cfgloopmanip.c (copy_loop_info): New function.
[official-gcc.git] / gcc / ada / sem_disp.adb
blob988a78f5781bc48c9626ee4017c712a6233ef045
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ D I S P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Elists; use Elists;
29 with Einfo; use Einfo;
30 with Exp_Disp; use Exp_Disp;
31 with Exp_Util; use Exp_Util;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Tss; use Exp_Tss;
34 with Errout; use Errout;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch3; use Sem_Ch3;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Type; use Sem_Type;
49 with Sem_Util; use Sem_Util;
50 with Snames; use Snames;
51 with Sinfo; use Sinfo;
52 with Targparm; use Targparm;
53 with Tbuild; use Tbuild;
54 with Uintp; use Uintp;
56 package body Sem_Disp is
58 -----------------------
59 -- Local Subprograms --
60 -----------------------
62 procedure Add_Dispatching_Operation
63 (Tagged_Type : Entity_Id;
64 New_Op : Entity_Id);
65 -- Add New_Op in the list of primitive operations of Tagged_Type
67 function Check_Controlling_Type
68 (T : Entity_Id;
69 Subp : Entity_Id) return Entity_Id;
70 -- T is the tagged type of a formal parameter or the result of Subp.
71 -- If the subprogram has a controlling parameter or result that matches
72 -- the type, then returns the tagged type of that parameter or result
73 -- (returning the designated tagged type in the case of an access
74 -- parameter); otherwise returns empty.
76 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id;
77 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
78 -- type of S that has the same name of S, a type-conformant profile, an
79 -- original corresponding operation O that is a primitive of a visible
80 -- ancestor of the dispatching type of S and O is visible at the point of
81 -- of declaration of S. If the entity is found the Alias of S is set to the
82 -- original corresponding operation S and its Overridden_Operation is set
83 -- to the found entity; otherwise return Empty.
85 -- This routine does not search for non-hidden primitives since they are
86 -- covered by the normal Ada 2005 rules.
88 -------------------------------
89 -- Add_Dispatching_Operation --
90 -------------------------------
92 procedure Add_Dispatching_Operation
93 (Tagged_Type : Entity_Id;
94 New_Op : Entity_Id)
96 List : constant Elist_Id := Primitive_Operations (Tagged_Type);
98 begin
99 -- The dispatching operation may already be on the list, if it is the
100 -- wrapper for an inherited function of a null extension (see Exp_Ch3
101 -- for the construction of function wrappers). The list of primitive
102 -- operations must not contain duplicates.
104 Append_Unique_Elmt (New_Op, List);
105 end Add_Dispatching_Operation;
107 ---------------------------
108 -- Covers_Some_Interface --
109 ---------------------------
111 function Covers_Some_Interface (Prim : Entity_Id) return Boolean is
112 Tagged_Type : constant Entity_Id := Find_Dispatching_Type (Prim);
113 Elmt : Elmt_Id;
114 E : Entity_Id;
116 begin
117 pragma Assert (Is_Dispatching_Operation (Prim));
119 -- Although this is a dispatching primitive we must check if its
120 -- dispatching type is available because it may be the primitive
121 -- of a private type not defined as tagged in its partial view.
123 if Present (Tagged_Type) and then Has_Interfaces (Tagged_Type) then
125 -- If the tagged type is frozen then the internal entities associated
126 -- with interfaces are available in the list of primitives of the
127 -- tagged type and can be used to speed up this search.
129 if Is_Frozen (Tagged_Type) then
130 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
131 while Present (Elmt) loop
132 E := Node (Elmt);
134 if Present (Interface_Alias (E))
135 and then Alias (E) = Prim
136 then
137 return True;
138 end if;
140 Next_Elmt (Elmt);
141 end loop;
143 -- Otherwise we must collect all the interface primitives and check
144 -- if the Prim will override some interface primitive.
146 else
147 declare
148 Ifaces_List : Elist_Id;
149 Iface_Elmt : Elmt_Id;
150 Iface : Entity_Id;
151 Iface_Prim : Entity_Id;
153 begin
154 Collect_Interfaces (Tagged_Type, Ifaces_List);
155 Iface_Elmt := First_Elmt (Ifaces_List);
156 while Present (Iface_Elmt) loop
157 Iface := Node (Iface_Elmt);
159 Elmt := First_Elmt (Primitive_Operations (Iface));
160 while Present (Elmt) loop
161 Iface_Prim := Node (Elmt);
163 if Chars (Iface) = Chars (Prim)
164 and then Is_Interface_Conformant
165 (Tagged_Type, Iface_Prim, Prim)
166 then
167 return True;
168 end if;
170 Next_Elmt (Elmt);
171 end loop;
173 Next_Elmt (Iface_Elmt);
174 end loop;
175 end;
176 end if;
177 end if;
179 return False;
180 end Covers_Some_Interface;
182 -------------------------------
183 -- Check_Controlling_Formals --
184 -------------------------------
186 procedure Check_Controlling_Formals
187 (Typ : Entity_Id;
188 Subp : Entity_Id)
190 Formal : Entity_Id;
191 Ctrl_Type : Entity_Id;
193 begin
194 Formal := First_Formal (Subp);
195 while Present (Formal) loop
196 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
198 if Present (Ctrl_Type) then
200 -- When controlling type is concurrent and declared within a
201 -- generic or inside an instance use corresponding record type.
203 if Is_Concurrent_Type (Ctrl_Type)
204 and then Present (Corresponding_Record_Type (Ctrl_Type))
205 then
206 Ctrl_Type := Corresponding_Record_Type (Ctrl_Type);
207 end if;
209 if Ctrl_Type = Typ then
210 Set_Is_Controlling_Formal (Formal);
212 -- Ada 2005 (AI-231): Anonymous access types that are used in
213 -- controlling parameters exclude null because it is necessary
214 -- to read the tag to dispatch, and null has no tag.
216 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
217 Set_Can_Never_Be_Null (Etype (Formal));
218 Set_Is_Known_Non_Null (Etype (Formal));
219 end if;
221 -- Check that the parameter's nominal subtype statically
222 -- matches the first subtype.
224 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
225 if not Subtypes_Statically_Match
226 (Typ, Designated_Type (Etype (Formal)))
227 then
228 Error_Msg_N
229 ("parameter subtype does not match controlling type",
230 Formal);
231 end if;
233 elsif not Subtypes_Statically_Match (Typ, Etype (Formal)) then
234 Error_Msg_N
235 ("parameter subtype does not match controlling type",
236 Formal);
237 end if;
239 if Present (Default_Value (Formal)) then
241 -- In Ada 2005, access parameters can have defaults
243 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
244 and then Ada_Version < Ada_2005
245 then
246 Error_Msg_N
247 ("default not allowed for controlling access parameter",
248 Default_Value (Formal));
250 elsif not Is_Tag_Indeterminate (Default_Value (Formal)) then
251 Error_Msg_N
252 ("default expression must be a tag indeterminate" &
253 " function call", Default_Value (Formal));
254 end if;
255 end if;
257 elsif Comes_From_Source (Subp) then
258 Error_Msg_N
259 ("operation can be dispatching in only one type", Subp);
260 end if;
261 end if;
263 Next_Formal (Formal);
264 end loop;
266 if Ekind_In (Subp, E_Function, E_Generic_Function) then
267 Ctrl_Type := Check_Controlling_Type (Etype (Subp), Subp);
269 if Present (Ctrl_Type) then
270 if Ctrl_Type = Typ then
271 Set_Has_Controlling_Result (Subp);
273 -- Check that result subtype statically matches first subtype
274 -- (Ada 2005): Subp may have a controlling access result.
276 if Subtypes_Statically_Match (Typ, Etype (Subp))
277 or else (Ekind (Etype (Subp)) = E_Anonymous_Access_Type
278 and then
279 Subtypes_Statically_Match
280 (Typ, Designated_Type (Etype (Subp))))
281 then
282 null;
284 else
285 Error_Msg_N
286 ("result subtype does not match controlling type", Subp);
287 end if;
289 elsif Comes_From_Source (Subp) then
290 Error_Msg_N
291 ("operation can be dispatching in only one type", Subp);
292 end if;
293 end if;
294 end if;
295 end Check_Controlling_Formals;
297 ----------------------------
298 -- Check_Controlling_Type --
299 ----------------------------
301 function Check_Controlling_Type
302 (T : Entity_Id;
303 Subp : Entity_Id) return Entity_Id
305 Tagged_Type : Entity_Id := Empty;
307 begin
308 if Is_Tagged_Type (T) then
309 if Is_First_Subtype (T) then
310 Tagged_Type := T;
311 else
312 Tagged_Type := Base_Type (T);
313 end if;
315 elsif Ekind (T) = E_Anonymous_Access_Type
316 and then Is_Tagged_Type (Designated_Type (T))
317 then
318 if Ekind (Designated_Type (T)) /= E_Incomplete_Type then
319 if Is_First_Subtype (Designated_Type (T)) then
320 Tagged_Type := Designated_Type (T);
321 else
322 Tagged_Type := Base_Type (Designated_Type (T));
323 end if;
325 -- Ada 2005: an incomplete type can be tagged. An operation with an
326 -- access parameter of the type is dispatching.
328 elsif Scope (Designated_Type (T)) = Current_Scope then
329 Tagged_Type := Designated_Type (T);
331 -- Ada 2005 (AI-50217)
333 elsif From_With_Type (Designated_Type (T))
334 and then Present (Non_Limited_View (Designated_Type (T)))
335 then
336 if Is_First_Subtype (Non_Limited_View (Designated_Type (T))) then
337 Tagged_Type := Non_Limited_View (Designated_Type (T));
338 else
339 Tagged_Type := Base_Type (Non_Limited_View
340 (Designated_Type (T)));
341 end if;
342 end if;
343 end if;
345 if No (Tagged_Type) or else Is_Class_Wide_Type (Tagged_Type) then
346 return Empty;
348 -- The dispatching type and the primitive operation must be defined in
349 -- the same scope, except in the case of internal operations and formal
350 -- abstract subprograms.
352 elsif ((Scope (Subp) = Scope (Tagged_Type) or else Is_Internal (Subp))
353 and then (not Is_Generic_Type (Tagged_Type)
354 or else not Comes_From_Source (Subp)))
355 or else
356 (Is_Formal_Subprogram (Subp) and then Is_Abstract_Subprogram (Subp))
357 or else
358 (Nkind (Parent (Parent (Subp))) = N_Subprogram_Renaming_Declaration
359 and then
360 Present (Corresponding_Formal_Spec (Parent (Parent (Subp))))
361 and then
362 Is_Abstract_Subprogram (Subp))
363 then
364 return Tagged_Type;
366 else
367 return Empty;
368 end if;
369 end Check_Controlling_Type;
371 ----------------------------
372 -- Check_Dispatching_Call --
373 ----------------------------
375 procedure Check_Dispatching_Call (N : Node_Id) is
376 Loc : constant Source_Ptr := Sloc (N);
377 Actual : Node_Id;
378 Formal : Entity_Id;
379 Control : Node_Id := Empty;
380 Func : Entity_Id;
381 Subp_Entity : Entity_Id;
382 Indeterm_Ancestor_Call : Boolean := False;
383 Indeterm_Ctrl_Type : Entity_Id;
385 Static_Tag : Node_Id := Empty;
386 -- If a controlling formal has a statically tagged actual, the tag of
387 -- this actual is to be used for any tag-indeterminate actual.
389 procedure Check_Direct_Call;
390 -- In the case when the controlling actual is a class-wide type whose
391 -- root type's completion is a task or protected type, the call is in
392 -- fact direct. This routine detects the above case and modifies the
393 -- call accordingly.
395 procedure Check_Dispatching_Context;
396 -- If the call is tag-indeterminate and the entity being called is
397 -- abstract, verify that the context is a call that will eventually
398 -- provide a tag for dispatching, or has provided one already.
400 -----------------------
401 -- Check_Direct_Call --
402 -----------------------
404 procedure Check_Direct_Call is
405 Typ : Entity_Id := Etype (Control);
407 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
408 -- Determine whether an entity denotes a user-defined equality
410 ------------------------------
411 -- Is_User_Defined_Equality --
412 ------------------------------
414 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
415 begin
416 return
417 Ekind (Id) = E_Function
418 and then Chars (Id) = Name_Op_Eq
419 and then Comes_From_Source (Id)
421 -- Internally generated equalities have a full type declaration
422 -- as their parent.
424 and then Nkind (Parent (Id)) = N_Function_Specification;
425 end Is_User_Defined_Equality;
427 -- Start of processing for Check_Direct_Call
429 begin
430 -- Predefined primitives do not receive wrappers since they are built
431 -- from scratch for the corresponding record of synchronized types.
432 -- Equality is in general predefined, but is excluded from the check
433 -- when it is user-defined.
435 if Is_Predefined_Dispatching_Operation (Subp_Entity)
436 and then not Is_User_Defined_Equality (Subp_Entity)
437 then
438 return;
439 end if;
441 if Is_Class_Wide_Type (Typ) then
442 Typ := Root_Type (Typ);
443 end if;
445 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
446 Typ := Full_View (Typ);
447 end if;
449 if Is_Concurrent_Type (Typ)
450 and then
451 Present (Corresponding_Record_Type (Typ))
452 then
453 Typ := Corresponding_Record_Type (Typ);
455 -- The concurrent record's list of primitives should contain a
456 -- wrapper for the entity of the call, retrieve it.
458 declare
459 Prim : Entity_Id;
460 Prim_Elmt : Elmt_Id;
461 Wrapper_Found : Boolean := False;
463 begin
464 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
465 while Present (Prim_Elmt) loop
466 Prim := Node (Prim_Elmt);
468 if Is_Primitive_Wrapper (Prim)
469 and then Wrapped_Entity (Prim) = Subp_Entity
470 then
471 Wrapper_Found := True;
472 exit;
473 end if;
475 Next_Elmt (Prim_Elmt);
476 end loop;
478 -- A primitive declared between two views should have a
479 -- corresponding wrapper.
481 pragma Assert (Wrapper_Found);
483 -- Modify the call by setting the proper entity
485 Set_Entity (Name (N), Prim);
486 end;
487 end if;
488 end Check_Direct_Call;
490 -------------------------------
491 -- Check_Dispatching_Context --
492 -------------------------------
494 procedure Check_Dispatching_Context is
495 Subp : constant Entity_Id := Entity (Name (N));
496 Typ : constant Entity_Id := Etype (Subp);
497 Par : Node_Id;
499 procedure Abstract_Context_Error;
500 -- Error for abstract call dispatching on result is not dispatching
502 ----------------------------
503 -- Abstract_Context_Error --
504 ----------------------------
506 procedure Abstract_Context_Error is
507 begin
508 if Ekind (Subp) = E_Function then
509 Error_Msg_N
510 ("call to abstract function must be dispatching", N);
512 -- This error can occur for a procedure in the case of a call to
513 -- an abstract formal procedure with a statically tagged operand.
515 else
516 Error_Msg_N
517 ("call to abstract procedure must be dispatching",
519 end if;
520 end Abstract_Context_Error;
522 -- Start of processing for Check_Dispatching_Context
524 begin
525 if Is_Abstract_Subprogram (Subp)
526 and then No (Controlling_Argument (N))
527 then
528 if Present (Alias (Subp))
529 and then not Is_Abstract_Subprogram (Alias (Subp))
530 and then No (DTC_Entity (Subp))
531 then
532 -- Private overriding of inherited abstract operation, call is
533 -- legal.
535 Set_Entity (Name (N), Alias (Subp));
536 return;
538 else
539 -- We need to determine whether the context of the call
540 -- provides a tag to make the call dispatching. This requires
541 -- the call to be the actual in an enclosing call, and that
542 -- actual must be controlling. If the call is an operand of
543 -- equality, the other operand must not ve abstract.
545 if not Is_Tagged_Type (Typ)
546 and then not
547 (Ekind (Typ) = E_Anonymous_Access_Type
548 and then Is_Tagged_Type (Designated_Type (Typ)))
549 then
550 Abstract_Context_Error;
551 return;
552 end if;
554 Par := Parent (N);
556 if Nkind (Par) = N_Parameter_Association then
557 Par := Parent (Par);
558 end if;
560 while Present (Par) loop
561 if Nkind_In (Par, N_Function_Call,
562 N_Procedure_Call_Statement)
563 and then Is_Entity_Name (Name (Par))
564 then
565 declare
566 A : Node_Id;
567 F : Entity_Id;
569 begin
570 -- Find formal for which call is the actual.
572 F := First_Formal (Entity (Name (Par)));
573 A := First_Actual (Par);
574 while Present (F) loop
575 if Is_Controlling_Formal (F)
576 and then (N = A or else Parent (N) = A)
577 then
578 return;
579 end if;
581 Next_Formal (F);
582 Next_Actual (A);
583 end loop;
585 Error_Msg_N
586 ("call to abstract function must be dispatching", N);
587 return;
588 end;
590 -- For equalitiy operators, one of the operands must be
591 -- statically or dynamically tagged.
593 elsif Nkind_In (Par, N_Op_Eq, N_Op_Ne) then
594 if N = Right_Opnd (Par)
595 and then Is_Tag_Indeterminate (Left_Opnd (Par))
596 then
597 Abstract_Context_Error;
599 elsif N = Left_Opnd (Par)
600 and then Is_Tag_Indeterminate (Right_Opnd (Par))
601 then
602 Abstract_Context_Error;
603 end if;
605 return;
607 elsif Nkind (Par) = N_Assignment_Statement then
608 return;
610 elsif Nkind (Par) = N_Qualified_Expression
611 or else Nkind (Par) = N_Unchecked_Type_Conversion
612 then
613 Par := Parent (Par);
615 else
616 Abstract_Context_Error;
617 return;
618 end if;
619 end loop;
620 end if;
621 end if;
622 end Check_Dispatching_Context;
624 -- Start of processing for Check_Dispatching_Call
626 begin
627 -- Find a controlling argument, if any
629 if Present (Parameter_Associations (N)) then
630 Subp_Entity := Entity (Name (N));
632 Actual := First_Actual (N);
633 Formal := First_Formal (Subp_Entity);
634 while Present (Actual) loop
635 Control := Find_Controlling_Arg (Actual);
636 exit when Present (Control);
638 -- Check for the case where the actual is a tag-indeterminate call
639 -- whose result type is different than the tagged type associated
640 -- with the containing call, but is an ancestor of the type.
642 if Is_Controlling_Formal (Formal)
643 and then Is_Tag_Indeterminate (Actual)
644 and then Base_Type (Etype (Actual)) /= Base_Type (Etype (Formal))
645 and then Is_Ancestor (Etype (Actual), Etype (Formal))
646 then
647 Indeterm_Ancestor_Call := True;
648 Indeterm_Ctrl_Type := Etype (Formal);
650 -- If the formal is controlling but the actual is not, the type
651 -- of the actual is statically known, and may be used as the
652 -- controlling tag for some other tag-indeterminate actual.
654 elsif Is_Controlling_Formal (Formal)
655 and then Is_Entity_Name (Actual)
656 and then Is_Tagged_Type (Etype (Actual))
657 then
658 Static_Tag := Actual;
659 end if;
661 Next_Actual (Actual);
662 Next_Formal (Formal);
663 end loop;
665 -- If the call doesn't have a controlling actual but does have an
666 -- indeterminate actual that requires dispatching treatment, then an
667 -- object is needed that will serve as the controlling argument for
668 -- a dispatching call on the indeterminate actual. This can only
669 -- occur in the unusual situation of a default actual given by
670 -- a tag-indeterminate call and where the type of the call is an
671 -- ancestor of the type associated with a containing call to an
672 -- inherited operation (see AI-239).
674 -- Rather than create an object of the tagged type, which would
675 -- be problematic for various reasons (default initialization,
676 -- discriminants), the tag of the containing call's associated
677 -- tagged type is directly used to control the dispatching.
679 if No (Control)
680 and then Indeterm_Ancestor_Call
681 and then No (Static_Tag)
682 then
683 Control :=
684 Make_Attribute_Reference (Loc,
685 Prefix => New_Occurrence_Of (Indeterm_Ctrl_Type, Loc),
686 Attribute_Name => Name_Tag);
688 Analyze (Control);
689 end if;
691 if Present (Control) then
693 -- Verify that no controlling arguments are statically tagged
695 if Debug_Flag_E then
696 Write_Str ("Found Dispatching call");
697 Write_Int (Int (N));
698 Write_Eol;
699 end if;
701 Actual := First_Actual (N);
702 while Present (Actual) loop
703 if Actual /= Control then
705 if not Is_Controlling_Actual (Actual) then
706 null; -- Can be anything
708 elsif Is_Dynamically_Tagged (Actual) then
709 null; -- Valid parameter
711 elsif Is_Tag_Indeterminate (Actual) then
713 -- The tag is inherited from the enclosing call (the node
714 -- we are currently analyzing). Explicitly expand the
715 -- actual, since the previous call to Expand (from
716 -- Resolve_Call) had no way of knowing about the
717 -- required dispatching.
719 Propagate_Tag (Control, Actual);
721 else
722 Error_Msg_N
723 ("controlling argument is not dynamically tagged",
724 Actual);
725 return;
726 end if;
727 end if;
729 Next_Actual (Actual);
730 end loop;
732 -- Mark call as a dispatching call
734 Set_Controlling_Argument (N, Control);
735 Check_Restriction (No_Dispatching_Calls, N);
737 -- The dispatching call may need to be converted into a direct
738 -- call in certain cases.
740 Check_Direct_Call;
742 -- If there is a statically tagged actual and a tag-indeterminate
743 -- call to a function of the ancestor (such as that provided by a
744 -- default), then treat this as a dispatching call and propagate
745 -- the tag to the tag-indeterminate call(s).
747 elsif Present (Static_Tag) and then Indeterm_Ancestor_Call then
748 Control :=
749 Make_Attribute_Reference (Loc,
750 Prefix =>
751 New_Occurrence_Of (Etype (Static_Tag), Loc),
752 Attribute_Name => Name_Tag);
754 Analyze (Control);
756 Actual := First_Actual (N);
757 Formal := First_Formal (Subp_Entity);
758 while Present (Actual) loop
759 if Is_Tag_Indeterminate (Actual)
760 and then Is_Controlling_Formal (Formal)
761 then
762 Propagate_Tag (Control, Actual);
763 end if;
765 Next_Actual (Actual);
766 Next_Formal (Formal);
767 end loop;
769 Check_Dispatching_Context;
771 else
772 -- The call is not dispatching, so check that there aren't any
773 -- tag-indeterminate abstract calls left.
775 Actual := First_Actual (N);
776 while Present (Actual) loop
777 if Is_Tag_Indeterminate (Actual) then
779 -- Function call case
781 if Nkind (Original_Node (Actual)) = N_Function_Call then
782 Func := Entity (Name (Original_Node (Actual)));
784 -- If the actual is an attribute then it can't be abstract
785 -- (the only current case of a tag-indeterminate attribute
786 -- is the stream Input attribute).
788 elsif
789 Nkind (Original_Node (Actual)) = N_Attribute_Reference
790 then
791 Func := Empty;
793 -- Only other possibility is a qualified expression whose
794 -- constituent expression is itself a call.
796 else
797 Func :=
798 Entity (Name
799 (Original_Node
800 (Expression (Original_Node (Actual)))));
801 end if;
803 if Present (Func) and then Is_Abstract_Subprogram (Func) then
804 Error_Msg_N
805 ("call to abstract function must be dispatching", N);
806 end if;
807 end if;
809 Next_Actual (Actual);
810 end loop;
812 Check_Dispatching_Context;
813 end if;
815 else
816 -- If dispatching on result, the enclosing call, if any, will
817 -- determine the controlling argument. Otherwise this is the
818 -- primitive operation of the root type.
820 Check_Dispatching_Context;
821 end if;
822 end Check_Dispatching_Call;
824 ---------------------------------
825 -- Check_Dispatching_Operation --
826 ---------------------------------
828 procedure Check_Dispatching_Operation (Subp, Old_Subp : Entity_Id) is
829 Tagged_Type : Entity_Id;
830 Has_Dispatching_Parent : Boolean := False;
831 Body_Is_Last_Primitive : Boolean := False;
832 Ovr_Subp : Entity_Id := Empty;
834 begin
835 if not Ekind_In (Subp, E_Procedure, E_Function) then
836 return;
837 end if;
839 Set_Is_Dispatching_Operation (Subp, False);
840 Tagged_Type := Find_Dispatching_Type (Subp);
842 -- Ada 2005 (AI-345): Use the corresponding record (if available).
843 -- Required because primitives of concurrent types are be attached
844 -- to the corresponding record (not to the concurrent type).
846 if Ada_Version >= Ada_2005
847 and then Present (Tagged_Type)
848 and then Is_Concurrent_Type (Tagged_Type)
849 and then Present (Corresponding_Record_Type (Tagged_Type))
850 then
851 Tagged_Type := Corresponding_Record_Type (Tagged_Type);
852 end if;
854 -- (AI-345): The task body procedure is not a primitive of the tagged
855 -- type
857 if Present (Tagged_Type)
858 and then Is_Concurrent_Record_Type (Tagged_Type)
859 and then Present (Corresponding_Concurrent_Type (Tagged_Type))
860 and then Is_Task_Type (Corresponding_Concurrent_Type (Tagged_Type))
861 and then Subp = Get_Task_Body_Procedure
862 (Corresponding_Concurrent_Type (Tagged_Type))
863 then
864 return;
865 end if;
867 -- If Subp is derived from a dispatching operation then it should
868 -- always be treated as dispatching. In this case various checks
869 -- below will be bypassed. Makes sure that late declarations for
870 -- inherited private subprograms are treated as dispatching, even
871 -- if the associated tagged type is already frozen.
873 Has_Dispatching_Parent :=
874 Present (Alias (Subp))
875 and then Is_Dispatching_Operation (Alias (Subp));
877 if No (Tagged_Type) then
879 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
880 -- with an abstract interface type unless the interface acts as a
881 -- parent type in a derivation. If the interface type is a formal
882 -- type then the operation is not primitive and therefore legal.
884 declare
885 E : Entity_Id;
886 Typ : Entity_Id;
888 begin
889 E := First_Entity (Subp);
890 while Present (E) loop
892 -- For an access parameter, check designated type
894 if Ekind (Etype (E)) = E_Anonymous_Access_Type then
895 Typ := Designated_Type (Etype (E));
896 else
897 Typ := Etype (E);
898 end if;
900 if Comes_From_Source (Subp)
901 and then Is_Interface (Typ)
902 and then not Is_Class_Wide_Type (Typ)
903 and then not Is_Derived_Type (Typ)
904 and then not Is_Generic_Type (Typ)
905 and then not In_Instance
906 then
907 Error_Msg_N ("?declaration of& is too late!", Subp);
908 Error_Msg_NE -- CODEFIX??
909 ("\spec should appear immediately after declaration of &!",
910 Subp, Typ);
911 exit;
912 end if;
914 Next_Entity (E);
915 end loop;
917 -- In case of functions check also the result type
919 if Ekind (Subp) = E_Function then
920 if Is_Access_Type (Etype (Subp)) then
921 Typ := Designated_Type (Etype (Subp));
922 else
923 Typ := Etype (Subp);
924 end if;
926 -- The following should be better commented, especially since
927 -- we just added several new conditions here ???
929 if Comes_From_Source (Subp)
930 and then Is_Interface (Typ)
931 and then not Is_Class_Wide_Type (Typ)
932 and then not Is_Derived_Type (Typ)
933 and then not Is_Generic_Type (Typ)
934 and then not In_Instance
935 then
936 Error_Msg_N ("?declaration of& is too late!", Subp);
937 Error_Msg_NE
938 ("\spec should appear immediately after declaration of &!",
939 Subp, Typ);
940 end if;
941 end if;
942 end;
944 return;
946 -- The subprograms build internally after the freezing point (such as
947 -- init procs, interface thunks, type support subprograms, and Offset
948 -- to top functions for accessing interface components in variable
949 -- size tagged types) are not primitives.
951 elsif Is_Frozen (Tagged_Type)
952 and then not Comes_From_Source (Subp)
953 and then not Has_Dispatching_Parent
954 then
955 -- Complete decoration of internally built subprograms that override
956 -- a dispatching primitive. These entities correspond with the
957 -- following cases:
959 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
960 -- to override functions of nonabstract null extensions. These
961 -- primitives were added to the list of primitives of the tagged
962 -- type by Make_Controlling_Function_Wrappers. However, attribute
963 -- Is_Dispatching_Operation must be set to true.
965 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
966 -- primitives.
968 -- 3. Subprograms associated with stream attributes (built by
969 -- New_Stream_Subprogram)
971 if Present (Old_Subp)
972 and then Present (Overridden_Operation (Subp))
973 and then Is_Dispatching_Operation (Old_Subp)
974 then
975 pragma Assert
976 ((Ekind (Subp) = E_Function
977 and then Is_Dispatching_Operation (Old_Subp)
978 and then Is_Null_Extension (Base_Type (Etype (Subp))))
979 or else
980 (Ekind (Subp) = E_Procedure
981 and then Is_Dispatching_Operation (Old_Subp)
982 and then Present (Alias (Old_Subp))
983 and then Is_Null_Interface_Primitive
984 (Ultimate_Alias (Old_Subp)))
985 or else Get_TSS_Name (Subp) = TSS_Stream_Read
986 or else Get_TSS_Name (Subp) = TSS_Stream_Write);
988 Check_Controlling_Formals (Tagged_Type, Subp);
989 Override_Dispatching_Operation (Tagged_Type, Old_Subp, Subp);
990 Set_Is_Dispatching_Operation (Subp);
991 end if;
993 return;
995 -- The operation may be a child unit, whose scope is the defining
996 -- package, but which is not a primitive operation of the type.
998 elsif Is_Child_Unit (Subp) then
999 return;
1001 -- If the subprogram is not defined in a package spec, the only case
1002 -- where it can be a dispatching op is when it overrides an operation
1003 -- before the freezing point of the type.
1005 elsif ((not Is_Package_Or_Generic_Package (Scope (Subp)))
1006 or else In_Package_Body (Scope (Subp)))
1007 and then not Has_Dispatching_Parent
1008 then
1009 if not Comes_From_Source (Subp)
1010 or else (Present (Old_Subp) and then not Is_Frozen (Tagged_Type))
1011 then
1012 null;
1014 -- If the type is already frozen, the overriding is not allowed
1015 -- except when Old_Subp is not a dispatching operation (which can
1016 -- occur when Old_Subp was inherited by an untagged type). However,
1017 -- a body with no previous spec freezes the type *after* its
1018 -- declaration, and therefore is a legal overriding (unless the type
1019 -- has already been frozen). Only the first such body is legal.
1021 elsif Present (Old_Subp)
1022 and then Is_Dispatching_Operation (Old_Subp)
1023 then
1024 if Comes_From_Source (Subp)
1025 and then
1026 (Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Body
1027 or else Nkind (Unit_Declaration_Node (Subp)) in N_Body_Stub)
1028 then
1029 declare
1030 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1031 Decl_Item : Node_Id;
1033 begin
1034 -- ??? The checks here for whether the type has been frozen
1035 -- prior to the new body are not complete. It's not simple
1036 -- to check frozenness at this point since the body has
1037 -- already caused the type to be prematurely frozen in
1038 -- Analyze_Declarations, but we're forced to recheck this
1039 -- here because of the odd rule interpretation that allows
1040 -- the overriding if the type wasn't frozen prior to the
1041 -- body. The freezing action should probably be delayed
1042 -- until after the spec is seen, but that's a tricky
1043 -- change to the delicate freezing code.
1045 -- Look at each declaration following the type up until the
1046 -- new subprogram body. If any of the declarations is a body
1047 -- then the type has been frozen already so the overriding
1048 -- primitive is illegal.
1050 Decl_Item := Next (Parent (Tagged_Type));
1051 while Present (Decl_Item)
1052 and then (Decl_Item /= Subp_Body)
1053 loop
1054 if Comes_From_Source (Decl_Item)
1055 and then (Nkind (Decl_Item) in N_Proper_Body
1056 or else Nkind (Decl_Item) in N_Body_Stub)
1057 then
1058 Error_Msg_N ("overriding of& is too late!", Subp);
1059 Error_Msg_N
1060 ("\spec should appear immediately after the type!",
1061 Subp);
1062 exit;
1063 end if;
1065 Next (Decl_Item);
1066 end loop;
1068 -- If the subprogram doesn't follow in the list of
1069 -- declarations including the type then the type has
1070 -- definitely been frozen already and the body is illegal.
1072 if No (Decl_Item) then
1073 Error_Msg_N ("overriding of& is too late!", Subp);
1074 Error_Msg_N
1075 ("\spec should appear immediately after the type!",
1076 Subp);
1078 elsif Is_Frozen (Subp) then
1080 -- The subprogram body declares a primitive operation.
1081 -- If the subprogram is already frozen, we must update
1082 -- its dispatching information explicitly here. The
1083 -- information is taken from the overridden subprogram.
1084 -- We must also generate a cross-reference entry because
1085 -- references to other primitives were already created
1086 -- when type was frozen.
1088 Body_Is_Last_Primitive := True;
1090 if Present (DTC_Entity (Old_Subp)) then
1091 Set_DTC_Entity (Subp, DTC_Entity (Old_Subp));
1092 Set_DT_Position (Subp, DT_Position (Old_Subp));
1094 if not Restriction_Active (No_Dispatching_Calls) then
1095 if Building_Static_DT (Tagged_Type) then
1097 -- If the static dispatch table has not been
1098 -- built then there is nothing else to do now;
1099 -- otherwise we notify that we cannot build the
1100 -- static dispatch table.
1102 if Has_Dispatch_Table (Tagged_Type) then
1103 Error_Msg_N
1104 ("overriding of& is too late for building" &
1105 " static dispatch tables!", Subp);
1106 Error_Msg_N
1107 ("\spec should appear immediately after" &
1108 " the type!", Subp);
1109 end if;
1111 -- No code required to register primitives in VM
1112 -- targets
1114 elsif VM_Target /= No_VM then
1115 null;
1117 else
1118 Insert_Actions_After (Subp_Body,
1119 Register_Primitive (Sloc (Subp_Body),
1120 Prim => Subp));
1121 end if;
1123 -- Indicate that this is an overriding operation,
1124 -- and replace the overridden entry in the list of
1125 -- primitive operations, which is used for xref
1126 -- generation subsequently.
1128 Generate_Reference (Tagged_Type, Subp, 'P', False);
1129 Override_Dispatching_Operation
1130 (Tagged_Type, Old_Subp, Subp);
1131 end if;
1132 end if;
1133 end if;
1134 end;
1136 else
1137 Error_Msg_N ("overriding of& is too late!", Subp);
1138 Error_Msg_N
1139 ("\subprogram spec should appear immediately after the type!",
1140 Subp);
1141 end if;
1143 -- If the type is not frozen yet and we are not in the overriding
1144 -- case it looks suspiciously like an attempt to define a primitive
1145 -- operation, which requires the declaration to be in a package spec
1146 -- (3.2.3(6)). Only report cases where the type and subprogram are
1147 -- in the same declaration list (by checking the enclosing parent
1148 -- declarations), to avoid spurious warnings on subprograms in
1149 -- instance bodies when the type is declared in the instance spec
1150 -- but hasn't been frozen by the instance body.
1152 elsif not Is_Frozen (Tagged_Type)
1153 and then In_Same_List (Parent (Tagged_Type), Parent (Parent (Subp)))
1154 then
1155 Error_Msg_N
1156 ("?not dispatching (must be defined in a package spec)", Subp);
1157 return;
1159 -- When the type is frozen, it is legitimate to define a new
1160 -- non-primitive operation.
1162 else
1163 return;
1164 end if;
1166 -- Now, we are sure that the scope is a package spec. If the subprogram
1167 -- is declared after the freezing point of the type that's an error
1169 elsif Is_Frozen (Tagged_Type) and then not Has_Dispatching_Parent then
1170 Error_Msg_N ("this primitive operation is declared too late", Subp);
1171 Error_Msg_NE
1172 ("?no primitive operations for& after this line",
1173 Freeze_Node (Tagged_Type),
1174 Tagged_Type);
1175 return;
1176 end if;
1178 Check_Controlling_Formals (Tagged_Type, Subp);
1180 Ovr_Subp := Old_Subp;
1182 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1183 -- overridden by Subp
1185 if No (Ovr_Subp)
1186 and then Ada_Version >= Ada_2012
1187 then
1188 Ovr_Subp := Find_Hidden_Overridden_Primitive (Subp);
1189 end if;
1191 -- Now it should be a correct primitive operation, put it in the list
1193 if Present (Ovr_Subp) then
1195 -- If the type has interfaces we complete this check after we set
1196 -- attribute Is_Dispatching_Operation.
1198 Check_Subtype_Conformant (Subp, Ovr_Subp);
1200 if (Chars (Subp) = Name_Initialize
1201 or else Chars (Subp) = Name_Adjust
1202 or else Chars (Subp) = Name_Finalize)
1203 and then Is_Controlled (Tagged_Type)
1204 and then not Is_Visibly_Controlled (Tagged_Type)
1205 then
1206 Set_Overridden_Operation (Subp, Empty);
1208 -- If the subprogram specification carries an overriding
1209 -- indicator, no need for the warning: it is either redundant,
1210 -- or else an error will be reported.
1212 if Nkind (Parent (Subp)) = N_Procedure_Specification
1213 and then
1214 (Must_Override (Parent (Subp))
1215 or else Must_Not_Override (Parent (Subp)))
1216 then
1217 null;
1219 -- Here we need the warning
1221 else
1222 Error_Msg_NE
1223 ("operation does not override inherited&?", Subp, Subp);
1224 end if;
1226 else
1227 Override_Dispatching_Operation (Tagged_Type, Ovr_Subp, Subp);
1229 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1230 -- that covers abstract interface subprograms we must register it
1231 -- in all the secondary dispatch tables associated with abstract
1232 -- interfaces. We do this now only if not building static tables,
1233 -- nor when the expander is inactive (we avoid trying to register
1234 -- primitives in semantics-only mode, since the type may not have
1235 -- an associated dispatch table). Otherwise the patch code is
1236 -- emitted after those tables are built, to prevent access before
1237 -- elaboration in gigi.
1239 if Body_Is_Last_Primitive and then Full_Expander_Active then
1240 declare
1241 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1242 Elmt : Elmt_Id;
1243 Prim : Node_Id;
1245 begin
1246 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
1247 while Present (Elmt) loop
1248 Prim := Node (Elmt);
1250 -- No code required to register primitives in VM targets
1252 if Present (Alias (Prim))
1253 and then Present (Interface_Alias (Prim))
1254 and then Alias (Prim) = Subp
1255 and then not Building_Static_DT (Tagged_Type)
1256 and then VM_Target = No_VM
1257 then
1258 Insert_Actions_After (Subp_Body,
1259 Register_Primitive (Sloc (Subp_Body), Prim => Prim));
1260 end if;
1262 Next_Elmt (Elmt);
1263 end loop;
1265 -- Redisplay the contents of the updated dispatch table
1267 if Debug_Flag_ZZ then
1268 Write_Str ("Late overriding: ");
1269 Write_DT (Tagged_Type);
1270 end if;
1271 end;
1272 end if;
1273 end if;
1275 -- If the tagged type is a concurrent type then we must be compiling
1276 -- with no code generation (we are either compiling a generic unit or
1277 -- compiling under -gnatc mode) because we have previously tested that
1278 -- no serious errors has been reported. In this case we do not add the
1279 -- primitive to the list of primitives of Tagged_Type but we leave the
1280 -- primitive decorated as a dispatching operation to be able to analyze
1281 -- and report errors associated with the Object.Operation notation.
1283 elsif Is_Concurrent_Type (Tagged_Type) then
1284 pragma Assert (not Expander_Active);
1285 null;
1287 -- If no old subprogram, then we add this as a dispatching operation,
1288 -- but we avoid doing this if an error was posted, to prevent annoying
1289 -- cascaded errors.
1291 elsif not Error_Posted (Subp) then
1292 Add_Dispatching_Operation (Tagged_Type, Subp);
1293 end if;
1295 Set_Is_Dispatching_Operation (Subp, True);
1297 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1298 -- subtype conformance against all the interfaces covered by this
1299 -- primitive.
1301 if Present (Ovr_Subp)
1302 and then Has_Interfaces (Tagged_Type)
1303 then
1304 declare
1305 Ifaces_List : Elist_Id;
1306 Iface_Elmt : Elmt_Id;
1307 Iface_Prim_Elmt : Elmt_Id;
1308 Iface_Prim : Entity_Id;
1309 Ret_Typ : Entity_Id;
1311 begin
1312 Collect_Interfaces (Tagged_Type, Ifaces_List);
1314 Iface_Elmt := First_Elmt (Ifaces_List);
1315 while Present (Iface_Elmt) loop
1316 if not Is_Ancestor (Node (Iface_Elmt), Tagged_Type) then
1317 Iface_Prim_Elmt :=
1318 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
1319 while Present (Iface_Prim_Elmt) loop
1320 Iface_Prim := Node (Iface_Prim_Elmt);
1322 if Is_Interface_Conformant
1323 (Tagged_Type, Iface_Prim, Subp)
1324 then
1325 -- Handle procedures, functions whose return type
1326 -- matches, or functions not returning interfaces
1328 if Ekind (Subp) = E_Procedure
1329 or else Etype (Iface_Prim) = Etype (Subp)
1330 or else not Is_Interface (Etype (Iface_Prim))
1331 then
1332 Check_Subtype_Conformant
1333 (New_Id => Subp,
1334 Old_Id => Iface_Prim,
1335 Err_Loc => Subp,
1336 Skip_Controlling_Formals => True);
1338 -- Handle functions returning interfaces
1340 elsif Implements_Interface
1341 (Etype (Subp), Etype (Iface_Prim))
1342 then
1343 -- Temporarily force both entities to return the
1344 -- same type. Required because Subtype_Conformant
1345 -- does not handle this case.
1347 Ret_Typ := Etype (Iface_Prim);
1348 Set_Etype (Iface_Prim, Etype (Subp));
1350 Check_Subtype_Conformant
1351 (New_Id => Subp,
1352 Old_Id => Iface_Prim,
1353 Err_Loc => Subp,
1354 Skip_Controlling_Formals => True);
1356 Set_Etype (Iface_Prim, Ret_Typ);
1357 end if;
1358 end if;
1360 Next_Elmt (Iface_Prim_Elmt);
1361 end loop;
1362 end if;
1364 Next_Elmt (Iface_Elmt);
1365 end loop;
1366 end;
1367 end if;
1369 if not Body_Is_Last_Primitive then
1370 Set_DT_Position (Subp, No_Uint);
1372 elsif Has_Controlled_Component (Tagged_Type)
1373 and then
1374 (Chars (Subp) = Name_Initialize or else
1375 Chars (Subp) = Name_Adjust or else
1376 Chars (Subp) = Name_Finalize or else
1377 Chars (Subp) = Name_Finalize_Address)
1378 then
1379 declare
1380 F_Node : constant Node_Id := Freeze_Node (Tagged_Type);
1381 Decl : Node_Id;
1382 Old_P : Entity_Id;
1383 Old_Bod : Node_Id;
1384 Old_Spec : Entity_Id;
1386 C_Names : constant array (1 .. 4) of Name_Id :=
1387 (Name_Initialize,
1388 Name_Adjust,
1389 Name_Finalize,
1390 Name_Finalize_Address);
1392 D_Names : constant array (1 .. 4) of TSS_Name_Type :=
1393 (TSS_Deep_Initialize,
1394 TSS_Deep_Adjust,
1395 TSS_Deep_Finalize,
1396 TSS_Finalize_Address);
1398 begin
1399 -- Remove previous controlled function which was constructed and
1400 -- analyzed when the type was frozen. This requires removing the
1401 -- body of the redefined primitive, as well as its specification
1402 -- if needed (there is no spec created for Deep_Initialize, see
1403 -- exp_ch3.adb). We must also dismantle the exception information
1404 -- that may have been generated for it when front end zero-cost
1405 -- tables are enabled.
1407 for J in D_Names'Range loop
1408 Old_P := TSS (Tagged_Type, D_Names (J));
1410 if Present (Old_P)
1411 and then Chars (Subp) = C_Names (J)
1412 then
1413 Old_Bod := Unit_Declaration_Node (Old_P);
1414 Remove (Old_Bod);
1415 Set_Is_Eliminated (Old_P);
1416 Set_Scope (Old_P, Scope (Current_Scope));
1418 if Nkind (Old_Bod) = N_Subprogram_Body
1419 and then Present (Corresponding_Spec (Old_Bod))
1420 then
1421 Old_Spec := Corresponding_Spec (Old_Bod);
1422 Set_Has_Completion (Old_Spec, False);
1423 end if;
1424 end if;
1425 end loop;
1427 Build_Late_Proc (Tagged_Type, Chars (Subp));
1429 -- The new operation is added to the actions of the freeze node
1430 -- for the type, but this node has already been analyzed, so we
1431 -- must retrieve and analyze explicitly the new body.
1433 if Present (F_Node)
1434 and then Present (Actions (F_Node))
1435 then
1436 Decl := Last (Actions (F_Node));
1437 Analyze (Decl);
1438 end if;
1439 end;
1440 end if;
1441 end Check_Dispatching_Operation;
1443 ------------------------------------------
1444 -- Check_Operation_From_Incomplete_Type --
1445 ------------------------------------------
1447 procedure Check_Operation_From_Incomplete_Type
1448 (Subp : Entity_Id;
1449 Typ : Entity_Id)
1451 Full : constant Entity_Id := Full_View (Typ);
1452 Parent_Typ : constant Entity_Id := Etype (Full);
1453 Old_Prim : constant Elist_Id := Primitive_Operations (Parent_Typ);
1454 New_Prim : constant Elist_Id := Primitive_Operations (Full);
1455 Op1, Op2 : Elmt_Id;
1456 Prev : Elmt_Id := No_Elmt;
1458 function Derives_From (Parent_Subp : Entity_Id) return Boolean;
1459 -- Check that Subp has profile of an operation derived from Parent_Subp.
1460 -- Subp must have a parameter or result type that is Typ or an access
1461 -- parameter or access result type that designates Typ.
1463 ------------------
1464 -- Derives_From --
1465 ------------------
1467 function Derives_From (Parent_Subp : Entity_Id) return Boolean is
1468 F1, F2 : Entity_Id;
1470 begin
1471 if Chars (Parent_Subp) /= Chars (Subp) then
1472 return False;
1473 end if;
1475 -- Check that the type of controlling formals is derived from the
1476 -- parent subprogram's controlling formal type (or designated type
1477 -- if the formal type is an anonymous access type).
1479 F1 := First_Formal (Parent_Subp);
1480 F2 := First_Formal (Subp);
1481 while Present (F1) and then Present (F2) loop
1482 if Ekind (Etype (F1)) = E_Anonymous_Access_Type then
1483 if Ekind (Etype (F2)) /= E_Anonymous_Access_Type then
1484 return False;
1485 elsif Designated_Type (Etype (F1)) = Parent_Typ
1486 and then Designated_Type (Etype (F2)) /= Full
1487 then
1488 return False;
1489 end if;
1491 elsif Ekind (Etype (F2)) = E_Anonymous_Access_Type then
1492 return False;
1494 elsif Etype (F1) = Parent_Typ and then Etype (F2) /= Full then
1495 return False;
1496 end if;
1498 Next_Formal (F1);
1499 Next_Formal (F2);
1500 end loop;
1502 -- Check that a controlling result type is derived from the parent
1503 -- subprogram's result type (or designated type if the result type
1504 -- is an anonymous access type).
1506 if Ekind (Parent_Subp) = E_Function then
1507 if Ekind (Subp) /= E_Function then
1508 return False;
1510 elsif Ekind (Etype (Parent_Subp)) = E_Anonymous_Access_Type then
1511 if Ekind (Etype (Subp)) /= E_Anonymous_Access_Type then
1512 return False;
1514 elsif Designated_Type (Etype (Parent_Subp)) = Parent_Typ
1515 and then Designated_Type (Etype (Subp)) /= Full
1516 then
1517 return False;
1518 end if;
1520 elsif Ekind (Etype (Subp)) = E_Anonymous_Access_Type then
1521 return False;
1523 elsif Etype (Parent_Subp) = Parent_Typ
1524 and then Etype (Subp) /= Full
1525 then
1526 return False;
1527 end if;
1529 elsif Ekind (Subp) = E_Function then
1530 return False;
1531 end if;
1533 return No (F1) and then No (F2);
1534 end Derives_From;
1536 -- Start of processing for Check_Operation_From_Incomplete_Type
1538 begin
1539 -- The operation may override an inherited one, or may be a new one
1540 -- altogether. The inherited operation will have been hidden by the
1541 -- current one at the point of the type derivation, so it does not
1542 -- appear in the list of primitive operations of the type. We have to
1543 -- find the proper place of insertion in the list of primitive opera-
1544 -- tions by iterating over the list for the parent type.
1546 Op1 := First_Elmt (Old_Prim);
1547 Op2 := First_Elmt (New_Prim);
1548 while Present (Op1) and then Present (Op2) loop
1549 if Derives_From (Node (Op1)) then
1550 if No (Prev) then
1552 -- Avoid adding it to the list of primitives if already there!
1554 if Node (Op2) /= Subp then
1555 Prepend_Elmt (Subp, New_Prim);
1556 end if;
1558 else
1559 Insert_Elmt_After (Subp, Prev);
1560 end if;
1562 return;
1563 end if;
1565 Prev := Op2;
1566 Next_Elmt (Op1);
1567 Next_Elmt (Op2);
1568 end loop;
1570 -- Operation is a new primitive
1572 Append_Elmt (Subp, New_Prim);
1573 end Check_Operation_From_Incomplete_Type;
1575 ---------------------------------------
1576 -- Check_Operation_From_Private_View --
1577 ---------------------------------------
1579 procedure Check_Operation_From_Private_View (Subp, Old_Subp : Entity_Id) is
1580 Tagged_Type : Entity_Id;
1582 begin
1583 if Is_Dispatching_Operation (Alias (Subp)) then
1584 Set_Scope (Subp, Current_Scope);
1585 Tagged_Type := Find_Dispatching_Type (Subp);
1587 -- Add Old_Subp to primitive operations if not already present
1589 if Present (Tagged_Type) and then Is_Tagged_Type (Tagged_Type) then
1590 Append_Unique_Elmt (Old_Subp, Primitive_Operations (Tagged_Type));
1592 -- If Old_Subp isn't already marked as dispatching then this is
1593 -- the case of an operation of an untagged private type fulfilled
1594 -- by a tagged type that overrides an inherited dispatching
1595 -- operation, so we set the necessary dispatching attributes here.
1597 if not Is_Dispatching_Operation (Old_Subp) then
1599 -- If the untagged type has no discriminants, and the full
1600 -- view is constrained, there will be a spurious mismatch of
1601 -- subtypes on the controlling arguments, because the tagged
1602 -- type is the internal base type introduced in the derivation.
1603 -- Use the original type to verify conformance, rather than the
1604 -- base type.
1606 if not Comes_From_Source (Tagged_Type)
1607 and then Has_Discriminants (Tagged_Type)
1608 then
1609 declare
1610 Formal : Entity_Id;
1612 begin
1613 Formal := First_Formal (Old_Subp);
1614 while Present (Formal) loop
1615 if Tagged_Type = Base_Type (Etype (Formal)) then
1616 Tagged_Type := Etype (Formal);
1617 end if;
1619 Next_Formal (Formal);
1620 end loop;
1621 end;
1623 if Tagged_Type = Base_Type (Etype (Old_Subp)) then
1624 Tagged_Type := Etype (Old_Subp);
1625 end if;
1626 end if;
1628 Check_Controlling_Formals (Tagged_Type, Old_Subp);
1629 Set_Is_Dispatching_Operation (Old_Subp, True);
1630 Set_DT_Position (Old_Subp, No_Uint);
1631 end if;
1633 -- If the old subprogram is an explicit renaming of some other
1634 -- entity, it is not overridden by the inherited subprogram.
1635 -- Otherwise, update its alias and other attributes.
1637 if Present (Alias (Old_Subp))
1638 and then Nkind (Unit_Declaration_Node (Old_Subp)) /=
1639 N_Subprogram_Renaming_Declaration
1640 then
1641 Set_Alias (Old_Subp, Alias (Subp));
1643 -- The derived subprogram should inherit the abstractness of
1644 -- the parent subprogram (except in the case of a function
1645 -- returning the type). This sets the abstractness properly
1646 -- for cases where a private extension may have inherited an
1647 -- abstract operation, but the full type is derived from a
1648 -- descendant type and inherits a nonabstract version.
1650 if Etype (Subp) /= Tagged_Type then
1651 Set_Is_Abstract_Subprogram
1652 (Old_Subp, Is_Abstract_Subprogram (Alias (Subp)));
1653 end if;
1654 end if;
1655 end if;
1656 end if;
1657 end Check_Operation_From_Private_View;
1659 --------------------------
1660 -- Find_Controlling_Arg --
1661 --------------------------
1663 function Find_Controlling_Arg (N : Node_Id) return Node_Id is
1664 Orig_Node : constant Node_Id := Original_Node (N);
1665 Typ : Entity_Id;
1667 begin
1668 if Nkind (Orig_Node) = N_Qualified_Expression then
1669 return Find_Controlling_Arg (Expression (Orig_Node));
1670 end if;
1672 -- Dispatching on result case. If expansion is disabled, the node still
1673 -- has the structure of a function call. However, if the function name
1674 -- is an operator and the call was given in infix form, the original
1675 -- node has no controlling result and we must examine the current node.
1677 if Nkind (N) = N_Function_Call
1678 and then Present (Controlling_Argument (N))
1679 and then Has_Controlling_Result (Entity (Name (N)))
1680 then
1681 return Controlling_Argument (N);
1683 -- If expansion is enabled, the call may have been transformed into
1684 -- an indirect call, and we need to recover the original node.
1686 elsif Nkind (Orig_Node) = N_Function_Call
1687 and then Present (Controlling_Argument (Orig_Node))
1688 and then Has_Controlling_Result (Entity (Name (Orig_Node)))
1689 then
1690 return Controlling_Argument (Orig_Node);
1692 -- Type conversions are dynamically tagged if the target type, or its
1693 -- designated type, are classwide. An interface conversion expands into
1694 -- a dereference, so test must be performed on the original node.
1696 elsif Nkind (Orig_Node) = N_Type_Conversion
1697 and then Nkind (N) = N_Explicit_Dereference
1698 and then Is_Controlling_Actual (N)
1699 then
1700 declare
1701 Target_Type : constant Entity_Id :=
1702 Entity (Subtype_Mark (Orig_Node));
1704 begin
1705 if Is_Class_Wide_Type (Target_Type) then
1706 return N;
1708 elsif Is_Access_Type (Target_Type)
1709 and then Is_Class_Wide_Type (Designated_Type (Target_Type))
1710 then
1711 return N;
1713 else
1714 return Empty;
1715 end if;
1716 end;
1718 -- Normal case
1720 elsif Is_Controlling_Actual (N)
1721 or else
1722 (Nkind (Parent (N)) = N_Qualified_Expression
1723 and then Is_Controlling_Actual (Parent (N)))
1724 then
1725 Typ := Etype (N);
1727 if Is_Access_Type (Typ) then
1729 -- In the case of an Access attribute, use the type of the prefix,
1730 -- since in the case of an actual for an access parameter, the
1731 -- attribute's type may be of a specific designated type, even
1732 -- though the prefix type is class-wide.
1734 if Nkind (N) = N_Attribute_Reference then
1735 Typ := Etype (Prefix (N));
1737 -- An allocator is dispatching if the type of qualified expression
1738 -- is class_wide, in which case this is the controlling type.
1740 elsif Nkind (Orig_Node) = N_Allocator
1741 and then Nkind (Expression (Orig_Node)) = N_Qualified_Expression
1742 then
1743 Typ := Etype (Expression (Orig_Node));
1744 else
1745 Typ := Designated_Type (Typ);
1746 end if;
1747 end if;
1749 if Is_Class_Wide_Type (Typ)
1750 or else
1751 (Nkind (Parent (N)) = N_Qualified_Expression
1752 and then Is_Access_Type (Etype (N))
1753 and then Is_Class_Wide_Type (Designated_Type (Etype (N))))
1754 then
1755 return N;
1756 end if;
1757 end if;
1759 return Empty;
1760 end Find_Controlling_Arg;
1762 ---------------------------
1763 -- Find_Dispatching_Type --
1764 ---------------------------
1766 function Find_Dispatching_Type (Subp : Entity_Id) return Entity_Id is
1767 A_Formal : Entity_Id;
1768 Formal : Entity_Id;
1769 Ctrl_Type : Entity_Id;
1771 begin
1772 if Ekind_In (Subp, E_Function, E_Procedure)
1773 and then Present (DTC_Entity (Subp))
1774 then
1775 return Scope (DTC_Entity (Subp));
1777 -- For subprograms internally generated by derivations of tagged types
1778 -- use the alias subprogram as a reference to locate the dispatching
1779 -- type of Subp.
1781 elsif not Comes_From_Source (Subp)
1782 and then Present (Alias (Subp))
1783 and then Is_Dispatching_Operation (Alias (Subp))
1784 then
1785 if Ekind (Alias (Subp)) = E_Function
1786 and then Has_Controlling_Result (Alias (Subp))
1787 then
1788 return Check_Controlling_Type (Etype (Subp), Subp);
1790 else
1791 Formal := First_Formal (Subp);
1792 A_Formal := First_Formal (Alias (Subp));
1793 while Present (A_Formal) loop
1794 if Is_Controlling_Formal (A_Formal) then
1795 return Check_Controlling_Type (Etype (Formal), Subp);
1796 end if;
1798 Next_Formal (Formal);
1799 Next_Formal (A_Formal);
1800 end loop;
1802 pragma Assert (False);
1803 return Empty;
1804 end if;
1806 -- General case
1808 else
1809 Formal := First_Formal (Subp);
1810 while Present (Formal) loop
1811 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
1813 if Present (Ctrl_Type) then
1814 return Ctrl_Type;
1815 end if;
1817 Next_Formal (Formal);
1818 end loop;
1820 -- The subprogram may also be dispatching on result
1822 if Present (Etype (Subp)) then
1823 return Check_Controlling_Type (Etype (Subp), Subp);
1824 end if;
1825 end if;
1827 pragma Assert (not Is_Dispatching_Operation (Subp));
1828 return Empty;
1829 end Find_Dispatching_Type;
1831 --------------------------------------
1832 -- Find_Hidden_Overridden_Primitive --
1833 --------------------------------------
1835 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id
1837 Tag_Typ : constant Entity_Id := Find_Dispatching_Type (S);
1838 Elmt : Elmt_Id;
1839 Orig_Prim : Entity_Id;
1840 Prim : Entity_Id;
1841 Vis_List : Elist_Id;
1843 begin
1844 -- This Ada 2012 rule is valid only for type extensions or private
1845 -- extensions.
1847 if No (Tag_Typ)
1848 or else not Is_Record_Type (Tag_Typ)
1849 or else Etype (Tag_Typ) = Tag_Typ
1850 then
1851 return Empty;
1852 end if;
1854 -- Collect the list of visible ancestor of the tagged type
1856 Vis_List := Visible_Ancestors (Tag_Typ);
1858 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
1859 while Present (Elmt) loop
1860 Prim := Node (Elmt);
1862 -- Find an inherited hidden dispatching primitive with the name of S
1863 -- and a type-conformant profile.
1865 if Present (Alias (Prim))
1866 and then Is_Hidden (Alias (Prim))
1867 and then Find_Dispatching_Type (Alias (Prim)) /= Tag_Typ
1868 and then Primitive_Names_Match (S, Prim)
1869 and then Type_Conformant (S, Prim)
1870 then
1871 declare
1872 Vis_Ancestor : Elmt_Id;
1873 Elmt : Elmt_Id;
1875 begin
1876 -- The original corresponding operation of Prim must be an
1877 -- operation of a visible ancestor of the dispatching type S,
1878 -- and the original corresponding operation of S2 must be
1879 -- visible.
1881 Orig_Prim := Original_Corresponding_Operation (Prim);
1883 if Orig_Prim /= Prim
1884 and then Is_Immediately_Visible (Orig_Prim)
1885 then
1886 Vis_Ancestor := First_Elmt (Vis_List);
1887 while Present (Vis_Ancestor) loop
1888 Elmt :=
1889 First_Elmt (Primitive_Operations (Node (Vis_Ancestor)));
1890 while Present (Elmt) loop
1891 if Node (Elmt) = Orig_Prim then
1892 Set_Overridden_Operation (S, Prim);
1893 Set_Alias (Prim, Orig_Prim);
1894 return Prim;
1895 end if;
1897 Next_Elmt (Elmt);
1898 end loop;
1900 Next_Elmt (Vis_Ancestor);
1901 end loop;
1902 end if;
1903 end;
1904 end if;
1906 Next_Elmt (Elmt);
1907 end loop;
1909 return Empty;
1910 end Find_Hidden_Overridden_Primitive;
1912 ---------------------------------------
1913 -- Find_Primitive_Covering_Interface --
1914 ---------------------------------------
1916 function Find_Primitive_Covering_Interface
1917 (Tagged_Type : Entity_Id;
1918 Iface_Prim : Entity_Id) return Entity_Id
1920 E : Entity_Id;
1921 El : Elmt_Id;
1923 begin
1924 pragma Assert (Is_Interface (Find_Dispatching_Type (Iface_Prim))
1925 or else (Present (Alias (Iface_Prim))
1926 and then
1927 Is_Interface
1928 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
1930 -- Search in the homonym chain. Done to speed up locating visible
1931 -- entities and required to catch primitives associated with the partial
1932 -- view of private types when processing the corresponding full view.
1934 E := Current_Entity (Iface_Prim);
1935 while Present (E) loop
1936 if Is_Subprogram (E)
1937 and then Is_Dispatching_Operation (E)
1938 and then Is_Interface_Conformant (Tagged_Type, Iface_Prim, E)
1939 then
1940 return E;
1941 end if;
1943 E := Homonym (E);
1944 end loop;
1946 -- Search in the list of primitives of the type. Required to locate
1947 -- the covering primitive if the covering primitive is not visible
1948 -- (for example, non-visible inherited primitive of private type).
1950 El := First_Elmt (Primitive_Operations (Tagged_Type));
1951 while Present (El) loop
1952 E := Node (El);
1954 -- Keep separate the management of internal entities that link
1955 -- primitives with interface primitives from tagged type primitives.
1957 if No (Interface_Alias (E)) then
1958 if Present (Alias (E)) then
1960 -- This interface primitive has not been covered yet
1962 if Alias (E) = Iface_Prim then
1963 return E;
1965 -- The covering primitive was inherited
1967 elsif Overridden_Operation (Ultimate_Alias (E))
1968 = Iface_Prim
1969 then
1970 return E;
1971 end if;
1972 end if;
1974 -- Check if E covers the interface primitive (includes case in
1975 -- which E is an inherited private primitive).
1977 if Is_Interface_Conformant (Tagged_Type, Iface_Prim, E) then
1978 return E;
1979 end if;
1981 -- Use the internal entity that links the interface primitive with
1982 -- the covering primitive to locate the entity.
1984 elsif Interface_Alias (E) = Iface_Prim then
1985 return Alias (E);
1986 end if;
1988 Next_Elmt (El);
1989 end loop;
1991 -- Not found
1993 return Empty;
1994 end Find_Primitive_Covering_Interface;
1996 ---------------------------
1997 -- Inherited_Subprograms --
1998 ---------------------------
2000 function Inherited_Subprograms (S : Entity_Id) return Subprogram_List is
2001 Result : Subprogram_List (1 .. 6000);
2002 -- 6000 here is intended to be infinity. We could use an expandable
2003 -- table, but it would be awfully heavy, and there is no way that we
2004 -- could reasonably exceed this value.
2006 N : Int := 0;
2007 -- Number of entries in Result
2009 Parent_Op : Entity_Id;
2010 -- Traverses the Overridden_Operation chain
2012 procedure Store_IS (E : Entity_Id);
2013 -- Stores E in Result if not already stored
2015 --------------
2016 -- Store_IS --
2017 --------------
2019 procedure Store_IS (E : Entity_Id) is
2020 begin
2021 for J in 1 .. N loop
2022 if E = Result (J) then
2023 return;
2024 end if;
2025 end loop;
2027 N := N + 1;
2028 Result (N) := E;
2029 end Store_IS;
2031 -- Start of processing for Inherited_Subprograms
2033 begin
2034 if Present (S) and then Is_Dispatching_Operation (S) then
2036 -- Deal with direct inheritance
2038 Parent_Op := S;
2039 loop
2040 Parent_Op := Overridden_Operation (Parent_Op);
2041 exit when No (Parent_Op);
2043 if Is_Subprogram (Parent_Op)
2044 or else Is_Generic_Subprogram (Parent_Op)
2045 then
2046 Store_IS (Parent_Op);
2047 end if;
2048 end loop;
2050 -- Now deal with interfaces
2052 declare
2053 Tag_Typ : Entity_Id;
2054 Prim : Entity_Id;
2055 Elmt : Elmt_Id;
2057 begin
2058 Tag_Typ := Find_Dispatching_Type (S);
2060 if Is_Concurrent_Type (Tag_Typ) then
2061 Tag_Typ := Corresponding_Record_Type (Tag_Typ);
2062 end if;
2064 -- Search primitive operations of dispatching type
2066 if Present (Tag_Typ)
2067 and then Present (Primitive_Operations (Tag_Typ))
2068 then
2069 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
2070 while Present (Elmt) loop
2071 Prim := Node (Elmt);
2073 -- The following test eliminates some odd cases in which
2074 -- Ekind (Prim) is Void, to be investigated further ???
2076 if not (Is_Subprogram (Prim)
2077 or else
2078 Is_Generic_Subprogram (Prim))
2079 then
2080 null;
2082 -- For [generic] subprogram, look at interface alias
2084 elsif Present (Interface_Alias (Prim))
2085 and then Alias (Prim) = S
2086 then
2087 -- We have found a primitive covered by S
2089 Store_IS (Interface_Alias (Prim));
2090 end if;
2092 Next_Elmt (Elmt);
2093 end loop;
2094 end if;
2095 end;
2096 end if;
2098 return Result (1 .. N);
2099 end Inherited_Subprograms;
2101 ---------------------------
2102 -- Is_Dynamically_Tagged --
2103 ---------------------------
2105 function Is_Dynamically_Tagged (N : Node_Id) return Boolean is
2106 begin
2107 if Nkind (N) = N_Error then
2108 return False;
2109 else
2110 return Find_Controlling_Arg (N) /= Empty;
2111 end if;
2112 end Is_Dynamically_Tagged;
2114 ---------------------------------
2115 -- Is_Null_Interface_Primitive --
2116 ---------------------------------
2118 function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
2119 begin
2120 return Comes_From_Source (E)
2121 and then Is_Dispatching_Operation (E)
2122 and then Ekind (E) = E_Procedure
2123 and then Null_Present (Parent (E))
2124 and then Is_Interface (Find_Dispatching_Type (E));
2125 end Is_Null_Interface_Primitive;
2127 --------------------------
2128 -- Is_Tag_Indeterminate --
2129 --------------------------
2131 function Is_Tag_Indeterminate (N : Node_Id) return Boolean is
2132 Nam : Entity_Id;
2133 Actual : Node_Id;
2134 Orig_Node : constant Node_Id := Original_Node (N);
2136 begin
2137 if Nkind (Orig_Node) = N_Function_Call
2138 and then Is_Entity_Name (Name (Orig_Node))
2139 then
2140 Nam := Entity (Name (Orig_Node));
2142 if not Has_Controlling_Result (Nam) then
2143 return False;
2145 -- The function may have a controlling result, but if the return type
2146 -- is not visibly tagged, then this is not tag-indeterminate.
2148 elsif Is_Access_Type (Etype (Nam))
2149 and then not Is_Tagged_Type (Designated_Type (Etype (Nam)))
2150 then
2151 return False;
2153 -- An explicit dereference means that the call has already been
2154 -- expanded and there is no tag to propagate.
2156 elsif Nkind (N) = N_Explicit_Dereference then
2157 return False;
2159 -- If there are no actuals, the call is tag-indeterminate
2161 elsif No (Parameter_Associations (Orig_Node)) then
2162 return True;
2164 else
2165 Actual := First_Actual (Orig_Node);
2166 while Present (Actual) loop
2167 if Is_Controlling_Actual (Actual)
2168 and then not Is_Tag_Indeterminate (Actual)
2169 then
2170 -- One operand is dispatching
2172 return False;
2173 end if;
2175 Next_Actual (Actual);
2176 end loop;
2178 return True;
2179 end if;
2181 elsif Nkind (Orig_Node) = N_Qualified_Expression then
2182 return Is_Tag_Indeterminate (Expression (Orig_Node));
2184 -- Case of a call to the Input attribute (possibly rewritten), which is
2185 -- always tag-indeterminate except when its prefix is a Class attribute.
2187 elsif Nkind (Orig_Node) = N_Attribute_Reference
2188 and then
2189 Get_Attribute_Id (Attribute_Name (Orig_Node)) = Attribute_Input
2190 and then
2191 Nkind (Prefix (Orig_Node)) /= N_Attribute_Reference
2192 then
2193 return True;
2195 -- In Ada 2005, a function that returns an anonymous access type can be
2196 -- dispatching, and the dereference of a call to such a function can
2197 -- also be tag-indeterminate if the call itself is.
2199 elsif Nkind (Orig_Node) = N_Explicit_Dereference
2200 and then Ada_Version >= Ada_2005
2201 then
2202 return Is_Tag_Indeterminate (Prefix (Orig_Node));
2204 else
2205 return False;
2206 end if;
2207 end Is_Tag_Indeterminate;
2209 ------------------------------------
2210 -- Override_Dispatching_Operation --
2211 ------------------------------------
2213 procedure Override_Dispatching_Operation
2214 (Tagged_Type : Entity_Id;
2215 Prev_Op : Entity_Id;
2216 New_Op : Entity_Id)
2218 Elmt : Elmt_Id;
2219 Prim : Node_Id;
2221 begin
2222 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2223 -- we do it unconditionally in Ada 95 now, since this is our pragma!)
2225 if No_Return (Prev_Op) and then not No_Return (New_Op) then
2226 Error_Msg_N ("procedure & must have No_Return pragma", New_Op);
2227 Error_Msg_N ("\since overridden procedure has No_Return", New_Op);
2228 end if;
2230 -- If there is no previous operation to override, the type declaration
2231 -- was malformed, and an error must have been emitted already.
2233 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2234 while Present (Elmt)
2235 and then Node (Elmt) /= Prev_Op
2236 loop
2237 Next_Elmt (Elmt);
2238 end loop;
2240 if No (Elmt) then
2241 return;
2242 end if;
2244 -- The location of entities that come from source in the list of
2245 -- primitives of the tagged type must follow their order of occurrence
2246 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2247 -- primitive of an interface that is not implemented by the parents of
2248 -- this tagged type (that is, it is an alias of an interface primitive
2249 -- generated by Derive_Interface_Progenitors), then we must append the
2250 -- new entity at the end of the list of primitives.
2252 if Present (Alias (Prev_Op))
2253 and then Etype (Tagged_Type) /= Tagged_Type
2254 and then Is_Interface (Find_Dispatching_Type (Alias (Prev_Op)))
2255 and then not Is_Ancestor (Find_Dispatching_Type (Alias (Prev_Op)),
2256 Tagged_Type, Use_Full_View => True)
2257 and then not Implements_Interface
2258 (Etype (Tagged_Type),
2259 Find_Dispatching_Type (Alias (Prev_Op)))
2260 then
2261 Remove_Elmt (Primitive_Operations (Tagged_Type), Elmt);
2262 Append_Elmt (New_Op, Primitive_Operations (Tagged_Type));
2264 -- The new primitive replaces the overridden entity. Required to ensure
2265 -- that overriding primitive is assigned the same dispatch table slot.
2267 else
2268 Replace_Elmt (Elmt, New_Op);
2269 end if;
2271 if Ada_Version >= Ada_2005
2272 and then Has_Interfaces (Tagged_Type)
2273 then
2274 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2275 -- entities of the overridden primitive to reference New_Op, and
2276 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2277 -- that the new operation is subtype conformant with the interface
2278 -- operations that it implements (for operations inherited from the
2279 -- parent itself, this check is made when building the derived type).
2281 -- Note: This code is only executed in case of late overriding
2283 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2284 while Present (Elmt) loop
2285 Prim := Node (Elmt);
2287 if Prim = New_Op then
2288 null;
2290 -- Note: The check on Is_Subprogram protects the frontend against
2291 -- reading attributes in entities that are not yet fully decorated
2293 elsif Is_Subprogram (Prim)
2294 and then Present (Interface_Alias (Prim))
2295 and then Alias (Prim) = Prev_Op
2296 and then Present (Etype (New_Op))
2297 then
2298 Set_Alias (Prim, New_Op);
2299 Check_Subtype_Conformant (New_Op, Prim);
2300 Set_Is_Abstract_Subprogram (Prim,
2301 Is_Abstract_Subprogram (New_Op));
2303 -- Ensure that this entity will be expanded to fill the
2304 -- corresponding entry in its dispatch table.
2306 if not Is_Abstract_Subprogram (Prim) then
2307 Set_Has_Delayed_Freeze (Prim);
2308 end if;
2309 end if;
2311 Next_Elmt (Elmt);
2312 end loop;
2313 end if;
2315 if (not Is_Package_Or_Generic_Package (Current_Scope))
2316 or else not In_Private_Part (Current_Scope)
2317 then
2318 -- Not a private primitive
2320 null;
2322 else pragma Assert (Is_Inherited_Operation (Prev_Op));
2324 -- Make the overriding operation into an alias of the implicit one.
2325 -- In this fashion a call from outside ends up calling the new body
2326 -- even if non-dispatching, and a call from inside calls the over-
2327 -- riding operation because it hides the implicit one. To indicate
2328 -- that the body of Prev_Op is never called, set its dispatch table
2329 -- entity to Empty. If the overridden operation has a dispatching
2330 -- result, so does the overriding one.
2332 Set_Alias (Prev_Op, New_Op);
2333 Set_DTC_Entity (Prev_Op, Empty);
2334 Set_Has_Controlling_Result (New_Op, Has_Controlling_Result (Prev_Op));
2335 return;
2336 end if;
2337 end Override_Dispatching_Operation;
2339 -------------------
2340 -- Propagate_Tag --
2341 -------------------
2343 procedure Propagate_Tag (Control : Node_Id; Actual : Node_Id) is
2344 Call_Node : Node_Id;
2345 Arg : Node_Id;
2347 begin
2348 if Nkind (Actual) = N_Function_Call then
2349 Call_Node := Actual;
2351 elsif Nkind (Actual) = N_Identifier
2352 and then Nkind (Original_Node (Actual)) = N_Function_Call
2353 then
2354 -- Call rewritten as object declaration when stack-checking is
2355 -- enabled. Propagate tag to expression in declaration, which is
2356 -- original call.
2358 Call_Node := Expression (Parent (Entity (Actual)));
2360 -- Ada 2005: If this is a dereference of a call to a function with a
2361 -- dispatching access-result, the tag is propagated when the dereference
2362 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2364 elsif Nkind (Actual) = N_Explicit_Dereference
2365 and then Nkind (Original_Node (Prefix (Actual))) = N_Function_Call
2366 then
2367 return;
2369 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2370 -- and in that case we can simply return.
2372 elsif Nkind (Actual) = N_Attribute_Reference then
2373 pragma Assert (Attribute_Name (Actual) = Name_Input);
2375 return;
2377 -- Only other possibilities are parenthesized or qualified expression,
2378 -- or an expander-generated unchecked conversion of a function call to
2379 -- a stream Input attribute.
2381 else
2382 Call_Node := Expression (Actual);
2383 end if;
2385 -- Do not set the Controlling_Argument if already set. This happens in
2386 -- the special case of _Input (see Exp_Attr, case Input).
2388 if No (Controlling_Argument (Call_Node)) then
2389 Set_Controlling_Argument (Call_Node, Control);
2390 end if;
2392 Arg := First_Actual (Call_Node);
2393 while Present (Arg) loop
2394 if Is_Tag_Indeterminate (Arg) then
2395 Propagate_Tag (Control, Arg);
2396 end if;
2398 Next_Actual (Arg);
2399 end loop;
2401 -- Expansion of dispatching calls is suppressed when VM_Target, because
2402 -- the VM back-ends directly handle the generation of dispatching calls
2403 -- and would have to undo any expansion to an indirect call.
2405 if Tagged_Type_Expansion then
2406 declare
2407 Call_Typ : constant Entity_Id := Etype (Call_Node);
2409 begin
2410 Expand_Dispatching_Call (Call_Node);
2412 -- If the controlling argument is an interface type and the type
2413 -- of Call_Node differs then we must add an implicit conversion to
2414 -- force displacement of the pointer to the object to reference
2415 -- the secondary dispatch table of the interface.
2417 if Is_Interface (Etype (Control))
2418 and then Etype (Control) /= Call_Typ
2419 then
2420 -- Cannot use Convert_To because the previous call to
2421 -- Expand_Dispatching_Call leaves decorated the Call_Node
2422 -- with the type of Control.
2424 Rewrite (Call_Node,
2425 Make_Type_Conversion (Sloc (Call_Node),
2426 Subtype_Mark =>
2427 New_Occurrence_Of (Etype (Control), Sloc (Call_Node)),
2428 Expression => Relocate_Node (Call_Node)));
2429 Set_Etype (Call_Node, Etype (Control));
2430 Set_Analyzed (Call_Node);
2432 Expand_Interface_Conversion (Call_Node, Is_Static => False);
2433 end if;
2434 end;
2436 -- Expansion of a dispatching call results in an indirect call, which in
2437 -- turn causes current values to be killed (see Resolve_Call), so on VM
2438 -- targets we do the call here to ensure consistent warnings between VM
2439 -- and non-VM targets.
2441 else
2442 Kill_Current_Values;
2443 end if;
2444 end Propagate_Tag;
2446 end Sem_Disp;