alias_set_entry) 0);
836 vec_safe_push (alias_sets, (alias_set_entry) 0);
837 return alias_sets->length () - 1;
839 else
840 return 0;
843 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
844 not everything that aliases SUPERSET also aliases SUBSET. For example,
845 in C, a store to an `int' can alias a load of a structure containing an
846 `int', and vice versa. But it can't alias a load of a 'double' member
847 of the same structure. Here, the structure would be the SUPERSET and
848 `int' the SUBSET. This relationship is also described in the comment at
849 the beginning of this file.
851 This function should be called only once per SUPERSET/SUBSET pair.
853 It is illegal for SUPERSET to be zero; everything is implicitly a
854 subset of alias set zero. */
856 void
857 record_alias_subset (alias_set_type superset, alias_set_type subset)
859 alias_set_entry superset_entry;
860 alias_set_entry subset_entry;
862 /* It is possible in complex type situations for both sets to be the same,
863 in which case we can ignore this operation. */
864 if (superset == subset)
865 return;
867 gcc_assert (superset);
869 superset_entry = get_alias_set_entry (superset);
870 if (superset_entry == 0)
872 /* Create an entry for the SUPERSET, so that we have a place to
873 attach the SUBSET. */
874 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
875 superset_entry->alias_set = superset;
876 superset_entry->children
877 = splay_tree_new_ggc (splay_tree_compare_ints,
878 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
879 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
880 superset_entry->has_zero_child = 0;
881 (*alias_sets)[superset] = superset_entry;
884 if (subset == 0)
885 superset_entry->has_zero_child = 1;
886 else
888 subset_entry = get_alias_set_entry (subset);
889 /* If there is an entry for the subset, enter all of its children
890 (if they are not already present) as children of the SUPERSET. */
891 if (subset_entry)
893 if (subset_entry->has_zero_child)
894 superset_entry->has_zero_child = 1;
896 splay_tree_foreach (subset_entry->children, insert_subset_children,
897 superset_entry->children);
900 /* Enter the SUBSET itself as a child of the SUPERSET. */
901 splay_tree_insert (superset_entry->children,
902 (splay_tree_key) subset, 0);
906 /* Record that component types of TYPE, if any, are part of that type for
907 aliasing purposes. For record types, we only record component types
908 for fields that are not marked non-addressable. For array types, we
909 only record the component type if it is not marked non-aliased. */
911 void
912 record_component_aliases (tree type)
914 alias_set_type superset = get_alias_set (type);
915 tree field;
917 if (superset == 0)
918 return;
920 switch (TREE_CODE (type))
922 case RECORD_TYPE:
923 case UNION_TYPE:
924 case QUAL_UNION_TYPE:
925 /* Recursively record aliases for the base classes, if there are any. */
926 if (TYPE_BINFO (type))
928 int i;
929 tree binfo, base_binfo;
931 for (binfo = TYPE_BINFO (type), i = 0;
932 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
933 record_alias_subset (superset,
934 get_alias_set (BINFO_TYPE (base_binfo)));
936 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
937 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
938 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
939 break;
941 case COMPLEX_TYPE:
942 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
943 break;
945 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
946 element type. */
948 default:
949 break;
953 /* Allocate an alias set for use in storing and reading from the varargs
954 spill area. */
956 static GTY(()) alias_set_type varargs_set = -1;
958 alias_set_type
959 get_varargs_alias_set (void)
961 #if 1
962 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
963 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
964 consistently use the varargs alias set for loads from the varargs
965 area. So don't use it anywhere. */
966 return 0;
967 #else
968 if (varargs_set == -1)
969 varargs_set = new_alias_set ();
971 return varargs_set;
972 #endif
975 /* Likewise, but used for the fixed portions of the frame, e.g., register
976 save areas. */
978 static GTY(()) alias_set_type frame_set = -1;
980 alias_set_type
981 get_frame_alias_set (void)
983 if (frame_set == -1)
984 frame_set = new_alias_set ();
986 return frame_set;
989 /* Create a new, unique base with id ID. */
991 static rtx
992 unique_base_value (HOST_WIDE_INT id)
994 return gen_rtx_ADDRESS (Pmode, id);
997 /* Return true if accesses based on any other base value cannot alias
998 those based on X. */
1000 static bool
1001 unique_base_value_p (rtx x)
1003 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1006 /* Return true if X is known to be a base value. */
1008 static bool
1009 known_base_value_p (rtx x)
1011 switch (GET_CODE (x))
1013 case LABEL_REF:
1014 case SYMBOL_REF:
1015 return true;
1017 case ADDRESS:
1018 /* Arguments may or may not be bases; we don't know for sure. */
1019 return GET_MODE (x) != VOIDmode;
1021 default:
1022 return false;
1026 /* Inside SRC, the source of a SET, find a base address. */
1028 static rtx
1029 find_base_value (rtx src)
1031 unsigned int regno;
1033 #if defined (FIND_BASE_TERM)
1034 /* Try machine-dependent ways to find the base term. */
1035 src = FIND_BASE_TERM (src);
1036 #endif
1038 switch (GET_CODE (src))
1040 case SYMBOL_REF:
1041 case LABEL_REF:
1042 return src;
1044 case REG:
1045 regno = REGNO (src);
1046 /* At the start of a function, argument registers have known base
1047 values which may be lost later. Returning an ADDRESS
1048 expression here allows optimization based on argument values
1049 even when the argument registers are used for other purposes. */
1050 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1051 return new_reg_base_value[regno];
1053 /* If a pseudo has a known base value, return it. Do not do this
1054 for non-fixed hard regs since it can result in a circular
1055 dependency chain for registers which have values at function entry.
1057 The test above is not sufficient because the scheduler may move
1058 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1059 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1060 && regno < vec_safe_length (reg_base_value))
1062 /* If we're inside init_alias_analysis, use new_reg_base_value
1063 to reduce the number of relaxation iterations. */
1064 if (new_reg_base_value && new_reg_base_value[regno]
1065 && DF_REG_DEF_COUNT (regno) == 1)
1066 return new_reg_base_value[regno];
1068 if ((*reg_base_value)[regno])
1069 return (*reg_base_value)[regno];
1072 return 0;
1074 case MEM:
1075 /* Check for an argument passed in memory. Only record in the
1076 copying-arguments block; it is too hard to track changes
1077 otherwise. */
1078 if (copying_arguments
1079 && (XEXP (src, 0) == arg_pointer_rtx
1080 || (GET_CODE (XEXP (src, 0)) == PLUS
1081 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1082 return arg_base_value;
1083 return 0;
1085 case CONST:
1086 src = XEXP (src, 0);
1087 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1088 break;
1090 /* ... fall through ... */
1092 case PLUS:
1093 case MINUS:
1095 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1097 /* If either operand is a REG that is a known pointer, then it
1098 is the base. */
1099 if (REG_P (src_0) && REG_POINTER (src_0))
1100 return find_base_value (src_0);
1101 if (REG_P (src_1) && REG_POINTER (src_1))
1102 return find_base_value (src_1);
1104 /* If either operand is a REG, then see if we already have
1105 a known value for it. */
1106 if (REG_P (src_0))
1108 temp = find_base_value (src_0);
1109 if (temp != 0)
1110 src_0 = temp;
1113 if (REG_P (src_1))
1115 temp = find_base_value (src_1);
1116 if (temp!= 0)
1117 src_1 = temp;
1120 /* If either base is named object or a special address
1121 (like an argument or stack reference), then use it for the
1122 base term. */
1123 if (src_0 != 0 && known_base_value_p (src_0))
1124 return src_0;
1126 if (src_1 != 0 && known_base_value_p (src_1))
1127 return src_1;
1129 /* Guess which operand is the base address:
1130 If either operand is a symbol, then it is the base. If
1131 either operand is a CONST_INT, then the other is the base. */
1132 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1133 return find_base_value (src_0);
1134 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1135 return find_base_value (src_1);
1137 return 0;
1140 case LO_SUM:
1141 /* The standard form is (lo_sum reg sym) so look only at the
1142 second operand. */
1143 return find_base_value (XEXP (src, 1));
1145 case AND:
1146 /* If the second operand is constant set the base
1147 address to the first operand. */
1148 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1149 return find_base_value (XEXP (src, 0));
1150 return 0;
1152 case TRUNCATE:
1153 /* As we do not know which address space the pointer is referring to, we can
1154 handle this only if the target does not support different pointer or
1155 address modes depending on the address space. */
1156 if (!target_default_pointer_address_modes_p ())
1157 break;
1158 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1159 break;
1160 /* Fall through. */
1161 case HIGH:
1162 case PRE_INC:
1163 case PRE_DEC:
1164 case POST_INC:
1165 case POST_DEC:
1166 case PRE_MODIFY:
1167 case POST_MODIFY:
1168 return find_base_value (XEXP (src, 0));
1170 case ZERO_EXTEND:
1171 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1172 /* As we do not know which address space the pointer is referring to, we can
1173 handle this only if the target does not support different pointer or
1174 address modes depending on the address space. */
1175 if (!target_default_pointer_address_modes_p ())
1176 break;
1179 rtx temp = find_base_value (XEXP (src, 0));
1181 if (temp != 0 && CONSTANT_P (temp))
1182 temp = convert_memory_address (Pmode, temp);
1184 return temp;
1187 default:
1188 break;
1191 return 0;
1194 /* Called from init_alias_analysis indirectly through note_stores,
1195 or directly if DEST is a register with a REG_NOALIAS note attached.
1196 SET is null in the latter case. */
1198 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1199 register N has been set in this function. */
1200 static sbitmap reg_seen;
1202 static void
1203 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1205 unsigned regno;
1206 rtx src;
1207 int n;
1209 if (!REG_P (dest))
1210 return;
1212 regno = REGNO (dest);
1214 gcc_checking_assert (regno < reg_base_value->length ());
1216 /* If this spans multiple hard registers, then we must indicate that every
1217 register has an unusable value. */
1218 if (regno < FIRST_PSEUDO_REGISTER)
1219 n = hard_regno_nregs[regno][GET_MODE (dest)];
1220 else
1221 n = 1;
1222 if (n != 1)
1224 while (--n >= 0)
1226 bitmap_set_bit (reg_seen, regno + n);
1227 new_reg_base_value[regno + n] = 0;
1229 return;
1232 if (set)
1234 /* A CLOBBER wipes out any old value but does not prevent a previously
1235 unset register from acquiring a base address (i.e. reg_seen is not
1236 set). */
1237 if (GET_CODE (set) == CLOBBER)
1239 new_reg_base_value[regno] = 0;
1240 return;
1242 src = SET_SRC (set);
1244 else
1246 /* There's a REG_NOALIAS note against DEST. */
1247 if (bitmap_bit_p (reg_seen, regno))
1249 new_reg_base_value[regno] = 0;
1250 return;
1252 bitmap_set_bit (reg_seen, regno);
1253 new_reg_base_value[regno] = unique_base_value (unique_id++);
1254 return;
1257 /* If this is not the first set of REGNO, see whether the new value
1258 is related to the old one. There are two cases of interest:
1260 (1) The register might be assigned an entirely new value
1261 that has the same base term as the original set.
1263 (2) The set might be a simple self-modification that
1264 cannot change REGNO's base value.
1266 If neither case holds, reject the original base value as invalid.
1267 Note that the following situation is not detected:
1269 extern int x, y; int *p = &x; p += (&y-&x);
1271 ANSI C does not allow computing the difference of addresses
1272 of distinct top level objects. */
1273 if (new_reg_base_value[regno] != 0
1274 && find_base_value (src) != new_reg_base_value[regno])
1275 switch (GET_CODE (src))
1277 case LO_SUM:
1278 case MINUS:
1279 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1280 new_reg_base_value[regno] = 0;
1281 break;
1282 case PLUS:
1283 /* If the value we add in the PLUS is also a valid base value,
1284 this might be the actual base value, and the original value
1285 an index. */
1287 rtx other = NULL_RTX;
1289 if (XEXP (src, 0) == dest)
1290 other = XEXP (src, 1);
1291 else if (XEXP (src, 1) == dest)
1292 other = XEXP (src, 0);
1294 if (! other || find_base_value (other))
1295 new_reg_base_value[regno] = 0;
1296 break;
1298 case AND:
1299 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1300 new_reg_base_value[regno] = 0;
1301 break;
1302 default:
1303 new_reg_base_value[regno] = 0;
1304 break;
1306 /* If this is the first set of a register, record the value. */
1307 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1308 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1309 new_reg_base_value[regno] = find_base_value (src);
1311 bitmap_set_bit (reg_seen, regno);
1314 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1315 using hard registers with non-null REG_BASE_VALUE for renaming. */
1317 get_reg_base_value (unsigned int regno)
1319 return (*reg_base_value)[regno];
1322 /* If a value is known for REGNO, return it. */
1325 get_reg_known_value (unsigned int regno)
1327 if (regno >= FIRST_PSEUDO_REGISTER)
1329 regno -= FIRST_PSEUDO_REGISTER;
1330 if (regno < vec_safe_length (reg_known_value))
1331 return (*reg_known_value)[regno];
1333 return NULL;
1336 /* Set it. */
1338 static void
1339 set_reg_known_value (unsigned int regno, rtx val)
1341 if (regno >= FIRST_PSEUDO_REGISTER)
1343 regno -= FIRST_PSEUDO_REGISTER;
1344 if (regno < vec_safe_length (reg_known_value))
1345 (*reg_known_value)[regno] = val;
1349 /* Similarly for reg_known_equiv_p. */
1351 bool
1352 get_reg_known_equiv_p (unsigned int regno)
1354 if (regno >= FIRST_PSEUDO_REGISTER)
1356 regno -= FIRST_PSEUDO_REGISTER;
1357 if (regno < vec_safe_length (reg_known_value))
1358 return bitmap_bit_p (reg_known_equiv_p, regno);
1360 return false;
1363 static void
1364 set_reg_known_equiv_p (unsigned int regno, bool val)
1366 if (regno >= FIRST_PSEUDO_REGISTER)
1368 regno -= FIRST_PSEUDO_REGISTER;
1369 if (regno < vec_safe_length (reg_known_value))
1371 if (val)
1372 bitmap_set_bit (reg_known_equiv_p, regno);
1373 else
1374 bitmap_clear_bit (reg_known_equiv_p, regno);
1380 /* Returns a canonical version of X, from the point of view alias
1381 analysis. (For example, if X is a MEM whose address is a register,
1382 and the register has a known value (say a SYMBOL_REF), then a MEM
1383 whose address is the SYMBOL_REF is returned.) */
1386 canon_rtx (rtx x)
1388 /* Recursively look for equivalences. */
1389 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1391 rtx t = get_reg_known_value (REGNO (x));
1392 if (t == x)
1393 return x;
1394 if (t)
1395 return canon_rtx (t);
1398 if (GET_CODE (x) == PLUS)
1400 rtx x0 = canon_rtx (XEXP (x, 0));
1401 rtx x1 = canon_rtx (XEXP (x, 1));
1403 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1405 if (CONST_INT_P (x0))
1406 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1407 else if (CONST_INT_P (x1))
1408 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1409 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1413 /* This gives us much better alias analysis when called from
1414 the loop optimizer. Note we want to leave the original
1415 MEM alone, but need to return the canonicalized MEM with
1416 all the flags with their original values. */
1417 else if (MEM_P (x))
1418 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1420 return x;
1423 /* Return 1 if X and Y are identical-looking rtx's.
1424 Expect that X and Y has been already canonicalized.
1426 We use the data in reg_known_value above to see if two registers with
1427 different numbers are, in fact, equivalent. */
1429 static int
1430 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1432 int i;
1433 int j;
1434 enum rtx_code code;
1435 const char *fmt;
1437 if (x == 0 && y == 0)
1438 return 1;
1439 if (x == 0 || y == 0)
1440 return 0;
1442 if (x == y)
1443 return 1;
1445 code = GET_CODE (x);
1446 /* Rtx's of different codes cannot be equal. */
1447 if (code != GET_CODE (y))
1448 return 0;
1450 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1451 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1453 if (GET_MODE (x) != GET_MODE (y))
1454 return 0;
1456 /* Some RTL can be compared without a recursive examination. */
1457 switch (code)
1459 case REG:
1460 return REGNO (x) == REGNO (y);
1462 case LABEL_REF:
1463 return XEXP (x, 0) == XEXP (y, 0);
1465 case SYMBOL_REF:
1466 return XSTR (x, 0) == XSTR (y, 0);
1468 case ENTRY_VALUE:
1469 /* This is magic, don't go through canonicalization et al. */
1470 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1472 case VALUE:
1473 CASE_CONST_UNIQUE:
1474 /* There's no need to compare the contents of CONST_DOUBLEs or
1475 CONST_INTs because pointer equality is a good enough
1476 comparison for these nodes. */
1477 return 0;
1479 default:
1480 break;
1483 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1484 if (code == PLUS)
1485 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1486 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1487 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1488 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1489 /* For commutative operations, the RTX match if the operand match in any
1490 order. Also handle the simple binary and unary cases without a loop. */
1491 if (COMMUTATIVE_P (x))
1493 rtx xop0 = canon_rtx (XEXP (x, 0));
1494 rtx yop0 = canon_rtx (XEXP (y, 0));
1495 rtx yop1 = canon_rtx (XEXP (y, 1));
1497 return ((rtx_equal_for_memref_p (xop0, yop0)
1498 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1499 || (rtx_equal_for_memref_p (xop0, yop1)
1500 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1502 else if (NON_COMMUTATIVE_P (x))
1504 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1505 canon_rtx (XEXP (y, 0)))
1506 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1507 canon_rtx (XEXP (y, 1))));
1509 else if (UNARY_P (x))
1510 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1511 canon_rtx (XEXP (y, 0)));
1513 /* Compare the elements. If any pair of corresponding elements
1514 fail to match, return 0 for the whole things.
1516 Limit cases to types which actually appear in addresses. */
1518 fmt = GET_RTX_FORMAT (code);
1519 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1521 switch (fmt[i])
1523 case 'i':
1524 if (XINT (x, i) != XINT (y, i))
1525 return 0;
1526 break;
1528 case 'E':
1529 /* Two vectors must have the same length. */
1530 if (XVECLEN (x, i) != XVECLEN (y, i))
1531 return 0;
1533 /* And the corresponding elements must match. */
1534 for (j = 0; j < XVECLEN (x, i); j++)
1535 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1536 canon_rtx (XVECEXP (y, i, j))) == 0)
1537 return 0;
1538 break;
1540 case 'e':
1541 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1542 canon_rtx (XEXP (y, i))) == 0)
1543 return 0;
1544 break;
1546 /* This can happen for asm operands. */
1547 case 's':
1548 if (strcmp (XSTR (x, i), XSTR (y, i)))
1549 return 0;
1550 break;
1552 /* This can happen for an asm which clobbers memory. */
1553 case '0':
1554 break;
1556 /* It is believed that rtx's at this level will never
1557 contain anything but integers and other rtx's,
1558 except for within LABEL_REFs and SYMBOL_REFs. */
1559 default:
1560 gcc_unreachable ();
1563 return 1;
1566 static rtx
1567 find_base_term (rtx x)
1569 cselib_val *val;
1570 struct elt_loc_list *l, *f;
1571 rtx ret;
1573 #if defined (FIND_BASE_TERM)
1574 /* Try machine-dependent ways to find the base term. */
1575 x = FIND_BASE_TERM (x);
1576 #endif
1578 switch (GET_CODE (x))
1580 case REG:
1581 return REG_BASE_VALUE (x);
1583 case TRUNCATE:
1584 /* As we do not know which address space the pointer is referring to, we can
1585 handle this only if the target does not support different pointer or
1586 address modes depending on the address space. */
1587 if (!target_default_pointer_address_modes_p ())
1588 return 0;
1589 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1590 return 0;
1591 /* Fall through. */
1592 case HIGH:
1593 case PRE_INC:
1594 case PRE_DEC:
1595 case POST_INC:
1596 case POST_DEC:
1597 case PRE_MODIFY:
1598 case POST_MODIFY:
1599 return find_base_term (XEXP (x, 0));
1601 case ZERO_EXTEND:
1602 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1603 /* As we do not know which address space the pointer is referring to, we can
1604 handle this only if the target does not support different pointer or
1605 address modes depending on the address space. */
1606 if (!target_default_pointer_address_modes_p ())
1607 return 0;
1610 rtx temp = find_base_term (XEXP (x, 0));
1612 if (temp != 0 && CONSTANT_P (temp))
1613 temp = convert_memory_address (Pmode, temp);
1615 return temp;
1618 case VALUE:
1619 val = CSELIB_VAL_PTR (x);
1620 ret = NULL_RTX;
1622 if (!val)
1623 return ret;
1625 if (cselib_sp_based_value_p (val))
1626 return static_reg_base_value[STACK_POINTER_REGNUM];
1628 f = val->locs;
1629 /* Temporarily reset val->locs to avoid infinite recursion. */
1630 val->locs = NULL;
1632 for (l = f; l; l = l->next)
1633 if (GET_CODE (l->loc) == VALUE
1634 && CSELIB_VAL_PTR (l->loc)->locs
1635 && !CSELIB_VAL_PTR (l->loc)->locs->next
1636 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1637 continue;
1638 else if ((ret = find_base_term (l->loc)) != 0)
1639 break;
1641 val->locs = f;
1642 return ret;
1644 case LO_SUM:
1645 /* The standard form is (lo_sum reg sym) so look only at the
1646 second operand. */
1647 return find_base_term (XEXP (x, 1));
1649 case CONST:
1650 x = XEXP (x, 0);
1651 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1652 return 0;
1653 /* Fall through. */
1654 case PLUS:
1655 case MINUS:
1657 rtx tmp1 = XEXP (x, 0);
1658 rtx tmp2 = XEXP (x, 1);
1660 /* This is a little bit tricky since we have to determine which of
1661 the two operands represents the real base address. Otherwise this
1662 routine may return the index register instead of the base register.
1664 That may cause us to believe no aliasing was possible, when in
1665 fact aliasing is possible.
1667 We use a few simple tests to guess the base register. Additional
1668 tests can certainly be added. For example, if one of the operands
1669 is a shift or multiply, then it must be the index register and the
1670 other operand is the base register. */
1672 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1673 return find_base_term (tmp2);
1675 /* If either operand is known to be a pointer, then use it
1676 to determine the base term. */
1677 if (REG_P (tmp1) && REG_POINTER (tmp1))
1679 rtx base = find_base_term (tmp1);
1680 if (base)
1681 return base;
1684 if (REG_P (tmp2) && REG_POINTER (tmp2))
1686 rtx base = find_base_term (tmp2);
1687 if (base)
1688 return base;
1691 /* Neither operand was known to be a pointer. Go ahead and find the
1692 base term for both operands. */
1693 tmp1 = find_base_term (tmp1);
1694 tmp2 = find_base_term (tmp2);
1696 /* If either base term is named object or a special address
1697 (like an argument or stack reference), then use it for the
1698 base term. */
1699 if (tmp1 != 0 && known_base_value_p (tmp1))
1700 return tmp1;
1702 if (tmp2 != 0 && known_base_value_p (tmp2))
1703 return tmp2;
1705 /* We could not determine which of the two operands was the
1706 base register and which was the index. So we can determine
1707 nothing from the base alias check. */
1708 return 0;
1711 case AND:
1712 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1713 return find_base_term (XEXP (x, 0));
1714 return 0;
1716 case SYMBOL_REF:
1717 case LABEL_REF:
1718 return x;
1720 default:
1721 return 0;
1725 /* Return true if accesses to address X may alias accesses based
1726 on the stack pointer. */
1728 bool
1729 may_be_sp_based_p (rtx x)
1731 rtx base = find_base_term (x);
1732 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1735 /* Return 0 if the addresses X and Y are known to point to different
1736 objects, 1 if they might be pointers to the same object. */
1738 static int
1739 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1740 enum machine_mode y_mode)
1742 rtx x_base = find_base_term (x);
1743 rtx y_base = find_base_term (y);
1745 /* If the address itself has no known base see if a known equivalent
1746 value has one. If either address still has no known base, nothing
1747 is known about aliasing. */
1748 if (x_base == 0)
1750 rtx x_c;
1752 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1753 return 1;
1755 x_base = find_base_term (x_c);
1756 if (x_base == 0)
1757 return 1;
1760 if (y_base == 0)
1762 rtx y_c;
1763 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1764 return 1;
1766 y_base = find_base_term (y_c);
1767 if (y_base == 0)
1768 return 1;
1771 /* If the base addresses are equal nothing is known about aliasing. */
1772 if (rtx_equal_p (x_base, y_base))
1773 return 1;
1775 /* The base addresses are different expressions. If they are not accessed
1776 via AND, there is no conflict. We can bring knowledge of object
1777 alignment into play here. For example, on alpha, "char a, b;" can
1778 alias one another, though "char a; long b;" cannot. AND addesses may
1779 implicitly alias surrounding objects; i.e. unaligned access in DImode
1780 via AND address can alias all surrounding object types except those
1781 with aligment 8 or higher. */
1782 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1783 return 1;
1784 if (GET_CODE (x) == AND
1785 && (!CONST_INT_P (XEXP (x, 1))
1786 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1787 return 1;
1788 if (GET_CODE (y) == AND
1789 && (!CONST_INT_P (XEXP (y, 1))
1790 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1791 return 1;
1793 /* Differing symbols not accessed via AND never alias. */
1794 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1795 return 0;
1797 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1798 return 0;
1800 return 1;
1803 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1804 whose UID is greater than the int uid that D points to. */
1806 static int
1807 refs_newer_value_cb (rtx *x, void *d)
1809 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1810 return 1;
1812 return 0;
1815 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1816 that of V. */
1818 static bool
1819 refs_newer_value_p (rtx expr, rtx v)
1821 int minuid = CSELIB_VAL_PTR (v)->uid;
1823 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1826 /* Convert the address X into something we can use. This is done by returning
1827 it unchanged unless it is a value; in the latter case we call cselib to get
1828 a more useful rtx. */
1831 get_addr (rtx x)
1833 cselib_val *v;
1834 struct elt_loc_list *l;
1836 if (GET_CODE (x) != VALUE)
1837 return x;
1838 v = CSELIB_VAL_PTR (x);
1839 if (v)
1841 bool have_equivs = cselib_have_permanent_equivalences ();
1842 if (have_equivs)
1843 v = canonical_cselib_val (v);
1844 for (l = v->locs; l; l = l->next)
1845 if (CONSTANT_P (l->loc))
1846 return l->loc;
1847 for (l = v->locs; l; l = l->next)
1848 if (!REG_P (l->loc) && !MEM_P (l->loc)
1849 /* Avoid infinite recursion when potentially dealing with
1850 var-tracking artificial equivalences, by skipping the
1851 equivalences themselves, and not choosing expressions
1852 that refer to newer VALUEs. */
1853 && (!have_equivs
1854 || (GET_CODE (l->loc) != VALUE
1855 && !refs_newer_value_p (l->loc, x))))
1856 return l->loc;
1857 if (have_equivs)
1859 for (l = v->locs; l; l = l->next)
1860 if (REG_P (l->loc)
1861 || (GET_CODE (l->loc) != VALUE
1862 && !refs_newer_value_p (l->loc, x)))
1863 return l->loc;
1864 /* Return the canonical value. */
1865 return v->val_rtx;
1867 if (v->locs)
1868 return v->locs->loc;
1870 return x;
1873 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1874 where SIZE is the size in bytes of the memory reference. If ADDR
1875 is not modified by the memory reference then ADDR is returned. */
1877 static rtx
1878 addr_side_effect_eval (rtx addr, int size, int n_refs)
1880 int offset = 0;
1882 switch (GET_CODE (addr))
1884 case PRE_INC:
1885 offset = (n_refs + 1) * size;
1886 break;
1887 case PRE_DEC:
1888 offset = -(n_refs + 1) * size;
1889 break;
1890 case POST_INC:
1891 offset = n_refs * size;
1892 break;
1893 case POST_DEC:
1894 offset = -n_refs * size;
1895 break;
1897 default:
1898 return addr;
1901 if (offset)
1902 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1903 GEN_INT (offset));
1904 else
1905 addr = XEXP (addr, 0);
1906 addr = canon_rtx (addr);
1908 return addr;
1911 /* Return TRUE if an object X sized at XSIZE bytes and another object
1912 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
1913 any of the sizes is zero, assume an overlap, otherwise use the
1914 absolute value of the sizes as the actual sizes. */
1916 static inline bool
1917 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
1919 return (xsize == 0 || ysize == 0
1920 || (c >= 0
1921 ? (abs (xsize) > c)
1922 : (abs (ysize) > -c)));
1925 /* Return one if X and Y (memory addresses) reference the
1926 same location in memory or if the references overlap.
1927 Return zero if they do not overlap, else return
1928 minus one in which case they still might reference the same location.
1930 C is an offset accumulator. When
1931 C is nonzero, we are testing aliases between X and Y + C.
1932 XSIZE is the size in bytes of the X reference,
1933 similarly YSIZE is the size in bytes for Y.
1934 Expect that canon_rtx has been already called for X and Y.
1936 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1937 referenced (the reference was BLKmode), so make the most pessimistic
1938 assumptions.
1940 If XSIZE or YSIZE is negative, we may access memory outside the object
1941 being referenced as a side effect. This can happen when using AND to
1942 align memory references, as is done on the Alpha.
1944 Nice to notice that varying addresses cannot conflict with fp if no
1945 local variables had their addresses taken, but that's too hard now.
1947 ??? Contrary to the tree alias oracle this does not return
1948 one for X + non-constant and Y + non-constant when X and Y are equal.
1949 If that is fixed the TBAA hack for union type-punning can be removed. */
1951 static int
1952 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1954 if (GET_CODE (x) == VALUE)
1956 if (REG_P (y))
1958 struct elt_loc_list *l = NULL;
1959 if (CSELIB_VAL_PTR (x))
1960 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
1961 l; l = l->next)
1962 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1963 break;
1964 if (l)
1965 x = y;
1966 else
1967 x = get_addr (x);
1969 /* Don't call get_addr if y is the same VALUE. */
1970 else if (x != y)
1971 x = get_addr (x);
1973 if (GET_CODE (y) == VALUE)
1975 if (REG_P (x))
1977 struct elt_loc_list *l = NULL;
1978 if (CSELIB_VAL_PTR (y))
1979 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
1980 l; l = l->next)
1981 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1982 break;
1983 if (l)
1984 y = x;
1985 else
1986 y = get_addr (y);
1988 /* Don't call get_addr if x is the same VALUE. */
1989 else if (y != x)
1990 y = get_addr (y);
1992 if (GET_CODE (x) == HIGH)
1993 x = XEXP (x, 0);
1994 else if (GET_CODE (x) == LO_SUM)
1995 x = XEXP (x, 1);
1996 else
1997 x = addr_side_effect_eval (x, abs (xsize), 0);
1998 if (GET_CODE (y) == HIGH)
1999 y = XEXP (y, 0);
2000 else if (GET_CODE (y) == LO_SUM)
2001 y = XEXP (y, 1);
2002 else
2003 y = addr_side_effect_eval (y, abs (ysize), 0);
2005 if (rtx_equal_for_memref_p (x, y))
2007 return offset_overlap_p (c, xsize, ysize);
2010 /* This code used to check for conflicts involving stack references and
2011 globals but the base address alias code now handles these cases. */
2013 if (GET_CODE (x) == PLUS)
2015 /* The fact that X is canonicalized means that this
2016 PLUS rtx is canonicalized. */
2017 rtx x0 = XEXP (x, 0);
2018 rtx x1 = XEXP (x, 1);
2020 if (GET_CODE (y) == PLUS)
2022 /* The fact that Y is canonicalized means that this
2023 PLUS rtx is canonicalized. */
2024 rtx y0 = XEXP (y, 0);
2025 rtx y1 = XEXP (y, 1);
2027 if (rtx_equal_for_memref_p (x1, y1))
2028 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2029 if (rtx_equal_for_memref_p (x0, y0))
2030 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2031 if (CONST_INT_P (x1))
2033 if (CONST_INT_P (y1))
2034 return memrefs_conflict_p (xsize, x0, ysize, y0,
2035 c - INTVAL (x1) + INTVAL (y1));
2036 else
2037 return memrefs_conflict_p (xsize, x0, ysize, y,
2038 c - INTVAL (x1));
2040 else if (CONST_INT_P (y1))
2041 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2043 return -1;
2045 else if (CONST_INT_P (x1))
2046 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2048 else if (GET_CODE (y) == PLUS)
2050 /* The fact that Y is canonicalized means that this
2051 PLUS rtx is canonicalized. */
2052 rtx y0 = XEXP (y, 0);
2053 rtx y1 = XEXP (y, 1);
2055 if (CONST_INT_P (y1))
2056 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2057 else
2058 return -1;
2061 if (GET_CODE (x) == GET_CODE (y))
2062 switch (GET_CODE (x))
2064 case MULT:
2066 /* Handle cases where we expect the second operands to be the
2067 same, and check only whether the first operand would conflict
2068 or not. */
2069 rtx x0, y0;
2070 rtx x1 = canon_rtx (XEXP (x, 1));
2071 rtx y1 = canon_rtx (XEXP (y, 1));
2072 if (! rtx_equal_for_memref_p (x1, y1))
2073 return -1;
2074 x0 = canon_rtx (XEXP (x, 0));
2075 y0 = canon_rtx (XEXP (y, 0));
2076 if (rtx_equal_for_memref_p (x0, y0))
2077 return offset_overlap_p (c, xsize, ysize);
2079 /* Can't properly adjust our sizes. */
2080 if (!CONST_INT_P (x1))
2081 return -1;
2082 xsize /= INTVAL (x1);
2083 ysize /= INTVAL (x1);
2084 c /= INTVAL (x1);
2085 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2088 default:
2089 break;
2092 /* Deal with alignment ANDs by adjusting offset and size so as to
2093 cover the maximum range, without taking any previously known
2094 alignment into account. Make a size negative after such an
2095 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2096 assume a potential overlap, because they may end up in contiguous
2097 memory locations and the stricter-alignment access may span over
2098 part of both. */
2099 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2101 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2102 unsigned HOST_WIDE_INT uc = sc;
2103 if (sc < 0 && -uc == (uc & -uc))
2105 if (xsize > 0)
2106 xsize = -xsize;
2107 if (xsize)
2108 xsize += sc + 1;
2109 c -= sc + 1;
2110 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2111 ysize, y, c);
2114 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2116 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2117 unsigned HOST_WIDE_INT uc = sc;
2118 if (sc < 0 && -uc == (uc & -uc))
2120 if (ysize > 0)
2121 ysize = -ysize;
2122 if (ysize)
2123 ysize += sc + 1;
2124 c += sc + 1;
2125 return memrefs_conflict_p (xsize, x,
2126 ysize, canon_rtx (XEXP (y, 0)), c);
2130 if (CONSTANT_P (x))
2132 if (CONST_INT_P (x) && CONST_INT_P (y))
2134 c += (INTVAL (y) - INTVAL (x));
2135 return offset_overlap_p (c, xsize, ysize);
2138 if (GET_CODE (x) == CONST)
2140 if (GET_CODE (y) == CONST)
2141 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2142 ysize, canon_rtx (XEXP (y, 0)), c);
2143 else
2144 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2145 ysize, y, c);
2147 if (GET_CODE (y) == CONST)
2148 return memrefs_conflict_p (xsize, x, ysize,
2149 canon_rtx (XEXP (y, 0)), c);
2151 /* Assume a potential overlap for symbolic addresses that went
2152 through alignment adjustments (i.e., that have negative
2153 sizes), because we can't know how far they are from each
2154 other. */
2155 if (CONSTANT_P (y))
2156 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2158 return -1;
2161 return -1;
2164 /* Functions to compute memory dependencies.
2166 Since we process the insns in execution order, we can build tables
2167 to keep track of what registers are fixed (and not aliased), what registers
2168 are varying in known ways, and what registers are varying in unknown
2169 ways.
2171 If both memory references are volatile, then there must always be a
2172 dependence between the two references, since their order can not be
2173 changed. A volatile and non-volatile reference can be interchanged
2174 though.
2176 We also must allow AND addresses, because they may generate accesses
2177 outside the object being referenced. This is used to generate aligned
2178 addresses from unaligned addresses, for instance, the alpha
2179 storeqi_unaligned pattern. */
2181 /* Read dependence: X is read after read in MEM takes place. There can
2182 only be a dependence here if both reads are volatile, or if either is
2183 an explicit barrier. */
2186 read_dependence (const_rtx mem, const_rtx x)
2188 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2189 return true;
2190 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2191 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2192 return true;
2193 return false;
2196 /* Return true if we can determine that the fields referenced cannot
2197 overlap for any pair of objects. */
2199 static bool
2200 nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
2202 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
2203 const_tree fieldx, fieldy, typex, typey, orig_y;
2205 if (!flag_strict_aliasing
2206 || !x || !y
2207 || TREE_CODE (x) != COMPONENT_REF
2208 || TREE_CODE (y) != COMPONENT_REF)
2209 return false;
2213 /* The comparison has to be done at a common type, since we don't
2214 know how the inheritance hierarchy works. */
2215 orig_y = y;
2218 fieldx = TREE_OPERAND (x, 1);
2219 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2221 y = orig_y;
2224 fieldy = TREE_OPERAND (y, 1);
2225 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2227 if (typex == typey)
2228 goto found;
2230 y = TREE_OPERAND (y, 0);
2232 while (y && TREE_CODE (y) == COMPONENT_REF);
2234 x = TREE_OPERAND (x, 0);
2236 while (x && TREE_CODE (x) == COMPONENT_REF);
2237 /* Never found a common type. */
2238 return false;
2240 found:
2241 /* If we're left with accessing different fields of a structure, then no
2242 possible overlap, unless they are both bitfields. */
2243 if (TREE_CODE (typex) == RECORD_TYPE && fieldx != fieldy)
2244 return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
2246 /* The comparison on the current field failed. If we're accessing
2247 a very nested structure, look at the next outer level. */
2248 x = TREE_OPERAND (x, 0);
2249 y = TREE_OPERAND (y, 0);
2251 while (x && y
2252 && TREE_CODE (x) == COMPONENT_REF
2253 && TREE_CODE (y) == COMPONENT_REF);
2255 return false;
2258 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2260 static tree
2261 decl_for_component_ref (tree x)
2265 x = TREE_OPERAND (x, 0);
2267 while (x && TREE_CODE (x) == COMPONENT_REF);
2269 return x && DECL_P (x) ? x : NULL_TREE;
2272 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2273 for the offset of the field reference. *KNOWN_P says whether the
2274 offset is known. */
2276 static void
2277 adjust_offset_for_component_ref (tree x, bool *known_p,
2278 HOST_WIDE_INT *offset)
2280 if (!*known_p)
2281 return;
2284 tree xoffset = component_ref_field_offset (x);
2285 tree field = TREE_OPERAND (x, 1);
2287 if (! host_integerp (xoffset, 1))
2289 *known_p = false;
2290 return;
2292 *offset += (tree_low_cst (xoffset, 1)
2293 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2294 / BITS_PER_UNIT));
2296 x = TREE_OPERAND (x, 0);
2298 while (x && TREE_CODE (x) == COMPONENT_REF);
2301 /* Return nonzero if we can determine the exprs corresponding to memrefs
2302 X and Y and they do not overlap.
2303 If LOOP_VARIANT is set, skip offset-based disambiguation */
2306 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2308 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2309 rtx rtlx, rtly;
2310 rtx basex, basey;
2311 bool moffsetx_known_p, moffsety_known_p;
2312 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2313 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2315 /* Unless both have exprs, we can't tell anything. */
2316 if (exprx == 0 || expry == 0)
2317 return 0;
2319 /* For spill-slot accesses make sure we have valid offsets. */
2320 if ((exprx == get_spill_slot_decl (false)
2321 && ! MEM_OFFSET_KNOWN_P (x))
2322 || (expry == get_spill_slot_decl (false)
2323 && ! MEM_OFFSET_KNOWN_P (y)))
2324 return 0;
2326 /* If the field reference test failed, look at the DECLs involved. */
2327 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2328 if (moffsetx_known_p)
2329 moffsetx = MEM_OFFSET (x);
2330 if (TREE_CODE (exprx) == COMPONENT_REF)
2332 tree t = decl_for_component_ref (exprx);
2333 if (! t)
2334 return 0;
2335 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2336 exprx = t;
2339 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2340 if (moffsety_known_p)
2341 moffsety = MEM_OFFSET (y);
2342 if (TREE_CODE (expry) == COMPONENT_REF)
2344 tree t = decl_for_component_ref (expry);
2345 if (! t)
2346 return 0;
2347 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2348 expry = t;
2351 if (! DECL_P (exprx) || ! DECL_P (expry))
2352 return 0;
2354 /* With invalid code we can end up storing into the constant pool.
2355 Bail out to avoid ICEing when creating RTL for this.
2356 See gfortran.dg/lto/20091028-2_0.f90. */
2357 if (TREE_CODE (exprx) == CONST_DECL
2358 || TREE_CODE (expry) == CONST_DECL)
2359 return 1;
2361 rtlx = DECL_RTL (exprx);
2362 rtly = DECL_RTL (expry);
2364 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2365 can't overlap unless they are the same because we never reuse that part
2366 of the stack frame used for locals for spilled pseudos. */
2367 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2368 && ! rtx_equal_p (rtlx, rtly))
2369 return 1;
2371 /* If we have MEMs referring to different address spaces (which can
2372 potentially overlap), we cannot easily tell from the addresses
2373 whether the references overlap. */
2374 if (MEM_P (rtlx) && MEM_P (rtly)
2375 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2376 return 0;
2378 /* Get the base and offsets of both decls. If either is a register, we
2379 know both are and are the same, so use that as the base. The only
2380 we can avoid overlap is if we can deduce that they are nonoverlapping
2381 pieces of that decl, which is very rare. */
2382 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2383 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2384 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2386 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2387 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2388 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2390 /* If the bases are different, we know they do not overlap if both
2391 are constants or if one is a constant and the other a pointer into the
2392 stack frame. Otherwise a different base means we can't tell if they
2393 overlap or not. */
2394 if (! rtx_equal_p (basex, basey))
2395 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2396 || (CONSTANT_P (basex) && REG_P (basey)
2397 && REGNO_PTR_FRAME_P (REGNO (basey)))
2398 || (CONSTANT_P (basey) && REG_P (basex)
2399 && REGNO_PTR_FRAME_P (REGNO (basex))));
2401 /* Offset based disambiguation not appropriate for loop invariant */
2402 if (loop_invariant)
2403 return 0;
2405 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2406 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2407 : -1);
2408 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2409 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2410 : -1);
2412 /* If we have an offset for either memref, it can update the values computed
2413 above. */
2414 if (moffsetx_known_p)
2415 offsetx += moffsetx, sizex -= moffsetx;
2416 if (moffsety_known_p)
2417 offsety += moffsety, sizey -= moffsety;
2419 /* If a memref has both a size and an offset, we can use the smaller size.
2420 We can't do this if the offset isn't known because we must view this
2421 memref as being anywhere inside the DECL's MEM. */
2422 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2423 sizex = MEM_SIZE (x);
2424 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2425 sizey = MEM_SIZE (y);
2427 /* Put the values of the memref with the lower offset in X's values. */
2428 if (offsetx > offsety)
2430 tem = offsetx, offsetx = offsety, offsety = tem;
2431 tem = sizex, sizex = sizey, sizey = tem;
2434 /* If we don't know the size of the lower-offset value, we can't tell
2435 if they conflict. Otherwise, we do the test. */
2436 return sizex >= 0 && offsety >= offsetx + sizex;
2439 /* Helper for true_dependence and canon_true_dependence.
2440 Checks for true dependence: X is read after store in MEM takes place.
2442 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2443 NULL_RTX, and the canonical addresses of MEM and X are both computed
2444 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2446 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2448 Returns 1 if there is a true dependence, 0 otherwise. */
2450 static int
2451 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2452 const_rtx x, rtx x_addr, bool mem_canonicalized)
2454 rtx base;
2455 int ret;
2457 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2458 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2460 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2461 return 1;
2463 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2464 This is used in epilogue deallocation functions, and in cselib. */
2465 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2466 return 1;
2467 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2468 return 1;
2469 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2470 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2471 return 1;
2473 /* Read-only memory is by definition never modified, and therefore can't
2474 conflict with anything. We don't expect to find read-only set on MEM,
2475 but stupid user tricks can produce them, so don't die. */
2476 if (MEM_READONLY_P (x))
2477 return 0;
2479 /* If we have MEMs referring to different address spaces (which can
2480 potentially overlap), we cannot easily tell from the addresses
2481 whether the references overlap. */
2482 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2483 return 1;
2485 if (! mem_addr)
2487 mem_addr = XEXP (mem, 0);
2488 if (mem_mode == VOIDmode)
2489 mem_mode = GET_MODE (mem);
2492 if (! x_addr)
2494 x_addr = XEXP (x, 0);
2495 if (!((GET_CODE (x_addr) == VALUE
2496 && GET_CODE (mem_addr) != VALUE
2497 && reg_mentioned_p (x_addr, mem_addr))
2498 || (GET_CODE (x_addr) != VALUE
2499 && GET_CODE (mem_addr) == VALUE
2500 && reg_mentioned_p (mem_addr, x_addr))))
2502 x_addr = get_addr (x_addr);
2503 if (! mem_canonicalized)
2504 mem_addr = get_addr (mem_addr);
2508 base = find_base_term (x_addr);
2509 if (base && (GET_CODE (base) == LABEL_REF
2510 || (GET_CODE (base) == SYMBOL_REF
2511 && CONSTANT_POOL_ADDRESS_P (base))))
2512 return 0;
2514 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2515 return 0;
2517 x_addr = canon_rtx (x_addr);
2518 if (!mem_canonicalized)
2519 mem_addr = canon_rtx (mem_addr);
2521 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2522 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2523 return ret;
2525 if (mems_in_disjoint_alias_sets_p (x, mem))
2526 return 0;
2528 if (nonoverlapping_memrefs_p (mem, x, false))
2529 return 0;
2531 if (nonoverlapping_component_refs_p (mem, x))
2532 return 0;
2534 return rtx_refs_may_alias_p (x, mem, true);
2537 /* True dependence: X is read after store in MEM takes place. */
2540 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2542 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2543 x, NULL_RTX, /*mem_canonicalized=*/false);
2546 /* Canonical true dependence: X is read after store in MEM takes place.
2547 Variant of true_dependence which assumes MEM has already been
2548 canonicalized (hence we no longer do that here).
2549 The mem_addr argument has been added, since true_dependence_1 computed
2550 this value prior to canonicalizing. */
2553 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2554 const_rtx x, rtx x_addr)
2556 return true_dependence_1 (mem, mem_mode, mem_addr,
2557 x, x_addr, /*mem_canonicalized=*/true);
2560 /* Returns nonzero if a write to X might alias a previous read from
2561 (or, if WRITEP is nonzero, a write to) MEM. */
2563 static int
2564 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2566 rtx x_addr, mem_addr;
2567 rtx base;
2568 int ret;
2570 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2571 return 1;
2573 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2574 This is used in epilogue deallocation functions. */
2575 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2576 return 1;
2577 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2578 return 1;
2579 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2580 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2581 return 1;
2583 /* A read from read-only memory can't conflict with read-write memory. */
2584 if (!writep && MEM_READONLY_P (mem))
2585 return 0;
2587 /* If we have MEMs referring to different address spaces (which can
2588 potentially overlap), we cannot easily tell from the addresses
2589 whether the references overlap. */
2590 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2591 return 1;
2593 x_addr = XEXP (x, 0);
2594 mem_addr = XEXP (mem, 0);
2595 if (!((GET_CODE (x_addr) == VALUE
2596 && GET_CODE (mem_addr) != VALUE
2597 && reg_mentioned_p (x_addr, mem_addr))
2598 || (GET_CODE (x_addr) != VALUE
2599 && GET_CODE (mem_addr) == VALUE
2600 && reg_mentioned_p (mem_addr, x_addr))))
2602 x_addr = get_addr (x_addr);
2603 mem_addr = get_addr (mem_addr);
2606 if (! writep)
2608 base = find_base_term (mem_addr);
2609 if (base && (GET_CODE (base) == LABEL_REF
2610 || (GET_CODE (base) == SYMBOL_REF
2611 && CONSTANT_POOL_ADDRESS_P (base))))
2612 return 0;
2615 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2616 GET_MODE (mem)))
2617 return 0;
2619 x_addr = canon_rtx (x_addr);
2620 mem_addr = canon_rtx (mem_addr);
2622 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2623 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2624 return ret;
2626 if (nonoverlapping_memrefs_p (x, mem, false))
2627 return 0;
2629 return rtx_refs_may_alias_p (x, mem, false);
2632 /* Anti dependence: X is written after read in MEM takes place. */
2635 anti_dependence (const_rtx mem, const_rtx x)
2637 return write_dependence_p (mem, x, /*writep=*/0);
2640 /* Output dependence: X is written after store in MEM takes place. */
2643 output_dependence (const_rtx mem, const_rtx x)
2645 return write_dependence_p (mem, x, /*writep=*/1);
2650 /* Check whether X may be aliased with MEM. Don't do offset-based
2651 memory disambiguation & TBAA. */
2653 may_alias_p (const_rtx mem, const_rtx x)
2655 rtx x_addr, mem_addr;
2657 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2658 return 1;
2660 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2661 This is used in epilogue deallocation functions. */
2662 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2663 return 1;
2664 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2665 return 1;
2666 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2667 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2668 return 1;
2670 /* Read-only memory is by definition never modified, and therefore can't
2671 conflict with anything. We don't expect to find read-only set on MEM,
2672 but stupid user tricks can produce them, so don't die. */
2673 if (MEM_READONLY_P (x))
2674 return 0;
2676 /* If we have MEMs referring to different address spaces (which can
2677 potentially overlap), we cannot easily tell from the addresses
2678 whether the references overlap. */
2679 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2680 return 1;
2682 x_addr = XEXP (x, 0);
2683 mem_addr = XEXP (mem, 0);
2684 if (!((GET_CODE (x_addr) == VALUE
2685 && GET_CODE (mem_addr) != VALUE
2686 && reg_mentioned_p (x_addr, mem_addr))
2687 || (GET_CODE (x_addr) != VALUE
2688 && GET_CODE (mem_addr) == VALUE
2689 && reg_mentioned_p (mem_addr, x_addr))))
2691 x_addr = get_addr (x_addr);
2692 mem_addr = get_addr (mem_addr);
2695 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2696 return 0;
2698 x_addr = canon_rtx (x_addr);
2699 mem_addr = canon_rtx (mem_addr);
2701 if (nonoverlapping_memrefs_p (mem, x, true))
2702 return 0;
2704 /* TBAA not valid for loop_invarint */
2705 return rtx_refs_may_alias_p (x, mem, false);
2708 void
2709 init_alias_target (void)
2711 int i;
2713 if (!arg_base_value)
2714 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2716 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2718 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2719 /* Check whether this register can hold an incoming pointer
2720 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2721 numbers, so translate if necessary due to register windows. */
2722 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2723 && HARD_REGNO_MODE_OK (i, Pmode))
2724 static_reg_base_value[i] = arg_base_value;
2726 static_reg_base_value[STACK_POINTER_REGNUM]
2727 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2728 static_reg_base_value[ARG_POINTER_REGNUM]
2729 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2730 static_reg_base_value[FRAME_POINTER_REGNUM]
2731 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2732 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2733 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2734 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2735 #endif
2738 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2739 to be memory reference. */
2740 static bool memory_modified;
2741 static void
2742 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2744 if (MEM_P (x))
2746 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2747 memory_modified = true;
2752 /* Return true when INSN possibly modify memory contents of MEM
2753 (i.e. address can be modified). */
2754 bool
2755 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2757 if (!INSN_P (insn))
2758 return false;
2759 memory_modified = false;
2760 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2761 return memory_modified;
2764 /* Return TRUE if the destination of a set is rtx identical to
2765 ITEM. */
2766 static inline bool
2767 set_dest_equal_p (const_rtx set, const_rtx item)
2769 rtx dest = SET_DEST (set);
2770 return rtx_equal_p (dest, item);
2773 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2774 *DEFINITELY* modify the memory contents of MEM. */
2775 bool
2776 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2778 if (!INSN_P (insn))
2779 return false;
2780 insn = PATTERN (insn);
2781 if (GET_CODE (insn) == SET)
2782 return set_dest_equal_p (insn, mem);
2783 else if (GET_CODE (insn) == PARALLEL)
2785 int i;
2786 for (i = 0; i < XVECLEN (insn, 0); i++)
2788 rtx sub = XVECEXP (insn, 0, i);
2789 if (GET_CODE (sub) == SET
2790 && set_dest_equal_p (sub, mem))
2791 return true;
2794 return false;
2797 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2798 array. */
2800 void
2801 init_alias_analysis (void)
2803 unsigned int maxreg = max_reg_num ();
2804 int changed, pass;
2805 int i;
2806 unsigned int ui;
2807 rtx insn, val;
2808 int rpo_cnt;
2809 int *rpo;
2811 timevar_push (TV_ALIAS_ANALYSIS);
2813 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2814 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2816 /* If we have memory allocated from the previous run, use it. */
2817 if (old_reg_base_value)
2818 reg_base_value = old_reg_base_value;
2820 if (reg_base_value)
2821 reg_base_value->truncate (0);
2823 vec_safe_grow_cleared (reg_base_value, maxreg);
2825 new_reg_base_value = XNEWVEC (rtx, maxreg);
2826 reg_seen = sbitmap_alloc (maxreg);
2828 /* The basic idea is that each pass through this loop will use the
2829 "constant" information from the previous pass to propagate alias
2830 information through another level of assignments.
2832 The propagation is done on the CFG in reverse post-order, to propagate
2833 things forward as far as possible in each iteration.
2835 This could get expensive if the assignment chains are long. Maybe
2836 we should throttle the number of iterations, possibly based on
2837 the optimization level or flag_expensive_optimizations.
2839 We could propagate more information in the first pass by making use
2840 of DF_REG_DEF_COUNT to determine immediately that the alias information
2841 for a pseudo is "constant".
2843 A program with an uninitialized variable can cause an infinite loop
2844 here. Instead of doing a full dataflow analysis to detect such problems
2845 we just cap the number of iterations for the loop.
2847 The state of the arrays for the set chain in question does not matter
2848 since the program has undefined behavior. */
2850 rpo = XNEWVEC (int, n_basic_blocks);
2851 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2853 pass = 0;
2856 /* Assume nothing will change this iteration of the loop. */
2857 changed = 0;
2859 /* We want to assign the same IDs each iteration of this loop, so
2860 start counting from one each iteration of the loop. */
2861 unique_id = 1;
2863 /* We're at the start of the function each iteration through the
2864 loop, so we're copying arguments. */
2865 copying_arguments = true;
2867 /* Wipe the potential alias information clean for this pass. */
2868 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2870 /* Wipe the reg_seen array clean. */
2871 bitmap_clear (reg_seen);
2873 /* Mark all hard registers which may contain an address.
2874 The stack, frame and argument pointers may contain an address.
2875 An argument register which can hold a Pmode value may contain
2876 an address even if it is not in BASE_REGS.
2878 The address expression is VOIDmode for an argument and
2879 Pmode for other registers. */
2881 memcpy (new_reg_base_value, static_reg_base_value,
2882 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2884 /* Walk the insns adding values to the new_reg_base_value array. */
2885 for (i = 0; i < rpo_cnt; i++)
2887 basic_block bb = BASIC_BLOCK (rpo[i]);
2888 FOR_BB_INSNS (bb, insn)
2890 if (NONDEBUG_INSN_P (insn))
2892 rtx note, set;
2894 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2895 /* The prologue/epilogue insns are not threaded onto the
2896 insn chain until after reload has completed. Thus,
2897 there is no sense wasting time checking if INSN is in
2898 the prologue/epilogue until after reload has completed. */
2899 if (reload_completed
2900 && prologue_epilogue_contains (insn))
2901 continue;
2902 #endif
2904 /* If this insn has a noalias note, process it, Otherwise,
2905 scan for sets. A simple set will have no side effects
2906 which could change the base value of any other register. */
2908 if (GET_CODE (PATTERN (insn)) == SET
2909 && REG_NOTES (insn) != 0
2910 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2911 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2912 else
2913 note_stores (PATTERN (insn), record_set, NULL);
2915 set = single_set (insn);
2917 if (set != 0
2918 && REG_P (SET_DEST (set))
2919 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2921 unsigned int regno = REGNO (SET_DEST (set));
2922 rtx src = SET_SRC (set);
2923 rtx t;
2925 note = find_reg_equal_equiv_note (insn);
2926 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2927 && DF_REG_DEF_COUNT (regno) != 1)
2928 note = NULL_RTX;
2930 if (note != NULL_RTX
2931 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2932 && ! rtx_varies_p (XEXP (note, 0), 1)
2933 && ! reg_overlap_mentioned_p (SET_DEST (set),
2934 XEXP (note, 0)))
2936 set_reg_known_value (regno, XEXP (note, 0));
2937 set_reg_known_equiv_p (regno,
2938 REG_NOTE_KIND (note) == REG_EQUIV);
2940 else if (DF_REG_DEF_COUNT (regno) == 1
2941 && GET_CODE (src) == PLUS
2942 && REG_P (XEXP (src, 0))
2943 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2944 && CONST_INT_P (XEXP (src, 1)))
2946 t = plus_constant (GET_MODE (src), t,
2947 INTVAL (XEXP (src, 1)));
2948 set_reg_known_value (regno, t);
2949 set_reg_known_equiv_p (regno, false);
2951 else if (DF_REG_DEF_COUNT (regno) == 1
2952 && ! rtx_varies_p (src, 1))
2954 set_reg_known_value (regno, src);
2955 set_reg_known_equiv_p (regno, false);
2959 else if (NOTE_P (insn)
2960 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2961 copying_arguments = false;
2965 /* Now propagate values from new_reg_base_value to reg_base_value. */
2966 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2968 for (ui = 0; ui < maxreg; ui++)
2970 if (new_reg_base_value[ui]
2971 && new_reg_base_value[ui] != (*reg_base_value)[ui]
2972 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
2974 (*reg_base_value)[ui] = new_reg_base_value[ui];
2975 changed = 1;
2979 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2980 XDELETEVEC (rpo);
2982 /* Fill in the remaining entries. */
2983 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
2985 int regno = i + FIRST_PSEUDO_REGISTER;
2986 if (! val)
2987 set_reg_known_value (regno, regno_reg_rtx[regno]);
2990 /* Clean up. */
2991 free (new_reg_base_value);
2992 new_reg_base_value = 0;
2993 sbitmap_free (reg_seen);
2994 reg_seen = 0;
2995 timevar_pop (TV_ALIAS_ANALYSIS);
2998 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2999 Special API for var-tracking pass purposes. */
3001 void
3002 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3004 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3007 void
3008 end_alias_analysis (void)
3010 old_reg_base_value = reg_base_value;
3011 vec_free (reg_known_value);
3012 sbitmap_free (reg_known_equiv_p);
3015 #include "gt-alias.h"