Define __void_t and SFINAE-friendly iterator_traits.
[official-gcc.git] / libsanitizer / tsan / tsan_fd.cc
bloba74a668c13b40a83f912f81e40f83f0497cea1b6
1 //===-- tsan_fd.cc --------------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
12 #include "tsan_fd.h"
13 #include "tsan_rtl.h"
14 #include <sanitizer_common/sanitizer_atomic.h>
16 namespace __tsan {
18 const int kTableSizeL1 = 1024;
19 const int kTableSizeL2 = 1024;
20 const int kTableSize = kTableSizeL1 * kTableSizeL2;
22 struct FdSync {
23 atomic_uint64_t rc;
26 struct FdDesc {
27 FdSync *sync;
28 int creation_tid;
29 u32 creation_stack;
32 struct FdContext {
33 atomic_uintptr_t tab[kTableSizeL1];
34 // Addresses used for synchronization.
35 FdSync globsync;
36 FdSync filesync;
37 FdSync socksync;
38 u64 connectsync;
41 static FdContext fdctx;
43 static bool bogusfd(int fd) {
44 // Apparently a bogus fd value.
45 return fd < 0 || fd >= kTableSize;
48 static FdSync *allocsync(ThreadState *thr, uptr pc) {
49 FdSync *s = (FdSync*)user_alloc(thr, pc, sizeof(FdSync));
50 atomic_store(&s->rc, 1, memory_order_relaxed);
51 return s;
54 static FdSync *ref(FdSync *s) {
55 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
56 atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
57 return s;
60 static void unref(ThreadState *thr, uptr pc, FdSync *s) {
61 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
62 if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
63 CHECK_NE(s, &fdctx.globsync);
64 CHECK_NE(s, &fdctx.filesync);
65 CHECK_NE(s, &fdctx.socksync);
66 user_free(thr, pc, s);
71 static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
72 CHECK_GE(fd, 0);
73 CHECK_LT(fd, kTableSize);
74 atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
75 uptr l1 = atomic_load(pl1, memory_order_consume);
76 if (l1 == 0) {
77 uptr size = kTableSizeL2 * sizeof(FdDesc);
78 // We need this to reside in user memory to properly catch races on it.
79 void *p = user_alloc(thr, pc, size);
80 internal_memset(p, 0, size);
81 MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
82 if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
83 l1 = (uptr)p;
84 else
85 user_free(thr, pc, p);
87 return &((FdDesc*)l1)[fd % kTableSizeL2]; // NOLINT
90 // pd must be already ref'ed.
91 static void init(ThreadState *thr, uptr pc, int fd, FdSync *s) {
92 FdDesc *d = fddesc(thr, pc, fd);
93 // As a matter of fact, we don't intercept all close calls.
94 // See e.g. libc __res_iclose().
95 if (d->sync) {
96 unref(thr, pc, d->sync);
97 d->sync = 0;
99 if (flags()->io_sync == 0) {
100 unref(thr, pc, s);
101 } else if (flags()->io_sync == 1) {
102 d->sync = s;
103 } else if (flags()->io_sync == 2) {
104 unref(thr, pc, s);
105 d->sync = &fdctx.globsync;
107 d->creation_tid = thr->tid;
108 d->creation_stack = CurrentStackId(thr, pc);
109 // To catch races between fd usage and open.
110 MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
113 void FdInit() {
114 atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
115 atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
116 atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
119 void FdOnFork(ThreadState *thr, uptr pc) {
120 // On fork() we need to reset all fd's, because the child is going
121 // close all them, and that will cause races between previous read/write
122 // and the close.
123 for (int l1 = 0; l1 < kTableSizeL1; l1++) {
124 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
125 if (tab == 0)
126 break;
127 for (int l2 = 0; l2 < kTableSizeL2; l2++) {
128 FdDesc *d = &tab[l2];
129 MemoryResetRange(thr, pc, (uptr)d, 8);
134 bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) {
135 for (int l1 = 0; l1 < kTableSizeL1; l1++) {
136 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
137 if (tab == 0)
138 break;
139 if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
140 int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
141 FdDesc *d = &tab[l2];
142 *fd = l1 * kTableSizeL1 + l2;
143 *tid = d->creation_tid;
144 *stack = d->creation_stack;
145 return true;
148 return false;
151 void FdAcquire(ThreadState *thr, uptr pc, int fd) {
152 if (bogusfd(fd))
153 return;
154 FdDesc *d = fddesc(thr, pc, fd);
155 FdSync *s = d->sync;
156 DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
157 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
158 if (s)
159 Acquire(thr, pc, (uptr)s);
162 void FdRelease(ThreadState *thr, uptr pc, int fd) {
163 if (bogusfd(fd))
164 return;
165 FdDesc *d = fddesc(thr, pc, fd);
166 FdSync *s = d->sync;
167 DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
168 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
169 if (s)
170 Release(thr, pc, (uptr)s);
173 void FdAccess(ThreadState *thr, uptr pc, int fd) {
174 DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
175 if (bogusfd(fd))
176 return;
177 FdDesc *d = fddesc(thr, pc, fd);
178 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
181 void FdClose(ThreadState *thr, uptr pc, int fd) {
182 DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
183 if (bogusfd(fd))
184 return;
185 FdDesc *d = fddesc(thr, pc, fd);
186 // To catch races between fd usage and close.
187 MemoryWrite(thr, pc, (uptr)d, kSizeLog8);
188 // We need to clear it, because if we do not intercept any call out there
189 // that creates fd, we will hit false postives.
190 MemoryResetRange(thr, pc, (uptr)d, 8);
191 unref(thr, pc, d->sync);
192 d->sync = 0;
193 d->creation_tid = 0;
194 d->creation_stack = 0;
197 void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
198 DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
199 if (bogusfd(fd))
200 return;
201 init(thr, pc, fd, &fdctx.filesync);
204 void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd) {
205 DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
206 if (bogusfd(oldfd) || bogusfd(newfd))
207 return;
208 // Ignore the case when user dups not yet connected socket.
209 FdDesc *od = fddesc(thr, pc, oldfd);
210 MemoryRead(thr, pc, (uptr)od, kSizeLog8);
211 FdClose(thr, pc, newfd);
212 init(thr, pc, newfd, ref(od->sync));
215 void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
216 DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
217 FdSync *s = allocsync(thr, pc);
218 init(thr, pc, rfd, ref(s));
219 init(thr, pc, wfd, ref(s));
220 unref(thr, pc, s);
223 void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
224 DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
225 if (bogusfd(fd))
226 return;
227 init(thr, pc, fd, allocsync(thr, pc));
230 void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
231 DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
232 if (bogusfd(fd))
233 return;
234 init(thr, pc, fd, 0);
237 void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
238 DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
239 if (bogusfd(fd))
240 return;
241 init(thr, pc, fd, 0);
244 void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
245 DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
246 if (bogusfd(fd))
247 return;
248 init(thr, pc, fd, allocsync(thr, pc));
251 void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
252 DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
253 if (bogusfd(fd))
254 return;
255 // It can be a UDP socket.
256 init(thr, pc, fd, &fdctx.socksync);
259 void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
260 DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
261 if (bogusfd(fd))
262 return;
263 // Synchronize connect->accept.
264 Acquire(thr, pc, (uptr)&fdctx.connectsync);
265 init(thr, pc, newfd, &fdctx.socksync);
268 void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
269 DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
270 if (bogusfd(fd))
271 return;
272 // Synchronize connect->accept.
273 Release(thr, pc, (uptr)&fdctx.connectsync);
276 void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
277 DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
278 if (bogusfd(fd))
279 return;
280 init(thr, pc, fd, &fdctx.socksync);
283 uptr File2addr(const char *path) {
284 (void)path;
285 static u64 addr;
286 return (uptr)&addr;
289 uptr Dir2addr(const char *path) {
290 (void)path;
291 static u64 addr;
292 return (uptr)&addr;
295 } // namespace __tsan