2008-11-19 Andrew Stubbs <ams@codesourcery.com>
[official-gcc.git] / gcc / tree-cfg.c
blob28ee8ef40c4ff5a37fc94df621f2ff54b3c7d99e
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "ggc.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
39 #include "timevar.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "cfgloop.h"
45 #include "cfglayout.h"
46 #include "tree-ssa-propagate.h"
47 #include "value-prof.h"
48 #include "pointer-set.h"
49 #include "tree-inline.h"
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
54 /* Local declarations. */
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
72 static struct pointer_map_t *edge_to_cases;
74 /* CFG statistics. */
75 struct cfg_stats_d
77 long num_merged_labels;
80 static struct cfg_stats_d cfg_stats;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
85 /* Basic blocks and flowgraphs. */
86 static void make_blocks (gimple_seq);
87 static void factor_computed_gotos (void);
89 /* Edges. */
90 static void make_edges (void);
91 static void make_cond_expr_edges (basic_block);
92 static void make_gimple_switch_edges (basic_block);
93 static void make_goto_expr_edges (basic_block);
94 static edge gimple_redirect_edge_and_branch (edge, basic_block);
95 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
96 static unsigned int split_critical_edges (void);
98 /* Various helpers. */
99 static inline bool stmt_starts_bb_p (gimple, gimple);
100 static int gimple_verify_flow_info (void);
101 static void gimple_make_forwarder_block (edge);
102 static void gimple_cfg2vcg (FILE *);
104 /* Flowgraph optimization and cleanup. */
105 static void gimple_merge_blocks (basic_block, basic_block);
106 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
107 static void remove_bb (basic_block);
108 static edge find_taken_edge_computed_goto (basic_block, tree);
109 static edge find_taken_edge_cond_expr (basic_block, tree);
110 static edge find_taken_edge_switch_expr (basic_block, tree);
111 static tree find_case_label_for_value (gimple, tree);
113 void
114 init_empty_tree_cfg_for_function (struct function *fn)
116 /* Initialize the basic block array. */
117 init_flow (fn);
118 profile_status_for_function (fn) = PROFILE_ABSENT;
119 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
120 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
121 basic_block_info_for_function (fn)
122 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
123 VEC_safe_grow_cleared (basic_block, gc,
124 basic_block_info_for_function (fn),
125 initial_cfg_capacity);
127 /* Build a mapping of labels to their associated blocks. */
128 label_to_block_map_for_function (fn)
129 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
130 VEC_safe_grow_cleared (basic_block, gc,
131 label_to_block_map_for_function (fn),
132 initial_cfg_capacity);
134 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
135 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
136 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
137 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
139 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
140 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
141 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
142 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
145 void
146 init_empty_tree_cfg (void)
148 init_empty_tree_cfg_for_function (cfun);
151 /*---------------------------------------------------------------------------
152 Create basic blocks
153 ---------------------------------------------------------------------------*/
155 /* Entry point to the CFG builder for trees. SEQ is the sequence of
156 statements to be added to the flowgraph. */
158 static void
159 build_gimple_cfg (gimple_seq seq)
161 /* Register specific gimple functions. */
162 gimple_register_cfg_hooks ();
164 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
166 init_empty_tree_cfg ();
168 found_computed_goto = 0;
169 make_blocks (seq);
171 /* Computed gotos are hell to deal with, especially if there are
172 lots of them with a large number of destinations. So we factor
173 them to a common computed goto location before we build the
174 edge list. After we convert back to normal form, we will un-factor
175 the computed gotos since factoring introduces an unwanted jump. */
176 if (found_computed_goto)
177 factor_computed_gotos ();
179 /* Make sure there is always at least one block, even if it's empty. */
180 if (n_basic_blocks == NUM_FIXED_BLOCKS)
181 create_empty_bb (ENTRY_BLOCK_PTR);
183 /* Adjust the size of the array. */
184 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
185 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
187 /* To speed up statement iterator walks, we first purge dead labels. */
188 cleanup_dead_labels ();
190 /* Group case nodes to reduce the number of edges.
191 We do this after cleaning up dead labels because otherwise we miss
192 a lot of obvious case merging opportunities. */
193 group_case_labels ();
195 /* Create the edges of the flowgraph. */
196 make_edges ();
197 cleanup_dead_labels ();
199 /* Debugging dumps. */
201 /* Write the flowgraph to a VCG file. */
203 int local_dump_flags;
204 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
205 if (vcg_file)
207 gimple_cfg2vcg (vcg_file);
208 dump_end (TDI_vcg, vcg_file);
212 #ifdef ENABLE_CHECKING
213 verify_stmts ();
214 #endif
217 static unsigned int
218 execute_build_cfg (void)
220 gimple_seq body = gimple_body (current_function_decl);
222 build_gimple_cfg (body);
223 gimple_set_body (current_function_decl, NULL);
224 return 0;
227 struct gimple_opt_pass pass_build_cfg =
230 GIMPLE_PASS,
231 "cfg", /* name */
232 NULL, /* gate */
233 execute_build_cfg, /* execute */
234 NULL, /* sub */
235 NULL, /* next */
236 0, /* static_pass_number */
237 TV_TREE_CFG, /* tv_id */
238 PROP_gimple_leh, /* properties_required */
239 PROP_cfg, /* properties_provided */
240 0, /* properties_destroyed */
241 0, /* todo_flags_start */
242 TODO_verify_stmts | TODO_cleanup_cfg
243 | TODO_dump_func /* todo_flags_finish */
248 /* Return true if T is a computed goto. */
250 static bool
251 computed_goto_p (gimple t)
253 return (gimple_code (t) == GIMPLE_GOTO
254 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
258 /* Search the CFG for any computed gotos. If found, factor them to a
259 common computed goto site. Also record the location of that site so
260 that we can un-factor the gotos after we have converted back to
261 normal form. */
263 static void
264 factor_computed_gotos (void)
266 basic_block bb;
267 tree factored_label_decl = NULL;
268 tree var = NULL;
269 gimple factored_computed_goto_label = NULL;
270 gimple factored_computed_goto = NULL;
272 /* We know there are one or more computed gotos in this function.
273 Examine the last statement in each basic block to see if the block
274 ends with a computed goto. */
276 FOR_EACH_BB (bb)
278 gimple_stmt_iterator gsi = gsi_last_bb (bb);
279 gimple last;
281 if (gsi_end_p (gsi))
282 continue;
284 last = gsi_stmt (gsi);
286 /* Ignore the computed goto we create when we factor the original
287 computed gotos. */
288 if (last == factored_computed_goto)
289 continue;
291 /* If the last statement is a computed goto, factor it. */
292 if (computed_goto_p (last))
294 gimple assignment;
296 /* The first time we find a computed goto we need to create
297 the factored goto block and the variable each original
298 computed goto will use for their goto destination. */
299 if (!factored_computed_goto)
301 basic_block new_bb = create_empty_bb (bb);
302 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
304 /* Create the destination of the factored goto. Each original
305 computed goto will put its desired destination into this
306 variable and jump to the label we create immediately
307 below. */
308 var = create_tmp_var (ptr_type_node, "gotovar");
310 /* Build a label for the new block which will contain the
311 factored computed goto. */
312 factored_label_decl = create_artificial_label ();
313 factored_computed_goto_label
314 = gimple_build_label (factored_label_decl);
315 gsi_insert_after (&new_gsi, factored_computed_goto_label,
316 GSI_NEW_STMT);
318 /* Build our new computed goto. */
319 factored_computed_goto = gimple_build_goto (var);
320 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
323 /* Copy the original computed goto's destination into VAR. */
324 assignment = gimple_build_assign (var, gimple_goto_dest (last));
325 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
327 /* And re-vector the computed goto to the new destination. */
328 gimple_goto_set_dest (last, factored_label_decl);
334 /* Build a flowgraph for the sequence of stmts SEQ. */
336 static void
337 make_blocks (gimple_seq seq)
339 gimple_stmt_iterator i = gsi_start (seq);
340 gimple stmt = NULL;
341 bool start_new_block = true;
342 bool first_stmt_of_seq = true;
343 basic_block bb = ENTRY_BLOCK_PTR;
345 while (!gsi_end_p (i))
347 gimple prev_stmt;
349 prev_stmt = stmt;
350 stmt = gsi_stmt (i);
352 /* If the statement starts a new basic block or if we have determined
353 in a previous pass that we need to create a new block for STMT, do
354 so now. */
355 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
357 if (!first_stmt_of_seq)
358 seq = gsi_split_seq_before (&i);
359 bb = create_basic_block (seq, NULL, bb);
360 start_new_block = false;
363 /* Now add STMT to BB and create the subgraphs for special statement
364 codes. */
365 gimple_set_bb (stmt, bb);
367 if (computed_goto_p (stmt))
368 found_computed_goto = true;
370 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
371 next iteration. */
372 if (stmt_ends_bb_p (stmt))
373 start_new_block = true;
375 gsi_next (&i);
376 first_stmt_of_seq = false;
381 /* Create and return a new empty basic block after bb AFTER. */
383 static basic_block
384 create_bb (void *h, void *e, basic_block after)
386 basic_block bb;
388 gcc_assert (!e);
390 /* Create and initialize a new basic block. Since alloc_block uses
391 ggc_alloc_cleared to allocate a basic block, we do not have to
392 clear the newly allocated basic block here. */
393 bb = alloc_block ();
395 bb->index = last_basic_block;
396 bb->flags = BB_NEW;
397 bb->il.gimple = GGC_CNEW (struct gimple_bb_info);
398 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
400 /* Add the new block to the linked list of blocks. */
401 link_block (bb, after);
403 /* Grow the basic block array if needed. */
404 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
406 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
407 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
410 /* Add the newly created block to the array. */
411 SET_BASIC_BLOCK (last_basic_block, bb);
413 n_basic_blocks++;
414 last_basic_block++;
416 return bb;
420 /*---------------------------------------------------------------------------
421 Edge creation
422 ---------------------------------------------------------------------------*/
424 /* Fold COND_EXPR_COND of each COND_EXPR. */
426 void
427 fold_cond_expr_cond (void)
429 basic_block bb;
431 FOR_EACH_BB (bb)
433 gimple stmt = last_stmt (bb);
435 if (stmt && gimple_code (stmt) == GIMPLE_COND)
437 tree cond;
438 bool zerop, onep;
440 fold_defer_overflow_warnings ();
441 cond = fold_binary (gimple_cond_code (stmt), boolean_type_node,
442 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
443 if (cond)
445 zerop = integer_zerop (cond);
446 onep = integer_onep (cond);
448 else
449 zerop = onep = false;
451 fold_undefer_overflow_warnings (zerop || onep,
452 stmt,
453 WARN_STRICT_OVERFLOW_CONDITIONAL);
454 if (zerop)
455 gimple_cond_make_false (stmt);
456 else if (onep)
457 gimple_cond_make_true (stmt);
462 /* Join all the blocks in the flowgraph. */
464 static void
465 make_edges (void)
467 basic_block bb;
468 struct omp_region *cur_region = NULL;
470 /* Create an edge from entry to the first block with executable
471 statements in it. */
472 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
474 /* Traverse the basic block array placing edges. */
475 FOR_EACH_BB (bb)
477 gimple last = last_stmt (bb);
478 bool fallthru;
480 if (last)
482 enum gimple_code code = gimple_code (last);
483 switch (code)
485 case GIMPLE_GOTO:
486 make_goto_expr_edges (bb);
487 fallthru = false;
488 break;
489 case GIMPLE_RETURN:
490 make_edge (bb, EXIT_BLOCK_PTR, 0);
491 fallthru = false;
492 break;
493 case GIMPLE_COND:
494 make_cond_expr_edges (bb);
495 fallthru = false;
496 break;
497 case GIMPLE_SWITCH:
498 make_gimple_switch_edges (bb);
499 fallthru = false;
500 break;
501 case GIMPLE_RESX:
502 make_eh_edges (last);
503 fallthru = false;
504 break;
506 case GIMPLE_CALL:
507 /* If this function receives a nonlocal goto, then we need to
508 make edges from this call site to all the nonlocal goto
509 handlers. */
510 if (stmt_can_make_abnormal_goto (last))
511 make_abnormal_goto_edges (bb, true);
513 /* If this statement has reachable exception handlers, then
514 create abnormal edges to them. */
515 make_eh_edges (last);
517 /* Some calls are known not to return. */
518 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
519 break;
521 case GIMPLE_ASSIGN:
522 /* A GIMPLE_ASSIGN may throw internally and thus be considered
523 control-altering. */
524 if (is_ctrl_altering_stmt (last))
526 make_eh_edges (last);
528 fallthru = true;
529 break;
531 case GIMPLE_OMP_PARALLEL:
532 case GIMPLE_OMP_TASK:
533 case GIMPLE_OMP_FOR:
534 case GIMPLE_OMP_SINGLE:
535 case GIMPLE_OMP_MASTER:
536 case GIMPLE_OMP_ORDERED:
537 case GIMPLE_OMP_CRITICAL:
538 case GIMPLE_OMP_SECTION:
539 cur_region = new_omp_region (bb, code, cur_region);
540 fallthru = true;
541 break;
543 case GIMPLE_OMP_SECTIONS:
544 cur_region = new_omp_region (bb, code, cur_region);
545 fallthru = true;
546 break;
548 case GIMPLE_OMP_SECTIONS_SWITCH:
549 fallthru = false;
550 break;
553 case GIMPLE_OMP_ATOMIC_LOAD:
554 case GIMPLE_OMP_ATOMIC_STORE:
555 fallthru = true;
556 break;
559 case GIMPLE_OMP_RETURN:
560 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
561 somewhere other than the next block. This will be
562 created later. */
563 cur_region->exit = bb;
564 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
565 cur_region = cur_region->outer;
566 break;
568 case GIMPLE_OMP_CONTINUE:
569 cur_region->cont = bb;
570 switch (cur_region->type)
572 case GIMPLE_OMP_FOR:
573 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
574 succs edges as abnormal to prevent splitting
575 them. */
576 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
577 /* Make the loopback edge. */
578 make_edge (bb, single_succ (cur_region->entry),
579 EDGE_ABNORMAL);
581 /* Create an edge from GIMPLE_OMP_FOR to exit, which
582 corresponds to the case that the body of the loop
583 is not executed at all. */
584 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
585 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
586 fallthru = false;
587 break;
589 case GIMPLE_OMP_SECTIONS:
590 /* Wire up the edges into and out of the nested sections. */
592 basic_block switch_bb = single_succ (cur_region->entry);
594 struct omp_region *i;
595 for (i = cur_region->inner; i ; i = i->next)
597 gcc_assert (i->type == GIMPLE_OMP_SECTION);
598 make_edge (switch_bb, i->entry, 0);
599 make_edge (i->exit, bb, EDGE_FALLTHRU);
602 /* Make the loopback edge to the block with
603 GIMPLE_OMP_SECTIONS_SWITCH. */
604 make_edge (bb, switch_bb, 0);
606 /* Make the edge from the switch to exit. */
607 make_edge (switch_bb, bb->next_bb, 0);
608 fallthru = false;
610 break;
612 default:
613 gcc_unreachable ();
615 break;
617 default:
618 gcc_assert (!stmt_ends_bb_p (last));
619 fallthru = true;
622 else
623 fallthru = true;
625 if (fallthru)
626 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
629 if (root_omp_region)
630 free_omp_regions ();
632 /* Fold COND_EXPR_COND of each COND_EXPR. */
633 fold_cond_expr_cond ();
637 /* Create the edges for a GIMPLE_COND starting at block BB. */
639 static void
640 make_cond_expr_edges (basic_block bb)
642 gimple entry = last_stmt (bb);
643 gimple then_stmt, else_stmt;
644 basic_block then_bb, else_bb;
645 tree then_label, else_label;
646 edge e;
648 gcc_assert (entry);
649 gcc_assert (gimple_code (entry) == GIMPLE_COND);
651 /* Entry basic blocks for each component. */
652 then_label = gimple_cond_true_label (entry);
653 else_label = gimple_cond_false_label (entry);
654 then_bb = label_to_block (then_label);
655 else_bb = label_to_block (else_label);
656 then_stmt = first_stmt (then_bb);
657 else_stmt = first_stmt (else_bb);
659 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
660 e->goto_locus = gimple_location (then_stmt);
661 if (e->goto_locus)
662 e->goto_block = gimple_block (then_stmt);
663 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
664 if (e)
666 e->goto_locus = gimple_location (else_stmt);
667 if (e->goto_locus)
668 e->goto_block = gimple_block (else_stmt);
671 /* We do not need the labels anymore. */
672 gimple_cond_set_true_label (entry, NULL_TREE);
673 gimple_cond_set_false_label (entry, NULL_TREE);
677 /* Called for each element in the hash table (P) as we delete the
678 edge to cases hash table.
680 Clear all the TREE_CHAINs to prevent problems with copying of
681 SWITCH_EXPRs and structure sharing rules, then free the hash table
682 element. */
684 static bool
685 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
686 void *data ATTRIBUTE_UNUSED)
688 tree t, next;
690 for (t = (tree) *value; t; t = next)
692 next = TREE_CHAIN (t);
693 TREE_CHAIN (t) = NULL;
696 *value = NULL;
697 return false;
700 /* Start recording information mapping edges to case labels. */
702 void
703 start_recording_case_labels (void)
705 gcc_assert (edge_to_cases == NULL);
706 edge_to_cases = pointer_map_create ();
709 /* Return nonzero if we are recording information for case labels. */
711 static bool
712 recording_case_labels_p (void)
714 return (edge_to_cases != NULL);
717 /* Stop recording information mapping edges to case labels and
718 remove any information we have recorded. */
719 void
720 end_recording_case_labels (void)
722 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
723 pointer_map_destroy (edge_to_cases);
724 edge_to_cases = NULL;
727 /* If we are inside a {start,end}_recording_cases block, then return
728 a chain of CASE_LABEL_EXPRs from T which reference E.
730 Otherwise return NULL. */
732 static tree
733 get_cases_for_edge (edge e, gimple t)
735 void **slot;
736 size_t i, n;
738 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
739 chains available. Return NULL so the caller can detect this case. */
740 if (!recording_case_labels_p ())
741 return NULL;
743 slot = pointer_map_contains (edge_to_cases, e);
744 if (slot)
745 return (tree) *slot;
747 /* If we did not find E in the hash table, then this must be the first
748 time we have been queried for information about E & T. Add all the
749 elements from T to the hash table then perform the query again. */
751 n = gimple_switch_num_labels (t);
752 for (i = 0; i < n; i++)
754 tree elt = gimple_switch_label (t, i);
755 tree lab = CASE_LABEL (elt);
756 basic_block label_bb = label_to_block (lab);
757 edge this_edge = find_edge (e->src, label_bb);
759 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
760 a new chain. */
761 slot = pointer_map_insert (edge_to_cases, this_edge);
762 TREE_CHAIN (elt) = (tree) *slot;
763 *slot = elt;
766 return (tree) *pointer_map_contains (edge_to_cases, e);
769 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
771 static void
772 make_gimple_switch_edges (basic_block bb)
774 gimple entry = last_stmt (bb);
775 size_t i, n;
777 n = gimple_switch_num_labels (entry);
779 for (i = 0; i < n; ++i)
781 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
782 basic_block label_bb = label_to_block (lab);
783 make_edge (bb, label_bb, 0);
788 /* Return the basic block holding label DEST. */
790 basic_block
791 label_to_block_fn (struct function *ifun, tree dest)
793 int uid = LABEL_DECL_UID (dest);
795 /* We would die hard when faced by an undefined label. Emit a label to
796 the very first basic block. This will hopefully make even the dataflow
797 and undefined variable warnings quite right. */
798 if ((errorcount || sorrycount) && uid < 0)
800 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
801 gimple stmt;
803 stmt = gimple_build_label (dest);
804 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
805 uid = LABEL_DECL_UID (dest);
807 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
808 <= (unsigned int) uid)
809 return NULL;
810 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
813 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
814 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
816 void
817 make_abnormal_goto_edges (basic_block bb, bool for_call)
819 basic_block target_bb;
820 gimple_stmt_iterator gsi;
822 FOR_EACH_BB (target_bb)
823 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
825 gimple label_stmt = gsi_stmt (gsi);
826 tree target;
828 if (gimple_code (label_stmt) != GIMPLE_LABEL)
829 break;
831 target = gimple_label_label (label_stmt);
833 /* Make an edge to every label block that has been marked as a
834 potential target for a computed goto or a non-local goto. */
835 if ((FORCED_LABEL (target) && !for_call)
836 || (DECL_NONLOCAL (target) && for_call))
838 make_edge (bb, target_bb, EDGE_ABNORMAL);
839 break;
844 /* Create edges for a goto statement at block BB. */
846 static void
847 make_goto_expr_edges (basic_block bb)
849 gimple_stmt_iterator last = gsi_last_bb (bb);
850 gimple goto_t = gsi_stmt (last);
852 /* A simple GOTO creates normal edges. */
853 if (simple_goto_p (goto_t))
855 tree dest = gimple_goto_dest (goto_t);
856 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
857 e->goto_locus = gimple_location (goto_t);
858 if (e->goto_locus)
859 e->goto_block = gimple_block (goto_t);
860 gsi_remove (&last, true);
861 return;
864 /* A computed GOTO creates abnormal edges. */
865 make_abnormal_goto_edges (bb, false);
869 /*---------------------------------------------------------------------------
870 Flowgraph analysis
871 ---------------------------------------------------------------------------*/
873 /* Cleanup useless labels in basic blocks. This is something we wish
874 to do early because it allows us to group case labels before creating
875 the edges for the CFG, and it speeds up block statement iterators in
876 all passes later on.
877 We rerun this pass after CFG is created, to get rid of the labels that
878 are no longer referenced. After then we do not run it any more, since
879 (almost) no new labels should be created. */
881 /* A map from basic block index to the leading label of that block. */
882 static struct label_record
884 /* The label. */
885 tree label;
887 /* True if the label is referenced from somewhere. */
888 bool used;
889 } *label_for_bb;
891 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
892 static void
893 update_eh_label (struct eh_region *region)
895 tree old_label = get_eh_region_tree_label (region);
896 if (old_label)
898 tree new_label;
899 basic_block bb = label_to_block (old_label);
901 /* ??? After optimizing, there may be EH regions with labels
902 that have already been removed from the function body, so
903 there is no basic block for them. */
904 if (! bb)
905 return;
907 new_label = label_for_bb[bb->index].label;
908 label_for_bb[bb->index].used = true;
909 set_eh_region_tree_label (region, new_label);
914 /* Given LABEL return the first label in the same basic block. */
916 static tree
917 main_block_label (tree label)
919 basic_block bb = label_to_block (label);
920 tree main_label = label_for_bb[bb->index].label;
922 /* label_to_block possibly inserted undefined label into the chain. */
923 if (!main_label)
925 label_for_bb[bb->index].label = label;
926 main_label = label;
929 label_for_bb[bb->index].used = true;
930 return main_label;
933 /* Cleanup redundant labels. This is a three-step process:
934 1) Find the leading label for each block.
935 2) Redirect all references to labels to the leading labels.
936 3) Cleanup all useless labels. */
938 void
939 cleanup_dead_labels (void)
941 basic_block bb;
942 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
944 /* Find a suitable label for each block. We use the first user-defined
945 label if there is one, or otherwise just the first label we see. */
946 FOR_EACH_BB (bb)
948 gimple_stmt_iterator i;
950 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
952 tree label;
953 gimple stmt = gsi_stmt (i);
955 if (gimple_code (stmt) != GIMPLE_LABEL)
956 break;
958 label = gimple_label_label (stmt);
960 /* If we have not yet seen a label for the current block,
961 remember this one and see if there are more labels. */
962 if (!label_for_bb[bb->index].label)
964 label_for_bb[bb->index].label = label;
965 continue;
968 /* If we did see a label for the current block already, but it
969 is an artificially created label, replace it if the current
970 label is a user defined label. */
971 if (!DECL_ARTIFICIAL (label)
972 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
974 label_for_bb[bb->index].label = label;
975 break;
980 /* Now redirect all jumps/branches to the selected label.
981 First do so for each block ending in a control statement. */
982 FOR_EACH_BB (bb)
984 gimple stmt = last_stmt (bb);
985 if (!stmt)
986 continue;
988 switch (gimple_code (stmt))
990 case GIMPLE_COND:
992 tree true_label = gimple_cond_true_label (stmt);
993 tree false_label = gimple_cond_false_label (stmt);
995 if (true_label)
996 gimple_cond_set_true_label (stmt, main_block_label (true_label));
997 if (false_label)
998 gimple_cond_set_false_label (stmt, main_block_label (false_label));
999 break;
1002 case GIMPLE_SWITCH:
1004 size_t i, n = gimple_switch_num_labels (stmt);
1006 /* Replace all destination labels. */
1007 for (i = 0; i < n; ++i)
1009 tree case_label = gimple_switch_label (stmt, i);
1010 tree label = main_block_label (CASE_LABEL (case_label));
1011 CASE_LABEL (case_label) = label;
1013 break;
1016 /* We have to handle gotos until they're removed, and we don't
1017 remove them until after we've created the CFG edges. */
1018 case GIMPLE_GOTO:
1019 if (!computed_goto_p (stmt))
1021 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1022 gimple_goto_set_dest (stmt, new_dest);
1023 break;
1026 default:
1027 break;
1031 for_each_eh_region (update_eh_label);
1033 /* Finally, purge dead labels. All user-defined labels and labels that
1034 can be the target of non-local gotos and labels which have their
1035 address taken are preserved. */
1036 FOR_EACH_BB (bb)
1038 gimple_stmt_iterator i;
1039 tree label_for_this_bb = label_for_bb[bb->index].label;
1041 if (!label_for_this_bb)
1042 continue;
1044 /* If the main label of the block is unused, we may still remove it. */
1045 if (!label_for_bb[bb->index].used)
1046 label_for_this_bb = NULL;
1048 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1050 tree label;
1051 gimple stmt = gsi_stmt (i);
1053 if (gimple_code (stmt) != GIMPLE_LABEL)
1054 break;
1056 label = gimple_label_label (stmt);
1058 if (label == label_for_this_bb
1059 || !DECL_ARTIFICIAL (label)
1060 || DECL_NONLOCAL (label)
1061 || FORCED_LABEL (label))
1062 gsi_next (&i);
1063 else
1064 gsi_remove (&i, true);
1068 free (label_for_bb);
1071 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1072 and scan the sorted vector of cases. Combine the ones jumping to the
1073 same label.
1074 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1076 void
1077 group_case_labels (void)
1079 basic_block bb;
1081 FOR_EACH_BB (bb)
1083 gimple stmt = last_stmt (bb);
1084 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1086 int old_size = gimple_switch_num_labels (stmt);
1087 int i, j, new_size = old_size;
1088 tree default_case = NULL_TREE;
1089 tree default_label = NULL_TREE;
1090 bool has_default;
1092 /* The default label is always the first case in a switch
1093 statement after gimplification if it was not optimized
1094 away */
1095 if (!CASE_LOW (gimple_switch_default_label (stmt))
1096 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1098 default_case = gimple_switch_default_label (stmt);
1099 default_label = CASE_LABEL (default_case);
1100 has_default = true;
1102 else
1103 has_default = false;
1105 /* Look for possible opportunities to merge cases. */
1106 if (has_default)
1107 i = 1;
1108 else
1109 i = 0;
1110 while (i < old_size)
1112 tree base_case, base_label, base_high;
1113 base_case = gimple_switch_label (stmt, i);
1115 gcc_assert (base_case);
1116 base_label = CASE_LABEL (base_case);
1118 /* Discard cases that have the same destination as the
1119 default case. */
1120 if (base_label == default_label)
1122 gimple_switch_set_label (stmt, i, NULL_TREE);
1123 i++;
1124 new_size--;
1125 continue;
1128 base_high = CASE_HIGH (base_case)
1129 ? CASE_HIGH (base_case)
1130 : CASE_LOW (base_case);
1131 i++;
1133 /* Try to merge case labels. Break out when we reach the end
1134 of the label vector or when we cannot merge the next case
1135 label with the current one. */
1136 while (i < old_size)
1138 tree merge_case = gimple_switch_label (stmt, i);
1139 tree merge_label = CASE_LABEL (merge_case);
1140 tree t = int_const_binop (PLUS_EXPR, base_high,
1141 integer_one_node, 1);
1143 /* Merge the cases if they jump to the same place,
1144 and their ranges are consecutive. */
1145 if (merge_label == base_label
1146 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1148 base_high = CASE_HIGH (merge_case) ?
1149 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1150 CASE_HIGH (base_case) = base_high;
1151 gimple_switch_set_label (stmt, i, NULL_TREE);
1152 new_size--;
1153 i++;
1155 else
1156 break;
1160 /* Compress the case labels in the label vector, and adjust the
1161 length of the vector. */
1162 for (i = 0, j = 0; i < new_size; i++)
1164 while (! gimple_switch_label (stmt, j))
1165 j++;
1166 gimple_switch_set_label (stmt, i,
1167 gimple_switch_label (stmt, j++));
1170 gcc_assert (new_size <= old_size);
1171 gimple_switch_set_num_labels (stmt, new_size);
1176 /* Checks whether we can merge block B into block A. */
1178 static bool
1179 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1181 gimple stmt;
1182 gimple_stmt_iterator gsi;
1183 gimple_seq phis;
1185 if (!single_succ_p (a))
1186 return false;
1188 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
1189 return false;
1191 if (single_succ (a) != b)
1192 return false;
1194 if (!single_pred_p (b))
1195 return false;
1197 if (b == EXIT_BLOCK_PTR)
1198 return false;
1200 /* If A ends by a statement causing exceptions or something similar, we
1201 cannot merge the blocks. */
1202 stmt = last_stmt (a);
1203 if (stmt && stmt_ends_bb_p (stmt))
1204 return false;
1206 /* Do not allow a block with only a non-local label to be merged. */
1207 if (stmt
1208 && gimple_code (stmt) == GIMPLE_LABEL
1209 && DECL_NONLOCAL (gimple_label_label (stmt)))
1210 return false;
1212 /* It must be possible to eliminate all phi nodes in B. If ssa form
1213 is not up-to-date, we cannot eliminate any phis; however, if only
1214 some symbols as whole are marked for renaming, this is not a problem,
1215 as phi nodes for those symbols are irrelevant in updating anyway. */
1216 phis = phi_nodes (b);
1217 if (!gimple_seq_empty_p (phis))
1219 gimple_stmt_iterator i;
1221 if (name_mappings_registered_p ())
1222 return false;
1224 for (i = gsi_start (phis); !gsi_end_p (i); gsi_next (&i))
1226 gimple phi = gsi_stmt (i);
1228 if (!is_gimple_reg (gimple_phi_result (phi))
1229 && !may_propagate_copy (gimple_phi_result (phi),
1230 gimple_phi_arg_def (phi, 0)))
1231 return false;
1235 /* Do not remove user labels. */
1236 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1238 stmt = gsi_stmt (gsi);
1239 if (gimple_code (stmt) != GIMPLE_LABEL)
1240 break;
1241 if (!DECL_ARTIFICIAL (gimple_label_label (stmt)))
1242 return false;
1245 /* Protect the loop latches. */
1246 if (current_loops
1247 && b->loop_father->latch == b)
1248 return false;
1250 return true;
1253 /* Replaces all uses of NAME by VAL. */
1255 void
1256 replace_uses_by (tree name, tree val)
1258 imm_use_iterator imm_iter;
1259 use_operand_p use;
1260 gimple stmt;
1261 edge e;
1263 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1265 if (gimple_code (stmt) != GIMPLE_PHI)
1266 push_stmt_changes (&stmt);
1268 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1270 replace_exp (use, val);
1272 if (gimple_code (stmt) == GIMPLE_PHI)
1274 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1275 if (e->flags & EDGE_ABNORMAL)
1277 /* This can only occur for virtual operands, since
1278 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1279 would prevent replacement. */
1280 gcc_assert (!is_gimple_reg (name));
1281 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1286 if (gimple_code (stmt) != GIMPLE_PHI)
1288 size_t i;
1290 fold_stmt_inplace (stmt);
1291 if (cfgcleanup_altered_bbs)
1292 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1294 /* FIXME. This should go in pop_stmt_changes. */
1295 for (i = 0; i < gimple_num_ops (stmt); i++)
1297 tree op = gimple_op (stmt, i);
1298 /* Operands may be empty here. For example, the labels
1299 of a GIMPLE_COND are nulled out following the creation
1300 of the corresponding CFG edges. */
1301 if (op && TREE_CODE (op) == ADDR_EXPR)
1302 recompute_tree_invariant_for_addr_expr (op);
1305 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1307 pop_stmt_changes (&stmt);
1311 gcc_assert (has_zero_uses (name));
1313 /* Also update the trees stored in loop structures. */
1314 if (current_loops)
1316 struct loop *loop;
1317 loop_iterator li;
1319 FOR_EACH_LOOP (li, loop, 0)
1321 substitute_in_loop_info (loop, name, val);
1326 /* Merge block B into block A. */
1328 static void
1329 gimple_merge_blocks (basic_block a, basic_block b)
1331 gimple_stmt_iterator last, gsi, psi;
1332 gimple_seq phis = phi_nodes (b);
1334 if (dump_file)
1335 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1337 /* Remove all single-valued PHI nodes from block B of the form
1338 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1339 gsi = gsi_last_bb (a);
1340 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1342 gimple phi = gsi_stmt (psi);
1343 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1344 gimple copy;
1345 bool may_replace_uses = !is_gimple_reg (def)
1346 || may_propagate_copy (def, use);
1348 /* In case we maintain loop closed ssa form, do not propagate arguments
1349 of loop exit phi nodes. */
1350 if (current_loops
1351 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1352 && is_gimple_reg (def)
1353 && TREE_CODE (use) == SSA_NAME
1354 && a->loop_father != b->loop_father)
1355 may_replace_uses = false;
1357 if (!may_replace_uses)
1359 gcc_assert (is_gimple_reg (def));
1361 /* Note that just emitting the copies is fine -- there is no problem
1362 with ordering of phi nodes. This is because A is the single
1363 predecessor of B, therefore results of the phi nodes cannot
1364 appear as arguments of the phi nodes. */
1365 copy = gimple_build_assign (def, use);
1366 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1367 remove_phi_node (&psi, false);
1369 else
1371 /* If we deal with a PHI for virtual operands, we can simply
1372 propagate these without fussing with folding or updating
1373 the stmt. */
1374 if (!is_gimple_reg (def))
1376 imm_use_iterator iter;
1377 use_operand_p use_p;
1378 gimple stmt;
1380 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1381 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1382 SET_USE (use_p, use);
1384 else
1385 replace_uses_by (def, use);
1387 remove_phi_node (&psi, true);
1391 /* Ensure that B follows A. */
1392 move_block_after (b, a);
1394 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1395 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1397 /* Remove labels from B and set gimple_bb to A for other statements. */
1398 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1400 if (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL)
1402 gimple label = gsi_stmt (gsi);
1404 gsi_remove (&gsi, false);
1406 /* Now that we can thread computed gotos, we might have
1407 a situation where we have a forced label in block B
1408 However, the label at the start of block B might still be
1409 used in other ways (think about the runtime checking for
1410 Fortran assigned gotos). So we can not just delete the
1411 label. Instead we move the label to the start of block A. */
1412 if (FORCED_LABEL (gimple_label_label (label)))
1414 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1415 gsi_insert_before (&dest_gsi, label, GSI_NEW_STMT);
1418 else
1420 gimple_set_bb (gsi_stmt (gsi), a);
1421 gsi_next (&gsi);
1425 /* Merge the sequences. */
1426 last = gsi_last_bb (a);
1427 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1428 set_bb_seq (b, NULL);
1430 if (cfgcleanup_altered_bbs)
1431 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1435 /* Return the one of two successors of BB that is not reachable by a
1436 reached by a complex edge, if there is one. Else, return BB. We use
1437 this in optimizations that use post-dominators for their heuristics,
1438 to catch the cases in C++ where function calls are involved. */
1440 basic_block
1441 single_noncomplex_succ (basic_block bb)
1443 edge e0, e1;
1444 if (EDGE_COUNT (bb->succs) != 2)
1445 return bb;
1447 e0 = EDGE_SUCC (bb, 0);
1448 e1 = EDGE_SUCC (bb, 1);
1449 if (e0->flags & EDGE_COMPLEX)
1450 return e1->dest;
1451 if (e1->flags & EDGE_COMPLEX)
1452 return e0->dest;
1454 return bb;
1458 /* Walk the function tree removing unnecessary statements.
1460 * Empty statement nodes are removed
1462 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1464 * Unnecessary COND_EXPRs are removed
1466 * Some unnecessary BIND_EXPRs are removed
1468 * GOTO_EXPRs immediately preceding destination are removed.
1470 Clearly more work could be done. The trick is doing the analysis
1471 and removal fast enough to be a net improvement in compile times.
1473 Note that when we remove a control structure such as a COND_EXPR
1474 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1475 to ensure we eliminate all the useless code. */
1477 struct rus_data
1479 bool repeat;
1480 bool may_throw;
1481 bool may_branch;
1482 bool has_label;
1483 bool last_was_goto;
1484 gimple_stmt_iterator last_goto_gsi;
1488 static void remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *);
1490 /* Given a statement sequence, find the first executable statement with
1491 location information, and warn that it is unreachable. When searching,
1492 descend into containers in execution order. */
1494 static bool
1495 remove_useless_stmts_warn_notreached (gimple_seq stmts)
1497 gimple_stmt_iterator gsi;
1499 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
1501 gimple stmt = gsi_stmt (gsi);
1503 if (gimple_has_location (stmt))
1505 location_t loc = gimple_location (stmt);
1506 if (LOCATION_LINE (loc) > 0)
1508 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
1509 return true;
1513 switch (gimple_code (stmt))
1515 /* Unfortunately, we need the CFG now to detect unreachable
1516 branches in a conditional, so conditionals are not handled here. */
1518 case GIMPLE_TRY:
1519 if (remove_useless_stmts_warn_notreached (gimple_try_eval (stmt)))
1520 return true;
1521 if (remove_useless_stmts_warn_notreached (gimple_try_cleanup (stmt)))
1522 return true;
1523 break;
1525 case GIMPLE_CATCH:
1526 return remove_useless_stmts_warn_notreached (gimple_catch_handler (stmt));
1528 case GIMPLE_EH_FILTER:
1529 return remove_useless_stmts_warn_notreached (gimple_eh_filter_failure (stmt));
1531 case GIMPLE_BIND:
1532 return remove_useless_stmts_warn_notreached (gimple_bind_body (stmt));
1534 default:
1535 break;
1539 return false;
1542 /* Helper for remove_useless_stmts_1. Handle GIMPLE_COND statements. */
1544 static void
1545 remove_useless_stmts_cond (gimple_stmt_iterator *gsi, struct rus_data *data)
1547 gimple stmt = gsi_stmt (*gsi);
1549 /* The folded result must still be a conditional statement. */
1550 fold_stmt_inplace (stmt);
1552 data->may_branch = true;
1554 /* Replace trivial conditionals with gotos. */
1555 if (gimple_cond_true_p (stmt))
1557 /* Goto THEN label. */
1558 tree then_label = gimple_cond_true_label (stmt);
1560 gsi_replace (gsi, gimple_build_goto (then_label), false);
1561 data->last_goto_gsi = *gsi;
1562 data->last_was_goto = true;
1563 data->repeat = true;
1565 else if (gimple_cond_false_p (stmt))
1567 /* Goto ELSE label. */
1568 tree else_label = gimple_cond_false_label (stmt);
1570 gsi_replace (gsi, gimple_build_goto (else_label), false);
1571 data->last_goto_gsi = *gsi;
1572 data->last_was_goto = true;
1573 data->repeat = true;
1575 else
1577 tree then_label = gimple_cond_true_label (stmt);
1578 tree else_label = gimple_cond_false_label (stmt);
1580 if (then_label == else_label)
1582 /* Goto common destination. */
1583 gsi_replace (gsi, gimple_build_goto (then_label), false);
1584 data->last_goto_gsi = *gsi;
1585 data->last_was_goto = true;
1586 data->repeat = true;
1590 gsi_next (gsi);
1592 data->last_was_goto = false;
1595 /* Helper for remove_useless_stmts_1.
1596 Handle the try-finally case for GIMPLE_TRY statements. */
1598 static void
1599 remove_useless_stmts_tf (gimple_stmt_iterator *gsi, struct rus_data *data)
1601 bool save_may_branch, save_may_throw;
1602 bool this_may_branch, this_may_throw;
1604 gimple_seq eval_seq, cleanup_seq;
1605 gimple_stmt_iterator eval_gsi, cleanup_gsi;
1607 gimple stmt = gsi_stmt (*gsi);
1609 /* Collect may_branch and may_throw information for the body only. */
1610 save_may_branch = data->may_branch;
1611 save_may_throw = data->may_throw;
1612 data->may_branch = false;
1613 data->may_throw = false;
1614 data->last_was_goto = false;
1616 eval_seq = gimple_try_eval (stmt);
1617 eval_gsi = gsi_start (eval_seq);
1618 remove_useless_stmts_1 (&eval_gsi, data);
1620 this_may_branch = data->may_branch;
1621 this_may_throw = data->may_throw;
1622 data->may_branch |= save_may_branch;
1623 data->may_throw |= save_may_throw;
1624 data->last_was_goto = false;
1626 cleanup_seq = gimple_try_cleanup (stmt);
1627 cleanup_gsi = gsi_start (cleanup_seq);
1628 remove_useless_stmts_1 (&cleanup_gsi, data);
1630 /* If the body is empty, then we can emit the FINALLY block without
1631 the enclosing TRY_FINALLY_EXPR. */
1632 if (gimple_seq_empty_p (eval_seq))
1634 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1635 gsi_remove (gsi, false);
1636 data->repeat = true;
1639 /* If the handler is empty, then we can emit the TRY block without
1640 the enclosing TRY_FINALLY_EXPR. */
1641 else if (gimple_seq_empty_p (cleanup_seq))
1643 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1644 gsi_remove (gsi, false);
1645 data->repeat = true;
1648 /* If the body neither throws, nor branches, then we can safely
1649 string the TRY and FINALLY blocks together. */
1650 else if (!this_may_branch && !this_may_throw)
1652 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1653 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1654 gsi_remove (gsi, false);
1655 data->repeat = true;
1657 else
1658 gsi_next (gsi);
1661 /* Helper for remove_useless_stmts_1.
1662 Handle the try-catch case for GIMPLE_TRY statements. */
1664 static void
1665 remove_useless_stmts_tc (gimple_stmt_iterator *gsi, struct rus_data *data)
1667 bool save_may_throw, this_may_throw;
1669 gimple_seq eval_seq, cleanup_seq, handler_seq, failure_seq;
1670 gimple_stmt_iterator eval_gsi, cleanup_gsi, handler_gsi, failure_gsi;
1672 gimple stmt = gsi_stmt (*gsi);
1674 /* Collect may_throw information for the body only. */
1675 save_may_throw = data->may_throw;
1676 data->may_throw = false;
1677 data->last_was_goto = false;
1679 eval_seq = gimple_try_eval (stmt);
1680 eval_gsi = gsi_start (eval_seq);
1681 remove_useless_stmts_1 (&eval_gsi, data);
1683 this_may_throw = data->may_throw;
1684 data->may_throw = save_may_throw;
1686 cleanup_seq = gimple_try_cleanup (stmt);
1688 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1689 if (!this_may_throw)
1691 if (warn_notreached)
1693 remove_useless_stmts_warn_notreached (cleanup_seq);
1695 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1696 gsi_remove (gsi, false);
1697 data->repeat = true;
1698 return;
1701 /* Process the catch clause specially. We may be able to tell that
1702 no exceptions propagate past this point. */
1704 this_may_throw = true;
1705 cleanup_gsi = gsi_start (cleanup_seq);
1706 stmt = gsi_stmt (cleanup_gsi);
1707 data->last_was_goto = false;
1709 switch (gimple_code (stmt))
1711 case GIMPLE_CATCH:
1712 /* If the first element is a catch, they all must be. */
1713 while (!gsi_end_p (cleanup_gsi))
1715 stmt = gsi_stmt (cleanup_gsi);
1716 /* If we catch all exceptions, then the body does not
1717 propagate exceptions past this point. */
1718 if (gimple_catch_types (stmt) == NULL)
1719 this_may_throw = false;
1720 data->last_was_goto = false;
1721 handler_seq = gimple_catch_handler (stmt);
1722 handler_gsi = gsi_start (handler_seq);
1723 remove_useless_stmts_1 (&handler_gsi, data);
1724 gsi_next (&cleanup_gsi);
1726 gsi_next (gsi);
1727 break;
1729 case GIMPLE_EH_FILTER:
1730 /* If the first element is an eh_filter, it should stand alone. */
1731 if (gimple_eh_filter_must_not_throw (stmt))
1732 this_may_throw = false;
1733 else if (gimple_eh_filter_types (stmt) == NULL)
1734 this_may_throw = false;
1735 failure_seq = gimple_eh_filter_failure (stmt);
1736 failure_gsi = gsi_start (failure_seq);
1737 remove_useless_stmts_1 (&failure_gsi, data);
1738 gsi_next (gsi);
1739 break;
1741 default:
1742 /* Otherwise this is a list of cleanup statements. */
1743 remove_useless_stmts_1 (&cleanup_gsi, data);
1745 /* If the cleanup is empty, then we can emit the TRY block without
1746 the enclosing TRY_CATCH_EXPR. */
1747 if (gimple_seq_empty_p (cleanup_seq))
1749 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1750 gsi_remove(gsi, false);
1751 data->repeat = true;
1753 else
1754 gsi_next (gsi);
1755 break;
1758 data->may_throw |= this_may_throw;
1761 /* Helper for remove_useless_stmts_1. Handle GIMPLE_BIND statements. */
1763 static void
1764 remove_useless_stmts_bind (gimple_stmt_iterator *gsi, struct rus_data *data ATTRIBUTE_UNUSED)
1766 tree block;
1767 gimple_seq body_seq, fn_body_seq;
1768 gimple_stmt_iterator body_gsi;
1770 gimple stmt = gsi_stmt (*gsi);
1772 /* First remove anything underneath the BIND_EXPR. */
1774 body_seq = gimple_bind_body (stmt);
1775 body_gsi = gsi_start (body_seq);
1776 remove_useless_stmts_1 (&body_gsi, data);
1778 /* If the GIMPLE_BIND has no variables, then we can pull everything
1779 up one level and remove the GIMPLE_BIND, unless this is the toplevel
1780 GIMPLE_BIND for the current function or an inlined function.
1782 When this situation occurs we will want to apply this
1783 optimization again. */
1784 block = gimple_bind_block (stmt);
1785 fn_body_seq = gimple_body (current_function_decl);
1786 if (gimple_bind_vars (stmt) == NULL_TREE
1787 && (gimple_seq_empty_p (fn_body_seq)
1788 || stmt != gimple_seq_first_stmt (fn_body_seq))
1789 && (! block
1790 || ! BLOCK_ABSTRACT_ORIGIN (block)
1791 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1792 != FUNCTION_DECL)))
1794 gsi_insert_seq_before (gsi, body_seq, GSI_SAME_STMT);
1795 gsi_remove (gsi, false);
1796 data->repeat = true;
1798 else
1799 gsi_next (gsi);
1802 /* Helper for remove_useless_stmts_1. Handle GIMPLE_GOTO statements. */
1804 static void
1805 remove_useless_stmts_goto (gimple_stmt_iterator *gsi, struct rus_data *data)
1807 gimple stmt = gsi_stmt (*gsi);
1809 tree dest = gimple_goto_dest (stmt);
1811 data->may_branch = true;
1812 data->last_was_goto = false;
1814 /* Record iterator for last goto expr, so that we can delete it if unnecessary. */
1815 if (TREE_CODE (dest) == LABEL_DECL)
1817 data->last_goto_gsi = *gsi;
1818 data->last_was_goto = true;
1821 gsi_next(gsi);
1824 /* Helper for remove_useless_stmts_1. Handle GIMPLE_LABEL statements. */
1826 static void
1827 remove_useless_stmts_label (gimple_stmt_iterator *gsi, struct rus_data *data)
1829 gimple stmt = gsi_stmt (*gsi);
1831 tree label = gimple_label_label (stmt);
1833 data->has_label = true;
1835 /* We do want to jump across non-local label receiver code. */
1836 if (DECL_NONLOCAL (label))
1837 data->last_was_goto = false;
1839 else if (data->last_was_goto
1840 && gimple_goto_dest (gsi_stmt (data->last_goto_gsi)) == label)
1842 /* Replace the preceding GIMPLE_GOTO statement with
1843 a GIMPLE_NOP, which will be subsequently removed.
1844 In this way, we avoid invalidating other iterators
1845 active on the statement sequence. */
1846 gsi_replace(&data->last_goto_gsi, gimple_build_nop(), false);
1847 data->last_was_goto = false;
1848 data->repeat = true;
1851 /* ??? Add something here to delete unused labels. */
1853 gsi_next (gsi);
1857 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1859 void
1860 notice_special_calls (gimple call)
1862 int flags = gimple_call_flags (call);
1864 if (flags & ECF_MAY_BE_ALLOCA)
1865 cfun->calls_alloca = true;
1866 if (flags & ECF_RETURNS_TWICE)
1867 cfun->calls_setjmp = true;
1871 /* Clear flags set by notice_special_calls. Used by dead code removal
1872 to update the flags. */
1874 void
1875 clear_special_calls (void)
1877 cfun->calls_alloca = false;
1878 cfun->calls_setjmp = false;
1881 /* Remove useless statements from a statement sequence, and perform
1882 some preliminary simplifications. */
1884 static void
1885 remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *data)
1887 while (!gsi_end_p (*gsi))
1889 gimple stmt = gsi_stmt (*gsi);
1891 switch (gimple_code (stmt))
1893 case GIMPLE_COND:
1894 remove_useless_stmts_cond (gsi, data);
1895 break;
1897 case GIMPLE_GOTO:
1898 remove_useless_stmts_goto (gsi, data);
1899 break;
1901 case GIMPLE_LABEL:
1902 remove_useless_stmts_label (gsi, data);
1903 break;
1905 case GIMPLE_ASSIGN:
1906 fold_stmt (gsi);
1907 stmt = gsi_stmt (*gsi);
1908 data->last_was_goto = false;
1909 if (stmt_could_throw_p (stmt))
1910 data->may_throw = true;
1911 gsi_next (gsi);
1912 break;
1914 case GIMPLE_ASM:
1915 fold_stmt (gsi);
1916 data->last_was_goto = false;
1917 gsi_next (gsi);
1918 break;
1920 case GIMPLE_CALL:
1921 fold_stmt (gsi);
1922 stmt = gsi_stmt (*gsi);
1923 data->last_was_goto = false;
1924 if (is_gimple_call (stmt))
1925 notice_special_calls (stmt);
1927 /* We used to call update_gimple_call_flags here,
1928 which copied side-effects and nothrows status
1929 from the function decl to the call. In the new
1930 tuplified GIMPLE, the accessors for this information
1931 always consult the function decl, so this copying
1932 is no longer necessary. */
1933 if (stmt_could_throw_p (stmt))
1934 data->may_throw = true;
1935 gsi_next (gsi);
1936 break;
1938 case GIMPLE_RETURN:
1939 fold_stmt (gsi);
1940 data->last_was_goto = false;
1941 data->may_branch = true;
1942 gsi_next (gsi);
1943 break;
1945 case GIMPLE_BIND:
1946 remove_useless_stmts_bind (gsi, data);
1947 break;
1949 case GIMPLE_TRY:
1950 if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
1951 remove_useless_stmts_tc (gsi, data);
1952 else if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1953 remove_useless_stmts_tf (gsi, data);
1954 else
1955 gcc_unreachable ();
1956 break;
1958 case GIMPLE_CATCH:
1959 gcc_unreachable ();
1960 break;
1962 case GIMPLE_NOP:
1963 gsi_remove (gsi, false);
1964 break;
1966 case GIMPLE_OMP_FOR:
1968 gimple_seq pre_body_seq = gimple_omp_for_pre_body (stmt);
1969 gimple_stmt_iterator pre_body_gsi = gsi_start (pre_body_seq);
1971 remove_useless_stmts_1 (&pre_body_gsi, data);
1972 data->last_was_goto = false;
1974 /* FALLTHROUGH */
1975 case GIMPLE_OMP_CRITICAL:
1976 case GIMPLE_OMP_CONTINUE:
1977 case GIMPLE_OMP_MASTER:
1978 case GIMPLE_OMP_ORDERED:
1979 case GIMPLE_OMP_SECTION:
1980 case GIMPLE_OMP_SECTIONS:
1981 case GIMPLE_OMP_SINGLE:
1983 gimple_seq body_seq = gimple_omp_body (stmt);
1984 gimple_stmt_iterator body_gsi = gsi_start (body_seq);
1986 remove_useless_stmts_1 (&body_gsi, data);
1987 data->last_was_goto = false;
1988 gsi_next (gsi);
1990 break;
1992 case GIMPLE_OMP_PARALLEL:
1993 case GIMPLE_OMP_TASK:
1995 /* Make sure the outermost GIMPLE_BIND isn't removed
1996 as useless. */
1997 gimple_seq body_seq = gimple_omp_body (stmt);
1998 gimple bind = gimple_seq_first_stmt (body_seq);
1999 gimple_seq bind_seq = gimple_bind_body (bind);
2000 gimple_stmt_iterator bind_gsi = gsi_start (bind_seq);
2002 remove_useless_stmts_1 (&bind_gsi, data);
2003 data->last_was_goto = false;
2004 gsi_next (gsi);
2006 break;
2008 case GIMPLE_CHANGE_DYNAMIC_TYPE:
2009 /* If we do not optimize remove GIMPLE_CHANGE_DYNAMIC_TYPE as
2010 expansion is confused about them and we only remove them
2011 during alias computation otherwise. */
2012 if (!optimize)
2014 data->last_was_goto = false;
2015 gsi_remove (gsi, false);
2016 break;
2018 /* Fallthru. */
2020 default:
2021 data->last_was_goto = false;
2022 gsi_next (gsi);
2023 break;
2028 /* Walk the function tree, removing useless statements and performing
2029 some preliminary simplifications. */
2031 static unsigned int
2032 remove_useless_stmts (void)
2034 struct rus_data data;
2036 clear_special_calls ();
2040 gimple_stmt_iterator gsi;
2042 gsi = gsi_start (gimple_body (current_function_decl));
2043 memset (&data, 0, sizeof (data));
2044 remove_useless_stmts_1 (&gsi, &data);
2046 while (data.repeat);
2047 return 0;
2051 struct gimple_opt_pass pass_remove_useless_stmts =
2054 GIMPLE_PASS,
2055 "useless", /* name */
2056 NULL, /* gate */
2057 remove_useless_stmts, /* execute */
2058 NULL, /* sub */
2059 NULL, /* next */
2060 0, /* static_pass_number */
2061 0, /* tv_id */
2062 PROP_gimple_any, /* properties_required */
2063 0, /* properties_provided */
2064 0, /* properties_destroyed */
2065 0, /* todo_flags_start */
2066 TODO_dump_func /* todo_flags_finish */
2070 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2072 static void
2073 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2075 gimple_stmt_iterator gsi;
2077 /* Since this block is no longer reachable, we can just delete all
2078 of its PHI nodes. */
2079 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
2080 remove_phi_node (&gsi, true);
2082 set_phi_nodes (bb, NULL);
2084 /* Remove edges to BB's successors. */
2085 while (EDGE_COUNT (bb->succs) > 0)
2086 remove_edge (EDGE_SUCC (bb, 0));
2090 /* Remove statements of basic block BB. */
2092 static void
2093 remove_bb (basic_block bb)
2095 gimple_stmt_iterator i;
2096 source_location loc = UNKNOWN_LOCATION;
2098 if (dump_file)
2100 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2101 if (dump_flags & TDF_DETAILS)
2103 dump_bb (bb, dump_file, 0);
2104 fprintf (dump_file, "\n");
2108 if (current_loops)
2110 struct loop *loop = bb->loop_father;
2112 /* If a loop gets removed, clean up the information associated
2113 with it. */
2114 if (loop->latch == bb
2115 || loop->header == bb)
2116 free_numbers_of_iterations_estimates_loop (loop);
2119 /* Remove all the instructions in the block. */
2120 if (bb_seq (bb) != NULL)
2122 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2124 gimple stmt = gsi_stmt (i);
2125 if (gimple_code (stmt) == GIMPLE_LABEL
2126 && (FORCED_LABEL (gimple_label_label (stmt))
2127 || DECL_NONLOCAL (gimple_label_label (stmt))))
2129 basic_block new_bb;
2130 gimple_stmt_iterator new_gsi;
2132 /* A non-reachable non-local label may still be referenced.
2133 But it no longer needs to carry the extra semantics of
2134 non-locality. */
2135 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2137 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2138 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2141 new_bb = bb->prev_bb;
2142 new_gsi = gsi_start_bb (new_bb);
2143 gsi_remove (&i, false);
2144 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2146 else
2148 /* Release SSA definitions if we are in SSA. Note that we
2149 may be called when not in SSA. For example,
2150 final_cleanup calls this function via
2151 cleanup_tree_cfg. */
2152 if (gimple_in_ssa_p (cfun))
2153 release_defs (stmt);
2155 gsi_remove (&i, true);
2158 /* Don't warn for removed gotos. Gotos are often removed due to
2159 jump threading, thus resulting in bogus warnings. Not great,
2160 since this way we lose warnings for gotos in the original
2161 program that are indeed unreachable. */
2162 if (gimple_code (stmt) != GIMPLE_GOTO
2163 && gimple_has_location (stmt)
2164 && !loc)
2165 loc = gimple_location (stmt);
2169 /* If requested, give a warning that the first statement in the
2170 block is unreachable. We walk statements backwards in the
2171 loop above, so the last statement we process is the first statement
2172 in the block. */
2173 if (loc > BUILTINS_LOCATION && LOCATION_LINE (loc) > 0)
2174 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
2176 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2177 bb->il.gimple = NULL;
2181 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2182 predicate VAL, return the edge that will be taken out of the block.
2183 If VAL does not match a unique edge, NULL is returned. */
2185 edge
2186 find_taken_edge (basic_block bb, tree val)
2188 gimple stmt;
2190 stmt = last_stmt (bb);
2192 gcc_assert (stmt);
2193 gcc_assert (is_ctrl_stmt (stmt));
2195 if (val == NULL)
2196 return NULL;
2198 if (!is_gimple_min_invariant (val))
2199 return NULL;
2201 if (gimple_code (stmt) == GIMPLE_COND)
2202 return find_taken_edge_cond_expr (bb, val);
2204 if (gimple_code (stmt) == GIMPLE_SWITCH)
2205 return find_taken_edge_switch_expr (bb, val);
2207 if (computed_goto_p (stmt))
2209 /* Only optimize if the argument is a label, if the argument is
2210 not a label then we can not construct a proper CFG.
2212 It may be the case that we only need to allow the LABEL_REF to
2213 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2214 appear inside a LABEL_EXPR just to be safe. */
2215 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2216 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2217 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2218 return NULL;
2221 gcc_unreachable ();
2224 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2225 statement, determine which of the outgoing edges will be taken out of the
2226 block. Return NULL if either edge may be taken. */
2228 static edge
2229 find_taken_edge_computed_goto (basic_block bb, tree val)
2231 basic_block dest;
2232 edge e = NULL;
2234 dest = label_to_block (val);
2235 if (dest)
2237 e = find_edge (bb, dest);
2238 gcc_assert (e != NULL);
2241 return e;
2244 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2245 statement, determine which of the two edges will be taken out of the
2246 block. Return NULL if either edge may be taken. */
2248 static edge
2249 find_taken_edge_cond_expr (basic_block bb, tree val)
2251 edge true_edge, false_edge;
2253 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2255 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2256 return (integer_zerop (val) ? false_edge : true_edge);
2259 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2260 statement, determine which edge will be taken out of the block. Return
2261 NULL if any edge may be taken. */
2263 static edge
2264 find_taken_edge_switch_expr (basic_block bb, tree val)
2266 basic_block dest_bb;
2267 edge e;
2268 gimple switch_stmt;
2269 tree taken_case;
2271 switch_stmt = last_stmt (bb);
2272 taken_case = find_case_label_for_value (switch_stmt, val);
2273 dest_bb = label_to_block (CASE_LABEL (taken_case));
2275 e = find_edge (bb, dest_bb);
2276 gcc_assert (e);
2277 return e;
2281 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2282 We can make optimal use here of the fact that the case labels are
2283 sorted: We can do a binary search for a case matching VAL. */
2285 static tree
2286 find_case_label_for_value (gimple switch_stmt, tree val)
2288 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2289 tree default_case = gimple_switch_default_label (switch_stmt);
2291 for (low = 0, high = n; high - low > 1; )
2293 size_t i = (high + low) / 2;
2294 tree t = gimple_switch_label (switch_stmt, i);
2295 int cmp;
2297 /* Cache the result of comparing CASE_LOW and val. */
2298 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2300 if (cmp > 0)
2301 high = i;
2302 else
2303 low = i;
2305 if (CASE_HIGH (t) == NULL)
2307 /* A singe-valued case label. */
2308 if (cmp == 0)
2309 return t;
2311 else
2313 /* A case range. We can only handle integer ranges. */
2314 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2315 return t;
2319 return default_case;
2323 /* Dump a basic block on stderr. */
2325 void
2326 gimple_debug_bb (basic_block bb)
2328 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2332 /* Dump basic block with index N on stderr. */
2334 basic_block
2335 gimple_debug_bb_n (int n)
2337 gimple_debug_bb (BASIC_BLOCK (n));
2338 return BASIC_BLOCK (n);
2342 /* Dump the CFG on stderr.
2344 FLAGS are the same used by the tree dumping functions
2345 (see TDF_* in tree-pass.h). */
2347 void
2348 gimple_debug_cfg (int flags)
2350 gimple_dump_cfg (stderr, flags);
2354 /* Dump the program showing basic block boundaries on the given FILE.
2356 FLAGS are the same used by the tree dumping functions (see TDF_* in
2357 tree.h). */
2359 void
2360 gimple_dump_cfg (FILE *file, int flags)
2362 if (flags & TDF_DETAILS)
2364 const char *funcname
2365 = lang_hooks.decl_printable_name (current_function_decl, 2);
2367 fputc ('\n', file);
2368 fprintf (file, ";; Function %s\n\n", funcname);
2369 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2370 n_basic_blocks, n_edges, last_basic_block);
2372 brief_dump_cfg (file);
2373 fprintf (file, "\n");
2376 if (flags & TDF_STATS)
2377 dump_cfg_stats (file);
2379 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2383 /* Dump CFG statistics on FILE. */
2385 void
2386 dump_cfg_stats (FILE *file)
2388 static long max_num_merged_labels = 0;
2389 unsigned long size, total = 0;
2390 long num_edges;
2391 basic_block bb;
2392 const char * const fmt_str = "%-30s%-13s%12s\n";
2393 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2394 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2395 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2396 const char *funcname
2397 = lang_hooks.decl_printable_name (current_function_decl, 2);
2400 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2402 fprintf (file, "---------------------------------------------------------\n");
2403 fprintf (file, fmt_str, "", " Number of ", "Memory");
2404 fprintf (file, fmt_str, "", " instances ", "used ");
2405 fprintf (file, "---------------------------------------------------------\n");
2407 size = n_basic_blocks * sizeof (struct basic_block_def);
2408 total += size;
2409 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2410 SCALE (size), LABEL (size));
2412 num_edges = 0;
2413 FOR_EACH_BB (bb)
2414 num_edges += EDGE_COUNT (bb->succs);
2415 size = num_edges * sizeof (struct edge_def);
2416 total += size;
2417 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2419 fprintf (file, "---------------------------------------------------------\n");
2420 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2421 LABEL (total));
2422 fprintf (file, "---------------------------------------------------------\n");
2423 fprintf (file, "\n");
2425 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2426 max_num_merged_labels = cfg_stats.num_merged_labels;
2428 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2429 cfg_stats.num_merged_labels, max_num_merged_labels);
2431 fprintf (file, "\n");
2435 /* Dump CFG statistics on stderr. Keep extern so that it's always
2436 linked in the final executable. */
2438 void
2439 debug_cfg_stats (void)
2441 dump_cfg_stats (stderr);
2445 /* Dump the flowgraph to a .vcg FILE. */
2447 static void
2448 gimple_cfg2vcg (FILE *file)
2450 edge e;
2451 edge_iterator ei;
2452 basic_block bb;
2453 const char *funcname
2454 = lang_hooks.decl_printable_name (current_function_decl, 2);
2456 /* Write the file header. */
2457 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2458 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2459 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2461 /* Write blocks and edges. */
2462 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2464 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2465 e->dest->index);
2467 if (e->flags & EDGE_FAKE)
2468 fprintf (file, " linestyle: dotted priority: 10");
2469 else
2470 fprintf (file, " linestyle: solid priority: 100");
2472 fprintf (file, " }\n");
2474 fputc ('\n', file);
2476 FOR_EACH_BB (bb)
2478 enum gimple_code head_code, end_code;
2479 const char *head_name, *end_name;
2480 int head_line = 0;
2481 int end_line = 0;
2482 gimple first = first_stmt (bb);
2483 gimple last = last_stmt (bb);
2485 if (first)
2487 head_code = gimple_code (first);
2488 head_name = gimple_code_name[head_code];
2489 head_line = get_lineno (first);
2491 else
2492 head_name = "no-statement";
2494 if (last)
2496 end_code = gimple_code (last);
2497 end_name = gimple_code_name[end_code];
2498 end_line = get_lineno (last);
2500 else
2501 end_name = "no-statement";
2503 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2504 bb->index, bb->index, head_name, head_line, end_name,
2505 end_line);
2507 FOR_EACH_EDGE (e, ei, bb->succs)
2509 if (e->dest == EXIT_BLOCK_PTR)
2510 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2511 else
2512 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2514 if (e->flags & EDGE_FAKE)
2515 fprintf (file, " priority: 10 linestyle: dotted");
2516 else
2517 fprintf (file, " priority: 100 linestyle: solid");
2519 fprintf (file, " }\n");
2522 if (bb->next_bb != EXIT_BLOCK_PTR)
2523 fputc ('\n', file);
2526 fputs ("}\n\n", file);
2531 /*---------------------------------------------------------------------------
2532 Miscellaneous helpers
2533 ---------------------------------------------------------------------------*/
2535 /* Return true if T represents a stmt that always transfers control. */
2537 bool
2538 is_ctrl_stmt (gimple t)
2540 return gimple_code (t) == GIMPLE_COND
2541 || gimple_code (t) == GIMPLE_SWITCH
2542 || gimple_code (t) == GIMPLE_GOTO
2543 || gimple_code (t) == GIMPLE_RETURN
2544 || gimple_code (t) == GIMPLE_RESX;
2548 /* Return true if T is a statement that may alter the flow of control
2549 (e.g., a call to a non-returning function). */
2551 bool
2552 is_ctrl_altering_stmt (gimple t)
2554 gcc_assert (t);
2556 if (is_gimple_call (t))
2558 int flags = gimple_call_flags (t);
2560 /* A non-pure/const call alters flow control if the current
2561 function has nonlocal labels. */
2562 if (!(flags & (ECF_CONST | ECF_PURE))
2563 && cfun->has_nonlocal_label)
2564 return true;
2566 /* A call also alters control flow if it does not return. */
2567 if (gimple_call_flags (t) & ECF_NORETURN)
2568 return true;
2571 /* OpenMP directives alter control flow. */
2572 if (is_gimple_omp (t))
2573 return true;
2575 /* If a statement can throw, it alters control flow. */
2576 return stmt_can_throw_internal (t);
2580 /* Return true if T is a simple local goto. */
2582 bool
2583 simple_goto_p (gimple t)
2585 return (gimple_code (t) == GIMPLE_GOTO
2586 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2590 /* Return true if T can make an abnormal transfer of control flow.
2591 Transfers of control flow associated with EH are excluded. */
2593 bool
2594 stmt_can_make_abnormal_goto (gimple t)
2596 if (computed_goto_p (t))
2597 return true;
2598 if (is_gimple_call (t))
2599 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2600 return false;
2604 /* Return true if STMT should start a new basic block. PREV_STMT is
2605 the statement preceding STMT. It is used when STMT is a label or a
2606 case label. Labels should only start a new basic block if their
2607 previous statement wasn't a label. Otherwise, sequence of labels
2608 would generate unnecessary basic blocks that only contain a single
2609 label. */
2611 static inline bool
2612 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2614 if (stmt == NULL)
2615 return false;
2617 /* Labels start a new basic block only if the preceding statement
2618 wasn't a label of the same type. This prevents the creation of
2619 consecutive blocks that have nothing but a single label. */
2620 if (gimple_code (stmt) == GIMPLE_LABEL)
2622 /* Nonlocal and computed GOTO targets always start a new block. */
2623 if (DECL_NONLOCAL (gimple_label_label (stmt))
2624 || FORCED_LABEL (gimple_label_label (stmt)))
2625 return true;
2627 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2629 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2630 return true;
2632 cfg_stats.num_merged_labels++;
2633 return false;
2635 else
2636 return true;
2639 return false;
2643 /* Return true if T should end a basic block. */
2645 bool
2646 stmt_ends_bb_p (gimple t)
2648 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2651 /* Remove block annotations and other data structures. */
2653 void
2654 delete_tree_cfg_annotations (void)
2656 label_to_block_map = NULL;
2660 /* Return the first statement in basic block BB. */
2662 gimple
2663 first_stmt (basic_block bb)
2665 gimple_stmt_iterator i = gsi_start_bb (bb);
2666 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2669 /* Return the last statement in basic block BB. */
2671 gimple
2672 last_stmt (basic_block bb)
2674 gimple_stmt_iterator b = gsi_last_bb (bb);
2675 return !gsi_end_p (b) ? gsi_stmt (b) : NULL;
2678 /* Return the last statement of an otherwise empty block. Return NULL
2679 if the block is totally empty, or if it contains more than one
2680 statement. */
2682 gimple
2683 last_and_only_stmt (basic_block bb)
2685 gimple_stmt_iterator i = gsi_last_bb (bb);
2686 gimple last, prev;
2688 if (gsi_end_p (i))
2689 return NULL;
2691 last = gsi_stmt (i);
2692 gsi_prev (&i);
2693 if (gsi_end_p (i))
2694 return last;
2696 /* Empty statements should no longer appear in the instruction stream.
2697 Everything that might have appeared before should be deleted by
2698 remove_useless_stmts, and the optimizers should just gsi_remove
2699 instead of smashing with build_empty_stmt.
2701 Thus the only thing that should appear here in a block containing
2702 one executable statement is a label. */
2703 prev = gsi_stmt (i);
2704 if (gimple_code (prev) == GIMPLE_LABEL)
2705 return last;
2706 else
2707 return NULL;
2710 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2712 static void
2713 reinstall_phi_args (edge new_edge, edge old_edge)
2715 edge_var_map_vector v;
2716 edge_var_map *vm;
2717 int i;
2718 gimple_stmt_iterator phis;
2720 v = redirect_edge_var_map_vector (old_edge);
2721 if (!v)
2722 return;
2724 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2725 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2726 i++, gsi_next (&phis))
2728 gimple phi = gsi_stmt (phis);
2729 tree result = redirect_edge_var_map_result (vm);
2730 tree arg = redirect_edge_var_map_def (vm);
2732 gcc_assert (result == gimple_phi_result (phi));
2734 add_phi_arg (phi, arg, new_edge);
2737 redirect_edge_var_map_clear (old_edge);
2740 /* Returns the basic block after which the new basic block created
2741 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2742 near its "logical" location. This is of most help to humans looking
2743 at debugging dumps. */
2745 static basic_block
2746 split_edge_bb_loc (edge edge_in)
2748 basic_block dest = edge_in->dest;
2750 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
2751 return edge_in->src;
2752 else
2753 return dest->prev_bb;
2756 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2757 Abort on abnormal edges. */
2759 static basic_block
2760 gimple_split_edge (edge edge_in)
2762 basic_block new_bb, after_bb, dest;
2763 edge new_edge, e;
2765 /* Abnormal edges cannot be split. */
2766 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2768 dest = edge_in->dest;
2770 after_bb = split_edge_bb_loc (edge_in);
2772 new_bb = create_empty_bb (after_bb);
2773 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2774 new_bb->count = edge_in->count;
2775 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2776 new_edge->probability = REG_BR_PROB_BASE;
2777 new_edge->count = edge_in->count;
2779 e = redirect_edge_and_branch (edge_in, new_bb);
2780 gcc_assert (e == edge_in);
2781 reinstall_phi_args (new_edge, e);
2783 return new_bb;
2786 /* Callback for walk_tree, check that all elements with address taken are
2787 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2788 inside a PHI node. */
2790 static tree
2791 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2793 tree t = *tp, x;
2795 if (TYPE_P (t))
2796 *walk_subtrees = 0;
2798 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2799 #define CHECK_OP(N, MSG) \
2800 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2801 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2803 switch (TREE_CODE (t))
2805 case SSA_NAME:
2806 if (SSA_NAME_IN_FREE_LIST (t))
2808 error ("SSA name in freelist but still referenced");
2809 return *tp;
2811 break;
2813 case ASSERT_EXPR:
2814 x = fold (ASSERT_EXPR_COND (t));
2815 if (x == boolean_false_node)
2817 error ("ASSERT_EXPR with an always-false condition");
2818 return *tp;
2820 break;
2822 case MODIFY_EXPR:
2823 x = TREE_OPERAND (t, 0);
2824 if (TREE_CODE (x) == BIT_FIELD_REF
2825 && is_gimple_reg (TREE_OPERAND (x, 0)))
2827 error ("GIMPLE register modified with BIT_FIELD_REF");
2828 return t;
2830 break;
2832 case ADDR_EXPR:
2834 bool old_constant;
2835 bool old_side_effects;
2836 bool new_constant;
2837 bool new_side_effects;
2839 gcc_assert (is_gimple_address (t));
2841 old_constant = TREE_CONSTANT (t);
2842 old_side_effects = TREE_SIDE_EFFECTS (t);
2844 recompute_tree_invariant_for_addr_expr (t);
2845 new_side_effects = TREE_SIDE_EFFECTS (t);
2846 new_constant = TREE_CONSTANT (t);
2848 if (old_constant != new_constant)
2850 error ("constant not recomputed when ADDR_EXPR changed");
2851 return t;
2853 if (old_side_effects != new_side_effects)
2855 error ("side effects not recomputed when ADDR_EXPR changed");
2856 return t;
2859 /* Skip any references (they will be checked when we recurse down the
2860 tree) and ensure that any variable used as a prefix is marked
2861 addressable. */
2862 for (x = TREE_OPERAND (t, 0);
2863 handled_component_p (x);
2864 x = TREE_OPERAND (x, 0))
2867 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
2868 return NULL;
2869 if (!TREE_ADDRESSABLE (x))
2871 error ("address taken, but ADDRESSABLE bit not set");
2872 return x;
2875 break;
2878 case COND_EXPR:
2879 x = COND_EXPR_COND (t);
2880 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2882 error ("non-integral used in condition");
2883 return x;
2885 if (!is_gimple_condexpr (x))
2887 error ("invalid conditional operand");
2888 return x;
2890 break;
2892 case NON_LVALUE_EXPR:
2893 gcc_unreachable ();
2895 CASE_CONVERT:
2896 case FIX_TRUNC_EXPR:
2897 case FLOAT_EXPR:
2898 case NEGATE_EXPR:
2899 case ABS_EXPR:
2900 case BIT_NOT_EXPR:
2901 case TRUTH_NOT_EXPR:
2902 CHECK_OP (0, "invalid operand to unary operator");
2903 break;
2905 case REALPART_EXPR:
2906 case IMAGPART_EXPR:
2907 case COMPONENT_REF:
2908 case ARRAY_REF:
2909 case ARRAY_RANGE_REF:
2910 case BIT_FIELD_REF:
2911 case VIEW_CONVERT_EXPR:
2912 /* We have a nest of references. Verify that each of the operands
2913 that determine where to reference is either a constant or a variable,
2914 verify that the base is valid, and then show we've already checked
2915 the subtrees. */
2916 while (handled_component_p (t))
2918 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2919 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2920 else if (TREE_CODE (t) == ARRAY_REF
2921 || TREE_CODE (t) == ARRAY_RANGE_REF)
2923 CHECK_OP (1, "invalid array index");
2924 if (TREE_OPERAND (t, 2))
2925 CHECK_OP (2, "invalid array lower bound");
2926 if (TREE_OPERAND (t, 3))
2927 CHECK_OP (3, "invalid array stride");
2929 else if (TREE_CODE (t) == BIT_FIELD_REF)
2931 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2932 || !host_integerp (TREE_OPERAND (t, 2), 1))
2934 error ("invalid position or size operand to BIT_FIELD_REF");
2935 return t;
2937 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2938 && (TYPE_PRECISION (TREE_TYPE (t))
2939 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2941 error ("integral result type precision does not match "
2942 "field size of BIT_FIELD_REF");
2943 return t;
2945 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2946 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2947 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2949 error ("mode precision of non-integral result does not "
2950 "match field size of BIT_FIELD_REF");
2951 return t;
2955 t = TREE_OPERAND (t, 0);
2958 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2960 error ("invalid reference prefix");
2961 return t;
2963 *walk_subtrees = 0;
2964 break;
2965 case PLUS_EXPR:
2966 case MINUS_EXPR:
2967 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2968 POINTER_PLUS_EXPR. */
2969 if (POINTER_TYPE_P (TREE_TYPE (t)))
2971 error ("invalid operand to plus/minus, type is a pointer");
2972 return t;
2974 CHECK_OP (0, "invalid operand to binary operator");
2975 CHECK_OP (1, "invalid operand to binary operator");
2976 break;
2978 case POINTER_PLUS_EXPR:
2979 /* Check to make sure the first operand is a pointer or reference type. */
2980 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2982 error ("invalid operand to pointer plus, first operand is not a pointer");
2983 return t;
2985 /* Check to make sure the second operand is an integer with type of
2986 sizetype. */
2987 if (!useless_type_conversion_p (sizetype,
2988 TREE_TYPE (TREE_OPERAND (t, 1))))
2990 error ("invalid operand to pointer plus, second operand is not an "
2991 "integer with type of sizetype.");
2992 return t;
2994 /* FALLTHROUGH */
2995 case LT_EXPR:
2996 case LE_EXPR:
2997 case GT_EXPR:
2998 case GE_EXPR:
2999 case EQ_EXPR:
3000 case NE_EXPR:
3001 case UNORDERED_EXPR:
3002 case ORDERED_EXPR:
3003 case UNLT_EXPR:
3004 case UNLE_EXPR:
3005 case UNGT_EXPR:
3006 case UNGE_EXPR:
3007 case UNEQ_EXPR:
3008 case LTGT_EXPR:
3009 case MULT_EXPR:
3010 case TRUNC_DIV_EXPR:
3011 case CEIL_DIV_EXPR:
3012 case FLOOR_DIV_EXPR:
3013 case ROUND_DIV_EXPR:
3014 case TRUNC_MOD_EXPR:
3015 case CEIL_MOD_EXPR:
3016 case FLOOR_MOD_EXPR:
3017 case ROUND_MOD_EXPR:
3018 case RDIV_EXPR:
3019 case EXACT_DIV_EXPR:
3020 case MIN_EXPR:
3021 case MAX_EXPR:
3022 case LSHIFT_EXPR:
3023 case RSHIFT_EXPR:
3024 case LROTATE_EXPR:
3025 case RROTATE_EXPR:
3026 case BIT_IOR_EXPR:
3027 case BIT_XOR_EXPR:
3028 case BIT_AND_EXPR:
3029 CHECK_OP (0, "invalid operand to binary operator");
3030 CHECK_OP (1, "invalid operand to binary operator");
3031 break;
3033 case CONSTRUCTOR:
3034 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3035 *walk_subtrees = 0;
3036 break;
3038 default:
3039 break;
3041 return NULL;
3043 #undef CHECK_OP
3047 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3048 Returns true if there is an error, otherwise false. */
3050 static bool
3051 verify_types_in_gimple_min_lval (tree expr)
3053 tree op;
3055 if (is_gimple_id (expr))
3056 return false;
3058 if (!INDIRECT_REF_P (expr)
3059 && TREE_CODE (expr) != TARGET_MEM_REF)
3061 error ("invalid expression for min lvalue");
3062 return true;
3065 /* TARGET_MEM_REFs are strange beasts. */
3066 if (TREE_CODE (expr) == TARGET_MEM_REF)
3067 return false;
3069 op = TREE_OPERAND (expr, 0);
3070 if (!is_gimple_val (op))
3072 error ("invalid operand in indirect reference");
3073 debug_generic_stmt (op);
3074 return true;
3076 if (!useless_type_conversion_p (TREE_TYPE (expr),
3077 TREE_TYPE (TREE_TYPE (op))))
3079 error ("type mismatch in indirect reference");
3080 debug_generic_stmt (TREE_TYPE (expr));
3081 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3082 return true;
3085 return false;
3088 /* Verify if EXPR is a valid GIMPLE reference expression. Returns true
3089 if there is an error, otherwise false. */
3091 static bool
3092 verify_types_in_gimple_reference (tree expr)
3094 while (handled_component_p (expr))
3096 tree op = TREE_OPERAND (expr, 0);
3098 if (TREE_CODE (expr) == ARRAY_REF
3099 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3101 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3102 || (TREE_OPERAND (expr, 2)
3103 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3104 || (TREE_OPERAND (expr, 3)
3105 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3107 error ("invalid operands to array reference");
3108 debug_generic_stmt (expr);
3109 return true;
3113 /* Verify if the reference array element types are compatible. */
3114 if (TREE_CODE (expr) == ARRAY_REF
3115 && !useless_type_conversion_p (TREE_TYPE (expr),
3116 TREE_TYPE (TREE_TYPE (op))))
3118 error ("type mismatch in array reference");
3119 debug_generic_stmt (TREE_TYPE (expr));
3120 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3121 return true;
3123 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3124 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3125 TREE_TYPE (TREE_TYPE (op))))
3127 error ("type mismatch in array range reference");
3128 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3129 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3130 return true;
3133 if ((TREE_CODE (expr) == REALPART_EXPR
3134 || TREE_CODE (expr) == IMAGPART_EXPR)
3135 && !useless_type_conversion_p (TREE_TYPE (expr),
3136 TREE_TYPE (TREE_TYPE (op))))
3138 error ("type mismatch in real/imagpart reference");
3139 debug_generic_stmt (TREE_TYPE (expr));
3140 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3141 return true;
3144 if (TREE_CODE (expr) == COMPONENT_REF
3145 && !useless_type_conversion_p (TREE_TYPE (expr),
3146 TREE_TYPE (TREE_OPERAND (expr, 1))))
3148 error ("type mismatch in component reference");
3149 debug_generic_stmt (TREE_TYPE (expr));
3150 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3151 return true;
3154 /* For VIEW_CONVERT_EXPRs which are allowed here, too, there
3155 is nothing to verify. Gross mismatches at most invoke
3156 undefined behavior. */
3157 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
3158 && !handled_component_p (op))
3159 return false;
3161 expr = op;
3164 return verify_types_in_gimple_min_lval (expr);
3167 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3168 list of pointer-to types that is trivially convertible to DEST. */
3170 static bool
3171 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3173 tree src;
3175 if (!TYPE_POINTER_TO (src_obj))
3176 return true;
3178 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3179 if (useless_type_conversion_p (dest, src))
3180 return true;
3182 return false;
3185 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3186 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3188 static bool
3189 valid_fixed_convert_types_p (tree type1, tree type2)
3191 return (FIXED_POINT_TYPE_P (type1)
3192 && (INTEGRAL_TYPE_P (type2)
3193 || SCALAR_FLOAT_TYPE_P (type2)
3194 || FIXED_POINT_TYPE_P (type2)));
3197 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3198 is a problem, otherwise false. */
3200 static bool
3201 verify_gimple_call (gimple stmt)
3203 tree fn = gimple_call_fn (stmt);
3204 tree fntype;
3206 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3207 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3208 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3210 error ("non-function in gimple call");
3211 return true;
3214 if (gimple_call_lhs (stmt)
3215 && !is_gimple_lvalue (gimple_call_lhs (stmt)))
3217 error ("invalid LHS in gimple call");
3218 return true;
3221 fntype = TREE_TYPE (TREE_TYPE (fn));
3222 if (gimple_call_lhs (stmt)
3223 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3224 TREE_TYPE (fntype))
3225 /* ??? At least C++ misses conversions at assignments from
3226 void * call results.
3227 ??? Java is completely off. Especially with functions
3228 returning java.lang.Object.
3229 For now simply allow arbitrary pointer type conversions. */
3230 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3231 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3233 error ("invalid conversion in gimple call");
3234 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3235 debug_generic_stmt (TREE_TYPE (fntype));
3236 return true;
3239 /* ??? The C frontend passes unpromoted arguments in case it
3240 didn't see a function declaration before the call. So for now
3241 leave the call arguments unverified. Once we gimplify
3242 unit-at-a-time we have a chance to fix this. */
3244 return false;
3247 /* Verifies the gimple comparison with the result type TYPE and
3248 the operands OP0 and OP1. */
3250 static bool
3251 verify_gimple_comparison (tree type, tree op0, tree op1)
3253 tree op0_type = TREE_TYPE (op0);
3254 tree op1_type = TREE_TYPE (op1);
3256 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3258 error ("invalid operands in gimple comparison");
3259 return true;
3262 /* For comparisons we do not have the operations type as the
3263 effective type the comparison is carried out in. Instead
3264 we require that either the first operand is trivially
3265 convertible into the second, or the other way around.
3266 The resulting type of a comparison may be any integral type.
3267 Because we special-case pointers to void we allow
3268 comparisons of pointers with the same mode as well. */
3269 if ((!useless_type_conversion_p (op0_type, op1_type)
3270 && !useless_type_conversion_p (op1_type, op0_type)
3271 && (!POINTER_TYPE_P (op0_type)
3272 || !POINTER_TYPE_P (op1_type)
3273 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3274 || !INTEGRAL_TYPE_P (type))
3276 error ("type mismatch in comparison expression");
3277 debug_generic_expr (type);
3278 debug_generic_expr (op0_type);
3279 debug_generic_expr (op1_type);
3280 return true;
3283 return false;
3286 /* Verify a gimple assignment statement STMT with an unary rhs.
3287 Returns true if anything is wrong. */
3289 static bool
3290 verify_gimple_assign_unary (gimple stmt)
3292 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3293 tree lhs = gimple_assign_lhs (stmt);
3294 tree lhs_type = TREE_TYPE (lhs);
3295 tree rhs1 = gimple_assign_rhs1 (stmt);
3296 tree rhs1_type = TREE_TYPE (rhs1);
3298 if (!is_gimple_reg (lhs)
3299 && !(optimize == 0
3300 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3302 error ("non-register as LHS of unary operation");
3303 return true;
3306 if (!is_gimple_val (rhs1))
3308 error ("invalid operand in unary operation");
3309 return true;
3312 /* First handle conversions. */
3313 switch (rhs_code)
3315 CASE_CONVERT:
3317 /* Allow conversions between integral types and pointers only if
3318 there is no sign or zero extension involved.
3319 For targets were the precision of sizetype doesn't match that
3320 of pointers we need to allow arbitrary conversions from and
3321 to sizetype. */
3322 if ((POINTER_TYPE_P (lhs_type)
3323 && INTEGRAL_TYPE_P (rhs1_type)
3324 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3325 || rhs1_type == sizetype))
3326 || (POINTER_TYPE_P (rhs1_type)
3327 && INTEGRAL_TYPE_P (lhs_type)
3328 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3329 || lhs_type == sizetype)))
3330 return false;
3332 /* Allow conversion from integer to offset type and vice versa. */
3333 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3334 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3335 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3336 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3337 return false;
3339 /* Otherwise assert we are converting between types of the
3340 same kind. */
3341 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3343 error ("invalid types in nop conversion");
3344 debug_generic_expr (lhs_type);
3345 debug_generic_expr (rhs1_type);
3346 return true;
3349 return false;
3352 case FIXED_CONVERT_EXPR:
3354 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3355 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3357 error ("invalid types in fixed-point conversion");
3358 debug_generic_expr (lhs_type);
3359 debug_generic_expr (rhs1_type);
3360 return true;
3363 return false;
3366 case FLOAT_EXPR:
3368 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3370 error ("invalid types in conversion to floating point");
3371 debug_generic_expr (lhs_type);
3372 debug_generic_expr (rhs1_type);
3373 return true;
3376 return false;
3379 case FIX_TRUNC_EXPR:
3381 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3383 error ("invalid types in conversion to integer");
3384 debug_generic_expr (lhs_type);
3385 debug_generic_expr (rhs1_type);
3386 return true;
3389 return false;
3392 case TRUTH_NOT_EXPR:
3396 case NEGATE_EXPR:
3397 case ABS_EXPR:
3398 case BIT_NOT_EXPR:
3399 case PAREN_EXPR:
3400 case NON_LVALUE_EXPR:
3401 case CONJ_EXPR:
3402 case REDUC_MAX_EXPR:
3403 case REDUC_MIN_EXPR:
3404 case REDUC_PLUS_EXPR:
3405 case VEC_UNPACK_HI_EXPR:
3406 case VEC_UNPACK_LO_EXPR:
3407 case VEC_UNPACK_FLOAT_HI_EXPR:
3408 case VEC_UNPACK_FLOAT_LO_EXPR:
3409 break;
3411 default:
3412 gcc_unreachable ();
3415 /* For the remaining codes assert there is no conversion involved. */
3416 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3418 error ("non-trivial conversion in unary operation");
3419 debug_generic_expr (lhs_type);
3420 debug_generic_expr (rhs1_type);
3421 return true;
3424 return false;
3427 /* Verify a gimple assignment statement STMT with a binary rhs.
3428 Returns true if anything is wrong. */
3430 static bool
3431 verify_gimple_assign_binary (gimple stmt)
3433 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3434 tree lhs = gimple_assign_lhs (stmt);
3435 tree lhs_type = TREE_TYPE (lhs);
3436 tree rhs1 = gimple_assign_rhs1 (stmt);
3437 tree rhs1_type = TREE_TYPE (rhs1);
3438 tree rhs2 = gimple_assign_rhs2 (stmt);
3439 tree rhs2_type = TREE_TYPE (rhs2);
3441 if (!is_gimple_reg (lhs)
3442 && !(optimize == 0
3443 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3445 error ("non-register as LHS of binary operation");
3446 return true;
3449 if (!is_gimple_val (rhs1)
3450 || !is_gimple_val (rhs2))
3452 error ("invalid operands in binary operation");
3453 return true;
3456 /* First handle operations that involve different types. */
3457 switch (rhs_code)
3459 case COMPLEX_EXPR:
3461 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3462 || !(INTEGRAL_TYPE_P (rhs1_type)
3463 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3464 || !(INTEGRAL_TYPE_P (rhs2_type)
3465 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3467 error ("type mismatch in complex expression");
3468 debug_generic_expr (lhs_type);
3469 debug_generic_expr (rhs1_type);
3470 debug_generic_expr (rhs2_type);
3471 return true;
3474 return false;
3477 case LSHIFT_EXPR:
3478 case RSHIFT_EXPR:
3479 case LROTATE_EXPR:
3480 case RROTATE_EXPR:
3482 if (!INTEGRAL_TYPE_P (rhs1_type)
3483 || !INTEGRAL_TYPE_P (rhs2_type)
3484 || !useless_type_conversion_p (lhs_type, rhs1_type))
3486 error ("type mismatch in shift expression");
3487 debug_generic_expr (lhs_type);
3488 debug_generic_expr (rhs1_type);
3489 debug_generic_expr (rhs2_type);
3490 return true;
3493 return false;
3496 case VEC_LSHIFT_EXPR:
3497 case VEC_RSHIFT_EXPR:
3499 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3500 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3501 || (!INTEGRAL_TYPE_P (rhs2_type)
3502 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3503 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3504 || !useless_type_conversion_p (lhs_type, rhs1_type))
3506 error ("type mismatch in vector shift expression");
3507 debug_generic_expr (lhs_type);
3508 debug_generic_expr (rhs1_type);
3509 debug_generic_expr (rhs2_type);
3510 return true;
3513 return false;
3516 case POINTER_PLUS_EXPR:
3518 if (!POINTER_TYPE_P (rhs1_type)
3519 || !useless_type_conversion_p (lhs_type, rhs1_type)
3520 || !useless_type_conversion_p (sizetype, rhs2_type))
3522 error ("type mismatch in pointer plus expression");
3523 debug_generic_stmt (lhs_type);
3524 debug_generic_stmt (rhs1_type);
3525 debug_generic_stmt (rhs2_type);
3526 return true;
3529 return false;
3532 case TRUTH_ANDIF_EXPR:
3533 case TRUTH_ORIF_EXPR:
3534 gcc_unreachable ();
3536 case TRUTH_AND_EXPR:
3537 case TRUTH_OR_EXPR:
3538 case TRUTH_XOR_EXPR:
3540 /* We allow any kind of integral typed argument and result. */
3541 if (!INTEGRAL_TYPE_P (rhs1_type)
3542 || !INTEGRAL_TYPE_P (rhs2_type)
3543 || !INTEGRAL_TYPE_P (lhs_type))
3545 error ("type mismatch in binary truth expression");
3546 debug_generic_expr (lhs_type);
3547 debug_generic_expr (rhs1_type);
3548 debug_generic_expr (rhs2_type);
3549 return true;
3552 return false;
3555 case LT_EXPR:
3556 case LE_EXPR:
3557 case GT_EXPR:
3558 case GE_EXPR:
3559 case EQ_EXPR:
3560 case NE_EXPR:
3561 case UNORDERED_EXPR:
3562 case ORDERED_EXPR:
3563 case UNLT_EXPR:
3564 case UNLE_EXPR:
3565 case UNGT_EXPR:
3566 case UNGE_EXPR:
3567 case UNEQ_EXPR:
3568 case LTGT_EXPR:
3569 /* Comparisons are also binary, but the result type is not
3570 connected to the operand types. */
3571 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3573 case PLUS_EXPR:
3574 case MINUS_EXPR:
3576 if (POINTER_TYPE_P (lhs_type)
3577 || POINTER_TYPE_P (rhs1_type)
3578 || POINTER_TYPE_P (rhs2_type))
3580 error ("invalid (pointer) operands to plus/minus");
3581 return true;
3584 /* Continue with generic binary expression handling. */
3585 break;
3588 case MULT_EXPR:
3589 case TRUNC_DIV_EXPR:
3590 case CEIL_DIV_EXPR:
3591 case FLOOR_DIV_EXPR:
3592 case ROUND_DIV_EXPR:
3593 case TRUNC_MOD_EXPR:
3594 case CEIL_MOD_EXPR:
3595 case FLOOR_MOD_EXPR:
3596 case ROUND_MOD_EXPR:
3597 case RDIV_EXPR:
3598 case EXACT_DIV_EXPR:
3599 case MIN_EXPR:
3600 case MAX_EXPR:
3601 case BIT_IOR_EXPR:
3602 case BIT_XOR_EXPR:
3603 case BIT_AND_EXPR:
3604 case WIDEN_SUM_EXPR:
3605 case WIDEN_MULT_EXPR:
3606 case VEC_WIDEN_MULT_HI_EXPR:
3607 case VEC_WIDEN_MULT_LO_EXPR:
3608 case VEC_PACK_TRUNC_EXPR:
3609 case VEC_PACK_SAT_EXPR:
3610 case VEC_PACK_FIX_TRUNC_EXPR:
3611 case VEC_EXTRACT_EVEN_EXPR:
3612 case VEC_EXTRACT_ODD_EXPR:
3613 case VEC_INTERLEAVE_HIGH_EXPR:
3614 case VEC_INTERLEAVE_LOW_EXPR:
3615 /* Continue with generic binary expression handling. */
3616 break;
3618 default:
3619 gcc_unreachable ();
3622 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3623 || !useless_type_conversion_p (lhs_type, rhs2_type))
3625 error ("type mismatch in binary expression");
3626 debug_generic_stmt (lhs_type);
3627 debug_generic_stmt (rhs1_type);
3628 debug_generic_stmt (rhs2_type);
3629 return true;
3632 return false;
3635 /* Verify a gimple assignment statement STMT with a single rhs.
3636 Returns true if anything is wrong. */
3638 static bool
3639 verify_gimple_assign_single (gimple stmt)
3641 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3642 tree lhs = gimple_assign_lhs (stmt);
3643 tree lhs_type = TREE_TYPE (lhs);
3644 tree rhs1 = gimple_assign_rhs1 (stmt);
3645 tree rhs1_type = TREE_TYPE (rhs1);
3646 bool res = false;
3648 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3650 error ("non-trivial conversion at assignment");
3651 debug_generic_expr (lhs_type);
3652 debug_generic_expr (rhs1_type);
3653 return true;
3656 if (handled_component_p (lhs))
3657 res |= verify_types_in_gimple_reference (lhs);
3659 /* Special codes we cannot handle via their class. */
3660 switch (rhs_code)
3662 case ADDR_EXPR:
3664 tree op = TREE_OPERAND (rhs1, 0);
3665 if (!is_gimple_addressable (op))
3667 error ("invalid operand in unary expression");
3668 return true;
3671 if (!one_pointer_to_useless_type_conversion_p (lhs_type, TREE_TYPE (op))
3672 /* FIXME: a longstanding wart, &a == &a[0]. */
3673 && (TREE_CODE (TREE_TYPE (op)) != ARRAY_TYPE
3674 || !one_pointer_to_useless_type_conversion_p (lhs_type,
3675 TREE_TYPE (TREE_TYPE (op)))))
3677 error ("type mismatch in address expression");
3678 debug_generic_stmt (lhs_type);
3679 debug_generic_stmt (TYPE_POINTER_TO (TREE_TYPE (op)));
3680 return true;
3683 return verify_types_in_gimple_reference (op);
3686 /* tcc_reference */
3687 case COMPONENT_REF:
3688 case BIT_FIELD_REF:
3689 case INDIRECT_REF:
3690 case ALIGN_INDIRECT_REF:
3691 case MISALIGNED_INDIRECT_REF:
3692 case ARRAY_REF:
3693 case ARRAY_RANGE_REF:
3694 case VIEW_CONVERT_EXPR:
3695 case REALPART_EXPR:
3696 case IMAGPART_EXPR:
3697 case TARGET_MEM_REF:
3698 if (!is_gimple_reg (lhs)
3699 && is_gimple_reg_type (TREE_TYPE (lhs)))
3701 error ("invalid rhs for gimple memory store");
3702 debug_generic_stmt (lhs);
3703 debug_generic_stmt (rhs1);
3704 return true;
3706 return res || verify_types_in_gimple_reference (rhs1);
3708 /* tcc_constant */
3709 case SSA_NAME:
3710 case INTEGER_CST:
3711 case REAL_CST:
3712 case FIXED_CST:
3713 case COMPLEX_CST:
3714 case VECTOR_CST:
3715 case STRING_CST:
3716 return res;
3718 /* tcc_declaration */
3719 case CONST_DECL:
3720 return res;
3721 case VAR_DECL:
3722 case PARM_DECL:
3723 if (!is_gimple_reg (lhs)
3724 && !is_gimple_reg (rhs1)
3725 && is_gimple_reg_type (TREE_TYPE (lhs)))
3727 error ("invalid rhs for gimple memory store");
3728 debug_generic_stmt (lhs);
3729 debug_generic_stmt (rhs1);
3730 return true;
3732 return res;
3734 case COND_EXPR:
3735 case CONSTRUCTOR:
3736 case OBJ_TYPE_REF:
3737 case ASSERT_EXPR:
3738 case WITH_SIZE_EXPR:
3739 case EXC_PTR_EXPR:
3740 case FILTER_EXPR:
3741 case POLYNOMIAL_CHREC:
3742 case DOT_PROD_EXPR:
3743 case VEC_COND_EXPR:
3744 case REALIGN_LOAD_EXPR:
3745 /* FIXME. */
3746 return res;
3748 default:;
3751 return res;
3754 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3755 is a problem, otherwise false. */
3757 static bool
3758 verify_gimple_assign (gimple stmt)
3760 switch (gimple_assign_rhs_class (stmt))
3762 case GIMPLE_SINGLE_RHS:
3763 return verify_gimple_assign_single (stmt);
3765 case GIMPLE_UNARY_RHS:
3766 return verify_gimple_assign_unary (stmt);
3768 case GIMPLE_BINARY_RHS:
3769 return verify_gimple_assign_binary (stmt);
3771 default:
3772 gcc_unreachable ();
3776 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3777 is a problem, otherwise false. */
3779 static bool
3780 verify_gimple_return (gimple stmt)
3782 tree op = gimple_return_retval (stmt);
3783 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3785 /* We cannot test for present return values as we do not fix up missing
3786 return values from the original source. */
3787 if (op == NULL)
3788 return false;
3790 if (!is_gimple_val (op)
3791 && TREE_CODE (op) != RESULT_DECL)
3793 error ("invalid operand in return statement");
3794 debug_generic_stmt (op);
3795 return true;
3798 if (!useless_type_conversion_p (restype, TREE_TYPE (op))
3799 /* ??? With C++ we can have the situation that the result
3800 decl is a reference type while the return type is an aggregate. */
3801 && !(TREE_CODE (op) == RESULT_DECL
3802 && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
3803 && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
3805 error ("invalid conversion in return statement");
3806 debug_generic_stmt (restype);
3807 debug_generic_stmt (TREE_TYPE (op));
3808 return true;
3811 return false;
3815 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3816 is a problem, otherwise false. */
3818 static bool
3819 verify_gimple_goto (gimple stmt)
3821 tree dest = gimple_goto_dest (stmt);
3823 /* ??? We have two canonical forms of direct goto destinations, a
3824 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3825 if (TREE_CODE (dest) != LABEL_DECL
3826 && (!is_gimple_val (dest)
3827 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3829 error ("goto destination is neither a label nor a pointer");
3830 return true;
3833 return false;
3836 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3837 is a problem, otherwise false. */
3839 static bool
3840 verify_gimple_switch (gimple stmt)
3842 if (!is_gimple_val (gimple_switch_index (stmt)))
3844 error ("invalid operand to switch statement");
3845 debug_generic_stmt (gimple_switch_index (stmt));
3846 return true;
3849 return false;
3853 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3854 and false otherwise. */
3856 static bool
3857 verify_gimple_phi (gimple stmt)
3859 tree type = TREE_TYPE (gimple_phi_result (stmt));
3860 unsigned i;
3862 if (!is_gimple_variable (gimple_phi_result (stmt)))
3864 error ("Invalid PHI result");
3865 return true;
3868 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3870 tree arg = gimple_phi_arg_def (stmt, i);
3871 if ((is_gimple_reg (gimple_phi_result (stmt))
3872 && !is_gimple_val (arg))
3873 || (!is_gimple_reg (gimple_phi_result (stmt))
3874 && !is_gimple_addressable (arg)))
3876 error ("Invalid PHI argument");
3877 debug_generic_stmt (arg);
3878 return true;
3880 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3882 error ("Incompatible types in PHI argument");
3883 debug_generic_stmt (type);
3884 debug_generic_stmt (TREE_TYPE (arg));
3885 return true;
3889 return false;
3893 /* Verify the GIMPLE statement STMT. Returns true if there is an
3894 error, otherwise false. */
3896 static bool
3897 verify_types_in_gimple_stmt (gimple stmt)
3899 if (is_gimple_omp (stmt))
3901 /* OpenMP directives are validated by the FE and never operated
3902 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
3903 non-gimple expressions when the main index variable has had
3904 its address taken. This does not affect the loop itself
3905 because the header of an GIMPLE_OMP_FOR is merely used to determine
3906 how to setup the parallel iteration. */
3907 return false;
3910 switch (gimple_code (stmt))
3912 case GIMPLE_ASSIGN:
3913 return verify_gimple_assign (stmt);
3915 case GIMPLE_LABEL:
3916 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3918 case GIMPLE_CALL:
3919 return verify_gimple_call (stmt);
3921 case GIMPLE_COND:
3922 return verify_gimple_comparison (boolean_type_node,
3923 gimple_cond_lhs (stmt),
3924 gimple_cond_rhs (stmt));
3926 case GIMPLE_GOTO:
3927 return verify_gimple_goto (stmt);
3929 case GIMPLE_SWITCH:
3930 return verify_gimple_switch (stmt);
3932 case GIMPLE_RETURN:
3933 return verify_gimple_return (stmt);
3935 case GIMPLE_ASM:
3936 return false;
3938 case GIMPLE_CHANGE_DYNAMIC_TYPE:
3939 return (!is_gimple_val (gimple_cdt_location (stmt))
3940 || !POINTER_TYPE_P (TREE_TYPE (gimple_cdt_location (stmt))));
3942 case GIMPLE_PHI:
3943 return verify_gimple_phi (stmt);
3945 /* Tuples that do not have tree operands. */
3946 case GIMPLE_NOP:
3947 case GIMPLE_RESX:
3948 case GIMPLE_PREDICT:
3949 return false;
3951 default:
3952 gcc_unreachable ();
3956 /* Verify the GIMPLE statements inside the sequence STMTS. */
3958 static bool
3959 verify_types_in_gimple_seq_2 (gimple_seq stmts)
3961 gimple_stmt_iterator ittr;
3962 bool err = false;
3964 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
3966 gimple stmt = gsi_stmt (ittr);
3968 switch (gimple_code (stmt))
3970 case GIMPLE_BIND:
3971 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
3972 break;
3974 case GIMPLE_TRY:
3975 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
3976 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
3977 break;
3979 case GIMPLE_EH_FILTER:
3980 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
3981 break;
3983 case GIMPLE_CATCH:
3984 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
3985 break;
3987 default:
3989 bool err2 = verify_types_in_gimple_stmt (stmt);
3990 if (err2)
3991 debug_gimple_stmt (stmt);
3992 err |= err2;
3997 return err;
4001 /* Verify the GIMPLE statements inside the statement list STMTS. */
4003 void
4004 verify_types_in_gimple_seq (gimple_seq stmts)
4006 if (verify_types_in_gimple_seq_2 (stmts))
4007 internal_error ("verify_gimple failed");
4011 /* Verify STMT, return true if STMT is not in GIMPLE form.
4012 TODO: Implement type checking. */
4014 static bool
4015 verify_stmt (gimple_stmt_iterator *gsi)
4017 tree addr;
4018 struct walk_stmt_info wi;
4019 bool last_in_block = gsi_one_before_end_p (*gsi);
4020 gimple stmt = gsi_stmt (*gsi);
4022 if (is_gimple_omp (stmt))
4024 /* OpenMP directives are validated by the FE and never operated
4025 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4026 non-gimple expressions when the main index variable has had
4027 its address taken. This does not affect the loop itself
4028 because the header of an GIMPLE_OMP_FOR is merely used to determine
4029 how to setup the parallel iteration. */
4030 return false;
4033 /* FIXME. The C frontend passes unpromoted arguments in case it
4034 didn't see a function declaration before the call. */
4035 if (is_gimple_call (stmt))
4037 tree decl;
4039 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4041 error ("invalid function in call statement");
4042 return true;
4045 decl = gimple_call_fndecl (stmt);
4046 if (decl
4047 && TREE_CODE (decl) == FUNCTION_DECL
4048 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4049 && (!DECL_PURE_P (decl))
4050 && (!TREE_READONLY (decl)))
4052 error ("invalid pure const state for function");
4053 return true;
4057 memset (&wi, 0, sizeof (wi));
4058 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4059 if (addr)
4061 debug_generic_expr (addr);
4062 inform (input_location, "in statement");
4063 debug_gimple_stmt (stmt);
4064 return true;
4067 /* If the statement is marked as part of an EH region, then it is
4068 expected that the statement could throw. Verify that when we
4069 have optimizations that simplify statements such that we prove
4070 that they cannot throw, that we update other data structures
4071 to match. */
4072 if (lookup_stmt_eh_region (stmt) >= 0)
4074 if (!stmt_could_throw_p (stmt))
4076 error ("statement marked for throw, but doesn%'t");
4077 goto fail;
4079 if (!last_in_block && stmt_can_throw_internal (stmt))
4081 error ("statement marked for throw in middle of block");
4082 goto fail;
4086 return false;
4088 fail:
4089 debug_gimple_stmt (stmt);
4090 return true;
4094 /* Return true when the T can be shared. */
4096 static bool
4097 tree_node_can_be_shared (tree t)
4099 if (IS_TYPE_OR_DECL_P (t)
4100 || is_gimple_min_invariant (t)
4101 || TREE_CODE (t) == SSA_NAME
4102 || t == error_mark_node
4103 || TREE_CODE (t) == IDENTIFIER_NODE)
4104 return true;
4106 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4107 return true;
4109 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4110 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4111 || TREE_CODE (t) == COMPONENT_REF
4112 || TREE_CODE (t) == REALPART_EXPR
4113 || TREE_CODE (t) == IMAGPART_EXPR)
4114 t = TREE_OPERAND (t, 0);
4116 if (DECL_P (t))
4117 return true;
4119 return false;
4123 /* Called via walk_gimple_stmt. Verify tree sharing. */
4125 static tree
4126 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4128 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4129 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4131 if (tree_node_can_be_shared (*tp))
4133 *walk_subtrees = false;
4134 return NULL;
4137 if (pointer_set_insert (visited, *tp))
4138 return *tp;
4140 return NULL;
4144 static bool eh_error_found;
4145 static int
4146 verify_eh_throw_stmt_node (void **slot, void *data)
4148 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4149 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4151 if (!pointer_set_contains (visited, node->stmt))
4153 error ("Dead STMT in EH table");
4154 debug_gimple_stmt (node->stmt);
4155 eh_error_found = true;
4157 return 0;
4161 /* Verify the GIMPLE statements in every basic block. */
4163 void
4164 verify_stmts (void)
4166 basic_block bb;
4167 gimple_stmt_iterator gsi;
4168 bool err = false;
4169 struct pointer_set_t *visited, *visited_stmts;
4170 tree addr;
4171 struct walk_stmt_info wi;
4173 timevar_push (TV_TREE_STMT_VERIFY);
4174 visited = pointer_set_create ();
4175 visited_stmts = pointer_set_create ();
4177 memset (&wi, 0, sizeof (wi));
4178 wi.info = (void *) visited;
4180 FOR_EACH_BB (bb)
4182 gimple phi;
4183 size_t i;
4185 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4187 phi = gsi_stmt (gsi);
4188 pointer_set_insert (visited_stmts, phi);
4189 if (gimple_bb (phi) != bb)
4191 error ("gimple_bb (phi) is set to a wrong basic block");
4192 err |= true;
4195 for (i = 0; i < gimple_phi_num_args (phi); i++)
4197 tree t = gimple_phi_arg_def (phi, i);
4198 tree addr;
4200 if (!t)
4202 error ("missing PHI def");
4203 debug_gimple_stmt (phi);
4204 err |= true;
4205 continue;
4207 /* Addressable variables do have SSA_NAMEs but they
4208 are not considered gimple values. */
4209 else if (TREE_CODE (t) != SSA_NAME
4210 && TREE_CODE (t) != FUNCTION_DECL
4211 && !is_gimple_min_invariant (t))
4213 error ("PHI argument is not a GIMPLE value");
4214 debug_gimple_stmt (phi);
4215 debug_generic_expr (t);
4216 err |= true;
4219 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4220 if (addr)
4222 error ("incorrect sharing of tree nodes");
4223 debug_gimple_stmt (phi);
4224 debug_generic_expr (addr);
4225 err |= true;
4230 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4232 gimple stmt = gsi_stmt (gsi);
4234 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4235 || gimple_code (stmt) == GIMPLE_BIND)
4237 error ("invalid GIMPLE statement");
4238 debug_gimple_stmt (stmt);
4239 err |= true;
4242 pointer_set_insert (visited_stmts, stmt);
4244 if (gimple_bb (stmt) != bb)
4246 error ("gimple_bb (stmt) is set to a wrong basic block");
4247 err |= true;
4250 if (gimple_code (stmt) == GIMPLE_LABEL)
4252 tree decl = gimple_label_label (stmt);
4253 int uid = LABEL_DECL_UID (decl);
4255 if (uid == -1
4256 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4258 error ("incorrect entry in label_to_block_map.\n");
4259 err |= true;
4263 err |= verify_stmt (&gsi);
4264 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4265 if (addr)
4267 error ("incorrect sharing of tree nodes");
4268 debug_gimple_stmt (stmt);
4269 debug_generic_expr (addr);
4270 err |= true;
4272 gsi_next (&gsi);
4276 eh_error_found = false;
4277 if (get_eh_throw_stmt_table (cfun))
4278 htab_traverse (get_eh_throw_stmt_table (cfun),
4279 verify_eh_throw_stmt_node,
4280 visited_stmts);
4282 if (err | eh_error_found)
4283 internal_error ("verify_stmts failed");
4285 pointer_set_destroy (visited);
4286 pointer_set_destroy (visited_stmts);
4287 verify_histograms ();
4288 timevar_pop (TV_TREE_STMT_VERIFY);
4292 /* Verifies that the flow information is OK. */
4294 static int
4295 gimple_verify_flow_info (void)
4297 int err = 0;
4298 basic_block bb;
4299 gimple_stmt_iterator gsi;
4300 gimple stmt;
4301 edge e;
4302 edge_iterator ei;
4304 if (ENTRY_BLOCK_PTR->il.gimple)
4306 error ("ENTRY_BLOCK has IL associated with it");
4307 err = 1;
4310 if (EXIT_BLOCK_PTR->il.gimple)
4312 error ("EXIT_BLOCK has IL associated with it");
4313 err = 1;
4316 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4317 if (e->flags & EDGE_FALLTHRU)
4319 error ("fallthru to exit from bb %d", e->src->index);
4320 err = 1;
4323 FOR_EACH_BB (bb)
4325 bool found_ctrl_stmt = false;
4327 stmt = NULL;
4329 /* Skip labels on the start of basic block. */
4330 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4332 tree label;
4333 gimple prev_stmt = stmt;
4335 stmt = gsi_stmt (gsi);
4337 if (gimple_code (stmt) != GIMPLE_LABEL)
4338 break;
4340 label = gimple_label_label (stmt);
4341 if (prev_stmt && DECL_NONLOCAL (label))
4343 error ("nonlocal label ");
4344 print_generic_expr (stderr, label, 0);
4345 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4346 bb->index);
4347 err = 1;
4350 if (label_to_block (label) != bb)
4352 error ("label ");
4353 print_generic_expr (stderr, label, 0);
4354 fprintf (stderr, " to block does not match in bb %d",
4355 bb->index);
4356 err = 1;
4359 if (decl_function_context (label) != current_function_decl)
4361 error ("label ");
4362 print_generic_expr (stderr, label, 0);
4363 fprintf (stderr, " has incorrect context in bb %d",
4364 bb->index);
4365 err = 1;
4369 /* Verify that body of basic block BB is free of control flow. */
4370 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4372 gimple stmt = gsi_stmt (gsi);
4374 if (found_ctrl_stmt)
4376 error ("control flow in the middle of basic block %d",
4377 bb->index);
4378 err = 1;
4381 if (stmt_ends_bb_p (stmt))
4382 found_ctrl_stmt = true;
4384 if (gimple_code (stmt) == GIMPLE_LABEL)
4386 error ("label ");
4387 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4388 fprintf (stderr, " in the middle of basic block %d", bb->index);
4389 err = 1;
4393 gsi = gsi_last_bb (bb);
4394 if (gsi_end_p (gsi))
4395 continue;
4397 stmt = gsi_stmt (gsi);
4399 err |= verify_eh_edges (stmt);
4401 if (is_ctrl_stmt (stmt))
4403 FOR_EACH_EDGE (e, ei, bb->succs)
4404 if (e->flags & EDGE_FALLTHRU)
4406 error ("fallthru edge after a control statement in bb %d",
4407 bb->index);
4408 err = 1;
4412 if (gimple_code (stmt) != GIMPLE_COND)
4414 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4415 after anything else but if statement. */
4416 FOR_EACH_EDGE (e, ei, bb->succs)
4417 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4419 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4420 bb->index);
4421 err = 1;
4425 switch (gimple_code (stmt))
4427 case GIMPLE_COND:
4429 edge true_edge;
4430 edge false_edge;
4432 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4434 if (!true_edge
4435 || !false_edge
4436 || !(true_edge->flags & EDGE_TRUE_VALUE)
4437 || !(false_edge->flags & EDGE_FALSE_VALUE)
4438 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4439 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4440 || EDGE_COUNT (bb->succs) >= 3)
4442 error ("wrong outgoing edge flags at end of bb %d",
4443 bb->index);
4444 err = 1;
4447 break;
4449 case GIMPLE_GOTO:
4450 if (simple_goto_p (stmt))
4452 error ("explicit goto at end of bb %d", bb->index);
4453 err = 1;
4455 else
4457 /* FIXME. We should double check that the labels in the
4458 destination blocks have their address taken. */
4459 FOR_EACH_EDGE (e, ei, bb->succs)
4460 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4461 | EDGE_FALSE_VALUE))
4462 || !(e->flags & EDGE_ABNORMAL))
4464 error ("wrong outgoing edge flags at end of bb %d",
4465 bb->index);
4466 err = 1;
4469 break;
4471 case GIMPLE_RETURN:
4472 if (!single_succ_p (bb)
4473 || (single_succ_edge (bb)->flags
4474 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4475 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4477 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4478 err = 1;
4480 if (single_succ (bb) != EXIT_BLOCK_PTR)
4482 error ("return edge does not point to exit in bb %d",
4483 bb->index);
4484 err = 1;
4486 break;
4488 case GIMPLE_SWITCH:
4490 tree prev;
4491 edge e;
4492 size_t i, n;
4494 n = gimple_switch_num_labels (stmt);
4496 /* Mark all the destination basic blocks. */
4497 for (i = 0; i < n; ++i)
4499 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4500 basic_block label_bb = label_to_block (lab);
4501 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4502 label_bb->aux = (void *)1;
4505 /* Verify that the case labels are sorted. */
4506 prev = gimple_switch_label (stmt, 0);
4507 for (i = 1; i < n; ++i)
4509 tree c = gimple_switch_label (stmt, i);
4510 if (!CASE_LOW (c))
4512 error ("found default case not at the start of "
4513 "case vector");
4514 err = 1;
4515 continue;
4517 if (CASE_LOW (prev)
4518 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4520 error ("case labels not sorted: ");
4521 print_generic_expr (stderr, prev, 0);
4522 fprintf (stderr," is greater than ");
4523 print_generic_expr (stderr, c, 0);
4524 fprintf (stderr," but comes before it.\n");
4525 err = 1;
4527 prev = c;
4529 /* VRP will remove the default case if it can prove it will
4530 never be executed. So do not verify there always exists
4531 a default case here. */
4533 FOR_EACH_EDGE (e, ei, bb->succs)
4535 if (!e->dest->aux)
4537 error ("extra outgoing edge %d->%d",
4538 bb->index, e->dest->index);
4539 err = 1;
4542 e->dest->aux = (void *)2;
4543 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4544 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4546 error ("wrong outgoing edge flags at end of bb %d",
4547 bb->index);
4548 err = 1;
4552 /* Check that we have all of them. */
4553 for (i = 0; i < n; ++i)
4555 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4556 basic_block label_bb = label_to_block (lab);
4558 if (label_bb->aux != (void *)2)
4560 error ("missing edge %i->%i", bb->index, label_bb->index);
4561 err = 1;
4565 FOR_EACH_EDGE (e, ei, bb->succs)
4566 e->dest->aux = (void *)0;
4569 default: ;
4573 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4574 verify_dominators (CDI_DOMINATORS);
4576 return err;
4580 /* Updates phi nodes after creating a forwarder block joined
4581 by edge FALLTHRU. */
4583 static void
4584 gimple_make_forwarder_block (edge fallthru)
4586 edge e;
4587 edge_iterator ei;
4588 basic_block dummy, bb;
4589 tree var;
4590 gimple_stmt_iterator gsi;
4592 dummy = fallthru->src;
4593 bb = fallthru->dest;
4595 if (single_pred_p (bb))
4596 return;
4598 /* If we redirected a branch we must create new PHI nodes at the
4599 start of BB. */
4600 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4602 gimple phi, new_phi;
4604 phi = gsi_stmt (gsi);
4605 var = gimple_phi_result (phi);
4606 new_phi = create_phi_node (var, bb);
4607 SSA_NAME_DEF_STMT (var) = new_phi;
4608 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4609 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru);
4612 /* Add the arguments we have stored on edges. */
4613 FOR_EACH_EDGE (e, ei, bb->preds)
4615 if (e == fallthru)
4616 continue;
4618 flush_pending_stmts (e);
4623 /* Return a non-special label in the head of basic block BLOCK.
4624 Create one if it doesn't exist. */
4626 tree
4627 gimple_block_label (basic_block bb)
4629 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4630 bool first = true;
4631 tree label;
4632 gimple stmt;
4634 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4636 stmt = gsi_stmt (i);
4637 if (gimple_code (stmt) != GIMPLE_LABEL)
4638 break;
4639 label = gimple_label_label (stmt);
4640 if (!DECL_NONLOCAL (label))
4642 if (!first)
4643 gsi_move_before (&i, &s);
4644 return label;
4648 label = create_artificial_label ();
4649 stmt = gimple_build_label (label);
4650 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4651 return label;
4655 /* Attempt to perform edge redirection by replacing a possibly complex
4656 jump instruction by a goto or by removing the jump completely.
4657 This can apply only if all edges now point to the same block. The
4658 parameters and return values are equivalent to
4659 redirect_edge_and_branch. */
4661 static edge
4662 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4664 basic_block src = e->src;
4665 gimple_stmt_iterator i;
4666 gimple stmt;
4668 /* We can replace or remove a complex jump only when we have exactly
4669 two edges. */
4670 if (EDGE_COUNT (src->succs) != 2
4671 /* Verify that all targets will be TARGET. Specifically, the
4672 edge that is not E must also go to TARGET. */
4673 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4674 return NULL;
4676 i = gsi_last_bb (src);
4677 if (gsi_end_p (i))
4678 return NULL;
4680 stmt = gsi_stmt (i);
4682 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4684 gsi_remove (&i, true);
4685 e = ssa_redirect_edge (e, target);
4686 e->flags = EDGE_FALLTHRU;
4687 return e;
4690 return NULL;
4694 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4695 edge representing the redirected branch. */
4697 static edge
4698 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4700 basic_block bb = e->src;
4701 gimple_stmt_iterator gsi;
4702 edge ret;
4703 gimple stmt;
4705 if (e->flags & EDGE_ABNORMAL)
4706 return NULL;
4708 if (e->src != ENTRY_BLOCK_PTR
4709 && (ret = gimple_try_redirect_by_replacing_jump (e, dest)))
4710 return ret;
4712 if (e->dest == dest)
4713 return NULL;
4715 gsi = gsi_last_bb (bb);
4716 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4718 switch (stmt ? gimple_code (stmt) : ERROR_MARK)
4720 case GIMPLE_COND:
4721 /* For COND_EXPR, we only need to redirect the edge. */
4722 break;
4724 case GIMPLE_GOTO:
4725 /* No non-abnormal edges should lead from a non-simple goto, and
4726 simple ones should be represented implicitly. */
4727 gcc_unreachable ();
4729 case GIMPLE_SWITCH:
4731 tree label = gimple_block_label (dest);
4732 tree cases = get_cases_for_edge (e, stmt);
4734 /* If we have a list of cases associated with E, then use it
4735 as it's a lot faster than walking the entire case vector. */
4736 if (cases)
4738 edge e2 = find_edge (e->src, dest);
4739 tree last, first;
4741 first = cases;
4742 while (cases)
4744 last = cases;
4745 CASE_LABEL (cases) = label;
4746 cases = TREE_CHAIN (cases);
4749 /* If there was already an edge in the CFG, then we need
4750 to move all the cases associated with E to E2. */
4751 if (e2)
4753 tree cases2 = get_cases_for_edge (e2, stmt);
4755 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4756 TREE_CHAIN (cases2) = first;
4759 else
4761 size_t i, n = gimple_switch_num_labels (stmt);
4763 for (i = 0; i < n; i++)
4765 tree elt = gimple_switch_label (stmt, i);
4766 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4767 CASE_LABEL (elt) = label;
4771 break;
4774 case GIMPLE_RETURN:
4775 gsi_remove (&gsi, true);
4776 e->flags |= EDGE_FALLTHRU;
4777 break;
4779 case GIMPLE_OMP_RETURN:
4780 case GIMPLE_OMP_CONTINUE:
4781 case GIMPLE_OMP_SECTIONS_SWITCH:
4782 case GIMPLE_OMP_FOR:
4783 /* The edges from OMP constructs can be simply redirected. */
4784 break;
4786 default:
4787 /* Otherwise it must be a fallthru edge, and we don't need to
4788 do anything besides redirecting it. */
4789 gcc_assert (e->flags & EDGE_FALLTHRU);
4790 break;
4793 /* Update/insert PHI nodes as necessary. */
4795 /* Now update the edges in the CFG. */
4796 e = ssa_redirect_edge (e, dest);
4798 return e;
4801 /* Returns true if it is possible to remove edge E by redirecting
4802 it to the destination of the other edge from E->src. */
4804 static bool
4805 gimple_can_remove_branch_p (const_edge e)
4807 if (e->flags & EDGE_ABNORMAL)
4808 return false;
4810 return true;
4813 /* Simple wrapper, as we can always redirect fallthru edges. */
4815 static basic_block
4816 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4818 e = gimple_redirect_edge_and_branch (e, dest);
4819 gcc_assert (e);
4821 return NULL;
4825 /* Splits basic block BB after statement STMT (but at least after the
4826 labels). If STMT is NULL, BB is split just after the labels. */
4828 static basic_block
4829 gimple_split_block (basic_block bb, void *stmt)
4831 gimple_stmt_iterator gsi;
4832 gimple_stmt_iterator gsi_tgt;
4833 gimple act;
4834 gimple_seq list;
4835 basic_block new_bb;
4836 edge e;
4837 edge_iterator ei;
4839 new_bb = create_empty_bb (bb);
4841 /* Redirect the outgoing edges. */
4842 new_bb->succs = bb->succs;
4843 bb->succs = NULL;
4844 FOR_EACH_EDGE (e, ei, new_bb->succs)
4845 e->src = new_bb;
4847 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
4848 stmt = NULL;
4850 /* Move everything from GSI to the new basic block. */
4851 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4853 act = gsi_stmt (gsi);
4854 if (gimple_code (act) == GIMPLE_LABEL)
4855 continue;
4857 if (!stmt)
4858 break;
4860 if (stmt == act)
4862 gsi_next (&gsi);
4863 break;
4867 if (gsi_end_p (gsi))
4868 return new_bb;
4870 /* Split the statement list - avoid re-creating new containers as this
4871 brings ugly quadratic memory consumption in the inliner.
4872 (We are still quadratic since we need to update stmt BB pointers,
4873 sadly.) */
4874 list = gsi_split_seq_before (&gsi);
4875 set_bb_seq (new_bb, list);
4876 for (gsi_tgt = gsi_start (list);
4877 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
4878 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
4880 return new_bb;
4884 /* Moves basic block BB after block AFTER. */
4886 static bool
4887 gimple_move_block_after (basic_block bb, basic_block after)
4889 if (bb->prev_bb == after)
4890 return true;
4892 unlink_block (bb);
4893 link_block (bb, after);
4895 return true;
4899 /* Return true if basic_block can be duplicated. */
4901 static bool
4902 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
4904 return true;
4907 /* Create a duplicate of the basic block BB. NOTE: This does not
4908 preserve SSA form. */
4910 static basic_block
4911 gimple_duplicate_bb (basic_block bb)
4913 basic_block new_bb;
4914 gimple_stmt_iterator gsi, gsi_tgt;
4915 gimple_seq phis = phi_nodes (bb);
4916 gimple phi, stmt, copy;
4918 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4920 /* Copy the PHI nodes. We ignore PHI node arguments here because
4921 the incoming edges have not been setup yet. */
4922 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
4924 phi = gsi_stmt (gsi);
4925 copy = create_phi_node (gimple_phi_result (phi), new_bb);
4926 create_new_def_for (gimple_phi_result (copy), copy,
4927 gimple_phi_result_ptr (copy));
4930 gsi_tgt = gsi_start_bb (new_bb);
4931 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4933 def_operand_p def_p;
4934 ssa_op_iter op_iter;
4935 int region;
4937 stmt = gsi_stmt (gsi);
4938 if (gimple_code (stmt) == GIMPLE_LABEL)
4939 continue;
4941 /* Create a new copy of STMT and duplicate STMT's virtual
4942 operands. */
4943 copy = gimple_copy (stmt);
4944 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
4945 copy_virtual_operands (copy, stmt);
4946 region = lookup_stmt_eh_region (stmt);
4947 if (region >= 0)
4948 add_stmt_to_eh_region (copy, region);
4949 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
4951 /* Create new names for all the definitions created by COPY and
4952 add replacement mappings for each new name. */
4953 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4954 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4957 return new_bb;
4960 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
4962 static void
4963 add_phi_args_after_copy_edge (edge e_copy)
4965 basic_block bb, bb_copy = e_copy->src, dest;
4966 edge e;
4967 edge_iterator ei;
4968 gimple phi, phi_copy;
4969 tree def;
4970 gimple_stmt_iterator psi, psi_copy;
4972 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
4973 return;
4975 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
4977 if (e_copy->dest->flags & BB_DUPLICATED)
4978 dest = get_bb_original (e_copy->dest);
4979 else
4980 dest = e_copy->dest;
4982 e = find_edge (bb, dest);
4983 if (!e)
4985 /* During loop unrolling the target of the latch edge is copied.
4986 In this case we are not looking for edge to dest, but to
4987 duplicated block whose original was dest. */
4988 FOR_EACH_EDGE (e, ei, bb->succs)
4990 if ((e->dest->flags & BB_DUPLICATED)
4991 && get_bb_original (e->dest) == dest)
4992 break;
4995 gcc_assert (e != NULL);
4998 for (psi = gsi_start_phis (e->dest),
4999 psi_copy = gsi_start_phis (e_copy->dest);
5000 !gsi_end_p (psi);
5001 gsi_next (&psi), gsi_next (&psi_copy))
5003 phi = gsi_stmt (psi);
5004 phi_copy = gsi_stmt (psi_copy);
5005 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5006 add_phi_arg (phi_copy, def, e_copy);
5011 /* Basic block BB_COPY was created by code duplication. Add phi node
5012 arguments for edges going out of BB_COPY. The blocks that were
5013 duplicated have BB_DUPLICATED set. */
5015 void
5016 add_phi_args_after_copy_bb (basic_block bb_copy)
5018 edge e_copy;
5019 edge_iterator ei;
5021 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5023 add_phi_args_after_copy_edge (e_copy);
5027 /* Blocks in REGION_COPY array of length N_REGION were created by
5028 duplication of basic blocks. Add phi node arguments for edges
5029 going from these blocks. If E_COPY is not NULL, also add
5030 phi node arguments for its destination.*/
5032 void
5033 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5034 edge e_copy)
5036 unsigned i;
5038 for (i = 0; i < n_region; i++)
5039 region_copy[i]->flags |= BB_DUPLICATED;
5041 for (i = 0; i < n_region; i++)
5042 add_phi_args_after_copy_bb (region_copy[i]);
5043 if (e_copy)
5044 add_phi_args_after_copy_edge (e_copy);
5046 for (i = 0; i < n_region; i++)
5047 region_copy[i]->flags &= ~BB_DUPLICATED;
5050 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5051 important exit edge EXIT. By important we mean that no SSA name defined
5052 inside region is live over the other exit edges of the region. All entry
5053 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5054 to the duplicate of the region. SSA form, dominance and loop information
5055 is updated. The new basic blocks are stored to REGION_COPY in the same
5056 order as they had in REGION, provided that REGION_COPY is not NULL.
5057 The function returns false if it is unable to copy the region,
5058 true otherwise. */
5060 bool
5061 gimple_duplicate_sese_region (edge entry, edge exit,
5062 basic_block *region, unsigned n_region,
5063 basic_block *region_copy)
5065 unsigned i;
5066 bool free_region_copy = false, copying_header = false;
5067 struct loop *loop = entry->dest->loop_father;
5068 edge exit_copy;
5069 VEC (basic_block, heap) *doms;
5070 edge redirected;
5071 int total_freq = 0, entry_freq = 0;
5072 gcov_type total_count = 0, entry_count = 0;
5074 if (!can_copy_bbs_p (region, n_region))
5075 return false;
5077 /* Some sanity checking. Note that we do not check for all possible
5078 missuses of the functions. I.e. if you ask to copy something weird,
5079 it will work, but the state of structures probably will not be
5080 correct. */
5081 for (i = 0; i < n_region; i++)
5083 /* We do not handle subloops, i.e. all the blocks must belong to the
5084 same loop. */
5085 if (region[i]->loop_father != loop)
5086 return false;
5088 if (region[i] != entry->dest
5089 && region[i] == loop->header)
5090 return false;
5093 set_loop_copy (loop, loop);
5095 /* In case the function is used for loop header copying (which is the primary
5096 use), ensure that EXIT and its copy will be new latch and entry edges. */
5097 if (loop->header == entry->dest)
5099 copying_header = true;
5100 set_loop_copy (loop, loop_outer (loop));
5102 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5103 return false;
5105 for (i = 0; i < n_region; i++)
5106 if (region[i] != exit->src
5107 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5108 return false;
5111 if (!region_copy)
5113 region_copy = XNEWVEC (basic_block, n_region);
5114 free_region_copy = true;
5117 gcc_assert (!need_ssa_update_p ());
5119 /* Record blocks outside the region that are dominated by something
5120 inside. */
5121 doms = NULL;
5122 initialize_original_copy_tables ();
5124 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5126 if (entry->dest->count)
5128 total_count = entry->dest->count;
5129 entry_count = entry->count;
5130 /* Fix up corner cases, to avoid division by zero or creation of negative
5131 frequencies. */
5132 if (entry_count > total_count)
5133 entry_count = total_count;
5135 else
5137 total_freq = entry->dest->frequency;
5138 entry_freq = EDGE_FREQUENCY (entry);
5139 /* Fix up corner cases, to avoid division by zero or creation of negative
5140 frequencies. */
5141 if (total_freq == 0)
5142 total_freq = 1;
5143 else if (entry_freq > total_freq)
5144 entry_freq = total_freq;
5147 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5148 split_edge_bb_loc (entry));
5149 if (total_count)
5151 scale_bbs_frequencies_gcov_type (region, n_region,
5152 total_count - entry_count,
5153 total_count);
5154 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5155 total_count);
5157 else
5159 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5160 total_freq);
5161 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5164 if (copying_header)
5166 loop->header = exit->dest;
5167 loop->latch = exit->src;
5170 /* Redirect the entry and add the phi node arguments. */
5171 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5172 gcc_assert (redirected != NULL);
5173 flush_pending_stmts (entry);
5175 /* Concerning updating of dominators: We must recount dominators
5176 for entry block and its copy. Anything that is outside of the
5177 region, but was dominated by something inside needs recounting as
5178 well. */
5179 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5180 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5181 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5182 VEC_free (basic_block, heap, doms);
5184 /* Add the other PHI node arguments. */
5185 add_phi_args_after_copy (region_copy, n_region, NULL);
5187 /* Update the SSA web. */
5188 update_ssa (TODO_update_ssa);
5190 if (free_region_copy)
5191 free (region_copy);
5193 free_original_copy_tables ();
5194 return true;
5197 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5198 are stored to REGION_COPY in the same order in that they appear
5199 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5200 the region, EXIT an exit from it. The condition guarding EXIT
5201 is moved to ENTRY. Returns true if duplication succeeds, false
5202 otherwise.
5204 For example,
5206 some_code;
5207 if (cond)
5209 else
5212 is transformed to
5214 if (cond)
5216 some_code;
5219 else
5221 some_code;
5226 bool
5227 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5228 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5229 basic_block *region_copy ATTRIBUTE_UNUSED)
5231 unsigned i;
5232 bool free_region_copy = false;
5233 struct loop *loop = exit->dest->loop_father;
5234 struct loop *orig_loop = entry->dest->loop_father;
5235 basic_block switch_bb, entry_bb, nentry_bb;
5236 VEC (basic_block, heap) *doms;
5237 int total_freq = 0, exit_freq = 0;
5238 gcov_type total_count = 0, exit_count = 0;
5239 edge exits[2], nexits[2], e;
5240 gimple_stmt_iterator gsi;
5241 gimple cond_stmt;
5242 edge sorig, snew;
5244 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5245 exits[0] = exit;
5246 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5248 if (!can_copy_bbs_p (region, n_region))
5249 return false;
5251 /* Some sanity checking. Note that we do not check for all possible
5252 missuses of the functions. I.e. if you ask to copy something weird
5253 (e.g., in the example, if there is a jump from inside to the middle
5254 of some_code, or come_code defines some of the values used in cond)
5255 it will work, but the resulting code will not be correct. */
5256 for (i = 0; i < n_region; i++)
5258 /* We do not handle subloops, i.e. all the blocks must belong to the
5259 same loop. */
5260 if (region[i]->loop_father != orig_loop)
5261 return false;
5263 if (region[i] == orig_loop->latch)
5264 return false;
5267 initialize_original_copy_tables ();
5268 set_loop_copy (orig_loop, loop);
5270 if (!region_copy)
5272 region_copy = XNEWVEC (basic_block, n_region);
5273 free_region_copy = true;
5276 gcc_assert (!need_ssa_update_p ());
5278 /* Record blocks outside the region that are dominated by something
5279 inside. */
5280 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5282 if (exit->src->count)
5284 total_count = exit->src->count;
5285 exit_count = exit->count;
5286 /* Fix up corner cases, to avoid division by zero or creation of negative
5287 frequencies. */
5288 if (exit_count > total_count)
5289 exit_count = total_count;
5291 else
5293 total_freq = exit->src->frequency;
5294 exit_freq = EDGE_FREQUENCY (exit);
5295 /* Fix up corner cases, to avoid division by zero or creation of negative
5296 frequencies. */
5297 if (total_freq == 0)
5298 total_freq = 1;
5299 if (exit_freq > total_freq)
5300 exit_freq = total_freq;
5303 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5304 split_edge_bb_loc (exit));
5305 if (total_count)
5307 scale_bbs_frequencies_gcov_type (region, n_region,
5308 total_count - exit_count,
5309 total_count);
5310 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5311 total_count);
5313 else
5315 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5316 total_freq);
5317 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5320 /* Create the switch block, and put the exit condition to it. */
5321 entry_bb = entry->dest;
5322 nentry_bb = get_bb_copy (entry_bb);
5323 if (!last_stmt (entry->src)
5324 || !stmt_ends_bb_p (last_stmt (entry->src)))
5325 switch_bb = entry->src;
5326 else
5327 switch_bb = split_edge (entry);
5328 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5330 gsi = gsi_last_bb (switch_bb);
5331 cond_stmt = last_stmt (exit->src);
5332 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5333 cond_stmt = gimple_copy (cond_stmt);
5334 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5335 gimple_cond_set_rhs (cond_stmt, unshare_expr (gimple_cond_rhs (cond_stmt)));
5336 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5338 sorig = single_succ_edge (switch_bb);
5339 sorig->flags = exits[1]->flags;
5340 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5342 /* Register the new edge from SWITCH_BB in loop exit lists. */
5343 rescan_loop_exit (snew, true, false);
5345 /* Add the PHI node arguments. */
5346 add_phi_args_after_copy (region_copy, n_region, snew);
5348 /* Get rid of now superfluous conditions and associated edges (and phi node
5349 arguments). */
5350 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5351 PENDING_STMT (e) = NULL;
5352 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
5353 PENDING_STMT (e) = NULL;
5355 /* Anything that is outside of the region, but was dominated by something
5356 inside needs to update dominance info. */
5357 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5358 VEC_free (basic_block, heap, doms);
5360 /* Update the SSA web. */
5361 update_ssa (TODO_update_ssa);
5363 if (free_region_copy)
5364 free (region_copy);
5366 free_original_copy_tables ();
5367 return true;
5370 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5371 adding blocks when the dominator traversal reaches EXIT. This
5372 function silently assumes that ENTRY strictly dominates EXIT. */
5374 void
5375 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5376 VEC(basic_block,heap) **bbs_p)
5378 basic_block son;
5380 for (son = first_dom_son (CDI_DOMINATORS, entry);
5381 son;
5382 son = next_dom_son (CDI_DOMINATORS, son))
5384 VEC_safe_push (basic_block, heap, *bbs_p, son);
5385 if (son != exit)
5386 gather_blocks_in_sese_region (son, exit, bbs_p);
5390 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5391 The duplicates are recorded in VARS_MAP. */
5393 static void
5394 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5395 tree to_context)
5397 tree t = *tp, new_t;
5398 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5399 void **loc;
5401 if (DECL_CONTEXT (t) == to_context)
5402 return;
5404 loc = pointer_map_contains (vars_map, t);
5406 if (!loc)
5408 loc = pointer_map_insert (vars_map, t);
5410 if (SSA_VAR_P (t))
5412 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5413 f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
5415 else
5417 gcc_assert (TREE_CODE (t) == CONST_DECL);
5418 new_t = copy_node (t);
5420 DECL_CONTEXT (new_t) = to_context;
5422 *loc = new_t;
5424 else
5425 new_t = (tree) *loc;
5427 *tp = new_t;
5431 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5432 VARS_MAP maps old ssa names and var_decls to the new ones. */
5434 static tree
5435 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5436 tree to_context)
5438 void **loc;
5439 tree new_name, decl = SSA_NAME_VAR (name);
5441 gcc_assert (is_gimple_reg (name));
5443 loc = pointer_map_contains (vars_map, name);
5445 if (!loc)
5447 replace_by_duplicate_decl (&decl, vars_map, to_context);
5449 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5450 if (gimple_in_ssa_p (cfun))
5451 add_referenced_var (decl);
5453 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5454 if (SSA_NAME_IS_DEFAULT_DEF (name))
5455 set_default_def (decl, new_name);
5456 pop_cfun ();
5458 loc = pointer_map_insert (vars_map, name);
5459 *loc = new_name;
5461 else
5462 new_name = (tree) *loc;
5464 return new_name;
5467 struct move_stmt_d
5469 tree orig_block;
5470 tree new_block;
5471 tree from_context;
5472 tree to_context;
5473 struct pointer_map_t *vars_map;
5474 htab_t new_label_map;
5475 bool remap_decls_p;
5478 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5479 contained in *TP if it has been ORIG_BLOCK previously and change the
5480 DECL_CONTEXT of every local variable referenced in *TP. */
5482 static tree
5483 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5485 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5486 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5487 tree t = *tp;
5489 if (EXPR_P (t))
5490 /* We should never have TREE_BLOCK set on non-statements. */
5491 gcc_assert (!TREE_BLOCK (t));
5493 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5495 if (TREE_CODE (t) == SSA_NAME)
5496 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5497 else if (TREE_CODE (t) == LABEL_DECL)
5499 if (p->new_label_map)
5501 struct tree_map in, *out;
5502 in.base.from = t;
5503 out = (struct tree_map *)
5504 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5505 if (out)
5506 *tp = t = out->to;
5509 DECL_CONTEXT (t) = p->to_context;
5511 else if (p->remap_decls_p)
5513 /* Replace T with its duplicate. T should no longer appear in the
5514 parent function, so this looks wasteful; however, it may appear
5515 in referenced_vars, and more importantly, as virtual operands of
5516 statements, and in alias lists of other variables. It would be
5517 quite difficult to expunge it from all those places. ??? It might
5518 suffice to do this for addressable variables. */
5519 if ((TREE_CODE (t) == VAR_DECL
5520 && !is_global_var (t))
5521 || TREE_CODE (t) == CONST_DECL)
5522 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5524 if (SSA_VAR_P (t)
5525 && gimple_in_ssa_p (cfun))
5527 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5528 add_referenced_var (*tp);
5529 pop_cfun ();
5532 *walk_subtrees = 0;
5534 else if (TYPE_P (t))
5535 *walk_subtrees = 0;
5537 return NULL_TREE;
5540 /* Like move_stmt_op, but for gimple statements.
5542 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5543 contained in the current statement in *GSI_P and change the
5544 DECL_CONTEXT of every local variable referenced in the current
5545 statement. */
5547 static tree
5548 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5549 struct walk_stmt_info *wi)
5551 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5552 gimple stmt = gsi_stmt (*gsi_p);
5553 tree block = gimple_block (stmt);
5555 if (p->orig_block == NULL_TREE
5556 || block == p->orig_block
5557 || block == NULL_TREE)
5558 gimple_set_block (stmt, p->new_block);
5559 #ifdef ENABLE_CHECKING
5560 else if (block != p->new_block)
5562 while (block && block != p->orig_block)
5563 block = BLOCK_SUPERCONTEXT (block);
5564 gcc_assert (block);
5566 #endif
5568 if (is_gimple_omp (stmt)
5569 && gimple_code (stmt) != GIMPLE_OMP_RETURN
5570 && gimple_code (stmt) != GIMPLE_OMP_CONTINUE)
5572 /* Do not remap variables inside OMP directives. Variables
5573 referenced in clauses and directive header belong to the
5574 parent function and should not be moved into the child
5575 function. */
5576 bool save_remap_decls_p = p->remap_decls_p;
5577 p->remap_decls_p = false;
5578 *handled_ops_p = true;
5580 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r, move_stmt_op, wi);
5582 p->remap_decls_p = save_remap_decls_p;
5585 return NULL_TREE;
5588 /* Marks virtual operands of all statements in basic blocks BBS for
5589 renaming. */
5591 void
5592 mark_virtual_ops_in_bb (basic_block bb)
5594 gimple_stmt_iterator gsi;
5596 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5597 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5599 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5600 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5603 /* Marks virtual operands of all statements in basic blocks BBS for
5604 renaming. */
5606 static void
5607 mark_virtual_ops_in_region (VEC (basic_block,heap) *bbs)
5609 basic_block bb;
5610 unsigned i;
5612 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
5613 mark_virtual_ops_in_bb (bb);
5616 /* Move basic block BB from function CFUN to function DEST_FN. The
5617 block is moved out of the original linked list and placed after
5618 block AFTER in the new list. Also, the block is removed from the
5619 original array of blocks and placed in DEST_FN's array of blocks.
5620 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5621 updated to reflect the moved edges.
5623 The local variables are remapped to new instances, VARS_MAP is used
5624 to record the mapping. */
5626 static void
5627 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5628 basic_block after, bool update_edge_count_p,
5629 struct move_stmt_d *d, int eh_offset)
5631 struct control_flow_graph *cfg;
5632 edge_iterator ei;
5633 edge e;
5634 gimple_stmt_iterator si;
5635 unsigned old_len, new_len;
5637 /* Remove BB from dominance structures. */
5638 delete_from_dominance_info (CDI_DOMINATORS, bb);
5639 if (current_loops)
5640 remove_bb_from_loops (bb);
5642 /* Link BB to the new linked list. */
5643 move_block_after (bb, after);
5645 /* Update the edge count in the corresponding flowgraphs. */
5646 if (update_edge_count_p)
5647 FOR_EACH_EDGE (e, ei, bb->succs)
5649 cfun->cfg->x_n_edges--;
5650 dest_cfun->cfg->x_n_edges++;
5653 /* Remove BB from the original basic block array. */
5654 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5655 cfun->cfg->x_n_basic_blocks--;
5657 /* Grow DEST_CFUN's basic block array if needed. */
5658 cfg = dest_cfun->cfg;
5659 cfg->x_n_basic_blocks++;
5660 if (bb->index >= cfg->x_last_basic_block)
5661 cfg->x_last_basic_block = bb->index + 1;
5663 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5664 if ((unsigned) cfg->x_last_basic_block >= old_len)
5666 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5667 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5668 new_len);
5671 VEC_replace (basic_block, cfg->x_basic_block_info,
5672 bb->index, bb);
5674 /* Remap the variables in phi nodes. */
5675 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5677 gimple phi = gsi_stmt (si);
5678 use_operand_p use;
5679 tree op = PHI_RESULT (phi);
5680 ssa_op_iter oi;
5682 if (!is_gimple_reg (op))
5684 /* Remove the phi nodes for virtual operands (alias analysis will be
5685 run for the new function, anyway). */
5686 remove_phi_node (&si, true);
5687 continue;
5690 SET_PHI_RESULT (phi,
5691 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5692 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5694 op = USE_FROM_PTR (use);
5695 if (TREE_CODE (op) == SSA_NAME)
5696 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5699 gsi_next (&si);
5702 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5704 gimple stmt = gsi_stmt (si);
5705 int region;
5706 struct walk_stmt_info wi;
5708 memset (&wi, 0, sizeof (wi));
5709 wi.info = d;
5710 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5712 if (gimple_code (stmt) == GIMPLE_LABEL)
5714 tree label = gimple_label_label (stmt);
5715 int uid = LABEL_DECL_UID (label);
5717 gcc_assert (uid > -1);
5719 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5720 if (old_len <= (unsigned) uid)
5722 new_len = 3 * uid / 2;
5723 VEC_safe_grow_cleared (basic_block, gc,
5724 cfg->x_label_to_block_map, new_len);
5727 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5728 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5730 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5732 if (uid >= dest_cfun->cfg->last_label_uid)
5733 dest_cfun->cfg->last_label_uid = uid + 1;
5735 else if (gimple_code (stmt) == GIMPLE_RESX && eh_offset != 0)
5736 gimple_resx_set_region (stmt, gimple_resx_region (stmt) + eh_offset);
5738 region = lookup_stmt_eh_region (stmt);
5739 if (region >= 0)
5741 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
5742 remove_stmt_from_eh_region (stmt);
5743 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5744 gimple_remove_stmt_histograms (cfun, stmt);
5747 /* We cannot leave any operands allocated from the operand caches of
5748 the current function. */
5749 free_stmt_operands (stmt);
5750 push_cfun (dest_cfun);
5751 update_stmt (stmt);
5752 pop_cfun ();
5755 FOR_EACH_EDGE (e, ei, bb->succs)
5756 if (e->goto_locus)
5758 tree block = e->goto_block;
5759 if (d->orig_block == NULL_TREE
5760 || block == d->orig_block)
5761 e->goto_block = d->new_block;
5762 #ifdef ENABLE_CHECKING
5763 else if (block != d->new_block)
5765 while (block && block != d->orig_block)
5766 block = BLOCK_SUPERCONTEXT (block);
5767 gcc_assert (block);
5769 #endif
5773 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5774 the outermost EH region. Use REGION as the incoming base EH region. */
5776 static int
5777 find_outermost_region_in_block (struct function *src_cfun,
5778 basic_block bb, int region)
5780 gimple_stmt_iterator si;
5782 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5784 gimple stmt = gsi_stmt (si);
5785 int stmt_region;
5787 if (gimple_code (stmt) == GIMPLE_RESX)
5788 stmt_region = gimple_resx_region (stmt);
5789 else
5790 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
5791 if (stmt_region > 0)
5793 if (region < 0)
5794 region = stmt_region;
5795 else if (stmt_region != region)
5797 region = eh_region_outermost (src_cfun, stmt_region, region);
5798 gcc_assert (region != -1);
5803 return region;
5806 static tree
5807 new_label_mapper (tree decl, void *data)
5809 htab_t hash = (htab_t) data;
5810 struct tree_map *m;
5811 void **slot;
5813 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
5815 m = XNEW (struct tree_map);
5816 m->hash = DECL_UID (decl);
5817 m->base.from = decl;
5818 m->to = create_artificial_label ();
5819 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
5820 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
5821 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
5823 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
5824 gcc_assert (*slot == NULL);
5826 *slot = m;
5828 return m->to;
5831 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
5832 subblocks. */
5834 static void
5835 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
5836 tree to_context)
5838 tree *tp, t;
5840 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
5842 t = *tp;
5843 replace_by_duplicate_decl (&t, vars_map, to_context);
5844 if (t != *tp)
5846 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
5848 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
5849 DECL_HAS_VALUE_EXPR_P (t) = 1;
5851 TREE_CHAIN (t) = TREE_CHAIN (*tp);
5852 *tp = t;
5856 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
5857 replace_block_vars_by_duplicates (block, vars_map, to_context);
5860 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
5861 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
5862 single basic block in the original CFG and the new basic block is
5863 returned. DEST_CFUN must not have a CFG yet.
5865 Note that the region need not be a pure SESE region. Blocks inside
5866 the region may contain calls to abort/exit. The only restriction
5867 is that ENTRY_BB should be the only entry point and it must
5868 dominate EXIT_BB.
5870 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
5871 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
5872 to the new function.
5874 All local variables referenced in the region are assumed to be in
5875 the corresponding BLOCK_VARS and unexpanded variable lists
5876 associated with DEST_CFUN. */
5878 basic_block
5879 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
5880 basic_block exit_bb, tree orig_block)
5882 VEC(basic_block,heap) *bbs, *dom_bbs;
5883 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
5884 basic_block after, bb, *entry_pred, *exit_succ, abb;
5885 struct function *saved_cfun = cfun;
5886 int *entry_flag, *exit_flag, eh_offset;
5887 unsigned *entry_prob, *exit_prob;
5888 unsigned i, num_entry_edges, num_exit_edges;
5889 edge e;
5890 edge_iterator ei;
5891 htab_t new_label_map;
5892 struct pointer_map_t *vars_map;
5893 struct loop *loop = entry_bb->loop_father;
5894 struct move_stmt_d d;
5896 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
5897 region. */
5898 gcc_assert (entry_bb != exit_bb
5899 && (!exit_bb
5900 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
5902 /* Collect all the blocks in the region. Manually add ENTRY_BB
5903 because it won't be added by dfs_enumerate_from. */
5904 bbs = NULL;
5905 VEC_safe_push (basic_block, heap, bbs, entry_bb);
5906 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
5908 /* The blocks that used to be dominated by something in BBS will now be
5909 dominated by the new block. */
5910 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
5911 VEC_address (basic_block, bbs),
5912 VEC_length (basic_block, bbs));
5914 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
5915 the predecessor edges to ENTRY_BB and the successor edges to
5916 EXIT_BB so that we can re-attach them to the new basic block that
5917 will replace the region. */
5918 num_entry_edges = EDGE_COUNT (entry_bb->preds);
5919 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
5920 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
5921 entry_prob = XNEWVEC (unsigned, num_entry_edges);
5922 i = 0;
5923 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
5925 entry_prob[i] = e->probability;
5926 entry_flag[i] = e->flags;
5927 entry_pred[i++] = e->src;
5928 remove_edge (e);
5931 if (exit_bb)
5933 num_exit_edges = EDGE_COUNT (exit_bb->succs);
5934 exit_succ = (basic_block *) xcalloc (num_exit_edges,
5935 sizeof (basic_block));
5936 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
5937 exit_prob = XNEWVEC (unsigned, num_exit_edges);
5938 i = 0;
5939 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
5941 exit_prob[i] = e->probability;
5942 exit_flag[i] = e->flags;
5943 exit_succ[i++] = e->dest;
5944 remove_edge (e);
5947 else
5949 num_exit_edges = 0;
5950 exit_succ = NULL;
5951 exit_flag = NULL;
5952 exit_prob = NULL;
5955 /* Switch context to the child function to initialize DEST_FN's CFG. */
5956 gcc_assert (dest_cfun->cfg == NULL);
5957 push_cfun (dest_cfun);
5959 init_empty_tree_cfg ();
5961 /* Initialize EH information for the new function. */
5962 eh_offset = 0;
5963 new_label_map = NULL;
5964 if (saved_cfun->eh)
5966 int region = -1;
5968 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
5969 region = find_outermost_region_in_block (saved_cfun, bb, region);
5971 init_eh_for_function ();
5972 if (region != -1)
5974 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
5975 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
5976 new_label_map, region, 0);
5980 pop_cfun ();
5982 /* The ssa form for virtual operands in the source function will have to
5983 be repaired. We do not care for the real operands -- the sese region
5984 must be closed with respect to those. */
5985 mark_virtual_ops_in_region (bbs);
5987 /* Move blocks from BBS into DEST_CFUN. */
5988 gcc_assert (VEC_length (basic_block, bbs) >= 2);
5989 after = dest_cfun->cfg->x_entry_block_ptr;
5990 vars_map = pointer_map_create ();
5992 memset (&d, 0, sizeof (d));
5993 d.vars_map = vars_map;
5994 d.from_context = cfun->decl;
5995 d.to_context = dest_cfun->decl;
5996 d.new_label_map = new_label_map;
5997 d.remap_decls_p = true;
5998 d.orig_block = orig_block;
5999 d.new_block = DECL_INITIAL (dest_cfun->decl);
6001 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6003 /* No need to update edge counts on the last block. It has
6004 already been updated earlier when we detached the region from
6005 the original CFG. */
6006 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d, eh_offset);
6007 after = bb;
6010 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6011 if (orig_block)
6013 tree block;
6014 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6015 == NULL_TREE);
6016 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6017 = BLOCK_SUBBLOCKS (orig_block);
6018 for (block = BLOCK_SUBBLOCKS (orig_block);
6019 block; block = BLOCK_CHAIN (block))
6020 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6021 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6024 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6025 vars_map, dest_cfun->decl);
6027 if (new_label_map)
6028 htab_delete (new_label_map);
6029 pointer_map_destroy (vars_map);
6031 /* Rewire the entry and exit blocks. The successor to the entry
6032 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6033 the child function. Similarly, the predecessor of DEST_FN's
6034 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6035 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6036 various CFG manipulation function get to the right CFG.
6038 FIXME, this is silly. The CFG ought to become a parameter to
6039 these helpers. */
6040 push_cfun (dest_cfun);
6041 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6042 if (exit_bb)
6043 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6044 pop_cfun ();
6046 /* Back in the original function, the SESE region has disappeared,
6047 create a new basic block in its place. */
6048 bb = create_empty_bb (entry_pred[0]);
6049 if (current_loops)
6050 add_bb_to_loop (bb, loop);
6051 for (i = 0; i < num_entry_edges; i++)
6053 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6054 e->probability = entry_prob[i];
6057 for (i = 0; i < num_exit_edges; i++)
6059 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6060 e->probability = exit_prob[i];
6063 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6064 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6065 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6066 VEC_free (basic_block, heap, dom_bbs);
6068 if (exit_bb)
6070 free (exit_prob);
6071 free (exit_flag);
6072 free (exit_succ);
6074 free (entry_prob);
6075 free (entry_flag);
6076 free (entry_pred);
6077 VEC_free (basic_block, heap, bbs);
6079 return bb;
6083 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6086 void
6087 dump_function_to_file (tree fn, FILE *file, int flags)
6089 tree arg, vars, var;
6090 struct function *dsf;
6091 bool ignore_topmost_bind = false, any_var = false;
6092 basic_block bb;
6093 tree chain;
6095 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6097 arg = DECL_ARGUMENTS (fn);
6098 while (arg)
6100 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6101 fprintf (file, " ");
6102 print_generic_expr (file, arg, dump_flags);
6103 if (flags & TDF_VERBOSE)
6104 print_node (file, "", arg, 4);
6105 if (TREE_CHAIN (arg))
6106 fprintf (file, ", ");
6107 arg = TREE_CHAIN (arg);
6109 fprintf (file, ")\n");
6111 if (flags & TDF_VERBOSE)
6112 print_node (file, "", fn, 2);
6114 dsf = DECL_STRUCT_FUNCTION (fn);
6115 if (dsf && (flags & TDF_DETAILS))
6116 dump_eh_tree (file, dsf);
6118 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6120 dump_node (fn, TDF_SLIM | flags, file);
6121 return;
6124 /* Switch CFUN to point to FN. */
6125 push_cfun (DECL_STRUCT_FUNCTION (fn));
6127 /* When GIMPLE is lowered, the variables are no longer available in
6128 BIND_EXPRs, so display them separately. */
6129 if (cfun && cfun->decl == fn && cfun->local_decls)
6131 ignore_topmost_bind = true;
6133 fprintf (file, "{\n");
6134 for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
6136 var = TREE_VALUE (vars);
6138 print_generic_decl (file, var, flags);
6139 if (flags & TDF_VERBOSE)
6140 print_node (file, "", var, 4);
6141 fprintf (file, "\n");
6143 any_var = true;
6147 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6149 /* If the CFG has been built, emit a CFG-based dump. */
6150 check_bb_profile (ENTRY_BLOCK_PTR, file);
6151 if (!ignore_topmost_bind)
6152 fprintf (file, "{\n");
6154 if (any_var && n_basic_blocks)
6155 fprintf (file, "\n");
6157 FOR_EACH_BB (bb)
6158 gimple_dump_bb (bb, file, 2, flags);
6160 fprintf (file, "}\n");
6161 check_bb_profile (EXIT_BLOCK_PTR, file);
6163 else if (DECL_SAVED_TREE (fn) == NULL)
6165 /* The function is now in GIMPLE form but the CFG has not been
6166 built yet. Emit the single sequence of GIMPLE statements
6167 that make up its body. */
6168 gimple_seq body = gimple_body (fn);
6170 if (gimple_seq_first_stmt (body)
6171 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6172 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6173 print_gimple_seq (file, body, 0, flags);
6174 else
6176 if (!ignore_topmost_bind)
6177 fprintf (file, "{\n");
6179 if (any_var)
6180 fprintf (file, "\n");
6182 print_gimple_seq (file, body, 2, flags);
6183 fprintf (file, "}\n");
6186 else
6188 int indent;
6190 /* Make a tree based dump. */
6191 chain = DECL_SAVED_TREE (fn);
6193 if (chain && TREE_CODE (chain) == BIND_EXPR)
6195 if (ignore_topmost_bind)
6197 chain = BIND_EXPR_BODY (chain);
6198 indent = 2;
6200 else
6201 indent = 0;
6203 else
6205 if (!ignore_topmost_bind)
6206 fprintf (file, "{\n");
6207 indent = 2;
6210 if (any_var)
6211 fprintf (file, "\n");
6213 print_generic_stmt_indented (file, chain, flags, indent);
6214 if (ignore_topmost_bind)
6215 fprintf (file, "}\n");
6218 fprintf (file, "\n\n");
6220 /* Restore CFUN. */
6221 pop_cfun ();
6225 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6227 void
6228 debug_function (tree fn, int flags)
6230 dump_function_to_file (fn, stderr, flags);
6234 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6236 static void
6237 print_pred_bbs (FILE *file, basic_block bb)
6239 edge e;
6240 edge_iterator ei;
6242 FOR_EACH_EDGE (e, ei, bb->preds)
6243 fprintf (file, "bb_%d ", e->src->index);
6247 /* Print on FILE the indexes for the successors of basic_block BB. */
6249 static void
6250 print_succ_bbs (FILE *file, basic_block bb)
6252 edge e;
6253 edge_iterator ei;
6255 FOR_EACH_EDGE (e, ei, bb->succs)
6256 fprintf (file, "bb_%d ", e->dest->index);
6259 /* Print to FILE the basic block BB following the VERBOSITY level. */
6261 void
6262 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6264 char *s_indent = (char *) alloca ((size_t) indent + 1);
6265 memset ((void *) s_indent, ' ', (size_t) indent);
6266 s_indent[indent] = '\0';
6268 /* Print basic_block's header. */
6269 if (verbosity >= 2)
6271 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6272 print_pred_bbs (file, bb);
6273 fprintf (file, "}, succs = {");
6274 print_succ_bbs (file, bb);
6275 fprintf (file, "})\n");
6278 /* Print basic_block's body. */
6279 if (verbosity >= 3)
6281 fprintf (file, "%s {\n", s_indent);
6282 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6283 fprintf (file, "%s }\n", s_indent);
6287 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6289 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6290 VERBOSITY level this outputs the contents of the loop, or just its
6291 structure. */
6293 static void
6294 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6296 char *s_indent;
6297 basic_block bb;
6299 if (loop == NULL)
6300 return;
6302 s_indent = (char *) alloca ((size_t) indent + 1);
6303 memset ((void *) s_indent, ' ', (size_t) indent);
6304 s_indent[indent] = '\0';
6306 /* Print loop's header. */
6307 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6308 loop->num, loop->header->index, loop->latch->index);
6309 fprintf (file, ", niter = ");
6310 print_generic_expr (file, loop->nb_iterations, 0);
6312 if (loop->any_upper_bound)
6314 fprintf (file, ", upper_bound = ");
6315 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6318 if (loop->any_estimate)
6320 fprintf (file, ", estimate = ");
6321 dump_double_int (file, loop->nb_iterations_estimate, true);
6323 fprintf (file, ")\n");
6325 /* Print loop's body. */
6326 if (verbosity >= 1)
6328 fprintf (file, "%s{\n", s_indent);
6329 FOR_EACH_BB (bb)
6330 if (bb->loop_father == loop)
6331 print_loops_bb (file, bb, indent, verbosity);
6333 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6334 fprintf (file, "%s}\n", s_indent);
6338 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6339 spaces. Following VERBOSITY level this outputs the contents of the
6340 loop, or just its structure. */
6342 static void
6343 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6345 if (loop == NULL)
6346 return;
6348 print_loop (file, loop, indent, verbosity);
6349 print_loop_and_siblings (file, loop->next, indent, verbosity);
6352 /* Follow a CFG edge from the entry point of the program, and on entry
6353 of a loop, pretty print the loop structure on FILE. */
6355 void
6356 print_loops (FILE *file, int verbosity)
6358 basic_block bb;
6360 bb = ENTRY_BLOCK_PTR;
6361 if (bb && bb->loop_father)
6362 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6366 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6368 void
6369 debug_loops (int verbosity)
6371 print_loops (stderr, verbosity);
6374 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6376 void
6377 debug_loop (struct loop *loop, int verbosity)
6379 print_loop (stderr, loop, 0, verbosity);
6382 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6383 level. */
6385 void
6386 debug_loop_num (unsigned num, int verbosity)
6388 debug_loop (get_loop (num), verbosity);
6391 /* Return true if BB ends with a call, possibly followed by some
6392 instructions that must stay with the call. Return false,
6393 otherwise. */
6395 static bool
6396 gimple_block_ends_with_call_p (basic_block bb)
6398 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6399 return is_gimple_call (gsi_stmt (gsi));
6403 /* Return true if BB ends with a conditional branch. Return false,
6404 otherwise. */
6406 static bool
6407 gimple_block_ends_with_condjump_p (const_basic_block bb)
6409 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6410 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6414 /* Return true if we need to add fake edge to exit at statement T.
6415 Helper function for gimple_flow_call_edges_add. */
6417 static bool
6418 need_fake_edge_p (gimple t)
6420 tree fndecl = NULL_TREE;
6421 int call_flags = 0;
6423 /* NORETURN and LONGJMP calls already have an edge to exit.
6424 CONST and PURE calls do not need one.
6425 We don't currently check for CONST and PURE here, although
6426 it would be a good idea, because those attributes are
6427 figured out from the RTL in mark_constant_function, and
6428 the counter incrementation code from -fprofile-arcs
6429 leads to different results from -fbranch-probabilities. */
6430 if (is_gimple_call (t))
6432 fndecl = gimple_call_fndecl (t);
6433 call_flags = gimple_call_flags (t);
6436 if (is_gimple_call (t)
6437 && fndecl
6438 && DECL_BUILT_IN (fndecl)
6439 && (call_flags & ECF_NOTHROW)
6440 && !(call_flags & ECF_NORETURN)
6441 && !(call_flags & ECF_RETURNS_TWICE))
6442 return false;
6444 if (is_gimple_call (t)
6445 && !(call_flags & ECF_NORETURN))
6446 return true;
6448 if (gimple_code (t) == GIMPLE_ASM
6449 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6450 return true;
6452 return false;
6456 /* Add fake edges to the function exit for any non constant and non
6457 noreturn calls, volatile inline assembly in the bitmap of blocks
6458 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6459 the number of blocks that were split.
6461 The goal is to expose cases in which entering a basic block does
6462 not imply that all subsequent instructions must be executed. */
6464 static int
6465 gimple_flow_call_edges_add (sbitmap blocks)
6467 int i;
6468 int blocks_split = 0;
6469 int last_bb = last_basic_block;
6470 bool check_last_block = false;
6472 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6473 return 0;
6475 if (! blocks)
6476 check_last_block = true;
6477 else
6478 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6480 /* In the last basic block, before epilogue generation, there will be
6481 a fallthru edge to EXIT. Special care is required if the last insn
6482 of the last basic block is a call because make_edge folds duplicate
6483 edges, which would result in the fallthru edge also being marked
6484 fake, which would result in the fallthru edge being removed by
6485 remove_fake_edges, which would result in an invalid CFG.
6487 Moreover, we can't elide the outgoing fake edge, since the block
6488 profiler needs to take this into account in order to solve the minimal
6489 spanning tree in the case that the call doesn't return.
6491 Handle this by adding a dummy instruction in a new last basic block. */
6492 if (check_last_block)
6494 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6495 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6496 gimple t = NULL;
6498 if (!gsi_end_p (gsi))
6499 t = gsi_stmt (gsi);
6501 if (t && need_fake_edge_p (t))
6503 edge e;
6505 e = find_edge (bb, EXIT_BLOCK_PTR);
6506 if (e)
6508 gsi_insert_on_edge (e, gimple_build_nop ());
6509 gsi_commit_edge_inserts ();
6514 /* Now add fake edges to the function exit for any non constant
6515 calls since there is no way that we can determine if they will
6516 return or not... */
6517 for (i = 0; i < last_bb; i++)
6519 basic_block bb = BASIC_BLOCK (i);
6520 gimple_stmt_iterator gsi;
6521 gimple stmt, last_stmt;
6523 if (!bb)
6524 continue;
6526 if (blocks && !TEST_BIT (blocks, i))
6527 continue;
6529 gsi = gsi_last_bb (bb);
6530 if (!gsi_end_p (gsi))
6532 last_stmt = gsi_stmt (gsi);
6535 stmt = gsi_stmt (gsi);
6536 if (need_fake_edge_p (stmt))
6538 edge e;
6540 /* The handling above of the final block before the
6541 epilogue should be enough to verify that there is
6542 no edge to the exit block in CFG already.
6543 Calling make_edge in such case would cause us to
6544 mark that edge as fake and remove it later. */
6545 #ifdef ENABLE_CHECKING
6546 if (stmt == last_stmt)
6548 e = find_edge (bb, EXIT_BLOCK_PTR);
6549 gcc_assert (e == NULL);
6551 #endif
6553 /* Note that the following may create a new basic block
6554 and renumber the existing basic blocks. */
6555 if (stmt != last_stmt)
6557 e = split_block (bb, stmt);
6558 if (e)
6559 blocks_split++;
6561 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6563 gsi_prev (&gsi);
6565 while (!gsi_end_p (gsi));
6569 if (blocks_split)
6570 verify_flow_info ();
6572 return blocks_split;
6575 /* Purge dead abnormal call edges from basic block BB. */
6577 bool
6578 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6580 bool changed = gimple_purge_dead_eh_edges (bb);
6582 if (cfun->has_nonlocal_label)
6584 gimple stmt = last_stmt (bb);
6585 edge_iterator ei;
6586 edge e;
6588 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6589 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6591 if (e->flags & EDGE_ABNORMAL)
6593 remove_edge (e);
6594 changed = true;
6596 else
6597 ei_next (&ei);
6600 /* See gimple_purge_dead_eh_edges below. */
6601 if (changed)
6602 free_dominance_info (CDI_DOMINATORS);
6605 return changed;
6608 /* Stores all basic blocks dominated by BB to DOM_BBS. */
6610 static void
6611 get_all_dominated_blocks (basic_block bb, VEC (basic_block, heap) **dom_bbs)
6613 basic_block son;
6615 VEC_safe_push (basic_block, heap, *dom_bbs, bb);
6616 for (son = first_dom_son (CDI_DOMINATORS, bb);
6617 son;
6618 son = next_dom_son (CDI_DOMINATORS, son))
6619 get_all_dominated_blocks (son, dom_bbs);
6622 /* Removes edge E and all the blocks dominated by it, and updates dominance
6623 information. The IL in E->src needs to be updated separately.
6624 If dominance info is not available, only the edge E is removed.*/
6626 void
6627 remove_edge_and_dominated_blocks (edge e)
6629 VEC (basic_block, heap) *bbs_to_remove = NULL;
6630 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6631 bitmap df, df_idom;
6632 edge f;
6633 edge_iterator ei;
6634 bool none_removed = false;
6635 unsigned i;
6636 basic_block bb, dbb;
6637 bitmap_iterator bi;
6639 if (!dom_info_available_p (CDI_DOMINATORS))
6641 remove_edge (e);
6642 return;
6645 /* No updating is needed for edges to exit. */
6646 if (e->dest == EXIT_BLOCK_PTR)
6648 if (cfgcleanup_altered_bbs)
6649 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6650 remove_edge (e);
6651 return;
6654 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6655 that is not dominated by E->dest, then this set is empty. Otherwise,
6656 all the basic blocks dominated by E->dest are removed.
6658 Also, to DF_IDOM we store the immediate dominators of the blocks in
6659 the dominance frontier of E (i.e., of the successors of the
6660 removed blocks, if there are any, and of E->dest otherwise). */
6661 FOR_EACH_EDGE (f, ei, e->dest->preds)
6663 if (f == e)
6664 continue;
6666 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6668 none_removed = true;
6669 break;
6673 df = BITMAP_ALLOC (NULL);
6674 df_idom = BITMAP_ALLOC (NULL);
6676 if (none_removed)
6677 bitmap_set_bit (df_idom,
6678 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6679 else
6681 get_all_dominated_blocks (e->dest, &bbs_to_remove);
6682 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6684 FOR_EACH_EDGE (f, ei, bb->succs)
6686 if (f->dest != EXIT_BLOCK_PTR)
6687 bitmap_set_bit (df, f->dest->index);
6690 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6691 bitmap_clear_bit (df, bb->index);
6693 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6695 bb = BASIC_BLOCK (i);
6696 bitmap_set_bit (df_idom,
6697 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6701 if (cfgcleanup_altered_bbs)
6703 /* Record the set of the altered basic blocks. */
6704 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6705 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6708 /* Remove E and the cancelled blocks. */
6709 if (none_removed)
6710 remove_edge (e);
6711 else
6713 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6714 delete_basic_block (bb);
6717 /* Update the dominance information. The immediate dominator may change only
6718 for blocks whose immediate dominator belongs to DF_IDOM:
6720 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6721 removal. Let Z the arbitrary block such that idom(Z) = Y and
6722 Z dominates X after the removal. Before removal, there exists a path P
6723 from Y to X that avoids Z. Let F be the last edge on P that is
6724 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6725 dominates W, and because of P, Z does not dominate W), and W belongs to
6726 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6727 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6729 bb = BASIC_BLOCK (i);
6730 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6731 dbb;
6732 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6733 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6736 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6738 BITMAP_FREE (df);
6739 BITMAP_FREE (df_idom);
6740 VEC_free (basic_block, heap, bbs_to_remove);
6741 VEC_free (basic_block, heap, bbs_to_fix_dom);
6744 /* Purge dead EH edges from basic block BB. */
6746 bool
6747 gimple_purge_dead_eh_edges (basic_block bb)
6749 bool changed = false;
6750 edge e;
6751 edge_iterator ei;
6752 gimple stmt = last_stmt (bb);
6754 if (stmt && stmt_can_throw_internal (stmt))
6755 return false;
6757 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6759 if (e->flags & EDGE_EH)
6761 remove_edge_and_dominated_blocks (e);
6762 changed = true;
6764 else
6765 ei_next (&ei);
6768 return changed;
6771 bool
6772 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6774 bool changed = false;
6775 unsigned i;
6776 bitmap_iterator bi;
6778 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6780 basic_block bb = BASIC_BLOCK (i);
6782 /* Earlier gimple_purge_dead_eh_edges could have removed
6783 this basic block already. */
6784 gcc_assert (bb || changed);
6785 if (bb != NULL)
6786 changed |= gimple_purge_dead_eh_edges (bb);
6789 return changed;
6792 /* This function is called whenever a new edge is created or
6793 redirected. */
6795 static void
6796 gimple_execute_on_growing_pred (edge e)
6798 basic_block bb = e->dest;
6800 if (phi_nodes (bb))
6801 reserve_phi_args_for_new_edge (bb);
6804 /* This function is called immediately before edge E is removed from
6805 the edge vector E->dest->preds. */
6807 static void
6808 gimple_execute_on_shrinking_pred (edge e)
6810 if (phi_nodes (e->dest))
6811 remove_phi_args (e);
6814 /*---------------------------------------------------------------------------
6815 Helper functions for Loop versioning
6816 ---------------------------------------------------------------------------*/
6818 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
6819 of 'first'. Both of them are dominated by 'new_head' basic block. When
6820 'new_head' was created by 'second's incoming edge it received phi arguments
6821 on the edge by split_edge(). Later, additional edge 'e' was created to
6822 connect 'new_head' and 'first'. Now this routine adds phi args on this
6823 additional edge 'e' that new_head to second edge received as part of edge
6824 splitting. */
6826 static void
6827 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
6828 basic_block new_head, edge e)
6830 gimple phi1, phi2;
6831 gimple_stmt_iterator psi1, psi2;
6832 tree def;
6833 edge e2 = find_edge (new_head, second);
6835 /* Because NEW_HEAD has been created by splitting SECOND's incoming
6836 edge, we should always have an edge from NEW_HEAD to SECOND. */
6837 gcc_assert (e2 != NULL);
6839 /* Browse all 'second' basic block phi nodes and add phi args to
6840 edge 'e' for 'first' head. PHI args are always in correct order. */
6842 for (psi2 = gsi_start_phis (second),
6843 psi1 = gsi_start_phis (first);
6844 !gsi_end_p (psi2) && !gsi_end_p (psi1);
6845 gsi_next (&psi2), gsi_next (&psi1))
6847 phi1 = gsi_stmt (psi1);
6848 phi2 = gsi_stmt (psi2);
6849 def = PHI_ARG_DEF (phi2, e2->dest_idx);
6850 add_phi_arg (phi1, def, e);
6855 /* Adds a if else statement to COND_BB with condition COND_EXPR.
6856 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
6857 the destination of the ELSE part. */
6859 static void
6860 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
6861 basic_block second_head ATTRIBUTE_UNUSED,
6862 basic_block cond_bb, void *cond_e)
6864 gimple_stmt_iterator gsi;
6865 gimple new_cond_expr;
6866 tree cond_expr = (tree) cond_e;
6867 edge e0;
6869 /* Build new conditional expr */
6870 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
6871 NULL_TREE, NULL_TREE);
6873 /* Add new cond in cond_bb. */
6874 gsi = gsi_last_bb (cond_bb);
6875 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
6877 /* Adjust edges appropriately to connect new head with first head
6878 as well as second head. */
6879 e0 = single_succ_edge (cond_bb);
6880 e0->flags &= ~EDGE_FALLTHRU;
6881 e0->flags |= EDGE_FALSE_VALUE;
6884 struct cfg_hooks gimple_cfg_hooks = {
6885 "gimple",
6886 gimple_verify_flow_info,
6887 gimple_dump_bb, /* dump_bb */
6888 create_bb, /* create_basic_block */
6889 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
6890 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
6891 gimple_can_remove_branch_p, /* can_remove_branch_p */
6892 remove_bb, /* delete_basic_block */
6893 gimple_split_block, /* split_block */
6894 gimple_move_block_after, /* move_block_after */
6895 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
6896 gimple_merge_blocks, /* merge_blocks */
6897 gimple_predict_edge, /* predict_edge */
6898 gimple_predicted_by_p, /* predicted_by_p */
6899 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
6900 gimple_duplicate_bb, /* duplicate_block */
6901 gimple_split_edge, /* split_edge */
6902 gimple_make_forwarder_block, /* make_forward_block */
6903 NULL, /* tidy_fallthru_edge */
6904 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
6905 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
6906 gimple_flow_call_edges_add, /* flow_call_edges_add */
6907 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
6908 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
6909 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
6910 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
6911 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
6912 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
6913 flush_pending_stmts /* flush_pending_stmts */
6917 /* Split all critical edges. */
6919 static unsigned int
6920 split_critical_edges (void)
6922 basic_block bb;
6923 edge e;
6924 edge_iterator ei;
6926 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
6927 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
6928 mappings around the calls to split_edge. */
6929 start_recording_case_labels ();
6930 FOR_ALL_BB (bb)
6932 FOR_EACH_EDGE (e, ei, bb->succs)
6933 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
6935 split_edge (e);
6938 end_recording_case_labels ();
6939 return 0;
6942 struct gimple_opt_pass pass_split_crit_edges =
6945 GIMPLE_PASS,
6946 "crited", /* name */
6947 NULL, /* gate */
6948 split_critical_edges, /* execute */
6949 NULL, /* sub */
6950 NULL, /* next */
6951 0, /* static_pass_number */
6952 TV_TREE_SPLIT_EDGES, /* tv_id */
6953 PROP_cfg, /* properties required */
6954 PROP_no_crit_edges, /* properties_provided */
6955 0, /* properties_destroyed */
6956 0, /* todo_flags_start */
6957 TODO_dump_func /* todo_flags_finish */
6962 /* Build a ternary operation and gimplify it. Emit code before GSI.
6963 Return the gimple_val holding the result. */
6965 tree
6966 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
6967 tree type, tree a, tree b, tree c)
6969 tree ret;
6971 ret = fold_build3 (code, type, a, b, c);
6972 STRIP_NOPS (ret);
6974 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
6975 GSI_SAME_STMT);
6978 /* Build a binary operation and gimplify it. Emit code before GSI.
6979 Return the gimple_val holding the result. */
6981 tree
6982 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
6983 tree type, tree a, tree b)
6985 tree ret;
6987 ret = fold_build2 (code, type, a, b);
6988 STRIP_NOPS (ret);
6990 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
6991 GSI_SAME_STMT);
6994 /* Build a unary operation and gimplify it. Emit code before GSI.
6995 Return the gimple_val holding the result. */
6997 tree
6998 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
6999 tree a)
7001 tree ret;
7003 ret = fold_build1 (code, type, a);
7004 STRIP_NOPS (ret);
7006 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7007 GSI_SAME_STMT);
7012 /* Emit return warnings. */
7014 static unsigned int
7015 execute_warn_function_return (void)
7017 source_location location;
7018 gimple last;
7019 edge e;
7020 edge_iterator ei;
7022 /* If we have a path to EXIT, then we do return. */
7023 if (TREE_THIS_VOLATILE (cfun->decl)
7024 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7026 location = UNKNOWN_LOCATION;
7027 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7029 last = last_stmt (e->src);
7030 if (gimple_code (last) == GIMPLE_RETURN
7031 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7032 break;
7034 if (location == UNKNOWN_LOCATION)
7035 location = cfun->function_end_locus;
7036 warning (0, "%H%<noreturn%> function does return", &location);
7039 /* If we see "return;" in some basic block, then we do reach the end
7040 without returning a value. */
7041 else if (warn_return_type
7042 && !TREE_NO_WARNING (cfun->decl)
7043 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7044 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7046 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7048 gimple last = last_stmt (e->src);
7049 if (gimple_code (last) == GIMPLE_RETURN
7050 && gimple_return_retval (last) == NULL
7051 && !gimple_no_warning_p (last))
7053 location = gimple_location (last);
7054 if (location == UNKNOWN_LOCATION)
7055 location = cfun->function_end_locus;
7056 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7057 TREE_NO_WARNING (cfun->decl) = 1;
7058 break;
7062 return 0;
7066 /* Given a basic block B which ends with a conditional and has
7067 precisely two successors, determine which of the edges is taken if
7068 the conditional is true and which is taken if the conditional is
7069 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7071 void
7072 extract_true_false_edges_from_block (basic_block b,
7073 edge *true_edge,
7074 edge *false_edge)
7076 edge e = EDGE_SUCC (b, 0);
7078 if (e->flags & EDGE_TRUE_VALUE)
7080 *true_edge = e;
7081 *false_edge = EDGE_SUCC (b, 1);
7083 else
7085 *false_edge = e;
7086 *true_edge = EDGE_SUCC (b, 1);
7090 struct gimple_opt_pass pass_warn_function_return =
7093 GIMPLE_PASS,
7094 NULL, /* name */
7095 NULL, /* gate */
7096 execute_warn_function_return, /* execute */
7097 NULL, /* sub */
7098 NULL, /* next */
7099 0, /* static_pass_number */
7100 0, /* tv_id */
7101 PROP_cfg, /* properties_required */
7102 0, /* properties_provided */
7103 0, /* properties_destroyed */
7104 0, /* todo_flags_start */
7105 0 /* todo_flags_finish */
7109 /* Emit noreturn warnings. */
7111 static unsigned int
7112 execute_warn_function_noreturn (void)
7114 if (warn_missing_noreturn
7115 && !TREE_THIS_VOLATILE (cfun->decl)
7116 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
7117 && !lang_hooks.missing_noreturn_ok_p (cfun->decl))
7118 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
7119 "for attribute %<noreturn%>",
7120 cfun->decl);
7121 return 0;
7124 struct gimple_opt_pass pass_warn_function_noreturn =
7127 GIMPLE_PASS,
7128 NULL, /* name */
7129 NULL, /* gate */
7130 execute_warn_function_noreturn, /* execute */
7131 NULL, /* sub */
7132 NULL, /* next */
7133 0, /* static_pass_number */
7134 0, /* tv_id */
7135 PROP_cfg, /* properties_required */
7136 0, /* properties_provided */
7137 0, /* properties_destroyed */
7138 0, /* todo_flags_start */
7139 0 /* todo_flags_finish */