1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
23 #include "hash-table.h"
26 #include "stor-layout.h"
34 #include "hard-reg-set.h"
37 #include "dominance.h"
40 #include "basic-block.h"
41 #include "tree-ssa-alias.h"
42 #include "internal-fn.h"
43 #include "gimple-expr.h"
47 #include "gimple-iterator.h"
48 #include "gimplify-me.h"
49 #include "gimple-ssa.h"
51 #include "tree-phinodes.h"
52 #include "ssa-iterators.h"
53 #include "stringpool.h"
54 #include "tree-ssanames.h"
57 #include "tree-pass.h"
58 #include "langhooks.h"
61 #include "tree-data-ref.h"
62 #include "gimple-pretty-print.h"
63 #include "insn-config.h"
65 #include "insn-codes.h"
67 #include "tree-scalar-evolution.h"
68 #include "tree-inline.h"
70 #ifndef HAVE_conditional_move
71 #define HAVE_conditional_move (0)
74 static unsigned int tree_ssa_phiopt_worker (bool, bool);
75 static bool conditional_replacement (basic_block
, basic_block
,
76 edge
, edge
, gimple
, tree
, tree
);
77 static int value_replacement (basic_block
, basic_block
,
78 edge
, edge
, gimple
, tree
, tree
);
79 static bool minmax_replacement (basic_block
, basic_block
,
80 edge
, edge
, gimple
, tree
, tree
);
81 static bool abs_replacement (basic_block
, basic_block
,
82 edge
, edge
, gimple
, tree
, tree
);
83 static bool neg_replacement (basic_block
, basic_block
,
84 edge
, edge
, gimple
, tree
, tree
);
85 static bool cond_store_replacement (basic_block
, basic_block
, edge
, edge
,
87 static bool cond_if_else_store_replacement (basic_block
, basic_block
, basic_block
);
88 static hash_set
<tree
> * get_non_trapping ();
89 static void replace_phi_edge_with_variable (basic_block
, edge
, gimple
, tree
);
90 static void hoist_adjacent_loads (basic_block
, basic_block
,
91 basic_block
, basic_block
);
92 static bool gate_hoist_loads (void);
94 /* This pass tries to transform conditional stores into unconditional
95 ones, enabling further simplifications with the simpler then and else
96 blocks. In particular it replaces this:
99 if (cond) goto bb2; else goto bb1;
107 if (cond) goto bb1; else goto bb2;
111 condtmp = PHI <RHS, condtmp'>
114 This transformation can only be done under several constraints,
115 documented below. It also replaces:
118 if (cond) goto bb2; else goto bb1;
129 if (cond) goto bb3; else goto bb1;
132 condtmp = PHI <RHS1, RHS2>
136 tree_ssa_cs_elim (void)
139 /* ??? We are not interested in loop related info, but the following
140 will create it, ICEing as we didn't init loops with pre-headers.
141 An interfacing issue of find_data_references_in_bb. */
142 loop_optimizer_init (LOOPS_NORMAL
);
144 todo
= tree_ssa_phiopt_worker (true, false);
146 loop_optimizer_finalize ();
150 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
153 single_non_singleton_phi_for_edges (gimple_seq seq
, edge e0
, edge e1
)
155 gimple_stmt_iterator i
;
157 if (gimple_seq_singleton_p (seq
))
158 return gsi_stmt (gsi_start (seq
));
159 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
161 gimple p
= gsi_stmt (i
);
162 /* If the PHI arguments are equal then we can skip this PHI. */
163 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p
, e0
->dest_idx
),
164 gimple_phi_arg_def (p
, e1
->dest_idx
)))
167 /* If we already have a PHI that has the two edge arguments are
168 different, then return it is not a singleton for these PHIs. */
177 /* The core routine of conditional store replacement and normal
178 phi optimizations. Both share much of the infrastructure in how
179 to match applicable basic block patterns. DO_STORE_ELIM is true
180 when we want to do conditional store replacement, false otherwise.
181 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
182 of diamond control flow patterns, false otherwise. */
184 tree_ssa_phiopt_worker (bool do_store_elim
, bool do_hoist_loads
)
187 basic_block
*bb_order
;
189 bool cfgchanged
= false;
190 hash_set
<tree
> *nontrap
= 0;
193 /* Calculate the set of non-trapping memory accesses. */
194 nontrap
= get_non_trapping ();
196 /* The replacement of conditional negation with a non-branching
197 sequence is really only a win when optimizing for speed and we
198 can avoid transformations by gimple if-conversion that result
199 in poor RTL generation.
201 Ideally either gimple if-conversion or the RTL expanders will
202 be improved and the code to emit branchless conditional negation
204 bool replace_conditional_negation
= false;
206 replace_conditional_negation
207 = ((!optimize_size
&& optimize
>= 2)
208 || (((flag_tree_loop_vectorize
|| cfun
->has_force_vectorize_loops
)
209 && flag_tree_loop_if_convert
!= 0)
210 || flag_tree_loop_if_convert
== 1
211 || flag_tree_loop_if_convert_stores
== 1));
213 /* Search every basic block for COND_EXPR we may be able to optimize.
215 We walk the blocks in order that guarantees that a block with
216 a single predecessor is processed before the predecessor.
217 This ensures that we collapse inner ifs before visiting the
218 outer ones, and also that we do not try to visit a removed
220 bb_order
= single_pred_before_succ_order ();
221 n
= n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
;
223 for (i
= 0; i
< n
; i
++)
225 gimple cond_stmt
, phi
;
226 basic_block bb1
, bb2
;
232 cond_stmt
= last_stmt (bb
);
233 /* Check to see if the last statement is a GIMPLE_COND. */
235 || gimple_code (cond_stmt
) != GIMPLE_COND
)
238 e1
= EDGE_SUCC (bb
, 0);
240 e2
= EDGE_SUCC (bb
, 1);
243 /* We cannot do the optimization on abnormal edges. */
244 if ((e1
->flags
& EDGE_ABNORMAL
) != 0
245 || (e2
->flags
& EDGE_ABNORMAL
) != 0)
248 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
249 if (EDGE_COUNT (bb1
->succs
) == 0
251 || EDGE_COUNT (bb2
->succs
) == 0)
254 /* Find the bb which is the fall through to the other. */
255 if (EDGE_SUCC (bb1
, 0)->dest
== bb2
)
257 else if (EDGE_SUCC (bb2
, 0)->dest
== bb1
)
259 basic_block bb_tmp
= bb1
;
266 else if (do_store_elim
267 && EDGE_SUCC (bb1
, 0)->dest
== EDGE_SUCC (bb2
, 0)->dest
)
269 basic_block bb3
= EDGE_SUCC (bb1
, 0)->dest
;
271 if (!single_succ_p (bb1
)
272 || (EDGE_SUCC (bb1
, 0)->flags
& EDGE_FALLTHRU
) == 0
273 || !single_succ_p (bb2
)
274 || (EDGE_SUCC (bb2
, 0)->flags
& EDGE_FALLTHRU
) == 0
275 || EDGE_COUNT (bb3
->preds
) != 2)
277 if (cond_if_else_store_replacement (bb1
, bb2
, bb3
))
281 else if (do_hoist_loads
282 && EDGE_SUCC (bb1
, 0)->dest
== EDGE_SUCC (bb2
, 0)->dest
)
284 basic_block bb3
= EDGE_SUCC (bb1
, 0)->dest
;
286 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt
)))
287 && single_succ_p (bb1
)
288 && single_succ_p (bb2
)
289 && single_pred_p (bb1
)
290 && single_pred_p (bb2
)
291 && EDGE_COUNT (bb
->succs
) == 2
292 && EDGE_COUNT (bb3
->preds
) == 2
293 /* If one edge or the other is dominant, a conditional move
294 is likely to perform worse than the well-predicted branch. */
295 && !predictable_edge_p (EDGE_SUCC (bb
, 0))
296 && !predictable_edge_p (EDGE_SUCC (bb
, 1)))
297 hoist_adjacent_loads (bb
, bb1
, bb2
, bb3
);
303 e1
= EDGE_SUCC (bb1
, 0);
305 /* Make sure that bb1 is just a fall through. */
306 if (!single_succ_p (bb1
)
307 || (e1
->flags
& EDGE_FALLTHRU
) == 0)
310 /* Also make sure that bb1 only have one predecessor and that it
312 if (!single_pred_p (bb1
)
313 || single_pred (bb1
) != bb
)
318 /* bb1 is the middle block, bb2 the join block, bb the split block,
319 e1 the fallthrough edge from bb1 to bb2. We can't do the
320 optimization if the join block has more than two predecessors. */
321 if (EDGE_COUNT (bb2
->preds
) > 2)
323 if (cond_store_replacement (bb1
, bb2
, e1
, e2
, nontrap
))
328 gimple_seq phis
= phi_nodes (bb2
);
329 gimple_stmt_iterator gsi
;
330 bool candorest
= true;
332 /* Value replacement can work with more than one PHI
333 so try that first. */
334 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
336 phi
= gsi_stmt (gsi
);
337 arg0
= gimple_phi_arg_def (phi
, e1
->dest_idx
);
338 arg1
= gimple_phi_arg_def (phi
, e2
->dest_idx
);
339 if (value_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
) == 2)
350 phi
= single_non_singleton_phi_for_edges (phis
, e1
, e2
);
354 arg0
= gimple_phi_arg_def (phi
, e1
->dest_idx
);
355 arg1
= gimple_phi_arg_def (phi
, e2
->dest_idx
);
357 /* Something is wrong if we cannot find the arguments in the PHI
359 gcc_assert (arg0
!= NULL
&& arg1
!= NULL
);
361 /* Do the replacement of conditional if it can be done. */
362 if (conditional_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
364 else if (abs_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
366 else if (replace_conditional_negation
367 && neg_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
369 else if (minmax_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
378 /* If the CFG has changed, we should cleanup the CFG. */
379 if (cfgchanged
&& do_store_elim
)
381 /* In cond-store replacement we have added some loads on edges
382 and new VOPS (as we moved the store, and created a load). */
383 gsi_commit_edge_inserts ();
384 return TODO_cleanup_cfg
| TODO_update_ssa_only_virtuals
;
387 return TODO_cleanup_cfg
;
391 /* Replace PHI node element whose edge is E in block BB with variable NEW.
392 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
393 is known to have two edges, one of which must reach BB). */
396 replace_phi_edge_with_variable (basic_block cond_block
,
397 edge e
, gimple phi
, tree new_tree
)
399 basic_block bb
= gimple_bb (phi
);
400 basic_block block_to_remove
;
401 gimple_stmt_iterator gsi
;
403 /* Change the PHI argument to new. */
404 SET_USE (PHI_ARG_DEF_PTR (phi
, e
->dest_idx
), new_tree
);
406 /* Remove the empty basic block. */
407 if (EDGE_SUCC (cond_block
, 0)->dest
== bb
)
409 EDGE_SUCC (cond_block
, 0)->flags
|= EDGE_FALLTHRU
;
410 EDGE_SUCC (cond_block
, 0)->flags
&= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
411 EDGE_SUCC (cond_block
, 0)->probability
= REG_BR_PROB_BASE
;
412 EDGE_SUCC (cond_block
, 0)->count
+= EDGE_SUCC (cond_block
, 1)->count
;
414 block_to_remove
= EDGE_SUCC (cond_block
, 1)->dest
;
418 EDGE_SUCC (cond_block
, 1)->flags
|= EDGE_FALLTHRU
;
419 EDGE_SUCC (cond_block
, 1)->flags
420 &= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
421 EDGE_SUCC (cond_block
, 1)->probability
= REG_BR_PROB_BASE
;
422 EDGE_SUCC (cond_block
, 1)->count
+= EDGE_SUCC (cond_block
, 0)->count
;
424 block_to_remove
= EDGE_SUCC (cond_block
, 0)->dest
;
426 delete_basic_block (block_to_remove
);
428 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
429 gsi
= gsi_last_bb (cond_block
);
430 gsi_remove (&gsi
, true);
432 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
434 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
439 /* The function conditional_replacement does the main work of doing the
440 conditional replacement. Return true if the replacement is done.
441 Otherwise return false.
442 BB is the basic block where the replacement is going to be done on. ARG0
443 is argument 0 from PHI. Likewise for ARG1. */
446 conditional_replacement (basic_block cond_bb
, basic_block middle_bb
,
447 edge e0
, edge e1
, gimple phi
,
448 tree arg0
, tree arg1
)
451 gimple stmt
, new_stmt
;
453 gimple_stmt_iterator gsi
;
454 edge true_edge
, false_edge
;
455 tree new_var
, new_var2
;
458 /* FIXME: Gimplification of complex type is too hard for now. */
459 /* We aren't prepared to handle vectors either (and it is a question
460 if it would be worthwhile anyway). */
461 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
462 || POINTER_TYPE_P (TREE_TYPE (arg0
)))
463 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
464 || POINTER_TYPE_P (TREE_TYPE (arg1
))))
467 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
468 convert it to the conditional. */
469 if ((integer_zerop (arg0
) && integer_onep (arg1
))
470 || (integer_zerop (arg1
) && integer_onep (arg0
)))
472 else if ((integer_zerop (arg0
) && integer_all_onesp (arg1
))
473 || (integer_zerop (arg1
) && integer_all_onesp (arg0
)))
478 if (!empty_block_p (middle_bb
))
481 /* At this point we know we have a GIMPLE_COND with two successors.
482 One successor is BB, the other successor is an empty block which
483 falls through into BB.
485 There is a single PHI node at the join point (BB) and its arguments
486 are constants (0, 1) or (0, -1).
488 So, given the condition COND, and the two PHI arguments, we can
489 rewrite this PHI into non-branching code:
491 dest = (COND) or dest = COND'
493 We use the condition as-is if the argument associated with the
494 true edge has the value one or the argument associated with the
495 false edge as the value zero. Note that those conditions are not
496 the same since only one of the outgoing edges from the GIMPLE_COND
497 will directly reach BB and thus be associated with an argument. */
499 stmt
= last_stmt (cond_bb
);
500 result
= PHI_RESULT (phi
);
502 /* To handle special cases like floating point comparison, it is easier and
503 less error-prone to build a tree and gimplify it on the fly though it is
505 cond
= fold_build2_loc (gimple_location (stmt
),
506 gimple_cond_code (stmt
), boolean_type_node
,
507 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
509 /* We need to know which is the true edge and which is the false
510 edge so that we know when to invert the condition below. */
511 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
512 if ((e0
== true_edge
&& integer_zerop (arg0
))
513 || (e0
== false_edge
&& !integer_zerop (arg0
))
514 || (e1
== true_edge
&& integer_zerop (arg1
))
515 || (e1
== false_edge
&& !integer_zerop (arg1
)))
516 cond
= fold_build1_loc (gimple_location (stmt
),
517 TRUTH_NOT_EXPR
, TREE_TYPE (cond
), cond
);
521 cond
= fold_convert_loc (gimple_location (stmt
),
522 TREE_TYPE (result
), cond
);
523 cond
= fold_build1_loc (gimple_location (stmt
),
524 NEGATE_EXPR
, TREE_TYPE (cond
), cond
);
527 /* Insert our new statements at the end of conditional block before the
529 gsi
= gsi_for_stmt (stmt
);
530 new_var
= force_gimple_operand_gsi (&gsi
, cond
, true, NULL
, true,
533 if (!useless_type_conversion_p (TREE_TYPE (result
), TREE_TYPE (new_var
)))
535 source_location locus_0
, locus_1
;
537 new_var2
= make_ssa_name (TREE_TYPE (result
), NULL
);
538 new_stmt
= gimple_build_assign_with_ops (CONVERT_EXPR
, new_var2
,
540 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
543 /* Set the locus to the first argument, unless is doesn't have one. */
544 locus_0
= gimple_phi_arg_location (phi
, 0);
545 locus_1
= gimple_phi_arg_location (phi
, 1);
546 if (locus_0
== UNKNOWN_LOCATION
)
548 gimple_set_location (new_stmt
, locus_0
);
551 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, new_var
);
553 /* Note that we optimized this PHI. */
557 /* Update *ARG which is defined in STMT so that it contains the
558 computed value if that seems profitable. Return true if the
559 statement is made dead by that rewriting. */
562 jump_function_from_stmt (tree
*arg
, gimple stmt
)
564 enum tree_code code
= gimple_assign_rhs_code (stmt
);
565 if (code
== ADDR_EXPR
)
567 /* For arg = &p->i transform it to p, if possible. */
568 tree rhs1
= gimple_assign_rhs1 (stmt
);
569 HOST_WIDE_INT offset
;
570 tree tem
= get_addr_base_and_unit_offset (TREE_OPERAND (rhs1
, 0),
573 && TREE_CODE (tem
) == MEM_REF
574 && (mem_ref_offset (tem
) + offset
) == 0)
576 *arg
= TREE_OPERAND (tem
, 0);
580 /* TODO: Much like IPA-CP jump-functions we want to handle constant
581 additions symbolically here, and we'd need to update the comparison
582 code that compares the arg + cst tuples in our caller. For now the
583 code above exactly handles the VEC_BASE pattern from vec.h. */
587 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
588 of the form SSA_NAME NE 0.
590 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
591 the two input values of the EQ_EXPR match arg0 and arg1.
593 If so update *code and return TRUE. Otherwise return FALSE. */
596 rhs_is_fed_for_value_replacement (const_tree arg0
, const_tree arg1
,
597 enum tree_code
*code
, const_tree rhs
)
599 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
601 if (TREE_CODE (rhs
) == SSA_NAME
)
603 gimple def1
= SSA_NAME_DEF_STMT (rhs
);
605 /* Verify the defining statement has an EQ_EXPR on the RHS. */
606 if (is_gimple_assign (def1
) && gimple_assign_rhs_code (def1
) == EQ_EXPR
)
608 /* Finally verify the source operands of the EQ_EXPR are equal
610 tree op0
= gimple_assign_rhs1 (def1
);
611 tree op1
= gimple_assign_rhs2 (def1
);
612 if ((operand_equal_for_phi_arg_p (arg0
, op0
)
613 && operand_equal_for_phi_arg_p (arg1
, op1
))
614 || (operand_equal_for_phi_arg_p (arg0
, op1
)
615 && operand_equal_for_phi_arg_p (arg1
, op0
)))
617 /* We will perform the optimization. */
618 *code
= gimple_assign_rhs_code (def1
);
626 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
628 Also return TRUE if arg0/arg1 are equal to the source arguments of a
629 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
631 Return FALSE otherwise. */
634 operand_equal_for_value_replacement (const_tree arg0
, const_tree arg1
,
635 enum tree_code
*code
, gimple cond
)
638 tree lhs
= gimple_cond_lhs (cond
);
639 tree rhs
= gimple_cond_rhs (cond
);
641 if ((operand_equal_for_phi_arg_p (arg0
, lhs
)
642 && operand_equal_for_phi_arg_p (arg1
, rhs
))
643 || (operand_equal_for_phi_arg_p (arg1
, lhs
)
644 && operand_equal_for_phi_arg_p (arg0
, rhs
)))
647 /* Now handle more complex case where we have an EQ comparison
648 which feeds a BIT_AND_EXPR which feeds COND.
650 First verify that COND is of the form SSA_NAME NE 0. */
651 if (*code
!= NE_EXPR
|| !integer_zerop (rhs
)
652 || TREE_CODE (lhs
) != SSA_NAME
)
655 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
656 def
= SSA_NAME_DEF_STMT (lhs
);
657 if (!is_gimple_assign (def
) || gimple_assign_rhs_code (def
) != BIT_AND_EXPR
)
660 /* Now verify arg0/arg1 correspond to the source arguments of an
661 EQ comparison feeding the BIT_AND_EXPR. */
663 tree tmp
= gimple_assign_rhs1 (def
);
664 if (rhs_is_fed_for_value_replacement (arg0
, arg1
, code
, tmp
))
667 tmp
= gimple_assign_rhs2 (def
);
668 if (rhs_is_fed_for_value_replacement (arg0
, arg1
, code
, tmp
))
674 /* Returns true if ARG is a neutral element for operation CODE
675 on the RIGHT side. */
678 neutral_element_p (tree_code code
, tree arg
, bool right
)
685 return integer_zerop (arg
);
692 case POINTER_PLUS_EXPR
:
693 return right
&& integer_zerop (arg
);
696 return integer_onep (arg
);
703 return right
&& integer_onep (arg
);
706 return integer_all_onesp (arg
);
713 /* Returns true if ARG is an absorbing element for operation CODE. */
716 absorbing_element_p (tree_code code
, tree arg
)
721 return integer_all_onesp (arg
);
725 return integer_zerop (arg
);
732 /* The function value_replacement does the main work of doing the value
733 replacement. Return non-zero if the replacement is done. Otherwise return
734 0. If we remove the middle basic block, return 2.
735 BB is the basic block where the replacement is going to be done on. ARG0
736 is argument 0 from the PHI. Likewise for ARG1. */
739 value_replacement (basic_block cond_bb
, basic_block middle_bb
,
740 edge e0
, edge e1
, gimple phi
,
741 tree arg0
, tree arg1
)
743 gimple_stmt_iterator gsi
;
745 edge true_edge
, false_edge
;
747 bool emtpy_or_with_defined_p
= true;
749 /* If the type says honor signed zeros we cannot do this
751 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
754 /* If there is a statement in MIDDLE_BB that defines one of the PHI
755 arguments, then adjust arg0 or arg1. */
756 gsi
= gsi_start_nondebug_after_labels_bb (middle_bb
);
757 while (!gsi_end_p (gsi
))
759 gimple stmt
= gsi_stmt (gsi
);
761 gsi_next_nondebug (&gsi
);
762 if (!is_gimple_assign (stmt
))
764 emtpy_or_with_defined_p
= false;
767 /* Now try to adjust arg0 or arg1 according to the computation
769 lhs
= gimple_assign_lhs (stmt
);
771 && jump_function_from_stmt (&arg0
, stmt
))
773 && jump_function_from_stmt (&arg1
, stmt
)))
774 emtpy_or_with_defined_p
= false;
777 cond
= last_stmt (cond_bb
);
778 code
= gimple_cond_code (cond
);
780 /* This transformation is only valid for equality comparisons. */
781 if (code
!= NE_EXPR
&& code
!= EQ_EXPR
)
784 /* We need to know which is the true edge and which is the false
785 edge so that we know if have abs or negative abs. */
786 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
788 /* At this point we know we have a COND_EXPR with two successors.
789 One successor is BB, the other successor is an empty block which
790 falls through into BB.
792 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
794 There is a single PHI node at the join point (BB) with two arguments.
796 We now need to verify that the two arguments in the PHI node match
797 the two arguments to the equality comparison. */
799 if (operand_equal_for_value_replacement (arg0
, arg1
, &code
, cond
))
804 /* For NE_EXPR, we want to build an assignment result = arg where
805 arg is the PHI argument associated with the true edge. For
806 EQ_EXPR we want the PHI argument associated with the false edge. */
807 e
= (code
== NE_EXPR
? true_edge
: false_edge
);
809 /* Unfortunately, E may not reach BB (it may instead have gone to
810 OTHER_BLOCK). If that is the case, then we want the single outgoing
811 edge from OTHER_BLOCK which reaches BB and represents the desired
812 path from COND_BLOCK. */
813 if (e
->dest
== middle_bb
)
814 e
= single_succ_edge (e
->dest
);
816 /* Now we know the incoming edge to BB that has the argument for the
817 RHS of our new assignment statement. */
823 /* If the middle basic block was empty or is defining the
824 PHI arguments and this is a single phi where the args are different
825 for the edges e0 and e1 then we can remove the middle basic block. */
826 if (emtpy_or_with_defined_p
827 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi
)),
830 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, arg
);
831 /* Note that we optimized this PHI. */
836 /* Replace the PHI arguments with arg. */
837 SET_PHI_ARG_DEF (phi
, e0
->dest_idx
, arg
);
838 SET_PHI_ARG_DEF (phi
, e1
->dest_idx
, arg
);
839 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
841 fprintf (dump_file
, "PHI ");
842 print_generic_expr (dump_file
, gimple_phi_result (phi
), 0);
843 fprintf (dump_file
, " reduced for COND_EXPR in block %d to ",
845 print_generic_expr (dump_file
, arg
, 0);
846 fprintf (dump_file
, ".\n");
853 /* Now optimize (x != 0) ? x + y : y to just y.
854 The following condition is too restrictive, there can easily be another
855 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
856 gimple assign
= last_and_only_stmt (middle_bb
);
857 if (!assign
|| gimple_code (assign
) != GIMPLE_ASSIGN
858 || gimple_assign_rhs_class (assign
) != GIMPLE_BINARY_RHS
859 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
860 && !POINTER_TYPE_P (TREE_TYPE (arg0
))))
863 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
864 if (!gimple_seq_empty_p (phi_nodes (middle_bb
)))
867 /* Only transform if it removes the condition. */
868 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi
)), e0
, e1
))
871 /* Size-wise, this is always profitable. */
872 if (optimize_bb_for_speed_p (cond_bb
)
873 /* The special case is useless if it has a low probability. */
874 && profile_status_for_fn (cfun
) != PROFILE_ABSENT
875 && EDGE_PRED (middle_bb
, 0)->probability
< PROB_EVEN
876 /* If assign is cheap, there is no point avoiding it. */
877 && estimate_num_insns (assign
, &eni_time_weights
)
878 >= 3 * estimate_num_insns (cond
, &eni_time_weights
))
881 tree lhs
= gimple_assign_lhs (assign
);
882 tree rhs1
= gimple_assign_rhs1 (assign
);
883 tree rhs2
= gimple_assign_rhs2 (assign
);
884 enum tree_code code_def
= gimple_assign_rhs_code (assign
);
885 tree cond_lhs
= gimple_cond_lhs (cond
);
886 tree cond_rhs
= gimple_cond_rhs (cond
);
888 if (((code
== NE_EXPR
&& e1
== false_edge
)
889 || (code
== EQ_EXPR
&& e1
== true_edge
))
892 && operand_equal_for_phi_arg_p (rhs2
, cond_lhs
)
893 && neutral_element_p (code_def
, cond_rhs
, true))
895 && operand_equal_for_phi_arg_p (rhs1
, cond_lhs
)
896 && neutral_element_p (code_def
, cond_rhs
, false))
897 || (operand_equal_for_phi_arg_p (arg1
, cond_rhs
)
898 && (operand_equal_for_phi_arg_p (rhs2
, cond_lhs
)
899 || operand_equal_for_phi_arg_p (rhs1
, cond_lhs
))
900 && absorbing_element_p (code_def
, cond_rhs
))))
902 gsi
= gsi_for_stmt (cond
);
903 gimple_stmt_iterator gsi_from
= gsi_for_stmt (assign
);
904 gsi_move_before (&gsi_from
, &gsi
);
905 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, lhs
);
912 /* The function minmax_replacement does the main work of doing the minmax
913 replacement. Return true if the replacement is done. Otherwise return
915 BB is the basic block where the replacement is going to be done on. ARG0
916 is argument 0 from the PHI. Likewise for ARG1. */
919 minmax_replacement (basic_block cond_bb
, basic_block middle_bb
,
920 edge e0
, edge e1
, gimple phi
,
921 tree arg0
, tree arg1
)
924 gimple cond
, new_stmt
;
925 edge true_edge
, false_edge
;
926 enum tree_code cmp
, minmax
, ass_code
;
927 tree smaller
, larger
, arg_true
, arg_false
;
928 gimple_stmt_iterator gsi
, gsi_from
;
930 type
= TREE_TYPE (PHI_RESULT (phi
));
932 /* The optimization may be unsafe due to NaNs. */
933 if (HONOR_NANS (TYPE_MODE (type
)))
936 cond
= last_stmt (cond_bb
);
937 cmp
= gimple_cond_code (cond
);
939 /* This transformation is only valid for order comparisons. Record which
940 operand is smaller/larger if the result of the comparison is true. */
941 if (cmp
== LT_EXPR
|| cmp
== LE_EXPR
)
943 smaller
= gimple_cond_lhs (cond
);
944 larger
= gimple_cond_rhs (cond
);
946 else if (cmp
== GT_EXPR
|| cmp
== GE_EXPR
)
948 smaller
= gimple_cond_rhs (cond
);
949 larger
= gimple_cond_lhs (cond
);
954 /* We need to know which is the true edge and which is the false
955 edge so that we know if have abs or negative abs. */
956 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
958 /* Forward the edges over the middle basic block. */
959 if (true_edge
->dest
== middle_bb
)
960 true_edge
= EDGE_SUCC (true_edge
->dest
, 0);
961 if (false_edge
->dest
== middle_bb
)
962 false_edge
= EDGE_SUCC (false_edge
->dest
, 0);
966 gcc_assert (false_edge
== e1
);
972 gcc_assert (false_edge
== e0
);
973 gcc_assert (true_edge
== e1
);
978 if (empty_block_p (middle_bb
))
980 if (operand_equal_for_phi_arg_p (arg_true
, smaller
)
981 && operand_equal_for_phi_arg_p (arg_false
, larger
))
985 if (smaller < larger)
991 else if (operand_equal_for_phi_arg_p (arg_false
, smaller
)
992 && operand_equal_for_phi_arg_p (arg_true
, larger
))
999 /* Recognize the following case, assuming d <= u:
1005 This is equivalent to
1010 gimple assign
= last_and_only_stmt (middle_bb
);
1011 tree lhs
, op0
, op1
, bound
;
1014 || gimple_code (assign
) != GIMPLE_ASSIGN
)
1017 lhs
= gimple_assign_lhs (assign
);
1018 ass_code
= gimple_assign_rhs_code (assign
);
1019 if (ass_code
!= MAX_EXPR
&& ass_code
!= MIN_EXPR
)
1021 op0
= gimple_assign_rhs1 (assign
);
1022 op1
= gimple_assign_rhs2 (assign
);
1024 if (true_edge
->src
== middle_bb
)
1026 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1027 if (!operand_equal_for_phi_arg_p (lhs
, arg_true
))
1030 if (operand_equal_for_phi_arg_p (arg_false
, larger
))
1034 if (smaller < larger)
1036 r' = MAX_EXPR (smaller, bound)
1038 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1039 if (ass_code
!= MAX_EXPR
)
1043 if (operand_equal_for_phi_arg_p (op0
, smaller
))
1045 else if (operand_equal_for_phi_arg_p (op1
, smaller
))
1050 /* We need BOUND <= LARGER. */
1051 if (!integer_nonzerop (fold_build2 (LE_EXPR
, boolean_type_node
,
1055 else if (operand_equal_for_phi_arg_p (arg_false
, smaller
))
1059 if (smaller < larger)
1061 r' = MIN_EXPR (larger, bound)
1063 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1064 if (ass_code
!= MIN_EXPR
)
1068 if (operand_equal_for_phi_arg_p (op0
, larger
))
1070 else if (operand_equal_for_phi_arg_p (op1
, larger
))
1075 /* We need BOUND >= SMALLER. */
1076 if (!integer_nonzerop (fold_build2 (GE_EXPR
, boolean_type_node
,
1085 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1086 if (!operand_equal_for_phi_arg_p (lhs
, arg_false
))
1089 if (operand_equal_for_phi_arg_p (arg_true
, larger
))
1093 if (smaller > larger)
1095 r' = MIN_EXPR (smaller, bound)
1097 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1098 if (ass_code
!= MIN_EXPR
)
1102 if (operand_equal_for_phi_arg_p (op0
, smaller
))
1104 else if (operand_equal_for_phi_arg_p (op1
, smaller
))
1109 /* We need BOUND >= LARGER. */
1110 if (!integer_nonzerop (fold_build2 (GE_EXPR
, boolean_type_node
,
1114 else if (operand_equal_for_phi_arg_p (arg_true
, smaller
))
1118 if (smaller > larger)
1120 r' = MAX_EXPR (larger, bound)
1122 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1123 if (ass_code
!= MAX_EXPR
)
1127 if (operand_equal_for_phi_arg_p (op0
, larger
))
1129 else if (operand_equal_for_phi_arg_p (op1
, larger
))
1134 /* We need BOUND <= SMALLER. */
1135 if (!integer_nonzerop (fold_build2 (LE_EXPR
, boolean_type_node
,
1143 /* Move the statement from the middle block. */
1144 gsi
= gsi_last_bb (cond_bb
);
1145 gsi_from
= gsi_last_nondebug_bb (middle_bb
);
1146 gsi_move_before (&gsi_from
, &gsi
);
1149 /* Emit the statement to compute min/max. */
1150 result
= duplicate_ssa_name (PHI_RESULT (phi
), NULL
);
1151 new_stmt
= gimple_build_assign_with_ops (minmax
, result
, arg0
, arg1
);
1152 gsi
= gsi_last_bb (cond_bb
);
1153 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
1155 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, result
);
1159 /* The function absolute_replacement does the main work of doing the absolute
1160 replacement. Return true if the replacement is done. Otherwise return
1162 bb is the basic block where the replacement is going to be done on. arg0
1163 is argument 0 from the phi. Likewise for arg1. */
1166 abs_replacement (basic_block cond_bb
, basic_block middle_bb
,
1167 edge e0 ATTRIBUTE_UNUSED
, edge e1
,
1168 gimple phi
, tree arg0
, tree arg1
)
1171 gimple new_stmt
, cond
;
1172 gimple_stmt_iterator gsi
;
1173 edge true_edge
, false_edge
;
1178 enum tree_code cond_code
;
1180 /* If the type says honor signed zeros we cannot do this
1182 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
1185 /* OTHER_BLOCK must have only one executable statement which must have the
1186 form arg0 = -arg1 or arg1 = -arg0. */
1188 assign
= last_and_only_stmt (middle_bb
);
1189 /* If we did not find the proper negation assignment, then we can not
1194 /* If we got here, then we have found the only executable statement
1195 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1196 arg1 = -arg0, then we can not optimize. */
1197 if (gimple_code (assign
) != GIMPLE_ASSIGN
)
1200 lhs
= gimple_assign_lhs (assign
);
1202 if (gimple_assign_rhs_code (assign
) != NEGATE_EXPR
)
1205 rhs
= gimple_assign_rhs1 (assign
);
1207 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1208 if (!(lhs
== arg0
&& rhs
== arg1
)
1209 && !(lhs
== arg1
&& rhs
== arg0
))
1212 cond
= last_stmt (cond_bb
);
1213 result
= PHI_RESULT (phi
);
1215 /* Only relationals comparing arg[01] against zero are interesting. */
1216 cond_code
= gimple_cond_code (cond
);
1217 if (cond_code
!= GT_EXPR
&& cond_code
!= GE_EXPR
1218 && cond_code
!= LT_EXPR
&& cond_code
!= LE_EXPR
)
1221 /* Make sure the conditional is arg[01] OP y. */
1222 if (gimple_cond_lhs (cond
) != rhs
)
1225 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond
)))
1226 ? real_zerop (gimple_cond_rhs (cond
))
1227 : integer_zerop (gimple_cond_rhs (cond
)))
1232 /* We need to know which is the true edge and which is the false
1233 edge so that we know if have abs or negative abs. */
1234 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
1236 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1237 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1238 the false edge goes to OTHER_BLOCK. */
1239 if (cond_code
== GT_EXPR
|| cond_code
== GE_EXPR
)
1244 if (e
->dest
== middle_bb
)
1249 result
= duplicate_ssa_name (result
, NULL
);
1252 lhs
= make_ssa_name (TREE_TYPE (result
), NULL
);
1256 /* Build the modify expression with abs expression. */
1257 new_stmt
= gimple_build_assign_with_ops (ABS_EXPR
, lhs
, rhs
, NULL
);
1259 gsi
= gsi_last_bb (cond_bb
);
1260 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
1264 /* Get the right GSI. We want to insert after the recently
1265 added ABS_EXPR statement (which we know is the first statement
1267 new_stmt
= gimple_build_assign_with_ops (NEGATE_EXPR
, result
, lhs
, NULL
);
1269 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1272 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, result
);
1274 /* Note that we optimized this PHI. */
1278 /* The function neg_replacement replaces conditional negation with
1279 equivalent straight line code. Returns TRUE if replacement is done,
1280 otherwise returns FALSE.
1282 COND_BB branches around negation occuring in MIDDLE_BB.
1284 E0 and E1 are edges out of COND_BB. E0 reaches MIDDLE_BB and
1285 E1 reaches the other successor which should contain PHI with
1286 arguments ARG0 and ARG1.
1288 Assuming negation is to occur when the condition is true,
1289 then the non-branching sequence is:
1291 result = (rhs ^ -cond) + cond
1293 Inverting the condition or its result gives us negation
1294 when the original condition is false. */
1297 neg_replacement (basic_block cond_bb
, basic_block middle_bb
,
1298 edge e0 ATTRIBUTE_UNUSED
, edge e1
,
1299 gimple phi
, tree arg0
, tree arg1
)
1301 gimple new_stmt
, cond
;
1302 gimple_stmt_iterator gsi
;
1304 edge true_edge
, false_edge
;
1306 enum tree_code cond_code
;
1307 bool invert
= false;
1309 /* This transformation performs logical operations on the
1310 incoming arguments. So force them to be integral types. */
1311 if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
1314 /* OTHER_BLOCK must have only one executable statement which must have the
1315 form arg0 = -arg1 or arg1 = -arg0. */
1317 assign
= last_and_only_stmt (middle_bb
);
1318 /* If we did not find the proper negation assignment, then we can not
1323 /* If we got here, then we have found the only executable statement
1324 in OTHER_BLOCK. If it is anything other than arg0 = -arg1 or
1325 arg1 = -arg0, then we can not optimize. */
1326 if (gimple_code (assign
) != GIMPLE_ASSIGN
)
1329 lhs
= gimple_assign_lhs (assign
);
1331 if (gimple_assign_rhs_code (assign
) != NEGATE_EXPR
)
1334 rhs
= gimple_assign_rhs1 (assign
);
1336 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1337 if (!(lhs
== arg0
&& rhs
== arg1
)
1338 && !(lhs
== arg1
&& rhs
== arg0
))
1341 /* The basic sequence assumes we negate when the condition is true.
1342 If we need the opposite, then we will either need to invert the
1343 condition or its result. */
1344 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
1345 invert
= false_edge
->dest
== middle_bb
;
1347 /* Unlike abs_replacement, we can handle arbitrary conditionals here. */
1348 cond
= last_stmt (cond_bb
);
1349 cond_code
= gimple_cond_code (cond
);
1351 /* If inversion is needed, first try to invert the test since
1356 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (cond
))));
1357 enum tree_code new_code
= invert_tree_comparison (cond_code
, honor_nans
);
1359 /* If invert_tree_comparison was successful, then use its return
1360 value as the new code and note that inversion is no longer
1362 if (new_code
!= ERROR_MARK
)
1364 cond_code
= new_code
;
1369 tree cond_val
= make_ssa_name (boolean_type_node
, NULL
);
1370 new_stmt
= gimple_build_assign_with_ops (cond_code
, cond_val
,
1371 gimple_cond_lhs (cond
),
1372 gimple_cond_rhs (cond
));
1373 gsi
= gsi_last_bb (cond_bb
);
1374 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
1376 /* If we still need inversion, then invert the result of the
1380 tree tmp
= make_ssa_name (boolean_type_node
, NULL
);
1381 new_stmt
= gimple_build_assign_with_ops (BIT_XOR_EXPR
, tmp
,
1382 cond_val
, boolean_true_node
);
1383 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1387 /* Get the condition in the right type so that we can perform
1388 logical and arithmetic operations on it. */
1389 tree cond_val_converted
= make_ssa_name (TREE_TYPE (rhs
), NULL
);
1390 new_stmt
= gimple_build_assign_with_ops (NOP_EXPR
, cond_val_converted
,
1391 cond_val
, NULL_TREE
);
1392 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1394 tree neg_cond_val_converted
= make_ssa_name (TREE_TYPE (rhs
), NULL
);
1395 new_stmt
= gimple_build_assign_with_ops (NEGATE_EXPR
, neg_cond_val_converted
,
1396 cond_val_converted
, NULL_TREE
);
1397 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1399 tree tmp
= make_ssa_name (TREE_TYPE (rhs
), NULL
);
1400 new_stmt
= gimple_build_assign_with_ops (BIT_XOR_EXPR
, tmp
,
1401 rhs
, neg_cond_val_converted
);
1402 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1404 tree new_lhs
= make_ssa_name (TREE_TYPE (rhs
), NULL
);
1405 new_stmt
= gimple_build_assign_with_ops (PLUS_EXPR
, new_lhs
,
1406 tmp
, cond_val_converted
);
1407 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1409 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, new_lhs
);
1411 /* Note that we optimized this PHI. */
1415 /* Auxiliary functions to determine the set of memory accesses which
1416 can't trap because they are preceded by accesses to the same memory
1417 portion. We do that for MEM_REFs, so we only need to track
1418 the SSA_NAME of the pointer indirectly referenced. The algorithm
1419 simply is a walk over all instructions in dominator order. When
1420 we see an MEM_REF we determine if we've already seen a same
1421 ref anywhere up to the root of the dominator tree. If we do the
1422 current access can't trap. If we don't see any dominating access
1423 the current access might trap, but might also make later accesses
1424 non-trapping, so we remember it. We need to be careful with loads
1425 or stores, for instance a load might not trap, while a store would,
1426 so if we see a dominating read access this doesn't mean that a later
1427 write access would not trap. Hence we also need to differentiate the
1428 type of access(es) seen.
1430 ??? We currently are very conservative and assume that a load might
1431 trap even if a store doesn't (write-only memory). This probably is
1432 overly conservative. */
1434 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1435 through it was seen, which would constitute a no-trap region for
1439 unsigned int ssa_name_ver
;
1442 HOST_WIDE_INT offset
, size
;
1446 /* Hashtable helpers. */
1448 struct ssa_names_hasher
: typed_free_remove
<name_to_bb
>
1450 typedef name_to_bb value_type
;
1451 typedef name_to_bb compare_type
;
1452 static inline hashval_t
hash (const value_type
*);
1453 static inline bool equal (const value_type
*, const compare_type
*);
1456 /* Used for quick clearing of the hash-table when we see calls.
1457 Hash entries with phase < nt_call_phase are invalid. */
1458 static unsigned int nt_call_phase
;
1460 /* The hash function. */
1463 ssa_names_hasher::hash (const value_type
*n
)
1465 return n
->ssa_name_ver
^ (((hashval_t
) n
->store
) << 31)
1466 ^ (n
->offset
<< 6) ^ (n
->size
<< 3);
1469 /* The equality function of *P1 and *P2. */
1472 ssa_names_hasher::equal (const value_type
*n1
, const compare_type
*n2
)
1474 return n1
->ssa_name_ver
== n2
->ssa_name_ver
1475 && n1
->store
== n2
->store
1476 && n1
->offset
== n2
->offset
1477 && n1
->size
== n2
->size
;
1480 class nontrapping_dom_walker
: public dom_walker
1483 nontrapping_dom_walker (cdi_direction direction
, hash_set
<tree
> *ps
)
1484 : dom_walker (direction
), m_nontrapping (ps
), m_seen_ssa_names (128) {}
1486 virtual void before_dom_children (basic_block
);
1487 virtual void after_dom_children (basic_block
);
1491 /* We see the expression EXP in basic block BB. If it's an interesting
1492 expression (an MEM_REF through an SSA_NAME) possibly insert the
1493 expression into the set NONTRAP or the hash table of seen expressions.
1494 STORE is true if this expression is on the LHS, otherwise it's on
1496 void add_or_mark_expr (basic_block
, tree
, bool);
1498 hash_set
<tree
> *m_nontrapping
;
1500 /* The hash table for remembering what we've seen. */
1501 hash_table
<ssa_names_hasher
> m_seen_ssa_names
;
1504 /* Called by walk_dominator_tree, when entering the block BB. */
1506 nontrapping_dom_walker::before_dom_children (basic_block bb
)
1510 gimple_stmt_iterator gsi
;
1512 /* If we haven't seen all our predecessors, clear the hash-table. */
1513 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1514 if ((((size_t)e
->src
->aux
) & 2) == 0)
1520 /* Mark this BB as being on the path to dominator root and as visited. */
1521 bb
->aux
= (void*)(1 | 2);
1523 /* And walk the statements in order. */
1524 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1526 gimple stmt
= gsi_stmt (gsi
);
1528 if (is_gimple_call (stmt
) && !nonfreeing_call_p (stmt
))
1530 else if (gimple_assign_single_p (stmt
) && !gimple_has_volatile_ops (stmt
))
1532 add_or_mark_expr (bb
, gimple_assign_lhs (stmt
), true);
1533 add_or_mark_expr (bb
, gimple_assign_rhs1 (stmt
), false);
1538 /* Called by walk_dominator_tree, when basic block BB is exited. */
1540 nontrapping_dom_walker::after_dom_children (basic_block bb
)
1542 /* This BB isn't on the path to dominator root anymore. */
1546 /* We see the expression EXP in basic block BB. If it's an interesting
1547 expression (an MEM_REF through an SSA_NAME) possibly insert the
1548 expression into the set NONTRAP or the hash table of seen expressions.
1549 STORE is true if this expression is on the LHS, otherwise it's on
1552 nontrapping_dom_walker::add_or_mark_expr (basic_block bb
, tree exp
, bool store
)
1556 if (TREE_CODE (exp
) == MEM_REF
1557 && TREE_CODE (TREE_OPERAND (exp
, 0)) == SSA_NAME
1558 && tree_fits_shwi_p (TREE_OPERAND (exp
, 1))
1559 && (size
= int_size_in_bytes (TREE_TYPE (exp
))) > 0)
1561 tree name
= TREE_OPERAND (exp
, 0);
1562 struct name_to_bb map
;
1564 struct name_to_bb
*n2bb
;
1565 basic_block found_bb
= 0;
1567 /* Try to find the last seen MEM_REF through the same
1568 SSA_NAME, which can trap. */
1569 map
.ssa_name_ver
= SSA_NAME_VERSION (name
);
1573 map
.offset
= tree_to_shwi (TREE_OPERAND (exp
, 1));
1576 slot
= m_seen_ssa_names
.find_slot (&map
, INSERT
);
1578 if (n2bb
&& n2bb
->phase
>= nt_call_phase
)
1579 found_bb
= n2bb
->bb
;
1581 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1582 (it's in a basic block on the path from us to the dominator root)
1583 then we can't trap. */
1584 if (found_bb
&& (((size_t)found_bb
->aux
) & 1) == 1)
1586 m_nontrapping
->add (exp
);
1590 /* EXP might trap, so insert it into the hash table. */
1593 n2bb
->phase
= nt_call_phase
;
1598 n2bb
= XNEW (struct name_to_bb
);
1599 n2bb
->ssa_name_ver
= SSA_NAME_VERSION (name
);
1600 n2bb
->phase
= nt_call_phase
;
1602 n2bb
->store
= store
;
1603 n2bb
->offset
= map
.offset
;
1611 /* This is the entry point of gathering non trapping memory accesses.
1612 It will do a dominator walk over the whole function, and it will
1613 make use of the bb->aux pointers. It returns a set of trees
1614 (the MEM_REFs itself) which can't trap. */
1615 static hash_set
<tree
> *
1616 get_non_trapping (void)
1619 hash_set
<tree
> *nontrap
= new hash_set
<tree
>;
1620 /* We're going to do a dominator walk, so ensure that we have
1621 dominance information. */
1622 calculate_dominance_info (CDI_DOMINATORS
);
1624 nontrapping_dom_walker (CDI_DOMINATORS
, nontrap
)
1625 .walk (cfun
->cfg
->x_entry_block_ptr
);
1627 clear_aux_for_blocks ();
1631 /* Do the main work of conditional store replacement. We already know
1632 that the recognized pattern looks like so:
1635 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1638 fallthrough (edge E0)
1642 We check that MIDDLE_BB contains only one store, that that store
1643 doesn't trap (not via NOTRAP, but via checking if an access to the same
1644 memory location dominates us) and that the store has a "simple" RHS. */
1647 cond_store_replacement (basic_block middle_bb
, basic_block join_bb
,
1648 edge e0
, edge e1
, hash_set
<tree
> *nontrap
)
1650 gimple assign
= last_and_only_stmt (middle_bb
);
1651 tree lhs
, rhs
, name
, name2
;
1652 gimple newphi
, new_stmt
;
1653 gimple_stmt_iterator gsi
;
1654 source_location locus
;
1656 /* Check if middle_bb contains of only one store. */
1658 || !gimple_assign_single_p (assign
)
1659 || gimple_has_volatile_ops (assign
))
1662 locus
= gimple_location (assign
);
1663 lhs
= gimple_assign_lhs (assign
);
1664 rhs
= gimple_assign_rhs1 (assign
);
1665 if (TREE_CODE (lhs
) != MEM_REF
1666 || TREE_CODE (TREE_OPERAND (lhs
, 0)) != SSA_NAME
1667 || !is_gimple_reg_type (TREE_TYPE (lhs
)))
1670 /* Prove that we can move the store down. We could also check
1671 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1672 whose value is not available readily, which we want to avoid. */
1673 if (!nontrap
->contains (lhs
))
1676 /* Now we've checked the constraints, so do the transformation:
1677 1) Remove the single store. */
1678 gsi
= gsi_for_stmt (assign
);
1679 unlink_stmt_vdef (assign
);
1680 gsi_remove (&gsi
, true);
1681 release_defs (assign
);
1683 /* 2) Insert a load from the memory of the store to the temporary
1684 on the edge which did not contain the store. */
1685 lhs
= unshare_expr (lhs
);
1686 name
= make_temp_ssa_name (TREE_TYPE (lhs
), NULL
, "cstore");
1687 new_stmt
= gimple_build_assign (name
, lhs
);
1688 gimple_set_location (new_stmt
, locus
);
1689 gsi_insert_on_edge (e1
, new_stmt
);
1691 /* 3) Create a PHI node at the join block, with one argument
1692 holding the old RHS, and the other holding the temporary
1693 where we stored the old memory contents. */
1694 name2
= make_temp_ssa_name (TREE_TYPE (lhs
), NULL
, "cstore");
1695 newphi
= create_phi_node (name2
, join_bb
);
1696 add_phi_arg (newphi
, rhs
, e0
, locus
);
1697 add_phi_arg (newphi
, name
, e1
, locus
);
1699 lhs
= unshare_expr (lhs
);
1700 new_stmt
= gimple_build_assign (lhs
, PHI_RESULT (newphi
));
1702 /* 4) Insert that PHI node. */
1703 gsi
= gsi_after_labels (join_bb
);
1704 if (gsi_end_p (gsi
))
1706 gsi
= gsi_last_bb (join_bb
);
1707 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1710 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
1715 /* Do the main work of conditional store replacement. */
1718 cond_if_else_store_replacement_1 (basic_block then_bb
, basic_block else_bb
,
1719 basic_block join_bb
, gimple then_assign
,
1722 tree lhs_base
, lhs
, then_rhs
, else_rhs
, name
;
1723 source_location then_locus
, else_locus
;
1724 gimple_stmt_iterator gsi
;
1725 gimple newphi
, new_stmt
;
1727 if (then_assign
== NULL
1728 || !gimple_assign_single_p (then_assign
)
1729 || gimple_clobber_p (then_assign
)
1730 || gimple_has_volatile_ops (then_assign
)
1731 || else_assign
== NULL
1732 || !gimple_assign_single_p (else_assign
)
1733 || gimple_clobber_p (else_assign
)
1734 || gimple_has_volatile_ops (else_assign
))
1737 lhs
= gimple_assign_lhs (then_assign
);
1738 if (!is_gimple_reg_type (TREE_TYPE (lhs
))
1739 || !operand_equal_p (lhs
, gimple_assign_lhs (else_assign
), 0))
1742 lhs_base
= get_base_address (lhs
);
1743 if (lhs_base
== NULL_TREE
1744 || (!DECL_P (lhs_base
) && TREE_CODE (lhs_base
) != MEM_REF
))
1747 then_rhs
= gimple_assign_rhs1 (then_assign
);
1748 else_rhs
= gimple_assign_rhs1 (else_assign
);
1749 then_locus
= gimple_location (then_assign
);
1750 else_locus
= gimple_location (else_assign
);
1752 /* Now we've checked the constraints, so do the transformation:
1753 1) Remove the stores. */
1754 gsi
= gsi_for_stmt (then_assign
);
1755 unlink_stmt_vdef (then_assign
);
1756 gsi_remove (&gsi
, true);
1757 release_defs (then_assign
);
1759 gsi
= gsi_for_stmt (else_assign
);
1760 unlink_stmt_vdef (else_assign
);
1761 gsi_remove (&gsi
, true);
1762 release_defs (else_assign
);
1764 /* 2) Create a PHI node at the join block, with one argument
1765 holding the old RHS, and the other holding the temporary
1766 where we stored the old memory contents. */
1767 name
= make_temp_ssa_name (TREE_TYPE (lhs
), NULL
, "cstore");
1768 newphi
= create_phi_node (name
, join_bb
);
1769 add_phi_arg (newphi
, then_rhs
, EDGE_SUCC (then_bb
, 0), then_locus
);
1770 add_phi_arg (newphi
, else_rhs
, EDGE_SUCC (else_bb
, 0), else_locus
);
1772 new_stmt
= gimple_build_assign (lhs
, PHI_RESULT (newphi
));
1774 /* 3) Insert that PHI node. */
1775 gsi
= gsi_after_labels (join_bb
);
1776 if (gsi_end_p (gsi
))
1778 gsi
= gsi_last_bb (join_bb
);
1779 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1782 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
1787 /* Conditional store replacement. We already know
1788 that the recognized pattern looks like so:
1791 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1801 fallthrough (edge E0)
1805 We check that it is safe to sink the store to JOIN_BB by verifying that
1806 there are no read-after-write or write-after-write dependencies in
1807 THEN_BB and ELSE_BB. */
1810 cond_if_else_store_replacement (basic_block then_bb
, basic_block else_bb
,
1811 basic_block join_bb
)
1813 gimple then_assign
= last_and_only_stmt (then_bb
);
1814 gimple else_assign
= last_and_only_stmt (else_bb
);
1815 vec
<data_reference_p
> then_datarefs
, else_datarefs
;
1816 vec
<ddr_p
> then_ddrs
, else_ddrs
;
1817 gimple then_store
, else_store
;
1818 bool found
, ok
= false, res
;
1819 struct data_dependence_relation
*ddr
;
1820 data_reference_p then_dr
, else_dr
;
1822 tree then_lhs
, else_lhs
;
1823 basic_block blocks
[3];
1825 if (MAX_STORES_TO_SINK
== 0)
1828 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1829 if (then_assign
&& else_assign
)
1830 return cond_if_else_store_replacement_1 (then_bb
, else_bb
, join_bb
,
1831 then_assign
, else_assign
);
1833 /* Find data references. */
1834 then_datarefs
.create (1);
1835 else_datarefs
.create (1);
1836 if ((find_data_references_in_bb (NULL
, then_bb
, &then_datarefs
)
1838 || !then_datarefs
.length ()
1839 || (find_data_references_in_bb (NULL
, else_bb
, &else_datarefs
)
1841 || !else_datarefs
.length ())
1843 free_data_refs (then_datarefs
);
1844 free_data_refs (else_datarefs
);
1848 /* Find pairs of stores with equal LHS. */
1849 auto_vec
<gimple
, 1> then_stores
, else_stores
;
1850 FOR_EACH_VEC_ELT (then_datarefs
, i
, then_dr
)
1852 if (DR_IS_READ (then_dr
))
1855 then_store
= DR_STMT (then_dr
);
1856 then_lhs
= gimple_get_lhs (then_store
);
1857 if (then_lhs
== NULL_TREE
)
1861 FOR_EACH_VEC_ELT (else_datarefs
, j
, else_dr
)
1863 if (DR_IS_READ (else_dr
))
1866 else_store
= DR_STMT (else_dr
);
1867 else_lhs
= gimple_get_lhs (else_store
);
1868 if (else_lhs
== NULL_TREE
)
1871 if (operand_equal_p (then_lhs
, else_lhs
, 0))
1881 then_stores
.safe_push (then_store
);
1882 else_stores
.safe_push (else_store
);
1885 /* No pairs of stores found. */
1886 if (!then_stores
.length ()
1887 || then_stores
.length () > (unsigned) MAX_STORES_TO_SINK
)
1889 free_data_refs (then_datarefs
);
1890 free_data_refs (else_datarefs
);
1894 /* Compute and check data dependencies in both basic blocks. */
1895 then_ddrs
.create (1);
1896 else_ddrs
.create (1);
1897 if (!compute_all_dependences (then_datarefs
, &then_ddrs
,
1899 || !compute_all_dependences (else_datarefs
, &else_ddrs
,
1902 free_dependence_relations (then_ddrs
);
1903 free_dependence_relations (else_ddrs
);
1904 free_data_refs (then_datarefs
);
1905 free_data_refs (else_datarefs
);
1908 blocks
[0] = then_bb
;
1909 blocks
[1] = else_bb
;
1910 blocks
[2] = join_bb
;
1911 renumber_gimple_stmt_uids_in_blocks (blocks
, 3);
1913 /* Check that there are no read-after-write or write-after-write dependencies
1915 FOR_EACH_VEC_ELT (then_ddrs
, i
, ddr
)
1917 struct data_reference
*dra
= DDR_A (ddr
);
1918 struct data_reference
*drb
= DDR_B (ddr
);
1920 if (DDR_ARE_DEPENDENT (ddr
) != chrec_known
1921 && ((DR_IS_READ (dra
) && DR_IS_WRITE (drb
)
1922 && gimple_uid (DR_STMT (dra
)) > gimple_uid (DR_STMT (drb
)))
1923 || (DR_IS_READ (drb
) && DR_IS_WRITE (dra
)
1924 && gimple_uid (DR_STMT (drb
)) > gimple_uid (DR_STMT (dra
)))
1925 || (DR_IS_WRITE (dra
) && DR_IS_WRITE (drb
))))
1927 free_dependence_relations (then_ddrs
);
1928 free_dependence_relations (else_ddrs
);
1929 free_data_refs (then_datarefs
);
1930 free_data_refs (else_datarefs
);
1935 /* Check that there are no read-after-write or write-after-write dependencies
1937 FOR_EACH_VEC_ELT (else_ddrs
, i
, ddr
)
1939 struct data_reference
*dra
= DDR_A (ddr
);
1940 struct data_reference
*drb
= DDR_B (ddr
);
1942 if (DDR_ARE_DEPENDENT (ddr
) != chrec_known
1943 && ((DR_IS_READ (dra
) && DR_IS_WRITE (drb
)
1944 && gimple_uid (DR_STMT (dra
)) > gimple_uid (DR_STMT (drb
)))
1945 || (DR_IS_READ (drb
) && DR_IS_WRITE (dra
)
1946 && gimple_uid (DR_STMT (drb
)) > gimple_uid (DR_STMT (dra
)))
1947 || (DR_IS_WRITE (dra
) && DR_IS_WRITE (drb
))))
1949 free_dependence_relations (then_ddrs
);
1950 free_dependence_relations (else_ddrs
);
1951 free_data_refs (then_datarefs
);
1952 free_data_refs (else_datarefs
);
1957 /* Sink stores with same LHS. */
1958 FOR_EACH_VEC_ELT (then_stores
, i
, then_store
)
1960 else_store
= else_stores
[i
];
1961 res
= cond_if_else_store_replacement_1 (then_bb
, else_bb
, join_bb
,
1962 then_store
, else_store
);
1966 free_dependence_relations (then_ddrs
);
1967 free_dependence_relations (else_ddrs
);
1968 free_data_refs (then_datarefs
);
1969 free_data_refs (else_datarefs
);
1974 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1977 local_mem_dependence (gimple stmt
, basic_block bb
)
1979 tree vuse
= gimple_vuse (stmt
);
1985 def
= SSA_NAME_DEF_STMT (vuse
);
1986 return (def
&& gimple_bb (def
) == bb
);
1989 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1990 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1991 and BB3 rejoins control flow following BB1 and BB2, look for
1992 opportunities to hoist loads as follows. If BB3 contains a PHI of
1993 two loads, one each occurring in BB1 and BB2, and the loads are
1994 provably of adjacent fields in the same structure, then move both
1995 loads into BB0. Of course this can only be done if there are no
1996 dependencies preventing such motion.
1998 One of the hoisted loads will always be speculative, so the
1999 transformation is currently conservative:
2001 - The fields must be strictly adjacent.
2002 - The two fields must occupy a single memory block that is
2003 guaranteed to not cross a page boundary.
2005 The last is difficult to prove, as such memory blocks should be
2006 aligned on the minimum of the stack alignment boundary and the
2007 alignment guaranteed by heap allocation interfaces. Thus we rely
2008 on a parameter for the alignment value.
2010 Provided a good value is used for the last case, the first
2011 restriction could possibly be relaxed. */
2014 hoist_adjacent_loads (basic_block bb0
, basic_block bb1
,
2015 basic_block bb2
, basic_block bb3
)
2017 int param_align
= PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE
);
2018 unsigned param_align_bits
= (unsigned) (param_align
* BITS_PER_UNIT
);
2019 gimple_stmt_iterator gsi
;
2021 /* Walk the phis in bb3 looking for an opportunity. We are looking
2022 for phis of two SSA names, one each of which is defined in bb1 and
2024 for (gsi
= gsi_start_phis (bb3
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2026 gimple phi_stmt
= gsi_stmt (gsi
);
2027 gimple def1
, def2
, defswap
;
2028 tree arg1
, arg2
, ref1
, ref2
, field1
, field2
, fieldswap
;
2029 tree tree_offset1
, tree_offset2
, tree_size2
, next
;
2030 int offset1
, offset2
, size2
;
2032 gimple_stmt_iterator gsi2
;
2033 basic_block bb_for_def1
, bb_for_def2
;
2035 if (gimple_phi_num_args (phi_stmt
) != 2
2036 || virtual_operand_p (gimple_phi_result (phi_stmt
)))
2039 arg1
= gimple_phi_arg_def (phi_stmt
, 0);
2040 arg2
= gimple_phi_arg_def (phi_stmt
, 1);
2042 if (TREE_CODE (arg1
) != SSA_NAME
2043 || TREE_CODE (arg2
) != SSA_NAME
2044 || SSA_NAME_IS_DEFAULT_DEF (arg1
)
2045 || SSA_NAME_IS_DEFAULT_DEF (arg2
))
2048 def1
= SSA_NAME_DEF_STMT (arg1
);
2049 def2
= SSA_NAME_DEF_STMT (arg2
);
2051 if ((gimple_bb (def1
) != bb1
|| gimple_bb (def2
) != bb2
)
2052 && (gimple_bb (def2
) != bb1
|| gimple_bb (def1
) != bb2
))
2055 /* Check the mode of the arguments to be sure a conditional move
2056 can be generated for it. */
2057 if (optab_handler (movcc_optab
, TYPE_MODE (TREE_TYPE (arg1
)))
2058 == CODE_FOR_nothing
)
2061 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2062 if (!gimple_assign_single_p (def1
)
2063 || !gimple_assign_single_p (def2
)
2064 || gimple_has_volatile_ops (def1
)
2065 || gimple_has_volatile_ops (def2
))
2068 ref1
= gimple_assign_rhs1 (def1
);
2069 ref2
= gimple_assign_rhs1 (def2
);
2071 if (TREE_CODE (ref1
) != COMPONENT_REF
2072 || TREE_CODE (ref2
) != COMPONENT_REF
)
2075 /* The zeroth operand of the two component references must be
2076 identical. It is not sufficient to compare get_base_address of
2077 the two references, because this could allow for different
2078 elements of the same array in the two trees. It is not safe to
2079 assume that the existence of one array element implies the
2080 existence of a different one. */
2081 if (!operand_equal_p (TREE_OPERAND (ref1
, 0), TREE_OPERAND (ref2
, 0), 0))
2084 field1
= TREE_OPERAND (ref1
, 1);
2085 field2
= TREE_OPERAND (ref2
, 1);
2087 /* Check for field adjacency, and ensure field1 comes first. */
2088 for (next
= DECL_CHAIN (field1
);
2089 next
&& TREE_CODE (next
) != FIELD_DECL
;
2090 next
= DECL_CHAIN (next
))
2095 for (next
= DECL_CHAIN (field2
);
2096 next
&& TREE_CODE (next
) != FIELD_DECL
;
2097 next
= DECL_CHAIN (next
))
2111 bb_for_def1
= gimple_bb (def1
);
2112 bb_for_def2
= gimple_bb (def2
);
2114 /* Check for proper alignment of the first field. */
2115 tree_offset1
= bit_position (field1
);
2116 tree_offset2
= bit_position (field2
);
2117 tree_size2
= DECL_SIZE (field2
);
2119 if (!tree_fits_uhwi_p (tree_offset1
)
2120 || !tree_fits_uhwi_p (tree_offset2
)
2121 || !tree_fits_uhwi_p (tree_size2
))
2124 offset1
= tree_to_uhwi (tree_offset1
);
2125 offset2
= tree_to_uhwi (tree_offset2
);
2126 size2
= tree_to_uhwi (tree_size2
);
2127 align1
= DECL_ALIGN (field1
) % param_align_bits
;
2129 if (offset1
% BITS_PER_UNIT
!= 0)
2132 /* For profitability, the two field references should fit within
2133 a single cache line. */
2134 if (align1
+ offset2
- offset1
+ size2
> param_align_bits
)
2137 /* The two expressions cannot be dependent upon vdefs defined
2139 if (local_mem_dependence (def1
, bb_for_def1
)
2140 || local_mem_dependence (def2
, bb_for_def2
))
2143 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2144 bb0. We hoist the first one first so that a cache miss is handled
2145 efficiently regardless of hardware cache-fill policy. */
2146 gsi2
= gsi_for_stmt (def1
);
2147 gsi_move_to_bb_end (&gsi2
, bb0
);
2148 gsi2
= gsi_for_stmt (def2
);
2149 gsi_move_to_bb_end (&gsi2
, bb0
);
2151 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2154 "\nHoisting adjacent loads from %d and %d into %d: \n",
2155 bb_for_def1
->index
, bb_for_def2
->index
, bb0
->index
);
2156 print_gimple_stmt (dump_file
, def1
, 0, TDF_VOPS
|TDF_MEMSYMS
);
2157 print_gimple_stmt (dump_file
, def2
, 0, TDF_VOPS
|TDF_MEMSYMS
);
2162 /* Determine whether we should attempt to hoist adjacent loads out of
2163 diamond patterns in pass_phiopt. Always hoist loads if
2164 -fhoist-adjacent-loads is specified and the target machine has
2165 both a conditional move instruction and a defined cache line size. */
2168 gate_hoist_loads (void)
2170 return (flag_hoist_adjacent_loads
== 1
2171 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE
)
2172 && HAVE_conditional_move
);
2175 /* This pass tries to replaces an if-then-else block with an
2176 assignment. We have four kinds of transformations. Some of these
2177 transformations are also performed by the ifcvt RTL optimizer.
2179 Conditional Replacement
2180 -----------------------
2182 This transformation, implemented in conditional_replacement,
2186 if (cond) goto bb2; else goto bb1;
2189 x = PHI <0 (bb1), 1 (bb0), ...>;
2197 x = PHI <x' (bb0), ...>;
2199 We remove bb1 as it becomes unreachable. This occurs often due to
2200 gimplification of conditionals.
2205 This transformation, implemented in value_replacement, replaces
2208 if (a != b) goto bb2; else goto bb1;
2211 x = PHI <a (bb1), b (bb0), ...>;
2217 x = PHI <b (bb0), ...>;
2219 This opportunity can sometimes occur as a result of other
2223 Another case caught by value replacement looks like this:
2229 if (t3 != 0) goto bb1; else goto bb2;
2245 This transformation, implemented in abs_replacement, replaces
2248 if (a >= 0) goto bb2; else goto bb1;
2252 x = PHI <x (bb1), a (bb0), ...>;
2259 x = PHI <x' (bb0), ...>;
2264 This transformation, minmax_replacement replaces
2267 if (a <= b) goto bb2; else goto bb1;
2270 x = PHI <b (bb1), a (bb0), ...>;
2275 x' = MIN_EXPR (a, b)
2277 x = PHI <x' (bb0), ...>;
2279 A similar transformation is done for MAX_EXPR.
2282 This pass also performs a fifth transformation of a slightly different
2285 Adjacent Load Hoisting
2286 ----------------------
2288 This transformation replaces
2291 if (...) goto bb2; else goto bb1;
2293 x1 = (<expr>).field1;
2296 x2 = (<expr>).field2;
2303 x1 = (<expr>).field1;
2304 x2 = (<expr>).field2;
2305 if (...) goto bb2; else goto bb1;
2312 The purpose of this transformation is to enable generation of conditional
2313 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2314 the loads is speculative, the transformation is restricted to very
2315 specific cases to avoid introducing a page fault. We are looking for
2323 where left and right are typically adjacent pointers in a tree structure. */
2327 const pass_data pass_data_phiopt
=
2329 GIMPLE_PASS
, /* type */
2330 "phiopt", /* name */
2331 OPTGROUP_NONE
, /* optinfo_flags */
2332 TV_TREE_PHIOPT
, /* tv_id */
2333 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2334 0, /* properties_provided */
2335 0, /* properties_destroyed */
2336 0, /* todo_flags_start */
2337 0, /* todo_flags_finish */
2340 class pass_phiopt
: public gimple_opt_pass
2343 pass_phiopt (gcc::context
*ctxt
)
2344 : gimple_opt_pass (pass_data_phiopt
, ctxt
)
2347 /* opt_pass methods: */
2348 opt_pass
* clone () { return new pass_phiopt (m_ctxt
); }
2349 virtual bool gate (function
*) { return flag_ssa_phiopt
; }
2350 virtual unsigned int execute (function
*)
2352 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2355 }; // class pass_phiopt
2360 make_pass_phiopt (gcc::context
*ctxt
)
2362 return new pass_phiopt (ctxt
);
2367 const pass_data pass_data_cselim
=
2369 GIMPLE_PASS
, /* type */
2370 "cselim", /* name */
2371 OPTGROUP_NONE
, /* optinfo_flags */
2372 TV_TREE_PHIOPT
, /* tv_id */
2373 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2374 0, /* properties_provided */
2375 0, /* properties_destroyed */
2376 0, /* todo_flags_start */
2377 0, /* todo_flags_finish */
2380 class pass_cselim
: public gimple_opt_pass
2383 pass_cselim (gcc::context
*ctxt
)
2384 : gimple_opt_pass (pass_data_cselim
, ctxt
)
2387 /* opt_pass methods: */
2388 virtual bool gate (function
*) { return flag_tree_cselim
; }
2389 virtual unsigned int execute (function
*) { return tree_ssa_cs_elim (); }
2391 }; // class pass_cselim
2396 make_pass_cselim (gcc::context
*ctxt
)
2398 return new pass_cselim (ctxt
);