1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Debug_A
; use Debug_A
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Exp_Util
; use Exp_Util
;
38 with Fname
; use Fname
;
39 with Freeze
; use Freeze
;
40 with Itypes
; use Itypes
;
42 with Lib
.Xref
; use Lib
.Xref
;
43 with Namet
; use Namet
;
44 with Nmake
; use Nmake
;
45 with Nlists
; use Nlists
;
47 with Output
; use Output
;
48 with Restrict
; use Restrict
;
49 with Rident
; use Rident
;
50 with Rtsfind
; use Rtsfind
;
52 with Sem_Aux
; use Sem_Aux
;
53 with Sem_Aggr
; use Sem_Aggr
;
54 with Sem_Attr
; use Sem_Attr
;
55 with Sem_Cat
; use Sem_Cat
;
56 with Sem_Ch4
; use Sem_Ch4
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch8
; use Sem_Ch8
;
59 with Sem_Ch13
; use Sem_Ch13
;
60 with Sem_Dim
; use Sem_Dim
;
61 with Sem_Disp
; use Sem_Disp
;
62 with Sem_Dist
; use Sem_Dist
;
63 with Sem_Elim
; use Sem_Elim
;
64 with Sem_Elab
; use Sem_Elab
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Intr
; use Sem_Intr
;
67 with Sem_Util
; use Sem_Util
;
68 with Targparm
; use Targparm
;
69 with Sem_Type
; use Sem_Type
;
70 with Sem_Warn
; use Sem_Warn
;
71 with Sinfo
; use Sinfo
;
72 with Sinfo
.CN
; use Sinfo
.CN
;
73 with Snames
; use Snames
;
74 with Stand
; use Stand
;
75 with Stringt
; use Stringt
;
76 with Style
; use Style
;
77 with Tbuild
; use Tbuild
;
78 with Uintp
; use Uintp
;
79 with Urealp
; use Urealp
;
81 package body Sem_Res
is
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 -- Second pass (top-down) type checking and overload resolution procedures
88 -- Typ is the type required by context. These procedures propagate the type
89 -- information recursively to the descendants of N. If the node is not
90 -- overloaded, its Etype is established in the first pass. If overloaded,
91 -- the Resolve routines set the correct type. For arith. operators, the
92 -- Etype is the base type of the context.
94 -- Note that Resolve_Attribute is separated off in Sem_Attr
96 function Bad_Unordered_Enumeration_Reference
98 T
: Entity_Id
) return Boolean;
99 -- Node N contains a potentially dubious reference to type T, either an
100 -- explicit comparison, or an explicit range. This function returns True
101 -- if the type T is an enumeration type for which No pragma Order has been
102 -- given, and the reference N is not in the same extended source unit as
103 -- the declaration of T.
105 procedure Check_Discriminant_Use
(N
: Node_Id
);
106 -- Enforce the restrictions on the use of discriminants when constraining
107 -- a component of a discriminated type (record or concurrent type).
109 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
);
110 -- Given a node for an operator associated with type T, check that
111 -- the operator is visible. Operators all of whose operands are
112 -- universal must be checked for visibility during resolution
113 -- because their type is not determinable based on their operands.
115 procedure Check_Fully_Declared_Prefix
118 -- Check that the type of the prefix of a dereference is not incomplete
120 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean;
121 -- Given a call node, N, which is known to occur immediately within the
122 -- subprogram being called, determines whether it is a detectable case of
123 -- an infinite recursion, and if so, outputs appropriate messages. Returns
124 -- True if an infinite recursion is detected, and False otherwise.
126 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
);
127 -- If the type of the object being initialized uses the secondary stack
128 -- directly or indirectly, create a transient scope for the call to the
129 -- init proc. This is because we do not create transient scopes for the
130 -- initialization of individual components within the init proc itself.
131 -- Could be optimized away perhaps?
133 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
);
134 -- N is the node for a logical operator. If the operator is predefined, and
135 -- the root type of the operands is Standard.Boolean, then a check is made
136 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
137 -- the style check for Style_Check_Boolean_And_Or.
139 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
143 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
153 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
);
176 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
);
177 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
);
178 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
179 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
180 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
);
181 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
);
182 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
);
183 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
);
184 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
);
185 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
186 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
);
187 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
188 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
);
189 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
);
190 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
);
191 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
);
192 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
);
193 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
);
194 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
);
195 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
196 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
);
197 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
198 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
);
199 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
);
200 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
);
201 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
);
202 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
);
203 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
204 procedure Resolve_Subprogram_Info
(N
: Node_Id
; Typ
: Entity_Id
);
205 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
206 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
);
207 procedure Resolve_Unchecked_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
208 procedure Resolve_Unchecked_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
210 function Operator_Kind
212 Is_Binary
: Boolean) return Node_Kind
;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals
(N
: Node_Id
; Nam
: Entity_Id
);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
235 -- Ditto, for unary operators (arithmetic ones and "not" on signed
236 -- integer types for VMS).
238 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so
248 -- that operands are resolved properly. Recall that predefined operators
249 -- do not have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is
261 -- not a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype
(N
: Node_Id
);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion
(N
: Node_Id
);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Truncation attribute.
271 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character
(C
: Node_Id
) is
285 if Nkind
(C
) = N_Character_Literal
then
286 Error_Msg_N
("ambiguous character literal", C
);
288 -- First the ones in Standard
290 Error_Msg_N
("\\possible interpretation: Character!", C
);
291 Error_Msg_N
("\\possible interpretation: Wide_Character!", C
);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version
>= Ada_2005
then
296 Error_Msg_N
("\\possible interpretation: Wide_Wide_Character!", C
);
299 -- Now any other types that match
301 E
:= Current_Entity
(C
);
302 while Present
(E
) loop
303 Error_Msg_NE
("\\possible interpretation:}!", C
, Etype
(E
));
307 end Ambiguous_Character
;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve
(N
: Node_Id
) is
317 end Analyze_And_Resolve
;
319 procedure Analyze_And_Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
323 end Analyze_And_Resolve
;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
332 Scop
: constant Entity_Id
:= Current_Scope
;
335 if Suppress
= All_Checks
then
337 Svg
: constant Suppress_Record
:= Scope_Suppress
;
339 Scope_Suppress
:= Suppress_All
;
340 Analyze_And_Resolve
(N
, Typ
);
341 Scope_Suppress
:= Svg
;
344 elsif Suppress
= Overflow_Check
then
346 Svg
: constant Overflow_Check_Type
:=
347 Scope_Suppress
.Overflow_Checks_General
;
348 Sva
: constant Overflow_Check_Type
:=
349 Scope_Suppress
.Overflow_Checks_Assertions
;
351 Scope_Suppress
.Overflow_Checks_General
:= Suppressed
;
352 Scope_Suppress
.Overflow_Checks_Assertions
:= Suppressed
;
353 Analyze_And_Resolve
(N
, Typ
);
354 Scope_Suppress
.Overflow_Checks_General
:= Svg
;
355 Scope_Suppress
.Overflow_Checks_Assertions
:= Sva
;
360 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
362 Scope_Suppress
.Suppress
(Suppress
) := True;
363 Analyze_And_Resolve
(N
, Typ
);
364 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
368 if Current_Scope
/= Scop
369 and then Scope_Is_Transient
371 -- This can only happen if a transient scope was created for an inner
372 -- expression, which will be removed upon completion of the analysis
373 -- of an enclosing construct. The transient scope must have the
374 -- suppress status of the enclosing environment, not of this Analyze
377 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
380 end Analyze_And_Resolve
;
382 procedure Analyze_And_Resolve
386 Scop
: constant Entity_Id
:= Current_Scope
;
389 if Suppress
= All_Checks
then
391 Svg
: constant Suppress_Record
:= Scope_Suppress
;
393 Scope_Suppress
:= Suppress_All
;
394 Analyze_And_Resolve
(N
);
395 Scope_Suppress
:= Svg
;
398 elsif Suppress
= Overflow_Check
then
400 Svg
: constant Overflow_Check_Type
:=
401 Scope_Suppress
.Overflow_Checks_General
;
402 Sva
: constant Overflow_Check_Type
:=
403 Scope_Suppress
.Overflow_Checks_Assertions
;
405 Scope_Suppress
.Overflow_Checks_General
:= Suppressed
;
406 Scope_Suppress
.Overflow_Checks_Assertions
:= Suppressed
;
407 Analyze_And_Resolve
(N
);
408 Scope_Suppress
.Overflow_Checks_General
:= Svg
;
409 Scope_Suppress
.Overflow_Checks_Assertions
:= Sva
;
414 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
416 Scope_Suppress
.Suppress
(Suppress
) := True;
417 Analyze_And_Resolve
(N
);
418 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
422 if Current_Scope
/= Scop
and then Scope_Is_Transient
then
423 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
426 end Analyze_And_Resolve
;
428 ----------------------------------------
429 -- Bad_Unordered_Enumeration_Reference --
430 ----------------------------------------
432 function Bad_Unordered_Enumeration_Reference
434 T
: Entity_Id
) return Boolean
437 return Is_Enumeration_Type
(T
)
438 and then Comes_From_Source
(N
)
439 and then Warn_On_Unordered_Enumeration_Type
440 and then not Has_Pragma_Ordered
(T
)
441 and then not In_Same_Extended_Unit
(N
, T
);
442 end Bad_Unordered_Enumeration_Reference
;
444 ----------------------------
445 -- Check_Discriminant_Use --
446 ----------------------------
448 procedure Check_Discriminant_Use
(N
: Node_Id
) is
449 PN
: constant Node_Id
:= Parent
(N
);
450 Disc
: constant Entity_Id
:= Entity
(N
);
455 -- Any use in a spec-expression is legal
457 if In_Spec_Expression
then
460 elsif Nkind
(PN
) = N_Range
then
462 -- Discriminant cannot be used to constrain a scalar type
466 if Nkind
(P
) = N_Range_Constraint
467 and then Nkind
(Parent
(P
)) = N_Subtype_Indication
468 and then Nkind
(Parent
(Parent
(P
))) = N_Component_Definition
470 Error_Msg_N
("discriminant cannot constrain scalar type", N
);
472 elsif Nkind
(P
) = N_Index_Or_Discriminant_Constraint
then
474 -- The following check catches the unusual case where a
475 -- discriminant appears within an index constraint that is part of
476 -- a larger expression within a constraint on a component, e.g. "C
477 -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
478 -- of record components, and note that a similar check should also
479 -- apply in the case of discriminant constraints below. ???
481 -- Note that the check for N_Subtype_Declaration below is to
482 -- detect the valid use of discriminants in the constraints of a
483 -- subtype declaration when this subtype declaration appears
484 -- inside the scope of a record type (which is syntactically
485 -- illegal, but which may be created as part of derived type
486 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
489 if Ekind
(Current_Scope
) = E_Record_Type
490 and then Scope
(Disc
) = Current_Scope
492 (Nkind
(Parent
(P
)) = N_Subtype_Indication
494 Nkind_In
(Parent
(Parent
(P
)), N_Component_Definition
,
495 N_Subtype_Declaration
)
496 and then Paren_Count
(N
) = 0)
499 ("discriminant must appear alone in component constraint", N
);
503 -- Detect a common error:
505 -- type R (D : Positive := 100) is record
506 -- Name : String (1 .. D);
509 -- The default value causes an object of type R to be allocated
510 -- with room for Positive'Last characters. The RM does not mandate
511 -- the allocation of the maximum size, but that is what GNAT does
512 -- so we should warn the programmer that there is a problem.
514 Check_Large
: declare
520 function Large_Storage_Type
(T
: Entity_Id
) return Boolean;
521 -- Return True if type T has a large enough range that any
522 -- array whose index type covered the whole range of the type
523 -- would likely raise Storage_Error.
525 ------------------------
526 -- Large_Storage_Type --
527 ------------------------
529 function Large_Storage_Type
(T
: Entity_Id
) return Boolean is
531 -- The type is considered large if its bounds are known at
532 -- compile time and if it requires at least as many bits as
533 -- a Positive to store the possible values.
535 return Compile_Time_Known_Value
(Type_Low_Bound
(T
))
536 and then Compile_Time_Known_Value
(Type_High_Bound
(T
))
538 Minimum_Size
(T
, Biased
=> True) >=
539 RM_Size
(Standard_Positive
);
540 end Large_Storage_Type
;
542 -- Start of processing for Check_Large
545 -- Check that the Disc has a large range
547 if not Large_Storage_Type
(Etype
(Disc
)) then
551 -- If the enclosing type is limited, we allocate only the
552 -- default value, not the maximum, and there is no need for
555 if Is_Limited_Type
(Scope
(Disc
)) then
559 -- Check that it is the high bound
561 if N
/= High_Bound
(PN
)
562 or else No
(Discriminant_Default_Value
(Disc
))
567 -- Check the array allows a large range at this bound. First
572 if Nkind
(SI
) /= N_Subtype_Indication
then
576 T
:= Entity
(Subtype_Mark
(SI
));
578 if not Is_Array_Type
(T
) then
582 -- Next, find the dimension
584 TB
:= First_Index
(T
);
585 CB
:= First
(Constraints
(P
));
587 and then Present
(TB
)
588 and then Present
(CB
)
599 -- Now, check the dimension has a large range
601 if not Large_Storage_Type
(Etype
(TB
)) then
605 -- Warn about the danger
608 ("?creation of & object may raise Storage_Error!",
617 -- Legal case is in index or discriminant constraint
619 elsif Nkind_In
(PN
, N_Index_Or_Discriminant_Constraint
,
620 N_Discriminant_Association
)
622 if Paren_Count
(N
) > 0 then
624 ("discriminant in constraint must appear alone", N
);
626 elsif Nkind
(N
) = N_Expanded_Name
627 and then Comes_From_Source
(N
)
630 ("discriminant must appear alone as a direct name", N
);
635 -- Otherwise, context is an expression. It should not be within (i.e. a
636 -- subexpression of) a constraint for a component.
641 while not Nkind_In
(P
, N_Component_Declaration
,
642 N_Subtype_Indication
,
650 -- If the discriminant is used in an expression that is a bound of a
651 -- scalar type, an Itype is created and the bounds are attached to
652 -- its range, not to the original subtype indication. Such use is of
653 -- course a double fault.
655 if (Nkind
(P
) = N_Subtype_Indication
656 and then Nkind_In
(Parent
(P
), N_Component_Definition
,
657 N_Derived_Type_Definition
)
658 and then D
= Constraint
(P
))
660 -- The constraint itself may be given by a subtype indication,
661 -- rather than by a more common discrete range.
663 or else (Nkind
(P
) = N_Subtype_Indication
665 Nkind
(Parent
(P
)) = N_Index_Or_Discriminant_Constraint
)
666 or else Nkind
(P
) = N_Entry_Declaration
667 or else Nkind
(D
) = N_Defining_Identifier
670 ("discriminant in constraint must appear alone", N
);
673 end Check_Discriminant_Use
;
675 --------------------------------
676 -- Check_For_Visible_Operator --
677 --------------------------------
679 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
) is
681 if Is_Invisible_Operator
(N
, T
) then
682 Error_Msg_NE
-- CODEFIX
683 ("operator for} is not directly visible!", N
, First_Subtype
(T
));
684 Error_Msg_N
-- CODEFIX
685 ("use clause would make operation legal!", N
);
687 end Check_For_Visible_Operator
;
689 ----------------------------------
690 -- Check_Fully_Declared_Prefix --
691 ----------------------------------
693 procedure Check_Fully_Declared_Prefix
698 -- Check that the designated type of the prefix of a dereference is
699 -- not an incomplete type. This cannot be done unconditionally, because
700 -- dereferences of private types are legal in default expressions. This
701 -- case is taken care of in Check_Fully_Declared, called below. There
702 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
704 -- This consideration also applies to similar checks for allocators,
705 -- qualified expressions, and type conversions.
707 -- An additional exception concerns other per-object expressions that
708 -- are not directly related to component declarations, in particular
709 -- representation pragmas for tasks. These will be per-object
710 -- expressions if they depend on discriminants or some global entity.
711 -- If the task has access discriminants, the designated type may be
712 -- incomplete at the point the expression is resolved. This resolution
713 -- takes place within the body of the initialization procedure, where
714 -- the discriminant is replaced by its discriminal.
716 if Is_Entity_Name
(Pref
)
717 and then Ekind
(Entity
(Pref
)) = E_In_Parameter
721 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
722 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
723 -- Analyze_Object_Renaming, and Freeze_Entity.
725 elsif Ada_Version
>= Ada_2005
726 and then Is_Entity_Name
(Pref
)
727 and then Is_Access_Type
(Etype
(Pref
))
728 and then Ekind
(Directly_Designated_Type
(Etype
(Pref
))) =
730 and then Is_Tagged_Type
(Directly_Designated_Type
(Etype
(Pref
)))
734 Check_Fully_Declared
(Typ
, Parent
(Pref
));
736 end Check_Fully_Declared_Prefix
;
738 ------------------------------
739 -- Check_Infinite_Recursion --
740 ------------------------------
742 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean is
746 function Same_Argument_List
return Boolean;
747 -- Check whether list of actuals is identical to list of formals of
748 -- called function (which is also the enclosing scope).
750 ------------------------
751 -- Same_Argument_List --
752 ------------------------
754 function Same_Argument_List
return Boolean is
760 if not Is_Entity_Name
(Name
(N
)) then
763 Subp
:= Entity
(Name
(N
));
766 F
:= First_Formal
(Subp
);
767 A
:= First_Actual
(N
);
768 while Present
(F
) and then Present
(A
) loop
769 if not Is_Entity_Name
(A
)
770 or else Entity
(A
) /= F
780 end Same_Argument_List
;
782 -- Start of processing for Check_Infinite_Recursion
785 -- Special case, if this is a procedure call and is a call to the
786 -- current procedure with the same argument list, then this is for
787 -- sure an infinite recursion and we insert a call to raise SE.
789 if Is_List_Member
(N
)
790 and then List_Length
(List_Containing
(N
)) = 1
791 and then Same_Argument_List
794 P
: constant Node_Id
:= Parent
(N
);
796 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
797 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
798 and then Is_Empty_List
(Declarations
(Parent
(P
)))
800 Error_Msg_N
("!?infinite recursion", N
);
801 Error_Msg_N
("\!?Storage_Error will be raised at run time", N
);
803 Make_Raise_Storage_Error
(Sloc
(N
),
804 Reason
=> SE_Infinite_Recursion
));
810 -- If not that special case, search up tree, quitting if we reach a
811 -- construct (e.g. a conditional) that tells us that this is not a
812 -- case for an infinite recursion warning.
818 -- If no parent, then we were not inside a subprogram, this can for
819 -- example happen when processing certain pragmas in a spec. Just
820 -- return False in this case.
826 -- Done if we get to subprogram body, this is definitely an infinite
827 -- recursion case if we did not find anything to stop us.
829 exit when Nkind
(P
) = N_Subprogram_Body
;
831 -- If appearing in conditional, result is false
833 if Nkind_In
(P
, N_Or_Else
,
842 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
843 and then C
/= First
(Statements
(P
))
845 -- If the call is the expression of a return statement and the
846 -- actuals are identical to the formals, it's worth a warning.
847 -- However, we skip this if there is an immediately preceding
848 -- raise statement, since the call is never executed.
850 -- Furthermore, this corresponds to a common idiom:
852 -- function F (L : Thing) return Boolean is
854 -- raise Program_Error;
858 -- for generating a stub function
860 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
861 and then Same_Argument_List
863 exit when not Is_List_Member
(Parent
(N
));
865 -- OK, return statement is in a statement list, look for raise
871 -- Skip past N_Freeze_Entity nodes generated by expansion
873 Nod
:= Prev
(Parent
(N
));
875 and then Nkind
(Nod
) = N_Freeze_Entity
880 -- If no raise statement, give warning. We look at the
881 -- original node, because in the case of "raise ... with
882 -- ...", the node has been transformed into a call.
884 exit when Nkind
(Original_Node
(Nod
)) /= N_Raise_Statement
886 (Nkind
(Nod
) not in N_Raise_xxx_Error
887 or else Present
(Condition
(Nod
)));
898 Error_Msg_N
("!?possible infinite recursion", N
);
899 Error_Msg_N
("\!?Storage_Error may be raised at run time", N
);
902 end Check_Infinite_Recursion
;
904 -------------------------------
905 -- Check_Initialization_Call --
906 -------------------------------
908 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
) is
909 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
911 function Uses_SS
(T
: Entity_Id
) return Boolean;
912 -- Check whether the creation of an object of the type will involve
913 -- use of the secondary stack. If T is a record type, this is true
914 -- if the expression for some component uses the secondary stack, e.g.
915 -- through a call to a function that returns an unconstrained value.
916 -- False if T is controlled, because cleanups occur elsewhere.
922 function Uses_SS
(T
: Entity_Id
) return Boolean is
925 Full_Type
: Entity_Id
:= Underlying_Type
(T
);
928 -- Normally we want to use the underlying type, but if it's not set
929 -- then continue with T.
931 if not Present
(Full_Type
) then
935 if Is_Controlled
(Full_Type
) then
938 elsif Is_Array_Type
(Full_Type
) then
939 return Uses_SS
(Component_Type
(Full_Type
));
941 elsif Is_Record_Type
(Full_Type
) then
942 Comp
:= First_Component
(Full_Type
);
943 while Present
(Comp
) loop
944 if Ekind
(Comp
) = E_Component
945 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
947 -- The expression for a dynamic component may be rewritten
948 -- as a dereference, so retrieve original node.
950 Expr
:= Original_Node
(Expression
(Parent
(Comp
)));
952 -- Return True if the expression is a call to a function
953 -- (including an attribute function such as Image, or a
954 -- user-defined operator) with a result that requires a
957 if (Nkind
(Expr
) = N_Function_Call
958 or else Nkind
(Expr
) in N_Op
959 or else (Nkind
(Expr
) = N_Attribute_Reference
960 and then Present
(Expressions
(Expr
))))
961 and then Requires_Transient_Scope
(Etype
(Expr
))
965 elsif Uses_SS
(Etype
(Comp
)) then
970 Next_Component
(Comp
);
980 -- Start of processing for Check_Initialization_Call
983 -- Establish a transient scope if the type needs it
985 if Uses_SS
(Typ
) then
986 Establish_Transient_Scope
(First_Actual
(N
), Sec_Stack
=> True);
988 end Check_Initialization_Call
;
990 ---------------------------------------
991 -- Check_No_Direct_Boolean_Operators --
992 ---------------------------------------
994 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
) is
996 if Scope
(Entity
(N
)) = Standard_Standard
997 and then Root_Type
(Etype
(Left_Opnd
(N
))) = Standard_Boolean
999 -- Restriction only applies to original source code
1001 if Comes_From_Source
(N
) then
1002 Check_Restriction
(No_Direct_Boolean_Operators
, N
);
1007 Check_Boolean_Operator
(N
);
1009 end Check_No_Direct_Boolean_Operators
;
1011 ------------------------------
1012 -- Check_Parameterless_Call --
1013 ------------------------------
1015 procedure Check_Parameterless_Call
(N
: Node_Id
) is
1018 function Prefix_Is_Access_Subp
return Boolean;
1019 -- If the prefix is of an access_to_subprogram type, the node must be
1020 -- rewritten as a call. Ditto if the prefix is overloaded and all its
1021 -- interpretations are access to subprograms.
1023 ---------------------------
1024 -- Prefix_Is_Access_Subp --
1025 ---------------------------
1027 function Prefix_Is_Access_Subp
return Boolean is
1032 -- If the context is an attribute reference that can apply to
1033 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1035 if Nkind
(Parent
(N
)) = N_Attribute_Reference
1036 and then (Attribute_Name
(Parent
(N
)) = Name_Address
or else
1037 Attribute_Name
(Parent
(N
)) = Name_Code_Address
or else
1038 Attribute_Name
(Parent
(N
)) = Name_Access
)
1043 if not Is_Overloaded
(N
) then
1045 Ekind
(Etype
(N
)) = E_Subprogram_Type
1046 and then Base_Type
(Etype
(Etype
(N
))) /= Standard_Void_Type
;
1048 Get_First_Interp
(N
, I
, It
);
1049 while Present
(It
.Typ
) loop
1050 if Ekind
(It
.Typ
) /= E_Subprogram_Type
1051 or else Base_Type
(Etype
(It
.Typ
)) = Standard_Void_Type
1056 Get_Next_Interp
(I
, It
);
1061 end Prefix_Is_Access_Subp
;
1063 -- Start of processing for Check_Parameterless_Call
1066 -- Defend against junk stuff if errors already detected
1068 if Total_Errors_Detected
/= 0 then
1069 if Nkind
(N
) in N_Has_Etype
and then Etype
(N
) = Any_Type
then
1071 elsif Nkind
(N
) in N_Has_Chars
1072 and then Chars
(N
) in Error_Name_Or_No_Name
1080 -- If the context expects a value, and the name is a procedure, this is
1081 -- most likely a missing 'Access. Don't try to resolve the parameterless
1082 -- call, error will be caught when the outer call is analyzed.
1084 if Is_Entity_Name
(N
)
1085 and then Ekind
(Entity
(N
)) = E_Procedure
1086 and then not Is_Overloaded
(N
)
1088 Nkind_In
(Parent
(N
), N_Parameter_Association
,
1090 N_Procedure_Call_Statement
)
1095 -- Rewrite as call if overloadable entity that is (or could be, in the
1096 -- overloaded case) a function call. If we know for sure that the entity
1097 -- is an enumeration literal, we do not rewrite it.
1099 -- If the entity is the name of an operator, it cannot be a call because
1100 -- operators cannot have default parameters. In this case, this must be
1101 -- a string whose contents coincide with an operator name. Set the kind
1102 -- of the node appropriately.
1104 if (Is_Entity_Name
(N
)
1105 and then Nkind
(N
) /= N_Operator_Symbol
1106 and then Is_Overloadable
(Entity
(N
))
1107 and then (Ekind
(Entity
(N
)) /= E_Enumeration_Literal
1108 or else Is_Overloaded
(N
)))
1110 -- Rewrite as call if it is an explicit dereference of an expression of
1111 -- a subprogram access type, and the subprogram type is not that of a
1112 -- procedure or entry.
1115 (Nkind
(N
) = N_Explicit_Dereference
and then Prefix_Is_Access_Subp
)
1117 -- Rewrite as call if it is a selected component which is a function,
1118 -- this is the case of a call to a protected function (which may be
1119 -- overloaded with other protected operations).
1122 (Nkind
(N
) = N_Selected_Component
1123 and then (Ekind
(Entity
(Selector_Name
(N
))) = E_Function
1125 (Ekind_In
(Entity
(Selector_Name
(N
)), E_Entry
,
1127 and then Is_Overloaded
(Selector_Name
(N
)))))
1129 -- If one of the above three conditions is met, rewrite as call. Apply
1130 -- the rewriting only once.
1133 if Nkind
(Parent
(N
)) /= N_Function_Call
1134 or else N
/= Name
(Parent
(N
))
1137 -- This may be a prefixed call that was not fully analyzed, e.g.
1138 -- an actual in an instance.
1140 if Ada_Version
>= Ada_2005
1141 and then Nkind
(N
) = N_Selected_Component
1142 and then Is_Dispatching_Operation
(Entity
(Selector_Name
(N
)))
1144 Analyze_Selected_Component
(N
);
1146 if Nkind
(N
) /= N_Selected_Component
then
1151 Nam
:= New_Copy
(N
);
1153 -- If overloaded, overload set belongs to new copy
1155 Save_Interps
(N
, Nam
);
1157 -- Change node to parameterless function call (note that the
1158 -- Parameter_Associations associations field is left set to Empty,
1159 -- its normal default value since there are no parameters)
1161 Change_Node
(N
, N_Function_Call
);
1163 Set_Sloc
(N
, Sloc
(Nam
));
1167 elsif Nkind
(N
) = N_Parameter_Association
then
1168 Check_Parameterless_Call
(Explicit_Actual_Parameter
(N
));
1170 elsif Nkind
(N
) = N_Operator_Symbol
then
1171 Change_Operator_Symbol_To_String_Literal
(N
);
1172 Set_Is_Overloaded
(N
, False);
1173 Set_Etype
(N
, Any_String
);
1175 end Check_Parameterless_Call
;
1177 -----------------------------
1178 -- Is_Definite_Access_Type --
1179 -----------------------------
1181 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean is
1182 Btyp
: constant Entity_Id
:= Base_Type
(E
);
1184 return Ekind
(Btyp
) = E_Access_Type
1185 or else (Ekind
(Btyp
) = E_Access_Subprogram_Type
1186 and then Comes_From_Source
(Btyp
));
1187 end Is_Definite_Access_Type
;
1189 ----------------------
1190 -- Is_Predefined_Op --
1191 ----------------------
1193 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean is
1195 -- Predefined operators are intrinsic subprograms
1197 if not Is_Intrinsic_Subprogram
(Nam
) then
1201 -- A call to a back-end builtin is never a predefined operator
1203 if Is_Imported
(Nam
) and then Present
(Interface_Name
(Nam
)) then
1207 return not Is_Generic_Instance
(Nam
)
1208 and then Chars
(Nam
) in Any_Operator_Name
1209 and then (No
(Alias
(Nam
)) or else Is_Predefined_Op
(Alias
(Nam
)));
1210 end Is_Predefined_Op
;
1212 -----------------------------
1213 -- Make_Call_Into_Operator --
1214 -----------------------------
1216 procedure Make_Call_Into_Operator
1221 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
1222 Act1
: Node_Id
:= First_Actual
(N
);
1223 Act2
: Node_Id
:= Next_Actual
(Act1
);
1224 Error
: Boolean := False;
1225 Func
: constant Entity_Id
:= Entity
(Name
(N
));
1226 Is_Binary
: constant Boolean := Present
(Act2
);
1228 Opnd_Type
: Entity_Id
;
1229 Orig_Type
: Entity_Id
:= Empty
;
1232 type Kind_Test
is access function (E
: Entity_Id
) return Boolean;
1234 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean;
1235 -- If the operand is not universal, and the operator is given by an
1236 -- expanded name, verify that the operand has an interpretation with a
1237 -- type defined in the given scope of the operator.
1239 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
;
1240 -- Find a type of the given class in package Pack that contains the
1243 ---------------------------
1244 -- Operand_Type_In_Scope --
1245 ---------------------------
1247 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean is
1248 Nod
: constant Node_Id
:= Right_Opnd
(Op_Node
);
1253 if not Is_Overloaded
(Nod
) then
1254 return Scope
(Base_Type
(Etype
(Nod
))) = S
;
1257 Get_First_Interp
(Nod
, I
, It
);
1258 while Present
(It
.Typ
) loop
1259 if Scope
(Base_Type
(It
.Typ
)) = S
then
1263 Get_Next_Interp
(I
, It
);
1268 end Operand_Type_In_Scope
;
1274 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
is
1277 function In_Decl
return Boolean;
1278 -- Verify that node is not part of the type declaration for the
1279 -- candidate type, which would otherwise be invisible.
1285 function In_Decl
return Boolean is
1286 Decl_Node
: constant Node_Id
:= Parent
(E
);
1292 if Etype
(E
) = Any_Type
then
1295 elsif No
(Decl_Node
) then
1300 and then Nkind
(N2
) /= N_Compilation_Unit
1302 if N2
= Decl_Node
then
1313 -- Start of processing for Type_In_P
1316 -- If the context type is declared in the prefix package, this is the
1317 -- desired base type.
1319 if Scope
(Base_Type
(Typ
)) = Pack
and then Test
(Typ
) then
1320 return Base_Type
(Typ
);
1323 E
:= First_Entity
(Pack
);
1324 while Present
(E
) loop
1326 and then not In_Decl
1338 -- Start of processing for Make_Call_Into_Operator
1341 Op_Node
:= New_Node
(Operator_Kind
(Op_Name
, Is_Binary
), Sloc
(N
));
1346 Set_Left_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1347 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act2
));
1348 Save_Interps
(Act1
, Left_Opnd
(Op_Node
));
1349 Save_Interps
(Act2
, Right_Opnd
(Op_Node
));
1350 Act1
:= Left_Opnd
(Op_Node
);
1351 Act2
:= Right_Opnd
(Op_Node
);
1356 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1357 Save_Interps
(Act1
, Right_Opnd
(Op_Node
));
1358 Act1
:= Right_Opnd
(Op_Node
);
1361 -- If the operator is denoted by an expanded name, and the prefix is
1362 -- not Standard, but the operator is a predefined one whose scope is
1363 -- Standard, then this is an implicit_operator, inserted as an
1364 -- interpretation by the procedure of the same name. This procedure
1365 -- overestimates the presence of implicit operators, because it does
1366 -- not examine the type of the operands. Verify now that the operand
1367 -- type appears in the given scope. If right operand is universal,
1368 -- check the other operand. In the case of concatenation, either
1369 -- argument can be the component type, so check the type of the result.
1370 -- If both arguments are literals, look for a type of the right kind
1371 -- defined in the given scope. This elaborate nonsense is brought to
1372 -- you courtesy of b33302a. The type itself must be frozen, so we must
1373 -- find the type of the proper class in the given scope.
1375 -- A final wrinkle is the multiplication operator for fixed point types,
1376 -- which is defined in Standard only, and not in the scope of the
1377 -- fixed point type itself.
1379 if Nkind
(Name
(N
)) = N_Expanded_Name
then
1380 Pack
:= Entity
(Prefix
(Name
(N
)));
1382 -- If the entity being called is defined in the given package, it is
1383 -- a renaming of a predefined operator, and known to be legal.
1385 if Scope
(Entity
(Name
(N
))) = Pack
1386 and then Pack
/= Standard_Standard
1390 -- Visibility does not need to be checked in an instance: if the
1391 -- operator was not visible in the generic it has been diagnosed
1392 -- already, else there is an implicit copy of it in the instance.
1394 elsif In_Instance
then
1397 elsif (Op_Name
= Name_Op_Multiply
or else Op_Name
= Name_Op_Divide
)
1398 and then Is_Fixed_Point_Type
(Etype
(Left_Opnd
(Op_Node
)))
1399 and then Is_Fixed_Point_Type
(Etype
(Right_Opnd
(Op_Node
)))
1401 if Pack
/= Standard_Standard
then
1405 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1408 elsif Ada_Version
>= Ada_2005
1409 and then (Op_Name
= Name_Op_Eq
or else Op_Name
= Name_Op_Ne
)
1410 and then Ekind
(Etype
(Act1
)) = E_Anonymous_Access_Type
1415 Opnd_Type
:= Base_Type
(Etype
(Right_Opnd
(Op_Node
)));
1417 if Op_Name
= Name_Op_Concat
then
1418 Opnd_Type
:= Base_Type
(Typ
);
1420 elsif (Scope
(Opnd_Type
) = Standard_Standard
1422 or else (Nkind
(Right_Opnd
(Op_Node
)) = N_Attribute_Reference
1424 and then not Comes_From_Source
(Opnd_Type
))
1426 Opnd_Type
:= Base_Type
(Etype
(Left_Opnd
(Op_Node
)));
1429 if Scope
(Opnd_Type
) = Standard_Standard
then
1431 -- Verify that the scope contains a type that corresponds to
1432 -- the given literal. Optimize the case where Pack is Standard.
1434 if Pack
/= Standard_Standard
then
1436 if Opnd_Type
= Universal_Integer
then
1437 Orig_Type
:= Type_In_P
(Is_Integer_Type
'Access);
1439 elsif Opnd_Type
= Universal_Real
then
1440 Orig_Type
:= Type_In_P
(Is_Real_Type
'Access);
1442 elsif Opnd_Type
= Any_String
then
1443 Orig_Type
:= Type_In_P
(Is_String_Type
'Access);
1445 elsif Opnd_Type
= Any_Access
then
1446 Orig_Type
:= Type_In_P
(Is_Definite_Access_Type
'Access);
1448 elsif Opnd_Type
= Any_Composite
then
1449 Orig_Type
:= Type_In_P
(Is_Composite_Type
'Access);
1451 if Present
(Orig_Type
) then
1452 if Has_Private_Component
(Orig_Type
) then
1455 Set_Etype
(Act1
, Orig_Type
);
1458 Set_Etype
(Act2
, Orig_Type
);
1467 Error
:= No
(Orig_Type
);
1470 elsif Ekind
(Opnd_Type
) = E_Allocator_Type
1471 and then No
(Type_In_P
(Is_Definite_Access_Type
'Access))
1475 -- If the type is defined elsewhere, and the operator is not
1476 -- defined in the given scope (by a renaming declaration, e.g.)
1477 -- then this is an error as well. If an extension of System is
1478 -- present, and the type may be defined there, Pack must be
1481 elsif Scope
(Opnd_Type
) /= Pack
1482 and then Scope
(Op_Id
) /= Pack
1483 and then (No
(System_Aux_Id
)
1484 or else Scope
(Opnd_Type
) /= System_Aux_Id
1485 or else Pack
/= Scope
(System_Aux_Id
))
1487 if not Is_Overloaded
(Right_Opnd
(Op_Node
)) then
1490 Error
:= not Operand_Type_In_Scope
(Pack
);
1493 elsif Pack
= Standard_Standard
1494 and then not Operand_Type_In_Scope
(Standard_Standard
)
1501 Error_Msg_Node_2
:= Pack
;
1503 ("& not declared in&", N
, Selector_Name
(Name
(N
)));
1504 Set_Etype
(N
, Any_Type
);
1507 -- Detect a mismatch between the context type and the result type
1508 -- in the named package, which is otherwise not detected if the
1509 -- operands are universal. Check is only needed if source entity is
1510 -- an operator, not a function that renames an operator.
1512 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
1513 and then Ekind
(Entity
(Name
(N
))) = E_Operator
1514 and then Is_Numeric_Type
(Typ
)
1515 and then not Is_Universal_Numeric_Type
(Typ
)
1516 and then Scope
(Base_Type
(Typ
)) /= Pack
1517 and then not In_Instance
1519 if Is_Fixed_Point_Type
(Typ
)
1520 and then (Op_Name
= Name_Op_Multiply
1522 Op_Name
= Name_Op_Divide
)
1524 -- Already checked above
1528 -- Operator may be defined in an extension of System
1530 elsif Present
(System_Aux_Id
)
1531 and then Scope
(Opnd_Type
) = System_Aux_Id
1536 -- Could we use Wrong_Type here??? (this would require setting
1537 -- Etype (N) to the actual type found where Typ was expected).
1539 Error_Msg_NE
("expect }", N
, Typ
);
1544 Set_Chars
(Op_Node
, Op_Name
);
1546 if not Is_Private_Type
(Etype
(N
)) then
1547 Set_Etype
(Op_Node
, Base_Type
(Etype
(N
)));
1549 Set_Etype
(Op_Node
, Etype
(N
));
1552 -- If this is a call to a function that renames a predefined equality,
1553 -- the renaming declaration provides a type that must be used to
1554 -- resolve the operands. This must be done now because resolution of
1555 -- the equality node will not resolve any remaining ambiguity, and it
1556 -- assumes that the first operand is not overloaded.
1558 if (Op_Name
= Name_Op_Eq
or else Op_Name
= Name_Op_Ne
)
1559 and then Ekind
(Func
) = E_Function
1560 and then Is_Overloaded
(Act1
)
1562 Resolve
(Act1
, Base_Type
(Etype
(First_Formal
(Func
))));
1563 Resolve
(Act2
, Base_Type
(Etype
(First_Formal
(Func
))));
1566 Set_Entity
(Op_Node
, Op_Id
);
1567 Generate_Reference
(Op_Id
, N
, ' ');
1569 -- Do rewrite setting Comes_From_Source on the result if the original
1570 -- call came from source. Although it is not strictly the case that the
1571 -- operator as such comes from the source, logically it corresponds
1572 -- exactly to the function call in the source, so it should be marked
1573 -- this way (e.g. to make sure that validity checks work fine).
1576 CS
: constant Boolean := Comes_From_Source
(N
);
1578 Rewrite
(N
, Op_Node
);
1579 Set_Comes_From_Source
(N
, CS
);
1582 -- If this is an arithmetic operator and the result type is private,
1583 -- the operands and the result must be wrapped in conversion to
1584 -- expose the underlying numeric type and expand the proper checks,
1585 -- e.g. on division.
1587 if Is_Private_Type
(Typ
) then
1589 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1590 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
1591 Resolve_Intrinsic_Operator
(N
, Typ
);
1593 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
1594 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
1602 end Make_Call_Into_Operator
;
1608 function Operator_Kind
1610 Is_Binary
: Boolean) return Node_Kind
1615 -- Use CASE statement or array???
1618 if Op_Name
= Name_Op_And
then
1620 elsif Op_Name
= Name_Op_Or
then
1622 elsif Op_Name
= Name_Op_Xor
then
1624 elsif Op_Name
= Name_Op_Eq
then
1626 elsif Op_Name
= Name_Op_Ne
then
1628 elsif Op_Name
= Name_Op_Lt
then
1630 elsif Op_Name
= Name_Op_Le
then
1632 elsif Op_Name
= Name_Op_Gt
then
1634 elsif Op_Name
= Name_Op_Ge
then
1636 elsif Op_Name
= Name_Op_Add
then
1638 elsif Op_Name
= Name_Op_Subtract
then
1639 Kind
:= N_Op_Subtract
;
1640 elsif Op_Name
= Name_Op_Concat
then
1641 Kind
:= N_Op_Concat
;
1642 elsif Op_Name
= Name_Op_Multiply
then
1643 Kind
:= N_Op_Multiply
;
1644 elsif Op_Name
= Name_Op_Divide
then
1645 Kind
:= N_Op_Divide
;
1646 elsif Op_Name
= Name_Op_Mod
then
1648 elsif Op_Name
= Name_Op_Rem
then
1650 elsif Op_Name
= Name_Op_Expon
then
1653 raise Program_Error
;
1659 if Op_Name
= Name_Op_Add
then
1661 elsif Op_Name
= Name_Op_Subtract
then
1663 elsif Op_Name
= Name_Op_Abs
then
1665 elsif Op_Name
= Name_Op_Not
then
1668 raise Program_Error
;
1675 ----------------------------
1676 -- Preanalyze_And_Resolve --
1677 ----------------------------
1679 procedure Preanalyze_And_Resolve
(N
: Node_Id
; T
: Entity_Id
) is
1680 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1683 Full_Analysis
:= False;
1684 Expander_Mode_Save_And_Set
(False);
1686 -- We suppress all checks for this analysis, since the checks will
1687 -- be applied properly, and in the right location, when the default
1688 -- expression is reanalyzed and reexpanded later on.
1690 Analyze_And_Resolve
(N
, T
, Suppress
=> All_Checks
);
1692 Expander_Mode_Restore
;
1693 Full_Analysis
:= Save_Full_Analysis
;
1694 end Preanalyze_And_Resolve
;
1696 -- Version without context type
1698 procedure Preanalyze_And_Resolve
(N
: Node_Id
) is
1699 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1702 Full_Analysis
:= False;
1703 Expander_Mode_Save_And_Set
(False);
1706 Resolve
(N
, Etype
(N
), Suppress
=> All_Checks
);
1708 Expander_Mode_Restore
;
1709 Full_Analysis
:= Save_Full_Analysis
;
1710 end Preanalyze_And_Resolve
;
1712 ----------------------------------
1713 -- Replace_Actual_Discriminants --
1714 ----------------------------------
1716 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
) is
1717 Loc
: constant Source_Ptr
:= Sloc
(N
);
1718 Tsk
: Node_Id
:= Empty
;
1720 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
;
1721 -- Comment needed???
1727 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
is
1731 if Nkind
(Nod
) = N_Identifier
then
1732 Ent
:= Entity
(Nod
);
1735 and then Ekind
(Ent
) = E_Discriminant
1738 Make_Selected_Component
(Loc
,
1739 Prefix
=> New_Copy_Tree
(Tsk
, New_Sloc
=> Loc
),
1740 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Ent
))));
1742 Set_Etype
(Nod
, Etype
(Ent
));
1750 procedure Replace_Discrs
is new Traverse_Proc
(Process_Discr
);
1752 -- Start of processing for Replace_Actual_Discriminants
1755 if not Full_Expander_Active
then
1759 if Nkind
(Name
(N
)) = N_Selected_Component
then
1760 Tsk
:= Prefix
(Name
(N
));
1762 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
1763 Tsk
:= Prefix
(Prefix
(Name
(N
)));
1769 Replace_Discrs
(Default
);
1771 end Replace_Actual_Discriminants
;
1777 procedure Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
1778 Ambiguous
: Boolean := False;
1779 Ctx_Type
: Entity_Id
:= Typ
;
1780 Expr_Type
: Entity_Id
:= Empty
; -- prevent junk warning
1781 Err_Type
: Entity_Id
:= Empty
;
1782 Found
: Boolean := False;
1785 I1
: Interp_Index
:= 0; -- prevent junk warning
1788 Seen
: Entity_Id
:= Empty
; -- prevent junk warning
1790 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean;
1791 -- Determine whether a node comes from a predefined library unit or
1794 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
);
1795 -- Try and fix up a literal so that it matches its expected type. New
1796 -- literals are manufactured if necessary to avoid cascaded errors.
1798 function Proper_Current_Scope
return Entity_Id
;
1799 -- Return the current scope. Skip loop scopes created for the purpose of
1800 -- quantified expression analysis since those do not appear in the tree.
1802 procedure Report_Ambiguous_Argument
;
1803 -- Additional diagnostics when an ambiguous call has an ambiguous
1804 -- argument (typically a controlling actual).
1806 procedure Resolution_Failed
;
1807 -- Called when attempt at resolving current expression fails
1809 ------------------------------------
1810 -- Comes_From_Predefined_Lib_Unit --
1811 -------------------------------------
1813 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean is
1816 Sloc
(Nod
) = Standard_Location
1817 or else Is_Predefined_File_Name
1818 (Unit_File_Name
(Get_Source_Unit
(Sloc
(Nod
))));
1819 end Comes_From_Predefined_Lib_Unit
;
1821 --------------------
1822 -- Patch_Up_Value --
1823 --------------------
1825 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
) is
1827 if Nkind
(N
) = N_Integer_Literal
and then Is_Real_Type
(Typ
) then
1829 Make_Real_Literal
(Sloc
(N
),
1830 Realval
=> UR_From_Uint
(Intval
(N
))));
1831 Set_Etype
(N
, Universal_Real
);
1832 Set_Is_Static_Expression
(N
);
1834 elsif Nkind
(N
) = N_Real_Literal
and then Is_Integer_Type
(Typ
) then
1836 Make_Integer_Literal
(Sloc
(N
),
1837 Intval
=> UR_To_Uint
(Realval
(N
))));
1838 Set_Etype
(N
, Universal_Integer
);
1839 Set_Is_Static_Expression
(N
);
1841 elsif Nkind
(N
) = N_String_Literal
1842 and then Is_Character_Type
(Typ
)
1844 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('A')));
1846 Make_Character_Literal
(Sloc
(N
),
1848 Char_Literal_Value
=>
1849 UI_From_Int
(Character'Pos ('A'))));
1850 Set_Etype
(N
, Any_Character
);
1851 Set_Is_Static_Expression
(N
);
1853 elsif Nkind
(N
) /= N_String_Literal
and then Is_String_Type
(Typ
) then
1855 Make_String_Literal
(Sloc
(N
),
1856 Strval
=> End_String
));
1858 elsif Nkind
(N
) = N_Range
then
1859 Patch_Up_Value
(Low_Bound
(N
), Typ
);
1860 Patch_Up_Value
(High_Bound
(N
), Typ
);
1864 --------------------------
1865 -- Proper_Current_Scope --
1866 --------------------------
1868 function Proper_Current_Scope
return Entity_Id
is
1869 S
: Entity_Id
:= Current_Scope
;
1872 while Present
(S
) loop
1874 -- Skip a loop scope created for quantified expression analysis
1876 if Ekind
(S
) = E_Loop
1877 and then Nkind
(Parent
(S
)) = N_Quantified_Expression
1886 end Proper_Current_Scope
;
1888 -------------------------------
1889 -- Report_Ambiguous_Argument --
1890 -------------------------------
1892 procedure Report_Ambiguous_Argument
is
1893 Arg
: constant Node_Id
:= First
(Parameter_Associations
(N
));
1898 if Nkind
(Arg
) = N_Function_Call
1899 and then Is_Entity_Name
(Name
(Arg
))
1900 and then Is_Overloaded
(Name
(Arg
))
1902 Error_Msg_NE
("ambiguous call to&", Arg
, Name
(Arg
));
1904 -- Could use comments on what is going on here???
1906 Get_First_Interp
(Name
(Arg
), I
, It
);
1907 while Present
(It
.Nam
) loop
1908 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
1910 if Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
then
1911 Error_Msg_N
("interpretation (inherited) #!", Arg
);
1913 Error_Msg_N
("interpretation #!", Arg
);
1916 Get_Next_Interp
(I
, It
);
1919 end Report_Ambiguous_Argument
;
1921 -----------------------
1922 -- Resolution_Failed --
1923 -----------------------
1925 procedure Resolution_Failed
is
1927 Patch_Up_Value
(N
, Typ
);
1929 Debug_A_Exit
("resolving ", N
, " (done, resolution failed)");
1930 Set_Is_Overloaded
(N
, False);
1932 -- The caller will return without calling the expander, so we need
1933 -- to set the analyzed flag. Note that it is fine to set Analyzed
1934 -- to True even if we are in the middle of a shallow analysis,
1935 -- (see the spec of sem for more details) since this is an error
1936 -- situation anyway, and there is no point in repeating the
1937 -- analysis later (indeed it won't work to repeat it later, since
1938 -- we haven't got a clear resolution of which entity is being
1941 Set_Analyzed
(N
, True);
1943 end Resolution_Failed
;
1945 -- Start of processing for Resolve
1952 -- Access attribute on remote subprogram cannot be used for a non-remote
1953 -- access-to-subprogram type.
1955 if Nkind
(N
) = N_Attribute_Reference
1956 and then (Attribute_Name
(N
) = Name_Access
or else
1957 Attribute_Name
(N
) = Name_Unrestricted_Access
or else
1958 Attribute_Name
(N
) = Name_Unchecked_Access
)
1959 and then Comes_From_Source
(N
)
1960 and then Is_Entity_Name
(Prefix
(N
))
1961 and then Is_Subprogram
(Entity
(Prefix
(N
)))
1962 and then Is_Remote_Call_Interface
(Entity
(Prefix
(N
)))
1963 and then not Is_Remote_Access_To_Subprogram_Type
(Typ
)
1966 ("prefix must statically denote a non-remote subprogram", N
);
1969 From_Lib
:= Comes_From_Predefined_Lib_Unit
(N
);
1971 -- If the context is a Remote_Access_To_Subprogram, access attributes
1972 -- must be resolved with the corresponding fat pointer. There is no need
1973 -- to check for the attribute name since the return type of an
1974 -- attribute is never a remote type.
1976 if Nkind
(N
) = N_Attribute_Reference
1977 and then Comes_From_Source
(N
)
1978 and then (Is_Remote_Call_Interface
(Typ
) or else Is_Remote_Types
(Typ
))
1981 Attr
: constant Attribute_Id
:=
1982 Get_Attribute_Id
(Attribute_Name
(N
));
1983 Pref
: constant Node_Id
:= Prefix
(N
);
1986 Is_Remote
: Boolean := True;
1989 -- Check that Typ is a remote access-to-subprogram type
1991 if Is_Remote_Access_To_Subprogram_Type
(Typ
) then
1993 -- Prefix (N) must statically denote a remote subprogram
1994 -- declared in a package specification.
1996 if Attr
= Attribute_Access
or else
1997 Attr
= Attribute_Unchecked_Access
or else
1998 Attr
= Attribute_Unrestricted_Access
2000 Decl
:= Unit_Declaration_Node
(Entity
(Pref
));
2002 if Nkind
(Decl
) = N_Subprogram_Body
then
2003 Spec
:= Corresponding_Spec
(Decl
);
2005 if not No
(Spec
) then
2006 Decl
:= Unit_Declaration_Node
(Spec
);
2010 Spec
:= Parent
(Decl
);
2012 if not Is_Entity_Name
(Prefix
(N
))
2013 or else Nkind
(Spec
) /= N_Package_Specification
2015 not Is_Remote_Call_Interface
(Defining_Entity
(Spec
))
2019 ("prefix must statically denote a remote subprogram ",
2023 -- If we are generating code in distributed mode, perform
2024 -- semantic checks against corresponding remote entities.
2026 if Full_Expander_Active
2027 and then Get_PCS_Name
/= Name_No_DSA
2029 Check_Subtype_Conformant
2030 (New_Id
=> Entity
(Prefix
(N
)),
2031 Old_Id
=> Designated_Type
2032 (Corresponding_Remote_Type
(Typ
)),
2036 Process_Remote_AST_Attribute
(N
, Typ
);
2044 Debug_A_Entry
("resolving ", N
);
2046 if Debug_Flag_V
then
2047 Write_Overloads
(N
);
2050 if Comes_From_Source
(N
) then
2051 if Is_Fixed_Point_Type
(Typ
) then
2052 Check_Restriction
(No_Fixed_Point
, N
);
2054 elsif Is_Floating_Point_Type
(Typ
)
2055 and then Typ
/= Universal_Real
2056 and then Typ
/= Any_Real
2058 Check_Restriction
(No_Floating_Point
, N
);
2062 -- Return if already analyzed
2064 if Analyzed
(N
) then
2065 Debug_A_Exit
("resolving ", N
, " (done, already analyzed)");
2066 Analyze_Dimension
(N
);
2069 -- Return if type = Any_Type (previous error encountered)
2071 elsif Etype
(N
) = Any_Type
then
2072 Debug_A_Exit
("resolving ", N
, " (done, Etype = Any_Type)");
2076 Check_Parameterless_Call
(N
);
2078 -- If not overloaded, then we know the type, and all that needs doing
2079 -- is to check that this type is compatible with the context.
2081 if not Is_Overloaded
(N
) then
2082 Found
:= Covers
(Typ
, Etype
(N
));
2083 Expr_Type
:= Etype
(N
);
2085 -- In the overloaded case, we must select the interpretation that
2086 -- is compatible with the context (i.e. the type passed to Resolve)
2089 -- Loop through possible interpretations
2091 Get_First_Interp
(N
, I
, It
);
2092 Interp_Loop
: while Present
(It
.Typ
) loop
2094 if Debug_Flag_V
then
2095 Write_Str
("Interp: ");
2099 -- We are only interested in interpretations that are compatible
2100 -- with the expected type, any other interpretations are ignored.
2102 if not Covers
(Typ
, It
.Typ
) then
2103 if Debug_Flag_V
then
2104 Write_Str
(" interpretation incompatible with context");
2109 -- Skip the current interpretation if it is disabled by an
2110 -- abstract operator. This action is performed only when the
2111 -- type against which we are resolving is the same as the
2112 -- type of the interpretation.
2114 if Ada_Version
>= Ada_2005
2115 and then It
.Typ
= Typ
2116 and then Typ
/= Universal_Integer
2117 and then Typ
/= Universal_Real
2118 and then Present
(It
.Abstract_Op
)
2120 if Debug_Flag_V
then
2121 Write_Line
("Skip.");
2127 -- First matching interpretation
2133 Expr_Type
:= It
.Typ
;
2135 -- Matching interpretation that is not the first, maybe an
2136 -- error, but there are some cases where preference rules are
2137 -- used to choose between the two possibilities. These and
2138 -- some more obscure cases are handled in Disambiguate.
2141 -- If the current statement is part of a predefined library
2142 -- unit, then all interpretations which come from user level
2143 -- packages should not be considered.
2146 and then not Comes_From_Predefined_Lib_Unit
(It
.Nam
)
2151 Error_Msg_Sloc
:= Sloc
(Seen
);
2152 It1
:= Disambiguate
(N
, I1
, I
, Typ
);
2154 -- Disambiguation has succeeded. Skip the remaining
2157 if It1
/= No_Interp
then
2159 Expr_Type
:= It1
.Typ
;
2161 while Present
(It
.Typ
) loop
2162 Get_Next_Interp
(I
, It
);
2166 -- Before we issue an ambiguity complaint, check for
2167 -- the case of a subprogram call where at least one
2168 -- of the arguments is Any_Type, and if so, suppress
2169 -- the message, since it is a cascaded error.
2171 if Nkind
(N
) in N_Subprogram_Call
then
2177 A
:= First_Actual
(N
);
2178 while Present
(A
) loop
2181 if Nkind
(E
) = N_Parameter_Association
then
2182 E
:= Explicit_Actual_Parameter
(E
);
2185 if Etype
(E
) = Any_Type
then
2186 if Debug_Flag_V
then
2187 Write_Str
("Any_Type in call");
2198 elsif Nkind
(N
) in N_Binary_Op
2199 and then (Etype
(Left_Opnd
(N
)) = Any_Type
2200 or else Etype
(Right_Opnd
(N
)) = Any_Type
)
2204 elsif Nkind
(N
) in N_Unary_Op
2205 and then Etype
(Right_Opnd
(N
)) = Any_Type
2210 -- Not that special case, so issue message using the
2211 -- flag Ambiguous to control printing of the header
2212 -- message only at the start of an ambiguous set.
2214 if not Ambiguous
then
2215 if Nkind
(N
) = N_Function_Call
2216 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2219 ("ambiguous expression "
2220 & "(cannot resolve indirect call)!", N
);
2222 Error_Msg_NE
-- CODEFIX
2223 ("ambiguous expression (cannot resolve&)!",
2229 if Nkind
(Parent
(Seen
)) = N_Full_Type_Declaration
then
2231 ("\\possible interpretation (inherited)#!", N
);
2233 Error_Msg_N
-- CODEFIX
2234 ("\\possible interpretation#!", N
);
2237 if Nkind
(N
) in N_Subprogram_Call
2238 and then Present
(Parameter_Associations
(N
))
2240 Report_Ambiguous_Argument
;
2244 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2246 -- By default, the error message refers to the candidate
2247 -- interpretation. But if it is a predefined operator, it
2248 -- is implicitly declared at the declaration of the type
2249 -- of the operand. Recover the sloc of that declaration
2250 -- for the error message.
2252 if Nkind
(N
) in N_Op
2253 and then Scope
(It
.Nam
) = Standard_Standard
2254 and then not Is_Overloaded
(Right_Opnd
(N
))
2255 and then Scope
(Base_Type
(Etype
(Right_Opnd
(N
)))) /=
2258 Err_Type
:= First_Subtype
(Etype
(Right_Opnd
(N
)));
2260 if Comes_From_Source
(Err_Type
)
2261 and then Present
(Parent
(Err_Type
))
2263 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2266 elsif Nkind
(N
) in N_Binary_Op
2267 and then Scope
(It
.Nam
) = Standard_Standard
2268 and then not Is_Overloaded
(Left_Opnd
(N
))
2269 and then Scope
(Base_Type
(Etype
(Left_Opnd
(N
)))) /=
2272 Err_Type
:= First_Subtype
(Etype
(Left_Opnd
(N
)));
2274 if Comes_From_Source
(Err_Type
)
2275 and then Present
(Parent
(Err_Type
))
2277 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2280 -- If this is an indirect call, use the subprogram_type
2281 -- in the message, to have a meaningful location. Also
2282 -- indicate if this is an inherited operation, created
2283 -- by a type declaration.
2285 elsif Nkind
(N
) = N_Function_Call
2286 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2287 and then Is_Type
(It
.Nam
)
2291 Sloc
(Associated_Node_For_Itype
(Err_Type
));
2296 if Nkind
(N
) in N_Op
2297 and then Scope
(It
.Nam
) = Standard_Standard
2298 and then Present
(Err_Type
)
2300 -- Special-case the message for universal_fixed
2301 -- operators, which are not declared with the type
2302 -- of the operand, but appear forever in Standard.
2304 if It
.Typ
= Universal_Fixed
2305 and then Scope
(It
.Nam
) = Standard_Standard
2308 ("\\possible interpretation as " &
2309 "universal_fixed operation " &
2310 "(RM 4.5.5 (19))", N
);
2313 ("\\possible interpretation (predefined)#!", N
);
2317 Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
2320 ("\\possible interpretation (inherited)#!", N
);
2322 Error_Msg_N
-- CODEFIX
2323 ("\\possible interpretation#!", N
);
2329 -- We have a matching interpretation, Expr_Type is the type
2330 -- from this interpretation, and Seen is the entity.
2332 -- For an operator, just set the entity name. The type will be
2333 -- set by the specific operator resolution routine.
2335 if Nkind
(N
) in N_Op
then
2336 Set_Entity
(N
, Seen
);
2337 Generate_Reference
(Seen
, N
);
2339 elsif Nkind
(N
) = N_Case_Expression
then
2340 Set_Etype
(N
, Expr_Type
);
2342 elsif Nkind
(N
) = N_Character_Literal
then
2343 Set_Etype
(N
, Expr_Type
);
2345 elsif Nkind
(N
) = N_If_Expression
then
2346 Set_Etype
(N
, Expr_Type
);
2348 -- AI05-0139-2: Expression is overloaded because type has
2349 -- implicit dereference. If type matches context, no implicit
2350 -- dereference is involved.
2352 elsif Has_Implicit_Dereference
(Expr_Type
) then
2353 Set_Etype
(N
, Expr_Type
);
2354 Set_Is_Overloaded
(N
, False);
2357 elsif Is_Overloaded
(N
)
2358 and then Present
(It
.Nam
)
2359 and then Ekind
(It
.Nam
) = E_Discriminant
2360 and then Has_Implicit_Dereference
(It
.Nam
)
2362 Build_Explicit_Dereference
(N
, It
.Nam
);
2364 -- For an explicit dereference, attribute reference, range,
2365 -- short-circuit form (which is not an operator node), or call
2366 -- with a name that is an explicit dereference, there is
2367 -- nothing to be done at this point.
2369 elsif Nkind_In
(N
, N_Explicit_Dereference
,
2370 N_Attribute_Reference
,
2372 N_Indexed_Component
,
2375 N_Selected_Component
,
2377 or else Nkind
(Name
(N
)) = N_Explicit_Dereference
2381 -- For procedure or function calls, set the type of the name,
2382 -- and also the entity pointer for the prefix.
2384 elsif Nkind
(N
) in N_Subprogram_Call
2385 and then Is_Entity_Name
(Name
(N
))
2387 Set_Etype
(Name
(N
), Expr_Type
);
2388 Set_Entity
(Name
(N
), Seen
);
2389 Generate_Reference
(Seen
, Name
(N
));
2391 elsif Nkind
(N
) = N_Function_Call
2392 and then Nkind
(Name
(N
)) = N_Selected_Component
2394 Set_Etype
(Name
(N
), Expr_Type
);
2395 Set_Entity
(Selector_Name
(Name
(N
)), Seen
);
2396 Generate_Reference
(Seen
, Selector_Name
(Name
(N
)));
2398 -- For all other cases, just set the type of the Name
2401 Set_Etype
(Name
(N
), Expr_Type
);
2408 -- Move to next interpretation
2410 exit Interp_Loop
when No
(It
.Typ
);
2412 Get_Next_Interp
(I
, It
);
2413 end loop Interp_Loop
;
2416 -- At this stage Found indicates whether or not an acceptable
2417 -- interpretation exists. If not, then we have an error, except that if
2418 -- the context is Any_Type as a result of some other error, then we
2419 -- suppress the error report.
2422 if Typ
/= Any_Type
then
2424 -- If type we are looking for is Void, then this is the procedure
2425 -- call case, and the error is simply that what we gave is not a
2426 -- procedure name (we think of procedure calls as expressions with
2427 -- types internally, but the user doesn't think of them this way!)
2429 if Typ
= Standard_Void_Type
then
2431 -- Special case message if function used as a procedure
2433 if Nkind
(N
) = N_Procedure_Call_Statement
2434 and then Is_Entity_Name
(Name
(N
))
2435 and then Ekind
(Entity
(Name
(N
))) = E_Function
2438 ("cannot use function & in a procedure call",
2439 Name
(N
), Entity
(Name
(N
)));
2441 -- Otherwise give general message (not clear what cases this
2442 -- covers, but no harm in providing for them!)
2445 Error_Msg_N
("expect procedure name in procedure call", N
);
2450 -- Otherwise we do have a subexpression with the wrong type
2452 -- Check for the case of an allocator which uses an access type
2453 -- instead of the designated type. This is a common error and we
2454 -- specialize the message, posting an error on the operand of the
2455 -- allocator, complaining that we expected the designated type of
2458 elsif Nkind
(N
) = N_Allocator
2459 and then Ekind
(Typ
) in Access_Kind
2460 and then Ekind
(Etype
(N
)) in Access_Kind
2461 and then Designated_Type
(Etype
(N
)) = Typ
2463 Wrong_Type
(Expression
(N
), Designated_Type
(Typ
));
2466 -- Check for view mismatch on Null in instances, for which the
2467 -- view-swapping mechanism has no identifier.
2469 elsif (In_Instance
or else In_Inlined_Body
)
2470 and then (Nkind
(N
) = N_Null
)
2471 and then Is_Private_Type
(Typ
)
2472 and then Is_Access_Type
(Full_View
(Typ
))
2474 Resolve
(N
, Full_View
(Typ
));
2478 -- Check for an aggregate. Sometimes we can get bogus aggregates
2479 -- from misuse of parentheses, and we are about to complain about
2480 -- the aggregate without even looking inside it.
2482 -- Instead, if we have an aggregate of type Any_Composite, then
2483 -- analyze and resolve the component fields, and then only issue
2484 -- another message if we get no errors doing this (otherwise
2485 -- assume that the errors in the aggregate caused the problem).
2487 elsif Nkind
(N
) = N_Aggregate
2488 and then Etype
(N
) = Any_Composite
2490 -- Disable expansion in any case. If there is a type mismatch
2491 -- it may be fatal to try to expand the aggregate. The flag
2492 -- would otherwise be set to false when the error is posted.
2494 Expander_Active
:= False;
2497 procedure Check_Aggr
(Aggr
: Node_Id
);
2498 -- Check one aggregate, and set Found to True if we have a
2499 -- definite error in any of its elements
2501 procedure Check_Elmt
(Aelmt
: Node_Id
);
2502 -- Check one element of aggregate and set Found to True if
2503 -- we definitely have an error in the element.
2509 procedure Check_Aggr
(Aggr
: Node_Id
) is
2513 if Present
(Expressions
(Aggr
)) then
2514 Elmt
:= First
(Expressions
(Aggr
));
2515 while Present
(Elmt
) loop
2521 if Present
(Component_Associations
(Aggr
)) then
2522 Elmt
:= First
(Component_Associations
(Aggr
));
2523 while Present
(Elmt
) loop
2525 -- If this is a default-initialized component, then
2526 -- there is nothing to check. The box will be
2527 -- replaced by the appropriate call during late
2530 if not Box_Present
(Elmt
) then
2531 Check_Elmt
(Expression
(Elmt
));
2543 procedure Check_Elmt
(Aelmt
: Node_Id
) is
2545 -- If we have a nested aggregate, go inside it (to
2546 -- attempt a naked analyze-resolve of the aggregate can
2547 -- cause undesirable cascaded errors). Do not resolve
2548 -- expression if it needs a type from context, as for
2549 -- integer * fixed expression.
2551 if Nkind
(Aelmt
) = N_Aggregate
then
2557 if not Is_Overloaded
(Aelmt
)
2558 and then Etype
(Aelmt
) /= Any_Fixed
2563 if Etype
(Aelmt
) = Any_Type
then
2574 -- If an error message was issued already, Found got reset to
2575 -- True, so if it is still False, issue standard Wrong_Type msg.
2578 if Is_Overloaded
(N
)
2579 and then Nkind
(N
) = N_Function_Call
2582 Subp_Name
: Node_Id
;
2584 if Is_Entity_Name
(Name
(N
)) then
2585 Subp_Name
:= Name
(N
);
2587 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2589 -- Protected operation: retrieve operation name
2591 Subp_Name
:= Selector_Name
(Name
(N
));
2594 raise Program_Error
;
2597 Error_Msg_Node_2
:= Typ
;
2598 Error_Msg_NE
("no visible interpretation of&" &
2599 " matches expected type&", N
, Subp_Name
);
2602 if All_Errors_Mode
then
2604 Index
: Interp_Index
;
2608 Error_Msg_N
("\\possible interpretations:", N
);
2610 Get_First_Interp
(Name
(N
), Index
, It
);
2611 while Present
(It
.Nam
) loop
2612 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2613 Error_Msg_Node_2
:= It
.Nam
;
2615 ("\\ type& for & declared#", N
, It
.Typ
);
2616 Get_Next_Interp
(Index
, It
);
2621 Error_Msg_N
("\use -gnatf for details", N
);
2625 Wrong_Type
(N
, Typ
);
2633 -- Test if we have more than one interpretation for the context
2635 elsif Ambiguous
then
2639 -- Only one intepretation
2642 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2643 -- the "+" on T is abstract, and the operands are of universal type,
2644 -- the above code will have (incorrectly) resolved the "+" to the
2645 -- universal one in Standard. Therefore check for this case and give
2646 -- an error. We can't do this earlier, because it would cause legal
2647 -- cases to get errors (when some other type has an abstract "+").
2649 if Ada_Version
>= Ada_2005
2650 and then Nkind
(N
) in N_Op
2651 and then Is_Overloaded
(N
)
2652 and then Is_Universal_Numeric_Type
(Etype
(Entity
(N
)))
2654 Get_First_Interp
(N
, I
, It
);
2655 while Present
(It
.Typ
) loop
2656 if Present
(It
.Abstract_Op
) and then
2657 Etype
(It
.Abstract_Op
) = Typ
2660 ("cannot call abstract subprogram &!", N
, It
.Abstract_Op
);
2664 Get_Next_Interp
(I
, It
);
2668 -- Here we have an acceptable interpretation for the context
2670 -- Propagate type information and normalize tree for various
2671 -- predefined operations. If the context only imposes a class of
2672 -- types, rather than a specific type, propagate the actual type
2675 if Typ
= Any_Integer
or else
2676 Typ
= Any_Boolean
or else
2677 Typ
= Any_Modular
or else
2678 Typ
= Any_Real
or else
2681 Ctx_Type
:= Expr_Type
;
2683 -- Any_Fixed is legal in a real context only if a specific fixed-
2684 -- point type is imposed. If Norman Cohen can be confused by this,
2685 -- it deserves a separate message.
2688 and then Expr_Type
= Any_Fixed
2690 Error_Msg_N
("illegal context for mixed mode operation", N
);
2691 Set_Etype
(N
, Universal_Real
);
2692 Ctx_Type
:= Universal_Real
;
2696 -- A user-defined operator is transformed into a function call at
2697 -- this point, so that further processing knows that operators are
2698 -- really operators (i.e. are predefined operators). User-defined
2699 -- operators that are intrinsic are just renamings of the predefined
2700 -- ones, and need not be turned into calls either, but if they rename
2701 -- a different operator, we must transform the node accordingly.
2702 -- Instantiations of Unchecked_Conversion are intrinsic but are
2703 -- treated as functions, even if given an operator designator.
2705 if Nkind
(N
) in N_Op
2706 and then Present
(Entity
(N
))
2707 and then Ekind
(Entity
(N
)) /= E_Operator
2710 if not Is_Predefined_Op
(Entity
(N
)) then
2711 Rewrite_Operator_As_Call
(N
, Entity
(N
));
2713 elsif Present
(Alias
(Entity
(N
)))
2715 Nkind
(Parent
(Parent
(Entity
(N
)))) =
2716 N_Subprogram_Renaming_Declaration
2718 Rewrite_Renamed_Operator
(N
, Alias
(Entity
(N
)), Typ
);
2720 -- If the node is rewritten, it will be fully resolved in
2721 -- Rewrite_Renamed_Operator.
2723 if Analyzed
(N
) then
2729 case N_Subexpr
'(Nkind (N)) is
2731 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2733 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2735 when N_Short_Circuit
2736 => Resolve_Short_Circuit (N, Ctx_Type);
2738 when N_Attribute_Reference
2739 => Resolve_Attribute (N, Ctx_Type);
2741 when N_Case_Expression
2742 => Resolve_Case_Expression (N, Ctx_Type);
2744 when N_Character_Literal
2745 => Resolve_Character_Literal (N, Ctx_Type);
2747 when N_Expanded_Name
2748 => Resolve_Entity_Name (N, Ctx_Type);
2750 when N_Explicit_Dereference
2751 => Resolve_Explicit_Dereference (N, Ctx_Type);
2753 when N_Expression_With_Actions
2754 => Resolve_Expression_With_Actions (N, Ctx_Type);
2756 when N_Extension_Aggregate
2757 => Resolve_Extension_Aggregate (N, Ctx_Type);
2759 when N_Function_Call
2760 => Resolve_Call (N, Ctx_Type);
2763 => Resolve_Entity_Name (N, Ctx_Type);
2765 when N_If_Expression
2766 => Resolve_If_Expression (N, Ctx_Type);
2768 when N_Indexed_Component
2769 => Resolve_Indexed_Component (N, Ctx_Type);
2771 when N_Integer_Literal
2772 => Resolve_Integer_Literal (N, Ctx_Type);
2774 when N_Membership_Test
2775 => Resolve_Membership_Op (N, Ctx_Type);
2777 when N_Null => Resolve_Null (N, Ctx_Type);
2779 when N_Op_And | N_Op_Or | N_Op_Xor
2780 => Resolve_Logical_Op (N, Ctx_Type);
2782 when N_Op_Eq | N_Op_Ne
2783 => Resolve_Equality_Op (N, Ctx_Type);
2785 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2786 => Resolve_Comparison_Op (N, Ctx_Type);
2788 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2790 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2791 N_Op_Divide | N_Op_Mod | N_Op_Rem
2793 => Resolve_Arithmetic_Op (N, Ctx_Type);
2795 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2797 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2799 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2800 => Resolve_Unary_Op (N, Ctx_Type);
2802 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2804 when N_Procedure_Call_Statement
2805 => Resolve_Call (N, Ctx_Type);
2807 when N_Operator_Symbol
2808 => Resolve_Operator_Symbol (N, Ctx_Type);
2810 when N_Qualified_Expression
2811 => Resolve_Qualified_Expression (N, Ctx_Type);
2813 when N_Quantified_Expression => null;
2815 when N_Raise_xxx_Error
2816 => Set_Etype (N, Ctx_Type);
2818 when N_Range => Resolve_Range (N, Ctx_Type);
2821 => Resolve_Real_Literal (N, Ctx_Type);
2823 when N_Reference => Resolve_Reference (N, Ctx_Type);
2825 when N_Selected_Component
2826 => Resolve_Selected_Component (N, Ctx_Type);
2828 when N_Slice => Resolve_Slice (N, Ctx_Type);
2830 when N_String_Literal
2831 => Resolve_String_Literal (N, Ctx_Type);
2833 when N_Subprogram_Info
2834 => Resolve_Subprogram_Info (N, Ctx_Type);
2836 when N_Type_Conversion
2837 => Resolve_Type_Conversion (N, Ctx_Type);
2839 when N_Unchecked_Expression =>
2840 Resolve_Unchecked_Expression (N, Ctx_Type);
2842 when N_Unchecked_Type_Conversion =>
2843 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2846 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2847 -- expression of an anonymous access type that occurs in the context
2848 -- of a named general access type, except when the expression is that
2849 -- of a membership test. This ensures proper legality checking in
2850 -- terms of allowed conversions (expressions that would be illegal to
2851 -- convert implicitly are allowed in membership tests).
2853 if Ada_Version >= Ada_2012
2854 and then Ekind (Ctx_Type) = E_General_Access_Type
2855 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2856 and then Nkind (Parent (N)) not in N_Membership_Test
2858 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2859 Analyze_And_Resolve (N, Ctx_Type);
2862 -- If the subexpression was replaced by a non-subexpression, then
2863 -- all we do is to expand it. The only legitimate case we know of
2864 -- is converting procedure call statement to entry call statements,
2865 -- but there may be others, so we are making this test general.
2867 if Nkind (N) not in N_Subexpr then
2868 Debug_A_Exit ("resolving ", N, " (done)");
2873 -- AI05-144-2: Check dangerous order dependence within an expression
2874 -- that is not a subexpression. Exclude RHS of an assignment, because
2875 -- both sides may have side-effects and the check must be performed
2876 -- over the statement.
2878 if Nkind (Parent (N)) not in N_Subexpr
2879 and then Nkind (Parent (N)) /= N_Assignment_Statement
2880 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2882 Check_Order_Dependence;
2885 -- The expression is definitely NOT overloaded at this point, so
2886 -- we reset the Is_Overloaded flag to avoid any confusion when
2887 -- reanalyzing the node.
2889 Set_Is_Overloaded (N, False);
2891 -- Freeze expression type, entity if it is a name, and designated
2892 -- type if it is an allocator (RM 13.14(10,11,13)).
2894 -- Now that the resolution of the type of the node is complete, and
2895 -- we did not detect an error, we can expand this node. We skip the
2896 -- expand call if we are in a default expression, see section
2897 -- "Handling of Default Expressions" in Sem spec.
2899 Debug_A_Exit ("resolving ", N, " (done)");
2901 -- We unconditionally freeze the expression, even if we are in
2902 -- default expression mode (the Freeze_Expression routine tests this
2903 -- flag and only freezes static types if it is set).
2905 -- Ada 2012 (AI05-177): Expression functions do not freeze. Only
2906 -- their use (in an expanded call) freezes.
2908 if Ekind (Proper_Current_Scope) /= E_Function
2909 or else Nkind (Original_Node (Unit_Declaration_Node
2910 (Proper_Current_Scope))) /= N_Expression_Function
2912 Freeze_Expression (N);
2915 -- Now we can do the expansion
2925 -- Version with check(s) suppressed
2927 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2929 if Suppress = All_Checks then
2931 Svg : constant Suppress_Record := Scope_Suppress;
2933 Scope_Suppress := Suppress_All;
2935 Scope_Suppress := Svg;
2940 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
2942 Scope_Suppress.Suppress (Suppress) := True;
2944 Scope_Suppress.Suppress (Suppress) := Svg;
2953 -- Version with implicit type
2955 procedure Resolve (N : Node_Id) is
2957 Resolve (N, Etype (N));
2960 ---------------------
2961 -- Resolve_Actuals --
2962 ---------------------
2964 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2965 Loc : constant Source_Ptr := Sloc (N);
2970 Prev : Node_Id := Empty;
2973 procedure Check_Argument_Order;
2974 -- Performs a check for the case where the actuals are all simple
2975 -- identifiers that correspond to the formal names, but in the wrong
2976 -- order, which is considered suspicious and cause for a warning.
2978 procedure Check_Prefixed_Call;
2979 -- If the original node is an overloaded call in prefix notation,
2980 -- insert an 'Access or a dereference as needed over the first actual
.
2981 -- Try_Object_Operation has already verified that there is a valid
2982 -- interpretation, but the form of the actual can only be determined
2983 -- once the primitive operation is identified.
2985 procedure Insert_Default
;
2986 -- If the actual is missing in a call, insert in the actuals list
2987 -- an instance of the default expression. The insertion is always
2988 -- a named association.
2990 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
2991 -- Check whether T1 and T2, or their full views, are derived from a
2992 -- common type. Used to enforce the restrictions on array conversions
2995 function Static_Concatenation
(N
: Node_Id
) return Boolean;
2996 -- Predicate to determine whether an actual that is a concatenation
2997 -- will be evaluated statically and does not need a transient scope.
2998 -- This must be determined before the actual is resolved and expanded
2999 -- because if needed the transient scope must be introduced earlier.
3001 --------------------------
3002 -- Check_Argument_Order --
3003 --------------------------
3005 procedure Check_Argument_Order
is
3007 -- Nothing to do if no parameters, or original node is neither a
3008 -- function call nor a procedure call statement (happens in the
3009 -- operator-transformed-to-function call case), or the call does
3010 -- not come from source, or this warning is off.
3012 if not Warn_On_Parameter_Order
3013 or else No
(Parameter_Associations
(N
))
3014 or else Nkind
(Original_Node
(N
)) not in N_Subprogram_Call
3015 or else not Comes_From_Source
(N
)
3021 Nargs
: constant Nat
:= List_Length
(Parameter_Associations
(N
));
3024 -- Nothing to do if only one parameter
3030 -- Here if at least two arguments
3033 Actuals
: array (1 .. Nargs
) of Node_Id
;
3037 Wrong_Order
: Boolean := False;
3038 -- Set True if an out of order case is found
3041 -- Collect identifier names of actuals, fail if any actual is
3042 -- not a simple identifier, and record max length of name.
3044 Actual
:= First
(Parameter_Associations
(N
));
3045 for J
in Actuals
'Range loop
3046 if Nkind
(Actual
) /= N_Identifier
then
3049 Actuals
(J
) := Actual
;
3054 -- If we got this far, all actuals are identifiers and the list
3055 -- of their names is stored in the Actuals array.
3057 Formal
:= First_Formal
(Nam
);
3058 for J
in Actuals
'Range loop
3060 -- If we ran out of formals, that's odd, probably an error
3061 -- which will be detected elsewhere, but abandon the search.
3067 -- If name matches and is in order OK
3069 if Chars
(Formal
) = Chars
(Actuals
(J
)) then
3073 -- If no match, see if it is elsewhere in list and if so
3074 -- flag potential wrong order if type is compatible.
3076 for K
in Actuals
'Range loop
3077 if Chars
(Formal
) = Chars
(Actuals
(K
))
3079 Has_Compatible_Type
(Actuals
(K
), Etype
(Formal
))
3081 Wrong_Order
:= True;
3091 <<Continue
>> Next_Formal
(Formal
);
3094 -- If Formals left over, also probably an error, skip warning
3096 if Present
(Formal
) then
3100 -- Here we give the warning if something was out of order
3104 ("actuals for this call may be in wrong order?", N
);
3108 end Check_Argument_Order
;
3110 -------------------------
3111 -- Check_Prefixed_Call --
3112 -------------------------
3114 procedure Check_Prefixed_Call
is
3115 Act
: constant Node_Id
:= First_Actual
(N
);
3116 A_Type
: constant Entity_Id
:= Etype
(Act
);
3117 F_Type
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
3118 Orig
: constant Node_Id
:= Original_Node
(N
);
3122 -- Check whether the call is a prefixed call, with or without
3123 -- additional actuals.
3125 if Nkind
(Orig
) = N_Selected_Component
3127 (Nkind
(Orig
) = N_Indexed_Component
3128 and then Nkind
(Prefix
(Orig
)) = N_Selected_Component
3129 and then Is_Entity_Name
(Prefix
(Prefix
(Orig
)))
3130 and then Is_Entity_Name
(Act
)
3131 and then Chars
(Act
) = Chars
(Prefix
(Prefix
(Orig
))))
3133 if Is_Access_Type
(A_Type
)
3134 and then not Is_Access_Type
(F_Type
)
3136 -- Introduce dereference on object in prefix
3139 Make_Explicit_Dereference
(Sloc
(Act
),
3140 Prefix
=> Relocate_Node
(Act
));
3141 Rewrite
(Act
, New_A
);
3144 elsif Is_Access_Type
(F_Type
)
3145 and then not Is_Access_Type
(A_Type
)
3147 -- Introduce an implicit 'Access in prefix
3149 if not Is_Aliased_View
(Act
) then
3151 ("object in prefixed call to& must be aliased"
3152 & " (RM-2005 4.3.1 (13))",
3157 Make_Attribute_Reference
(Loc
,
3158 Attribute_Name
=> Name_Access
,
3159 Prefix
=> Relocate_Node
(Act
)));
3164 end Check_Prefixed_Call
;
3166 --------------------
3167 -- Insert_Default --
3168 --------------------
3170 procedure Insert_Default
is
3175 -- Missing argument in call, nothing to insert
3177 if No
(Default_Value
(F
)) then
3181 -- Note that we do a full New_Copy_Tree, so that any associated
3182 -- Itypes are properly copied. This may not be needed any more,
3183 -- but it does no harm as a safety measure! Defaults of a generic
3184 -- formal may be out of bounds of the corresponding actual (see
3185 -- cc1311b) and an additional check may be required.
3190 New_Scope
=> Current_Scope
,
3193 if Is_Concurrent_Type
(Scope
(Nam
))
3194 and then Has_Discriminants
(Scope
(Nam
))
3196 Replace_Actual_Discriminants
(N
, Actval
);
3199 if Is_Overloadable
(Nam
)
3200 and then Present
(Alias
(Nam
))
3202 if Base_Type
(Etype
(F
)) /= Base_Type
(Etype
(Actval
))
3203 and then not Is_Tagged_Type
(Etype
(F
))
3205 -- If default is a real literal, do not introduce a
3206 -- conversion whose effect may depend on the run-time
3207 -- size of universal real.
3209 if Nkind
(Actval
) = N_Real_Literal
then
3210 Set_Etype
(Actval
, Base_Type
(Etype
(F
)));
3212 Actval
:= Unchecked_Convert_To
(Etype
(F
), Actval
);
3216 if Is_Scalar_Type
(Etype
(F
)) then
3217 Enable_Range_Check
(Actval
);
3220 Set_Parent
(Actval
, N
);
3222 -- Resolve aggregates with their base type, to avoid scope
3223 -- anomalies: the subtype was first built in the subprogram
3224 -- declaration, and the current call may be nested.
3226 if Nkind
(Actval
) = N_Aggregate
then
3227 Analyze_And_Resolve
(Actval
, Etype
(F
));
3229 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3233 Set_Parent
(Actval
, N
);
3235 -- See note above concerning aggregates
3237 if Nkind
(Actval
) = N_Aggregate
3238 and then Has_Discriminants
(Etype
(Actval
))
3240 Analyze_And_Resolve
(Actval
, Base_Type
(Etype
(Actval
)));
3242 -- Resolve entities with their own type, which may differ from
3243 -- the type of a reference in a generic context (the view
3244 -- swapping mechanism did not anticipate the re-analysis of
3245 -- default values in calls).
3247 elsif Is_Entity_Name
(Actval
) then
3248 Analyze_And_Resolve
(Actval
, Etype
(Entity
(Actval
)));
3251 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3255 -- If default is a tag indeterminate function call, propagate tag
3256 -- to obtain proper dispatching.
3258 if Is_Controlling_Formal
(F
)
3259 and then Nkind
(Default_Value
(F
)) = N_Function_Call
3261 Set_Is_Controlling_Actual
(Actval
);
3266 -- If the default expression raises constraint error, then just
3267 -- silently replace it with an N_Raise_Constraint_Error node, since
3268 -- we already gave the warning on the subprogram spec. If node is
3269 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3270 -- the warnings removal machinery.
3272 if Raises_Constraint_Error
(Actval
)
3273 and then Nkind
(Actval
) /= N_Raise_Constraint_Error
3276 Make_Raise_Constraint_Error
(Loc
,
3277 Reason
=> CE_Range_Check_Failed
));
3278 Set_Raises_Constraint_Error
(Actval
);
3279 Set_Etype
(Actval
, Etype
(F
));
3283 Make_Parameter_Association
(Loc
,
3284 Explicit_Actual_Parameter
=> Actval
,
3285 Selector_Name
=> Make_Identifier
(Loc
, Chars
(F
)));
3287 -- Case of insertion is first named actual
3289 if No
(Prev
) or else
3290 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
3292 Set_Next_Named_Actual
(Assoc
, First_Named_Actual
(N
));
3293 Set_First_Named_Actual
(N
, Actval
);
3296 if No
(Parameter_Associations
(N
)) then
3297 Set_Parameter_Associations
(N
, New_List
(Assoc
));
3299 Append
(Assoc
, Parameter_Associations
(N
));
3303 Insert_After
(Prev
, Assoc
);
3306 -- Case of insertion is not first named actual
3309 Set_Next_Named_Actual
3310 (Assoc
, Next_Named_Actual
(Parent
(Prev
)));
3311 Set_Next_Named_Actual
(Parent
(Prev
), Actval
);
3312 Append
(Assoc
, Parameter_Associations
(N
));
3315 Mark_Rewrite_Insertion
(Assoc
);
3316 Mark_Rewrite_Insertion
(Actval
);
3325 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean is
3326 FT1
: Entity_Id
:= T1
;
3327 FT2
: Entity_Id
:= T2
;
3330 if Is_Private_Type
(T1
)
3331 and then Present
(Full_View
(T1
))
3333 FT1
:= Full_View
(T1
);
3336 if Is_Private_Type
(T2
)
3337 and then Present
(Full_View
(T2
))
3339 FT2
:= Full_View
(T2
);
3342 return Root_Type
(Base_Type
(FT1
)) = Root_Type
(Base_Type
(FT2
));
3345 --------------------------
3346 -- Static_Concatenation --
3347 --------------------------
3349 function Static_Concatenation
(N
: Node_Id
) return Boolean is
3352 when N_String_Literal
=>
3357 -- Concatenation is static when both operands are static and
3358 -- the concatenation operator is a predefined one.
3360 return Scope
(Entity
(N
)) = Standard_Standard
3362 Static_Concatenation
(Left_Opnd
(N
))
3364 Static_Concatenation
(Right_Opnd
(N
));
3367 if Is_Entity_Name
(N
) then
3369 Ent
: constant Entity_Id
:= Entity
(N
);
3371 return Ekind
(Ent
) = E_Constant
3372 and then Present
(Constant_Value
(Ent
))
3374 Is_Static_Expression
(Constant_Value
(Ent
));
3381 end Static_Concatenation
;
3383 -- Start of processing for Resolve_Actuals
3386 Check_Argument_Order
;
3388 if Present
(First_Actual
(N
)) then
3389 Check_Prefixed_Call
;
3392 A
:= First_Actual
(N
);
3393 F
:= First_Formal
(Nam
);
3394 while Present
(F
) loop
3395 if No
(A
) and then Needs_No_Actuals
(Nam
) then
3398 -- If we have an error in any actual or formal, indicated by a type
3399 -- of Any_Type, then abandon resolution attempt, and set result type
3402 elsif (Present
(A
) and then Etype
(A
) = Any_Type
)
3403 or else Etype
(F
) = Any_Type
3405 Set_Etype
(N
, Any_Type
);
3409 -- Case where actual is present
3411 -- If the actual is an entity, generate a reference to it now. We
3412 -- do this before the actual is resolved, because a formal of some
3413 -- protected subprogram, or a task discriminant, will be rewritten
3414 -- during expansion, and the source entity reference may be lost.
3417 and then Is_Entity_Name
(A
)
3418 and then Comes_From_Source
(N
)
3420 Orig_A
:= Entity
(A
);
3422 if Present
(Orig_A
) then
3423 if Is_Formal
(Orig_A
)
3424 and then Ekind
(F
) /= E_In_Parameter
3426 Generate_Reference
(Orig_A
, A
, 'm');
3428 elsif not Is_Overloaded
(A
) then
3429 Generate_Reference
(Orig_A
, A
);
3435 and then (Nkind
(Parent
(A
)) /= N_Parameter_Association
3436 or else Chars
(Selector_Name
(Parent
(A
))) = Chars
(F
))
3438 -- If style checking mode on, check match of formal name
3441 if Nkind
(Parent
(A
)) = N_Parameter_Association
then
3442 Check_Identifier
(Selector_Name
(Parent
(A
)), F
);
3446 -- If the formal is Out or In_Out, do not resolve and expand the
3447 -- conversion, because it is subsequently expanded into explicit
3448 -- temporaries and assignments. However, the object of the
3449 -- conversion can be resolved. An exception is the case of tagged
3450 -- type conversion with a class-wide actual. In that case we want
3451 -- the tag check to occur and no temporary will be needed (no
3452 -- representation change can occur) and the parameter is passed by
3453 -- reference, so we go ahead and resolve the type conversion.
3454 -- Another exception is the case of reference to component or
3455 -- subcomponent of a bit-packed array, in which case we want to
3456 -- defer expansion to the point the in and out assignments are
3459 if Ekind
(F
) /= E_In_Parameter
3460 and then Nkind
(A
) = N_Type_Conversion
3461 and then not Is_Class_Wide_Type
(Etype
(Expression
(A
)))
3463 if Ekind
(F
) = E_In_Out_Parameter
3464 and then Is_Array_Type
(Etype
(F
))
3466 -- In a view conversion, the conversion must be legal in
3467 -- both directions, and thus both component types must be
3468 -- aliased, or neither (4.6 (8)).
3470 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3471 -- the privacy requirement should not apply to generic
3472 -- types, and should be checked in an instance. ARG query
3475 if Has_Aliased_Components
(Etype
(Expression
(A
))) /=
3476 Has_Aliased_Components
(Etype
(F
))
3479 ("both component types in a view conversion must be"
3480 & " aliased, or neither", A
);
3482 -- Comment here??? what set of cases???
3485 not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3487 -- Check view conv between unrelated by ref array types
3489 if Is_By_Reference_Type
(Etype
(F
))
3490 or else Is_By_Reference_Type
(Etype
(Expression
(A
)))
3493 ("view conversion between unrelated by reference " &
3494 "array types not allowed (\'A'I-00246)", A
);
3496 -- In Ada 2005 mode, check view conversion component
3497 -- type cannot be private, tagged, or volatile. Note
3498 -- that we only apply this to source conversions. The
3499 -- generated code can contain conversions which are
3500 -- not subject to this test, and we cannot extract the
3501 -- component type in such cases since it is not present.
3503 elsif Comes_From_Source
(A
)
3504 and then Ada_Version
>= Ada_2005
3507 Comp_Type
: constant Entity_Id
:=
3509 (Etype
(Expression
(A
)));
3511 if (Is_Private_Type
(Comp_Type
)
3512 and then not Is_Generic_Type
(Comp_Type
))
3513 or else Is_Tagged_Type
(Comp_Type
)
3514 or else Is_Volatile
(Comp_Type
)
3517 ("component type of a view conversion cannot"
3518 & " be private, tagged, or volatile"
3527 -- Resolve expression if conversion is all OK
3529 if (Conversion_OK
(A
)
3530 or else Valid_Conversion
(A
, Etype
(A
), Expression
(A
)))
3531 and then not Is_Ref_To_Bit_Packed_Array
(Expression
(A
))
3533 Resolve
(Expression
(A
));
3536 -- If the actual is a function call that returns a limited
3537 -- unconstrained object that needs finalization, create a
3538 -- transient scope for it, so that it can receive the proper
3539 -- finalization list.
3541 elsif Nkind
(A
) = N_Function_Call
3542 and then Is_Limited_Record
(Etype
(F
))
3543 and then not Is_Constrained
(Etype
(F
))
3544 and then Full_Expander_Active
3545 and then (Is_Controlled
(Etype
(F
)) or else Has_Task
(Etype
(F
)))
3547 Establish_Transient_Scope
(A
, False);
3548 Resolve
(A
, Etype
(F
));
3550 -- A small optimization: if one of the actuals is a concatenation
3551 -- create a block around a procedure call to recover stack space.
3552 -- This alleviates stack usage when several procedure calls in
3553 -- the same statement list use concatenation. We do not perform
3554 -- this wrapping for code statements, where the argument is a
3555 -- static string, and we want to preserve warnings involving
3556 -- sequences of such statements.
3558 elsif Nkind
(A
) = N_Op_Concat
3559 and then Nkind
(N
) = N_Procedure_Call_Statement
3560 and then Full_Expander_Active
3562 not (Is_Intrinsic_Subprogram
(Nam
)
3563 and then Chars
(Nam
) = Name_Asm
)
3564 and then not Static_Concatenation
(A
)
3566 Establish_Transient_Scope
(A
, False);
3567 Resolve
(A
, Etype
(F
));
3570 if Nkind
(A
) = N_Type_Conversion
3571 and then Is_Array_Type
(Etype
(F
))
3572 and then not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3574 (Is_Limited_Type
(Etype
(F
))
3575 or else Is_Limited_Type
(Etype
(Expression
(A
))))
3578 ("conversion between unrelated limited array types " &
3579 "not allowed (\A\I-00246)", A
);
3581 if Is_Limited_Type
(Etype
(F
)) then
3582 Explain_Limited_Type
(Etype
(F
), A
);
3585 if Is_Limited_Type
(Etype
(Expression
(A
))) then
3586 Explain_Limited_Type
(Etype
(Expression
(A
)), A
);
3590 -- (Ada 2005: AI-251): If the actual is an allocator whose
3591 -- directly designated type is a class-wide interface, we build
3592 -- an anonymous access type to use it as the type of the
3593 -- allocator. Later, when the subprogram call is expanded, if
3594 -- the interface has a secondary dispatch table the expander
3595 -- will add a type conversion to force the correct displacement
3598 if Nkind
(A
) = N_Allocator
then
3600 DDT
: constant Entity_Id
:=
3601 Directly_Designated_Type
(Base_Type
(Etype
(F
)));
3603 New_Itype
: Entity_Id
;
3606 if Is_Class_Wide_Type
(DDT
)
3607 and then Is_Interface
(DDT
)
3609 New_Itype
:= Create_Itype
(E_Anonymous_Access_Type
, A
);
3610 Set_Etype
(New_Itype
, Etype
(A
));
3611 Set_Directly_Designated_Type
(New_Itype
,
3612 Directly_Designated_Type
(Etype
(A
)));
3613 Set_Etype
(A
, New_Itype
);
3616 -- Ada 2005, AI-162:If the actual is an allocator, the
3617 -- innermost enclosing statement is the master of the
3618 -- created object. This needs to be done with expansion
3619 -- enabled only, otherwise the transient scope will not
3620 -- be removed in the expansion of the wrapped construct.
3622 if (Is_Controlled
(DDT
) or else Has_Task
(DDT
))
3623 and then Full_Expander_Active
3625 Establish_Transient_Scope
(A
, False);
3630 -- (Ada 2005): The call may be to a primitive operation of
3631 -- a tagged synchronized type, declared outside of the type.
3632 -- In this case the controlling actual must be converted to
3633 -- its corresponding record type, which is the formal type.
3634 -- The actual may be a subtype, either because of a constraint
3635 -- or because it is a generic actual, so use base type to
3636 -- locate concurrent type.
3638 F_Typ
:= Base_Type
(Etype
(F
));
3640 if Is_Tagged_Type
(F_Typ
)
3641 and then (Is_Concurrent_Type
(F_Typ
)
3642 or else Is_Concurrent_Record_Type
(F_Typ
))
3644 -- If the actual is overloaded, look for an interpretation
3645 -- that has a synchronized type.
3647 if not Is_Overloaded
(A
) then
3648 A_Typ
:= Base_Type
(Etype
(A
));
3652 Index
: Interp_Index
;
3656 Get_First_Interp
(A
, Index
, It
);
3657 while Present
(It
.Typ
) loop
3658 if Is_Concurrent_Type
(It
.Typ
)
3659 or else Is_Concurrent_Record_Type
(It
.Typ
)
3661 A_Typ
:= Base_Type
(It
.Typ
);
3665 Get_Next_Interp
(Index
, It
);
3671 Full_A_Typ
: Entity_Id
;
3674 if Present
(Full_View
(A_Typ
)) then
3675 Full_A_Typ
:= Base_Type
(Full_View
(A_Typ
));
3677 Full_A_Typ
:= A_Typ
;
3680 -- Tagged synchronized type (case 1): the actual is a
3683 if Is_Concurrent_Type
(A_Typ
)
3684 and then Corresponding_Record_Type
(A_Typ
) = F_Typ
3687 Unchecked_Convert_To
3688 (Corresponding_Record_Type
(A_Typ
), A
));
3689 Resolve
(A
, Etype
(F
));
3691 -- Tagged synchronized type (case 2): the formal is a
3694 elsif Ekind
(Full_A_Typ
) = E_Record_Type
3696 (Corresponding_Concurrent_Type
(Full_A_Typ
))
3697 and then Is_Concurrent_Type
(F_Typ
)
3698 and then Present
(Corresponding_Record_Type
(F_Typ
))
3699 and then Full_A_Typ
= Corresponding_Record_Type
(F_Typ
)
3701 Resolve
(A
, Corresponding_Record_Type
(F_Typ
));
3706 Resolve
(A
, Etype
(F
));
3711 -- not a synchronized operation.
3713 Resolve
(A
, Etype
(F
));
3720 if Comes_From_Source
(Original_Node
(N
))
3721 and then Nkind_In
(Original_Node
(N
), N_Function_Call
,
3722 N_Procedure_Call_Statement
)
3724 -- In formal mode, check that actual parameters matching
3725 -- formals of tagged types are objects (or ancestor type
3726 -- conversions of objects), not general expressions.
3728 if Is_Actual_Tagged_Parameter
(A
) then
3729 if Is_SPARK_Object_Reference
(A
) then
3732 elsif Nkind
(A
) = N_Type_Conversion
then
3734 Operand
: constant Node_Id
:= Expression
(A
);
3735 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
3736 Target_Typ
: constant Entity_Id
:= A_Typ
;
3739 if not Is_SPARK_Object_Reference
(Operand
) then
3740 Check_SPARK_Restriction
3741 ("object required", Operand
);
3743 -- In formal mode, the only view conversions are those
3744 -- involving ancestor conversion of an extended type.
3747 (Is_Tagged_Type
(Target_Typ
)
3748 and then not Is_Class_Wide_Type
(Target_Typ
)
3749 and then Is_Tagged_Type
(Operand_Typ
)
3750 and then not Is_Class_Wide_Type
(Operand_Typ
)
3751 and then Is_Ancestor
(Target_Typ
, Operand_Typ
))
3754 (F
, E_Out_Parameter
, E_In_Out_Parameter
)
3756 Check_SPARK_Restriction
3757 ("ancestor conversion is the only permitted "
3758 & "view conversion", A
);
3760 Check_SPARK_Restriction
3761 ("ancestor conversion required", A
);
3770 Check_SPARK_Restriction
("object required", A
);
3773 -- In formal mode, the only view conversions are those
3774 -- involving ancestor conversion of an extended type.
3776 elsif Nkind
(A
) = N_Type_Conversion
3777 and then Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
3779 Check_SPARK_Restriction
3780 ("ancestor conversion is the only permitted view "
3785 -- Save actual for subsequent check on order dependence, and
3786 -- indicate whether actual is modifiable. For AI05-0144-2.
3788 -- If this is a call to a reference function that is the result
3789 -- of expansion, as in element iterator loops, this does not lead
3790 -- to a dangerous order dependence: only subsequent use of the
3791 -- denoted element might, in some enclosing call.
3793 if not Has_Implicit_Dereference
(Etype
(Nam
))
3794 or else Comes_From_Source
(N
)
3796 Save_Actual
(A
, Ekind
(F
) /= E_In_Parameter
);
3799 -- For mode IN, if actual is an entity, and the type of the formal
3800 -- has warnings suppressed, then we reset Never_Set_In_Source for
3801 -- the calling entity. The reason for this is to catch cases like
3802 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3803 -- uses trickery to modify an IN parameter.
3805 if Ekind
(F
) = E_In_Parameter
3806 and then Is_Entity_Name
(A
)
3807 and then Present
(Entity
(A
))
3808 and then Ekind
(Entity
(A
)) = E_Variable
3809 and then Has_Warnings_Off
(F_Typ
)
3811 Set_Never_Set_In_Source
(Entity
(A
), False);
3814 -- Perform error checks for IN and IN OUT parameters
3816 if Ekind
(F
) /= E_Out_Parameter
then
3818 -- Check unset reference. For scalar parameters, it is clearly
3819 -- wrong to pass an uninitialized value as either an IN or
3820 -- IN-OUT parameter. For composites, it is also clearly an
3821 -- error to pass a completely uninitialized value as an IN
3822 -- parameter, but the case of IN OUT is trickier. We prefer
3823 -- not to give a warning here. For example, suppose there is
3824 -- a routine that sets some component of a record to False.
3825 -- It is perfectly reasonable to make this IN-OUT and allow
3826 -- either initialized or uninitialized records to be passed
3829 -- For partially initialized composite values, we also avoid
3830 -- warnings, since it is quite likely that we are passing a
3831 -- partially initialized value and only the initialized fields
3832 -- will in fact be read in the subprogram.
3834 if Is_Scalar_Type
(A_Typ
)
3835 or else (Ekind
(F
) = E_In_Parameter
3836 and then not Is_Partially_Initialized_Type
(A_Typ
))
3838 Check_Unset_Reference
(A
);
3841 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3842 -- actual to a nested call, since this is case of reading an
3843 -- out parameter, which is not allowed.
3845 if Ada_Version
= Ada_83
3846 and then Is_Entity_Name
(A
)
3847 and then Ekind
(Entity
(A
)) = E_Out_Parameter
3849 Error_Msg_N
("(Ada 83) illegal reading of out parameter", A
);
3853 -- Case of OUT or IN OUT parameter
3855 if Ekind
(F
) /= E_In_Parameter
then
3857 -- For an Out parameter, check for useless assignment. Note
3858 -- that we can't set Last_Assignment this early, because we may
3859 -- kill current values in Resolve_Call, and that call would
3860 -- clobber the Last_Assignment field.
3862 -- Note: call Warn_On_Useless_Assignment before doing the check
3863 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3864 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3865 -- reflects the last assignment, not this one!
3867 if Ekind
(F
) = E_Out_Parameter
then
3868 if Warn_On_Modified_As_Out_Parameter
(F
)
3869 and then Is_Entity_Name
(A
)
3870 and then Present
(Entity
(A
))
3871 and then Comes_From_Source
(N
)
3873 Warn_On_Useless_Assignment
(Entity
(A
), A
);
3877 -- Validate the form of the actual. Note that the call to
3878 -- Is_OK_Variable_For_Out_Formal generates the required
3879 -- reference in this case.
3881 -- A call to an initialization procedure for an aggregate
3882 -- component may initialize a nested component of a constant
3883 -- designated object. In this context the object is variable.
3885 if not Is_OK_Variable_For_Out_Formal
(A
)
3886 and then not Is_Init_Proc
(Nam
)
3888 Error_Msg_NE
("actual for& must be a variable", A
, F
);
3891 -- What's the following about???
3893 if Is_Entity_Name
(A
) then
3894 Kill_Checks
(Entity
(A
));
3900 if Etype
(A
) = Any_Type
then
3901 Set_Etype
(N
, Any_Type
);
3905 -- Apply appropriate range checks for in, out, and in-out
3906 -- parameters. Out and in-out parameters also need a separate
3907 -- check, if there is a type conversion, to make sure the return
3908 -- value meets the constraints of the variable before the
3911 -- Gigi looks at the check flag and uses the appropriate types.
3912 -- For now since one flag is used there is an optimization which
3913 -- might not be done in the In Out case since Gigi does not do
3914 -- any analysis. More thought required about this ???
3916 if Ekind_In
(F
, E_In_Parameter
, E_In_Out_Parameter
) then
3918 -- Apply predicate checks, unless this is a call to the
3919 -- predicate check function itself, which would cause an
3920 -- infinite recursion.
3922 if not (Ekind
(Nam
) = E_Function
3923 and then Has_Predicates
(Nam
))
3925 Apply_Predicate_Check
(A
, F_Typ
);
3928 -- Apply required constraint checks
3930 if Is_Scalar_Type
(Etype
(A
)) then
3931 Apply_Scalar_Range_Check
(A
, F_Typ
);
3933 elsif Is_Array_Type
(Etype
(A
)) then
3934 Apply_Length_Check
(A
, F_Typ
);
3936 elsif Is_Record_Type
(F_Typ
)
3937 and then Has_Discriminants
(F_Typ
)
3938 and then Is_Constrained
(F_Typ
)
3939 and then (not Is_Derived_Type
(F_Typ
)
3940 or else Comes_From_Source
(Nam
))
3942 Apply_Discriminant_Check
(A
, F_Typ
);
3944 elsif Is_Access_Type
(F_Typ
)
3945 and then Is_Array_Type
(Designated_Type
(F_Typ
))
3946 and then Is_Constrained
(Designated_Type
(F_Typ
))
3948 Apply_Length_Check
(A
, F_Typ
);
3950 elsif Is_Access_Type
(F_Typ
)
3951 and then Has_Discriminants
(Designated_Type
(F_Typ
))
3952 and then Is_Constrained
(Designated_Type
(F_Typ
))
3954 Apply_Discriminant_Check
(A
, F_Typ
);
3957 Apply_Range_Check
(A
, F_Typ
);
3960 -- Ada 2005 (AI-231): Note that the controlling parameter case
3961 -- already existed in Ada 95, which is partially checked
3962 -- elsewhere (see Checks), and we don't want the warning
3963 -- message to differ.
3965 if Is_Access_Type
(F_Typ
)
3966 and then Can_Never_Be_Null
(F_Typ
)
3967 and then Known_Null
(A
)
3969 if Is_Controlling_Formal
(F
) then
3970 Apply_Compile_Time_Constraint_Error
3972 Msg
=> "null value not allowed here?",
3973 Reason
=> CE_Access_Check_Failed
);
3975 elsif Ada_Version
>= Ada_2005
then
3976 Apply_Compile_Time_Constraint_Error
3978 Msg
=> "(Ada 2005) null not allowed in "
3979 & "null-excluding formal?",
3980 Reason
=> CE_Null_Not_Allowed
);
3985 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
) then
3986 if Nkind
(A
) = N_Type_Conversion
then
3987 if Is_Scalar_Type
(A_Typ
) then
3988 Apply_Scalar_Range_Check
3989 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
3992 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
3996 if Is_Scalar_Type
(F_Typ
) then
3997 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
3998 elsif Is_Array_Type
(F_Typ
)
3999 and then Ekind
(F
) = E_Out_Parameter
4001 Apply_Length_Check
(A
, F_Typ
);
4003 Apply_Range_Check
(A
, A_Typ
, F_Typ
);
4008 -- An actual associated with an access parameter is implicitly
4009 -- converted to the anonymous access type of the formal and must
4010 -- satisfy the legality checks for access conversions.
4012 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
4013 if not Valid_Conversion
(A
, F_Typ
, A
) then
4015 ("invalid implicit conversion for access parameter", A
);
4018 -- If the actual is an access selected component of a variable,
4019 -- the call may modify its designated object. It is reasonable
4020 -- to treat this as a potential modification of the enclosing
4021 -- record, to prevent spurious warnings that it should be
4022 -- declared as a constant, because intuitively programmers
4023 -- regard the designated subcomponent as part of the record.
4025 if Nkind
(A
) = N_Selected_Component
4026 and then Is_Entity_Name
(Prefix
(A
))
4027 and then not Is_Constant_Object
(Entity
(Prefix
(A
)))
4029 Note_Possible_Modification
(A
, Sure
=> False);
4033 -- Check bad case of atomic/volatile argument (RM C.6(12))
4035 if Is_By_Reference_Type
(Etype
(F
))
4036 and then Comes_From_Source
(N
)
4038 if Is_Atomic_Object
(A
)
4039 and then not Is_Atomic
(Etype
(F
))
4042 ("cannot pass atomic argument to non-atomic formal&",
4045 elsif Is_Volatile_Object
(A
)
4046 and then not Is_Volatile
(Etype
(F
))
4049 ("cannot pass volatile argument to non-volatile formal&",
4054 -- Check that subprograms don't have improper controlling
4055 -- arguments (RM 3.9.2 (9)).
4057 -- A primitive operation may have an access parameter of an
4058 -- incomplete tagged type, but a dispatching call is illegal
4059 -- if the type is still incomplete.
4061 if Is_Controlling_Formal
(F
) then
4062 Set_Is_Controlling_Actual
(A
);
4064 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
4066 Desig
: constant Entity_Id
:= Designated_Type
(Etype
(F
));
4068 if Ekind
(Desig
) = E_Incomplete_Type
4069 and then No
(Full_View
(Desig
))
4070 and then No
(Non_Limited_View
(Desig
))
4073 ("premature use of incomplete type& " &
4074 "in dispatching call", A
, Desig
);
4079 elsif Nkind
(A
) = N_Explicit_Dereference
then
4080 Validate_Remote_Access_To_Class_Wide_Type
(A
);
4083 if (Is_Class_Wide_Type
(A_Typ
) or else Is_Dynamically_Tagged
(A
))
4084 and then not Is_Class_Wide_Type
(F_Typ
)
4085 and then not Is_Controlling_Formal
(F
)
4087 Error_Msg_N
("class-wide argument not allowed here!", A
);
4089 if Is_Subprogram
(Nam
)
4090 and then Comes_From_Source
(Nam
)
4092 Error_Msg_Node_2
:= F_Typ
;
4094 ("& is not a dispatching operation of &!", A
, Nam
);
4097 -- Apply the checks described in 3.10.2(27): if the context is a
4098 -- specific access-to-object, the actual cannot be class-wide.
4099 -- Use base type to exclude access_to_subprogram cases.
4101 elsif Is_Access_Type
(A_Typ
)
4102 and then Is_Access_Type
(F_Typ
)
4103 and then not Is_Access_Subprogram_Type
(Base_Type
(F_Typ
))
4104 and then (Is_Class_Wide_Type
(Designated_Type
(A_Typ
))
4105 or else (Nkind
(A
) = N_Attribute_Reference
4107 Is_Class_Wide_Type
(Etype
(Prefix
(A
)))))
4108 and then not Is_Class_Wide_Type
(Designated_Type
(F_Typ
))
4109 and then not Is_Controlling_Formal
(F
)
4111 -- Disable these checks for call to imported C++ subprograms
4114 (Is_Entity_Name
(Name
(N
))
4115 and then Is_Imported
(Entity
(Name
(N
)))
4116 and then Convention
(Entity
(Name
(N
))) = Convention_CPP
)
4119 ("access to class-wide argument not allowed here!", A
);
4121 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4122 Error_Msg_Node_2
:= Designated_Type
(F_Typ
);
4124 ("& is not a dispatching operation of &!", A
, Nam
);
4130 -- If it is a named association, treat the selector_name as a
4131 -- proper identifier, and mark the corresponding entity. Ignore
4132 -- this reference in Alfa mode, as it refers to an entity not in
4133 -- scope at the point of reference, so the reference should be
4134 -- ignored for computing effects of subprograms.
4136 if Nkind
(Parent
(A
)) = N_Parameter_Association
4137 and then not Alfa_Mode
4139 Set_Entity
(Selector_Name
(Parent
(A
)), F
);
4140 Generate_Reference
(F
, Selector_Name
(Parent
(A
)));
4141 Set_Etype
(Selector_Name
(Parent
(A
)), F_Typ
);
4142 Generate_Reference
(F_Typ
, N
, ' ');
4147 if Ekind
(F
) /= E_Out_Parameter
then
4148 Check_Unset_Reference
(A
);
4153 -- Case where actual is not present
4161 end Resolve_Actuals
;
4163 -----------------------
4164 -- Resolve_Allocator --
4165 -----------------------
4167 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
) is
4168 Desig_T
: constant Entity_Id
:= Designated_Type
(Typ
);
4169 E
: constant Node_Id
:= Expression
(N
);
4171 Discrim
: Entity_Id
;
4174 Assoc
: Node_Id
:= Empty
;
4177 procedure Check_Allocator_Discrim_Accessibility
4178 (Disc_Exp
: Node_Id
;
4179 Alloc_Typ
: Entity_Id
);
4180 -- Check that accessibility level associated with an access discriminant
4181 -- initialized in an allocator by the expression Disc_Exp is not deeper
4182 -- than the level of the allocator type Alloc_Typ. An error message is
4183 -- issued if this condition is violated. Specialized checks are done for
4184 -- the cases of a constraint expression which is an access attribute or
4185 -- an access discriminant.
4187 function In_Dispatching_Context
return Boolean;
4188 -- If the allocator is an actual in a call, it is allowed to be class-
4189 -- wide when the context is not because it is a controlling actual.
4191 -------------------------------------------
4192 -- Check_Allocator_Discrim_Accessibility --
4193 -------------------------------------------
4195 procedure Check_Allocator_Discrim_Accessibility
4196 (Disc_Exp
: Node_Id
;
4197 Alloc_Typ
: Entity_Id
)
4200 if Type_Access_Level
(Etype
(Disc_Exp
)) >
4201 Deepest_Type_Access_Level
(Alloc_Typ
)
4204 ("operand type has deeper level than allocator type", Disc_Exp
);
4206 -- When the expression is an Access attribute the level of the prefix
4207 -- object must not be deeper than that of the allocator's type.
4209 elsif Nkind
(Disc_Exp
) = N_Attribute_Reference
4210 and then Get_Attribute_Id
(Attribute_Name
(Disc_Exp
)) =
4212 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4213 Deepest_Type_Access_Level
(Alloc_Typ
)
4216 ("prefix of attribute has deeper level than allocator type",
4219 -- When the expression is an access discriminant the check is against
4220 -- the level of the prefix object.
4222 elsif Ekind
(Etype
(Disc_Exp
)) = E_Anonymous_Access_Type
4223 and then Nkind
(Disc_Exp
) = N_Selected_Component
4224 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4225 Deepest_Type_Access_Level
(Alloc_Typ
)
4228 ("access discriminant has deeper level than allocator type",
4231 -- All other cases are legal
4236 end Check_Allocator_Discrim_Accessibility
;
4238 ----------------------------
4239 -- In_Dispatching_Context --
4240 ----------------------------
4242 function In_Dispatching_Context
return Boolean is
4243 Par
: constant Node_Id
:= Parent
(N
);
4246 return Nkind
(Par
) in N_Subprogram_Call
4247 and then Is_Entity_Name
(Name
(Par
))
4248 and then Is_Dispatching_Operation
(Entity
(Name
(Par
)));
4249 end In_Dispatching_Context
;
4251 -- Start of processing for Resolve_Allocator
4254 -- Replace general access with specific type
4256 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
4257 Set_Etype
(N
, Base_Type
(Typ
));
4260 if Is_Abstract_Type
(Typ
) then
4261 Error_Msg_N
("type of allocator cannot be abstract", N
);
4264 -- For qualified expression, resolve the expression using the
4265 -- given subtype (nothing to do for type mark, subtype indication)
4267 if Nkind
(E
) = N_Qualified_Expression
then
4268 if Is_Class_Wide_Type
(Etype
(E
))
4269 and then not Is_Class_Wide_Type
(Desig_T
)
4270 and then not In_Dispatching_Context
4273 ("class-wide allocator not allowed for this access type", N
);
4276 Resolve
(Expression
(E
), Etype
(E
));
4277 Check_Unset_Reference
(Expression
(E
));
4279 -- A qualified expression requires an exact match of the type,
4280 -- class-wide matching is not allowed.
4282 if (Is_Class_Wide_Type
(Etype
(Expression
(E
)))
4283 or else Is_Class_Wide_Type
(Etype
(E
)))
4284 and then Base_Type
(Etype
(Expression
(E
))) /= Base_Type
(Etype
(E
))
4286 Wrong_Type
(Expression
(E
), Etype
(E
));
4289 -- Calls to build-in-place functions are not currently supported in
4290 -- allocators for access types associated with a simple storage pool.
4291 -- Supporting such allocators may require passing additional implicit
4292 -- parameters to build-in-place functions (or a significant revision
4293 -- of the current b-i-p implementation to unify the handling for
4294 -- multiple kinds of storage pools). ???
4296 if Is_Immutably_Limited_Type
(Desig_T
)
4297 and then Nkind
(Expression
(E
)) = N_Function_Call
4300 Pool
: constant Entity_Id
:=
4301 Associated_Storage_Pool
(Root_Type
(Typ
));
4305 Present
(Get_Rep_Pragma
4306 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4309 ("limited function calls not yet supported in simple " &
4310 "storage pool allocators", Expression
(E
));
4315 -- A special accessibility check is needed for allocators that
4316 -- constrain access discriminants. The level of the type of the
4317 -- expression used to constrain an access discriminant cannot be
4318 -- deeper than the type of the allocator (in contrast to access
4319 -- parameters, where the level of the actual can be arbitrary).
4321 -- We can't use Valid_Conversion to perform this check because
4322 -- in general the type of the allocator is unrelated to the type
4323 -- of the access discriminant.
4325 if Ekind
(Typ
) /= E_Anonymous_Access_Type
4326 or else Is_Local_Anonymous_Access
(Typ
)
4328 Subtyp
:= Entity
(Subtype_Mark
(E
));
4330 Aggr
:= Original_Node
(Expression
(E
));
4332 if Has_Discriminants
(Subtyp
)
4333 and then Nkind_In
(Aggr
, N_Aggregate
, N_Extension_Aggregate
)
4335 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4337 -- Get the first component expression of the aggregate
4339 if Present
(Expressions
(Aggr
)) then
4340 Disc_Exp
:= First
(Expressions
(Aggr
));
4342 elsif Present
(Component_Associations
(Aggr
)) then
4343 Assoc
:= First
(Component_Associations
(Aggr
));
4345 if Present
(Assoc
) then
4346 Disc_Exp
:= Expression
(Assoc
);
4355 while Present
(Discrim
) and then Present
(Disc_Exp
) loop
4356 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4357 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4360 Next_Discriminant
(Discrim
);
4362 if Present
(Discrim
) then
4363 if Present
(Assoc
) then
4365 Disc_Exp
:= Expression
(Assoc
);
4367 elsif Present
(Next
(Disc_Exp
)) then
4371 Assoc
:= First
(Component_Associations
(Aggr
));
4373 if Present
(Assoc
) then
4374 Disc_Exp
:= Expression
(Assoc
);
4384 -- For a subtype mark or subtype indication, freeze the subtype
4387 Freeze_Expression
(E
);
4389 if Is_Access_Constant
(Typ
) and then not No_Initialization
(N
) then
4391 ("initialization required for access-to-constant allocator", N
);
4394 -- A special accessibility check is needed for allocators that
4395 -- constrain access discriminants. The level of the type of the
4396 -- expression used to constrain an access discriminant cannot be
4397 -- deeper than the type of the allocator (in contrast to access
4398 -- parameters, where the level of the actual can be arbitrary).
4399 -- We can't use Valid_Conversion to perform this check because
4400 -- in general the type of the allocator is unrelated to the type
4401 -- of the access discriminant.
4403 if Nkind
(Original_Node
(E
)) = N_Subtype_Indication
4404 and then (Ekind
(Typ
) /= E_Anonymous_Access_Type
4405 or else Is_Local_Anonymous_Access
(Typ
))
4407 Subtyp
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4409 if Has_Discriminants
(Subtyp
) then
4410 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4411 Constr
:= First
(Constraints
(Constraint
(Original_Node
(E
))));
4412 while Present
(Discrim
) and then Present
(Constr
) loop
4413 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4414 if Nkind
(Constr
) = N_Discriminant_Association
then
4415 Disc_Exp
:= Original_Node
(Expression
(Constr
));
4417 Disc_Exp
:= Original_Node
(Constr
);
4420 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4423 Next_Discriminant
(Discrim
);
4430 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4431 -- check that the level of the type of the created object is not deeper
4432 -- than the level of the allocator's access type, since extensions can
4433 -- now occur at deeper levels than their ancestor types. This is a
4434 -- static accessibility level check; a run-time check is also needed in
4435 -- the case of an initialized allocator with a class-wide argument (see
4436 -- Expand_Allocator_Expression).
4438 if Ada_Version
>= Ada_2005
4439 and then Is_Class_Wide_Type
(Desig_T
)
4442 Exp_Typ
: Entity_Id
;
4445 if Nkind
(E
) = N_Qualified_Expression
then
4446 Exp_Typ
:= Etype
(E
);
4447 elsif Nkind
(E
) = N_Subtype_Indication
then
4448 Exp_Typ
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4450 Exp_Typ
:= Entity
(E
);
4453 if Type_Access_Level
(Exp_Typ
) >
4454 Deepest_Type_Access_Level
(Typ
)
4456 if In_Instance_Body
then
4457 Error_Msg_N
("?type in allocator has deeper level than" &
4458 " designated class-wide type", E
);
4459 Error_Msg_N
("\?Program_Error will be raised at run time",
4462 Make_Raise_Program_Error
(Sloc
(N
),
4463 Reason
=> PE_Accessibility_Check_Failed
));
4466 -- Do not apply Ada 2005 accessibility checks on a class-wide
4467 -- allocator if the type given in the allocator is a formal
4468 -- type. A run-time check will be performed in the instance.
4470 elsif not Is_Generic_Type
(Exp_Typ
) then
4471 Error_Msg_N
("type in allocator has deeper level than" &
4472 " designated class-wide type", E
);
4478 -- Check for allocation from an empty storage pool
4480 if No_Pool_Assigned
(Typ
) then
4481 Error_Msg_N
("allocation from empty storage pool!", N
);
4483 -- If the context is an unchecked conversion, as may happen within an
4484 -- inlined subprogram, the allocator is being resolved with its own
4485 -- anonymous type. In that case, if the target type has a specific
4486 -- storage pool, it must be inherited explicitly by the allocator type.
4488 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
4489 and then No
(Associated_Storage_Pool
(Typ
))
4491 Set_Associated_Storage_Pool
4492 (Typ
, Associated_Storage_Pool
(Etype
(Parent
(N
))));
4495 if Ekind
(Etype
(N
)) = E_Anonymous_Access_Type
then
4496 Check_Restriction
(No_Anonymous_Allocators
, N
);
4499 -- Check that an allocator with task parts isn't for a nested access
4500 -- type when restriction No_Task_Hierarchy applies.
4502 if not Is_Library_Level_Entity
(Base_Type
(Typ
))
4503 and then Has_Task
(Base_Type
(Desig_T
))
4505 Check_Restriction
(No_Task_Hierarchy
, N
);
4508 -- An erroneous allocator may be rewritten as a raise Program_Error
4511 if Nkind
(N
) = N_Allocator
then
4513 -- An anonymous access discriminant is the definition of a
4516 if Ekind
(Typ
) = E_Anonymous_Access_Type
4517 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
4518 N_Discriminant_Specification
4521 Discr
: constant Entity_Id
:=
4522 Defining_Identifier
(Associated_Node_For_Itype
(Typ
));
4525 -- Ada 2012 AI05-0052: If the designated type of the allocator
4526 -- is limited, then the allocator shall not be used to define
4527 -- the value of an access discriminant unless the discriminated
4528 -- type is immutably limited.
4530 if Ada_Version
>= Ada_2012
4531 and then Is_Limited_Type
(Desig_T
)
4532 and then not Is_Immutably_Limited_Type
(Scope
(Discr
))
4535 ("only immutably limited types can have anonymous "
4536 & "access discriminants designating a limited type", N
);
4540 -- Avoid marking an allocator as a dynamic coextension if it is
4541 -- within a static construct.
4543 if not Is_Static_Coextension
(N
) then
4544 Set_Is_Dynamic_Coextension
(N
);
4547 -- Cleanup for potential static coextensions
4550 Set_Is_Dynamic_Coextension
(N
, False);
4551 Set_Is_Static_Coextension
(N
, False);
4555 -- Report a simple error: if the designated object is a local task,
4556 -- its body has not been seen yet, and its activation will fail an
4557 -- elaboration check.
4559 if Is_Task_Type
(Desig_T
)
4560 and then Scope
(Base_Type
(Desig_T
)) = Current_Scope
4561 and then Is_Compilation_Unit
(Current_Scope
)
4562 and then Ekind
(Current_Scope
) = E_Package
4563 and then not In_Package_Body
(Current_Scope
)
4565 Error_Msg_N
("?cannot activate task before body seen", N
);
4566 Error_Msg_N
("\?Program_Error will be raised at run time", N
);
4569 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4570 -- type with a task component on a subpool. This action must raise
4571 -- Program_Error at runtime.
4573 if Ada_Version
>= Ada_2012
4574 and then Nkind
(N
) = N_Allocator
4575 and then Present
(Subpool_Handle_Name
(N
))
4576 and then Has_Task
(Desig_T
)
4578 Error_Msg_N
("?cannot allocate task on subpool", N
);
4579 Error_Msg_N
("\?Program_Error will be raised at run time", N
);
4582 Make_Raise_Program_Error
(Sloc
(N
),
4583 Reason
=> PE_Explicit_Raise
));
4586 end Resolve_Allocator
;
4588 ---------------------------
4589 -- Resolve_Arithmetic_Op --
4590 ---------------------------
4592 -- Used for resolving all arithmetic operators except exponentiation
4594 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
4595 L
: constant Node_Id
:= Left_Opnd
(N
);
4596 R
: constant Node_Id
:= Right_Opnd
(N
);
4597 TL
: constant Entity_Id
:= Base_Type
(Etype
(L
));
4598 TR
: constant Entity_Id
:= Base_Type
(Etype
(R
));
4602 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
4603 -- We do the resolution using the base type, because intermediate values
4604 -- in expressions always are of the base type, not a subtype of it.
4606 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean;
4607 -- Returns True if N is in a context that expects "any real type"
4609 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean;
4610 -- Return True iff given type is Integer or universal real/integer
4612 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
);
4613 -- Choose type of integer literal in fixed-point operation to conform
4614 -- to available fixed-point type. T is the type of the other operand,
4615 -- which is needed to determine the expected type of N.
4617 procedure Set_Operand_Type
(N
: Node_Id
);
4618 -- Set operand type to T if universal
4620 -------------------------------
4621 -- Expected_Type_Is_Any_Real --
4622 -------------------------------
4624 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean is
4626 -- N is the expression after "delta" in a fixed_point_definition;
4629 return Nkind_In
(Parent
(N
), N_Ordinary_Fixed_Point_Definition
,
4630 N_Decimal_Fixed_Point_Definition
,
4632 -- N is one of the bounds in a real_range_specification;
4635 N_Real_Range_Specification
,
4637 -- N is the expression of a delta_constraint;
4640 N_Delta_Constraint
);
4641 end Expected_Type_Is_Any_Real
;
4643 -----------------------------
4644 -- Is_Integer_Or_Universal --
4645 -----------------------------
4647 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean is
4649 Index
: Interp_Index
;
4653 if not Is_Overloaded
(N
) then
4655 return Base_Type
(T
) = Base_Type
(Standard_Integer
)
4656 or else T
= Universal_Integer
4657 or else T
= Universal_Real
;
4659 Get_First_Interp
(N
, Index
, It
);
4660 while Present
(It
.Typ
) loop
4661 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
)
4662 or else It
.Typ
= Universal_Integer
4663 or else It
.Typ
= Universal_Real
4668 Get_Next_Interp
(Index
, It
);
4673 end Is_Integer_Or_Universal
;
4675 ----------------------------
4676 -- Set_Mixed_Mode_Operand --
4677 ----------------------------
4679 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
) is
4680 Index
: Interp_Index
;
4684 if Universal_Interpretation
(N
) = Universal_Integer
then
4686 -- A universal integer literal is resolved as standard integer
4687 -- except in the case of a fixed-point result, where we leave it
4688 -- as universal (to be handled by Exp_Fixd later on)
4690 if Is_Fixed_Point_Type
(T
) then
4691 Resolve
(N
, Universal_Integer
);
4693 Resolve
(N
, Standard_Integer
);
4696 elsif Universal_Interpretation
(N
) = Universal_Real
4697 and then (T
= Base_Type
(Standard_Integer
)
4698 or else T
= Universal_Integer
4699 or else T
= Universal_Real
)
4701 -- A universal real can appear in a fixed-type context. We resolve
4702 -- the literal with that context, even though this might raise an
4703 -- exception prematurely (the other operand may be zero).
4707 elsif Etype
(N
) = Base_Type
(Standard_Integer
)
4708 and then T
= Universal_Real
4709 and then Is_Overloaded
(N
)
4711 -- Integer arg in mixed-mode operation. Resolve with universal
4712 -- type, in case preference rule must be applied.
4714 Resolve
(N
, Universal_Integer
);
4717 and then B_Typ
/= Universal_Fixed
4719 -- Not a mixed-mode operation, resolve with context
4723 elsif Etype
(N
) = Any_Fixed
then
4725 -- N may itself be a mixed-mode operation, so use context type
4729 elsif Is_Fixed_Point_Type
(T
)
4730 and then B_Typ
= Universal_Fixed
4731 and then Is_Overloaded
(N
)
4733 -- Must be (fixed * fixed) operation, operand must have one
4734 -- compatible interpretation.
4736 Resolve
(N
, Any_Fixed
);
4738 elsif Is_Fixed_Point_Type
(B_Typ
)
4739 and then (T
= Universal_Real
4740 or else Is_Fixed_Point_Type
(T
))
4741 and then Is_Overloaded
(N
)
4743 -- C * F(X) in a fixed context, where C is a real literal or a
4744 -- fixed-point expression. F must have either a fixed type
4745 -- interpretation or an integer interpretation, but not both.
4747 Get_First_Interp
(N
, Index
, It
);
4748 while Present
(It
.Typ
) loop
4749 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
) then
4750 if Analyzed
(N
) then
4751 Error_Msg_N
("ambiguous operand in fixed operation", N
);
4753 Resolve
(N
, Standard_Integer
);
4756 elsif Is_Fixed_Point_Type
(It
.Typ
) then
4757 if Analyzed
(N
) then
4758 Error_Msg_N
("ambiguous operand in fixed operation", N
);
4760 Resolve
(N
, It
.Typ
);
4764 Get_Next_Interp
(Index
, It
);
4767 -- Reanalyze the literal with the fixed type of the context. If
4768 -- context is Universal_Fixed, we are within a conversion, leave
4769 -- the literal as a universal real because there is no usable
4770 -- fixed type, and the target of the conversion plays no role in
4784 if B_Typ
= Universal_Fixed
4785 and then Nkind
(Op2
) = N_Real_Literal
4787 T2
:= Universal_Real
;
4792 Set_Analyzed
(Op2
, False);
4799 end Set_Mixed_Mode_Operand
;
4801 ----------------------
4802 -- Set_Operand_Type --
4803 ----------------------
4805 procedure Set_Operand_Type
(N
: Node_Id
) is
4807 if Etype
(N
) = Universal_Integer
4808 or else Etype
(N
) = Universal_Real
4812 end Set_Operand_Type
;
4814 -- Start of processing for Resolve_Arithmetic_Op
4817 if Comes_From_Source
(N
)
4818 and then Ekind
(Entity
(N
)) = E_Function
4819 and then Is_Imported
(Entity
(N
))
4820 and then Is_Intrinsic_Subprogram
(Entity
(N
))
4822 Resolve_Intrinsic_Operator
(N
, Typ
);
4825 -- Special-case for mixed-mode universal expressions or fixed point type
4826 -- operation: each argument is resolved separately. The same treatment
4827 -- is required if one of the operands of a fixed point operation is
4828 -- universal real, since in this case we don't do a conversion to a
4829 -- specific fixed-point type (instead the expander handles the case).
4831 -- Set the type of the node to its universal interpretation because
4832 -- legality checks on an exponentiation operand need the context.
4834 elsif (B_Typ
= Universal_Integer
or else B_Typ
= Universal_Real
)
4835 and then Present
(Universal_Interpretation
(L
))
4836 and then Present
(Universal_Interpretation
(R
))
4838 Set_Etype
(N
, B_Typ
);
4839 Resolve
(L
, Universal_Interpretation
(L
));
4840 Resolve
(R
, Universal_Interpretation
(R
));
4842 elsif (B_Typ
= Universal_Real
4843 or else Etype
(N
) = Universal_Fixed
4844 or else (Etype
(N
) = Any_Fixed
4845 and then Is_Fixed_Point_Type
(B_Typ
))
4846 or else (Is_Fixed_Point_Type
(B_Typ
)
4847 and then (Is_Integer_Or_Universal
(L
)
4849 Is_Integer_Or_Universal
(R
))))
4850 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
4852 if TL
= Universal_Integer
or else TR
= Universal_Integer
then
4853 Check_For_Visible_Operator
(N
, B_Typ
);
4856 -- If context is a fixed type and one operand is integer, the other
4857 -- is resolved with the type of the context.
4859 if Is_Fixed_Point_Type
(B_Typ
)
4860 and then (Base_Type
(TL
) = Base_Type
(Standard_Integer
)
4861 or else TL
= Universal_Integer
)
4866 elsif Is_Fixed_Point_Type
(B_Typ
)
4867 and then (Base_Type
(TR
) = Base_Type
(Standard_Integer
)
4868 or else TR
= Universal_Integer
)
4874 Set_Mixed_Mode_Operand
(L
, TR
);
4875 Set_Mixed_Mode_Operand
(R
, TL
);
4878 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
4879 -- multiplying operators from being used when the expected type is
4880 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
4881 -- some cases where the expected type is actually Any_Real;
4882 -- Expected_Type_Is_Any_Real takes care of that case.
4884 if Etype
(N
) = Universal_Fixed
4885 or else Etype
(N
) = Any_Fixed
4887 if B_Typ
= Universal_Fixed
4888 and then not Expected_Type_Is_Any_Real
(N
)
4889 and then not Nkind_In
(Parent
(N
), N_Type_Conversion
,
4890 N_Unchecked_Type_Conversion
)
4892 Error_Msg_N
("type cannot be determined from context!", N
);
4893 Error_Msg_N
("\explicit conversion to result type required", N
);
4895 Set_Etype
(L
, Any_Type
);
4896 Set_Etype
(R
, Any_Type
);
4899 if Ada_Version
= Ada_83
4900 and then Etype
(N
) = Universal_Fixed
4902 Nkind_In
(Parent
(N
), N_Type_Conversion
,
4903 N_Unchecked_Type_Conversion
)
4906 ("(Ada 83) fixed-point operation "
4907 & "needs explicit conversion", N
);
4910 -- The expected type is "any real type" in contexts like
4912 -- type T is delta <universal_fixed-expression> ...
4914 -- in which case we need to set the type to Universal_Real
4915 -- so that static expression evaluation will work properly.
4917 if Expected_Type_Is_Any_Real
(N
) then
4918 Set_Etype
(N
, Universal_Real
);
4920 Set_Etype
(N
, B_Typ
);
4924 elsif Is_Fixed_Point_Type
(B_Typ
)
4925 and then (Is_Integer_Or_Universal
(L
)
4926 or else Nkind
(L
) = N_Real_Literal
4927 or else Nkind
(R
) = N_Real_Literal
4928 or else Is_Integer_Or_Universal
(R
))
4930 Set_Etype
(N
, B_Typ
);
4932 elsif Etype
(N
) = Any_Fixed
then
4934 -- If no previous errors, this is only possible if one operand is
4935 -- overloaded and the context is universal. Resolve as such.
4937 Set_Etype
(N
, B_Typ
);
4941 if (TL
= Universal_Integer
or else TL
= Universal_Real
)
4943 (TR
= Universal_Integer
or else TR
= Universal_Real
)
4945 Check_For_Visible_Operator
(N
, B_Typ
);
4948 -- If the context is Universal_Fixed and the operands are also
4949 -- universal fixed, this is an error, unless there is only one
4950 -- applicable fixed_point type (usually Duration).
4952 if B_Typ
= Universal_Fixed
and then Etype
(L
) = Universal_Fixed
then
4953 T
:= Unique_Fixed_Point_Type
(N
);
4955 if T
= Any_Type
then
4968 -- If one of the arguments was resolved to a non-universal type.
4969 -- label the result of the operation itself with the same type.
4970 -- Do the same for the universal argument, if any.
4972 T
:= Intersect_Types
(L
, R
);
4973 Set_Etype
(N
, Base_Type
(T
));
4974 Set_Operand_Type
(L
);
4975 Set_Operand_Type
(R
);
4978 Generate_Operator_Reference
(N
, Typ
);
4979 Analyze_Dimension
(N
);
4980 Eval_Arithmetic_Op
(N
);
4982 -- In SPARK, a multiplication or division with operands of fixed point
4983 -- types shall be qualified or explicitly converted to identify the
4986 if (Is_Fixed_Point_Type
(Etype
(L
))
4987 or else Is_Fixed_Point_Type
(Etype
(R
)))
4988 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
4990 not Nkind_In
(Parent
(N
), N_Qualified_Expression
, N_Type_Conversion
)
4992 Check_SPARK_Restriction
4993 ("operation should be qualified or explicitly converted", N
);
4996 -- Set overflow and division checking bit
4998 if Nkind
(N
) in N_Op
then
4999 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
5000 Enable_Overflow_Check
(N
);
5003 -- Give warning if explicit division by zero
5005 if Nkind_In
(N
, N_Op_Divide
, N_Op_Rem
, N_Op_Mod
)
5006 and then not Division_Checks_Suppressed
(Etype
(N
))
5008 Rop
:= Right_Opnd
(N
);
5010 if Compile_Time_Known_Value
(Rop
)
5011 and then ((Is_Integer_Type
(Etype
(Rop
))
5012 and then Expr_Value
(Rop
) = Uint_0
)
5014 (Is_Real_Type
(Etype
(Rop
))
5015 and then Expr_Value_R
(Rop
) = Ureal_0
))
5017 -- Specialize the warning message according to the operation.
5018 -- The following warnings are for the case
5023 -- For division, we have two cases, for float division
5024 -- of an unconstrained float type, on a machine where
5025 -- Machine_Overflows is false, we don't get an exception
5026 -- at run-time, but rather an infinity or Nan. The Nan
5027 -- case is pretty obscure, so just warn about infinities.
5029 if Is_Floating_Point_Type
(Typ
)
5030 and then not Is_Constrained
(Typ
)
5031 and then not Machine_Overflows_On_Target
5034 ("float division by zero, " &
5035 "may generate '+'/'- infinity?", Right_Opnd
(N
));
5037 -- For all other cases, we get a Constraint_Error
5040 Apply_Compile_Time_Constraint_Error
5041 (N
, "division by zero?", CE_Divide_By_Zero
,
5042 Loc
=> Sloc
(Right_Opnd
(N
)));
5046 Apply_Compile_Time_Constraint_Error
5047 (N
, "rem with zero divisor?", CE_Divide_By_Zero
,
5048 Loc
=> Sloc
(Right_Opnd
(N
)));
5051 Apply_Compile_Time_Constraint_Error
5052 (N
, "mod with zero divisor?", CE_Divide_By_Zero
,
5053 Loc
=> Sloc
(Right_Opnd
(N
)));
5055 -- Division by zero can only happen with division, rem,
5056 -- and mod operations.
5059 raise Program_Error
;
5062 -- Otherwise just set the flag to check at run time
5065 Activate_Division_Check
(N
);
5069 -- If Restriction No_Implicit_Conditionals is active, then it is
5070 -- violated if either operand can be negative for mod, or for rem
5071 -- if both operands can be negative.
5073 if Restriction_Check_Required
(No_Implicit_Conditionals
)
5074 and then Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
)
5083 -- Set if corresponding operand might be negative
5087 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5088 LNeg
:= (not OK
) or else Lo
< 0;
5091 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5092 RNeg
:= (not OK
) or else Lo
< 0;
5094 -- Check if we will be generating conditionals. There are two
5095 -- cases where that can happen, first for REM, the only case
5096 -- is largest negative integer mod -1, where the division can
5097 -- overflow, but we still have to give the right result. The
5098 -- front end generates a test for this annoying case. Here we
5099 -- just test if both operands can be negative (that's what the
5100 -- expander does, so we match its logic here).
5102 -- The second case is mod where either operand can be negative.
5103 -- In this case, the back end has to generate additional tests.
5105 if (Nkind
(N
) = N_Op_Rem
and then (LNeg
and RNeg
))
5107 (Nkind
(N
) = N_Op_Mod
and then (LNeg
or RNeg
))
5109 Check_Restriction
(No_Implicit_Conditionals
, N
);
5115 Check_Unset_Reference
(L
);
5116 Check_Unset_Reference
(R
);
5117 end Resolve_Arithmetic_Op
;
5123 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
5124 Loc
: constant Source_Ptr
:= Sloc
(N
);
5125 Subp
: constant Node_Id
:= Name
(N
);
5133 function Same_Or_Aliased_Subprograms
5135 E
: Entity_Id
) return Boolean;
5136 -- Returns True if the subprogram entity S is the same as E or else
5137 -- S is an alias of E.
5139 ---------------------------------
5140 -- Same_Or_Aliased_Subprograms --
5141 ---------------------------------
5143 function Same_Or_Aliased_Subprograms
5145 E
: Entity_Id
) return Boolean
5147 Subp_Alias
: constant Entity_Id
:= Alias
(S
);
5150 or else (Present
(Subp_Alias
) and then Subp_Alias
= E
);
5151 end Same_Or_Aliased_Subprograms
;
5153 -- Start of processing for Resolve_Call
5156 -- The context imposes a unique interpretation with type Typ on a
5157 -- procedure or function call. Find the entity of the subprogram that
5158 -- yields the expected type, and propagate the corresponding formal
5159 -- constraints on the actuals. The caller has established that an
5160 -- interpretation exists, and emitted an error if not unique.
5162 -- First deal with the case of a call to an access-to-subprogram,
5163 -- dereference made explicit in Analyze_Call.
5165 if Ekind
(Etype
(Subp
)) = E_Subprogram_Type
then
5166 if not Is_Overloaded
(Subp
) then
5167 Nam
:= Etype
(Subp
);
5170 -- Find the interpretation whose type (a subprogram type) has a
5171 -- return type that is compatible with the context. Analysis of
5172 -- the node has established that one exists.
5176 Get_First_Interp
(Subp
, I
, It
);
5177 while Present
(It
.Typ
) loop
5178 if Covers
(Typ
, Etype
(It
.Typ
)) then
5183 Get_Next_Interp
(I
, It
);
5187 raise Program_Error
;
5191 -- If the prefix is not an entity, then resolve it
5193 if not Is_Entity_Name
(Subp
) then
5194 Resolve
(Subp
, Nam
);
5197 -- For an indirect call, we always invalidate checks, since we do not
5198 -- know whether the subprogram is local or global. Yes we could do
5199 -- better here, e.g. by knowing that there are no local subprograms,
5200 -- but it does not seem worth the effort. Similarly, we kill all
5201 -- knowledge of current constant values.
5203 Kill_Current_Values
;
5205 -- If this is a procedure call which is really an entry call, do
5206 -- the conversion of the procedure call to an entry call. Protected
5207 -- operations use the same circuitry because the name in the call
5208 -- can be an arbitrary expression with special resolution rules.
5210 elsif Nkind_In
(Subp
, N_Selected_Component
, N_Indexed_Component
)
5211 or else (Is_Entity_Name
(Subp
)
5212 and then Ekind
(Entity
(Subp
)) = E_Entry
)
5214 Resolve_Entry_Call
(N
, Typ
);
5215 Check_Elab_Call
(N
);
5217 -- Kill checks and constant values, as above for indirect case
5218 -- Who knows what happens when another task is activated?
5220 Kill_Current_Values
;
5223 -- Normal subprogram call with name established in Resolve
5225 elsif not (Is_Type
(Entity
(Subp
))) then
5226 Nam
:= Entity
(Subp
);
5227 Set_Entity_With_Style_Check
(Subp
, Nam
);
5229 -- Otherwise we must have the case of an overloaded call
5232 pragma Assert
(Is_Overloaded
(Subp
));
5234 -- Initialize Nam to prevent warning (we know it will be assigned
5235 -- in the loop below, but the compiler does not know that).
5239 Get_First_Interp
(Subp
, I
, It
);
5240 while Present
(It
.Typ
) loop
5241 if Covers
(Typ
, It
.Typ
) then
5243 Set_Entity_With_Style_Check
(Subp
, Nam
);
5247 Get_Next_Interp
(I
, It
);
5251 if Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
5252 and then not Is_Access_Subprogram_Type
(Base_Type
(Typ
))
5253 and then Nkind
(Subp
) /= N_Explicit_Dereference
5254 and then Present
(Parameter_Associations
(N
))
5256 -- The prefix is a parameterless function call that returns an access
5257 -- to subprogram. If parameters are present in the current call, add
5258 -- add an explicit dereference. We use the base type here because
5259 -- within an instance these may be subtypes.
5261 -- The dereference is added either in Analyze_Call or here. Should
5262 -- be consolidated ???
5264 Set_Is_Overloaded
(Subp
, False);
5265 Set_Etype
(Subp
, Etype
(Nam
));
5266 Insert_Explicit_Dereference
(Subp
);
5267 Nam
:= Designated_Type
(Etype
(Nam
));
5268 Resolve
(Subp
, Nam
);
5271 -- Check that a call to Current_Task does not occur in an entry body
5273 if Is_RTE
(Nam
, RE_Current_Task
) then
5282 -- Exclude calls that occur within the default of a formal
5283 -- parameter of the entry, since those are evaluated outside
5286 exit when No
(P
) or else Nkind
(P
) = N_Parameter_Specification
;
5288 if Nkind
(P
) = N_Entry_Body
5289 or else (Nkind
(P
) = N_Subprogram_Body
5290 and then Is_Entry_Barrier_Function
(P
))
5294 ("?& should not be used in entry body (RM C.7(17))",
5297 ("\Program_Error will be raised at run time?", N
, Nam
);
5299 Make_Raise_Program_Error
(Loc
,
5300 Reason
=> PE_Current_Task_In_Entry_Body
));
5301 Set_Etype
(N
, Rtype
);
5308 -- Check that a procedure call does not occur in the context of the
5309 -- entry call statement of a conditional or timed entry call. Note that
5310 -- the case of a call to a subprogram renaming of an entry will also be
5311 -- rejected. The test for N not being an N_Entry_Call_Statement is
5312 -- defensive, covering the possibility that the processing of entry
5313 -- calls might reach this point due to later modifications of the code
5316 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
5317 and then Nkind
(N
) /= N_Entry_Call_Statement
5318 and then Entry_Call_Statement
(Parent
(N
)) = N
5320 if Ada_Version
< Ada_2005
then
5321 Error_Msg_N
("entry call required in select statement", N
);
5323 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5324 -- for a procedure_or_entry_call, the procedure_name or
5325 -- procedure_prefix of the procedure_call_statement shall denote
5326 -- an entry renamed by a procedure, or (a view of) a primitive
5327 -- subprogram of a limited interface whose first parameter is
5328 -- a controlling parameter.
5330 elsif Nkind
(N
) = N_Procedure_Call_Statement
5331 and then not Is_Renamed_Entry
(Nam
)
5332 and then not Is_Controlling_Limited_Procedure
(Nam
)
5335 ("entry call or dispatching primitive of interface required", N
);
5339 -- Check that this is not a call to a protected procedure or entry from
5340 -- within a protected function.
5342 Check_Internal_Protected_Use
(N
, Nam
);
5344 -- Freeze the subprogram name if not in a spec-expression. Note that we
5345 -- freeze procedure calls as well as function calls. Procedure calls are
5346 -- not frozen according to the rules (RM 13.14(14)) because it is
5347 -- impossible to have a procedure call to a non-frozen procedure in pure
5348 -- Ada, but in the code that we generate in the expander, this rule
5349 -- needs extending because we can generate procedure calls that need
5352 -- In Ada 2012, expression functions may be called within pre/post
5353 -- conditions of subsequent functions or expression functions. Such
5354 -- calls do not freeze when they appear within generated bodies, which
5355 -- would place the freeze node in the wrong scope. An expression
5356 -- function is frozen in the usual fashion, by the appearance of a real
5357 -- body, or at the end of a declarative part.
5359 if Is_Entity_Name
(Subp
) and then not In_Spec_Expression
5361 (not Is_Expression_Function
(Entity
(Subp
))
5362 or else Scope
(Entity
(Subp
)) = Current_Scope
)
5364 Freeze_Expression
(Subp
);
5367 -- For a predefined operator, the type of the result is the type imposed
5368 -- by context, except for a predefined operation on universal fixed.
5369 -- Otherwise The type of the call is the type returned by the subprogram
5372 if Is_Predefined_Op
(Nam
) then
5373 if Etype
(N
) /= Universal_Fixed
then
5377 -- If the subprogram returns an array type, and the context requires the
5378 -- component type of that array type, the node is really an indexing of
5379 -- the parameterless call. Resolve as such. A pathological case occurs
5380 -- when the type of the component is an access to the array type. In
5381 -- this case the call is truly ambiguous.
5383 elsif (Needs_No_Actuals
(Nam
) or else Needs_One_Actual
(Nam
))
5385 ((Is_Array_Type
(Etype
(Nam
))
5386 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
5387 or else (Is_Access_Type
(Etype
(Nam
))
5388 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
5392 Component_Type
(Designated_Type
(Etype
(Nam
))))))
5395 Index_Node
: Node_Id
;
5397 Ret_Type
: constant Entity_Id
:= Etype
(Nam
);
5400 if Is_Access_Type
(Ret_Type
)
5401 and then Ret_Type
= Component_Type
(Designated_Type
(Ret_Type
))
5404 ("cannot disambiguate function call and indexing", N
);
5406 New_Subp
:= Relocate_Node
(Subp
);
5407 Set_Entity
(Subp
, Nam
);
5409 if (Is_Array_Type
(Ret_Type
)
5410 and then Component_Type
(Ret_Type
) /= Any_Type
)
5412 (Is_Access_Type
(Ret_Type
)
5414 Component_Type
(Designated_Type
(Ret_Type
)) /= Any_Type
)
5416 if Needs_No_Actuals
(Nam
) then
5418 -- Indexed call to a parameterless function
5421 Make_Indexed_Component
(Loc
,
5423 Make_Function_Call
(Loc
,
5425 Expressions
=> Parameter_Associations
(N
));
5427 -- An Ada 2005 prefixed call to a primitive operation
5428 -- whose first parameter is the prefix. This prefix was
5429 -- prepended to the parameter list, which is actually a
5430 -- list of indexes. Remove the prefix in order to build
5431 -- the proper indexed component.
5434 Make_Indexed_Component
(Loc
,
5436 Make_Function_Call
(Loc
,
5438 Parameter_Associations
=>
5440 (Remove_Head
(Parameter_Associations
(N
)))),
5441 Expressions
=> Parameter_Associations
(N
));
5444 -- Preserve the parenthesis count of the node
5446 Set_Paren_Count
(Index_Node
, Paren_Count
(N
));
5448 -- Since we are correcting a node classification error made
5449 -- by the parser, we call Replace rather than Rewrite.
5451 Replace
(N
, Index_Node
);
5453 Set_Etype
(Prefix
(N
), Ret_Type
);
5455 Resolve_Indexed_Component
(N
, Typ
);
5456 Check_Elab_Call
(Prefix
(N
));
5464 Set_Etype
(N
, Etype
(Nam
));
5467 -- In the case where the call is to an overloaded subprogram, Analyze
5468 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5469 -- such a case Normalize_Actuals needs to be called once more to order
5470 -- the actuals correctly. Otherwise the call will have the ordering
5471 -- given by the last overloaded subprogram whether this is the correct
5472 -- one being called or not.
5474 if Is_Overloaded
(Subp
) then
5475 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
5476 pragma Assert
(Norm_OK
);
5479 -- In any case, call is fully resolved now. Reset Overload flag, to
5480 -- prevent subsequent overload resolution if node is analyzed again
5482 Set_Is_Overloaded
(Subp
, False);
5483 Set_Is_Overloaded
(N
, False);
5485 -- If we are calling the current subprogram from immediately within its
5486 -- body, then that is the case where we can sometimes detect cases of
5487 -- infinite recursion statically. Do not try this in case restriction
5488 -- No_Recursion is in effect anyway, and do it only for source calls.
5490 if Comes_From_Source
(N
) then
5491 Scop
:= Current_Scope
;
5493 -- Issue warning for possible infinite recursion in the absence
5494 -- of the No_Recursion restriction.
5496 if Same_Or_Aliased_Subprograms
(Nam
, Scop
)
5497 and then not Restriction_Active
(No_Recursion
)
5498 and then Check_Infinite_Recursion
(N
)
5500 -- Here we detected and flagged an infinite recursion, so we do
5501 -- not need to test the case below for further warnings. Also we
5502 -- are all done if we now have a raise SE node.
5504 if Nkind
(N
) = N_Raise_Storage_Error
then
5508 -- If call is to immediately containing subprogram, then check for
5509 -- the case of a possible run-time detectable infinite recursion.
5512 Scope_Loop
: while Scop
/= Standard_Standard
loop
5513 if Same_Or_Aliased_Subprograms
(Nam
, Scop
) then
5515 -- Although in general case, recursion is not statically
5516 -- checkable, the case of calling an immediately containing
5517 -- subprogram is easy to catch.
5519 Check_Restriction
(No_Recursion
, N
);
5521 -- If the recursive call is to a parameterless subprogram,
5522 -- then even if we can't statically detect infinite
5523 -- recursion, this is pretty suspicious, and we output a
5524 -- warning. Furthermore, we will try later to detect some
5525 -- cases here at run time by expanding checking code (see
5526 -- Detect_Infinite_Recursion in package Exp_Ch6).
5528 -- If the recursive call is within a handler, do not emit a
5529 -- warning, because this is a common idiom: loop until input
5530 -- is correct, catch illegal input in handler and restart.
5532 if No
(First_Formal
(Nam
))
5533 and then Etype
(Nam
) = Standard_Void_Type
5534 and then not Error_Posted
(N
)
5535 and then Nkind
(Parent
(N
)) /= N_Exception_Handler
5537 -- For the case of a procedure call. We give the message
5538 -- only if the call is the first statement in a sequence
5539 -- of statements, or if all previous statements are
5540 -- simple assignments. This is simply a heuristic to
5541 -- decrease false positives, without losing too many good
5542 -- warnings. The idea is that these previous statements
5543 -- may affect global variables the procedure depends on.
5544 -- We also exclude raise statements, that may arise from
5545 -- constraint checks and are probably unrelated to the
5546 -- intended control flow.
5548 if Nkind
(N
) = N_Procedure_Call_Statement
5549 and then Is_List_Member
(N
)
5555 while Present
(P
) loop
5557 N_Assignment_Statement
,
5558 N_Raise_Constraint_Error
)
5568 -- Do not give warning if we are in a conditional context
5571 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
5573 if (K
= N_Loop_Statement
5574 and then Present
(Iteration_Scheme
(Parent
(N
))))
5575 or else K
= N_If_Statement
5576 or else K
= N_Elsif_Part
5577 or else K
= N_Case_Statement_Alternative
5583 -- Here warning is to be issued
5585 Set_Has_Recursive_Call
(Nam
);
5587 ("?possible infinite recursion!", N
);
5589 ("\?Storage_Error may be raised at run time!", N
);
5595 Scop
:= Scope
(Scop
);
5596 end loop Scope_Loop
;
5600 -- Check obsolescent reference to Ada.Characters.Handling subprogram
5602 Check_Obsolescent_2005_Entity
(Nam
, Subp
);
5604 -- If subprogram name is a predefined operator, it was given in
5605 -- functional notation. Replace call node with operator node, so
5606 -- that actuals can be resolved appropriately.
5608 if Is_Predefined_Op
(Nam
) or else Ekind
(Nam
) = E_Operator
then
5609 Make_Call_Into_Operator
(N
, Typ
, Entity
(Name
(N
)));
5612 elsif Present
(Alias
(Nam
))
5613 and then Is_Predefined_Op
(Alias
(Nam
))
5615 Resolve_Actuals
(N
, Nam
);
5616 Make_Call_Into_Operator
(N
, Typ
, Alias
(Nam
));
5620 -- Create a transient scope if the resulting type requires it
5622 -- There are several notable exceptions:
5624 -- a) In init procs, the transient scope overhead is not needed, and is
5625 -- even incorrect when the call is a nested initialization call for a
5626 -- component whose expansion may generate adjust calls. However, if the
5627 -- call is some other procedure call within an initialization procedure
5628 -- (for example a call to Create_Task in the init_proc of the task
5629 -- run-time record) a transient scope must be created around this call.
5631 -- b) Enumeration literal pseudo-calls need no transient scope
5633 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
5634 -- functions) do not use the secondary stack even though the return
5635 -- type may be unconstrained.
5637 -- d) Calls to a build-in-place function, since such functions may
5638 -- allocate their result directly in a target object, and cases where
5639 -- the result does get allocated in the secondary stack are checked for
5640 -- within the specialized Exp_Ch6 procedures for expanding those
5641 -- build-in-place calls.
5643 -- e) If the subprogram is marked Inline_Always, then even if it returns
5644 -- an unconstrained type the call does not require use of the secondary
5645 -- stack. However, inlining will only take place if the body to inline
5646 -- is already present. It may not be available if e.g. the subprogram is
5647 -- declared in a child instance.
5649 -- If this is an initialization call for a type whose construction
5650 -- uses the secondary stack, and it is not a nested call to initialize
5651 -- a component, we do need to create a transient scope for it. We
5652 -- check for this by traversing the type in Check_Initialization_Call.
5655 and then Has_Pragma_Inline_Always
(Nam
)
5656 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
5657 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
5658 and then not Debug_Flag_Dot_K
5662 elsif Is_Inlined
(Nam
)
5663 and then Has_Pragma_Inline
(Nam
)
5664 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
5665 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
5666 and then Debug_Flag_Dot_K
5670 elsif Ekind
(Nam
) = E_Enumeration_Literal
5671 or else Is_Build_In_Place_Function
(Nam
)
5672 or else Is_Intrinsic_Subprogram
(Nam
)
5676 elsif Full_Expander_Active
5677 and then Is_Type
(Etype
(Nam
))
5678 and then Requires_Transient_Scope
(Etype
(Nam
))
5680 (not Within_Init_Proc
5682 (not Is_Init_Proc
(Nam
) and then Ekind
(Nam
) /= E_Function
))
5684 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
5686 -- If the call appears within the bounds of a loop, it will
5687 -- be rewritten and reanalyzed, nothing left to do here.
5689 if Nkind
(N
) /= N_Function_Call
then
5693 elsif Is_Init_Proc
(Nam
)
5694 and then not Within_Init_Proc
5696 Check_Initialization_Call
(N
, Nam
);
5699 -- A protected function cannot be called within the definition of the
5700 -- enclosing protected type.
5702 if Is_Protected_Type
(Scope
(Nam
))
5703 and then In_Open_Scopes
(Scope
(Nam
))
5704 and then not Has_Completion
(Scope
(Nam
))
5707 ("& cannot be called before end of protected definition", N
, Nam
);
5710 -- Propagate interpretation to actuals, and add default expressions
5713 if Present
(First_Formal
(Nam
)) then
5714 Resolve_Actuals
(N
, Nam
);
5716 -- Overloaded literals are rewritten as function calls, for purpose of
5717 -- resolution. After resolution, we can replace the call with the
5720 elsif Ekind
(Nam
) = E_Enumeration_Literal
then
5721 Copy_Node
(Subp
, N
);
5722 Resolve_Entity_Name
(N
, Typ
);
5724 -- Avoid validation, since it is a static function call
5726 Generate_Reference
(Nam
, Subp
);
5730 -- If the subprogram is not global, then kill all saved values and
5731 -- checks. This is a bit conservative, since in many cases we could do
5732 -- better, but it is not worth the effort. Similarly, we kill constant
5733 -- values. However we do not need to do this for internal entities
5734 -- (unless they are inherited user-defined subprograms), since they
5735 -- are not in the business of molesting local values.
5737 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5738 -- kill all checks and values for calls to global subprograms. This
5739 -- takes care of the case where an access to a local subprogram is
5740 -- taken, and could be passed directly or indirectly and then called
5741 -- from almost any context.
5743 -- Note: we do not do this step till after resolving the actuals. That
5744 -- way we still take advantage of the current value information while
5745 -- scanning the actuals.
5747 -- We suppress killing values if we are processing the nodes associated
5748 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5749 -- type kills all the values as part of analyzing the code that
5750 -- initializes the dispatch tables.
5752 if Inside_Freezing_Actions
= 0
5753 and then (not Is_Library_Level_Entity
(Nam
)
5754 or else Suppress_Value_Tracking_On_Call
5755 (Nearest_Dynamic_Scope
(Current_Scope
)))
5756 and then (Comes_From_Source
(Nam
)
5757 or else (Present
(Alias
(Nam
))
5758 and then Comes_From_Source
(Alias
(Nam
))))
5760 Kill_Current_Values
;
5763 -- If we are warning about unread OUT parameters, this is the place to
5764 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5765 -- after the above call to Kill_Current_Values (since that call clears
5766 -- the Last_Assignment field of all local variables).
5768 if (Warn_On_Modified_Unread
or Warn_On_All_Unread_Out_Parameters
)
5769 and then Comes_From_Source
(N
)
5770 and then In_Extended_Main_Source_Unit
(N
)
5777 F
:= First_Formal
(Nam
);
5778 A
:= First_Actual
(N
);
5779 while Present
(F
) and then Present
(A
) loop
5780 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
5781 and then Warn_On_Modified_As_Out_Parameter
(F
)
5782 and then Is_Entity_Name
(A
)
5783 and then Present
(Entity
(A
))
5784 and then Comes_From_Source
(N
)
5785 and then Safe_To_Capture_Value
(N
, Entity
(A
))
5787 Set_Last_Assignment
(Entity
(A
), A
);
5796 -- If the subprogram is a primitive operation, check whether or not
5797 -- it is a correct dispatching call.
5799 if Is_Overloadable
(Nam
)
5800 and then Is_Dispatching_Operation
(Nam
)
5802 Check_Dispatching_Call
(N
);
5804 elsif Ekind
(Nam
) /= E_Subprogram_Type
5805 and then Is_Abstract_Subprogram
(Nam
)
5806 and then not In_Instance
5808 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Nam
);
5811 -- If this is a dispatching call, generate the appropriate reference,
5812 -- for better source navigation in GPS.
5814 if Is_Overloadable
(Nam
)
5815 and then Present
(Controlling_Argument
(N
))
5817 Generate_Reference
(Nam
, Subp
, 'R');
5819 -- Normal case, not a dispatching call: generate a call reference
5822 Generate_Reference
(Nam
, Subp
, 's');
5825 if Is_Intrinsic_Subprogram
(Nam
) then
5826 Check_Intrinsic_Call
(N
);
5829 -- Check for violation of restriction No_Specific_Termination_Handlers
5830 -- and warn on a potentially blocking call to Abort_Task.
5832 if Restriction_Check_Required
(No_Specific_Termination_Handlers
)
5833 and then (Is_RTE
(Nam
, RE_Set_Specific_Handler
)
5835 Is_RTE
(Nam
, RE_Specific_Handler
))
5837 Check_Restriction
(No_Specific_Termination_Handlers
, N
);
5839 elsif Is_RTE
(Nam
, RE_Abort_Task
) then
5840 Check_Potentially_Blocking_Operation
(N
);
5843 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
5844 -- timing event violates restriction No_Relative_Delay (AI-0211). We
5845 -- need to check the second argument to determine whether it is an
5846 -- absolute or relative timing event.
5848 if Restriction_Check_Required
(No_Relative_Delay
)
5849 and then Is_RTE
(Nam
, RE_Set_Handler
)
5850 and then Is_RTE
(Etype
(Next_Actual
(First_Actual
(N
))), RE_Time_Span
)
5852 Check_Restriction
(No_Relative_Delay
, N
);
5855 -- Issue an error for a call to an eliminated subprogram. This routine
5856 -- will not perform the check if the call appears within a default
5859 Check_For_Eliminated_Subprogram
(Subp
, Nam
);
5861 -- In formal mode, the primitive operations of a tagged type or type
5862 -- extension do not include functions that return the tagged type.
5864 -- Commented out as the call to Is_Inherited_Operation_For_Type may
5865 -- cause an error because the type entity of the parent node of
5866 -- Entity (Name (N) may not be set. ???
5867 -- So why not just add a guard ???
5869 -- if Nkind (N) = N_Function_Call
5870 -- and then Is_Tagged_Type (Etype (N))
5871 -- and then Is_Entity_Name (Name (N))
5872 -- and then Is_Inherited_Operation_For_Type
5873 -- (Entity (Name (N)), Etype (N))
5875 -- Check_SPARK_Restriction ("function not inherited", N);
5878 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
5879 -- class-wide and the call dispatches on result in a context that does
5880 -- not provide a tag, the call raises Program_Error.
5882 if Nkind
(N
) = N_Function_Call
5883 and then In_Instance
5884 and then Is_Generic_Actual_Type
(Typ
)
5885 and then Is_Class_Wide_Type
(Typ
)
5886 and then Has_Controlling_Result
(Nam
)
5887 and then Nkind
(Parent
(N
)) = N_Object_Declaration
5889 -- Verify that none of the formals are controlling
5892 Call_OK
: Boolean := False;
5896 F
:= First_Formal
(Nam
);
5897 while Present
(F
) loop
5898 if Is_Controlling_Formal
(F
) then
5907 Error_Msg_N
("!? cannot determine tag of result", N
);
5908 Error_Msg_N
("!? Program_Error will be raised", N
);
5910 Make_Raise_Program_Error
(Sloc
(N
),
5911 Reason
=> PE_Explicit_Raise
));
5916 -- Check the dimensions of the actuals in the call. For function calls,
5917 -- propagate the dimensions from the returned type to N.
5919 Analyze_Dimension_Call
(N
, Nam
);
5921 -- All done, evaluate call and deal with elaboration issues
5924 Check_Elab_Call
(N
);
5925 Warn_On_Overlapping_Actuals
(Nam
, N
);
5928 -----------------------------
5929 -- Resolve_Case_Expression --
5930 -----------------------------
5932 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
5936 Alt
:= First
(Alternatives
(N
));
5937 while Present
(Alt
) loop
5938 Resolve
(Expression
(Alt
), Typ
);
5943 Eval_Case_Expression
(N
);
5945 -- If we still have a case expression, and overflow checks are enabled
5946 -- in MINIMIZED or ELIMINATED modes, then set Do_Overflow_Check to
5947 -- ensure that we handle overflow for dependent expressions.
5949 if Nkind
(N
) = N_Case_Expression
5950 and then Overflow_Check_Mode
(Typ
) in Minimized_Or_Eliminated
5952 Set_Do_Overflow_Check
(N
);
5954 end Resolve_Case_Expression
;
5956 -------------------------------
5957 -- Resolve_Character_Literal --
5958 -------------------------------
5960 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
5961 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
5965 -- Verify that the character does belong to the type of the context
5967 Set_Etype
(N
, B_Typ
);
5968 Eval_Character_Literal
(N
);
5970 -- Wide_Wide_Character literals must always be defined, since the set
5971 -- of wide wide character literals is complete, i.e. if a character
5972 -- literal is accepted by the parser, then it is OK for wide wide
5973 -- character (out of range character literals are rejected).
5975 if Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
5978 -- Always accept character literal for type Any_Character, which
5979 -- occurs in error situations and in comparisons of literals, both
5980 -- of which should accept all literals.
5982 elsif B_Typ
= Any_Character
then
5985 -- For Standard.Character or a type derived from it, check that the
5986 -- literal is in range.
5988 elsif Root_Type
(B_Typ
) = Standard_Character
then
5989 if In_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
5993 -- For Standard.Wide_Character or a type derived from it, check that the
5994 -- literal is in range.
5996 elsif Root_Type
(B_Typ
) = Standard_Wide_Character
then
5997 if In_Wide_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6001 -- For Standard.Wide_Wide_Character or a type derived from it, we
6002 -- know the literal is in range, since the parser checked!
6004 elsif Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6007 -- If the entity is already set, this has already been resolved in a
6008 -- generic context, or comes from expansion. Nothing else to do.
6010 elsif Present
(Entity
(N
)) then
6013 -- Otherwise we have a user defined character type, and we can use the
6014 -- standard visibility mechanisms to locate the referenced entity.
6017 C
:= Current_Entity
(N
);
6018 while Present
(C
) loop
6019 if Etype
(C
) = B_Typ
then
6020 Set_Entity_With_Style_Check
(N
, C
);
6021 Generate_Reference
(C
, N
);
6029 -- If we fall through, then the literal does not match any of the
6030 -- entries of the enumeration type. This isn't just a constraint error
6031 -- situation, it is an illegality (see RM 4.2).
6034 ("character not defined for }", N
, First_Subtype
(B_Typ
));
6035 end Resolve_Character_Literal
;
6037 ---------------------------
6038 -- Resolve_Comparison_Op --
6039 ---------------------------
6041 -- Context requires a boolean type, and plays no role in resolution.
6042 -- Processing identical to that for equality operators. The result type is
6043 -- the base type, which matters when pathological subtypes of booleans with
6044 -- limited ranges are used.
6046 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6047 L
: constant Node_Id
:= Left_Opnd
(N
);
6048 R
: constant Node_Id
:= Right_Opnd
(N
);
6052 -- If this is an intrinsic operation which is not predefined, use the
6053 -- types of its declared arguments to resolve the possibly overloaded
6054 -- operands. Otherwise the operands are unambiguous and specify the
6057 if Scope
(Entity
(N
)) /= Standard_Standard
then
6058 T
:= Etype
(First_Entity
(Entity
(N
)));
6061 T
:= Find_Unique_Type
(L
, R
);
6063 if T
= Any_Fixed
then
6064 T
:= Unique_Fixed_Point_Type
(L
);
6068 Set_Etype
(N
, Base_Type
(Typ
));
6069 Generate_Reference
(T
, N
, ' ');
6071 -- Skip remaining processing if already set to Any_Type
6073 if T
= Any_Type
then
6077 -- Deal with other error cases
6079 if T
= Any_String
or else
6080 T
= Any_Composite
or else
6083 if T
= Any_Character
then
6084 Ambiguous_Character
(L
);
6086 Error_Msg_N
("ambiguous operands for comparison", N
);
6089 Set_Etype
(N
, Any_Type
);
6093 -- Resolve the operands if types OK
6097 Check_Unset_Reference
(L
);
6098 Check_Unset_Reference
(R
);
6099 Generate_Operator_Reference
(N
, T
);
6100 Check_Low_Bound_Tested
(N
);
6102 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6103 -- types or array types except String.
6105 if Is_Boolean_Type
(T
) then
6106 Check_SPARK_Restriction
6107 ("comparison is not defined on Boolean type", N
);
6109 elsif Is_Array_Type
(T
)
6110 and then Base_Type
(T
) /= Standard_String
6112 Check_SPARK_Restriction
6113 ("comparison is not defined on array types other than String", N
);
6116 -- Check comparison on unordered enumeration
6118 if Comes_From_Source
(N
)
6119 and then Bad_Unordered_Enumeration_Reference
(N
, Etype
(L
))
6121 Error_Msg_N
("comparison on unordered enumeration type?", N
);
6124 -- Evaluate the relation (note we do this after the above check since
6125 -- this Eval call may change N to True/False.
6127 Analyze_Dimension
(N
);
6128 Eval_Relational_Op
(N
);
6129 end Resolve_Comparison_Op
;
6131 -----------------------------------------
6132 -- Resolve_Discrete_Subtype_Indication --
6133 -----------------------------------------
6135 procedure Resolve_Discrete_Subtype_Indication
6143 Analyze
(Subtype_Mark
(N
));
6144 S
:= Entity
(Subtype_Mark
(N
));
6146 if Nkind
(Constraint
(N
)) /= N_Range_Constraint
then
6147 Error_Msg_N
("expect range constraint for discrete type", N
);
6148 Set_Etype
(N
, Any_Type
);
6151 R
:= Range_Expression
(Constraint
(N
));
6159 if Base_Type
(S
) /= Base_Type
(Typ
) then
6161 ("expect subtype of }", N
, First_Subtype
(Typ
));
6163 -- Rewrite the constraint as a range of Typ
6164 -- to allow compilation to proceed further.
6167 Rewrite
(Low_Bound
(R
),
6168 Make_Attribute_Reference
(Sloc
(Low_Bound
(R
)),
6169 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6170 Attribute_Name
=> Name_First
));
6171 Rewrite
(High_Bound
(R
),
6172 Make_Attribute_Reference
(Sloc
(High_Bound
(R
)),
6173 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6174 Attribute_Name
=> Name_First
));
6178 Set_Etype
(N
, Etype
(R
));
6180 -- Additionally, we must check that the bounds are compatible
6181 -- with the given subtype, which might be different from the
6182 -- type of the context.
6184 Apply_Range_Check
(R
, S
);
6186 -- ??? If the above check statically detects a Constraint_Error
6187 -- it replaces the offending bound(s) of the range R with a
6188 -- Constraint_Error node. When the itype which uses these bounds
6189 -- is frozen the resulting call to Duplicate_Subexpr generates
6190 -- a new temporary for the bounds.
6192 -- Unfortunately there are other itypes that are also made depend
6193 -- on these bounds, so when Duplicate_Subexpr is called they get
6194 -- a forward reference to the newly created temporaries and Gigi
6195 -- aborts on such forward references. This is probably sign of a
6196 -- more fundamental problem somewhere else in either the order of
6197 -- itype freezing or the way certain itypes are constructed.
6199 -- To get around this problem we call Remove_Side_Effects right
6200 -- away if either bounds of R are a Constraint_Error.
6203 L
: constant Node_Id
:= Low_Bound
(R
);
6204 H
: constant Node_Id
:= High_Bound
(R
);
6207 if Nkind
(L
) = N_Raise_Constraint_Error
then
6208 Remove_Side_Effects
(L
);
6211 if Nkind
(H
) = N_Raise_Constraint_Error
then
6212 Remove_Side_Effects
(H
);
6216 Check_Unset_Reference
(Low_Bound
(R
));
6217 Check_Unset_Reference
(High_Bound
(R
));
6220 end Resolve_Discrete_Subtype_Indication
;
6222 -------------------------
6223 -- Resolve_Entity_Name --
6224 -------------------------
6226 -- Used to resolve identifiers and expanded names
6228 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
6229 E
: constant Entity_Id
:= Entity
(N
);
6232 -- If garbage from errors, set to Any_Type and return
6234 if No
(E
) and then Total_Errors_Detected
/= 0 then
6235 Set_Etype
(N
, Any_Type
);
6239 -- Replace named numbers by corresponding literals. Note that this is
6240 -- the one case where Resolve_Entity_Name must reset the Etype, since
6241 -- it is currently marked as universal.
6243 if Ekind
(E
) = E_Named_Integer
then
6245 Eval_Named_Integer
(N
);
6247 elsif Ekind
(E
) = E_Named_Real
then
6249 Eval_Named_Real
(N
);
6251 -- For enumeration literals, we need to make sure that a proper style
6252 -- check is done, since such literals are overloaded, and thus we did
6253 -- not do a style check during the first phase of analysis.
6255 elsif Ekind
(E
) = E_Enumeration_Literal
then
6256 Set_Entity_With_Style_Check
(N
, E
);
6257 Eval_Entity_Name
(N
);
6259 -- Case of subtype name appearing as an operand in expression
6261 elsif Is_Type
(E
) then
6263 -- Allow use of subtype if it is a concurrent type where we are
6264 -- currently inside the body. This will eventually be expanded into a
6265 -- call to Self (for tasks) or _object (for protected objects). Any
6266 -- other use of a subtype is invalid.
6268 if Is_Concurrent_Type
(E
)
6269 and then In_Open_Scopes
(E
)
6273 -- Any other use is an error
6277 ("invalid use of subtype mark in expression or call", N
);
6280 -- Check discriminant use if entity is discriminant in current scope,
6281 -- i.e. discriminant of record or concurrent type currently being
6282 -- analyzed. Uses in corresponding body are unrestricted.
6284 elsif Ekind
(E
) = E_Discriminant
6285 and then Scope
(E
) = Current_Scope
6286 and then not Has_Completion
(Current_Scope
)
6288 Check_Discriminant_Use
(N
);
6290 -- A parameterless generic function cannot appear in a context that
6291 -- requires resolution.
6293 elsif Ekind
(E
) = E_Generic_Function
then
6294 Error_Msg_N
("illegal use of generic function", N
);
6296 elsif Ekind
(E
) = E_Out_Parameter
6297 and then Ada_Version
= Ada_83
6298 and then (Nkind
(Parent
(N
)) in N_Op
6299 or else (Nkind
(Parent
(N
)) = N_Assignment_Statement
6300 and then N
= Expression
(Parent
(N
)))
6301 or else Nkind
(Parent
(N
)) = N_Explicit_Dereference
)
6303 Error_Msg_N
("(Ada 83) illegal reading of out parameter", N
);
6305 -- In all other cases, just do the possible static evaluation
6308 -- A deferred constant that appears in an expression must have a
6309 -- completion, unless it has been removed by in-place expansion of
6312 if Ekind
(E
) = E_Constant
6313 and then Comes_From_Source
(E
)
6314 and then No
(Constant_Value
(E
))
6315 and then Is_Frozen
(Etype
(E
))
6316 and then not In_Spec_Expression
6317 and then not Is_Imported
(E
)
6319 if No_Initialization
(Parent
(E
))
6320 or else (Present
(Full_View
(E
))
6321 and then No_Initialization
(Parent
(Full_View
(E
))))
6326 "deferred constant is frozen before completion", N
);
6330 Eval_Entity_Name
(N
);
6332 end Resolve_Entity_Name
;
6338 procedure Resolve_Entry
(Entry_Name
: Node_Id
) is
6339 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
6347 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
;
6348 -- If the bounds of the entry family being called depend on task
6349 -- discriminants, build a new index subtype where a discriminant is
6350 -- replaced with the value of the discriminant of the target task.
6351 -- The target task is the prefix of the entry name in the call.
6353 -----------------------
6354 -- Actual_Index_Type --
6355 -----------------------
6357 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
is
6358 Typ
: constant Entity_Id
:= Entry_Index_Type
(E
);
6359 Tsk
: constant Entity_Id
:= Scope
(E
);
6360 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
6361 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
6364 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
;
6365 -- If the bound is given by a discriminant, replace with a reference
6366 -- to the discriminant of the same name in the target task. If the
6367 -- entry name is the target of a requeue statement and the entry is
6368 -- in the current protected object, the bound to be used is the
6369 -- discriminal of the object (see Apply_Range_Checks for details of
6370 -- the transformation).
6372 -----------------------------
6373 -- Actual_Discriminant_Ref --
6374 -----------------------------
6376 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
is
6377 Typ
: constant Entity_Id
:= Etype
(Bound
);
6381 Remove_Side_Effects
(Bound
);
6383 if not Is_Entity_Name
(Bound
)
6384 or else Ekind
(Entity
(Bound
)) /= E_Discriminant
6388 elsif Is_Protected_Type
(Tsk
)
6389 and then In_Open_Scopes
(Tsk
)
6390 and then Nkind
(Parent
(Entry_Name
)) = N_Requeue_Statement
6392 -- Note: here Bound denotes a discriminant of the corresponding
6393 -- record type tskV, whose discriminal is a formal of the
6394 -- init-proc tskVIP. What we want is the body discriminal,
6395 -- which is associated to the discriminant of the original
6396 -- concurrent type tsk.
6398 return New_Occurrence_Of
6399 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
);
6403 Make_Selected_Component
(Loc
,
6404 Prefix
=> New_Copy_Tree
(Prefix
(Prefix
(Entry_Name
))),
6405 Selector_Name
=> New_Occurrence_Of
(Entity
(Bound
), Loc
));
6410 end Actual_Discriminant_Ref
;
6412 -- Start of processing for Actual_Index_Type
6415 if not Has_Discriminants
(Tsk
)
6416 or else (not Is_Entity_Name
(Lo
) and then not Is_Entity_Name
(Hi
))
6418 return Entry_Index_Type
(E
);
6421 New_T
:= Create_Itype
(Ekind
(Typ
), Parent
(Entry_Name
));
6422 Set_Etype
(New_T
, Base_Type
(Typ
));
6423 Set_Size_Info
(New_T
, Typ
);
6424 Set_RM_Size
(New_T
, RM_Size
(Typ
));
6425 Set_Scalar_Range
(New_T
,
6426 Make_Range
(Sloc
(Entry_Name
),
6427 Low_Bound
=> Actual_Discriminant_Ref
(Lo
),
6428 High_Bound
=> Actual_Discriminant_Ref
(Hi
)));
6432 end Actual_Index_Type
;
6434 -- Start of processing of Resolve_Entry
6437 -- Find name of entry being called, and resolve prefix of name with its
6438 -- own type. The prefix can be overloaded, and the name and signature of
6439 -- the entry must be taken into account.
6441 if Nkind
(Entry_Name
) = N_Indexed_Component
then
6443 -- Case of dealing with entry family within the current tasks
6445 E_Name
:= Prefix
(Entry_Name
);
6448 E_Name
:= Entry_Name
;
6451 if Is_Entity_Name
(E_Name
) then
6453 -- Entry call to an entry (or entry family) in the current task. This
6454 -- is legal even though the task will deadlock. Rewrite as call to
6457 -- This can also be a call to an entry in an enclosing task. If this
6458 -- is a single task, we have to retrieve its name, because the scope
6459 -- of the entry is the task type, not the object. If the enclosing
6460 -- task is a task type, the identity of the task is given by its own
6463 -- Finally this can be a requeue on an entry of the same task or
6464 -- protected object.
6466 S
:= Scope
(Entity
(E_Name
));
6468 for J
in reverse 0 .. Scope_Stack
.Last
loop
6469 if Is_Task_Type
(Scope_Stack
.Table
(J
).Entity
)
6470 and then not Comes_From_Source
(S
)
6472 -- S is an enclosing task or protected object. The concurrent
6473 -- declaration has been converted into a type declaration, and
6474 -- the object itself has an object declaration that follows
6475 -- the type in the same declarative part.
6477 Tsk
:= Next_Entity
(S
);
6478 while Etype
(Tsk
) /= S
loop
6485 elsif S
= Scope_Stack
.Table
(J
).Entity
then
6487 -- Call to current task. Will be transformed into call to Self
6495 Make_Selected_Component
(Loc
,
6496 Prefix
=> New_Occurrence_Of
(S
, Loc
),
6498 New_Occurrence_Of
(Entity
(E_Name
), Loc
));
6499 Rewrite
(E_Name
, New_N
);
6502 elsif Nkind
(Entry_Name
) = N_Selected_Component
6503 and then Is_Overloaded
(Prefix
(Entry_Name
))
6505 -- Use the entry name (which must be unique at this point) to find
6506 -- the prefix that returns the corresponding task/protected type.
6509 Pref
: constant Node_Id
:= Prefix
(Entry_Name
);
6510 Ent
: constant Entity_Id
:= Entity
(Selector_Name
(Entry_Name
));
6515 Get_First_Interp
(Pref
, I
, It
);
6516 while Present
(It
.Typ
) loop
6517 if Scope
(Ent
) = It
.Typ
then
6518 Set_Etype
(Pref
, It
.Typ
);
6522 Get_Next_Interp
(I
, It
);
6527 if Nkind
(Entry_Name
) = N_Selected_Component
then
6528 Resolve
(Prefix
(Entry_Name
));
6530 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
6531 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
6532 Resolve
(Prefix
(Prefix
(Entry_Name
)));
6533 Index
:= First
(Expressions
(Entry_Name
));
6534 Resolve
(Index
, Entry_Index_Type
(Nam
));
6536 -- Up to this point the expression could have been the actual in a
6537 -- simple entry call, and be given by a named association.
6539 if Nkind
(Index
) = N_Parameter_Association
then
6540 Error_Msg_N
("expect expression for entry index", Index
);
6542 Apply_Range_Check
(Index
, Actual_Index_Type
(Nam
));
6547 ------------------------
6548 -- Resolve_Entry_Call --
6549 ------------------------
6551 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
6552 Entry_Name
: constant Node_Id
:= Name
(N
);
6553 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
6555 First_Named
: Node_Id
;
6562 -- We kill all checks here, because it does not seem worth the effort to
6563 -- do anything better, an entry call is a big operation.
6567 -- Processing of the name is similar for entry calls and protected
6568 -- operation calls. Once the entity is determined, we can complete
6569 -- the resolution of the actuals.
6571 -- The selector may be overloaded, in the case of a protected object
6572 -- with overloaded functions. The type of the context is used for
6575 if Nkind
(Entry_Name
) = N_Selected_Component
6576 and then Is_Overloaded
(Selector_Name
(Entry_Name
))
6577 and then Typ
/= Standard_Void_Type
6584 Get_First_Interp
(Selector_Name
(Entry_Name
), I
, It
);
6585 while Present
(It
.Typ
) loop
6586 if Covers
(Typ
, It
.Typ
) then
6587 Set_Entity
(Selector_Name
(Entry_Name
), It
.Nam
);
6588 Set_Etype
(Entry_Name
, It
.Typ
);
6590 Generate_Reference
(It
.Typ
, N
, ' ');
6593 Get_Next_Interp
(I
, It
);
6598 Resolve_Entry
(Entry_Name
);
6600 if Nkind
(Entry_Name
) = N_Selected_Component
then
6602 -- Simple entry call
6604 Nam
:= Entity
(Selector_Name
(Entry_Name
));
6605 Obj
:= Prefix
(Entry_Name
);
6606 Was_Over
:= Is_Overloaded
(Selector_Name
(Entry_Name
));
6608 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
6610 -- Call to member of entry family
6612 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
6613 Obj
:= Prefix
(Prefix
(Entry_Name
));
6614 Was_Over
:= Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)));
6617 -- We cannot in general check the maximum depth of protected entry calls
6618 -- at compile time. But we can tell that any protected entry call at all
6619 -- violates a specified nesting depth of zero.
6621 if Is_Protected_Type
(Scope
(Nam
)) then
6622 Check_Restriction
(Max_Entry_Queue_Length
, N
);
6625 -- Use context type to disambiguate a protected function that can be
6626 -- called without actuals and that returns an array type, and where the
6627 -- argument list may be an indexing of the returned value.
6629 if Ekind
(Nam
) = E_Function
6630 and then Needs_No_Actuals
(Nam
)
6631 and then Present
(Parameter_Associations
(N
))
6633 ((Is_Array_Type
(Etype
(Nam
))
6634 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
6636 or else (Is_Access_Type
(Etype
(Nam
))
6637 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
6641 Component_Type
(Designated_Type
(Etype
(Nam
))))))
6644 Index_Node
: Node_Id
;
6648 Make_Indexed_Component
(Loc
,
6650 Make_Function_Call
(Loc
, Name
=> Relocate_Node
(Entry_Name
)),
6651 Expressions
=> Parameter_Associations
(N
));
6653 -- Since we are correcting a node classification error made by the
6654 -- parser, we call Replace rather than Rewrite.
6656 Replace
(N
, Index_Node
);
6657 Set_Etype
(Prefix
(N
), Etype
(Nam
));
6659 Resolve_Indexed_Component
(N
, Typ
);
6664 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
)
6665 and then Present
(PPC_Wrapper
(Nam
))
6666 and then Current_Scope
/= PPC_Wrapper
(Nam
)
6668 -- Rewrite as call to the precondition wrapper, adding the task
6669 -- object to the list of actuals. If the call is to a member of an
6670 -- entry family, include the index as well.
6674 New_Actuals
: List_Id
;
6677 New_Actuals
:= New_List
(Obj
);
6679 if Nkind
(Entry_Name
) = N_Indexed_Component
then
6680 Append_To
(New_Actuals
,
6681 New_Copy_Tree
(First
(Expressions
(Entry_Name
))));
6684 Append_List
(Parameter_Associations
(N
), New_Actuals
);
6686 Make_Procedure_Call_Statement
(Loc
,
6688 New_Occurrence_Of
(PPC_Wrapper
(Nam
), Loc
),
6689 Parameter_Associations
=> New_Actuals
);
6690 Rewrite
(N
, New_Call
);
6691 Analyze_And_Resolve
(N
);
6696 -- The operation name may have been overloaded. Order the actuals
6697 -- according to the formals of the resolved entity, and set the return
6698 -- type to that of the operation.
6701 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
6702 pragma Assert
(Norm_OK
);
6703 Set_Etype
(N
, Etype
(Nam
));
6706 Resolve_Actuals
(N
, Nam
);
6707 Check_Internal_Protected_Use
(N
, Nam
);
6709 -- Create a call reference to the entry
6711 Generate_Reference
(Nam
, Entry_Name
, 's');
6713 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
) then
6714 Check_Potentially_Blocking_Operation
(N
);
6717 -- Verify that a procedure call cannot masquerade as an entry
6718 -- call where an entry call is expected.
6720 if Ekind
(Nam
) = E_Procedure
then
6721 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
6722 and then N
= Entry_Call_Statement
(Parent
(N
))
6724 Error_Msg_N
("entry call required in select statement", N
);
6726 elsif Nkind
(Parent
(N
)) = N_Triggering_Alternative
6727 and then N
= Triggering_Statement
(Parent
(N
))
6729 Error_Msg_N
("triggering statement cannot be procedure call", N
);
6731 elsif Ekind
(Scope
(Nam
)) = E_Task_Type
6732 and then not In_Open_Scopes
(Scope
(Nam
))
6734 Error_Msg_N
("task has no entry with this name", Entry_Name
);
6738 -- After resolution, entry calls and protected procedure calls are
6739 -- changed into entry calls, for expansion. The structure of the node
6740 -- does not change, so it can safely be done in place. Protected
6741 -- function calls must keep their structure because they are
6744 if Ekind
(Nam
) /= E_Function
then
6746 -- A protected operation that is not a function may modify the
6747 -- corresponding object, and cannot apply to a constant. If this
6748 -- is an internal call, the prefix is the type itself.
6750 if Is_Protected_Type
(Scope
(Nam
))
6751 and then not Is_Variable
(Obj
)
6752 and then (not Is_Entity_Name
(Obj
)
6753 or else not Is_Type
(Entity
(Obj
)))
6756 ("prefix of protected procedure or entry call must be variable",
6760 Actuals
:= Parameter_Associations
(N
);
6761 First_Named
:= First_Named_Actual
(N
);
6764 Make_Entry_Call_Statement
(Loc
,
6766 Parameter_Associations
=> Actuals
));
6768 Set_First_Named_Actual
(N
, First_Named
);
6769 Set_Analyzed
(N
, True);
6771 -- Protected functions can return on the secondary stack, in which
6772 -- case we must trigger the transient scope mechanism.
6774 elsif Full_Expander_Active
6775 and then Requires_Transient_Scope
(Etype
(Nam
))
6777 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
6779 end Resolve_Entry_Call
;
6781 -------------------------
6782 -- Resolve_Equality_Op --
6783 -------------------------
6785 -- Both arguments must have the same type, and the boolean context does
6786 -- not participate in the resolution. The first pass verifies that the
6787 -- interpretation is not ambiguous, and the type of the left argument is
6788 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
6789 -- are strings or aggregates, allocators, or Null, they are ambiguous even
6790 -- though they carry a single (universal) type. Diagnose this case here.
6792 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6793 L
: constant Node_Id
:= Left_Opnd
(N
);
6794 R
: constant Node_Id
:= Right_Opnd
(N
);
6795 T
: Entity_Id
:= Find_Unique_Type
(L
, R
);
6797 procedure Check_If_Expression
(Cond
: Node_Id
);
6798 -- The resolution rule for if expressions requires that each such must
6799 -- have a unique type. This means that if several dependent expressions
6800 -- are of a non-null anonymous access type, and the context does not
6801 -- impose an expected type (as can be the case in an equality operation)
6802 -- the expression must be rejected.
6804 function Find_Unique_Access_Type
return Entity_Id
;
6805 -- In the case of allocators, make a last-ditch attempt to find a single
6806 -- access type with the right designated type. This is semantically
6807 -- dubious, and of no interest to any real code, but c48008a makes it
6810 -------------------------
6811 -- Check_If_Expression --
6812 -------------------------
6814 procedure Check_If_Expression
(Cond
: Node_Id
) is
6815 Then_Expr
: Node_Id
;
6816 Else_Expr
: Node_Id
;
6819 if Nkind
(Cond
) = N_If_Expression
then
6820 Then_Expr
:= Next
(First
(Expressions
(Cond
)));
6821 Else_Expr
:= Next
(Then_Expr
);
6823 if Nkind
(Then_Expr
) /= N_Null
6824 and then Nkind
(Else_Expr
) /= N_Null
6826 Error_Msg_N
("cannot determine type of if expression", Cond
);
6829 end Check_If_Expression
;
6831 -----------------------------
6832 -- Find_Unique_Access_Type --
6833 -----------------------------
6835 function Find_Unique_Access_Type
return Entity_Id
is
6841 if Ekind
(Etype
(R
)) = E_Allocator_Type
then
6842 Acc
:= Designated_Type
(Etype
(R
));
6843 elsif Ekind
(Etype
(L
)) = E_Allocator_Type
then
6844 Acc
:= Designated_Type
(Etype
(L
));
6850 while S
/= Standard_Standard
loop
6851 E
:= First_Entity
(S
);
6852 while Present
(E
) loop
6854 and then Is_Access_Type
(E
)
6855 and then Ekind
(E
) /= E_Allocator_Type
6856 and then Designated_Type
(E
) = Base_Type
(Acc
)
6868 end Find_Unique_Access_Type
;
6870 -- Start of processing for Resolve_Equality_Op
6873 Set_Etype
(N
, Base_Type
(Typ
));
6874 Generate_Reference
(T
, N
, ' ');
6876 if T
= Any_Fixed
then
6877 T
:= Unique_Fixed_Point_Type
(L
);
6880 if T
/= Any_Type
then
6881 if T
= Any_String
or else
6882 T
= Any_Composite
or else
6885 if T
= Any_Character
then
6886 Ambiguous_Character
(L
);
6888 Error_Msg_N
("ambiguous operands for equality", N
);
6891 Set_Etype
(N
, Any_Type
);
6894 elsif T
= Any_Access
6895 or else Ekind_In
(T
, E_Allocator_Type
, E_Access_Attribute_Type
)
6897 T
:= Find_Unique_Access_Type
;
6900 Error_Msg_N
("ambiguous operands for equality", N
);
6901 Set_Etype
(N
, Any_Type
);
6905 -- If expressions must have a single type, and if the context does
6906 -- not impose one the dependent expressions cannot be anonymous
6909 -- Why no similar processing for case expressions???
6911 elsif Ada_Version
>= Ada_2012
6912 and then Ekind_In
(Etype
(L
), E_Anonymous_Access_Type
,
6913 E_Anonymous_Access_Subprogram_Type
)
6914 and then Ekind_In
(Etype
(R
), E_Anonymous_Access_Type
,
6915 E_Anonymous_Access_Subprogram_Type
)
6917 Check_If_Expression
(L
);
6918 Check_If_Expression
(R
);
6924 -- In SPARK, equality operators = and /= for array types other than
6925 -- String are only defined when, for each index position, the
6926 -- operands have equal static bounds.
6928 if Is_Array_Type
(T
) then
6930 -- Protect call to Matching_Static_Array_Bounds to avoid costly
6931 -- operation if not needed.
6933 if Restriction_Check_Required
(SPARK
)
6934 and then Base_Type
(T
) /= Standard_String
6935 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
6936 and then Etype
(L
) /= Any_Composite
-- or else L in error
6937 and then Etype
(R
) /= Any_Composite
-- or else R in error
6938 and then not Matching_Static_Array_Bounds
(Etype
(L
), Etype
(R
))
6940 Check_SPARK_Restriction
6941 ("array types should have matching static bounds", N
);
6945 -- If the unique type is a class-wide type then it will be expanded
6946 -- into a dispatching call to the predefined primitive. Therefore we
6947 -- check here for potential violation of such restriction.
6949 if Is_Class_Wide_Type
(T
) then
6950 Check_Restriction
(No_Dispatching_Calls
, N
);
6953 if Warn_On_Redundant_Constructs
6954 and then Comes_From_Source
(N
)
6955 and then Is_Entity_Name
(R
)
6956 and then Entity
(R
) = Standard_True
6957 and then Comes_From_Source
(R
)
6959 Error_Msg_N
-- CODEFIX
6960 ("?comparison with True is redundant!", R
);
6963 Check_Unset_Reference
(L
);
6964 Check_Unset_Reference
(R
);
6965 Generate_Operator_Reference
(N
, T
);
6966 Check_Low_Bound_Tested
(N
);
6968 -- If this is an inequality, it may be the implicit inequality
6969 -- created for a user-defined operation, in which case the corres-
6970 -- ponding equality operation is not intrinsic, and the operation
6971 -- cannot be constant-folded. Else fold.
6973 if Nkind
(N
) = N_Op_Eq
6974 or else Comes_From_Source
(Entity
(N
))
6975 or else Ekind
(Entity
(N
)) = E_Operator
6976 or else Is_Intrinsic_Subprogram
6977 (Corresponding_Equality
(Entity
(N
)))
6979 Analyze_Dimension
(N
);
6980 Eval_Relational_Op
(N
);
6982 elsif Nkind
(N
) = N_Op_Ne
6983 and then Is_Abstract_Subprogram
(Entity
(N
))
6985 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Entity
(N
));
6988 -- Ada 2005: If one operand is an anonymous access type, convert the
6989 -- other operand to it, to ensure that the underlying types match in
6990 -- the back-end. Same for access_to_subprogram, and the conversion
6991 -- verifies that the types are subtype conformant.
6993 -- We apply the same conversion in the case one of the operands is a
6994 -- private subtype of the type of the other.
6996 -- Why the Expander_Active test here ???
6998 if Full_Expander_Active
7000 (Ekind_In
(T
, E_Anonymous_Access_Type
,
7001 E_Anonymous_Access_Subprogram_Type
)
7002 or else Is_Private_Type
(T
))
7004 if Etype
(L
) /= T
then
7006 Make_Unchecked_Type_Conversion
(Sloc
(L
),
7007 Subtype_Mark
=> New_Occurrence_Of
(T
, Sloc
(L
)),
7008 Expression
=> Relocate_Node
(L
)));
7009 Analyze_And_Resolve
(L
, T
);
7012 if (Etype
(R
)) /= T
then
7014 Make_Unchecked_Type_Conversion
(Sloc
(R
),
7015 Subtype_Mark
=> New_Occurrence_Of
(Etype
(L
), Sloc
(R
)),
7016 Expression
=> Relocate_Node
(R
)));
7017 Analyze_And_Resolve
(R
, T
);
7021 end Resolve_Equality_Op
;
7023 ----------------------------------
7024 -- Resolve_Explicit_Dereference --
7025 ----------------------------------
7027 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
7028 Loc
: constant Source_Ptr
:= Sloc
(N
);
7030 P
: constant Node_Id
:= Prefix
(N
);
7033 -- The candidate prefix type, if overloaded
7039 Check_Fully_Declared_Prefix
(Typ
, P
);
7042 if Is_Overloaded
(P
) then
7044 -- Use the context type to select the prefix that has the correct
7045 -- designated type. Keep the first match, which will be the inner-
7048 Get_First_Interp
(P
, I
, It
);
7050 while Present
(It
.Typ
) loop
7051 if Is_Access_Type
(It
.Typ
)
7052 and then Covers
(Typ
, Designated_Type
(It
.Typ
))
7058 -- Remove access types that do not match, but preserve access
7059 -- to subprogram interpretations, in case a further dereference
7060 -- is needed (see below).
7062 elsif Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
7066 Get_Next_Interp
(I
, It
);
7069 if Present
(P_Typ
) then
7071 Set_Etype
(N
, Designated_Type
(P_Typ
));
7074 -- If no interpretation covers the designated type of the prefix,
7075 -- this is the pathological case where not all implementations of
7076 -- the prefix allow the interpretation of the node as a call. Now
7077 -- that the expected type is known, Remove other interpretations
7078 -- from prefix, rewrite it as a call, and resolve again, so that
7079 -- the proper call node is generated.
7081 Get_First_Interp
(P
, I
, It
);
7082 while Present
(It
.Typ
) loop
7083 if Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
7087 Get_Next_Interp
(I
, It
);
7091 Make_Function_Call
(Loc
,
7093 Make_Explicit_Dereference
(Loc
,
7095 Parameter_Associations
=> New_List
);
7097 Save_Interps
(N
, New_N
);
7099 Analyze_And_Resolve
(N
, Typ
);
7103 -- If not overloaded, resolve P with its own type
7109 if Is_Access_Type
(Etype
(P
)) then
7110 Apply_Access_Check
(N
);
7113 -- If the designated type is a packed unconstrained array type, and the
7114 -- explicit dereference is not in the context of an attribute reference,
7115 -- then we must compute and set the actual subtype, since it is needed
7116 -- by Gigi. The reason we exclude the attribute case is that this is
7117 -- handled fine by Gigi, and in fact we use such attributes to build the
7118 -- actual subtype. We also exclude generated code (which builds actual
7119 -- subtypes directly if they are needed).
7121 if Is_Array_Type
(Etype
(N
))
7122 and then Is_Packed
(Etype
(N
))
7123 and then not Is_Constrained
(Etype
(N
))
7124 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
7125 and then Comes_From_Source
(N
)
7127 Set_Etype
(N
, Get_Actual_Subtype
(N
));
7130 -- Note: No Eval processing is required for an explicit dereference,
7131 -- because such a name can never be static.
7133 end Resolve_Explicit_Dereference
;
7135 -------------------------------------
7136 -- Resolve_Expression_With_Actions --
7137 -------------------------------------
7139 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
) is
7142 end Resolve_Expression_With_Actions
;
7144 ---------------------------
7145 -- Resolve_If_Expression --
7146 ---------------------------
7148 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
7149 Condition
: constant Node_Id
:= First
(Expressions
(N
));
7150 Then_Expr
: constant Node_Id
:= Next
(Condition
);
7151 Else_Expr
: Node_Id
:= Next
(Then_Expr
);
7152 Else_Typ
: Entity_Id
;
7153 Then_Typ
: Entity_Id
;
7156 Resolve
(Condition
, Any_Boolean
);
7157 Resolve
(Then_Expr
, Typ
);
7158 Then_Typ
:= Etype
(Then_Expr
);
7160 -- When the "then" expression is of a scalar type different from the
7161 -- result type, then insert a conversion to ensure the generation of
7162 -- a constraint check.
7164 if Is_Scalar_Type
(Then_Typ
)
7165 and then Base_Type
(Then_Typ
) /= Base_Type
(Typ
)
7167 Rewrite
(Then_Expr
, Convert_To
(Typ
, Then_Expr
));
7168 Analyze_And_Resolve
(Then_Expr
, Typ
);
7171 -- If ELSE expression present, just resolve using the determined type
7173 if Present
(Else_Expr
) then
7174 Resolve
(Else_Expr
, Typ
);
7175 Else_Typ
:= Etype
(Else_Expr
);
7177 if Is_Scalar_Type
(Else_Typ
)
7178 and then Else_Typ
/= Typ
7180 Rewrite
(Else_Expr
, Convert_To
(Typ
, Else_Expr
));
7181 Analyze_And_Resolve
(Else_Expr
, Typ
);
7184 -- If no ELSE expression is present, root type must be Standard.Boolean
7185 -- and we provide a Standard.True result converted to the appropriate
7186 -- Boolean type (in case it is a derived boolean type).
7188 elsif Root_Type
(Typ
) = Standard_Boolean
then
7190 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Sloc
(N
)));
7191 Analyze_And_Resolve
(Else_Expr
, Typ
);
7192 Append_To
(Expressions
(N
), Else_Expr
);
7195 Error_Msg_N
("can only omit ELSE expression in Boolean case", N
);
7196 Append_To
(Expressions
(N
), Error
);
7200 Eval_If_Expression
(N
);
7202 -- If we still have a if expression, and overflow checks are enabled in
7203 -- MINIMIZED or ELIMINATED modes, then set Do_Overflow_Check to ensure
7204 -- that we handle overflow for dependent expressions.
7206 if Nkind
(N
) = N_If_Expression
7207 and then Overflow_Check_Mode
(Typ
) in Minimized_Or_Eliminated
7209 Set_Do_Overflow_Check
(N
);
7211 end Resolve_If_Expression
;
7213 -------------------------------
7214 -- Resolve_Indexed_Component --
7215 -------------------------------
7217 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
7218 Name
: constant Node_Id
:= Prefix
(N
);
7220 Array_Type
: Entity_Id
:= Empty
; -- to prevent junk warning
7224 if Is_Overloaded
(Name
) then
7226 -- Use the context type to select the prefix that yields the correct
7232 I1
: Interp_Index
:= 0;
7233 P
: constant Node_Id
:= Prefix
(N
);
7234 Found
: Boolean := False;
7237 Get_First_Interp
(P
, I
, It
);
7238 while Present
(It
.Typ
) loop
7239 if (Is_Array_Type
(It
.Typ
)
7240 and then Covers
(Typ
, Component_Type
(It
.Typ
)))
7241 or else (Is_Access_Type
(It
.Typ
)
7242 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
7246 Component_Type
(Designated_Type
(It
.Typ
))))
7249 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
7251 if It
= No_Interp
then
7252 Error_Msg_N
("ambiguous prefix for indexing", N
);
7258 Array_Type
:= It
.Typ
;
7264 Array_Type
:= It
.Typ
;
7269 Get_Next_Interp
(I
, It
);
7274 Array_Type
:= Etype
(Name
);
7277 Resolve
(Name
, Array_Type
);
7278 Array_Type
:= Get_Actual_Subtype_If_Available
(Name
);
7280 -- If prefix is access type, dereference to get real array type.
7281 -- Note: we do not apply an access check because the expander always
7282 -- introduces an explicit dereference, and the check will happen there.
7284 if Is_Access_Type
(Array_Type
) then
7285 Array_Type
:= Designated_Type
(Array_Type
);
7288 -- If name was overloaded, set component type correctly now
7289 -- If a misplaced call to an entry family (which has no index types)
7290 -- return. Error will be diagnosed from calling context.
7292 if Is_Array_Type
(Array_Type
) then
7293 Set_Etype
(N
, Component_Type
(Array_Type
));
7298 Index
:= First_Index
(Array_Type
);
7299 Expr
:= First
(Expressions
(N
));
7301 -- The prefix may have resolved to a string literal, in which case its
7302 -- etype has a special representation. This is only possible currently
7303 -- if the prefix is a static concatenation, written in functional
7306 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
7307 Resolve
(Expr
, Standard_Positive
);
7310 while Present
(Index
) and Present
(Expr
) loop
7311 Resolve
(Expr
, Etype
(Index
));
7312 Check_Unset_Reference
(Expr
);
7314 if Is_Scalar_Type
(Etype
(Expr
)) then
7315 Apply_Scalar_Range_Check
(Expr
, Etype
(Index
));
7317 Apply_Range_Check
(Expr
, Get_Actual_Subtype
(Index
));
7325 Analyze_Dimension
(N
);
7327 -- Do not generate the warning on suspicious index if we are analyzing
7328 -- package Ada.Tags; otherwise we will report the warning with the
7329 -- Prims_Ptr field of the dispatch table.
7331 if Scope
(Etype
(Prefix
(N
))) = Standard_Standard
7333 Is_RTU
(Cunit_Entity
(Get_Source_Unit
(Etype
(Prefix
(N
)))),
7336 Warn_On_Suspicious_Index
(Name
, First
(Expressions
(N
)));
7337 Eval_Indexed_Component
(N
);
7340 -- If the array type is atomic, and is packed, and we are in a left side
7341 -- context, then this is worth a warning, since we have a situation
7342 -- where the access to the component may cause extra read/writes of
7343 -- the atomic array object, which could be considered unexpected.
7345 if Nkind
(N
) = N_Indexed_Component
7346 and then (Is_Atomic
(Array_Type
)
7347 or else (Is_Entity_Name
(Prefix
(N
))
7348 and then Is_Atomic
(Entity
(Prefix
(N
)))))
7349 and then Is_Bit_Packed_Array
(Array_Type
)
7352 Error_Msg_N
("?assignment to component of packed atomic array",
7354 Error_Msg_N
("?\may cause unexpected accesses to atomic object",
7357 end Resolve_Indexed_Component
;
7359 -----------------------------
7360 -- Resolve_Integer_Literal --
7361 -----------------------------
7363 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
7366 Eval_Integer_Literal
(N
);
7367 end Resolve_Integer_Literal
;
7369 --------------------------------
7370 -- Resolve_Intrinsic_Operator --
7371 --------------------------------
7373 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
) is
7374 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
7376 Orig_Op
: constant Entity_Id
:= Entity
(N
);
7380 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
;
7381 -- If the operand is a literal, it cannot be the expression in a
7382 -- conversion. Use a qualified expression instead.
7384 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
is
7385 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
7388 if Nkind_In
(Opnd
, N_Integer_Literal
, N_Real_Literal
) then
7390 Make_Qualified_Expression
(Loc
,
7391 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
7392 Expression
=> Relocate_Node
(Opnd
));
7396 Res
:= Unchecked_Convert_To
(Btyp
, Opnd
);
7400 end Convert_Operand
;
7402 -- Start of processing for Resolve_Intrinsic_Operator
7405 -- We must preserve the original entity in a generic setting, so that
7406 -- the legality of the operation can be verified in an instance.
7408 if not Full_Expander_Active
then
7413 while Scope
(Op
) /= Standard_Standard
loop
7415 pragma Assert
(Present
(Op
));
7419 Set_Is_Overloaded
(N
, False);
7421 -- If the result or operand types are private, rewrite with unchecked
7422 -- conversions on the operands and the result, to expose the proper
7423 -- underlying numeric type.
7425 if Is_Private_Type
(Typ
)
7426 or else Is_Private_Type
(Etype
(Left_Opnd
(N
)))
7427 or else Is_Private_Type
(Etype
(Right_Opnd
(N
)))
7429 Arg1
:= Convert_Operand
(Left_Opnd
(N
));
7430 -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
7431 -- What on earth is this commented out fragment of code???
7433 if Nkind
(N
) = N_Op_Expon
then
7434 Arg2
:= Unchecked_Convert_To
(Standard_Integer
, Right_Opnd
(N
));
7436 Arg2
:= Convert_Operand
(Right_Opnd
(N
));
7439 if Nkind
(Arg1
) = N_Type_Conversion
then
7440 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
7443 if Nkind
(Arg2
) = N_Type_Conversion
then
7444 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
7447 Set_Left_Opnd
(N
, Arg1
);
7448 Set_Right_Opnd
(N
, Arg2
);
7450 Set_Etype
(N
, Btyp
);
7451 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
7454 elsif Typ
/= Etype
(Left_Opnd
(N
))
7455 or else Typ
/= Etype
(Right_Opnd
(N
))
7457 -- Add explicit conversion where needed, and save interpretations in
7458 -- case operands are overloaded. If the context is a VMS operation,
7459 -- assert that the conversion is legal (the operands have the proper
7460 -- types to select the VMS intrinsic). Note that in rare cases the
7461 -- VMS operators may be visible, but the default System is being used
7462 -- and Address is a private type.
7464 Arg1
:= Convert_To
(Typ
, Left_Opnd
(N
));
7465 Arg2
:= Convert_To
(Typ
, Right_Opnd
(N
));
7467 if Nkind
(Arg1
) = N_Type_Conversion
then
7468 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
7470 if Is_VMS_Operator
(Orig_Op
) then
7471 Set_Conversion_OK
(Arg1
);
7474 Save_Interps
(Left_Opnd
(N
), Arg1
);
7477 if Nkind
(Arg2
) = N_Type_Conversion
then
7478 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
7480 if Is_VMS_Operator
(Orig_Op
) then
7481 Set_Conversion_OK
(Arg2
);
7484 Save_Interps
(Right_Opnd
(N
), Arg2
);
7487 Rewrite
(Left_Opnd
(N
), Arg1
);
7488 Rewrite
(Right_Opnd
(N
), Arg2
);
7491 Resolve_Arithmetic_Op
(N
, Typ
);
7494 Resolve_Arithmetic_Op
(N
, Typ
);
7496 end Resolve_Intrinsic_Operator
;
7498 --------------------------------------
7499 -- Resolve_Intrinsic_Unary_Operator --
7500 --------------------------------------
7502 procedure Resolve_Intrinsic_Unary_Operator
7506 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
7512 while Scope
(Op
) /= Standard_Standard
loop
7514 pragma Assert
(Present
(Op
));
7519 if Is_Private_Type
(Typ
) then
7520 Arg2
:= Unchecked_Convert_To
(Btyp
, Right_Opnd
(N
));
7521 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
7523 Set_Right_Opnd
(N
, Arg2
);
7525 Set_Etype
(N
, Btyp
);
7526 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
7530 Resolve_Unary_Op
(N
, Typ
);
7532 end Resolve_Intrinsic_Unary_Operator
;
7534 ------------------------
7535 -- Resolve_Logical_Op --
7536 ------------------------
7538 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7542 Check_No_Direct_Boolean_Operators
(N
);
7544 -- Predefined operations on scalar types yield the base type. On the
7545 -- other hand, logical operations on arrays yield the type of the
7546 -- arguments (and the context).
7548 if Is_Array_Type
(Typ
) then
7551 B_Typ
:= Base_Type
(Typ
);
7554 -- OK if this is a VMS-specific intrinsic operation
7556 if Is_VMS_Operator
(Entity
(N
)) then
7559 -- The following test is required because the operands of the operation
7560 -- may be literals, in which case the resulting type appears to be
7561 -- compatible with a signed integer type, when in fact it is compatible
7562 -- only with modular types. If the context itself is universal, the
7563 -- operation is illegal.
7565 elsif not Valid_Boolean_Arg
(Typ
) then
7566 Error_Msg_N
("invalid context for logical operation", N
);
7567 Set_Etype
(N
, Any_Type
);
7570 elsif Typ
= Any_Modular
then
7572 ("no modular type available in this context", N
);
7573 Set_Etype
(N
, Any_Type
);
7576 elsif Is_Modular_Integer_Type
(Typ
)
7577 and then Etype
(Left_Opnd
(N
)) = Universal_Integer
7578 and then Etype
(Right_Opnd
(N
)) = Universal_Integer
7580 Check_For_Visible_Operator
(N
, B_Typ
);
7583 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
7584 -- is active and the result type is standard Boolean (do not mess with
7585 -- ops that return a nonstandard Boolean type, because something strange
7588 -- Note: you might expect this replacement to be done during expansion,
7589 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
7590 -- is used, no part of the right operand of an "and" or "or" operator
7591 -- should be executed if the left operand would short-circuit the
7592 -- evaluation of the corresponding "and then" or "or else". If we left
7593 -- the replacement to expansion time, then run-time checks associated
7594 -- with such operands would be evaluated unconditionally, due to being
7595 -- before the condition prior to the rewriting as short-circuit forms
7596 -- during expansion.
7598 if Short_Circuit_And_Or
7599 and then B_Typ
= Standard_Boolean
7600 and then Nkind_In
(N
, N_Op_And
, N_Op_Or
)
7602 if Nkind
(N
) = N_Op_And
then
7604 Make_And_Then
(Sloc
(N
),
7605 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
7606 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
7607 Analyze_And_Resolve
(N
, B_Typ
);
7609 -- Case of OR changed to OR ELSE
7613 Make_Or_Else
(Sloc
(N
),
7614 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
7615 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
7616 Analyze_And_Resolve
(N
, B_Typ
);
7619 -- Return now, since analysis of the rewritten ops will take care of
7620 -- other reference bookkeeping and expression folding.
7625 Resolve
(Left_Opnd
(N
), B_Typ
);
7626 Resolve
(Right_Opnd
(N
), B_Typ
);
7628 Check_Unset_Reference
(Left_Opnd
(N
));
7629 Check_Unset_Reference
(Right_Opnd
(N
));
7631 Set_Etype
(N
, B_Typ
);
7632 Generate_Operator_Reference
(N
, B_Typ
);
7633 Eval_Logical_Op
(N
);
7635 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
7636 -- only when both operands have same static lower and higher bounds. Of
7637 -- course the types have to match, so only check if operands are
7638 -- compatible and the node itself has no errors.
7640 if Is_Array_Type
(B_Typ
)
7641 and then Nkind
(N
) in N_Binary_Op
7644 Left_Typ
: constant Node_Id
:= Etype
(Left_Opnd
(N
));
7645 Right_Typ
: constant Node_Id
:= Etype
(Right_Opnd
(N
));
7648 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7649 -- operation if not needed.
7651 if Restriction_Check_Required
(SPARK
)
7652 and then Base_Type
(Left_Typ
) = Base_Type
(Right_Typ
)
7653 and then Left_Typ
/= Any_Composite
-- or Left_Opnd in error
7654 and then Right_Typ
/= Any_Composite
-- or Right_Opnd in error
7655 and then not Matching_Static_Array_Bounds
(Left_Typ
, Right_Typ
)
7657 Check_SPARK_Restriction
7658 ("array types should have matching static bounds", N
);
7662 end Resolve_Logical_Op
;
7664 ---------------------------
7665 -- Resolve_Membership_Op --
7666 ---------------------------
7668 -- The context can only be a boolean type, and does not determine the
7669 -- arguments. Arguments should be unambiguous, but the preference rule for
7670 -- universal types applies.
7672 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7673 pragma Warnings
(Off
, Typ
);
7675 L
: constant Node_Id
:= Left_Opnd
(N
);
7676 R
: constant Node_Id
:= Right_Opnd
(N
);
7679 procedure Resolve_Set_Membership
;
7680 -- Analysis has determined a unique type for the left operand. Use it to
7681 -- resolve the disjuncts.
7683 ----------------------------
7684 -- Resolve_Set_Membership --
7685 ----------------------------
7687 procedure Resolve_Set_Membership
is
7689 Ltyp
: constant Entity_Id
:= Etype
(L
);
7694 Alt
:= First
(Alternatives
(N
));
7695 while Present
(Alt
) loop
7697 -- Alternative is an expression, a range
7698 -- or a subtype mark.
7700 if not Is_Entity_Name
(Alt
)
7701 or else not Is_Type
(Entity
(Alt
))
7703 Resolve
(Alt
, Ltyp
);
7709 -- Check for duplicates for discrete case
7711 if Is_Discrete_Type
(Ltyp
) then
7718 Alts
: array (0 .. List_Length
(Alternatives
(N
))) of Ent
;
7722 -- Loop checking duplicates. This is quadratic, but giant sets
7723 -- are unlikely in this context so it's a reasonable choice.
7726 Alt
:= First
(Alternatives
(N
));
7727 while Present
(Alt
) loop
7728 if Is_Static_Expression
(Alt
)
7729 and then (Nkind_In
(Alt
, N_Integer_Literal
,
7730 N_Character_Literal
)
7731 or else Nkind
(Alt
) in N_Has_Entity
)
7734 Alts
(Nalts
) := (Alt
, Expr_Value
(Alt
));
7736 for J
in 1 .. Nalts
- 1 loop
7737 if Alts
(J
).Val
= Alts
(Nalts
).Val
then
7738 Error_Msg_Sloc
:= Sloc
(Alts
(J
).Alt
);
7739 Error_Msg_N
("duplicate of value given#?", Alt
);
7748 end Resolve_Set_Membership
;
7750 -- Start of processing for Resolve_Membership_Op
7753 if L
= Error
or else R
= Error
then
7757 if Present
(Alternatives
(N
)) then
7758 Resolve_Set_Membership
;
7761 elsif not Is_Overloaded
(R
)
7763 (Etype
(R
) = Universal_Integer
7765 Etype
(R
) = Universal_Real
)
7766 and then Is_Overloaded
(L
)
7770 -- Ada 2005 (AI-251): Support the following case:
7772 -- type I is interface;
7773 -- type T is tagged ...
7775 -- function Test (O : I'Class) is
7777 -- return O in T'Class.
7780 -- In this case we have nothing else to do. The membership test will be
7781 -- done at run time.
7783 elsif Ada_Version
>= Ada_2005
7784 and then Is_Class_Wide_Type
(Etype
(L
))
7785 and then Is_Interface
(Etype
(L
))
7786 and then Is_Class_Wide_Type
(Etype
(R
))
7787 and then not Is_Interface
(Etype
(R
))
7791 T
:= Intersect_Types
(L
, R
);
7794 -- If mixed-mode operations are present and operands are all literal,
7795 -- the only interpretation involves Duration, which is probably not
7796 -- the intention of the programmer.
7798 if T
= Any_Fixed
then
7799 T
:= Unique_Fixed_Point_Type
(N
);
7801 if T
= Any_Type
then
7807 Check_Unset_Reference
(L
);
7809 if Nkind
(R
) = N_Range
7810 and then not Is_Scalar_Type
(T
)
7812 Error_Msg_N
("scalar type required for range", R
);
7815 if Is_Entity_Name
(R
) then
7816 Freeze_Expression
(R
);
7819 Check_Unset_Reference
(R
);
7822 Eval_Membership_Op
(N
);
7823 end Resolve_Membership_Op
;
7829 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
) is
7830 Loc
: constant Source_Ptr
:= Sloc
(N
);
7833 -- Handle restriction against anonymous null access values This
7834 -- restriction can be turned off using -gnatdj.
7836 -- Ada 2005 (AI-231): Remove restriction
7838 if Ada_Version
< Ada_2005
7839 and then not Debug_Flag_J
7840 and then Ekind
(Typ
) = E_Anonymous_Access_Type
7841 and then Comes_From_Source
(N
)
7843 -- In the common case of a call which uses an explicitly null value
7844 -- for an access parameter, give specialized error message.
7846 if Nkind
(Parent
(N
)) in N_Subprogram_Call
then
7848 ("null is not allowed as argument for an access parameter", N
);
7850 -- Standard message for all other cases (are there any?)
7854 ("null cannot be of an anonymous access type", N
);
7858 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
7859 -- assignment to a null-excluding object
7861 if Ada_Version
>= Ada_2005
7862 and then Can_Never_Be_Null
(Typ
)
7863 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
7865 if not Inside_Init_Proc
then
7867 (Compile_Time_Constraint_Error
(N
,
7868 "(Ada 2005) null not allowed in null-excluding objects?"),
7869 Make_Raise_Constraint_Error
(Loc
,
7870 Reason
=> CE_Access_Check_Failed
));
7873 Make_Raise_Constraint_Error
(Loc
,
7874 Reason
=> CE_Access_Check_Failed
));
7878 -- In a distributed context, null for a remote access to subprogram may
7879 -- need to be replaced with a special record aggregate. In this case,
7880 -- return after having done the transformation.
7882 if (Ekind
(Typ
) = E_Record_Type
7883 or else Is_Remote_Access_To_Subprogram_Type
(Typ
))
7884 and then Remote_AST_Null_Value
(N
, Typ
)
7889 -- The null literal takes its type from the context
7894 -----------------------
7895 -- Resolve_Op_Concat --
7896 -----------------------
7898 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
) is
7900 -- We wish to avoid deep recursion, because concatenations are often
7901 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
7902 -- operands nonrecursively until we find something that is not a simple
7903 -- concatenation (A in this case). We resolve that, and then walk back
7904 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
7905 -- to do the rest of the work at each level. The Parent pointers allow
7906 -- us to avoid recursion, and thus avoid running out of memory. See also
7907 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
7913 -- The following code is equivalent to:
7915 -- Resolve_Op_Concat_First (NN, Typ);
7916 -- Resolve_Op_Concat_Arg (N, ...);
7917 -- Resolve_Op_Concat_Rest (N, Typ);
7919 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
7920 -- operand is a concatenation.
7922 -- Walk down left operands
7925 Resolve_Op_Concat_First
(NN
, Typ
);
7926 Op1
:= Left_Opnd
(NN
);
7927 exit when not (Nkind
(Op1
) = N_Op_Concat
7928 and then not Is_Array_Type
(Component_Type
(Typ
))
7929 and then Entity
(Op1
) = Entity
(NN
));
7933 -- Now (given the above example) NN is A&B and Op1 is A
7935 -- First resolve Op1 ...
7937 Resolve_Op_Concat_Arg
(NN
, Op1
, Typ
, Is_Component_Left_Opnd
(NN
));
7939 -- ... then walk NN back up until we reach N (where we started), calling
7940 -- Resolve_Op_Concat_Rest along the way.
7943 Resolve_Op_Concat_Rest
(NN
, Typ
);
7948 if Base_Type
(Etype
(N
)) /= Standard_String
then
7949 Check_SPARK_Restriction
7950 ("result of concatenation should have type String", N
);
7952 end Resolve_Op_Concat
;
7954 ---------------------------
7955 -- Resolve_Op_Concat_Arg --
7956 ---------------------------
7958 procedure Resolve_Op_Concat_Arg
7964 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
7965 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
7970 or else (not Is_Overloaded
(Arg
)
7971 and then Etype
(Arg
) /= Any_Composite
7972 and then Covers
(Ctyp
, Etype
(Arg
)))
7974 Resolve
(Arg
, Ctyp
);
7976 Resolve
(Arg
, Btyp
);
7979 -- If both Array & Array and Array & Component are visible, there is a
7980 -- potential ambiguity that must be reported.
7982 elsif Has_Compatible_Type
(Arg
, Ctyp
) then
7983 if Nkind
(Arg
) = N_Aggregate
7984 and then Is_Composite_Type
(Ctyp
)
7986 if Is_Private_Type
(Ctyp
) then
7987 Resolve
(Arg
, Btyp
);
7989 -- If the operation is user-defined and not overloaded use its
7990 -- profile. The operation may be a renaming, in which case it has
7991 -- been rewritten, and we want the original profile.
7993 elsif not Is_Overloaded
(N
)
7994 and then Comes_From_Source
(Entity
(Original_Node
(N
)))
7995 and then Ekind
(Entity
(Original_Node
(N
))) = E_Function
7999 (Next_Formal
(First_Formal
(Entity
(Original_Node
(N
))))));
8002 -- Otherwise an aggregate may match both the array type and the
8006 Error_Msg_N
("ambiguous aggregate must be qualified", Arg
);
8007 Set_Etype
(Arg
, Any_Type
);
8011 if Is_Overloaded
(Arg
)
8012 and then Has_Compatible_Type
(Arg
, Typ
)
8013 and then Etype
(Arg
) /= Any_Type
8021 Get_First_Interp
(Arg
, I
, It
);
8023 Get_Next_Interp
(I
, It
);
8025 -- Special-case the error message when the overloading is
8026 -- caused by a function that yields an array and can be
8027 -- called without parameters.
8029 if It
.Nam
= Func
then
8030 Error_Msg_Sloc
:= Sloc
(Func
);
8031 Error_Msg_N
("ambiguous call to function#", Arg
);
8033 ("\\interpretation as call yields&", Arg
, Typ
);
8035 ("\\interpretation as indexing of call yields&",
8036 Arg
, Component_Type
(Typ
));
8039 Error_Msg_N
("ambiguous operand for concatenation!", Arg
);
8041 Get_First_Interp
(Arg
, I
, It
);
8042 while Present
(It
.Nam
) loop
8043 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
8045 if Base_Type
(It
.Typ
) = Btyp
8047 Base_Type
(It
.Typ
) = Base_Type
(Ctyp
)
8049 Error_Msg_N
-- CODEFIX
8050 ("\\possible interpretation#", Arg
);
8053 Get_Next_Interp
(I
, It
);
8059 Resolve
(Arg
, Component_Type
(Typ
));
8061 if Nkind
(Arg
) = N_String_Literal
then
8062 Set_Etype
(Arg
, Component_Type
(Typ
));
8065 if Arg
= Left_Opnd
(N
) then
8066 Set_Is_Component_Left_Opnd
(N
);
8068 Set_Is_Component_Right_Opnd
(N
);
8073 Resolve
(Arg
, Btyp
);
8076 -- Concatenation is restricted in SPARK: each operand must be either a
8077 -- string literal, the name of a string constant, a static character or
8078 -- string expression, or another concatenation. Arg cannot be a
8079 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
8080 -- separately on each final operand, past concatenation operations.
8082 if Is_Character_Type
(Etype
(Arg
)) then
8083 if not Is_Static_Expression
(Arg
) then
8084 Check_SPARK_Restriction
8085 ("character operand for concatenation should be static", Arg
);
8088 elsif Is_String_Type
(Etype
(Arg
)) then
8089 if not (Nkind_In
(Arg
, N_Identifier
, N_Expanded_Name
)
8090 and then Is_Constant_Object
(Entity
(Arg
)))
8091 and then not Is_Static_Expression
(Arg
)
8093 Check_SPARK_Restriction
8094 ("string operand for concatenation should be static", Arg
);
8097 -- Do not issue error on an operand that is neither a character nor a
8098 -- string, as the error is issued in Resolve_Op_Concat.
8104 Check_Unset_Reference
(Arg
);
8105 end Resolve_Op_Concat_Arg
;
8107 -----------------------------
8108 -- Resolve_Op_Concat_First --
8109 -----------------------------
8111 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
) is
8112 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
8113 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8114 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8117 -- The parser folds an enormous sequence of concatenations of string
8118 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
8119 -- in the right operand. If the expression resolves to a predefined "&"
8120 -- operator, all is well. Otherwise, the parser's folding is wrong, so
8121 -- we give an error. See P_Simple_Expression in Par.Ch4.
8123 if Nkind
(Op2
) = N_String_Literal
8124 and then Is_Folded_In_Parser
(Op2
)
8125 and then Ekind
(Entity
(N
)) = E_Function
8127 pragma Assert
(Nkind
(Op1
) = N_String_Literal
-- should be ""
8128 and then String_Length
(Strval
(Op1
)) = 0);
8129 Error_Msg_N
("too many user-defined concatenations", N
);
8133 Set_Etype
(N
, Btyp
);
8135 if Is_Limited_Composite
(Btyp
) then
8136 Error_Msg_N
("concatenation not available for limited array", N
);
8137 Explain_Limited_Type
(Btyp
, N
);
8139 end Resolve_Op_Concat_First
;
8141 ----------------------------
8142 -- Resolve_Op_Concat_Rest --
8143 ----------------------------
8145 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
) is
8146 Op1
: constant Node_Id
:= Left_Opnd
(N
);
8147 Op2
: constant Node_Id
:= Right_Opnd
(N
);
8150 Resolve_Op_Concat_Arg
(N
, Op2
, Typ
, Is_Component_Right_Opnd
(N
));
8152 Generate_Operator_Reference
(N
, Typ
);
8154 if Is_String_Type
(Typ
) then
8155 Eval_Concatenation
(N
);
8158 -- If this is not a static concatenation, but the result is a string
8159 -- type (and not an array of strings) ensure that static string operands
8160 -- have their subtypes properly constructed.
8162 if Nkind
(N
) /= N_String_Literal
8163 and then Is_Character_Type
(Component_Type
(Typ
))
8165 Set_String_Literal_Subtype
(Op1
, Typ
);
8166 Set_String_Literal_Subtype
(Op2
, Typ
);
8168 end Resolve_Op_Concat_Rest
;
8170 ----------------------
8171 -- Resolve_Op_Expon --
8172 ----------------------
8174 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
) is
8175 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
8178 -- Catch attempts to do fixed-point exponentiation with universal
8179 -- operands, which is a case where the illegality is not caught during
8180 -- normal operator analysis.
8182 if Is_Fixed_Point_Type
(Typ
) and then Comes_From_Source
(N
) then
8183 Error_Msg_N
("exponentiation not available for fixed point", N
);
8186 elsif Nkind
(Parent
(N
)) in N_Op
8187 and then Is_Fixed_Point_Type
(Etype
(Parent
(N
)))
8188 and then Etype
(N
) = Universal_Real
8189 and then Comes_From_Source
(N
)
8191 Error_Msg_N
("exponentiation not available for fixed point", N
);
8195 if Comes_From_Source
(N
)
8196 and then Ekind
(Entity
(N
)) = E_Function
8197 and then Is_Imported
(Entity
(N
))
8198 and then Is_Intrinsic_Subprogram
(Entity
(N
))
8200 Resolve_Intrinsic_Operator
(N
, Typ
);
8204 if Etype
(Left_Opnd
(N
)) = Universal_Integer
8205 or else Etype
(Left_Opnd
(N
)) = Universal_Real
8207 Check_For_Visible_Operator
(N
, B_Typ
);
8210 -- We do the resolution using the base type, because intermediate values
8211 -- in expressions always are of the base type, not a subtype of it.
8213 Resolve
(Left_Opnd
(N
), B_Typ
);
8214 Resolve
(Right_Opnd
(N
), Standard_Integer
);
8216 Check_Unset_Reference
(Left_Opnd
(N
));
8217 Check_Unset_Reference
(Right_Opnd
(N
));
8219 Set_Etype
(N
, B_Typ
);
8220 Generate_Operator_Reference
(N
, B_Typ
);
8222 Analyze_Dimension
(N
);
8224 if Ada_Version
>= Ada_2012
and then Has_Dimension_System
(B_Typ
) then
8225 -- Evaluate the exponentiation operator for dimensioned type
8227 Eval_Op_Expon_For_Dimensioned_Type
(N
, B_Typ
);
8232 -- Set overflow checking bit. Much cleverer code needed here eventually
8233 -- and perhaps the Resolve routines should be separated for the various
8234 -- arithmetic operations, since they will need different processing. ???
8236 if Nkind
(N
) in N_Op
then
8237 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
8238 Enable_Overflow_Check
(N
);
8241 end Resolve_Op_Expon
;
8243 --------------------
8244 -- Resolve_Op_Not --
8245 --------------------
8247 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
) is
8250 function Parent_Is_Boolean
return Boolean;
8251 -- This function determines if the parent node is a boolean operator or
8252 -- operation (comparison op, membership test, or short circuit form) and
8253 -- the not in question is the left operand of this operation. Note that
8254 -- if the not is in parens, then false is returned.
8256 -----------------------
8257 -- Parent_Is_Boolean --
8258 -----------------------
8260 function Parent_Is_Boolean
return Boolean is
8262 if Paren_Count
(N
) /= 0 then
8266 case Nkind
(Parent
(N
)) is
8281 return Left_Opnd
(Parent
(N
)) = N
;
8287 end Parent_Is_Boolean
;
8289 -- Start of processing for Resolve_Op_Not
8292 -- Predefined operations on scalar types yield the base type. On the
8293 -- other hand, logical operations on arrays yield the type of the
8294 -- arguments (and the context).
8296 if Is_Array_Type
(Typ
) then
8299 B_Typ
:= Base_Type
(Typ
);
8302 if Is_VMS_Operator
(Entity
(N
)) then
8305 -- Straightforward case of incorrect arguments
8307 elsif not Valid_Boolean_Arg
(Typ
) then
8308 Error_Msg_N
("invalid operand type for operator&", N
);
8309 Set_Etype
(N
, Any_Type
);
8312 -- Special case of probable missing parens
8314 elsif Typ
= Universal_Integer
or else Typ
= Any_Modular
then
8315 if Parent_Is_Boolean
then
8317 ("operand of not must be enclosed in parentheses",
8321 ("no modular type available in this context", N
);
8324 Set_Etype
(N
, Any_Type
);
8327 -- OK resolution of NOT
8330 -- Warn if non-boolean types involved. This is a case like not a < b
8331 -- where a and b are modular, where we will get (not a) < b and most
8332 -- likely not (a < b) was intended.
8334 if Warn_On_Questionable_Missing_Parens
8335 and then not Is_Boolean_Type
(Typ
)
8336 and then Parent_Is_Boolean
8338 Error_Msg_N
("?not expression should be parenthesized here!", N
);
8341 -- Warn on double negation if checking redundant constructs
8343 if Warn_On_Redundant_Constructs
8344 and then Comes_From_Source
(N
)
8345 and then Comes_From_Source
(Right_Opnd
(N
))
8346 and then Root_Type
(Typ
) = Standard_Boolean
8347 and then Nkind
(Right_Opnd
(N
)) = N_Op_Not
8349 Error_Msg_N
("redundant double negation?", N
);
8352 -- Complete resolution and evaluation of NOT
8354 Resolve
(Right_Opnd
(N
), B_Typ
);
8355 Check_Unset_Reference
(Right_Opnd
(N
));
8356 Set_Etype
(N
, B_Typ
);
8357 Generate_Operator_Reference
(N
, B_Typ
);
8362 -----------------------------
8363 -- Resolve_Operator_Symbol --
8364 -----------------------------
8366 -- Nothing to be done, all resolved already
8368 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
) is
8369 pragma Warnings
(Off
, N
);
8370 pragma Warnings
(Off
, Typ
);
8374 end Resolve_Operator_Symbol
;
8376 ----------------------------------
8377 -- Resolve_Qualified_Expression --
8378 ----------------------------------
8380 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
8381 pragma Warnings
(Off
, Typ
);
8383 Target_Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
8384 Expr
: constant Node_Id
:= Expression
(N
);
8387 Resolve
(Expr
, Target_Typ
);
8389 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8390 -- operation if not needed.
8392 if Restriction_Check_Required
(SPARK
)
8393 and then Is_Array_Type
(Target_Typ
)
8394 and then Is_Array_Type
(Etype
(Expr
))
8395 and then Etype
(Expr
) /= Any_Composite
-- or else Expr in error
8396 and then not Matching_Static_Array_Bounds
(Target_Typ
, Etype
(Expr
))
8398 Check_SPARK_Restriction
8399 ("array types should have matching static bounds", N
);
8402 -- A qualified expression requires an exact match of the type, class-
8403 -- wide matching is not allowed. However, if the qualifying type is
8404 -- specific and the expression has a class-wide type, it may still be
8405 -- okay, since it can be the result of the expansion of a call to a
8406 -- dispatching function, so we also have to check class-wideness of the
8407 -- type of the expression's original node.
8409 if (Is_Class_Wide_Type
(Target_Typ
)
8411 (Is_Class_Wide_Type
(Etype
(Expr
))
8412 and then Is_Class_Wide_Type
(Etype
(Original_Node
(Expr
)))))
8413 and then Base_Type
(Etype
(Expr
)) /= Base_Type
(Target_Typ
)
8415 Wrong_Type
(Expr
, Target_Typ
);
8418 -- If the target type is unconstrained, then we reset the type of the
8419 -- result from the type of the expression. For other cases, the actual
8420 -- subtype of the expression is the target type.
8422 if Is_Composite_Type
(Target_Typ
)
8423 and then not Is_Constrained
(Target_Typ
)
8425 Set_Etype
(N
, Etype
(Expr
));
8428 Analyze_Dimension
(N
);
8429 Eval_Qualified_Expression
(N
);
8430 end Resolve_Qualified_Expression
;
8436 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
) is
8437 L
: constant Node_Id
:= Low_Bound
(N
);
8438 H
: constant Node_Id
:= High_Bound
(N
);
8440 function First_Last_Ref
return Boolean;
8441 -- Returns True if N is of the form X'First .. X'Last where X is the
8442 -- same entity for both attributes.
8444 --------------------
8445 -- First_Last_Ref --
8446 --------------------
8448 function First_Last_Ref
return Boolean is
8449 Lorig
: constant Node_Id
:= Original_Node
(L
);
8450 Horig
: constant Node_Id
:= Original_Node
(H
);
8453 if Nkind
(Lorig
) = N_Attribute_Reference
8454 and then Nkind
(Horig
) = N_Attribute_Reference
8455 and then Attribute_Name
(Lorig
) = Name_First
8456 and then Attribute_Name
(Horig
) = Name_Last
8459 PL
: constant Node_Id
:= Prefix
(Lorig
);
8460 PH
: constant Node_Id
:= Prefix
(Horig
);
8462 if Is_Entity_Name
(PL
)
8463 and then Is_Entity_Name
(PH
)
8464 and then Entity
(PL
) = Entity
(PH
)
8474 -- Start of processing for Resolve_Range
8481 -- Check for inappropriate range on unordered enumeration type
8483 if Bad_Unordered_Enumeration_Reference
(N
, Typ
)
8485 -- Exclude X'First .. X'Last if X is the same entity for both
8487 and then not First_Last_Ref
8489 Error_Msg
("subrange of unordered enumeration type?", Sloc
(N
));
8492 Check_Unset_Reference
(L
);
8493 Check_Unset_Reference
(H
);
8495 -- We have to check the bounds for being within the base range as
8496 -- required for a non-static context. Normally this is automatic and
8497 -- done as part of evaluating expressions, but the N_Range node is an
8498 -- exception, since in GNAT we consider this node to be a subexpression,
8499 -- even though in Ada it is not. The circuit in Sem_Eval could check for
8500 -- this, but that would put the test on the main evaluation path for
8503 Check_Non_Static_Context
(L
);
8504 Check_Non_Static_Context
(H
);
8506 -- Check for an ambiguous range over character literals. This will
8507 -- happen with a membership test involving only literals.
8509 if Typ
= Any_Character
then
8510 Ambiguous_Character
(L
);
8511 Set_Etype
(N
, Any_Type
);
8515 -- If bounds are static, constant-fold them, so size computations are
8516 -- identical between front-end and back-end. Do not perform this
8517 -- transformation while analyzing generic units, as type information
8518 -- would be lost when reanalyzing the constant node in the instance.
8520 if Is_Discrete_Type
(Typ
) and then Full_Expander_Active
then
8521 if Is_OK_Static_Expression
(L
) then
8522 Fold_Uint
(L
, Expr_Value
(L
), Is_Static_Expression
(L
));
8525 if Is_OK_Static_Expression
(H
) then
8526 Fold_Uint
(H
, Expr_Value
(H
), Is_Static_Expression
(H
));
8531 --------------------------
8532 -- Resolve_Real_Literal --
8533 --------------------------
8535 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
8536 Actual_Typ
: constant Entity_Id
:= Etype
(N
);
8539 -- Special processing for fixed-point literals to make sure that the
8540 -- value is an exact multiple of small where this is required. We skip
8541 -- this for the universal real case, and also for generic types.
8543 if Is_Fixed_Point_Type
(Typ
)
8544 and then Typ
/= Universal_Fixed
8545 and then Typ
/= Any_Fixed
8546 and then not Is_Generic_Type
(Typ
)
8549 Val
: constant Ureal
:= Realval
(N
);
8550 Cintr
: constant Ureal
:= Val
/ Small_Value
(Typ
);
8551 Cint
: constant Uint
:= UR_Trunc
(Cintr
);
8552 Den
: constant Uint
:= Norm_Den
(Cintr
);
8556 -- Case of literal is not an exact multiple of the Small
8560 -- For a source program literal for a decimal fixed-point type,
8561 -- this is statically illegal (RM 4.9(36)).
8563 if Is_Decimal_Fixed_Point_Type
(Typ
)
8564 and then Actual_Typ
= Universal_Real
8565 and then Comes_From_Source
(N
)
8567 Error_Msg_N
("value has extraneous low order digits", N
);
8570 -- Generate a warning if literal from source
8572 if Is_Static_Expression
(N
)
8573 and then Warn_On_Bad_Fixed_Value
8576 ("?static fixed-point value is not a multiple of Small!",
8580 -- Replace literal by a value that is the exact representation
8581 -- of a value of the type, i.e. a multiple of the small value,
8582 -- by truncation, since Machine_Rounds is false for all GNAT
8583 -- fixed-point types (RM 4.9(38)).
8585 Stat
:= Is_Static_Expression
(N
);
8587 Make_Real_Literal
(Sloc
(N
),
8588 Realval
=> Small_Value
(Typ
) * Cint
));
8590 Set_Is_Static_Expression
(N
, Stat
);
8593 -- In all cases, set the corresponding integer field
8595 Set_Corresponding_Integer_Value
(N
, Cint
);
8599 -- Now replace the actual type by the expected type as usual
8602 Eval_Real_Literal
(N
);
8603 end Resolve_Real_Literal
;
8605 -----------------------
8606 -- Resolve_Reference --
8607 -----------------------
8609 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
) is
8610 P
: constant Node_Id
:= Prefix
(N
);
8613 -- Replace general access with specific type
8615 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
8616 Set_Etype
(N
, Base_Type
(Typ
));
8619 Resolve
(P
, Designated_Type
(Etype
(N
)));
8621 -- If we are taking the reference of a volatile entity, then treat it as
8622 -- a potential modification of this entity. This is too conservative,
8623 -- but necessary because remove side effects can cause transformations
8624 -- of normal assignments into reference sequences that otherwise fail to
8625 -- notice the modification.
8627 if Is_Entity_Name
(P
) and then Treat_As_Volatile
(Entity
(P
)) then
8628 Note_Possible_Modification
(P
, Sure
=> False);
8630 end Resolve_Reference
;
8632 --------------------------------
8633 -- Resolve_Selected_Component --
8634 --------------------------------
8636 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
8638 Comp1
: Entity_Id
:= Empty
; -- prevent junk warning
8639 P
: constant Node_Id
:= Prefix
(N
);
8640 S
: constant Node_Id
:= Selector_Name
(N
);
8641 T
: Entity_Id
:= Etype
(P
);
8643 I1
: Interp_Index
:= 0; -- prevent junk warning
8648 function Init_Component
return Boolean;
8649 -- Check whether this is the initialization of a component within an
8650 -- init proc (by assignment or call to another init proc). If true,
8651 -- there is no need for a discriminant check.
8653 --------------------
8654 -- Init_Component --
8655 --------------------
8657 function Init_Component
return Boolean is
8659 return Inside_Init_Proc
8660 and then Nkind
(Prefix
(N
)) = N_Identifier
8661 and then Chars
(Prefix
(N
)) = Name_uInit
8662 and then Nkind
(Parent
(Parent
(N
))) = N_Case_Statement_Alternative
;
8665 -- Start of processing for Resolve_Selected_Component
8668 if Is_Overloaded
(P
) then
8670 -- Use the context type to select the prefix that has a selector
8671 -- of the correct name and type.
8674 Get_First_Interp
(P
, I
, It
);
8676 Search
: while Present
(It
.Typ
) loop
8677 if Is_Access_Type
(It
.Typ
) then
8678 T
:= Designated_Type
(It
.Typ
);
8683 -- Locate selected component. For a private prefix the selector
8684 -- can denote a discriminant.
8686 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
8688 -- The visible components of a class-wide type are those of
8691 if Is_Class_Wide_Type
(T
) then
8695 Comp
:= First_Entity
(T
);
8696 while Present
(Comp
) loop
8697 if Chars
(Comp
) = Chars
(S
)
8698 and then Covers
(Etype
(Comp
), Typ
)
8707 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
8709 if It
= No_Interp
then
8711 ("ambiguous prefix for selected component", N
);
8718 -- There may be an implicit dereference. Retrieve
8719 -- designated record type.
8721 if Is_Access_Type
(It1
.Typ
) then
8722 T
:= Designated_Type
(It1
.Typ
);
8727 if Scope
(Comp1
) /= T
then
8729 -- Resolution chooses the new interpretation.
8730 -- Find the component with the right name.
8732 Comp1
:= First_Entity
(T
);
8733 while Present
(Comp1
)
8734 and then Chars
(Comp1
) /= Chars
(S
)
8736 Comp1
:= Next_Entity
(Comp1
);
8745 Comp
:= Next_Entity
(Comp
);
8749 Get_Next_Interp
(I
, It
);
8752 Resolve
(P
, It1
.Typ
);
8754 Set_Entity_With_Style_Check
(S
, Comp1
);
8757 -- Resolve prefix with its type
8762 -- Generate cross-reference. We needed to wait until full overloading
8763 -- resolution was complete to do this, since otherwise we can't tell if
8764 -- we are an lvalue or not.
8766 if May_Be_Lvalue
(N
) then
8767 Generate_Reference
(Entity
(S
), S
, 'm');
8769 Generate_Reference
(Entity
(S
), S
, 'r');
8772 -- If prefix is an access type, the node will be transformed into an
8773 -- explicit dereference during expansion. The type of the node is the
8774 -- designated type of that of the prefix.
8776 if Is_Access_Type
(Etype
(P
)) then
8777 T
:= Designated_Type
(Etype
(P
));
8778 Check_Fully_Declared_Prefix
(T
, P
);
8783 if Has_Discriminants
(T
)
8784 and then Ekind_In
(Entity
(S
), E_Component
, E_Discriminant
)
8785 and then Present
(Original_Record_Component
(Entity
(S
)))
8786 and then Ekind
(Original_Record_Component
(Entity
(S
))) = E_Component
8787 and then Present
(Discriminant_Checking_Func
8788 (Original_Record_Component
(Entity
(S
))))
8789 and then not Discriminant_Checks_Suppressed
(T
)
8790 and then not Init_Component
8792 Set_Do_Discriminant_Check
(N
);
8795 if Ekind
(Entity
(S
)) = E_Void
then
8796 Error_Msg_N
("premature use of component", S
);
8799 -- If the prefix is a record conversion, this may be a renamed
8800 -- discriminant whose bounds differ from those of the original
8801 -- one, so we must ensure that a range check is performed.
8803 if Nkind
(P
) = N_Type_Conversion
8804 and then Ekind
(Entity
(S
)) = E_Discriminant
8805 and then Is_Discrete_Type
(Typ
)
8807 Set_Etype
(N
, Base_Type
(Typ
));
8810 -- Note: No Eval processing is required, because the prefix is of a
8811 -- record type, or protected type, and neither can possibly be static.
8813 -- If the array type is atomic, and is packed, and we are in a left side
8814 -- context, then this is worth a warning, since we have a situation
8815 -- where the access to the component may cause extra read/writes of the
8816 -- atomic array object, which could be considered unexpected.
8818 if Nkind
(N
) = N_Selected_Component
8819 and then (Is_Atomic
(T
)
8820 or else (Is_Entity_Name
(Prefix
(N
))
8821 and then Is_Atomic
(Entity
(Prefix
(N
)))))
8822 and then Is_Packed
(T
)
8826 ("?assignment to component of packed atomic record", Prefix
(N
));
8828 ("?\may cause unexpected accesses to atomic object", Prefix
(N
));
8831 Analyze_Dimension
(N
);
8832 end Resolve_Selected_Component
;
8838 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
) is
8839 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
8840 L
: constant Node_Id
:= Left_Opnd
(N
);
8841 R
: constant Node_Id
:= Right_Opnd
(N
);
8844 -- We do the resolution using the base type, because intermediate values
8845 -- in expressions always are of the base type, not a subtype of it.
8848 Resolve
(R
, Standard_Natural
);
8850 Check_Unset_Reference
(L
);
8851 Check_Unset_Reference
(R
);
8853 Set_Etype
(N
, B_Typ
);
8854 Generate_Operator_Reference
(N
, B_Typ
);
8858 ---------------------------
8859 -- Resolve_Short_Circuit --
8860 ---------------------------
8862 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
) is
8863 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
8864 L
: constant Node_Id
:= Left_Opnd
(N
);
8865 R
: constant Node_Id
:= Right_Opnd
(N
);
8871 -- Check for issuing warning for always False assert/check, this happens
8872 -- when assertions are turned off, in which case the pragma Assert/Check
8873 -- was transformed into:
8875 -- if False and then <condition> then ...
8877 -- and we detect this pattern
8879 if Warn_On_Assertion_Failure
8880 and then Is_Entity_Name
(R
)
8881 and then Entity
(R
) = Standard_False
8882 and then Nkind
(Parent
(N
)) = N_If_Statement
8883 and then Nkind
(N
) = N_And_Then
8884 and then Is_Entity_Name
(L
)
8885 and then Entity
(L
) = Standard_False
8888 Orig
: constant Node_Id
:= Original_Node
(Parent
(N
));
8891 if Nkind
(Orig
) = N_Pragma
8892 and then Pragma_Name
(Orig
) = Name_Assert
8894 -- Don't want to warn if original condition is explicit False
8897 Expr
: constant Node_Id
:=
8900 (First
(Pragma_Argument_Associations
(Orig
))));
8902 if Is_Entity_Name
(Expr
)
8903 and then Entity
(Expr
) = Standard_False
8907 -- Issue warning. We do not want the deletion of the
8908 -- IF/AND-THEN to take this message with it. We achieve
8909 -- this by making sure that the expanded code points to
8910 -- the Sloc of the expression, not the original pragma.
8912 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
8913 -- The source location of the expression is not usually
8914 -- the best choice here. For example, it gets located on
8915 -- the last AND keyword in a chain of boolean expressiond
8916 -- AND'ed together. It is best to put the message on the
8917 -- first character of the assertion, which is the effect
8918 -- of the First_Node call here.
8921 ("?assertion would fail at run time!",
8923 (First
(Pragma_Argument_Associations
(Orig
))));
8927 -- Similar processing for Check pragma
8929 elsif Nkind
(Orig
) = N_Pragma
8930 and then Pragma_Name
(Orig
) = Name_Check
8932 -- Don't want to warn if original condition is explicit False
8935 Expr
: constant Node_Id
:=
8939 (Pragma_Argument_Associations
(Orig
)))));
8941 if Is_Entity_Name
(Expr
)
8942 and then Entity
(Expr
) = Standard_False
8949 -- Again use Error_Msg_F rather than Error_Msg_N, see
8950 -- comment above for an explanation of why we do this.
8953 ("?check would fail at run time!",
8955 (Last
(Pragma_Argument_Associations
(Orig
))));
8962 -- Continue with processing of short circuit
8964 Check_Unset_Reference
(L
);
8965 Check_Unset_Reference
(R
);
8967 Set_Etype
(N
, B_Typ
);
8968 Eval_Short_Circuit
(N
);
8969 end Resolve_Short_Circuit
;
8975 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
) is
8976 Drange
: constant Node_Id
:= Discrete_Range
(N
);
8977 Name
: constant Node_Id
:= Prefix
(N
);
8978 Array_Type
: Entity_Id
:= Empty
;
8979 Index_Type
: Entity_Id
;
8982 if Is_Overloaded
(Name
) then
8984 -- Use the context type to select the prefix that yields the correct
8989 I1
: Interp_Index
:= 0;
8991 P
: constant Node_Id
:= Prefix
(N
);
8992 Found
: Boolean := False;
8995 Get_First_Interp
(P
, I
, It
);
8996 while Present
(It
.Typ
) loop
8997 if (Is_Array_Type
(It
.Typ
)
8998 and then Covers
(Typ
, It
.Typ
))
8999 or else (Is_Access_Type
(It
.Typ
)
9000 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
9001 and then Covers
(Typ
, Designated_Type
(It
.Typ
)))
9004 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
9006 if It
= No_Interp
then
9007 Error_Msg_N
("ambiguous prefix for slicing", N
);
9012 Array_Type
:= It
.Typ
;
9017 Array_Type
:= It
.Typ
;
9022 Get_Next_Interp
(I
, It
);
9027 Array_Type
:= Etype
(Name
);
9030 Resolve
(Name
, Array_Type
);
9032 if Is_Access_Type
(Array_Type
) then
9033 Apply_Access_Check
(N
);
9034 Array_Type
:= Designated_Type
(Array_Type
);
9036 -- If the prefix is an access to an unconstrained array, we must use
9037 -- the actual subtype of the object to perform the index checks. The
9038 -- object denoted by the prefix is implicit in the node, so we build
9039 -- an explicit representation for it in order to compute the actual
9042 if not Is_Constrained
(Array_Type
) then
9043 Remove_Side_Effects
(Prefix
(N
));
9046 Obj
: constant Node_Id
:=
9047 Make_Explicit_Dereference
(Sloc
(N
),
9048 Prefix
=> New_Copy_Tree
(Prefix
(N
)));
9050 Set_Etype
(Obj
, Array_Type
);
9051 Set_Parent
(Obj
, Parent
(N
));
9052 Array_Type
:= Get_Actual_Subtype
(Obj
);
9056 elsif Is_Entity_Name
(Name
)
9057 or else Nkind
(Name
) = N_Explicit_Dereference
9058 or else (Nkind
(Name
) = N_Function_Call
9059 and then not Is_Constrained
(Etype
(Name
)))
9061 Array_Type
:= Get_Actual_Subtype
(Name
);
9063 -- If the name is a selected component that depends on discriminants,
9064 -- build an actual subtype for it. This can happen only when the name
9065 -- itself is overloaded; otherwise the actual subtype is created when
9066 -- the selected component is analyzed.
9068 elsif Nkind
(Name
) = N_Selected_Component
9069 and then Full_Analysis
9070 and then Depends_On_Discriminant
(First_Index
(Array_Type
))
9073 Act_Decl
: constant Node_Id
:=
9074 Build_Actual_Subtype_Of_Component
(Array_Type
, Name
);
9076 Insert_Action
(N
, Act_Decl
);
9077 Array_Type
:= Defining_Identifier
(Act_Decl
);
9080 -- Maybe this should just be "else", instead of checking for the
9081 -- specific case of slice??? This is needed for the case where the
9082 -- prefix is an Image attribute, which gets expanded to a slice, and so
9083 -- has a constrained subtype which we want to use for the slice range
9084 -- check applied below (the range check won't get done if the
9085 -- unconstrained subtype of the 'Image is used).
9087 elsif Nkind
(Name
) = N_Slice
then
9088 Array_Type
:= Etype
(Name
);
9091 -- If name was overloaded, set slice type correctly now
9093 Set_Etype
(N
, Array_Type
);
9095 -- If the range is specified by a subtype mark, no resolution is
9096 -- necessary. Else resolve the bounds, and apply needed checks.
9098 if not Is_Entity_Name
(Drange
) then
9099 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
9100 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
9102 Index_Type
:= Etype
(First_Index
(Array_Type
));
9105 Resolve
(Drange
, Base_Type
(Index_Type
));
9107 if Nkind
(Drange
) = N_Range
then
9109 -- Ensure that side effects in the bounds are properly handled
9111 Force_Evaluation
(Low_Bound
(Drange
));
9112 Force_Evaluation
(High_Bound
(Drange
));
9114 -- Do not apply the range check to nodes associated with the
9115 -- frontend expansion of the dispatch table. We first check
9116 -- if Ada.Tags is already loaded to avoid the addition of an
9117 -- undesired dependence on such run-time unit.
9119 if not Tagged_Type_Expansion
9121 (RTU_Loaded
(Ada_Tags
)
9122 and then Nkind
(Prefix
(N
)) = N_Selected_Component
9123 and then Present
(Entity
(Selector_Name
(Prefix
(N
))))
9124 and then Entity
(Selector_Name
(Prefix
(N
))) =
9125 RTE_Record_Component
(RE_Prims_Ptr
))
9127 Apply_Range_Check
(Drange
, Index_Type
);
9132 Set_Slice_Subtype
(N
);
9134 -- Check bad use of type with predicates
9136 if Has_Predicates
(Etype
(Drange
)) then
9137 Bad_Predicated_Subtype_Use
9138 ("subtype& has predicate, not allowed in slice",
9139 Drange
, Etype
(Drange
));
9141 -- Otherwise here is where we check suspicious indexes
9143 elsif Nkind
(Drange
) = N_Range
then
9144 Warn_On_Suspicious_Index
(Name
, Low_Bound
(Drange
));
9145 Warn_On_Suspicious_Index
(Name
, High_Bound
(Drange
));
9148 Analyze_Dimension
(N
);
9152 ----------------------------
9153 -- Resolve_String_Literal --
9154 ----------------------------
9156 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
9157 C_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
9158 R_Typ
: constant Entity_Id
:= Root_Type
(C_Typ
);
9159 Loc
: constant Source_Ptr
:= Sloc
(N
);
9160 Str
: constant String_Id
:= Strval
(N
);
9161 Strlen
: constant Nat
:= String_Length
(Str
);
9162 Subtype_Id
: Entity_Id
;
9163 Need_Check
: Boolean;
9166 -- For a string appearing in a concatenation, defer creation of the
9167 -- string_literal_subtype until the end of the resolution of the
9168 -- concatenation, because the literal may be constant-folded away. This
9169 -- is a useful optimization for long concatenation expressions.
9171 -- If the string is an aggregate built for a single character (which
9172 -- happens in a non-static context) or a is null string to which special
9173 -- checks may apply, we build the subtype. Wide strings must also get a
9174 -- string subtype if they come from a one character aggregate. Strings
9175 -- generated by attributes might be static, but it is often hard to
9176 -- determine whether the enclosing context is static, so we generate
9177 -- subtypes for them as well, thus losing some rarer optimizations ???
9178 -- Same for strings that come from a static conversion.
9181 (Strlen
= 0 and then Typ
/= Standard_String
)
9182 or else Nkind
(Parent
(N
)) /= N_Op_Concat
9183 or else (N
/= Left_Opnd
(Parent
(N
))
9184 and then N
/= Right_Opnd
(Parent
(N
)))
9185 or else ((Typ
= Standard_Wide_String
9186 or else Typ
= Standard_Wide_Wide_String
)
9187 and then Nkind
(Original_Node
(N
)) /= N_String_Literal
);
9189 -- If the resolving type is itself a string literal subtype, we can just
9190 -- reuse it, since there is no point in creating another.
9192 if Ekind
(Typ
) = E_String_Literal_Subtype
then
9195 elsif Nkind
(Parent
(N
)) = N_Op_Concat
9196 and then not Need_Check
9197 and then not Nkind_In
(Original_Node
(N
), N_Character_Literal
,
9198 N_Attribute_Reference
,
9199 N_Qualified_Expression
,
9204 -- Otherwise we must create a string literal subtype. Note that the
9205 -- whole idea of string literal subtypes is simply to avoid the need
9206 -- for building a full fledged array subtype for each literal.
9209 Set_String_Literal_Subtype
(N
, Typ
);
9210 Subtype_Id
:= Etype
(N
);
9213 if Nkind
(Parent
(N
)) /= N_Op_Concat
9216 Set_Etype
(N
, Subtype_Id
);
9217 Eval_String_Literal
(N
);
9220 if Is_Limited_Composite
(Typ
)
9221 or else Is_Private_Composite
(Typ
)
9223 Error_Msg_N
("string literal not available for private array", N
);
9224 Set_Etype
(N
, Any_Type
);
9228 -- The validity of a null string has been checked in the call to
9229 -- Eval_String_Literal.
9234 -- Always accept string literal with component type Any_Character, which
9235 -- occurs in error situations and in comparisons of literals, both of
9236 -- which should accept all literals.
9238 elsif R_Typ
= Any_Character
then
9241 -- If the type is bit-packed, then we always transform the string
9242 -- literal into a full fledged aggregate.
9244 elsif Is_Bit_Packed_Array
(Typ
) then
9247 -- Deal with cases of Wide_Wide_String, Wide_String, and String
9250 -- For Standard.Wide_Wide_String, or any other type whose component
9251 -- type is Standard.Wide_Wide_Character, we know that all the
9252 -- characters in the string must be acceptable, since the parser
9253 -- accepted the characters as valid character literals.
9255 if R_Typ
= Standard_Wide_Wide_Character
then
9258 -- For the case of Standard.String, or any other type whose component
9259 -- type is Standard.Character, we must make sure that there are no
9260 -- wide characters in the string, i.e. that it is entirely composed
9261 -- of characters in range of type Character.
9263 -- If the string literal is the result of a static concatenation, the
9264 -- test has already been performed on the components, and need not be
9267 elsif R_Typ
= Standard_Character
9268 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
9270 for J
in 1 .. Strlen
loop
9271 if not In_Character_Range
(Get_String_Char
(Str
, J
)) then
9273 -- If we are out of range, post error. This is one of the
9274 -- very few places that we place the flag in the middle of
9275 -- a token, right under the offending wide character. Not
9276 -- quite clear if this is right wrt wide character encoding
9277 -- sequences, but it's only an error message!
9280 ("literal out of range of type Standard.Character",
9281 Source_Ptr
(Int
(Loc
) + J
));
9286 -- For the case of Standard.Wide_String, or any other type whose
9287 -- component type is Standard.Wide_Character, we must make sure that
9288 -- there are no wide characters in the string, i.e. that it is
9289 -- entirely composed of characters in range of type Wide_Character.
9291 -- If the string literal is the result of a static concatenation,
9292 -- the test has already been performed on the components, and need
9295 elsif R_Typ
= Standard_Wide_Character
9296 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
9298 for J
in 1 .. Strlen
loop
9299 if not In_Wide_Character_Range
(Get_String_Char
(Str
, J
)) then
9301 -- If we are out of range, post error. This is one of the
9302 -- very few places that we place the flag in the middle of
9303 -- a token, right under the offending wide character.
9305 -- This is not quite right, because characters in general
9306 -- will take more than one character position ???
9309 ("literal out of range of type Standard.Wide_Character",
9310 Source_Ptr
(Int
(Loc
) + J
));
9315 -- If the root type is not a standard character, then we will convert
9316 -- the string into an aggregate and will let the aggregate code do
9317 -- the checking. Standard Wide_Wide_Character is also OK here.
9323 -- See if the component type of the array corresponding to the string
9324 -- has compile time known bounds. If yes we can directly check
9325 -- whether the evaluation of the string will raise constraint error.
9326 -- Otherwise we need to transform the string literal into the
9327 -- corresponding character aggregate and let the aggregate code do
9330 if Is_Standard_Character_Type
(R_Typ
) then
9332 -- Check for the case of full range, where we are definitely OK
9334 if Component_Type
(Typ
) = Base_Type
(Component_Type
(Typ
)) then
9338 -- Here the range is not the complete base type range, so check
9341 Comp_Typ_Lo
: constant Node_Id
:=
9342 Type_Low_Bound
(Component_Type
(Typ
));
9343 Comp_Typ_Hi
: constant Node_Id
:=
9344 Type_High_Bound
(Component_Type
(Typ
));
9349 if Compile_Time_Known_Value
(Comp_Typ_Lo
)
9350 and then Compile_Time_Known_Value
(Comp_Typ_Hi
)
9352 for J
in 1 .. Strlen
loop
9353 Char_Val
:= UI_From_Int
(Int
(Get_String_Char
(Str
, J
)));
9355 if Char_Val
< Expr_Value
(Comp_Typ_Lo
)
9356 or else Char_Val
> Expr_Value
(Comp_Typ_Hi
)
9358 Apply_Compile_Time_Constraint_Error
9359 (N
, "character out of range?", CE_Range_Check_Failed
,
9360 Loc
=> Source_Ptr
(Int
(Loc
) + J
));
9370 -- If we got here we meed to transform the string literal into the
9371 -- equivalent qualified positional array aggregate. This is rather
9372 -- heavy artillery for this situation, but it is hard work to avoid.
9375 Lits
: constant List_Id
:= New_List
;
9376 P
: Source_Ptr
:= Loc
+ 1;
9380 -- Build the character literals, we give them source locations that
9381 -- correspond to the string positions, which is a bit tricky given
9382 -- the possible presence of wide character escape sequences.
9384 for J
in 1 .. Strlen
loop
9385 C
:= Get_String_Char
(Str
, J
);
9386 Set_Character_Literal_Name
(C
);
9389 Make_Character_Literal
(P
,
9391 Char_Literal_Value
=> UI_From_CC
(C
)));
9393 if In_Character_Range
(C
) then
9396 -- Should we have a call to Skip_Wide here ???
9405 Make_Qualified_Expression
(Loc
,
9406 Subtype_Mark
=> New_Reference_To
(Typ
, Loc
),
9408 Make_Aggregate
(Loc
, Expressions
=> Lits
)));
9410 Analyze_And_Resolve
(N
, Typ
);
9412 end Resolve_String_Literal
;
9414 -----------------------------
9415 -- Resolve_Subprogram_Info --
9416 -----------------------------
9418 procedure Resolve_Subprogram_Info
(N
: Node_Id
; Typ
: Entity_Id
) is
9421 end Resolve_Subprogram_Info
;
9423 -----------------------------
9424 -- Resolve_Type_Conversion --
9425 -----------------------------
9427 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
) is
9428 Conv_OK
: constant Boolean := Conversion_OK
(N
);
9429 Operand
: constant Node_Id
:= Expression
(N
);
9430 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
9431 Target_Typ
: constant Entity_Id
:= Etype
(N
);
9436 Test_Redundant
: Boolean := Warn_On_Redundant_Constructs
;
9437 -- Set to False to suppress cases where we want to suppress the test
9438 -- for redundancy to avoid possible false positives on this warning.
9442 and then not Valid_Conversion
(N
, Target_Typ
, Operand
)
9447 -- If the Operand Etype is Universal_Fixed, then the conversion is
9448 -- never redundant. We need this check because by the time we have
9449 -- finished the rather complex transformation, the conversion looks
9450 -- redundant when it is not.
9452 if Operand_Typ
= Universal_Fixed
then
9453 Test_Redundant
:= False;
9455 -- If the operand is marked as Any_Fixed, then special processing is
9456 -- required. This is also a case where we suppress the test for a
9457 -- redundant conversion, since most certainly it is not redundant.
9459 elsif Operand_Typ
= Any_Fixed
then
9460 Test_Redundant
:= False;
9462 -- Mixed-mode operation involving a literal. Context must be a fixed
9463 -- type which is applied to the literal subsequently.
9465 if Is_Fixed_Point_Type
(Typ
) then
9466 Set_Etype
(Operand
, Universal_Real
);
9468 elsif Is_Numeric_Type
(Typ
)
9469 and then Nkind_In
(Operand
, N_Op_Multiply
, N_Op_Divide
)
9470 and then (Etype
(Right_Opnd
(Operand
)) = Universal_Real
9472 Etype
(Left_Opnd
(Operand
)) = Universal_Real
)
9474 -- Return if expression is ambiguous
9476 if Unique_Fixed_Point_Type
(N
) = Any_Type
then
9479 -- If nothing else, the available fixed type is Duration
9482 Set_Etype
(Operand
, Standard_Duration
);
9485 -- Resolve the real operand with largest available precision
9487 if Etype
(Right_Opnd
(Operand
)) = Universal_Real
then
9488 Rop
:= New_Copy_Tree
(Right_Opnd
(Operand
));
9490 Rop
:= New_Copy_Tree
(Left_Opnd
(Operand
));
9493 Resolve
(Rop
, Universal_Real
);
9495 -- If the operand is a literal (it could be a non-static and
9496 -- illegal exponentiation) check whether the use of Duration
9497 -- is potentially inaccurate.
9499 if Nkind
(Rop
) = N_Real_Literal
9500 and then Realval
(Rop
) /= Ureal_0
9501 and then abs (Realval
(Rop
)) < Delta_Value
(Standard_Duration
)
9504 ("?universal real operand can only " &
9505 "be interpreted as Duration!",
9508 ("\?precision will be lost in the conversion!", Rop
);
9511 elsif Is_Numeric_Type
(Typ
)
9512 and then Nkind
(Operand
) in N_Op
9513 and then Unique_Fixed_Point_Type
(N
) /= Any_Type
9515 Set_Etype
(Operand
, Standard_Duration
);
9518 Error_Msg_N
("invalid context for mixed mode operation", N
);
9519 Set_Etype
(Operand
, Any_Type
);
9526 -- In SPARK, a type conversion between array types should be restricted
9527 -- to types which have matching static bounds.
9529 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9530 -- operation if not needed.
9532 if Restriction_Check_Required
(SPARK
)
9533 and then Is_Array_Type
(Target_Typ
)
9534 and then Is_Array_Type
(Operand_Typ
)
9535 and then Operand_Typ
/= Any_Composite
-- or else Operand in error
9536 and then not Matching_Static_Array_Bounds
(Target_Typ
, Operand_Typ
)
9538 Check_SPARK_Restriction
9539 ("array types should have matching static bounds", N
);
9542 -- In formal mode, the operand of an ancestor type conversion must be an
9543 -- object (not an expression).
9545 if Is_Tagged_Type
(Target_Typ
)
9546 and then not Is_Class_Wide_Type
(Target_Typ
)
9547 and then Is_Tagged_Type
(Operand_Typ
)
9548 and then not Is_Class_Wide_Type
(Operand_Typ
)
9549 and then Is_Ancestor
(Target_Typ
, Operand_Typ
)
9550 and then not Is_SPARK_Object_Reference
(Operand
)
9552 Check_SPARK_Restriction
("object required", Operand
);
9555 Analyze_Dimension
(N
);
9557 -- Note: we do the Eval_Type_Conversion call before applying the
9558 -- required checks for a subtype conversion. This is important, since
9559 -- both are prepared under certain circumstances to change the type
9560 -- conversion to a constraint error node, but in the case of
9561 -- Eval_Type_Conversion this may reflect an illegality in the static
9562 -- case, and we would miss the illegality (getting only a warning
9563 -- message), if we applied the type conversion checks first.
9565 Eval_Type_Conversion
(N
);
9567 -- Even when evaluation is not possible, we may be able to simplify the
9568 -- conversion or its expression. This needs to be done before applying
9569 -- checks, since otherwise the checks may use the original expression
9570 -- and defeat the simplifications. This is specifically the case for
9571 -- elimination of the floating-point Truncation attribute in
9572 -- float-to-int conversions.
9574 Simplify_Type_Conversion
(N
);
9576 -- If after evaluation we still have a type conversion, then we may need
9577 -- to apply checks required for a subtype conversion.
9579 -- Skip these type conversion checks if universal fixed operands
9580 -- operands involved, since range checks are handled separately for
9581 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
9583 if Nkind
(N
) = N_Type_Conversion
9584 and then not Is_Generic_Type
(Root_Type
(Target_Typ
))
9585 and then Target_Typ
/= Universal_Fixed
9586 and then Operand_Typ
/= Universal_Fixed
9588 Apply_Type_Conversion_Checks
(N
);
9591 -- Issue warning for conversion of simple object to its own type. We
9592 -- have to test the original nodes, since they may have been rewritten
9593 -- by various optimizations.
9595 Orig_N
:= Original_Node
(N
);
9597 -- Here we test for a redundant conversion if the warning mode is
9598 -- active (and was not locally reset), and we have a type conversion
9599 -- from source not appearing in a generic instance.
9602 and then Nkind
(Orig_N
) = N_Type_Conversion
9603 and then Comes_From_Source
(Orig_N
)
9604 and then not In_Instance
9606 Orig_N
:= Original_Node
(Expression
(Orig_N
));
9607 Orig_T
:= Target_Typ
;
9609 -- If the node is part of a larger expression, the Target_Type
9610 -- may not be the original type of the node if the context is a
9611 -- condition. Recover original type to see if conversion is needed.
9613 if Is_Boolean_Type
(Orig_T
)
9614 and then Nkind
(Parent
(N
)) in N_Op
9616 Orig_T
:= Etype
(Parent
(N
));
9619 -- If we have an entity name, then give the warning if the entity
9620 -- is the right type, or if it is a loop parameter covered by the
9621 -- original type (that's needed because loop parameters have an
9622 -- odd subtype coming from the bounds).
9624 if (Is_Entity_Name
(Orig_N
)
9626 (Etype
(Entity
(Orig_N
)) = Orig_T
9628 (Ekind
(Entity
(Orig_N
)) = E_Loop_Parameter
9629 and then Covers
(Orig_T
, Etype
(Entity
(Orig_N
))))))
9631 -- If not an entity, then type of expression must match
9633 or else Etype
(Orig_N
) = Orig_T
9635 -- One more check, do not give warning if the analyzed conversion
9636 -- has an expression with non-static bounds, and the bounds of the
9637 -- target are static. This avoids junk warnings in cases where the
9638 -- conversion is necessary to establish staticness, for example in
9639 -- a case statement.
9641 if not Is_OK_Static_Subtype
(Operand_Typ
)
9642 and then Is_OK_Static_Subtype
(Target_Typ
)
9646 -- Finally, if this type conversion occurs in a context requiring
9647 -- a prefix, and the expression is a qualified expression then the
9648 -- type conversion is not redundant, since a qualified expression
9649 -- is not a prefix, whereas a type conversion is. For example, "X
9650 -- := T'(Funx(...)).Y;" is illegal because a selected component
9651 -- requires a prefix, but a type conversion makes it legal: "X :=
9652 -- T(T'(Funx(...))).Y;"
9654 -- In Ada 2012, a qualified expression is a name, so this idiom is
9655 -- no longer needed, but we still suppress the warning because it
9656 -- seems unfriendly for warnings to pop up when you switch to the
9657 -- newer language version.
9659 elsif Nkind
(Orig_N
) = N_Qualified_Expression
9660 and then Nkind_In
(Parent
(N
), N_Attribute_Reference
,
9661 N_Indexed_Component
,
9662 N_Selected_Component
,
9664 N_Explicit_Dereference
)
9668 -- Never warn on conversion to Long_Long_Integer'Base since
9669 -- that is most likely an artifact of the extended overflow
9670 -- checking and comes from complex expanded code.
9672 elsif Orig_T
= Base_Type
(Standard_Long_Long_Integer
) then
9675 -- Here we give the redundant conversion warning. If it is an
9676 -- entity, give the name of the entity in the message. If not,
9677 -- just mention the expression.
9680 if Is_Entity_Name
(Orig_N
) then
9681 Error_Msg_Node_2
:= Orig_T
;
9682 Error_Msg_NE
-- CODEFIX
9683 ("?redundant conversion, & is of type &!",
9684 N
, Entity
(Orig_N
));
9687 ("?redundant conversion, expression is of type&!",
9694 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
9695 -- No need to perform any interface conversion if the type of the
9696 -- expression coincides with the target type.
9698 if Ada_Version
>= Ada_2005
9699 and then Full_Expander_Active
9700 and then Operand_Typ
/= Target_Typ
9703 Opnd
: Entity_Id
:= Operand_Typ
;
9704 Target
: Entity_Id
:= Target_Typ
;
9707 if Is_Access_Type
(Opnd
) then
9708 Opnd
:= Designated_Type
(Opnd
);
9711 if Is_Access_Type
(Target_Typ
) then
9712 Target
:= Designated_Type
(Target
);
9715 if Opnd
= Target
then
9718 -- Conversion from interface type
9720 elsif Is_Interface
(Opnd
) then
9722 -- Ada 2005 (AI-217): Handle entities from limited views
9724 if From_With_Type
(Opnd
) then
9725 Error_Msg_Qual_Level
:= 99;
9726 Error_Msg_NE
-- CODEFIX
9727 ("missing WITH clause on package &", N
,
9728 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Opnd
))));
9730 ("type conversions require visibility of the full view",
9733 elsif From_With_Type
(Target
)
9735 (Is_Access_Type
(Target_Typ
)
9736 and then Present
(Non_Limited_View
(Etype
(Target
))))
9738 Error_Msg_Qual_Level
:= 99;
9739 Error_Msg_NE
-- CODEFIX
9740 ("missing WITH clause on package &", N
,
9741 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Target
))));
9743 ("type conversions require visibility of the full view",
9747 Expand_Interface_Conversion
(N
, Is_Static
=> False);
9750 -- Conversion to interface type
9752 elsif Is_Interface
(Target
) then
9756 if Ekind_In
(Opnd
, E_Protected_Subtype
, E_Task_Subtype
) then
9757 Opnd
:= Etype
(Opnd
);
9760 if not Interface_Present_In_Ancestor
9764 if Is_Class_Wide_Type
(Opnd
) then
9766 -- The static analysis is not enough to know if the
9767 -- interface is implemented or not. Hence we must pass
9768 -- the work to the expander to generate code to evaluate
9769 -- the conversion at run time.
9771 Expand_Interface_Conversion
(N
, Is_Static
=> False);
9774 Error_Msg_Name_1
:= Chars
(Etype
(Target
));
9775 Error_Msg_Name_2
:= Chars
(Opnd
);
9777 ("wrong interface conversion (% is not a progenitor " &
9782 Expand_Interface_Conversion
(N
);
9788 -- Ada 2012: if target type has predicates, the result requires a
9789 -- predicate check. If the context is a call to another predicate
9790 -- check we must prevent infinite recursion.
9792 if Has_Predicates
(Target_Typ
) then
9793 if Nkind
(Parent
(N
)) = N_Function_Call
9794 and then Present
(Name
(Parent
(N
)))
9795 and then Has_Predicates
(Entity
(Name
(Parent
(N
))))
9800 Apply_Predicate_Check
(N
, Target_Typ
);
9803 end Resolve_Type_Conversion
;
9805 ----------------------
9806 -- Resolve_Unary_Op --
9807 ----------------------
9809 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
9810 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9811 R
: constant Node_Id
:= Right_Opnd
(N
);
9817 if Is_Modular_Integer_Type
(Typ
) and then Nkind
(N
) /= N_Op_Not
then
9818 Error_Msg_Name_1
:= Chars
(Typ
);
9819 Check_SPARK_Restriction
9820 ("unary operator not defined for modular type%", N
);
9823 -- Deal with intrinsic unary operators
9825 if Comes_From_Source
(N
)
9826 and then Ekind
(Entity
(N
)) = E_Function
9827 and then Is_Imported
(Entity
(N
))
9828 and then Is_Intrinsic_Subprogram
(Entity
(N
))
9830 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
9834 -- Deal with universal cases
9836 if Etype
(R
) = Universal_Integer
9838 Etype
(R
) = Universal_Real
9840 Check_For_Visible_Operator
(N
, B_Typ
);
9843 Set_Etype
(N
, B_Typ
);
9846 -- Generate warning for expressions like abs (x mod 2)
9848 if Warn_On_Redundant_Constructs
9849 and then Nkind
(N
) = N_Op_Abs
9851 Determine_Range
(Right_Opnd
(N
), OK
, Lo
, Hi
);
9853 if OK
and then Hi
>= Lo
and then Lo
>= 0 then
9854 Error_Msg_N
-- CODEFIX
9855 ("?abs applied to known non-negative value has no effect", N
);
9859 -- Deal with reference generation
9861 Check_Unset_Reference
(R
);
9862 Generate_Operator_Reference
(N
, B_Typ
);
9863 Analyze_Dimension
(N
);
9866 -- Set overflow checking bit. Much cleverer code needed here eventually
9867 -- and perhaps the Resolve routines should be separated for the various
9868 -- arithmetic operations, since they will need different processing ???
9870 if Nkind
(N
) in N_Op
then
9871 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
9872 Enable_Overflow_Check
(N
);
9876 -- Generate warning for expressions like -5 mod 3 for integers. No need
9877 -- to worry in the floating-point case, since parens do not affect the
9878 -- result so there is no point in giving in a warning.
9881 Norig
: constant Node_Id
:= Original_Node
(N
);
9890 if Warn_On_Questionable_Missing_Parens
9891 and then Comes_From_Source
(Norig
)
9892 and then Is_Integer_Type
(Typ
)
9893 and then Nkind
(Norig
) = N_Op_Minus
9895 Rorig
:= Original_Node
(Right_Opnd
(Norig
));
9897 -- We are looking for cases where the right operand is not
9898 -- parenthesized, and is a binary operator, multiply, divide, or
9899 -- mod. These are the cases where the grouping can affect results.
9901 if Paren_Count
(Rorig
) = 0
9902 and then Nkind_In
(Rorig
, N_Op_Mod
, N_Op_Multiply
, N_Op_Divide
)
9904 -- For mod, we always give the warning, since the value is
9905 -- affected by the parenthesization (e.g. (-5) mod 315 /=
9906 -- -(5 mod 315)). But for the other cases, the only concern is
9907 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
9908 -- overflows, but (-2) * 64 does not). So we try to give the
9909 -- message only when overflow is possible.
9911 if Nkind
(Rorig
) /= N_Op_Mod
9912 and then Compile_Time_Known_Value
(R
)
9914 Val
:= Expr_Value
(R
);
9916 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
9917 HB
:= Expr_Value
(Type_High_Bound
(Typ
));
9919 HB
:= Expr_Value
(Type_High_Bound
(Base_Type
(Typ
)));
9922 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
9923 LB
:= Expr_Value
(Type_Low_Bound
(Typ
));
9925 LB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
9928 -- Note that the test below is deliberately excluding the
9929 -- largest negative number, since that is a potentially
9930 -- troublesome case (e.g. -2 * x, where the result is the
9931 -- largest negative integer has an overflow with 2 * x).
9933 if Val
> LB
and then Val
<= HB
then
9938 -- For the multiplication case, the only case we have to worry
9939 -- about is when (-a)*b is exactly the largest negative number
9940 -- so that -(a*b) can cause overflow. This can only happen if
9941 -- a is a power of 2, and more generally if any operand is a
9942 -- constant that is not a power of 2, then the parentheses
9943 -- cannot affect whether overflow occurs. We only bother to
9944 -- test the left most operand
9946 -- Loop looking at left operands for one that has known value
9949 Opnd_Loop
: while Nkind
(Opnd
) = N_Op_Multiply
loop
9950 if Compile_Time_Known_Value
(Left_Opnd
(Opnd
)) then
9951 Lval
:= UI_Abs
(Expr_Value
(Left_Opnd
(Opnd
)));
9953 -- Operand value of 0 or 1 skips warning
9958 -- Otherwise check power of 2, if power of 2, warn, if
9959 -- anything else, skip warning.
9962 while Lval
/= 2 loop
9963 if Lval
mod 2 = 1 then
9974 -- Keep looking at left operands
9976 Opnd
:= Left_Opnd
(Opnd
);
9979 -- For rem or "/" we can only have a problematic situation
9980 -- if the divisor has a value of minus one or one. Otherwise
9981 -- overflow is impossible (divisor > 1) or we have a case of
9982 -- division by zero in any case.
9984 if Nkind_In
(Rorig
, N_Op_Divide
, N_Op_Rem
)
9985 and then Compile_Time_Known_Value
(Right_Opnd
(Rorig
))
9986 and then UI_Abs
(Expr_Value
(Right_Opnd
(Rorig
))) /= 1
9991 -- If we fall through warning should be issued
9994 ("?unary minus expression should be parenthesized here!", N
);
9998 end Resolve_Unary_Op
;
10000 ----------------------------------
10001 -- Resolve_Unchecked_Expression --
10002 ----------------------------------
10004 procedure Resolve_Unchecked_Expression
10009 Resolve
(Expression
(N
), Typ
, Suppress
=> All_Checks
);
10010 Set_Etype
(N
, Typ
);
10011 end Resolve_Unchecked_Expression
;
10013 ---------------------------------------
10014 -- Resolve_Unchecked_Type_Conversion --
10015 ---------------------------------------
10017 procedure Resolve_Unchecked_Type_Conversion
10021 pragma Warnings
(Off
, Typ
);
10023 Operand
: constant Node_Id
:= Expression
(N
);
10024 Opnd_Type
: constant Entity_Id
:= Etype
(Operand
);
10027 -- Resolve operand using its own type
10029 Resolve
(Operand
, Opnd_Type
);
10030 Analyze_Dimension
(N
);
10031 Eval_Unchecked_Conversion
(N
);
10032 end Resolve_Unchecked_Type_Conversion
;
10034 ------------------------------
10035 -- Rewrite_Operator_As_Call --
10036 ------------------------------
10038 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
) is
10039 Loc
: constant Source_Ptr
:= Sloc
(N
);
10040 Actuals
: constant List_Id
:= New_List
;
10044 if Nkind
(N
) in N_Binary_Op
then
10045 Append
(Left_Opnd
(N
), Actuals
);
10048 Append
(Right_Opnd
(N
), Actuals
);
10051 Make_Function_Call
(Sloc
=> Loc
,
10052 Name
=> New_Occurrence_Of
(Nam
, Loc
),
10053 Parameter_Associations
=> Actuals
);
10055 Preserve_Comes_From_Source
(New_N
, N
);
10056 Preserve_Comes_From_Source
(Name
(New_N
), N
);
10057 Rewrite
(N
, New_N
);
10058 Set_Etype
(N
, Etype
(Nam
));
10059 end Rewrite_Operator_As_Call
;
10061 ------------------------------
10062 -- Rewrite_Renamed_Operator --
10063 ------------------------------
10065 procedure Rewrite_Renamed_Operator
10070 Nam
: constant Name_Id
:= Chars
(Op
);
10071 Is_Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
10075 -- Rewrite the operator node using the real operator, not its renaming.
10076 -- Exclude user-defined intrinsic operations of the same name, which are
10077 -- treated separately and rewritten as calls.
10079 if Ekind
(Op
) /= E_Function
or else Chars
(N
) /= Nam
then
10080 Op_Node
:= New_Node
(Operator_Kind
(Nam
, Is_Binary
), Sloc
(N
));
10081 Set_Chars
(Op_Node
, Nam
);
10082 Set_Etype
(Op_Node
, Etype
(N
));
10083 Set_Entity
(Op_Node
, Op
);
10084 Set_Right_Opnd
(Op_Node
, Right_Opnd
(N
));
10086 -- Indicate that both the original entity and its renaming are
10087 -- referenced at this point.
10089 Generate_Reference
(Entity
(N
), N
);
10090 Generate_Reference
(Op
, N
);
10093 Set_Left_Opnd
(Op_Node
, Left_Opnd
(N
));
10096 Rewrite
(N
, Op_Node
);
10098 -- If the context type is private, add the appropriate conversions so
10099 -- that the operator is applied to the full view. This is done in the
10100 -- routines that resolve intrinsic operators.
10102 if Is_Intrinsic_Subprogram
(Op
)
10103 and then Is_Private_Type
(Typ
)
10106 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
10107 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
10108 Resolve_Intrinsic_Operator
(N
, Typ
);
10110 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
10111 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
10118 elsif Ekind
(Op
) = E_Function
and then Is_Intrinsic_Subprogram
(Op
) then
10120 -- Operator renames a user-defined operator of the same name. Use the
10121 -- original operator in the node, which is the one Gigi knows about.
10123 Set_Entity
(N
, Op
);
10124 Set_Is_Overloaded
(N
, False);
10126 end Rewrite_Renamed_Operator
;
10128 -----------------------
10129 -- Set_Slice_Subtype --
10130 -----------------------
10132 -- Build an implicit subtype declaration to represent the type delivered by
10133 -- the slice. This is an abbreviated version of an array subtype. We define
10134 -- an index subtype for the slice, using either the subtype name or the
10135 -- discrete range of the slice. To be consistent with index usage elsewhere
10136 -- we create a list header to hold the single index. This list is not
10137 -- otherwise attached to the syntax tree.
10139 procedure Set_Slice_Subtype
(N
: Node_Id
) is
10140 Loc
: constant Source_Ptr
:= Sloc
(N
);
10141 Index_List
: constant List_Id
:= New_List
;
10143 Index_Subtype
: Entity_Id
;
10144 Index_Type
: Entity_Id
;
10145 Slice_Subtype
: Entity_Id
;
10146 Drange
: constant Node_Id
:= Discrete_Range
(N
);
10149 if Is_Entity_Name
(Drange
) then
10150 Index_Subtype
:= Entity
(Drange
);
10153 -- We force the evaluation of a range. This is definitely needed in
10154 -- the renamed case, and seems safer to do unconditionally. Note in
10155 -- any case that since we will create and insert an Itype referring
10156 -- to this range, we must make sure any side effect removal actions
10157 -- are inserted before the Itype definition.
10159 if Nkind
(Drange
) = N_Range
then
10160 Force_Evaluation
(Low_Bound
(Drange
));
10161 Force_Evaluation
(High_Bound
(Drange
));
10164 Index_Type
:= Base_Type
(Etype
(Drange
));
10166 Index_Subtype
:= Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
10168 -- Take a new copy of Drange (where bounds have been rewritten to
10169 -- reference side-effect-free names). Using a separate tree ensures
10170 -- that further expansion (e.g. while rewriting a slice assignment
10171 -- into a FOR loop) does not attempt to remove side effects on the
10172 -- bounds again (which would cause the bounds in the index subtype
10173 -- definition to refer to temporaries before they are defined) (the
10174 -- reason is that some names are considered side effect free here
10175 -- for the subtype, but not in the context of a loop iteration
10178 Set_Scalar_Range
(Index_Subtype
, New_Copy_Tree
(Drange
));
10179 Set_Parent
(Scalar_Range
(Index_Subtype
), Index_Subtype
);
10180 Set_Etype
(Index_Subtype
, Index_Type
);
10181 Set_Size_Info
(Index_Subtype
, Index_Type
);
10182 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
10185 Slice_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
10187 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
10188 Set_Etype
(Index
, Index_Subtype
);
10189 Append
(Index
, Index_List
);
10191 Set_First_Index
(Slice_Subtype
, Index
);
10192 Set_Etype
(Slice_Subtype
, Base_Type
(Etype
(N
)));
10193 Set_Is_Constrained
(Slice_Subtype
, True);
10195 Check_Compile_Time_Size
(Slice_Subtype
);
10197 -- The Etype of the existing Slice node is reset to this slice subtype.
10198 -- Its bounds are obtained from its first index.
10200 Set_Etype
(N
, Slice_Subtype
);
10202 -- For packed slice subtypes, freeze immediately (except in the case of
10203 -- being in a "spec expression" where we never freeze when we first see
10204 -- the expression).
10206 if Is_Packed
(Slice_Subtype
) and not In_Spec_Expression
then
10207 Freeze_Itype
(Slice_Subtype
, N
);
10209 -- For all other cases insert an itype reference in the slice's actions
10210 -- so that the itype is frozen at the proper place in the tree (i.e. at
10211 -- the point where actions for the slice are analyzed). Note that this
10212 -- is different from freezing the itype immediately, which might be
10213 -- premature (e.g. if the slice is within a transient scope). This needs
10214 -- to be done only if expansion is enabled.
10216 elsif Full_Expander_Active
then
10217 Ensure_Defined
(Typ
=> Slice_Subtype
, N
=> N
);
10219 end Set_Slice_Subtype
;
10221 --------------------------------
10222 -- Set_String_Literal_Subtype --
10223 --------------------------------
10225 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
) is
10226 Loc
: constant Source_Ptr
:= Sloc
(N
);
10227 Low_Bound
: constant Node_Id
:=
10228 Type_Low_Bound
(Etype
(First_Index
(Typ
)));
10229 Subtype_Id
: Entity_Id
;
10232 if Nkind
(N
) /= N_String_Literal
then
10236 Subtype_Id
:= Create_Itype
(E_String_Literal_Subtype
, N
);
10237 Set_String_Literal_Length
(Subtype_Id
, UI_From_Int
10238 (String_Length
(Strval
(N
))));
10239 Set_Etype
(Subtype_Id
, Base_Type
(Typ
));
10240 Set_Is_Constrained
(Subtype_Id
);
10241 Set_Etype
(N
, Subtype_Id
);
10243 -- The low bound is set from the low bound of the corresponding index
10244 -- type. Note that we do not store the high bound in the string literal
10245 -- subtype, but it can be deduced if necessary from the length and the
10248 if Is_OK_Static_Expression
(Low_Bound
) then
10249 Set_String_Literal_Low_Bound
(Subtype_Id
, Low_Bound
);
10251 -- If the lower bound is not static we create a range for the string
10252 -- literal, using the index type and the known length of the literal.
10253 -- The index type is not necessarily Positive, so the upper bound is
10254 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
10258 Index_List
: constant List_Id
:= New_List
;
10259 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
10260 High_Bound
: constant Node_Id
:=
10261 Make_Attribute_Reference
(Loc
,
10262 Attribute_Name
=> Name_Val
,
10264 New_Occurrence_Of
(Index_Type
, Loc
),
10265 Expressions
=> New_List
(
10268 Make_Attribute_Reference
(Loc
,
10269 Attribute_Name
=> Name_Pos
,
10271 New_Occurrence_Of
(Index_Type
, Loc
),
10273 New_List
(New_Copy_Tree
(Low_Bound
))),
10275 Make_Integer_Literal
(Loc
,
10276 String_Length
(Strval
(N
)) - 1))));
10278 Array_Subtype
: Entity_Id
;
10281 Index_Subtype
: Entity_Id
;
10284 if Is_Integer_Type
(Index_Type
) then
10285 Set_String_Literal_Low_Bound
10286 (Subtype_Id
, Make_Integer_Literal
(Loc
, 1));
10289 -- If the index type is an enumeration type, build bounds
10290 -- expression with attributes.
10292 Set_String_Literal_Low_Bound
10294 Make_Attribute_Reference
(Loc
,
10295 Attribute_Name
=> Name_First
,
10297 New_Occurrence_Of
(Base_Type
(Index_Type
), Loc
)));
10298 Set_Etype
(String_Literal_Low_Bound
(Subtype_Id
), Index_Type
);
10301 Analyze_And_Resolve
(String_Literal_Low_Bound
(Subtype_Id
));
10303 -- Build bona fide subtype for the string, and wrap it in an
10304 -- unchecked conversion, because the backend expects the
10305 -- String_Literal_Subtype to have a static lower bound.
10308 Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
10309 Drange
:= Make_Range
(Loc
, New_Copy_Tree
(Low_Bound
), High_Bound
);
10310 Set_Scalar_Range
(Index_Subtype
, Drange
);
10311 Set_Parent
(Drange
, N
);
10312 Analyze_And_Resolve
(Drange
, Index_Type
);
10314 -- In the context, the Index_Type may already have a constraint,
10315 -- so use common base type on string subtype. The base type may
10316 -- be used when generating attributes of the string, for example
10317 -- in the context of a slice assignment.
10319 Set_Etype
(Index_Subtype
, Base_Type
(Index_Type
));
10320 Set_Size_Info
(Index_Subtype
, Index_Type
);
10321 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
10323 Array_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
10325 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
10326 Set_Etype
(Index
, Index_Subtype
);
10327 Append
(Index
, Index_List
);
10329 Set_First_Index
(Array_Subtype
, Index
);
10330 Set_Etype
(Array_Subtype
, Base_Type
(Typ
));
10331 Set_Is_Constrained
(Array_Subtype
, True);
10334 Make_Unchecked_Type_Conversion
(Loc
,
10335 Subtype_Mark
=> New_Occurrence_Of
(Array_Subtype
, Loc
),
10336 Expression
=> Relocate_Node
(N
)));
10337 Set_Etype
(N
, Array_Subtype
);
10340 end Set_String_Literal_Subtype
;
10342 ------------------------------
10343 -- Simplify_Type_Conversion --
10344 ------------------------------
10346 procedure Simplify_Type_Conversion
(N
: Node_Id
) is
10348 if Nkind
(N
) = N_Type_Conversion
then
10350 Operand
: constant Node_Id
:= Expression
(N
);
10351 Target_Typ
: constant Entity_Id
:= Etype
(N
);
10352 Opnd_Typ
: constant Entity_Id
:= Etype
(Operand
);
10355 if Is_Floating_Point_Type
(Opnd_Typ
)
10357 (Is_Integer_Type
(Target_Typ
)
10358 or else (Is_Fixed_Point_Type
(Target_Typ
)
10359 and then Conversion_OK
(N
)))
10360 and then Nkind
(Operand
) = N_Attribute_Reference
10361 and then Attribute_Name
(Operand
) = Name_Truncation
10363 -- Special processing required if the conversion is the expression
10364 -- of a Truncation attribute reference. In this case we replace:
10366 -- ityp (ftyp'Truncation (x))
10372 -- with the Float_Truncate flag set, which is more efficient.
10376 Relocate_Node
(First
(Expressions
(Operand
))));
10377 Set_Float_Truncate
(N
, True);
10381 end Simplify_Type_Conversion
;
10383 -----------------------------
10384 -- Unique_Fixed_Point_Type --
10385 -----------------------------
10387 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
is
10388 T1
: Entity_Id
:= Empty
;
10393 procedure Fixed_Point_Error
;
10394 -- Give error messages for true ambiguity. Messages are posted on node
10395 -- N, and entities T1, T2 are the possible interpretations.
10397 -----------------------
10398 -- Fixed_Point_Error --
10399 -----------------------
10401 procedure Fixed_Point_Error
is
10403 Error_Msg_N
("ambiguous universal_fixed_expression", N
);
10404 Error_Msg_NE
("\\possible interpretation as}", N
, T1
);
10405 Error_Msg_NE
("\\possible interpretation as}", N
, T2
);
10406 end Fixed_Point_Error
;
10408 -- Start of processing for Unique_Fixed_Point_Type
10411 -- The operations on Duration are visible, so Duration is always a
10412 -- possible interpretation.
10414 T1
:= Standard_Duration
;
10416 -- Look for fixed-point types in enclosing scopes
10418 Scop
:= Current_Scope
;
10419 while Scop
/= Standard_Standard
loop
10420 T2
:= First_Entity
(Scop
);
10421 while Present
(T2
) loop
10422 if Is_Fixed_Point_Type
(T2
)
10423 and then Current_Entity
(T2
) = T2
10424 and then Scope
(Base_Type
(T2
)) = Scop
10426 if Present
(T1
) then
10437 Scop
:= Scope
(Scop
);
10440 -- Look for visible fixed type declarations in the context
10442 Item
:= First
(Context_Items
(Cunit
(Current_Sem_Unit
)));
10443 while Present
(Item
) loop
10444 if Nkind
(Item
) = N_With_Clause
then
10445 Scop
:= Entity
(Name
(Item
));
10446 T2
:= First_Entity
(Scop
);
10447 while Present
(T2
) loop
10448 if Is_Fixed_Point_Type
(T2
)
10449 and then Scope
(Base_Type
(T2
)) = Scop
10450 and then (Is_Potentially_Use_Visible
(T2
) or else In_Use
(T2
))
10452 if Present
(T1
) then
10467 if Nkind
(N
) = N_Real_Literal
then
10468 Error_Msg_NE
("?real literal interpreted as }!", N
, T1
);
10470 Error_Msg_NE
("?universal_fixed expression interpreted as }!", N
, T1
);
10474 end Unique_Fixed_Point_Type
;
10476 ----------------------
10477 -- Valid_Conversion --
10478 ----------------------
10480 function Valid_Conversion
10482 Target
: Entity_Id
;
10484 Report_Errs
: Boolean := True) return Boolean
10486 Target_Type
: constant Entity_Id
:= Base_Type
(Target
);
10487 Opnd_Type
: Entity_Id
:= Etype
(Operand
);
10489 function Conversion_Check
10491 Msg
: String) return Boolean;
10492 -- Little routine to post Msg if Valid is False, returns Valid value
10494 -- The following are badly named, this kind of overloading is actively
10495 -- confusing in reading code, please rename to something like
10496 -- Error_Msg_N_If_Reporting ???
10498 procedure Error_Msg_N
(Msg
: String; N
: Node_Or_Entity_Id
);
10499 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
10501 procedure Error_Msg_NE
10503 N
: Node_Or_Entity_Id
;
10504 E
: Node_Or_Entity_Id
);
10505 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
10507 function Valid_Tagged_Conversion
10508 (Target_Type
: Entity_Id
;
10509 Opnd_Type
: Entity_Id
) return Boolean;
10510 -- Specifically test for validity of tagged conversions
10512 function Valid_Array_Conversion
return Boolean;
10513 -- Check index and component conformance, and accessibility levels if
10514 -- the component types are anonymous access types (Ada 2005).
10516 ----------------------
10517 -- Conversion_Check --
10518 ----------------------
10520 function Conversion_Check
10522 Msg
: String) return Boolean
10527 -- A generic unit has already been analyzed and we have verified
10528 -- that a particular conversion is OK in that context. Since the
10529 -- instance is reanalyzed without relying on the relationships
10530 -- established during the analysis of the generic, it is possible
10531 -- to end up with inconsistent views of private types. Do not emit
10532 -- the error message in such cases. The rest of the machinery in
10533 -- Valid_Conversion still ensures the proper compatibility of
10534 -- target and operand types.
10536 and then not In_Instance
10538 Error_Msg_N
(Msg
, Operand
);
10542 end Conversion_Check
;
10548 procedure Error_Msg_N
(Msg
: String; N
: Node_Or_Entity_Id
) is
10550 if Report_Errs
then
10551 Errout
.Error_Msg_N
(Msg
, N
);
10559 procedure Error_Msg_NE
10561 N
: Node_Or_Entity_Id
;
10562 E
: Node_Or_Entity_Id
)
10565 if Report_Errs
then
10566 Errout
.Error_Msg_NE
(Msg
, N
, E
);
10570 ----------------------------
10571 -- Valid_Array_Conversion --
10572 ----------------------------
10574 function Valid_Array_Conversion
return Boolean
10576 Opnd_Comp_Type
: constant Entity_Id
:= Component_Type
(Opnd_Type
);
10577 Opnd_Comp_Base
: constant Entity_Id
:= Base_Type
(Opnd_Comp_Type
);
10579 Opnd_Index
: Node_Id
;
10580 Opnd_Index_Type
: Entity_Id
;
10582 Target_Comp_Type
: constant Entity_Id
:=
10583 Component_Type
(Target_Type
);
10584 Target_Comp_Base
: constant Entity_Id
:=
10585 Base_Type
(Target_Comp_Type
);
10587 Target_Index
: Node_Id
;
10588 Target_Index_Type
: Entity_Id
;
10591 -- Error if wrong number of dimensions
10594 Number_Dimensions
(Target_Type
) /= Number_Dimensions
(Opnd_Type
)
10597 ("incompatible number of dimensions for conversion", Operand
);
10600 -- Number of dimensions matches
10603 -- Loop through indexes of the two arrays
10605 Target_Index
:= First_Index
(Target_Type
);
10606 Opnd_Index
:= First_Index
(Opnd_Type
);
10607 while Present
(Target_Index
) and then Present
(Opnd_Index
) loop
10608 Target_Index_Type
:= Etype
(Target_Index
);
10609 Opnd_Index_Type
:= Etype
(Opnd_Index
);
10611 -- Error if index types are incompatible
10613 if not (Is_Integer_Type
(Target_Index_Type
)
10614 and then Is_Integer_Type
(Opnd_Index_Type
))
10615 and then (Root_Type
(Target_Index_Type
)
10616 /= Root_Type
(Opnd_Index_Type
))
10619 ("incompatible index types for array conversion",
10624 Next_Index
(Target_Index
);
10625 Next_Index
(Opnd_Index
);
10628 -- If component types have same base type, all set
10630 if Target_Comp_Base
= Opnd_Comp_Base
then
10633 -- Here if base types of components are not the same. The only
10634 -- time this is allowed is if we have anonymous access types.
10636 -- The conversion of arrays of anonymous access types can lead
10637 -- to dangling pointers. AI-392 formalizes the accessibility
10638 -- checks that must be applied to such conversions to prevent
10639 -- out-of-scope references.
10642 (Target_Comp_Base
, E_Anonymous_Access_Type
,
10643 E_Anonymous_Access_Subprogram_Type
)
10644 and then Ekind
(Opnd_Comp_Base
) = Ekind
(Target_Comp_Base
)
10646 Subtypes_Statically_Match
(Target_Comp_Type
, Opnd_Comp_Type
)
10648 if Type_Access_Level
(Target_Type
) <
10649 Deepest_Type_Access_Level
(Opnd_Type
)
10651 if In_Instance_Body
then
10653 ("?source array type has " &
10654 "deeper accessibility level than target", Operand
);
10656 ("\?Program_Error will be raised at run time",
10659 Make_Raise_Program_Error
(Sloc
(N
),
10660 Reason
=> PE_Accessibility_Check_Failed
));
10661 Set_Etype
(N
, Target_Type
);
10664 -- Conversion not allowed because of accessibility levels
10668 ("source array type has " &
10669 "deeper accessibility level than target", Operand
);
10677 -- All other cases where component base types do not match
10681 ("incompatible component types for array conversion",
10686 -- Check that component subtypes statically match. For numeric
10687 -- types this means that both must be either constrained or
10688 -- unconstrained. For enumeration types the bounds must match.
10689 -- All of this is checked in Subtypes_Statically_Match.
10691 if not Subtypes_Statically_Match
10692 (Target_Comp_Type
, Opnd_Comp_Type
)
10695 ("component subtypes must statically match", Operand
);
10701 end Valid_Array_Conversion
;
10703 -----------------------------
10704 -- Valid_Tagged_Conversion --
10705 -----------------------------
10707 function Valid_Tagged_Conversion
10708 (Target_Type
: Entity_Id
;
10709 Opnd_Type
: Entity_Id
) return Boolean
10712 -- Upward conversions are allowed (RM 4.6(22))
10714 if Covers
(Target_Type
, Opnd_Type
)
10715 or else Is_Ancestor
(Target_Type
, Opnd_Type
)
10719 -- Downward conversion are allowed if the operand is class-wide
10722 elsif Is_Class_Wide_Type
(Opnd_Type
)
10723 and then Covers
(Opnd_Type
, Target_Type
)
10727 elsif Covers
(Opnd_Type
, Target_Type
)
10728 or else Is_Ancestor
(Opnd_Type
, Target_Type
)
10731 Conversion_Check
(False,
10732 "downward conversion of tagged objects not allowed");
10734 -- Ada 2005 (AI-251): The conversion to/from interface types is
10737 elsif Is_Interface
(Target_Type
) or else Is_Interface
(Opnd_Type
) then
10740 -- If the operand is a class-wide type obtained through a limited_
10741 -- with clause, and the context includes the non-limited view, use
10742 -- it to determine whether the conversion is legal.
10744 elsif Is_Class_Wide_Type
(Opnd_Type
)
10745 and then From_With_Type
(Opnd_Type
)
10746 and then Present
(Non_Limited_View
(Etype
(Opnd_Type
)))
10747 and then Is_Interface
(Non_Limited_View
(Etype
(Opnd_Type
)))
10751 elsif Is_Access_Type
(Opnd_Type
)
10752 and then Is_Interface
(Directly_Designated_Type
(Opnd_Type
))
10758 ("invalid tagged conversion, not compatible with}",
10759 N
, First_Subtype
(Opnd_Type
));
10762 end Valid_Tagged_Conversion
;
10764 -- Start of processing for Valid_Conversion
10767 Check_Parameterless_Call
(Operand
);
10769 if Is_Overloaded
(Operand
) then
10779 -- Remove procedure calls, which syntactically cannot appear in
10780 -- this context, but which cannot be removed by type checking,
10781 -- because the context does not impose a type.
10783 -- When compiling for VMS, spurious ambiguities can be produced
10784 -- when arithmetic operations have a literal operand and return
10785 -- System.Address or a descendant of it. These ambiguities are
10786 -- otherwise resolved by the context, but for conversions there
10787 -- is no context type and the removal of the spurious operations
10788 -- must be done explicitly here.
10790 -- The node may be labelled overloaded, but still contain only one
10791 -- interpretation because others were discarded earlier. If this
10792 -- is the case, retain the single interpretation if legal.
10794 Get_First_Interp
(Operand
, I
, It
);
10795 Opnd_Type
:= It
.Typ
;
10796 Get_Next_Interp
(I
, It
);
10798 if Present
(It
.Typ
)
10799 and then Opnd_Type
/= Standard_Void_Type
10801 -- More than one candidate interpretation is available
10803 Get_First_Interp
(Operand
, I
, It
);
10804 while Present
(It
.Typ
) loop
10805 if It
.Typ
= Standard_Void_Type
then
10809 if Present
(System_Aux_Id
)
10810 and then Is_Descendent_Of_Address
(It
.Typ
)
10815 Get_Next_Interp
(I
, It
);
10819 Get_First_Interp
(Operand
, I
, It
);
10823 if No
(It
.Typ
) then
10824 Error_Msg_N
("illegal operand in conversion", Operand
);
10828 Get_Next_Interp
(I
, It
);
10830 if Present
(It
.Typ
) then
10833 It1
:= Disambiguate
(Operand
, I1
, I
, Any_Type
);
10835 if It1
= No_Interp
then
10836 Error_Msg_N
("ambiguous operand in conversion", Operand
);
10838 -- If the interpretation involves a standard operator, use
10839 -- the location of the type, which may be user-defined.
10841 if Sloc
(It
.Nam
) = Standard_Location
then
10842 Error_Msg_Sloc
:= Sloc
(It
.Typ
);
10844 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
10847 Error_Msg_N
-- CODEFIX
10848 ("\\possible interpretation#!", Operand
);
10850 if Sloc
(N1
) = Standard_Location
then
10851 Error_Msg_Sloc
:= Sloc
(T1
);
10853 Error_Msg_Sloc
:= Sloc
(N1
);
10856 Error_Msg_N
-- CODEFIX
10857 ("\\possible interpretation#!", Operand
);
10863 Set_Etype
(Operand
, It1
.Typ
);
10864 Opnd_Type
:= It1
.Typ
;
10870 if Is_Numeric_Type
(Target_Type
) then
10872 -- A universal fixed expression can be converted to any numeric type
10874 if Opnd_Type
= Universal_Fixed
then
10877 -- Also no need to check when in an instance or inlined body, because
10878 -- the legality has been established when the template was analyzed.
10879 -- Furthermore, numeric conversions may occur where only a private
10880 -- view of the operand type is visible at the instantiation point.
10881 -- This results in a spurious error if we check that the operand type
10882 -- is a numeric type.
10884 -- Note: in a previous version of this unit, the following tests were
10885 -- applied only for generated code (Comes_From_Source set to False),
10886 -- but in fact the test is required for source code as well, since
10887 -- this situation can arise in source code.
10889 elsif In_Instance
or else In_Inlined_Body
then
10892 -- Otherwise we need the conversion check
10895 return Conversion_Check
10896 (Is_Numeric_Type
(Opnd_Type
),
10897 "illegal operand for numeric conversion");
10902 elsif Is_Array_Type
(Target_Type
) then
10903 if not Is_Array_Type
(Opnd_Type
)
10904 or else Opnd_Type
= Any_Composite
10905 or else Opnd_Type
= Any_String
10907 Error_Msg_N
("illegal operand for array conversion", Operand
);
10910 return Valid_Array_Conversion
;
10913 -- Ada 2005 (AI-251): Anonymous access types where target references an
10916 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
10917 E_Anonymous_Access_Type
)
10918 and then Is_Interface
(Directly_Designated_Type
(Target_Type
))
10920 -- Check the static accessibility rule of 4.6(17). Note that the
10921 -- check is not enforced when within an instance body, since the
10922 -- RM requires such cases to be caught at run time.
10924 -- If the operand is a rewriting of an allocator no check is needed
10925 -- because there are no accessibility issues.
10927 if Nkind
(Original_Node
(N
)) = N_Allocator
then
10930 elsif Ekind
(Target_Type
) /= E_Anonymous_Access_Type
then
10931 if Type_Access_Level
(Opnd_Type
) >
10932 Deepest_Type_Access_Level
(Target_Type
)
10934 -- In an instance, this is a run-time check, but one we know
10935 -- will fail, so generate an appropriate warning. The raise
10936 -- will be generated by Expand_N_Type_Conversion.
10938 if In_Instance_Body
then
10940 ("?cannot convert local pointer to non-local access type",
10943 ("\?Program_Error will be raised at run time", Operand
);
10947 ("cannot convert local pointer to non-local access type",
10952 -- Special accessibility checks are needed in the case of access
10953 -- discriminants declared for a limited type.
10955 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
10956 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
10958 -- When the operand is a selected access discriminant the check
10959 -- needs to be made against the level of the object denoted by
10960 -- the prefix of the selected name (Object_Access_Level handles
10961 -- checking the prefix of the operand for this case).
10963 if Nkind
(Operand
) = N_Selected_Component
10964 and then Object_Access_Level
(Operand
) >
10965 Deepest_Type_Access_Level
(Target_Type
)
10967 -- In an instance, this is a run-time check, but one we know
10968 -- will fail, so generate an appropriate warning. The raise
10969 -- will be generated by Expand_N_Type_Conversion.
10971 if In_Instance_Body
then
10973 ("?cannot convert access discriminant to non-local" &
10974 " access type", Operand
);
10976 ("\?Program_Error will be raised at run time", Operand
);
10979 ("cannot convert access discriminant to non-local" &
10980 " access type", Operand
);
10985 -- The case of a reference to an access discriminant from
10986 -- within a limited type declaration (which will appear as
10987 -- a discriminal) is always illegal because the level of the
10988 -- discriminant is considered to be deeper than any (nameable)
10991 if Is_Entity_Name
(Operand
)
10992 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
10994 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
10995 and then Present
(Discriminal_Link
(Entity
(Operand
)))
10998 ("discriminant has deeper accessibility level than target",
11007 -- General and anonymous access types
11009 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
11010 E_Anonymous_Access_Type
)
11013 (Is_Access_Type
(Opnd_Type
)
11015 Ekind_In
(Opnd_Type
, E_Access_Subprogram_Type
,
11016 E_Access_Protected_Subprogram_Type
),
11017 "must be an access-to-object type")
11019 if Is_Access_Constant
(Opnd_Type
)
11020 and then not Is_Access_Constant
(Target_Type
)
11023 ("access-to-constant operand type not allowed", Operand
);
11027 -- Check the static accessibility rule of 4.6(17). Note that the
11028 -- check is not enforced when within an instance body, since the RM
11029 -- requires such cases to be caught at run time.
11031 if Ekind
(Target_Type
) /= E_Anonymous_Access_Type
11032 or else Is_Local_Anonymous_Access
(Target_Type
)
11033 or else Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
11034 N_Object_Declaration
11036 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
11037 -- conversions from an anonymous access type to a named general
11038 -- access type. Such conversions are not allowed in the case of
11039 -- access parameters and stand-alone objects of an anonymous
11040 -- access type. The implicit conversion case is recognized by
11041 -- testing that Comes_From_Source is False and that it's been
11042 -- rewritten. The Comes_From_Source test isn't sufficient because
11043 -- nodes in inlined calls to predefined library routines can have
11044 -- Comes_From_Source set to False. (Is there a better way to test
11045 -- for implicit conversions???)
11047 if Ada_Version
>= Ada_2012
11048 and then not Comes_From_Source
(N
)
11049 and then N
/= Original_Node
(N
)
11050 and then Ekind
(Target_Type
) = E_General_Access_Type
11051 and then Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
11053 if Is_Itype
(Opnd_Type
) then
11055 -- Implicit conversions aren't allowed for objects of an
11056 -- anonymous access type, since such objects have nonstatic
11057 -- levels in Ada 2012.
11059 if Nkind
(Associated_Node_For_Itype
(Opnd_Type
)) =
11060 N_Object_Declaration
11063 ("implicit conversion of stand-alone anonymous " &
11064 "access object not allowed", Operand
);
11067 -- Implicit conversions aren't allowed for anonymous access
11068 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
11069 -- is done to exclude anonymous access results.
11071 elsif not Is_Local_Anonymous_Access
(Opnd_Type
)
11072 and then Nkind_In
(Associated_Node_For_Itype
(Opnd_Type
),
11073 N_Function_Specification
,
11074 N_Procedure_Specification
)
11077 ("implicit conversion of anonymous access formal " &
11078 "not allowed", Operand
);
11081 -- This is a case where there's an enclosing object whose
11082 -- to which the "statically deeper than" relationship does
11083 -- not apply (such as an access discriminant selected from
11084 -- a dereference of an access parameter).
11086 elsif Object_Access_Level
(Operand
)
11087 = Scope_Depth
(Standard_Standard
)
11090 ("implicit conversion of anonymous access value " &
11091 "not allowed", Operand
);
11094 -- In other cases, the level of the operand's type must be
11095 -- statically less deep than that of the target type, else
11096 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
11098 elsif Type_Access_Level
(Opnd_Type
) >
11099 Deepest_Type_Access_Level
(Target_Type
)
11102 ("implicit conversion of anonymous access value " &
11103 "violates accessibility", Operand
);
11108 elsif Type_Access_Level
(Opnd_Type
) >
11109 Deepest_Type_Access_Level
(Target_Type
)
11111 -- In an instance, this is a run-time check, but one we know
11112 -- will fail, so generate an appropriate warning. The raise
11113 -- will be generated by Expand_N_Type_Conversion.
11115 if In_Instance_Body
then
11117 ("?cannot convert local pointer to non-local access type",
11120 ("\?Program_Error will be raised at run time", Operand
);
11123 -- Avoid generation of spurious error message
11125 if not Error_Posted
(N
) then
11127 ("cannot convert local pointer to non-local access type",
11134 -- Special accessibility checks are needed in the case of access
11135 -- discriminants declared for a limited type.
11137 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
11138 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
11140 -- When the operand is a selected access discriminant the check
11141 -- needs to be made against the level of the object denoted by
11142 -- the prefix of the selected name (Object_Access_Level handles
11143 -- checking the prefix of the operand for this case).
11145 if Nkind
(Operand
) = N_Selected_Component
11146 and then Object_Access_Level
(Operand
) >
11147 Deepest_Type_Access_Level
(Target_Type
)
11149 -- In an instance, this is a run-time check, but one we know
11150 -- will fail, so generate an appropriate warning. The raise
11151 -- will be generated by Expand_N_Type_Conversion.
11153 if In_Instance_Body
then
11155 ("?cannot convert access discriminant to non-local" &
11156 " access type", Operand
);
11158 ("\?Program_Error will be raised at run time",
11163 ("cannot convert access discriminant to non-local" &
11164 " access type", Operand
);
11169 -- The case of a reference to an access discriminant from
11170 -- within a limited type declaration (which will appear as
11171 -- a discriminal) is always illegal because the level of the
11172 -- discriminant is considered to be deeper than any (nameable)
11175 if Is_Entity_Name
(Operand
)
11177 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
11178 and then Present
(Discriminal_Link
(Entity
(Operand
)))
11181 ("discriminant has deeper accessibility level than target",
11188 -- In the presence of limited_with clauses we have to use non-limited
11189 -- views, if available.
11191 Check_Limited
: declare
11192 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
;
11193 -- Helper function to handle limited views
11195 --------------------------
11196 -- Full_Designated_Type --
11197 --------------------------
11199 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
11200 Desig
: constant Entity_Id
:= Designated_Type
(T
);
11203 -- Handle the limited view of a type
11205 if Is_Incomplete_Type
(Desig
)
11206 and then From_With_Type
(Desig
)
11207 and then Present
(Non_Limited_View
(Desig
))
11209 return Available_View
(Desig
);
11213 end Full_Designated_Type
;
11215 -- Local Declarations
11217 Target
: constant Entity_Id
:= Full_Designated_Type
(Target_Type
);
11218 Opnd
: constant Entity_Id
:= Full_Designated_Type
(Opnd_Type
);
11220 Same_Base
: constant Boolean :=
11221 Base_Type
(Target
) = Base_Type
(Opnd
);
11223 -- Start of processing for Check_Limited
11226 if Is_Tagged_Type
(Target
) then
11227 return Valid_Tagged_Conversion
(Target
, Opnd
);
11230 if not Same_Base
then
11232 ("target designated type not compatible with }",
11233 N
, Base_Type
(Opnd
));
11236 -- Ada 2005 AI-384: legality rule is symmetric in both
11237 -- designated types. The conversion is legal (with possible
11238 -- constraint check) if either designated type is
11241 elsif Subtypes_Statically_Match
(Target
, Opnd
)
11243 (Has_Discriminants
(Target
)
11245 (not Is_Constrained
(Opnd
)
11246 or else not Is_Constrained
(Target
)))
11248 -- Special case, if Value_Size has been used to make the
11249 -- sizes different, the conversion is not allowed even
11250 -- though the subtypes statically match.
11252 if Known_Static_RM_Size
(Target
)
11253 and then Known_Static_RM_Size
(Opnd
)
11254 and then RM_Size
(Target
) /= RM_Size
(Opnd
)
11257 ("target designated subtype not compatible with }",
11260 ("\because sizes of the two designated subtypes differ",
11264 -- Normal case where conversion is allowed
11272 ("target designated subtype not compatible with }",
11279 -- Access to subprogram types. If the operand is an access parameter,
11280 -- the type has a deeper accessibility that any master, and cannot be
11281 -- assigned. We must make an exception if the conversion is part of an
11282 -- assignment and the target is the return object of an extended return
11283 -- statement, because in that case the accessibility check takes place
11284 -- after the return.
11286 elsif Is_Access_Subprogram_Type
(Target_Type
)
11287 and then No
(Corresponding_Remote_Type
(Opnd_Type
))
11289 if Ekind
(Base_Type
(Opnd_Type
)) = E_Anonymous_Access_Subprogram_Type
11290 and then Is_Entity_Name
(Operand
)
11291 and then Ekind
(Entity
(Operand
)) = E_In_Parameter
11293 (Nkind
(Parent
(N
)) /= N_Assignment_Statement
11294 or else not Is_Entity_Name
(Name
(Parent
(N
)))
11295 or else not Is_Return_Object
(Entity
(Name
(Parent
(N
)))))
11298 ("illegal attempt to store anonymous access to subprogram",
11301 ("\value has deeper accessibility than any master " &
11302 "(RM 3.10.2 (13))",
11306 ("\use named access type for& instead of access parameter",
11307 Operand
, Entity
(Operand
));
11310 -- Check that the designated types are subtype conformant
11312 Check_Subtype_Conformant
(New_Id
=> Designated_Type
(Target_Type
),
11313 Old_Id
=> Designated_Type
(Opnd_Type
),
11316 -- Check the static accessibility rule of 4.6(20)
11318 if Type_Access_Level
(Opnd_Type
) >
11319 Deepest_Type_Access_Level
(Target_Type
)
11322 ("operand type has deeper accessibility level than target",
11325 -- Check that if the operand type is declared in a generic body,
11326 -- then the target type must be declared within that same body
11327 -- (enforces last sentence of 4.6(20)).
11329 elsif Present
(Enclosing_Generic_Body
(Opnd_Type
)) then
11331 O_Gen
: constant Node_Id
:=
11332 Enclosing_Generic_Body
(Opnd_Type
);
11337 T_Gen
:= Enclosing_Generic_Body
(Target_Type
);
11338 while Present
(T_Gen
) and then T_Gen
/= O_Gen
loop
11339 T_Gen
:= Enclosing_Generic_Body
(T_Gen
);
11342 if T_Gen
/= O_Gen
then
11344 ("target type must be declared in same generic body"
11345 & " as operand type", N
);
11352 -- Remote subprogram access types
11354 elsif Is_Remote_Access_To_Subprogram_Type
(Target_Type
)
11355 and then Is_Remote_Access_To_Subprogram_Type
(Opnd_Type
)
11357 -- It is valid to convert from one RAS type to another provided
11358 -- that their specification statically match.
11360 Check_Subtype_Conformant
11362 Designated_Type
(Corresponding_Remote_Type
(Target_Type
)),
11364 Designated_Type
(Corresponding_Remote_Type
(Opnd_Type
)),
11369 -- If it was legal in the generic, it's legal in the instance
11371 elsif In_Instance_Body
then
11374 -- If both are tagged types, check legality of view conversions
11376 elsif Is_Tagged_Type
(Target_Type
)
11378 Is_Tagged_Type
(Opnd_Type
)
11380 return Valid_Tagged_Conversion
(Target_Type
, Opnd_Type
);
11382 -- Types derived from the same root type are convertible
11384 elsif Root_Type
(Target_Type
) = Root_Type
(Opnd_Type
) then
11387 -- In an instance or an inlined body, there may be inconsistent views of
11388 -- the same type, or of types derived from a common root.
11390 elsif (In_Instance
or In_Inlined_Body
)
11392 Root_Type
(Underlying_Type
(Target_Type
)) =
11393 Root_Type
(Underlying_Type
(Opnd_Type
))
11397 -- Special check for common access type error case
11399 elsif Ekind
(Target_Type
) = E_Access_Type
11400 and then Is_Access_Type
(Opnd_Type
)
11402 Error_Msg_N
("target type must be general access type!", N
);
11403 Error_Msg_NE
-- CODEFIX
11404 ("add ALL to }!", N
, Target_Type
);
11408 Error_Msg_NE
("invalid conversion, not compatible with }",
11412 end Valid_Conversion
;