1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Elists
; use Elists
;
31 with Einfo
; use Einfo
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Dist
; use Exp_Dist
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Exp_Util
; use Exp_Util
;
40 with Fname
; use Fname
;
41 with Freeze
; use Freeze
;
42 with Itypes
; use Itypes
;
43 with Layout
; use Layout
;
45 with Lib
.Xref
; use Lib
.Xref
;
46 with Namet
; use Namet
;
47 with Nmake
; use Nmake
;
49 with Restrict
; use Restrict
;
50 with Rident
; use Rident
;
51 with Rtsfind
; use Rtsfind
;
53 with Sem_Aux
; use Sem_Aux
;
54 with Sem_Case
; use Sem_Case
;
55 with Sem_Cat
; use Sem_Cat
;
56 with Sem_Ch6
; use Sem_Ch6
;
57 with Sem_Ch7
; use Sem_Ch7
;
58 with Sem_Ch8
; use Sem_Ch8
;
59 with Sem_Ch13
; use Sem_Ch13
;
60 with Sem_Dim
; use Sem_Dim
;
61 with Sem_Disp
; use Sem_Disp
;
62 with Sem_Dist
; use Sem_Dist
;
63 with Sem_Elim
; use Sem_Elim
;
64 with Sem_Eval
; use Sem_Eval
;
65 with Sem_Mech
; use Sem_Mech
;
66 with Sem_Prag
; use Sem_Prag
;
67 with Sem_Res
; use Sem_Res
;
68 with Sem_Smem
; use Sem_Smem
;
69 with Sem_Type
; use Sem_Type
;
70 with Sem_Util
; use Sem_Util
;
71 with Sem_Warn
; use Sem_Warn
;
72 with Stand
; use Stand
;
73 with Sinfo
; use Sinfo
;
74 with Sinput
; use Sinput
;
75 with Snames
; use Snames
;
76 with Targparm
; use Targparm
;
77 with Tbuild
; use Tbuild
;
78 with Ttypes
; use Ttypes
;
79 with Uintp
; use Uintp
;
80 with Urealp
; use Urealp
;
82 package body Sem_Ch3
is
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
89 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
90 -- abstract interface types implemented by a record type or a derived
93 procedure Build_Derived_Type
95 Parent_Type
: Entity_Id
;
96 Derived_Type
: Entity_Id
;
97 Is_Completion
: Boolean;
98 Derive_Subps
: Boolean := True);
99 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
100 -- the N_Full_Type_Declaration node containing the derived type definition.
101 -- Parent_Type is the entity for the parent type in the derived type
102 -- definition and Derived_Type the actual derived type. Is_Completion must
103 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
104 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
105 -- completion of a private type declaration. If Is_Completion is set to
106 -- True, N is the completion of a private type declaration and Derived_Type
107 -- is different from the defining identifier inside N (i.e. Derived_Type /=
108 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
109 -- subprograms should be derived. The only case where this parameter is
110 -- False is when Build_Derived_Type is recursively called to process an
111 -- implicit derived full type for a type derived from a private type (in
112 -- that case the subprograms must only be derived for the private view of
115 -- ??? These flags need a bit of re-examination and re-documentation:
116 -- ??? are they both necessary (both seem related to the recursion)?
118 procedure Build_Derived_Access_Type
120 Parent_Type
: Entity_Id
;
121 Derived_Type
: Entity_Id
);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
123 -- create an implicit base if the parent type is constrained or if the
124 -- subtype indication has a constraint.
126 procedure Build_Derived_Array_Type
128 Parent_Type
: Entity_Id
;
129 Derived_Type
: Entity_Id
);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
131 -- create an implicit base if the parent type is constrained or if the
132 -- subtype indication has a constraint.
134 procedure Build_Derived_Concurrent_Type
136 Parent_Type
: Entity_Id
;
137 Derived_Type
: Entity_Id
);
138 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
139 -- protected type, inherit entries and protected subprograms, check
140 -- legality of discriminant constraints if any.
142 procedure Build_Derived_Enumeration_Type
144 Parent_Type
: Entity_Id
;
145 Derived_Type
: Entity_Id
);
146 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
147 -- type, we must create a new list of literals. Types derived from
148 -- Character and [Wide_]Wide_Character are special-cased.
150 procedure Build_Derived_Numeric_Type
152 Parent_Type
: Entity_Id
;
153 Derived_Type
: Entity_Id
);
154 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
155 -- an anonymous base type, and propagate constraint to subtype if needed.
157 procedure Build_Derived_Private_Type
159 Parent_Type
: Entity_Id
;
160 Derived_Type
: Entity_Id
;
161 Is_Completion
: Boolean;
162 Derive_Subps
: Boolean := True);
163 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
164 -- because the parent may or may not have a completion, and the derivation
165 -- may itself be a completion.
167 procedure Build_Derived_Record_Type
169 Parent_Type
: Entity_Id
;
170 Derived_Type
: Entity_Id
;
171 Derive_Subps
: Boolean := True);
172 -- Subsidiary procedure for Build_Derived_Type and
173 -- Analyze_Private_Extension_Declaration used for tagged and untagged
174 -- record types. All parameters are as in Build_Derived_Type except that
175 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
176 -- N_Private_Extension_Declaration node. See the definition of this routine
177 -- for much more info. Derive_Subps indicates whether subprograms should
178 -- be derived from the parent type. The only case where Derive_Subps is
179 -- False is for an implicit derived full type for a type derived from a
180 -- private type (see Build_Derived_Type).
182 procedure Build_Discriminal
(Discrim
: Entity_Id
);
183 -- Create the discriminal corresponding to discriminant Discrim, that is
184 -- the parameter corresponding to Discrim to be used in initialization
185 -- procedures for the type where Discrim is a discriminant. Discriminals
186 -- are not used during semantic analysis, and are not fully defined
187 -- entities until expansion. Thus they are not given a scope until
188 -- initialization procedures are built.
190 function Build_Discriminant_Constraints
193 Derived_Def
: Boolean := False) return Elist_Id
;
194 -- Validate discriminant constraints and return the list of the constraints
195 -- in order of discriminant declarations, where T is the discriminated
196 -- unconstrained type. Def is the N_Subtype_Indication node where the
197 -- discriminants constraints for T are specified. Derived_Def is True
198 -- when building the discriminant constraints in a derived type definition
199 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
200 -- type and Def is the constraint "(xxx)" on T and this routine sets the
201 -- Corresponding_Discriminant field of the discriminants in the derived
202 -- type D to point to the corresponding discriminants in the parent type T.
204 procedure Build_Discriminated_Subtype
208 Related_Nod
: Node_Id
;
209 For_Access
: Boolean := False);
210 -- Subsidiary procedure to Constrain_Discriminated_Type and to
211 -- Process_Incomplete_Dependents. Given
213 -- T (a possibly discriminated base type)
214 -- Def_Id (a very partially built subtype for T),
216 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 -- The Elist is the list of discriminant constraints if any (it is set
219 -- to No_Elist if T is not a discriminated type, and to an empty list if
220 -- T has discriminants but there are no discriminant constraints). The
221 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
222 -- The For_Access says whether or not this subtype is really constraining
223 -- an access type. That is its sole purpose is the designated type of an
224 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
225 -- is built to avoid freezing T when the access subtype is frozen.
227 function Build_Scalar_Bound
230 Der_T
: Entity_Id
) return Node_Id
;
231 -- The bounds of a derived scalar type are conversions of the bounds of
232 -- the parent type. Optimize the representation if the bounds are literals.
233 -- Needs a more complete spec--what are the parameters exactly, and what
234 -- exactly is the returned value, and how is Bound affected???
236 procedure Build_Underlying_Full_View
240 -- If the completion of a private type is itself derived from a private
241 -- type, or if the full view of a private subtype is itself private, the
242 -- back-end has no way to compute the actual size of this type. We build
243 -- an internal subtype declaration of the proper parent type to convey
244 -- this information. This extra mechanism is needed because a full
245 -- view cannot itself have a full view (it would get clobbered during
248 procedure Check_Access_Discriminant_Requires_Limited
251 -- Check the restriction that the type to which an access discriminant
252 -- belongs must be a concurrent type or a descendant of a type with
253 -- the reserved word 'limited' in its declaration.
255 procedure Check_Anonymous_Access_Components
259 Comp_List
: Node_Id
);
260 -- Ada 2005 AI-382: an access component in a record definition can refer to
261 -- the enclosing record, in which case it denotes the type itself, and not
262 -- the current instance of the type. We create an anonymous access type for
263 -- the component, and flag it as an access to a component, so accessibility
264 -- checks are properly performed on it. The declaration of the access type
265 -- is placed ahead of that of the record to prevent order-of-elaboration
266 -- circularity issues in Gigi. We create an incomplete type for the record
267 -- declaration, which is the designated type of the anonymous access.
269 procedure Check_Delta_Expression
(E
: Node_Id
);
270 -- Check that the expression represented by E is suitable for use as a
271 -- delta expression, i.e. it is of real type and is static.
273 procedure Check_Digits_Expression
(E
: Node_Id
);
274 -- Check that the expression represented by E is suitable for use as a
275 -- digits expression, i.e. it is of integer type, positive and static.
277 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
278 -- Validate the initialization of an object declaration. T is the required
279 -- type, and Exp is the initialization expression.
281 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
282 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284 procedure Check_Or_Process_Discriminants
287 Prev
: Entity_Id
:= Empty
);
288 -- If N is the full declaration of the completion T of an incomplete or
289 -- private type, check its discriminants (which are already known to be
290 -- conformant with those of the partial view, see Find_Type_Name),
291 -- otherwise process them. Prev is the entity of the partial declaration,
294 procedure Check_Real_Bound
(Bound
: Node_Id
);
295 -- Check given bound for being of real type and static. If not, post an
296 -- appropriate message, and rewrite the bound with the real literal zero.
298 procedure Constant_Redeclaration
302 -- Various checks on legality of full declaration of deferred constant.
303 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
304 -- node. The caller has not yet set any attributes of this entity.
306 function Contain_Interface
308 Ifaces
: Elist_Id
) return Boolean;
309 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311 procedure Convert_Scalar_Bounds
313 Parent_Type
: Entity_Id
;
314 Derived_Type
: Entity_Id
;
316 -- For derived scalar types, convert the bounds in the type definition to
317 -- the derived type, and complete their analysis. Given a constraint of the
318 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
319 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
320 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
321 -- subtype are conversions of those bounds to the derived_type, so that
322 -- their typing is consistent.
324 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
325 -- Copies attributes from array base type T2 to array base type T1. Copies
326 -- only attributes that apply to base types, but not subtypes.
328 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
329 -- Copies attributes from array subtype T2 to array subtype T1. Copies
330 -- attributes that apply to both subtypes and base types.
332 procedure Create_Constrained_Components
336 Constraints
: Elist_Id
);
337 -- Build the list of entities for a constrained discriminated record
338 -- subtype. If a component depends on a discriminant, replace its subtype
339 -- using the discriminant values in the discriminant constraint. Subt
340 -- is the defining identifier for the subtype whose list of constrained
341 -- entities we will create. Decl_Node is the type declaration node where
342 -- we will attach all the itypes created. Typ is the base discriminated
343 -- type for the subtype Subt. Constraints is the list of discriminant
344 -- constraints for Typ.
346 function Constrain_Component_Type
348 Constrained_Typ
: Entity_Id
;
349 Related_Node
: Node_Id
;
351 Constraints
: Elist_Id
) return Entity_Id
;
352 -- Given a discriminated base type Typ, a list of discriminant constraint
353 -- Constraints for Typ and a component of Typ, with type Compon_Type,
354 -- create and return the type corresponding to Compon_type where all
355 -- discriminant references are replaced with the corresponding constraint.
356 -- If no discriminant references occur in Compon_Typ then return it as is.
357 -- Constrained_Typ is the final constrained subtype to which the
358 -- constrained Compon_Type belongs. Related_Node is the node where we will
359 -- attach all the itypes created.
361 -- Above description is confused, what is Compon_Type???
363 procedure Constrain_Access
364 (Def_Id
: in out Entity_Id
;
366 Related_Nod
: Node_Id
);
367 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
368 -- an anonymous type created for a subtype indication. In that case it is
369 -- created in the procedure and attached to Related_Nod.
371 procedure Constrain_Array
372 (Def_Id
: in out Entity_Id
;
374 Related_Nod
: Node_Id
;
375 Related_Id
: Entity_Id
;
377 -- Apply a list of index constraints to an unconstrained array type. The
378 -- first parameter is the entity for the resulting subtype. A value of
379 -- Empty for Def_Id indicates that an implicit type must be created, but
380 -- creation is delayed (and must be done by this procedure) because other
381 -- subsidiary implicit types must be created first (which is why Def_Id
382 -- is an in/out parameter). The second parameter is a subtype indication
383 -- node for the constrained array to be created (e.g. something of the
384 -- form string (1 .. 10)). Related_Nod gives the place where this type
385 -- has to be inserted in the tree. The Related_Id and Suffix parameters
386 -- are used to build the associated Implicit type name.
388 procedure Constrain_Concurrent
389 (Def_Id
: in out Entity_Id
;
391 Related_Nod
: Node_Id
;
392 Related_Id
: Entity_Id
;
394 -- Apply list of discriminant constraints to an unconstrained concurrent
397 -- SI is the N_Subtype_Indication node containing the constraint and
398 -- the unconstrained type to constrain.
400 -- Def_Id is the entity for the resulting constrained subtype. A value
401 -- of Empty for Def_Id indicates that an implicit type must be created,
402 -- but creation is delayed (and must be done by this procedure) because
403 -- other subsidiary implicit types must be created first (which is why
404 -- Def_Id is an in/out parameter).
406 -- Related_Nod gives the place where this type has to be inserted
409 -- The last two arguments are used to create its external name if needed.
411 function Constrain_Corresponding_Record
412 (Prot_Subt
: Entity_Id
;
413 Corr_Rec
: Entity_Id
;
414 Related_Nod
: Node_Id
;
415 Related_Id
: Entity_Id
) return Entity_Id
;
416 -- When constraining a protected type or task type with discriminants,
417 -- constrain the corresponding record with the same discriminant values.
419 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
420 -- Constrain a decimal fixed point type with a digits constraint and/or a
421 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
423 procedure Constrain_Discriminated_Type
426 Related_Nod
: Node_Id
;
427 For_Access
: Boolean := False);
428 -- Process discriminant constraints of composite type. Verify that values
429 -- have been provided for all discriminants, that the original type is
430 -- unconstrained, and that the types of the supplied expressions match
431 -- the discriminant types. The first three parameters are like in routine
432 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
435 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
436 -- Constrain an enumeration type with a range constraint. This is identical
437 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
439 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
440 -- Constrain a floating point type with either a digits constraint
441 -- and/or a range constraint, building a E_Floating_Point_Subtype.
443 procedure Constrain_Index
446 Related_Nod
: Node_Id
;
447 Related_Id
: Entity_Id
;
450 -- Process an index constraint S in a constrained array declaration. The
451 -- constraint can be a subtype name, or a range with or without an explicit
452 -- subtype mark. The index is the corresponding index of the unconstrained
453 -- array. The Related_Id and Suffix parameters are used to build the
454 -- associated Implicit type name.
456 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
457 -- Build subtype of a signed or modular integer type
459 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
460 -- Constrain an ordinary fixed point type with a range constraint, and
461 -- build an E_Ordinary_Fixed_Point_Subtype entity.
463 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
464 -- Copy the Priv entity into the entity of its full declaration then swap
465 -- the two entities in such a manner that the former private type is now
466 -- seen as a full type.
468 procedure Decimal_Fixed_Point_Type_Declaration
471 -- Create a new decimal fixed point type, and apply the constraint to
472 -- obtain a subtype of this new type.
474 procedure Complete_Private_Subtype
477 Full_Base
: Entity_Id
;
478 Related_Nod
: Node_Id
);
479 -- Complete the implicit full view of a private subtype by setting the
480 -- appropriate semantic fields. If the full view of the parent is a record
481 -- type, build constrained components of subtype.
483 procedure Derive_Progenitor_Subprograms
484 (Parent_Type
: Entity_Id
;
485 Tagged_Type
: Entity_Id
);
486 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
487 -- operations of progenitors of Tagged_Type, and replace the subsidiary
488 -- subtypes with Tagged_Type, to build the specs of the inherited interface
489 -- primitives. The derived primitives are aliased to those of the
490 -- interface. This routine takes care also of transferring to the full view
491 -- subprograms associated with the partial view of Tagged_Type that cover
492 -- interface primitives.
494 procedure Derived_Standard_Character
496 Parent_Type
: Entity_Id
;
497 Derived_Type
: Entity_Id
);
498 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
499 -- derivations from types Standard.Character and Standard.Wide_Character.
501 procedure Derived_Type_Declaration
504 Is_Completion
: Boolean);
505 -- Process a derived type declaration. Build_Derived_Type is invoked
506 -- to process the actual derived type definition. Parameters N and
507 -- Is_Completion have the same meaning as in Build_Derived_Type.
508 -- T is the N_Defining_Identifier for the entity defined in the
509 -- N_Full_Type_Declaration node N, that is T is the derived type.
511 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
512 -- Insert each literal in symbol table, as an overloadable identifier. Each
513 -- enumeration type is mapped into a sequence of integers, and each literal
514 -- is defined as a constant with integer value. If any of the literals are
515 -- character literals, the type is a character type, which means that
516 -- strings are legal aggregates for arrays of components of the type.
518 function Expand_To_Stored_Constraint
520 Constraint
: Elist_Id
) return Elist_Id
;
521 -- Given a constraint (i.e. a list of expressions) on the discriminants of
522 -- Typ, expand it into a constraint on the stored discriminants and return
523 -- the new list of expressions constraining the stored discriminants.
525 function Find_Type_Of_Object
527 Related_Nod
: Node_Id
) return Entity_Id
;
528 -- Get type entity for object referenced by Obj_Def, attaching the
529 -- implicit types generated to Related_Nod
531 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
532 -- Create a new float and apply the constraint to obtain subtype of it
534 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
535 -- Given an N_Subtype_Indication node N, return True if a range constraint
536 -- is present, either directly, or as part of a digits or delta constraint.
537 -- In addition, a digits constraint in the decimal case returns True, since
538 -- it establishes a default range if no explicit range is present.
540 function Inherit_Components
542 Parent_Base
: Entity_Id
;
543 Derived_Base
: Entity_Id
;
545 Inherit_Discr
: Boolean;
546 Discs
: Elist_Id
) return Elist_Id
;
547 -- Called from Build_Derived_Record_Type to inherit the components of
548 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
549 -- For more information on derived types and component inheritance please
550 -- consult the comment above the body of Build_Derived_Record_Type.
552 -- N is the original derived type declaration
554 -- Is_Tagged is set if we are dealing with tagged types
556 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
557 -- Parent_Base, otherwise no discriminants are inherited.
559 -- Discs gives the list of constraints that apply to Parent_Base in the
560 -- derived type declaration. If Discs is set to No_Elist, then we have
561 -- the following situation:
563 -- type Parent (D1..Dn : ..) is [tagged] record ...;
564 -- type Derived is new Parent [with ...];
566 -- which gets treated as
568 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
570 -- For untagged types the returned value is an association list. The list
571 -- starts from the association (Parent_Base => Derived_Base), and then it
572 -- contains a sequence of the associations of the form
574 -- (Old_Component => New_Component),
576 -- where Old_Component is the Entity_Id of a component in Parent_Base and
577 -- New_Component is the Entity_Id of the corresponding component in
578 -- Derived_Base. For untagged records, this association list is needed when
579 -- copying the record declaration for the derived base. In the tagged case
580 -- the value returned is irrelevant.
582 function Is_Valid_Constraint_Kind
584 Constraint_Kind
: Node_Kind
) return Boolean;
585 -- Returns True if it is legal to apply the given kind of constraint to the
586 -- given kind of type (index constraint to an array type, for example).
588 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
589 -- Create new modular type. Verify that modulus is in bounds
591 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
592 -- Create an abbreviated declaration for an operator in order to
593 -- materialize concatenation on array types.
595 procedure Ordinary_Fixed_Point_Type_Declaration
598 -- Create a new ordinary fixed point type, and apply the constraint to
599 -- obtain subtype of it.
601 procedure Prepare_Private_Subtype_Completion
603 Related_Nod
: Node_Id
);
604 -- Id is a subtype of some private type. Creates the full declaration
605 -- associated with Id whenever possible, i.e. when the full declaration
606 -- of the base type is already known. Records each subtype into
607 -- Private_Dependents of the base type.
609 procedure Process_Incomplete_Dependents
613 -- Process all entities that depend on an incomplete type. There include
614 -- subtypes, subprogram types that mention the incomplete type in their
615 -- profiles, and subprogram with access parameters that designate the
618 -- Inc_T is the defining identifier of an incomplete type declaration, its
619 -- Ekind is E_Incomplete_Type.
621 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
623 -- Full_T is N's defining identifier.
625 -- Subtypes of incomplete types with discriminants are completed when the
626 -- parent type is. This is simpler than private subtypes, because they can
627 -- only appear in the same scope, and there is no need to exchange views.
628 -- Similarly, access_to_subprogram types may have a parameter or a return
629 -- type that is an incomplete type, and that must be replaced with the
632 -- If the full type is tagged, subprogram with access parameters that
633 -- designated the incomplete may be primitive operations of the full type,
634 -- and have to be processed accordingly.
636 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
637 -- Given the type definition for a real type, this procedure processes and
638 -- checks the real range specification of this type definition if one is
639 -- present. If errors are found, error messages are posted, and the
640 -- Real_Range_Specification of Def is reset to Empty.
642 procedure Record_Type_Declaration
646 -- Process a record type declaration (for both untagged and tagged
647 -- records). Parameters T and N are exactly like in procedure
648 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
649 -- for this routine. If this is the completion of an incomplete type
650 -- declaration, Prev is the entity of the incomplete declaration, used for
651 -- cross-referencing. Otherwise Prev = T.
653 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
654 -- This routine is used to process the actual record type definition (both
655 -- for untagged and tagged records). Def is a record type definition node.
656 -- This procedure analyzes the components in this record type definition.
657 -- Prev_T is the entity for the enclosing record type. It is provided so
658 -- that its Has_Task flag can be set if any of the component have Has_Task
659 -- set. If the declaration is the completion of an incomplete type
660 -- declaration, Prev_T is the original incomplete type, whose full view is
663 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
664 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
665 -- build a copy of the declaration tree of the parent, and we create
666 -- independently the list of components for the derived type. Semantic
667 -- information uses the component entities, but record representation
668 -- clauses are validated on the declaration tree. This procedure replaces
669 -- discriminants and components in the declaration with those that have
670 -- been created by Inherit_Components.
672 procedure Set_Fixed_Range
677 -- Build a range node with the given bounds and set it as the Scalar_Range
678 -- of the given fixed-point type entity. Loc is the source location used
679 -- for the constructed range. See body for further details.
681 procedure Set_Scalar_Range_For_Subtype
685 -- This routine is used to set the scalar range field for a subtype given
686 -- Def_Id, the entity for the subtype, and R, the range expression for the
687 -- scalar range. Subt provides the parent subtype to be used to analyze,
688 -- resolve, and check the given range.
690 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
691 -- Create a new signed integer entity, and apply the constraint to obtain
692 -- the required first named subtype of this type.
694 procedure Set_Stored_Constraint_From_Discriminant_Constraint
696 -- E is some record type. This routine computes E's Stored_Constraint
697 -- from its Discriminant_Constraint.
699 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
700 -- Check that an entity in a list of progenitors is an interface,
701 -- emit error otherwise.
703 -----------------------
704 -- Access_Definition --
705 -----------------------
707 function Access_Definition
708 (Related_Nod
: Node_Id
;
709 N
: Node_Id
) return Entity_Id
711 Anon_Type
: Entity_Id
;
712 Anon_Scope
: Entity_Id
;
713 Desig_Type
: Entity_Id
;
714 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
717 Check_SPARK_Restriction
("access type is not allowed", N
);
719 if Is_Entry
(Current_Scope
)
720 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
722 Error_Msg_N
("task entries cannot have access parameters", N
);
726 -- Ada 2005: for an object declaration the corresponding anonymous
727 -- type is declared in the current scope.
729 -- If the access definition is the return type of another access to
730 -- function, scope is the current one, because it is the one of the
731 -- current type declaration, except for the pathological case below.
733 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
734 N_Access_Function_Definition
)
736 Anon_Scope
:= Current_Scope
;
738 -- A pathological case: function returning access functions that
739 -- return access functions, etc. Each anonymous access type created
740 -- is in the enclosing scope of the outermost function.
747 while Nkind_In
(Par
, N_Access_Function_Definition
,
753 if Nkind
(Par
) = N_Function_Specification
then
754 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
758 -- For the anonymous function result case, retrieve the scope of the
759 -- function specification's associated entity rather than using the
760 -- current scope. The current scope will be the function itself if the
761 -- formal part is currently being analyzed, but will be the parent scope
762 -- in the case of a parameterless function, and we always want to use
763 -- the function's parent scope. Finally, if the function is a child
764 -- unit, we must traverse the tree to retrieve the proper entity.
766 elsif Nkind
(Related_Nod
) = N_Function_Specification
767 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
769 -- If the current scope is a protected type, the anonymous access
770 -- is associated with one of the protected operations, and must
771 -- be available in the scope that encloses the protected declaration.
772 -- Otherwise the type is in the scope enclosing the subprogram.
774 -- If the function has formals, The return type of a subprogram
775 -- declaration is analyzed in the scope of the subprogram (see
776 -- Process_Formals) and thus the protected type, if present, is
777 -- the scope of the current function scope.
779 if Ekind
(Current_Scope
) = E_Protected_Type
then
780 Enclosing_Prot_Type
:= Current_Scope
;
782 elsif Ekind
(Current_Scope
) = E_Function
783 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
785 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
788 if Present
(Enclosing_Prot_Type
) then
789 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
792 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
795 -- For an access type definition, if the current scope is a child
796 -- unit it is the scope of the type.
798 elsif Is_Compilation_Unit
(Current_Scope
) then
799 Anon_Scope
:= Current_Scope
;
801 -- For access formals, access components, and access discriminants, the
802 -- scope is that of the enclosing declaration,
805 Anon_Scope
:= Scope
(Current_Scope
);
810 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
813 and then Ada_Version
>= Ada_2005
815 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
818 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
819 -- the corresponding semantic routine
821 if Present
(Access_To_Subprogram_Definition
(N
)) then
823 -- Compiler runtime units are compiled in Ada 2005 mode when building
824 -- the runtime library but must also be compilable in Ada 95 mode
825 -- (when bootstrapping the compiler).
827 Check_Compiler_Unit
(N
);
829 Access_Subprogram_Declaration
830 (T_Name
=> Anon_Type
,
831 T_Def
=> Access_To_Subprogram_Definition
(N
));
833 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
835 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
838 (Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
841 Set_Can_Use_Internal_Rep
842 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
844 -- If the anonymous access is associated with a protected operation,
845 -- create a reference to it after the enclosing protected definition
846 -- because the itype will be used in the subsequent bodies.
848 if Ekind
(Current_Scope
) = E_Protected_Type
then
849 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
855 Find_Type
(Subtype_Mark
(N
));
856 Desig_Type
:= Entity
(Subtype_Mark
(N
));
858 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
859 Set_Etype
(Anon_Type
, Anon_Type
);
861 -- Make sure the anonymous access type has size and alignment fields
862 -- set, as required by gigi. This is necessary in the case of the
863 -- Task_Body_Procedure.
865 if not Has_Private_Component
(Desig_Type
) then
866 Layout_Type
(Anon_Type
);
869 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
870 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
871 -- the null value is allowed. In Ada 95 the null value is never allowed.
873 if Ada_Version
>= Ada_2005
then
874 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
876 Set_Can_Never_Be_Null
(Anon_Type
, True);
879 -- The anonymous access type is as public as the discriminated type or
880 -- subprogram that defines it. It is imported (for back-end purposes)
881 -- if the designated type is.
883 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
885 -- Ada 2005 (AI-231): Propagate the access-constant attribute
887 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
889 -- The context is either a subprogram declaration, object declaration,
890 -- or an access discriminant, in a private or a full type declaration.
891 -- In the case of a subprogram, if the designated type is incomplete,
892 -- the operation will be a primitive operation of the full type, to be
893 -- updated subsequently. If the type is imported through a limited_with
894 -- clause, the subprogram is not a primitive operation of the type
895 -- (which is declared elsewhere in some other scope).
897 if Ekind
(Desig_Type
) = E_Incomplete_Type
898 and then not From_With_Type
(Desig_Type
)
899 and then Is_Overloadable
(Current_Scope
)
901 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
902 Set_Has_Delayed_Freeze
(Current_Scope
);
905 -- Ada 2005: if the designated type is an interface that may contain
906 -- tasks, create a Master entity for the declaration. This must be done
907 -- before expansion of the full declaration, because the declaration may
908 -- include an expression that is an allocator, whose expansion needs the
909 -- proper Master for the created tasks.
911 if Nkind
(Related_Nod
) = N_Object_Declaration
912 and then Expander_Active
914 if Is_Interface
(Desig_Type
)
915 and then Is_Limited_Record
(Desig_Type
)
917 Build_Class_Wide_Master
(Anon_Type
);
919 -- Similarly, if the type is an anonymous access that designates
920 -- tasks, create a master entity for it in the current context.
922 elsif Has_Task
(Desig_Type
)
923 and then Comes_From_Source
(Related_Nod
)
925 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
926 Build_Master_Renaming
(Anon_Type
);
930 -- For a private component of a protected type, it is imperative that
931 -- the back-end elaborate the type immediately after the protected
932 -- declaration, because this type will be used in the declarations
933 -- created for the component within each protected body, so we must
934 -- create an itype reference for it now.
936 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
937 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
939 -- Similarly, if the access definition is the return result of a
940 -- function, create an itype reference for it because it will be used
941 -- within the function body. For a regular function that is not a
942 -- compilation unit, insert reference after the declaration. For a
943 -- protected operation, insert it after the enclosing protected type
944 -- declaration. In either case, do not create a reference for a type
945 -- obtained through a limited_with clause, because this would introduce
946 -- semantic dependencies.
948 -- Similarly, do not create a reference if the designated type is a
949 -- generic formal, because no use of it will reach the backend.
951 elsif Nkind
(Related_Nod
) = N_Function_Specification
952 and then not From_With_Type
(Desig_Type
)
953 and then not Is_Generic_Type
(Desig_Type
)
955 if Present
(Enclosing_Prot_Type
) then
956 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
958 elsif Is_List_Member
(Parent
(Related_Nod
))
959 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
961 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
964 -- Finally, create an itype reference for an object declaration of an
965 -- anonymous access type. This is strictly necessary only for deferred
966 -- constants, but in any case will avoid out-of-scope problems in the
969 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
970 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
974 end Access_Definition
;
976 -----------------------------------
977 -- Access_Subprogram_Declaration --
978 -----------------------------------
980 procedure Access_Subprogram_Declaration
985 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
986 -- Check that type T_Name is not used, directly or recursively, as a
987 -- parameter or a return type in Def. Def is either a subtype, an
988 -- access_definition, or an access_to_subprogram_definition.
990 -------------------------------
991 -- Check_For_Premature_Usage --
992 -------------------------------
994 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
998 -- Check for a subtype mark
1000 if Nkind
(Def
) in N_Has_Etype
then
1001 if Etype
(Def
) = T_Name
then
1003 ("type& cannot be used before end of its declaration", Def
);
1006 -- If this is not a subtype, then this is an access_definition
1008 elsif Nkind
(Def
) = N_Access_Definition
then
1009 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1010 Check_For_Premature_Usage
1011 (Access_To_Subprogram_Definition
(Def
));
1013 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1016 -- The only cases left are N_Access_Function_Definition and
1017 -- N_Access_Procedure_Definition.
1020 if Present
(Parameter_Specifications
(Def
)) then
1021 Param
:= First
(Parameter_Specifications
(Def
));
1022 while Present
(Param
) loop
1023 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1024 Param
:= Next
(Param
);
1028 if Nkind
(Def
) = N_Access_Function_Definition
then
1029 Check_For_Premature_Usage
(Result_Definition
(Def
));
1032 end Check_For_Premature_Usage
;
1036 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1039 Desig_Type
: constant Entity_Id
:=
1040 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1042 -- Start of processing for Access_Subprogram_Declaration
1045 Check_SPARK_Restriction
("access type is not allowed", T_Def
);
1047 -- Associate the Itype node with the inner full-type declaration or
1048 -- subprogram spec or entry body. This is required to handle nested
1049 -- anonymous declarations. For example:
1052 -- (X : access procedure
1053 -- (Y : access procedure
1056 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1057 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1058 N_Private_Type_Declaration
,
1059 N_Private_Extension_Declaration
,
1060 N_Procedure_Specification
,
1061 N_Function_Specification
,
1065 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1066 N_Object_Renaming_Declaration
,
1067 N_Formal_Object_Declaration
,
1068 N_Formal_Type_Declaration
,
1069 N_Task_Type_Declaration
,
1070 N_Protected_Type_Declaration
))
1072 D_Ityp
:= Parent
(D_Ityp
);
1073 pragma Assert
(D_Ityp
/= Empty
);
1076 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1078 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1079 N_Function_Specification
)
1081 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1083 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1084 N_Object_Declaration
,
1085 N_Object_Renaming_Declaration
,
1086 N_Formal_Type_Declaration
)
1088 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1091 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1092 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1094 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1097 if Present
(Access_To_Subprogram_Definition
(Acc
))
1099 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1103 Replace_Anonymous_Access_To_Protected_Subprogram
1109 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1114 Analyze
(Result_Definition
(T_Def
));
1117 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1120 -- If a null exclusion is imposed on the result type, then
1121 -- create a null-excluding itype (an access subtype) and use
1122 -- it as the function's Etype.
1124 if Is_Access_Type
(Typ
)
1125 and then Null_Exclusion_In_Return_Present
(T_Def
)
1127 Set_Etype
(Desig_Type
,
1128 Create_Null_Excluding_Itype
1130 Related_Nod
=> T_Def
,
1131 Scope_Id
=> Current_Scope
));
1134 if From_With_Type
(Typ
) then
1136 -- AI05-151: Incomplete types are allowed in all basic
1137 -- declarations, including access to subprograms.
1139 if Ada_Version
>= Ada_2012
then
1144 ("illegal use of incomplete type&",
1145 Result_Definition
(T_Def
), Typ
);
1148 elsif Ekind
(Current_Scope
) = E_Package
1149 and then In_Private_Part
(Current_Scope
)
1151 if Ekind
(Typ
) = E_Incomplete_Type
then
1152 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1154 elsif Is_Class_Wide_Type
(Typ
)
1155 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1158 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1162 Set_Etype
(Desig_Type
, Typ
);
1167 if not (Is_Type
(Etype
(Desig_Type
))) then
1169 ("expect type in function specification",
1170 Result_Definition
(T_Def
));
1174 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1177 if Present
(Formals
) then
1178 Push_Scope
(Desig_Type
);
1180 -- A bit of a kludge here. These kludges will be removed when Itypes
1181 -- have proper parent pointers to their declarations???
1183 -- Kludge 1) Link defining_identifier of formals. Required by
1184 -- First_Formal to provide its functionality.
1190 F
:= First
(Formals
);
1192 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1193 -- when it is part of an unconstrained type and subtype expansion
1194 -- is disabled. To avoid back-end problems with shared profiles,
1195 -- use previous subprogram type as the designated type.
1198 and then Present
(Scope
(Defining_Identifier
(F
)))
1200 Set_Etype
(T_Name
, T_Name
);
1201 Init_Size_Align
(T_Name
);
1202 Set_Directly_Designated_Type
(T_Name
,
1203 Scope
(Defining_Identifier
(F
)));
1207 while Present
(F
) loop
1208 if No
(Parent
(Defining_Identifier
(F
))) then
1209 Set_Parent
(Defining_Identifier
(F
), F
);
1216 Process_Formals
(Formals
, Parent
(T_Def
));
1218 -- Kludge 2) End_Scope requires that the parent pointer be set to
1219 -- something reasonable, but Itypes don't have parent pointers. So
1220 -- we set it and then unset it ???
1222 Set_Parent
(Desig_Type
, T_Name
);
1224 Set_Parent
(Desig_Type
, Empty
);
1227 -- Check for premature usage of the type being defined
1229 Check_For_Premature_Usage
(T_Def
);
1231 -- The return type and/or any parameter type may be incomplete. Mark
1232 -- the subprogram_type as depending on the incomplete type, so that
1233 -- it can be updated when the full type declaration is seen. This
1234 -- only applies to incomplete types declared in some enclosing scope,
1235 -- not to limited views from other packages.
1237 if Present
(Formals
) then
1238 Formal
:= First_Formal
(Desig_Type
);
1239 while Present
(Formal
) loop
1240 if Ekind
(Formal
) /= E_In_Parameter
1241 and then Nkind
(T_Def
) = N_Access_Function_Definition
1243 Error_Msg_N
("functions can only have IN parameters", Formal
);
1246 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1247 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1249 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1250 Set_Has_Delayed_Freeze
(Desig_Type
);
1253 Next_Formal
(Formal
);
1257 -- If the return type is incomplete, this is legal as long as the
1258 -- type is declared in the current scope and will be completed in
1259 -- it (rather than being part of limited view).
1261 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1262 and then not Has_Delayed_Freeze
(Desig_Type
)
1263 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1265 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1266 Set_Has_Delayed_Freeze
(Desig_Type
);
1269 Check_Delayed_Subprogram
(Desig_Type
);
1271 if Protected_Present
(T_Def
) then
1272 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1273 Set_Convention
(Desig_Type
, Convention_Protected
);
1275 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1278 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1280 Set_Etype
(T_Name
, T_Name
);
1281 Init_Size_Align
(T_Name
);
1282 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1284 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1286 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1288 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1289 end Access_Subprogram_Declaration
;
1291 ----------------------------
1292 -- Access_Type_Declaration --
1293 ----------------------------
1295 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1296 P
: constant Node_Id
:= Parent
(Def
);
1297 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1299 Full_Desig
: Entity_Id
;
1302 Check_SPARK_Restriction
("access type is not allowed", Def
);
1304 -- Check for permissible use of incomplete type
1306 if Nkind
(S
) /= N_Subtype_Indication
then
1309 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1310 Set_Directly_Designated_Type
(T
, Entity
(S
));
1312 Set_Directly_Designated_Type
(T
,
1313 Process_Subtype
(S
, P
, T
, 'P'));
1317 Set_Directly_Designated_Type
(T
,
1318 Process_Subtype
(S
, P
, T
, 'P'));
1321 if All_Present
(Def
) or Constant_Present
(Def
) then
1322 Set_Ekind
(T
, E_General_Access_Type
);
1324 Set_Ekind
(T
, E_Access_Type
);
1327 Full_Desig
:= Designated_Type
(T
);
1329 if Base_Type
(Full_Desig
) = T
then
1330 Error_Msg_N
("access type cannot designate itself", S
);
1332 -- In Ada 2005, the type may have a limited view through some unit
1333 -- in its own context, allowing the following circularity that cannot
1334 -- be detected earlier
1336 elsif Is_Class_Wide_Type
(Full_Desig
)
1337 and then Etype
(Full_Desig
) = T
1340 ("access type cannot designate its own classwide type", S
);
1342 -- Clean up indication of tagged status to prevent cascaded errors
1344 Set_Is_Tagged_Type
(T
, False);
1349 -- If the type has appeared already in a with_type clause, it is
1350 -- frozen and the pointer size is already set. Else, initialize.
1352 if not From_With_Type
(T
) then
1353 Init_Size_Align
(T
);
1356 -- Note that Has_Task is always false, since the access type itself
1357 -- is not a task type. See Einfo for more description on this point.
1358 -- Exactly the same consideration applies to Has_Controlled_Component.
1360 Set_Has_Task
(T
, False);
1361 Set_Has_Controlled_Component
(T
, False);
1363 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1364 -- problems where an incomplete view of this entity has been previously
1365 -- established by a limited with and an overlaid version of this field
1366 -- (Stored_Constraint) was initialized for the incomplete view.
1368 -- This reset is performed in most cases except where the access type
1369 -- has been created for the purposes of allocating or deallocating a
1370 -- build-in-place object. Such access types have explicitly set pools
1371 -- and finalization masters.
1373 if No
(Associated_Storage_Pool
(T
)) then
1374 Set_Finalization_Master
(T
, Empty
);
1377 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1380 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1381 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1382 end Access_Type_Declaration
;
1384 ----------------------------------
1385 -- Add_Interface_Tag_Components --
1386 ----------------------------------
1388 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1389 Loc
: constant Source_Ptr
:= Sloc
(N
);
1393 procedure Add_Tag
(Iface
: Entity_Id
);
1394 -- Add tag for one of the progenitor interfaces
1400 procedure Add_Tag
(Iface
: Entity_Id
) is
1407 pragma Assert
(Is_Tagged_Type
(Iface
)
1408 and then Is_Interface
(Iface
));
1410 -- This is a reasonable place to propagate predicates
1412 if Has_Predicates
(Iface
) then
1413 Set_Has_Predicates
(Typ
);
1417 Make_Component_Definition
(Loc
,
1418 Aliased_Present
=> True,
1419 Subtype_Indication
=>
1420 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1422 Tag
:= Make_Temporary
(Loc
, 'V');
1425 Make_Component_Declaration
(Loc
,
1426 Defining_Identifier
=> Tag
,
1427 Component_Definition
=> Def
);
1429 Analyze_Component_Declaration
(Decl
);
1431 Set_Analyzed
(Decl
);
1432 Set_Ekind
(Tag
, E_Component
);
1434 Set_Is_Aliased
(Tag
);
1435 Set_Related_Type
(Tag
, Iface
);
1436 Init_Component_Location
(Tag
);
1438 pragma Assert
(Is_Frozen
(Iface
));
1440 Set_DT_Entry_Count
(Tag
,
1441 DT_Entry_Count
(First_Entity
(Iface
)));
1443 if No
(Last_Tag
) then
1446 Insert_After
(Last_Tag
, Decl
);
1451 -- If the ancestor has discriminants we need to give special support
1452 -- to store the offset_to_top value of the secondary dispatch tables.
1453 -- For this purpose we add a supplementary component just after the
1454 -- field that contains the tag associated with each secondary DT.
1456 if Typ
/= Etype
(Typ
)
1457 and then Has_Discriminants
(Etype
(Typ
))
1460 Make_Component_Definition
(Loc
,
1461 Subtype_Indication
=>
1462 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1464 Offset
:= Make_Temporary
(Loc
, 'V');
1467 Make_Component_Declaration
(Loc
,
1468 Defining_Identifier
=> Offset
,
1469 Component_Definition
=> Def
);
1471 Analyze_Component_Declaration
(Decl
);
1473 Set_Analyzed
(Decl
);
1474 Set_Ekind
(Offset
, E_Component
);
1475 Set_Is_Aliased
(Offset
);
1476 Set_Related_Type
(Offset
, Iface
);
1477 Init_Component_Location
(Offset
);
1478 Insert_After
(Last_Tag
, Decl
);
1489 -- Start of processing for Add_Interface_Tag_Components
1492 if not RTE_Available
(RE_Interface_Tag
) then
1494 ("(Ada 2005) interface types not supported by this run-time!",
1499 if Ekind
(Typ
) /= E_Record_Type
1500 or else (Is_Concurrent_Record_Type
(Typ
)
1501 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1502 or else (not Is_Concurrent_Record_Type
(Typ
)
1503 and then No
(Interfaces
(Typ
))
1504 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1509 -- Find the current last tag
1511 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1512 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1514 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1515 Ext
:= Type_Definition
(N
);
1520 if not (Present
(Component_List
(Ext
))) then
1521 Set_Null_Present
(Ext
, False);
1523 Set_Component_List
(Ext
,
1524 Make_Component_List
(Loc
,
1525 Component_Items
=> L
,
1526 Null_Present
=> False));
1528 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1529 L
:= Component_Items
1531 (Record_Extension_Part
1532 (Type_Definition
(N
))));
1534 L
:= Component_Items
1536 (Type_Definition
(N
)));
1539 -- Find the last tag component
1542 while Present
(Comp
) loop
1543 if Nkind
(Comp
) = N_Component_Declaration
1544 and then Is_Tag
(Defining_Identifier
(Comp
))
1553 -- At this point L references the list of components and Last_Tag
1554 -- references the current last tag (if any). Now we add the tag
1555 -- corresponding with all the interfaces that are not implemented
1558 if Present
(Interfaces
(Typ
)) then
1559 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1560 while Present
(Elmt
) loop
1561 Add_Tag
(Node
(Elmt
));
1565 end Add_Interface_Tag_Components
;
1567 -------------------------------------
1568 -- Add_Internal_Interface_Entities --
1569 -------------------------------------
1571 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1574 Iface_Elmt
: Elmt_Id
;
1575 Iface_Prim
: Entity_Id
;
1576 Ifaces_List
: Elist_Id
;
1577 New_Subp
: Entity_Id
:= Empty
;
1579 Restore_Scope
: Boolean := False;
1582 pragma Assert
(Ada_Version
>= Ada_2005
1583 and then Is_Record_Type
(Tagged_Type
)
1584 and then Is_Tagged_Type
(Tagged_Type
)
1585 and then Has_Interfaces
(Tagged_Type
)
1586 and then not Is_Interface
(Tagged_Type
));
1588 -- Ensure that the internal entities are added to the scope of the type
1590 if Scope
(Tagged_Type
) /= Current_Scope
then
1591 Push_Scope
(Scope
(Tagged_Type
));
1592 Restore_Scope
:= True;
1595 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1597 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1598 while Present
(Iface_Elmt
) loop
1599 Iface
:= Node
(Iface_Elmt
);
1601 -- Originally we excluded here from this processing interfaces that
1602 -- are parents of Tagged_Type because their primitives are located
1603 -- in the primary dispatch table (and hence no auxiliary internal
1604 -- entities are required to handle secondary dispatch tables in such
1605 -- case). However, these auxiliary entities are also required to
1606 -- handle derivations of interfaces in formals of generics (see
1607 -- Derive_Subprograms).
1609 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1610 while Present
(Elmt
) loop
1611 Iface_Prim
:= Node
(Elmt
);
1613 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1615 Find_Primitive_Covering_Interface
1616 (Tagged_Type
=> Tagged_Type
,
1617 Iface_Prim
=> Iface_Prim
);
1619 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1623 pragma Assert
(Present
(Prim
));
1625 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1626 -- differs from the name of the interface primitive then it is
1627 -- a private primitive inherited from a parent type. In such
1628 -- case, given that Tagged_Type covers the interface, the
1629 -- inherited private primitive becomes visible. For such
1630 -- purpose we add a new entity that renames the inherited
1631 -- private primitive.
1633 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1634 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1636 (New_Subp
=> New_Subp
,
1637 Parent_Subp
=> Iface_Prim
,
1638 Derived_Type
=> Tagged_Type
,
1639 Parent_Type
=> Iface
);
1640 Set_Alias
(New_Subp
, Prim
);
1641 Set_Is_Abstract_Subprogram
1642 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1646 (New_Subp
=> New_Subp
,
1647 Parent_Subp
=> Iface_Prim
,
1648 Derived_Type
=> Tagged_Type
,
1649 Parent_Type
=> Iface
);
1651 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1652 -- associated with interface types. These entities are
1653 -- only registered in the list of primitives of its
1654 -- corresponding tagged type because they are only used
1655 -- to fill the contents of the secondary dispatch tables.
1656 -- Therefore they are removed from the homonym chains.
1658 Set_Is_Hidden
(New_Subp
);
1659 Set_Is_Internal
(New_Subp
);
1660 Set_Alias
(New_Subp
, Prim
);
1661 Set_Is_Abstract_Subprogram
1662 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1663 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1665 -- Internal entities associated with interface types are
1666 -- only registered in the list of primitives of the tagged
1667 -- type. They are only used to fill the contents of the
1668 -- secondary dispatch tables. Therefore they are not needed
1669 -- in the homonym chains.
1671 Remove_Homonym
(New_Subp
);
1673 -- Hidden entities associated with interfaces must have set
1674 -- the Has_Delay_Freeze attribute to ensure that, in case of
1675 -- locally defined tagged types (or compiling with static
1676 -- dispatch tables generation disabled) the corresponding
1677 -- entry of the secondary dispatch table is filled when
1678 -- such an entity is frozen.
1680 Set_Has_Delayed_Freeze
(New_Subp
);
1687 Next_Elmt
(Iface_Elmt
);
1690 if Restore_Scope
then
1693 end Add_Internal_Interface_Entities
;
1695 -----------------------------------
1696 -- Analyze_Component_Declaration --
1697 -----------------------------------
1699 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1700 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1701 E
: constant Node_Id
:= Expression
(N
);
1702 Typ
: constant Node_Id
:=
1703 Subtype_Indication
(Component_Definition
(N
));
1707 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1708 -- Determines whether a constraint uses the discriminant of a record
1709 -- type thus becoming a per-object constraint (POC).
1711 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1712 -- Typ is the type of the current component, check whether this type is
1713 -- a limited type. Used to validate declaration against that of
1714 -- enclosing record.
1720 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1722 -- Prevent cascaded errors
1724 if Error_Posted
(Constr
) then
1728 case Nkind
(Constr
) is
1729 when N_Attribute_Reference
=>
1731 Attribute_Name
(Constr
) = Name_Access
1732 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1734 when N_Discriminant_Association
=>
1735 return Denotes_Discriminant
(Expression
(Constr
));
1737 when N_Identifier
=>
1738 return Denotes_Discriminant
(Constr
);
1740 when N_Index_Or_Discriminant_Constraint
=>
1745 IDC
:= First
(Constraints
(Constr
));
1746 while Present
(IDC
) loop
1748 -- One per-object constraint is sufficient
1750 if Contains_POC
(IDC
) then
1761 return Denotes_Discriminant
(Low_Bound
(Constr
))
1763 Denotes_Discriminant
(High_Bound
(Constr
));
1765 when N_Range_Constraint
=>
1766 return Denotes_Discriminant
(Range_Expression
(Constr
));
1774 ----------------------
1775 -- Is_Known_Limited --
1776 ----------------------
1778 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1779 P
: constant Entity_Id
:= Etype
(Typ
);
1780 R
: constant Entity_Id
:= Root_Type
(Typ
);
1783 if Is_Limited_Record
(Typ
) then
1786 -- If the root type is limited (and not a limited interface)
1787 -- so is the current type
1789 elsif Is_Limited_Record
(R
)
1791 (not Is_Interface
(R
)
1792 or else not Is_Limited_Interface
(R
))
1796 -- Else the type may have a limited interface progenitor, but a
1797 -- limited record parent.
1800 and then Is_Limited_Record
(P
)
1807 end Is_Known_Limited
;
1809 -- Start of processing for Analyze_Component_Declaration
1812 Generate_Definition
(Id
);
1815 if Present
(Typ
) then
1816 T
:= Find_Type_Of_Object
1817 (Subtype_Indication
(Component_Definition
(N
)), N
);
1819 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1820 Check_SPARK_Restriction
("subtype mark required", Typ
);
1823 -- Ada 2005 (AI-230): Access Definition case
1826 pragma Assert
(Present
1827 (Access_Definition
(Component_Definition
(N
))));
1829 T
:= Access_Definition
1831 N
=> Access_Definition
(Component_Definition
(N
)));
1832 Set_Is_Local_Anonymous_Access
(T
);
1834 -- Ada 2005 (AI-254)
1836 if Present
(Access_To_Subprogram_Definition
1837 (Access_Definition
(Component_Definition
(N
))))
1838 and then Protected_Present
(Access_To_Subprogram_Definition
1840 (Component_Definition
(N
))))
1842 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1846 -- If the subtype is a constrained subtype of the enclosing record,
1847 -- (which must have a partial view) the back-end does not properly
1848 -- handle the recursion. Rewrite the component declaration with an
1849 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1850 -- the tree directly because side effects have already been removed from
1851 -- discriminant constraints.
1853 if Ekind
(T
) = E_Access_Subtype
1854 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1855 and then Comes_From_Source
(T
)
1856 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1857 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1860 (Subtype_Indication
(Component_Definition
(N
)),
1861 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1862 T
:= Find_Type_Of_Object
1863 (Subtype_Indication
(Component_Definition
(N
)), N
);
1866 -- If the component declaration includes a default expression, then we
1867 -- check that the component is not of a limited type (RM 3.7(5)),
1868 -- and do the special preanalysis of the expression (see section on
1869 -- "Handling of Default and Per-Object Expressions" in the spec of
1873 Check_SPARK_Restriction
("default expression is not allowed", E
);
1874 Preanalyze_Spec_Expression
(E
, T
);
1875 Check_Initialization
(T
, E
);
1877 if Ada_Version
>= Ada_2005
1878 and then Ekind
(T
) = E_Anonymous_Access_Type
1879 and then Etype
(E
) /= Any_Type
1881 -- Check RM 3.9.2(9): "if the expected type for an expression is
1882 -- an anonymous access-to-specific tagged type, then the object
1883 -- designated by the expression shall not be dynamically tagged
1884 -- unless it is a controlling operand in a call on a dispatching
1887 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1889 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1891 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1895 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1898 -- (Ada 2005: AI-230): Accessibility check for anonymous
1901 if Type_Access_Level
(Etype
(E
)) >
1902 Deepest_Type_Access_Level
(T
)
1905 ("expression has deeper access level than component " &
1906 "(RM 3.10.2 (12.2))", E
);
1909 -- The initialization expression is a reference to an access
1910 -- discriminant. The type of the discriminant is always deeper
1911 -- than any access type.
1913 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1914 and then Is_Entity_Name
(E
)
1915 and then Ekind
(Entity
(E
)) = E_In_Parameter
1916 and then Present
(Discriminal_Link
(Entity
(E
)))
1919 ("discriminant has deeper accessibility level than target",
1925 -- The parent type may be a private view with unknown discriminants,
1926 -- and thus unconstrained. Regular components must be constrained.
1928 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
1929 if Is_Class_Wide_Type
(T
) then
1931 ("class-wide subtype with unknown discriminants" &
1932 " in component declaration",
1933 Subtype_Indication
(Component_Definition
(N
)));
1936 ("unconstrained subtype in component declaration",
1937 Subtype_Indication
(Component_Definition
(N
)));
1940 -- Components cannot be abstract, except for the special case of
1941 -- the _Parent field (case of extending an abstract tagged type)
1943 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
1944 Error_Msg_N
("type of a component cannot be abstract", N
);
1948 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
1950 -- The component declaration may have a per-object constraint, set
1951 -- the appropriate flag in the defining identifier of the subtype.
1953 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1955 Sindic
: constant Node_Id
:=
1956 Subtype_Indication
(Component_Definition
(N
));
1958 if Nkind
(Sindic
) = N_Subtype_Indication
1959 and then Present
(Constraint
(Sindic
))
1960 and then Contains_POC
(Constraint
(Sindic
))
1962 Set_Has_Per_Object_Constraint
(Id
);
1967 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1968 -- out some static checks.
1970 if Ada_Version
>= Ada_2005
1971 and then Can_Never_Be_Null
(T
)
1973 Null_Exclusion_Static_Checks
(N
);
1976 -- If this component is private (or depends on a private type), flag the
1977 -- record type to indicate that some operations are not available.
1979 P
:= Private_Component
(T
);
1983 -- Check for circular definitions
1985 if P
= Any_Type
then
1986 Set_Etype
(Id
, Any_Type
);
1988 -- There is a gap in the visibility of operations only if the
1989 -- component type is not defined in the scope of the record type.
1991 elsif Scope
(P
) = Scope
(Current_Scope
) then
1994 elsif Is_Limited_Type
(P
) then
1995 Set_Is_Limited_Composite
(Current_Scope
);
1998 Set_Is_Private_Composite
(Current_Scope
);
2003 and then Is_Limited_Type
(T
)
2004 and then Chars
(Id
) /= Name_uParent
2005 and then Is_Tagged_Type
(Current_Scope
)
2007 if Is_Derived_Type
(Current_Scope
)
2008 and then not Is_Known_Limited
(Current_Scope
)
2011 ("extension of nonlimited type cannot have limited components",
2014 if Is_Interface
(Root_Type
(Current_Scope
)) then
2016 ("\limitedness is not inherited from limited interface", N
);
2017 Error_Msg_N
("\add LIMITED to type indication", N
);
2020 Explain_Limited_Type
(T
, N
);
2021 Set_Etype
(Id
, Any_Type
);
2022 Set_Is_Limited_Composite
(Current_Scope
, False);
2024 elsif not Is_Derived_Type
(Current_Scope
)
2025 and then not Is_Limited_Record
(Current_Scope
)
2026 and then not Is_Concurrent_Type
(Current_Scope
)
2029 ("nonlimited tagged type cannot have limited components", N
);
2030 Explain_Limited_Type
(T
, N
);
2031 Set_Etype
(Id
, Any_Type
);
2032 Set_Is_Limited_Composite
(Current_Scope
, False);
2036 Set_Original_Record_Component
(Id
, Id
);
2038 if Has_Aspects
(N
) then
2039 Analyze_Aspect_Specifications
(N
, Id
);
2042 Analyze_Dimension
(N
);
2043 end Analyze_Component_Declaration
;
2045 --------------------------
2046 -- Analyze_Declarations --
2047 --------------------------
2049 procedure Analyze_Declarations
(L
: List_Id
) is
2051 Freeze_From
: Entity_Id
:= Empty
;
2052 Next_Node
: Node_Id
;
2055 -- Adjust D not to include implicit label declarations, since these
2056 -- have strange Sloc values that result in elaboration check problems.
2057 -- (They have the sloc of the label as found in the source, and that
2058 -- is ahead of the current declarative part).
2064 procedure Adjust_D
is
2066 while Present
(Prev
(D
))
2067 and then Nkind
(D
) = N_Implicit_Label_Declaration
2073 -- Start of processing for Analyze_Declarations
2076 if Restriction_Check_Required
(SPARK
) then
2077 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2081 while Present
(D
) loop
2083 -- Package spec cannot contain a package declaration in SPARK
2085 if Nkind
(D
) = N_Package_Declaration
2086 and then Nkind
(Parent
(L
)) = N_Package_Specification
2088 Check_SPARK_Restriction
2089 ("package specification cannot contain a package declaration",
2093 -- Complete analysis of declaration
2096 Next_Node
:= Next
(D
);
2098 if No
(Freeze_From
) then
2099 Freeze_From
:= First_Entity
(Current_Scope
);
2102 -- At the end of a declarative part, freeze remaining entities
2103 -- declared in it. The end of the visible declarations of package
2104 -- specification is not the end of a declarative part if private
2105 -- declarations are present. The end of a package declaration is a
2106 -- freezing point only if it a library package. A task definition or
2107 -- protected type definition is not a freeze point either. Finally,
2108 -- we do not freeze entities in generic scopes, because there is no
2109 -- code generated for them and freeze nodes will be generated for
2112 -- The end of a package instantiation is not a freeze point, but
2113 -- for now we make it one, because the generic body is inserted
2114 -- (currently) immediately after. Generic instantiations will not
2115 -- be a freeze point once delayed freezing of bodies is implemented.
2116 -- (This is needed in any case for early instantiations ???).
2118 if No
(Next_Node
) then
2119 if Nkind_In
(Parent
(L
), N_Component_List
,
2121 N_Protected_Definition
)
2125 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2126 if Nkind
(Parent
(L
)) = N_Package_Body
then
2127 Freeze_From
:= First_Entity
(Current_Scope
);
2131 Freeze_All
(Freeze_From
, D
);
2132 Freeze_From
:= Last_Entity
(Current_Scope
);
2134 elsif Scope
(Current_Scope
) /= Standard_Standard
2135 and then not Is_Child_Unit
(Current_Scope
)
2136 and then No
(Generic_Parent
(Parent
(L
)))
2140 elsif L
/= Visible_Declarations
(Parent
(L
))
2141 or else No
(Private_Declarations
(Parent
(L
)))
2142 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2145 Freeze_All
(Freeze_From
, D
);
2146 Freeze_From
:= Last_Entity
(Current_Scope
);
2149 -- If next node is a body then freeze all types before the body.
2150 -- An exception occurs for some expander-generated bodies. If these
2151 -- are generated at places where in general language rules would not
2152 -- allow a freeze point, then we assume that the expander has
2153 -- explicitly checked that all required types are properly frozen,
2154 -- and we do not cause general freezing here. This special circuit
2155 -- is used when the encountered body is marked as having already
2158 -- In all other cases (bodies that come from source, and expander
2159 -- generated bodies that have not been analyzed yet), freeze all
2160 -- types now. Note that in the latter case, the expander must take
2161 -- care to attach the bodies at a proper place in the tree so as to
2162 -- not cause unwanted freezing at that point.
2164 elsif not Analyzed
(Next_Node
)
2165 and then (Nkind_In
(Next_Node
, N_Subprogram_Body
,
2171 Nkind
(Next_Node
) in N_Body_Stub
)
2174 Freeze_All
(Freeze_From
, D
);
2175 Freeze_From
:= Last_Entity
(Current_Scope
);
2181 -- One more thing to do, we need to scan the declarations to check
2182 -- for any precondition/postcondition pragmas (Pre/Post aspects have
2183 -- by this stage been converted into corresponding pragmas). It is
2184 -- at this point that we analyze the expressions in such pragmas,
2185 -- to implement the delayed visibility requirement.
2195 while Present
(Decl
) loop
2196 if Nkind
(Original_Node
(Decl
)) = N_Subprogram_Declaration
then
2197 Spec
:= Specification
(Original_Node
(Decl
));
2198 Sent
:= Defining_Unit_Name
(Spec
);
2200 -- Analyze preconditions and postconditions
2202 Prag
:= Spec_PPC_List
(Contract
(Sent
));
2203 while Present
(Prag
) loop
2204 Analyze_PPC_In_Decl_Part
(Prag
, Sent
);
2205 Prag
:= Next_Pragma
(Prag
);
2208 -- Analyze contract-cases and test-cases
2210 Prag
:= Spec_CTC_List
(Contract
(Sent
));
2211 while Present
(Prag
) loop
2212 Analyze_CTC_In_Decl_Part
(Prag
, Sent
);
2213 Prag
:= Next_Pragma
(Prag
);
2216 -- At this point, entities have been attached to identifiers.
2217 -- This is required to be able to detect suspicious contracts.
2219 Check_Subprogram_Contract
(Sent
);
2225 end Analyze_Declarations
;
2227 -----------------------------------
2228 -- Analyze_Full_Type_Declaration --
2229 -----------------------------------
2231 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2232 Def
: constant Node_Id
:= Type_Definition
(N
);
2233 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2237 Is_Remote
: constant Boolean :=
2238 (Is_Remote_Types
(Current_Scope
)
2239 or else Is_Remote_Call_Interface
(Current_Scope
))
2240 and then not (In_Private_Part
(Current_Scope
)
2241 or else In_Package_Body
(Current_Scope
));
2243 procedure Check_Ops_From_Incomplete_Type
;
2244 -- If there is a tagged incomplete partial view of the type, traverse
2245 -- the primitives of the incomplete view and change the type of any
2246 -- controlling formals and result to indicate the full view. The
2247 -- primitives will be added to the full type's primitive operations
2248 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2249 -- is called from Process_Incomplete_Dependents).
2251 ------------------------------------
2252 -- Check_Ops_From_Incomplete_Type --
2253 ------------------------------------
2255 procedure Check_Ops_From_Incomplete_Type
is
2262 and then Ekind
(Prev
) = E_Incomplete_Type
2263 and then Is_Tagged_Type
(Prev
)
2264 and then Is_Tagged_Type
(T
)
2266 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2267 while Present
(Elmt
) loop
2270 Formal
:= First_Formal
(Op
);
2271 while Present
(Formal
) loop
2272 if Etype
(Formal
) = Prev
then
2273 Set_Etype
(Formal
, T
);
2276 Next_Formal
(Formal
);
2279 if Etype
(Op
) = Prev
then
2286 end Check_Ops_From_Incomplete_Type
;
2288 -- Start of processing for Analyze_Full_Type_Declaration
2291 Prev
:= Find_Type_Name
(N
);
2293 -- The full view, if present, now points to the current type
2295 -- Ada 2005 (AI-50217): If the type was previously decorated when
2296 -- imported through a LIMITED WITH clause, it appears as incomplete
2297 -- but has no full view.
2299 if Ekind
(Prev
) = E_Incomplete_Type
2300 and then Present
(Full_View
(Prev
))
2302 T
:= Full_View
(Prev
);
2307 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2309 -- We set the flag Is_First_Subtype here. It is needed to set the
2310 -- corresponding flag for the Implicit class-wide-type created
2311 -- during tagged types processing.
2313 Set_Is_First_Subtype
(T
, True);
2315 -- Only composite types other than array types are allowed to have
2320 -- For derived types, the rule will be checked once we've figured
2321 -- out the parent type.
2323 when N_Derived_Type_Definition
=>
2326 -- For record types, discriminants are allowed, unless we are in
2329 when N_Record_Definition
=>
2330 if Present
(Discriminant_Specifications
(N
)) then
2331 Check_SPARK_Restriction
2332 ("discriminant type is not allowed",
2334 (First
(Discriminant_Specifications
(N
))));
2338 if Present
(Discriminant_Specifications
(N
)) then
2340 ("elementary or array type cannot have discriminants",
2342 (First
(Discriminant_Specifications
(N
))));
2346 -- Elaborate the type definition according to kind, and generate
2347 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2348 -- already done (this happens during the reanalysis that follows a call
2349 -- to the high level optimizer).
2351 if not Analyzed
(T
) then
2356 when N_Access_To_Subprogram_Definition
=>
2357 Access_Subprogram_Declaration
(T
, Def
);
2359 -- If this is a remote access to subprogram, we must create the
2360 -- equivalent fat pointer type, and related subprograms.
2363 Process_Remote_AST_Declaration
(N
);
2366 -- Validate categorization rule against access type declaration
2367 -- usually a violation in Pure unit, Shared_Passive unit.
2369 Validate_Access_Type_Declaration
(T
, N
);
2371 when N_Access_To_Object_Definition
=>
2372 Access_Type_Declaration
(T
, Def
);
2374 -- Validate categorization rule against access type declaration
2375 -- usually a violation in Pure unit, Shared_Passive unit.
2377 Validate_Access_Type_Declaration
(T
, N
);
2379 -- If we are in a Remote_Call_Interface package and define a
2380 -- RACW, then calling stubs and specific stream attributes
2384 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2386 Add_RACW_Features
(Def_Id
);
2389 -- Set no strict aliasing flag if config pragma seen
2391 if Opt
.No_Strict_Aliasing
then
2392 Set_No_Strict_Aliasing
(Base_Type
(Def_Id
));
2395 when N_Array_Type_Definition
=>
2396 Array_Type_Declaration
(T
, Def
);
2398 when N_Derived_Type_Definition
=>
2399 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2401 when N_Enumeration_Type_Definition
=>
2402 Enumeration_Type_Declaration
(T
, Def
);
2404 when N_Floating_Point_Definition
=>
2405 Floating_Point_Type_Declaration
(T
, Def
);
2407 when N_Decimal_Fixed_Point_Definition
=>
2408 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2410 when N_Ordinary_Fixed_Point_Definition
=>
2411 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2413 when N_Signed_Integer_Type_Definition
=>
2414 Signed_Integer_Type_Declaration
(T
, Def
);
2416 when N_Modular_Type_Definition
=>
2417 Modular_Type_Declaration
(T
, Def
);
2419 when N_Record_Definition
=>
2420 Record_Type_Declaration
(T
, N
, Prev
);
2422 -- If declaration has a parse error, nothing to elaborate.
2428 raise Program_Error
;
2433 if Etype
(T
) = Any_Type
then
2437 -- Controlled type is not allowed in SPARK
2439 if Is_Visibly_Controlled
(T
) then
2440 Check_SPARK_Restriction
("controlled type is not allowed", N
);
2443 -- Some common processing for all types
2445 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2446 Check_Ops_From_Incomplete_Type
;
2448 -- Both the declared entity, and its anonymous base type if one
2449 -- was created, need freeze nodes allocated.
2452 B
: constant Entity_Id
:= Base_Type
(T
);
2455 -- In the case where the base type differs from the first subtype, we
2456 -- pre-allocate a freeze node, and set the proper link to the first
2457 -- subtype. Freeze_Entity will use this preallocated freeze node when
2458 -- it freezes the entity.
2460 -- This does not apply if the base type is a generic type, whose
2461 -- declaration is independent of the current derived definition.
2463 if B
/= T
and then not Is_Generic_Type
(B
) then
2464 Ensure_Freeze_Node
(B
);
2465 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2468 -- A type that is imported through a limited_with clause cannot
2469 -- generate any code, and thus need not be frozen. However, an access
2470 -- type with an imported designated type needs a finalization list,
2471 -- which may be referenced in some other package that has non-limited
2472 -- visibility on the designated type. Thus we must create the
2473 -- finalization list at the point the access type is frozen, to
2474 -- prevent unsatisfied references at link time.
2476 if not From_With_Type
(T
) or else Is_Access_Type
(T
) then
2477 Set_Has_Delayed_Freeze
(T
);
2481 -- Case where T is the full declaration of some private type which has
2482 -- been swapped in Defining_Identifier (N).
2484 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2485 Process_Full_View
(N
, T
, Def_Id
);
2487 -- Record the reference. The form of this is a little strange, since
2488 -- the full declaration has been swapped in. So the first parameter
2489 -- here represents the entity to which a reference is made which is
2490 -- the "real" entity, i.e. the one swapped in, and the second
2491 -- parameter provides the reference location.
2493 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2494 -- since we don't want a complaint about the full type being an
2495 -- unwanted reference to the private type
2498 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2500 Set_Has_Pragma_Unreferenced
(T
, False);
2501 Generate_Reference
(T
, T
, 'c');
2502 Set_Has_Pragma_Unreferenced
(T
, B
);
2505 Set_Completion_Referenced
(Def_Id
);
2507 -- For completion of incomplete type, process incomplete dependents
2508 -- and always mark the full type as referenced (it is the incomplete
2509 -- type that we get for any real reference).
2511 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2512 Process_Incomplete_Dependents
(N
, T
, Prev
);
2513 Generate_Reference
(Prev
, Def_Id
, 'c');
2514 Set_Completion_Referenced
(Def_Id
);
2516 -- If not private type or incomplete type completion, this is a real
2517 -- definition of a new entity, so record it.
2520 Generate_Definition
(Def_Id
);
2523 if Chars
(Scope
(Def_Id
)) = Name_System
2524 and then Chars
(Def_Id
) = Name_Address
2525 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2527 Set_Is_Descendent_Of_Address
(Def_Id
);
2528 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2529 Set_Is_Descendent_Of_Address
(Prev
);
2532 Set_Optimize_Alignment_Flags
(Def_Id
);
2533 Check_Eliminated
(Def_Id
);
2535 -- If the declaration is a completion and aspects are present, apply
2536 -- them to the entity for the type which is currently the partial
2537 -- view, but which is the one that will be frozen.
2539 if Has_Aspects
(N
) then
2540 if Prev
/= Def_Id
then
2541 Analyze_Aspect_Specifications
(N
, Prev
);
2543 Analyze_Aspect_Specifications
(N
, Def_Id
);
2546 end Analyze_Full_Type_Declaration
;
2548 ----------------------------------
2549 -- Analyze_Incomplete_Type_Decl --
2550 ----------------------------------
2552 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2553 F
: constant Boolean := Is_Pure
(Current_Scope
);
2557 Check_SPARK_Restriction
("incomplete type is not allowed", N
);
2559 Generate_Definition
(Defining_Identifier
(N
));
2561 -- Process an incomplete declaration. The identifier must not have been
2562 -- declared already in the scope. However, an incomplete declaration may
2563 -- appear in the private part of a package, for a private type that has
2564 -- already been declared.
2566 -- In this case, the discriminants (if any) must match
2568 T
:= Find_Type_Name
(N
);
2570 Set_Ekind
(T
, E_Incomplete_Type
);
2571 Init_Size_Align
(T
);
2572 Set_Is_First_Subtype
(T
, True);
2575 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2576 -- incomplete types.
2578 if Tagged_Present
(N
) then
2579 Set_Is_Tagged_Type
(T
);
2580 Make_Class_Wide_Type
(T
);
2581 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2586 Set_Stored_Constraint
(T
, No_Elist
);
2588 if Present
(Discriminant_Specifications
(N
)) then
2589 Process_Discriminants
(N
);
2594 -- If the type has discriminants, non-trivial subtypes may be
2595 -- declared before the full view of the type. The full views of those
2596 -- subtypes will be built after the full view of the type.
2598 Set_Private_Dependents
(T
, New_Elmt_List
);
2600 end Analyze_Incomplete_Type_Decl
;
2602 -----------------------------------
2603 -- Analyze_Interface_Declaration --
2604 -----------------------------------
2606 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2607 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2610 Set_Is_Tagged_Type
(T
);
2612 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2613 or else Task_Present
(Def
)
2614 or else Protected_Present
(Def
)
2615 or else Synchronized_Present
(Def
));
2617 -- Type is abstract if full declaration carries keyword, or if previous
2618 -- partial view did.
2620 Set_Is_Abstract_Type
(T
);
2621 Set_Is_Interface
(T
);
2623 -- Type is a limited interface if it includes the keyword limited, task,
2624 -- protected, or synchronized.
2626 Set_Is_Limited_Interface
2627 (T
, Limited_Present
(Def
)
2628 or else Protected_Present
(Def
)
2629 or else Synchronized_Present
(Def
)
2630 or else Task_Present
(Def
));
2632 Set_Interfaces
(T
, New_Elmt_List
);
2633 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2635 -- Complete the decoration of the class-wide entity if it was already
2636 -- built (i.e. during the creation of the limited view)
2638 if Present
(CW
) then
2639 Set_Is_Interface
(CW
);
2640 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2643 -- Check runtime support for synchronized interfaces
2645 if VM_Target
= No_VM
2646 and then (Is_Task_Interface
(T
)
2647 or else Is_Protected_Interface
(T
)
2648 or else Is_Synchronized_Interface
(T
))
2649 and then not RTE_Available
(RE_Select_Specific_Data
)
2651 Error_Msg_CRT
("synchronized interfaces", T
);
2653 end Analyze_Interface_Declaration
;
2655 -----------------------------
2656 -- Analyze_Itype_Reference --
2657 -----------------------------
2659 -- Nothing to do. This node is placed in the tree only for the benefit of
2660 -- back end processing, and has no effect on the semantic processing.
2662 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2664 pragma Assert
(Is_Itype
(Itype
(N
)));
2666 end Analyze_Itype_Reference
;
2668 --------------------------------
2669 -- Analyze_Number_Declaration --
2670 --------------------------------
2672 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2673 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2674 E
: constant Node_Id
:= Expression
(N
);
2676 Index
: Interp_Index
;
2680 Generate_Definition
(Id
);
2683 -- This is an optimization of a common case of an integer literal
2685 if Nkind
(E
) = N_Integer_Literal
then
2686 Set_Is_Static_Expression
(E
, True);
2687 Set_Etype
(E
, Universal_Integer
);
2689 Set_Etype
(Id
, Universal_Integer
);
2690 Set_Ekind
(Id
, E_Named_Integer
);
2691 Set_Is_Frozen
(Id
, True);
2695 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2697 -- Process expression, replacing error by integer zero, to avoid
2698 -- cascaded errors or aborts further along in the processing
2700 -- Replace Error by integer zero, which seems least likely to cause
2704 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
2705 Set_Error_Posted
(E
);
2710 -- Verify that the expression is static and numeric. If
2711 -- the expression is overloaded, we apply the preference
2712 -- rule that favors root numeric types.
2714 if not Is_Overloaded
(E
) then
2720 Get_First_Interp
(E
, Index
, It
);
2721 while Present
(It
.Typ
) loop
2722 if (Is_Integer_Type
(It
.Typ
)
2723 or else Is_Real_Type
(It
.Typ
))
2724 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
2726 if T
= Any_Type
then
2729 elsif It
.Typ
= Universal_Real
2730 or else It
.Typ
= Universal_Integer
2732 -- Choose universal interpretation over any other
2739 Get_Next_Interp
(Index
, It
);
2743 if Is_Integer_Type
(T
) then
2745 Set_Etype
(Id
, Universal_Integer
);
2746 Set_Ekind
(Id
, E_Named_Integer
);
2748 elsif Is_Real_Type
(T
) then
2750 -- Because the real value is converted to universal_real, this is a
2751 -- legal context for a universal fixed expression.
2753 if T
= Universal_Fixed
then
2755 Loc
: constant Source_Ptr
:= Sloc
(N
);
2756 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
2758 New_Occurrence_Of
(Universal_Real
, Loc
),
2759 Expression
=> Relocate_Node
(E
));
2766 elsif T
= Any_Fixed
then
2767 Error_Msg_N
("illegal context for mixed mode operation", E
);
2769 -- Expression is of the form : universal_fixed * integer. Try to
2770 -- resolve as universal_real.
2772 T
:= Universal_Real
;
2777 Set_Etype
(Id
, Universal_Real
);
2778 Set_Ekind
(Id
, E_Named_Real
);
2781 Wrong_Type
(E
, Any_Numeric
);
2785 Set_Ekind
(Id
, E_Constant
);
2786 Set_Never_Set_In_Source
(Id
, True);
2787 Set_Is_True_Constant
(Id
, True);
2791 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
2792 Set_Etype
(E
, Etype
(Id
));
2795 if not Is_OK_Static_Expression
(E
) then
2796 Flag_Non_Static_Expr
2797 ("non-static expression used in number declaration!", E
);
2798 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
2799 Set_Etype
(E
, Any_Type
);
2801 end Analyze_Number_Declaration
;
2803 --------------------------------
2804 -- Analyze_Object_Declaration --
2805 --------------------------------
2807 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
2808 Loc
: constant Source_Ptr
:= Sloc
(N
);
2809 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2813 E
: Node_Id
:= Expression
(N
);
2814 -- E is set to Expression (N) throughout this routine. When
2815 -- Expression (N) is modified, E is changed accordingly.
2817 Prev_Entity
: Entity_Id
:= Empty
;
2819 function Count_Tasks
(T
: Entity_Id
) return Uint
;
2820 -- This function is called when a non-generic library level object of a
2821 -- task type is declared. Its function is to count the static number of
2822 -- tasks declared within the type (it is only called if Has_Tasks is set
2823 -- for T). As a side effect, if an array of tasks with non-static bounds
2824 -- or a variant record type is encountered, Check_Restrictions is called
2825 -- indicating the count is unknown.
2831 function Count_Tasks
(T
: Entity_Id
) return Uint
is
2837 if Is_Task_Type
(T
) then
2840 elsif Is_Record_Type
(T
) then
2841 if Has_Discriminants
(T
) then
2842 Check_Restriction
(Max_Tasks
, N
);
2847 C
:= First_Component
(T
);
2848 while Present
(C
) loop
2849 V
:= V
+ Count_Tasks
(Etype
(C
));
2856 elsif Is_Array_Type
(T
) then
2857 X
:= First_Index
(T
);
2858 V
:= Count_Tasks
(Component_Type
(T
));
2859 while Present
(X
) loop
2862 if not Is_Static_Subtype
(C
) then
2863 Check_Restriction
(Max_Tasks
, N
);
2866 V
:= V
* (UI_Max
(Uint_0
,
2867 Expr_Value
(Type_High_Bound
(C
)) -
2868 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
2881 -- Start of processing for Analyze_Object_Declaration
2884 -- There are three kinds of implicit types generated by an
2885 -- object declaration:
2887 -- 1. Those generated by the original Object Definition
2889 -- 2. Those generated by the Expression
2891 -- 3. Those used to constrain the Object Definition with the
2892 -- expression constraints when the definition is unconstrained.
2894 -- They must be generated in this order to avoid order of elaboration
2895 -- issues. Thus the first step (after entering the name) is to analyze
2896 -- the object definition.
2898 if Constant_Present
(N
) then
2899 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
2901 if Present
(Prev_Entity
)
2904 -- If the homograph is an implicit subprogram, it is overridden
2905 -- by the current declaration.
2907 ((Is_Overloadable
(Prev_Entity
)
2908 and then Is_Inherited_Operation
(Prev_Entity
))
2910 -- The current object is a discriminal generated for an entry
2911 -- family index. Even though the index is a constant, in this
2912 -- particular context there is no true constant redeclaration.
2913 -- Enter_Name will handle the visibility.
2916 (Is_Discriminal
(Id
)
2917 and then Ekind
(Discriminal_Link
(Id
)) =
2918 E_Entry_Index_Parameter
)
2920 -- The current object is the renaming for a generic declared
2921 -- within the instance.
2924 (Ekind
(Prev_Entity
) = E_Package
2925 and then Nkind
(Parent
(Prev_Entity
)) =
2926 N_Package_Renaming_Declaration
2927 and then not Comes_From_Source
(Prev_Entity
)
2928 and then Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
2930 Prev_Entity
:= Empty
;
2934 if Present
(Prev_Entity
) then
2935 Constant_Redeclaration
(Id
, N
, T
);
2937 Generate_Reference
(Prev_Entity
, Id
, 'c');
2938 Set_Completion_Referenced
(Id
);
2940 if Error_Posted
(N
) then
2942 -- Type mismatch or illegal redeclaration, Do not analyze
2943 -- expression to avoid cascaded errors.
2945 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2947 Set_Ekind
(Id
, E_Variable
);
2951 -- In the normal case, enter identifier at the start to catch premature
2952 -- usage in the initialization expression.
2955 Generate_Definition
(Id
);
2958 Mark_Coextensions
(N
, Object_Definition
(N
));
2960 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2962 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
2964 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2965 and then Protected_Present
2966 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2968 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
2971 if Error_Posted
(Id
) then
2973 Set_Ekind
(Id
, E_Variable
);
2978 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2979 -- out some static checks
2981 if Ada_Version
>= Ada_2005
2982 and then Can_Never_Be_Null
(T
)
2984 -- In case of aggregates we must also take care of the correct
2985 -- initialization of nested aggregates bug this is done at the
2986 -- point of the analysis of the aggregate (see sem_aggr.adb)
2988 if Present
(Expression
(N
))
2989 and then Nkind
(Expression
(N
)) = N_Aggregate
2995 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
2997 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
2998 Null_Exclusion_Static_Checks
(N
);
2999 Set_Etype
(Id
, Save_Typ
);
3004 -- Object is marked pure if it is in a pure scope
3006 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3008 -- If deferred constant, make sure context is appropriate. We detect
3009 -- a deferred constant as a constant declaration with no expression.
3010 -- A deferred constant can appear in a package body if its completion
3011 -- is by means of an interface pragma.
3013 if Constant_Present
(N
)
3016 -- A deferred constant may appear in the declarative part of the
3017 -- following constructs:
3021 -- extended return statements
3024 -- subprogram bodies
3027 -- When declared inside a package spec, a deferred constant must be
3028 -- completed by a full constant declaration or pragma Import. In all
3029 -- other cases, the only proper completion is pragma Import. Extended
3030 -- return statements are flagged as invalid contexts because they do
3031 -- not have a declarative part and so cannot accommodate the pragma.
3033 if Ekind
(Current_Scope
) = E_Return_Statement
then
3035 ("invalid context for deferred constant declaration (RM 7.4)",
3038 ("\declaration requires an initialization expression",
3040 Set_Constant_Present
(N
, False);
3042 -- In Ada 83, deferred constant must be of private type
3044 elsif not Is_Private_Type
(T
) then
3045 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3047 ("(Ada 83) deferred constant must be private type", N
);
3051 -- If not a deferred constant, then object declaration freezes its type
3054 Check_Fully_Declared
(T
, N
);
3055 Freeze_Before
(N
, T
);
3058 -- If the object was created by a constrained array definition, then
3059 -- set the link in both the anonymous base type and anonymous subtype
3060 -- that are built to represent the array type to point to the object.
3062 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3063 N_Constrained_Array_Definition
3065 Set_Related_Array_Object
(T
, Id
);
3066 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3069 -- Special checks for protected objects not at library level
3071 if Is_Protected_Type
(T
)
3072 and then not Is_Library_Level_Entity
(Id
)
3074 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3076 -- Protected objects with interrupt handlers must be at library level
3078 -- Ada 2005: this test is not needed (and the corresponding clause
3079 -- in the RM is removed) because accessibility checks are sufficient
3080 -- to make handlers not at the library level illegal.
3082 -- AI05-0303: the AI is in fact a binding interpretation, and thus
3083 -- applies to the '95 version of the language as well.
3085 if Has_Interrupt_Handler
(T
)
3086 and then Ada_Version
< Ada_95
3089 ("interrupt object can only be declared at library level", Id
);
3093 -- The actual subtype of the object is the nominal subtype, unless
3094 -- the nominal one is unconstrained and obtained from the expression.
3098 -- These checks should be performed before the initialization expression
3099 -- is considered, so that the Object_Definition node is still the same
3100 -- as in source code.
3102 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3103 -- shall not be unconstrained. (The only exception to this is the
3104 -- admission of declarations of constants of type String.)
3107 Nkind_In
(Object_Definition
(N
), N_Identifier
, N_Expanded_Name
)
3109 Check_SPARK_Restriction
3110 ("subtype mark required", Object_Definition
(N
));
3112 elsif Is_Array_Type
(T
)
3113 and then not Is_Constrained
(T
)
3114 and then T
/= Standard_String
3116 Check_SPARK_Restriction
3117 ("subtype mark of constrained type expected",
3118 Object_Definition
(N
));
3121 -- There are no aliased objects in SPARK
3123 if Aliased_Present
(N
) then
3124 Check_SPARK_Restriction
("aliased object is not allowed", N
);
3127 -- Process initialization expression if present and not in error
3129 if Present
(E
) and then E
/= Error
then
3131 -- Generate an error in case of CPP class-wide object initialization.
3132 -- Required because otherwise the expansion of the class-wide
3133 -- assignment would try to use 'size to initialize the object
3134 -- (primitive that is not available in CPP tagged types).
3136 if Is_Class_Wide_Type
(Act_T
)
3138 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3140 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3142 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3145 ("predefined assignment not available for 'C'P'P tagged types",
3149 Mark_Coextensions
(N
, E
);
3152 -- In case of errors detected in the analysis of the expression,
3153 -- decorate it with the expected type to avoid cascaded errors
3155 if No
(Etype
(E
)) then
3159 -- If an initialization expression is present, then we set the
3160 -- Is_True_Constant flag. It will be reset if this is a variable
3161 -- and it is indeed modified.
3163 Set_Is_True_Constant
(Id
, True);
3165 -- If we are analyzing a constant declaration, set its completion
3166 -- flag after analyzing and resolving the expression.
3168 if Constant_Present
(N
) then
3169 Set_Has_Completion
(Id
);
3172 -- Set type and resolve (type may be overridden later on)
3177 -- No further action needed if E is a call to an inlined function
3178 -- which returns an unconstrained type and it has been expanded into
3179 -- a procedure call. In that case N has been replaced by an object
3180 -- declaration without initializing expression and it has been
3181 -- analyzed (see Expand_Inlined_Call).
3184 and then Expander_Active
3185 and then Nkind
(E
) = N_Function_Call
3186 and then Nkind
(Name
(E
)) in N_Has_Entity
3187 and then Is_Inlined
(Entity
(Name
(E
)))
3188 and then not Is_Constrained
(Etype
(E
))
3189 and then Analyzed
(N
)
3190 and then No
(Expression
(N
))
3195 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3196 -- node (which was marked already-analyzed), we need to set the type
3197 -- to something other than Any_Access in order to keep gigi happy.
3199 if Etype
(E
) = Any_Access
then
3203 -- If the object is an access to variable, the initialization
3204 -- expression cannot be an access to constant.
3206 if Is_Access_Type
(T
)
3207 and then not Is_Access_Constant
(T
)
3208 and then Is_Access_Type
(Etype
(E
))
3209 and then Is_Access_Constant
(Etype
(E
))
3212 ("access to variable cannot be initialized "
3213 & "with an access-to-constant expression", E
);
3216 if not Assignment_OK
(N
) then
3217 Check_Initialization
(T
, E
);
3220 Check_Unset_Reference
(E
);
3222 -- If this is a variable, then set current value. If this is a
3223 -- declared constant of a scalar type with a static expression,
3224 -- indicate that it is always valid.
3226 if not Constant_Present
(N
) then
3227 if Compile_Time_Known_Value
(E
) then
3228 Set_Current_Value
(Id
, E
);
3231 elsif Is_Scalar_Type
(T
)
3232 and then Is_OK_Static_Expression
(E
)
3234 Set_Is_Known_Valid
(Id
);
3237 -- Deal with setting of null flags
3239 if Is_Access_Type
(T
) then
3240 if Known_Non_Null
(E
) then
3241 Set_Is_Known_Non_Null
(Id
, True);
3242 elsif Known_Null
(E
)
3243 and then not Can_Never_Be_Null
(Id
)
3245 Set_Is_Known_Null
(Id
, True);
3249 -- Check incorrect use of dynamically tagged expressions.
3251 if Is_Tagged_Type
(T
) then
3252 Check_Dynamically_Tagged_Expression
3258 Apply_Scalar_Range_Check
(E
, T
);
3259 Apply_Static_Length_Check
(E
, T
);
3261 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3262 and then Comes_From_Source
(Original_Node
(N
))
3264 -- Only call test if needed
3266 and then Restriction_Check_Required
(SPARK
)
3267 and then not Is_SPARK_Initialization_Expr
(E
)
3269 Check_SPARK_Restriction
3270 ("initialization expression is not appropriate", E
);
3274 -- If the No_Streams restriction is set, check that the type of the
3275 -- object is not, and does not contain, any subtype derived from
3276 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3277 -- Has_Stream just for efficiency reasons. There is no point in
3278 -- spending time on a Has_Stream check if the restriction is not set.
3280 if Restriction_Check_Required
(No_Streams
) then
3281 if Has_Stream
(T
) then
3282 Check_Restriction
(No_Streams
, N
);
3286 -- Deal with predicate check before we start to do major rewriting.
3287 -- it is OK to initialize and then check the initialized value, since
3288 -- the object goes out of scope if we get a predicate failure. Note
3289 -- that we do this in the analyzer and not the expander because the
3290 -- analyzer does some substantial rewriting in some cases.
3292 -- We need a predicate check if the type has predicates, and if either
3293 -- there is an initializing expression, or for default initialization
3294 -- when we have at least one case of an explicit default initial value.
3296 if not Suppress_Assignment_Checks
(N
)
3297 and then Present
(Predicate_Function
(T
))
3301 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3304 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3307 -- Case of unconstrained type
3309 if Is_Indefinite_Subtype
(T
) then
3311 -- In SPARK, a declaration of unconstrained type is allowed
3312 -- only for constants of type string.
3314 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3315 Check_SPARK_Restriction
3316 ("declaration of object of unconstrained type not allowed",
3320 -- Nothing to do in deferred constant case
3322 if Constant_Present
(N
) and then No
(E
) then
3325 -- Case of no initialization present
3328 if No_Initialization
(N
) then
3331 elsif Is_Class_Wide_Type
(T
) then
3333 ("initialization required in class-wide declaration ", N
);
3337 ("unconstrained subtype not allowed (need initialization)",
3338 Object_Definition
(N
));
3340 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3342 ("\provide initial value or explicit discriminant values",
3343 Object_Definition
(N
));
3346 ("\or give default discriminant values for type&",
3347 Object_Definition
(N
), T
);
3349 elsif Is_Array_Type
(T
) then
3351 ("\provide initial value or explicit array bounds",
3352 Object_Definition
(N
));
3356 -- Case of initialization present but in error. Set initial
3357 -- expression as absent (but do not make above complaints)
3359 elsif E
= Error
then
3360 Set_Expression
(N
, Empty
);
3363 -- Case of initialization present
3366 -- Check restrictions in Ada 83
3368 if not Constant_Present
(N
) then
3370 -- Unconstrained variables not allowed in Ada 83 mode
3372 if Ada_Version
= Ada_83
3373 and then Comes_From_Source
(Object_Definition
(N
))
3376 ("(Ada 83) unconstrained variable not allowed",
3377 Object_Definition
(N
));
3381 -- Now we constrain the variable from the initializing expression
3383 -- If the expression is an aggregate, it has been expanded into
3384 -- individual assignments. Retrieve the actual type from the
3385 -- expanded construct.
3387 if Is_Array_Type
(T
)
3388 and then No_Initialization
(N
)
3389 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3393 -- In case of class-wide interface object declarations we delay
3394 -- the generation of the equivalent record type declarations until
3395 -- its expansion because there are cases in they are not required.
3397 elsif Is_Interface
(T
) then
3401 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
3402 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3405 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
3407 if Aliased_Present
(N
) then
3408 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3411 Freeze_Before
(N
, Act_T
);
3412 Freeze_Before
(N
, T
);
3415 elsif Is_Array_Type
(T
)
3416 and then No_Initialization
(N
)
3417 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3419 if not Is_Entity_Name
(Object_Definition
(N
)) then
3421 Check_Compile_Time_Size
(Act_T
);
3423 if Aliased_Present
(N
) then
3424 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3428 -- When the given object definition and the aggregate are specified
3429 -- independently, and their lengths might differ do a length check.
3430 -- This cannot happen if the aggregate is of the form (others =>...)
3432 if not Is_Constrained
(T
) then
3435 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
3437 -- Aggregate is statically illegal. Place back in declaration
3439 Set_Expression
(N
, E
);
3440 Set_No_Initialization
(N
, False);
3442 elsif T
= Etype
(E
) then
3445 elsif Nkind
(E
) = N_Aggregate
3446 and then Present
(Component_Associations
(E
))
3447 and then Present
(Choices
(First
(Component_Associations
(E
))))
3448 and then Nkind
(First
3449 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
3454 Apply_Length_Check
(E
, T
);
3457 -- If the type is limited unconstrained with defaulted discriminants and
3458 -- there is no expression, then the object is constrained by the
3459 -- defaults, so it is worthwhile building the corresponding subtype.
3461 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
3462 and then not Is_Constrained
(T
)
3463 and then Has_Discriminants
(T
)
3466 Act_T
:= Build_Default_Subtype
(T
, N
);
3468 -- Ada 2005: a limited object may be initialized by means of an
3469 -- aggregate. If the type has default discriminants it has an
3470 -- unconstrained nominal type, Its actual subtype will be obtained
3471 -- from the aggregate, and not from the default discriminants.
3476 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
3478 elsif Present
(Underlying_Type
(T
))
3479 and then not Is_Constrained
(Underlying_Type
(T
))
3480 and then Has_Discriminants
(Underlying_Type
(T
))
3481 and then Nkind
(E
) = N_Function_Call
3482 and then Constant_Present
(N
)
3484 -- The back-end has problems with constants of a discriminated type
3485 -- with defaults, if the initial value is a function call. We
3486 -- generate an intermediate temporary for the result of the call.
3487 -- It is unclear why this should make it acceptable to gcc. ???
3489 Remove_Side_Effects
(E
);
3491 -- If this is a constant declaration of an unconstrained type and
3492 -- the initialization is an aggregate, we can use the subtype of the
3493 -- aggregate for the declared entity because it is immutable.
3495 elsif not Is_Constrained
(T
)
3496 and then Has_Discriminants
(T
)
3497 and then Constant_Present
(N
)
3498 and then not Has_Unchecked_Union
(T
)
3499 and then Nkind
(E
) = N_Aggregate
3504 -- Check No_Wide_Characters restriction
3506 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
3508 -- Indicate this is not set in source. Certainly true for constants, and
3509 -- true for variables so far (will be reset for a variable if and when
3510 -- we encounter a modification in the source).
3512 Set_Never_Set_In_Source
(Id
, True);
3514 -- Now establish the proper kind and type of the object
3516 if Constant_Present
(N
) then
3517 Set_Ekind
(Id
, E_Constant
);
3518 Set_Is_True_Constant
(Id
, True);
3521 Set_Ekind
(Id
, E_Variable
);
3523 -- A variable is set as shared passive if it appears in a shared
3524 -- passive package, and is at the outer level. This is not done for
3525 -- entities generated during expansion, because those are always
3526 -- manipulated locally.
3528 if Is_Shared_Passive
(Current_Scope
)
3529 and then Is_Library_Level_Entity
(Id
)
3530 and then Comes_From_Source
(Id
)
3532 Set_Is_Shared_Passive
(Id
);
3533 Check_Shared_Var
(Id
, T
, N
);
3536 -- Set Has_Initial_Value if initializing expression present. Note
3537 -- that if there is no initializing expression, we leave the state
3538 -- of this flag unchanged (usually it will be False, but notably in
3539 -- the case of exception choice variables, it will already be true).
3542 Set_Has_Initial_Value
(Id
, True);
3546 -- Initialize alignment and size and capture alignment setting
3548 Init_Alignment
(Id
);
3550 Set_Optimize_Alignment_Flags
(Id
);
3552 -- Deal with aliased case
3554 if Aliased_Present
(N
) then
3555 Set_Is_Aliased
(Id
);
3557 -- If the object is aliased and the type is unconstrained with
3558 -- defaulted discriminants and there is no expression, then the
3559 -- object is constrained by the defaults, so it is worthwhile
3560 -- building the corresponding subtype.
3562 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3563 -- unconstrained, then only establish an actual subtype if the
3564 -- nominal subtype is indefinite. In definite cases the object is
3565 -- unconstrained in Ada 2005.
3568 and then Is_Record_Type
(T
)
3569 and then not Is_Constrained
(T
)
3570 and then Has_Discriminants
(T
)
3571 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
3573 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
3577 -- Now we can set the type of the object
3579 Set_Etype
(Id
, Act_T
);
3581 -- Object is marked to be treated as volatile if type is volatile and
3582 -- we clear the Current_Value setting that may have been set above.
3584 if Treat_As_Volatile
(Etype
(Id
)) then
3585 Set_Treat_As_Volatile
(Id
);
3586 Set_Current_Value
(Id
, Empty
);
3589 -- Deal with controlled types
3591 if Has_Controlled_Component
(Etype
(Id
))
3592 or else Is_Controlled
(Etype
(Id
))
3594 if not Is_Library_Level_Entity
(Id
) then
3595 Check_Restriction
(No_Nested_Finalization
, N
);
3597 Validate_Controlled_Object
(Id
);
3601 if Has_Task
(Etype
(Id
)) then
3602 Check_Restriction
(No_Tasking
, N
);
3604 -- Deal with counting max tasks
3606 -- Nothing to do if inside a generic
3608 if Inside_A_Generic
then
3611 -- If library level entity, then count tasks
3613 elsif Is_Library_Level_Entity
(Id
) then
3614 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
3616 -- If not library level entity, then indicate we don't know max
3617 -- tasks and also check task hierarchy restriction and blocking
3618 -- operation (since starting a task is definitely blocking!)
3621 Check_Restriction
(Max_Tasks
, N
);
3622 Check_Restriction
(No_Task_Hierarchy
, N
);
3623 Check_Potentially_Blocking_Operation
(N
);
3626 -- A rather specialized test. If we see two tasks being declared
3627 -- of the same type in the same object declaration, and the task
3628 -- has an entry with an address clause, we know that program error
3629 -- will be raised at run time since we can't have two tasks with
3630 -- entries at the same address.
3632 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
3637 E
:= First_Entity
(Etype
(Id
));
3638 while Present
(E
) loop
3639 if Ekind
(E
) = E_Entry
3640 and then Present
(Get_Attribute_Definition_Clause
3641 (E
, Attribute_Address
))
3644 ("?more than one task with same entry address", N
);
3646 ("\?Program_Error will be raised at run time", N
);
3648 Make_Raise_Program_Error
(Loc
,
3649 Reason
=> PE_Duplicated_Entry_Address
));
3659 -- Some simple constant-propagation: if the expression is a constant
3660 -- string initialized with a literal, share the literal. This avoids
3664 and then Is_Entity_Name
(E
)
3665 and then Ekind
(Entity
(E
)) = E_Constant
3666 and then Base_Type
(Etype
(E
)) = Standard_String
3669 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
3672 and then Nkind
(Val
) = N_String_Literal
3674 Rewrite
(E
, New_Copy
(Val
));
3679 -- Another optimization: if the nominal subtype is unconstrained and
3680 -- the expression is a function call that returns an unconstrained
3681 -- type, rewrite the declaration as a renaming of the result of the
3682 -- call. The exceptions below are cases where the copy is expected,
3683 -- either by the back end (Aliased case) or by the semantics, as for
3684 -- initializing controlled types or copying tags for classwide types.
3687 and then Nkind
(E
) = N_Explicit_Dereference
3688 and then Nkind
(Original_Node
(E
)) = N_Function_Call
3689 and then not Is_Library_Level_Entity
(Id
)
3690 and then not Is_Constrained
(Underlying_Type
(T
))
3691 and then not Is_Aliased
(Id
)
3692 and then not Is_Class_Wide_Type
(T
)
3693 and then not Is_Controlled
(T
)
3694 and then not Has_Controlled_Component
(Base_Type
(T
))
3695 and then Expander_Active
3698 Make_Object_Renaming_Declaration
(Loc
,
3699 Defining_Identifier
=> Id
,
3700 Access_Definition
=> Empty
,
3701 Subtype_Mark
=> New_Occurrence_Of
3702 (Base_Type
(Etype
(Id
)), Loc
),
3705 Set_Renamed_Object
(Id
, E
);
3707 -- Force generation of debugging information for the constant and for
3708 -- the renamed function call.
3710 Set_Debug_Info_Needed
(Id
);
3711 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
3714 if Present
(Prev_Entity
)
3715 and then Is_Frozen
(Prev_Entity
)
3716 and then not Error_Posted
(Id
)
3718 Error_Msg_N
("full constant declaration appears too late", N
);
3721 Check_Eliminated
(Id
);
3723 -- Deal with setting In_Private_Part flag if in private part
3725 if Ekind
(Scope
(Id
)) = E_Package
3726 and then In_Private_Part
(Scope
(Id
))
3728 Set_In_Private_Part
(Id
);
3731 -- Check for violation of No_Local_Timing_Events
3733 if Restriction_Check_Required
(No_Local_Timing_Events
)
3734 and then not Is_Library_Level_Entity
(Id
)
3735 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
3737 Check_Restriction
(No_Local_Timing_Events
, N
);
3741 if Has_Aspects
(N
) then
3742 Analyze_Aspect_Specifications
(N
, Id
);
3745 Analyze_Dimension
(N
);
3746 end Analyze_Object_Declaration
;
3748 ---------------------------
3749 -- Analyze_Others_Choice --
3750 ---------------------------
3752 -- Nothing to do for the others choice node itself, the semantic analysis
3753 -- of the others choice will occur as part of the processing of the parent
3755 procedure Analyze_Others_Choice
(N
: Node_Id
) is
3756 pragma Warnings
(Off
, N
);
3759 end Analyze_Others_Choice
;
3761 -------------------------------------------
3762 -- Analyze_Private_Extension_Declaration --
3763 -------------------------------------------
3765 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
3766 T
: constant Entity_Id
:= Defining_Identifier
(N
);
3767 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
3768 Parent_Type
: Entity_Id
;
3769 Parent_Base
: Entity_Id
;
3772 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3774 if Is_Non_Empty_List
(Interface_List
(N
)) then
3780 Intf
:= First
(Interface_List
(N
));
3781 while Present
(Intf
) loop
3782 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
3784 Diagnose_Interface
(Intf
, T
);
3790 Generate_Definition
(T
);
3792 -- For other than Ada 2012, just enter the name in the current scope
3794 if Ada_Version
< Ada_2012
then
3797 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
3798 -- case of private type that completes an incomplete type.
3805 Prev
:= Find_Type_Name
(N
);
3807 pragma Assert
(Prev
= T
3808 or else (Ekind
(Prev
) = E_Incomplete_Type
3809 and then Present
(Full_View
(Prev
))
3810 and then Full_View
(Prev
) = T
));
3814 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
3815 Parent_Base
:= Base_Type
(Parent_Type
);
3817 if Parent_Type
= Any_Type
3818 or else Etype
(Parent_Type
) = Any_Type
3820 Set_Ekind
(T
, Ekind
(Parent_Type
));
3821 Set_Etype
(T
, Any_Type
);
3824 elsif not Is_Tagged_Type
(Parent_Type
) then
3826 ("parent of type extension must be a tagged type ", Indic
);
3829 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
3830 Error_Msg_N
("premature derivation of incomplete type", Indic
);
3833 elsif Is_Concurrent_Type
(Parent_Type
) then
3835 ("parent type of a private extension cannot be "
3836 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
3838 Set_Etype
(T
, Any_Type
);
3839 Set_Ekind
(T
, E_Limited_Private_Type
);
3840 Set_Private_Dependents
(T
, New_Elmt_List
);
3841 Set_Error_Posted
(T
);
3845 -- Perhaps the parent type should be changed to the class-wide type's
3846 -- specific type in this case to prevent cascading errors ???
3848 if Is_Class_Wide_Type
(Parent_Type
) then
3850 ("parent of type extension must not be a class-wide type", Indic
);
3854 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
3855 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
3856 or else In_Private_Part
(Current_Scope
)
3859 Error_Msg_N
("invalid context for private extension", N
);
3862 -- Set common attributes
3864 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3865 Set_Scope
(T
, Current_Scope
);
3866 Set_Ekind
(T
, E_Record_Type_With_Private
);
3867 Init_Size_Align
(T
);
3869 Set_Etype
(T
, Parent_Base
);
3870 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
3872 Set_Convention
(T
, Convention
(Parent_Type
));
3873 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
3874 Set_Is_First_Subtype
(T
);
3875 Make_Class_Wide_Type
(T
);
3877 if Unknown_Discriminants_Present
(N
) then
3878 Set_Discriminant_Constraint
(T
, No_Elist
);
3881 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
3883 -- Propagate inherited invariant information. The new type has
3884 -- invariants, if the parent type has inheritable invariants,
3885 -- and these invariants can in turn be inherited.
3887 if Has_Inheritable_Invariants
(Parent_Type
) then
3888 Set_Has_Inheritable_Invariants
(T
);
3889 Set_Has_Invariants
(T
);
3892 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3893 -- synchronized formal derived type.
3895 if Ada_Version
>= Ada_2005
3896 and then Synchronized_Present
(N
)
3898 Set_Is_Limited_Record
(T
);
3900 -- Formal derived type case
3902 if Is_Generic_Type
(T
) then
3904 -- The parent must be a tagged limited type or a synchronized
3907 if (not Is_Tagged_Type
(Parent_Type
)
3908 or else not Is_Limited_Type
(Parent_Type
))
3910 (not Is_Interface
(Parent_Type
)
3911 or else not Is_Synchronized_Interface
(Parent_Type
))
3913 Error_Msg_NE
("parent type of & must be tagged limited " &
3914 "or synchronized", N
, T
);
3917 -- The progenitors (if any) must be limited or synchronized
3920 if Present
(Interfaces
(T
)) then
3923 Iface_Elmt
: Elmt_Id
;
3926 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
3927 while Present
(Iface_Elmt
) loop
3928 Iface
:= Node
(Iface_Elmt
);
3930 if not Is_Limited_Interface
(Iface
)
3931 and then not Is_Synchronized_Interface
(Iface
)
3933 Error_Msg_NE
("progenitor & must be limited " &
3934 "or synchronized", N
, Iface
);
3937 Next_Elmt
(Iface_Elmt
);
3942 -- Regular derived extension, the parent must be a limited or
3943 -- synchronized interface.
3946 if not Is_Interface
(Parent_Type
)
3947 or else (not Is_Limited_Interface
(Parent_Type
)
3949 not Is_Synchronized_Interface
(Parent_Type
))
3952 ("parent type of & must be limited interface", N
, T
);
3956 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
3957 -- extension with a synchronized parent must be explicitly declared
3958 -- synchronized, because the full view will be a synchronized type.
3959 -- This must be checked before the check for limited types below,
3960 -- to ensure that types declared limited are not allowed to extend
3961 -- synchronized interfaces.
3963 elsif Is_Interface
(Parent_Type
)
3964 and then Is_Synchronized_Interface
(Parent_Type
)
3965 and then not Synchronized_Present
(N
)
3968 ("private extension of& must be explicitly synchronized",
3971 elsif Limited_Present
(N
) then
3972 Set_Is_Limited_Record
(T
);
3974 if not Is_Limited_Type
(Parent_Type
)
3976 (not Is_Interface
(Parent_Type
)
3977 or else not Is_Limited_Interface
(Parent_Type
))
3979 Error_Msg_NE
("parent type& of limited extension must be limited",
3985 if Has_Aspects
(N
) then
3986 Analyze_Aspect_Specifications
(N
, T
);
3988 end Analyze_Private_Extension_Declaration
;
3990 ---------------------------------
3991 -- Analyze_Subtype_Declaration --
3992 ---------------------------------
3994 procedure Analyze_Subtype_Declaration
3996 Skip
: Boolean := False)
3998 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4000 R_Checks
: Check_Result
;
4003 Generate_Definition
(Id
);
4004 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4005 Init_Size_Align
(Id
);
4007 -- The following guard condition on Enter_Name is to handle cases where
4008 -- the defining identifier has already been entered into the scope but
4009 -- the declaration as a whole needs to be analyzed.
4011 -- This case in particular happens for derived enumeration types. The
4012 -- derived enumeration type is processed as an inserted enumeration type
4013 -- declaration followed by a rewritten subtype declaration. The defining
4014 -- identifier, however, is entered into the name scope very early in the
4015 -- processing of the original type declaration and therefore needs to be
4016 -- avoided here, when the created subtype declaration is analyzed. (See
4017 -- Build_Derived_Types)
4019 -- This also happens when the full view of a private type is derived
4020 -- type with constraints. In this case the entity has been introduced
4021 -- in the private declaration.
4024 or else (Present
(Etype
(Id
))
4025 and then (Is_Private_Type
(Etype
(Id
))
4026 or else Is_Task_Type
(Etype
(Id
))
4027 or else Is_Rewrite_Substitution
(N
)))
4035 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4037 -- Class-wide equivalent types of records with unknown discriminants
4038 -- involve the generation of an itype which serves as the private view
4039 -- of a constrained record subtype. In such cases the base type of the
4040 -- current subtype we are processing is the private itype. Use the full
4041 -- of the private itype when decorating various attributes.
4044 and then Is_Private_Type
(T
)
4045 and then Present
(Full_View
(T
))
4050 -- Inherit common attributes
4052 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4053 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4054 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4055 Set_Convention
(Id
, Convention
(T
));
4057 -- If ancestor has predicates then so does the subtype, and in addition
4058 -- we must delay the freeze to properly arrange predicate inheritance.
4060 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4061 -- which T = ID, so the above tests and assignments do nothing???
4063 if Has_Predicates
(T
)
4064 or else (Present
(Ancestor_Subtype
(T
))
4065 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4067 Set_Has_Predicates
(Id
);
4068 Set_Has_Delayed_Freeze
(Id
);
4071 -- Subtype of Boolean cannot have a constraint in SPARK
4073 if Is_Boolean_Type
(T
)
4074 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4076 Check_SPARK_Restriction
4077 ("subtype of Boolean cannot have constraint", N
);
4080 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4082 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4088 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4089 One_Cstr
:= First
(Constraints
(Cstr
));
4090 while Present
(One_Cstr
) loop
4092 -- Index or discriminant constraint in SPARK must be a
4096 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4098 Check_SPARK_Restriction
4099 ("subtype mark required", One_Cstr
);
4101 -- String subtype must have a lower bound of 1 in SPARK.
4102 -- Note that we do not need to test for the non-static case
4103 -- here, since that was already taken care of in
4104 -- Process_Range_Expr_In_Decl.
4106 elsif Base_Type
(T
) = Standard_String
then
4107 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4109 if Is_OK_Static_Expression
(Low
)
4110 and then Expr_Value
(Low
) /= 1
4112 Check_SPARK_Restriction
4113 ("String subtype must have lower bound of 1", N
);
4123 -- In the case where there is no constraint given in the subtype
4124 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4125 -- semantic attributes must be established here.
4127 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4128 Set_Etype
(Id
, Base_Type
(T
));
4130 -- Subtype of unconstrained array without constraint is not allowed
4133 if Is_Array_Type
(T
)
4134 and then not Is_Constrained
(T
)
4136 Check_SPARK_Restriction
4137 ("subtype of unconstrained array must have constraint", N
);
4142 Set_Ekind
(Id
, E_Array_Subtype
);
4143 Copy_Array_Subtype_Attributes
(Id
, T
);
4145 when Decimal_Fixed_Point_Kind
=>
4146 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4147 Set_Digits_Value
(Id
, Digits_Value
(T
));
4148 Set_Delta_Value
(Id
, Delta_Value
(T
));
4149 Set_Scale_Value
(Id
, Scale_Value
(T
));
4150 Set_Small_Value
(Id
, Small_Value
(T
));
4151 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4152 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4153 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4154 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4155 Set_RM_Size
(Id
, RM_Size
(T
));
4157 when Enumeration_Kind
=>
4158 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4159 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4160 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4161 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4162 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4163 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4164 Set_RM_Size
(Id
, RM_Size
(T
));
4166 when Ordinary_Fixed_Point_Kind
=>
4167 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4168 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4169 Set_Small_Value
(Id
, Small_Value
(T
));
4170 Set_Delta_Value
(Id
, Delta_Value
(T
));
4171 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4172 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4173 Set_RM_Size
(Id
, RM_Size
(T
));
4176 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4177 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4178 Set_Digits_Value
(Id
, Digits_Value
(T
));
4179 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4181 when Signed_Integer_Kind
=>
4182 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4183 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4184 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4185 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4186 Set_RM_Size
(Id
, RM_Size
(T
));
4188 when Modular_Integer_Kind
=>
4189 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4190 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4191 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4192 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4193 Set_RM_Size
(Id
, RM_Size
(T
));
4195 when Class_Wide_Kind
=>
4196 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4197 Set_First_Entity
(Id
, First_Entity
(T
));
4198 Set_Last_Entity
(Id
, Last_Entity
(T
));
4199 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4200 Set_Cloned_Subtype
(Id
, T
);
4201 Set_Is_Tagged_Type
(Id
, True);
4202 Set_Has_Unknown_Discriminants
4205 if Ekind
(T
) = E_Class_Wide_Subtype
then
4206 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4209 when E_Record_Type | E_Record_Subtype
=>
4210 Set_Ekind
(Id
, E_Record_Subtype
);
4212 if Ekind
(T
) = E_Record_Subtype
4213 and then Present
(Cloned_Subtype
(T
))
4215 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4217 Set_Cloned_Subtype
(Id
, T
);
4220 Set_First_Entity
(Id
, First_Entity
(T
));
4221 Set_Last_Entity
(Id
, Last_Entity
(T
));
4222 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4223 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4224 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4225 Set_Has_Implicit_Dereference
4226 (Id
, Has_Implicit_Dereference
(T
));
4227 Set_Has_Unknown_Discriminants
4228 (Id
, Has_Unknown_Discriminants
(T
));
4230 if Has_Discriminants
(T
) then
4231 Set_Discriminant_Constraint
4232 (Id
, Discriminant_Constraint
(T
));
4233 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4235 elsif Has_Unknown_Discriminants
(Id
) then
4236 Set_Discriminant_Constraint
(Id
, No_Elist
);
4239 if Is_Tagged_Type
(T
) then
4240 Set_Is_Tagged_Type
(Id
);
4241 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4242 Set_Direct_Primitive_Operations
4243 (Id
, Direct_Primitive_Operations
(T
));
4244 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4246 if Is_Interface
(T
) then
4247 Set_Is_Interface
(Id
);
4248 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4252 when Private_Kind
=>
4253 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4254 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4255 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4256 Set_First_Entity
(Id
, First_Entity
(T
));
4257 Set_Last_Entity
(Id
, Last_Entity
(T
));
4258 Set_Private_Dependents
(Id
, New_Elmt_List
);
4259 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4260 Set_Has_Implicit_Dereference
4261 (Id
, Has_Implicit_Dereference
(T
));
4262 Set_Has_Unknown_Discriminants
4263 (Id
, Has_Unknown_Discriminants
(T
));
4264 Set_Known_To_Have_Preelab_Init
4265 (Id
, Known_To_Have_Preelab_Init
(T
));
4267 if Is_Tagged_Type
(T
) then
4268 Set_Is_Tagged_Type
(Id
);
4269 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4270 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4271 Set_Direct_Primitive_Operations
(Id
,
4272 Direct_Primitive_Operations
(T
));
4275 -- In general the attributes of the subtype of a private type
4276 -- are the attributes of the partial view of parent. However,
4277 -- the full view may be a discriminated type, and the subtype
4278 -- must share the discriminant constraint to generate correct
4279 -- calls to initialization procedures.
4281 if Has_Discriminants
(T
) then
4282 Set_Discriminant_Constraint
4283 (Id
, Discriminant_Constraint
(T
));
4284 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4286 elsif Present
(Full_View
(T
))
4287 and then Has_Discriminants
(Full_View
(T
))
4289 Set_Discriminant_Constraint
4290 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4291 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4293 -- This would seem semantically correct, but apparently
4294 -- confuses the back-end. To be explained and checked with
4295 -- current version ???
4297 -- Set_Has_Discriminants (Id);
4300 Prepare_Private_Subtype_Completion
(Id
, N
);
4303 Set_Ekind
(Id
, E_Access_Subtype
);
4304 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4305 Set_Is_Access_Constant
4306 (Id
, Is_Access_Constant
(T
));
4307 Set_Directly_Designated_Type
4308 (Id
, Designated_Type
(T
));
4309 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
4311 -- A Pure library_item must not contain the declaration of a
4312 -- named access type, except within a subprogram, generic
4313 -- subprogram, task unit, or protected unit, or if it has
4314 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4316 if Comes_From_Source
(Id
)
4317 and then In_Pure_Unit
4318 and then not In_Subprogram_Task_Protected_Unit
4319 and then not No_Pool_Assigned
(Id
)
4322 ("named access types not allowed in pure unit", N
);
4325 when Concurrent_Kind
=>
4326 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4327 Set_Corresponding_Record_Type
(Id
,
4328 Corresponding_Record_Type
(T
));
4329 Set_First_Entity
(Id
, First_Entity
(T
));
4330 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
4331 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4332 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4333 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4334 Set_Last_Entity
(Id
, Last_Entity
(T
));
4336 if Has_Discriminants
(T
) then
4337 Set_Discriminant_Constraint
(Id
,
4338 Discriminant_Constraint
(T
));
4339 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4342 when E_Incomplete_Type
=>
4343 if Ada_Version
>= Ada_2005
then
4345 -- In Ada 2005 an incomplete type can be explicitly tagged:
4346 -- propagate indication.
4348 Set_Ekind
(Id
, E_Incomplete_Subtype
);
4349 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4350 Set_Private_Dependents
(Id
, New_Elmt_List
);
4352 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4353 -- incomplete type visible through a limited with clause.
4355 if From_With_Type
(T
)
4356 and then Present
(Non_Limited_View
(T
))
4358 Set_From_With_Type
(Id
);
4359 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
4361 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4362 -- to the private dependents of the original incomplete
4363 -- type for future transformation.
4366 Append_Elmt
(Id
, Private_Dependents
(T
));
4369 -- If the subtype name denotes an incomplete type an error
4370 -- was already reported by Process_Subtype.
4373 Set_Etype
(Id
, Any_Type
);
4377 raise Program_Error
;
4381 if Etype
(Id
) = Any_Type
then
4385 -- Some common processing on all types
4387 Set_Size_Info
(Id
, T
);
4388 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
4392 Set_Is_Immediately_Visible
(Id
, True);
4393 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
4394 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
4396 if Is_Interface
(T
) then
4397 Set_Is_Interface
(Id
);
4400 if Present
(Generic_Parent_Type
(N
))
4403 (Parent
(Generic_Parent_Type
(N
))) /= N_Formal_Type_Declaration
4405 (Formal_Type_Definition
(Parent
(Generic_Parent_Type
(N
))))
4406 /= N_Formal_Private_Type_Definition
)
4408 if Is_Tagged_Type
(Id
) then
4410 -- If this is a generic actual subtype for a synchronized type,
4411 -- the primitive operations are those of the corresponding record
4412 -- for which there is a separate subtype declaration.
4414 if Is_Concurrent_Type
(Id
) then
4416 elsif Is_Class_Wide_Type
(Id
) then
4417 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
4419 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
4422 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
4423 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
4427 if Is_Private_Type
(T
)
4428 and then Present
(Full_View
(T
))
4430 Conditional_Delay
(Id
, Full_View
(T
));
4432 -- The subtypes of components or subcomponents of protected types
4433 -- do not need freeze nodes, which would otherwise appear in the
4434 -- wrong scope (before the freeze node for the protected type). The
4435 -- proper subtypes are those of the subcomponents of the corresponding
4438 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
4439 and then Present
(Scope
(Scope
(Id
))) -- error defense!
4440 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
4442 Conditional_Delay
(Id
, T
);
4445 -- Check that Constraint_Error is raised for a scalar subtype indication
4446 -- when the lower or upper bound of a non-null range lies outside the
4447 -- range of the type mark.
4449 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4450 if Is_Scalar_Type
(Etype
(Id
))
4451 and then Scalar_Range
(Id
) /=
4452 Scalar_Range
(Etype
(Subtype_Mark
4453 (Subtype_Indication
(N
))))
4457 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
4459 -- In the array case, check compatibility for each index
4461 elsif Is_Array_Type
(Etype
(Id
))
4462 and then Present
(First_Index
(Id
))
4464 -- This really should be a subprogram that finds the indications
4468 Subt_Index
: Node_Id
:= First_Index
(Id
);
4469 Target_Index
: Node_Id
:=
4471 (Subtype_Mark
(Subtype_Indication
(N
))));
4472 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
4475 while Present
(Subt_Index
) loop
4476 if ((Nkind
(Subt_Index
) = N_Identifier
4477 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
4478 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
4480 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
4483 Target_Typ
: constant Entity_Id
:=
4484 Etype
(Target_Index
);
4488 (Scalar_Range
(Etype
(Subt_Index
)),
4491 Defining_Identifier
(N
));
4493 -- Reset Has_Dynamic_Range_Check on the subtype to
4494 -- prevent elision of the index check due to a dynamic
4495 -- check generated for a preceding index (needed since
4496 -- Insert_Range_Checks tries to avoid generating
4497 -- redundant checks on a given declaration).
4499 Set_Has_Dynamic_Range_Check
(N
, False);
4505 Sloc
(Defining_Identifier
(N
)));
4507 -- Record whether this index involved a dynamic check
4510 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
4514 Next_Index
(Subt_Index
);
4515 Next_Index
(Target_Index
);
4518 -- Finally, mark whether the subtype involves dynamic checks
4520 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
4525 -- Make sure that generic actual types are properly frozen. The subtype
4526 -- is marked as a generic actual type when the enclosing instance is
4527 -- analyzed, so here we identify the subtype from the tree structure.
4530 and then Is_Generic_Actual_Type
(Id
)
4531 and then In_Instance
4532 and then not Comes_From_Source
(N
)
4533 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
4534 and then Is_Frozen
(T
)
4536 Freeze_Before
(N
, Id
);
4539 Set_Optimize_Alignment_Flags
(Id
);
4540 Check_Eliminated
(Id
);
4543 if Has_Aspects
(N
) then
4544 Analyze_Aspect_Specifications
(N
, Id
);
4547 Analyze_Dimension
(N
);
4548 end Analyze_Subtype_Declaration
;
4550 --------------------------------
4551 -- Analyze_Subtype_Indication --
4552 --------------------------------
4554 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
4555 T
: constant Entity_Id
:= Subtype_Mark
(N
);
4556 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
4563 Set_Etype
(N
, Etype
(R
));
4564 Resolve
(R
, Entity
(T
));
4566 Set_Error_Posted
(R
);
4567 Set_Error_Posted
(T
);
4569 end Analyze_Subtype_Indication
;
4571 --------------------------
4572 -- Analyze_Variant_Part --
4573 --------------------------
4575 procedure Analyze_Variant_Part
(N
: Node_Id
) is
4577 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
4578 -- Error routine invoked by the generic instantiation below when the
4579 -- variant part has a non static choice.
4581 procedure Process_Declarations
(Variant
: Node_Id
);
4582 -- Analyzes all the declarations associated with a Variant. Needed by
4583 -- the generic instantiation below.
4585 package Variant_Choices_Processing
is new
4586 Generic_Choices_Processing
4587 (Get_Alternatives
=> Variants
,
4588 Get_Choices
=> Discrete_Choices
,
4589 Process_Empty_Choice
=> No_OP
,
4590 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
4591 Process_Associated_Node
=> Process_Declarations
);
4592 use Variant_Choices_Processing
;
4593 -- Instantiation of the generic choice processing package
4595 -----------------------------
4596 -- Non_Static_Choice_Error --
4597 -----------------------------
4599 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
4601 Flag_Non_Static_Expr
4602 ("choice given in variant part is not static!", Choice
);
4603 end Non_Static_Choice_Error
;
4605 --------------------------
4606 -- Process_Declarations --
4607 --------------------------
4609 procedure Process_Declarations
(Variant
: Node_Id
) is
4611 if not Null_Present
(Component_List
(Variant
)) then
4612 Analyze_Declarations
(Component_Items
(Component_List
(Variant
)));
4614 if Present
(Variant_Part
(Component_List
(Variant
))) then
4615 Analyze
(Variant_Part
(Component_List
(Variant
)));
4618 end Process_Declarations
;
4622 Discr_Name
: Node_Id
;
4623 Discr_Type
: Entity_Id
;
4625 Dont_Care
: Boolean;
4626 Others_Present
: Boolean := False;
4628 pragma Warnings
(Off
, Dont_Care
);
4629 pragma Warnings
(Off
, Others_Present
);
4630 -- We don't care about the assigned values of any of these
4632 -- Start of processing for Analyze_Variant_Part
4635 Discr_Name
:= Name
(N
);
4636 Analyze
(Discr_Name
);
4638 -- If Discr_Name bad, get out (prevent cascaded errors)
4640 if Etype
(Discr_Name
) = Any_Type
then
4644 -- Check invalid discriminant in variant part
4646 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
4647 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
4650 Discr_Type
:= Etype
(Entity
(Discr_Name
));
4652 if not Is_Discrete_Type
(Discr_Type
) then
4654 ("discriminant in a variant part must be of a discrete type",
4659 -- Call the instantiated Analyze_Choices which does the rest of the work
4661 Analyze_Choices
(N
, Discr_Type
, Dont_Care
, Others_Present
);
4662 end Analyze_Variant_Part
;
4664 ----------------------------
4665 -- Array_Type_Declaration --
4666 ----------------------------
4668 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
4669 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
4670 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
4671 Element_Type
: Entity_Id
;
4672 Implicit_Base
: Entity_Id
;
4674 Related_Id
: Entity_Id
:= Empty
;
4676 P
: constant Node_Id
:= Parent
(Def
);
4680 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4681 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
4683 Index
:= First
(Subtype_Marks
(Def
));
4686 -- Find proper names for the implicit types which may be public. In case
4687 -- of anonymous arrays we use the name of the first object of that type
4691 Related_Id
:= Defining_Identifier
(P
);
4697 while Present
(Index
) loop
4700 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
4701 Check_SPARK_Restriction
("subtype mark required", Index
);
4704 -- Add a subtype declaration for each index of private array type
4705 -- declaration whose etype is also private. For example:
4708 -- type Index is private;
4710 -- type Table is array (Index) of ...
4713 -- This is currently required by the expander for the internally
4714 -- generated equality subprogram of records with variant parts in
4715 -- which the etype of some component is such private type.
4717 if Ekind
(Current_Scope
) = E_Package
4718 and then In_Private_Part
(Current_Scope
)
4719 and then Has_Private_Declaration
(Etype
(Index
))
4722 Loc
: constant Source_Ptr
:= Sloc
(Def
);
4727 New_E
:= Make_Temporary
(Loc
, 'T');
4728 Set_Is_Internal
(New_E
);
4731 Make_Subtype_Declaration
(Loc
,
4732 Defining_Identifier
=> New_E
,
4733 Subtype_Indication
=>
4734 New_Occurrence_Of
(Etype
(Index
), Loc
));
4736 Insert_Before
(Parent
(Def
), Decl
);
4738 Set_Etype
(Index
, New_E
);
4740 -- If the index is a range the Entity attribute is not
4741 -- available. Example:
4744 -- type T is private;
4746 -- type T is new Natural;
4747 -- Table : array (T(1) .. T(10)) of Boolean;
4750 if Nkind
(Index
) /= N_Range
then
4751 Set_Entity
(Index
, New_E
);
4756 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
4758 -- Check error of subtype with predicate for index type
4760 Bad_Predicated_Subtype_Use
4761 ("subtype& has predicate, not allowed as index subtype",
4762 Index
, Etype
(Index
));
4764 -- Move to next index
4767 Nb_Index
:= Nb_Index
+ 1;
4770 -- Process subtype indication if one is present
4772 if Present
(Component_Typ
) then
4773 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
4775 Set_Etype
(Component_Typ
, Element_Type
);
4777 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
4778 Check_SPARK_Restriction
("subtype mark required", Component_Typ
);
4781 -- Ada 2005 (AI-230): Access Definition case
4783 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
4785 -- Indicate that the anonymous access type is created by the
4786 -- array type declaration.
4788 Element_Type
:= Access_Definition
4790 N
=> Access_Definition
(Component_Def
));
4791 Set_Is_Local_Anonymous_Access
(Element_Type
);
4793 -- Propagate the parent. This field is needed if we have to generate
4794 -- the master_id associated with an anonymous access to task type
4795 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4797 Set_Parent
(Element_Type
, Parent
(T
));
4799 -- Ada 2005 (AI-230): In case of components that are anonymous access
4800 -- types the level of accessibility depends on the enclosing type
4803 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
4805 -- Ada 2005 (AI-254)
4808 CD
: constant Node_Id
:=
4809 Access_To_Subprogram_Definition
4810 (Access_Definition
(Component_Def
));
4812 if Present
(CD
) and then Protected_Present
(CD
) then
4814 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
4819 -- Constrained array case
4822 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
4825 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4827 -- Establish Implicit_Base as unconstrained base type
4829 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
4831 Set_Etype
(Implicit_Base
, Implicit_Base
);
4832 Set_Scope
(Implicit_Base
, Current_Scope
);
4833 Set_Has_Delayed_Freeze
(Implicit_Base
);
4835 -- The constrained array type is a subtype of the unconstrained one
4837 Set_Ekind
(T
, E_Array_Subtype
);
4838 Init_Size_Align
(T
);
4839 Set_Etype
(T
, Implicit_Base
);
4840 Set_Scope
(T
, Current_Scope
);
4841 Set_Is_Constrained
(T
, True);
4842 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
4843 Set_Has_Delayed_Freeze
(T
);
4845 -- Complete setup of implicit base type
4847 Set_First_Index
(Implicit_Base
, First_Index
(T
));
4848 Set_Component_Type
(Implicit_Base
, Element_Type
);
4849 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
4850 Set_Component_Size
(Implicit_Base
, Uint_0
);
4851 Set_Packed_Array_Type
(Implicit_Base
, Empty
);
4852 Set_Has_Controlled_Component
4853 (Implicit_Base
, Has_Controlled_Component
4855 or else Is_Controlled
4857 Set_Finalize_Storage_Only
4858 (Implicit_Base
, Finalize_Storage_Only
4861 -- Unconstrained array case
4864 Set_Ekind
(T
, E_Array_Type
);
4865 Init_Size_Align
(T
);
4867 Set_Scope
(T
, Current_Scope
);
4868 Set_Component_Size
(T
, Uint_0
);
4869 Set_Is_Constrained
(T
, False);
4870 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
4871 Set_Has_Delayed_Freeze
(T
, True);
4872 Set_Has_Task
(T
, Has_Task
(Element_Type
));
4873 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
4876 Is_Controlled
(Element_Type
));
4877 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
4881 -- Common attributes for both cases
4883 Set_Component_Type
(Base_Type
(T
), Element_Type
);
4884 Set_Packed_Array_Type
(T
, Empty
);
4886 if Aliased_Present
(Component_Definition
(Def
)) then
4887 Check_SPARK_Restriction
4888 ("aliased is not allowed", Component_Definition
(Def
));
4889 Set_Has_Aliased_Components
(Etype
(T
));
4892 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4893 -- array type to ensure that objects of this type are initialized.
4895 if Ada_Version
>= Ada_2005
4896 and then Can_Never_Be_Null
(Element_Type
)
4898 Set_Can_Never_Be_Null
(T
);
4900 if Null_Exclusion_Present
(Component_Definition
(Def
))
4902 -- No need to check itypes because in their case this check was
4903 -- done at their point of creation
4905 and then not Is_Itype
(Element_Type
)
4908 ("`NOT NULL` not allowed (null already excluded)",
4909 Subtype_Indication
(Component_Definition
(Def
)));
4913 Priv
:= Private_Component
(Element_Type
);
4915 if Present
(Priv
) then
4917 -- Check for circular definitions
4919 if Priv
= Any_Type
then
4920 Set_Component_Type
(Etype
(T
), Any_Type
);
4922 -- There is a gap in the visibility of operations on the composite
4923 -- type only if the component type is defined in a different scope.
4925 elsif Scope
(Priv
) = Current_Scope
then
4928 elsif Is_Limited_Type
(Priv
) then
4929 Set_Is_Limited_Composite
(Etype
(T
));
4930 Set_Is_Limited_Composite
(T
);
4932 Set_Is_Private_Composite
(Etype
(T
));
4933 Set_Is_Private_Composite
(T
);
4937 -- A syntax error in the declaration itself may lead to an empty index
4938 -- list, in which case do a minimal patch.
4940 if No
(First_Index
(T
)) then
4941 Error_Msg_N
("missing index definition in array type declaration", T
);
4944 Indexes
: constant List_Id
:=
4945 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
4947 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
4948 Set_First_Index
(T
, First
(Indexes
));
4953 -- Create a concatenation operator for the new type. Internal array
4954 -- types created for packed entities do not need such, they are
4955 -- compatible with the user-defined type.
4957 if Number_Dimensions
(T
) = 1
4958 and then not Is_Packed_Array_Type
(T
)
4960 New_Concatenation_Op
(T
);
4963 -- In the case of an unconstrained array the parser has already verified
4964 -- that all the indexes are unconstrained but we still need to make sure
4965 -- that the element type is constrained.
4967 if Is_Indefinite_Subtype
(Element_Type
) then
4969 ("unconstrained element type in array declaration",
4970 Subtype_Indication
(Component_Def
));
4972 elsif Is_Abstract_Type
(Element_Type
) then
4974 ("the type of a component cannot be abstract",
4975 Subtype_Indication
(Component_Def
));
4978 -- There may be an invariant declared for the component type, but
4979 -- the construction of the component invariant checking procedure
4980 -- takes place during expansion.
4981 end Array_Type_Declaration
;
4983 ------------------------------------------------------
4984 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4985 ------------------------------------------------------
4987 function Replace_Anonymous_Access_To_Protected_Subprogram
4988 (N
: Node_Id
) return Entity_Id
4990 Loc
: constant Source_Ptr
:= Sloc
(N
);
4992 Curr_Scope
: constant Scope_Stack_Entry
:=
4993 Scope_Stack
.Table
(Scope_Stack
.Last
);
4995 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5002 Set_Is_Internal
(Anon
);
5005 when N_Component_Declaration |
5006 N_Unconstrained_Array_Definition |
5007 N_Constrained_Array_Definition
=>
5008 Comp
:= Component_Definition
(N
);
5009 Acc
:= Access_Definition
(Comp
);
5011 when N_Discriminant_Specification
=>
5012 Comp
:= Discriminant_Type
(N
);
5015 when N_Parameter_Specification
=>
5016 Comp
:= Parameter_Type
(N
);
5019 when N_Access_Function_Definition
=>
5020 Comp
:= Result_Definition
(N
);
5023 when N_Object_Declaration
=>
5024 Comp
:= Object_Definition
(N
);
5027 when N_Function_Specification
=>
5028 Comp
:= Result_Definition
(N
);
5032 raise Program_Error
;
5035 Decl
:= Make_Full_Type_Declaration
(Loc
,
5036 Defining_Identifier
=> Anon
,
5038 Copy_Separate_Tree
(Access_To_Subprogram_Definition
(Acc
)));
5040 Mark_Rewrite_Insertion
(Decl
);
5042 -- Insert the new declaration in the nearest enclosing scope. If the
5043 -- node is a body and N is its return type, the declaration belongs in
5044 -- the enclosing scope.
5048 if Nkind
(P
) = N_Subprogram_Body
5049 and then Nkind
(N
) = N_Function_Specification
5054 while Present
(P
) and then not Has_Declarations
(P
) loop
5058 pragma Assert
(Present
(P
));
5060 if Nkind
(P
) = N_Package_Specification
then
5061 Prepend
(Decl
, Visible_Declarations
(P
));
5063 Prepend
(Decl
, Declarations
(P
));
5066 -- Replace the anonymous type with an occurrence of the new declaration.
5067 -- In all cases the rewritten node does not have the null-exclusion
5068 -- attribute because (if present) it was already inherited by the
5069 -- anonymous entity (Anon). Thus, in case of components we do not
5070 -- inherit this attribute.
5072 if Nkind
(N
) = N_Parameter_Specification
then
5073 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5074 Set_Etype
(Defining_Identifier
(N
), Anon
);
5075 Set_Null_Exclusion_Present
(N
, False);
5077 elsif Nkind
(N
) = N_Object_Declaration
then
5078 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5079 Set_Etype
(Defining_Identifier
(N
), Anon
);
5081 elsif Nkind
(N
) = N_Access_Function_Definition
then
5082 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5084 elsif Nkind
(N
) = N_Function_Specification
then
5085 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5086 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5090 Make_Component_Definition
(Loc
,
5091 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5094 Mark_Rewrite_Insertion
(Comp
);
5096 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5100 -- Temporarily remove the current scope (record or subprogram) from
5101 -- the stack to add the new declarations to the enclosing scope.
5103 Scope_Stack
.Decrement_Last
;
5105 Set_Is_Itype
(Anon
);
5106 Scope_Stack
.Append
(Curr_Scope
);
5109 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5110 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5112 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5114 -------------------------------
5115 -- Build_Derived_Access_Type --
5116 -------------------------------
5118 procedure Build_Derived_Access_Type
5120 Parent_Type
: Entity_Id
;
5121 Derived_Type
: Entity_Id
)
5123 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5125 Desig_Type
: Entity_Id
;
5127 Discr_Con_Elist
: Elist_Id
;
5128 Discr_Con_El
: Elmt_Id
;
5132 -- Set the designated type so it is available in case this is an access
5133 -- to a self-referential type, e.g. a standard list type with a next
5134 -- pointer. Will be reset after subtype is built.
5136 Set_Directly_Designated_Type
5137 (Derived_Type
, Designated_Type
(Parent_Type
));
5139 Subt
:= Process_Subtype
(S
, N
);
5141 if Nkind
(S
) /= N_Subtype_Indication
5142 and then Subt
/= Base_Type
(Subt
)
5144 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5147 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5149 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5150 Ibase
: constant Entity_Id
:=
5151 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5152 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5153 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5156 Copy_Node
(Pbase
, Ibase
);
5158 Set_Chars
(Ibase
, Svg_Chars
);
5159 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5160 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5161 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5162 Set_Freeze_Node
(Ibase
, Empty
);
5163 Set_Is_Frozen
(Ibase
, False);
5164 Set_Comes_From_Source
(Ibase
, False);
5165 Set_Is_First_Subtype
(Ibase
, False);
5167 Set_Etype
(Ibase
, Pbase
);
5168 Set_Etype
(Derived_Type
, Ibase
);
5172 Set_Directly_Designated_Type
5173 (Derived_Type
, Designated_Type
(Subt
));
5175 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5176 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5177 Set_Size_Info
(Derived_Type
, Parent_Type
);
5178 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5179 Set_Depends_On_Private
(Derived_Type
,
5180 Has_Private_Component
(Derived_Type
));
5181 Conditional_Delay
(Derived_Type
, Subt
);
5183 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5184 -- that it is not redundant.
5186 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5187 Set_Can_Never_Be_Null
(Derived_Type
);
5189 if Can_Never_Be_Null
(Parent_Type
)
5193 ("`NOT NULL` not allowed (& already excludes null)",
5197 elsif Can_Never_Be_Null
(Parent_Type
) then
5198 Set_Can_Never_Be_Null
(Derived_Type
);
5201 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5202 -- the root type for this information.
5204 -- Apply range checks to discriminants for derived record case
5205 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5207 Desig_Type
:= Designated_Type
(Derived_Type
);
5208 if Is_Composite_Type
(Desig_Type
)
5209 and then (not Is_Array_Type
(Desig_Type
))
5210 and then Has_Discriminants
(Desig_Type
)
5211 and then Base_Type
(Desig_Type
) /= Desig_Type
5213 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
5214 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
5216 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
5217 while Present
(Discr_Con_El
) loop
5218 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
5219 Next_Elmt
(Discr_Con_El
);
5220 Next_Discriminant
(Discr
);
5223 end Build_Derived_Access_Type
;
5225 ------------------------------
5226 -- Build_Derived_Array_Type --
5227 ------------------------------
5229 procedure Build_Derived_Array_Type
5231 Parent_Type
: Entity_Id
;
5232 Derived_Type
: Entity_Id
)
5234 Loc
: constant Source_Ptr
:= Sloc
(N
);
5235 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5236 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5237 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5238 Implicit_Base
: Entity_Id
;
5239 New_Indic
: Node_Id
;
5241 procedure Make_Implicit_Base
;
5242 -- If the parent subtype is constrained, the derived type is a subtype
5243 -- of an implicit base type derived from the parent base.
5245 ------------------------
5246 -- Make_Implicit_Base --
5247 ------------------------
5249 procedure Make_Implicit_Base
is
5252 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5254 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5255 Set_Etype
(Implicit_Base
, Parent_Base
);
5257 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
5258 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
5260 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
5261 end Make_Implicit_Base
;
5263 -- Start of processing for Build_Derived_Array_Type
5266 if not Is_Constrained
(Parent_Type
) then
5267 if Nkind
(Indic
) /= N_Subtype_Indication
then
5268 Set_Ekind
(Derived_Type
, E_Array_Type
);
5270 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5271 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
5273 Set_Has_Delayed_Freeze
(Derived_Type
, True);
5277 Set_Etype
(Derived_Type
, Implicit_Base
);
5280 Make_Subtype_Declaration
(Loc
,
5281 Defining_Identifier
=> Derived_Type
,
5282 Subtype_Indication
=>
5283 Make_Subtype_Indication
(Loc
,
5284 Subtype_Mark
=> New_Reference_To
(Implicit_Base
, Loc
),
5285 Constraint
=> Constraint
(Indic
)));
5287 Rewrite
(N
, New_Indic
);
5292 if Nkind
(Indic
) /= N_Subtype_Indication
then
5295 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
5296 Set_Etype
(Derived_Type
, Implicit_Base
);
5297 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5300 Error_Msg_N
("illegal constraint on constrained type", Indic
);
5304 -- If parent type is not a derived type itself, and is declared in
5305 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5306 -- the new type's concatenation operator since Derive_Subprograms
5307 -- will not inherit the parent's operator. If the parent type is
5308 -- unconstrained, the operator is of the unconstrained base type.
5310 if Number_Dimensions
(Parent_Type
) = 1
5311 and then not Is_Limited_Type
(Parent_Type
)
5312 and then not Is_Derived_Type
(Parent_Type
)
5313 and then not Is_Package_Or_Generic_Package
5314 (Scope
(Base_Type
(Parent_Type
)))
5316 if not Is_Constrained
(Parent_Type
)
5317 and then Is_Constrained
(Derived_Type
)
5319 New_Concatenation_Op
(Implicit_Base
);
5321 New_Concatenation_Op
(Derived_Type
);
5324 end Build_Derived_Array_Type
;
5326 -----------------------------------
5327 -- Build_Derived_Concurrent_Type --
5328 -----------------------------------
5330 procedure Build_Derived_Concurrent_Type
5332 Parent_Type
: Entity_Id
;
5333 Derived_Type
: Entity_Id
)
5335 Loc
: constant Source_Ptr
:= Sloc
(N
);
5337 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
5338 Corr_Decl
: Node_Id
;
5339 Corr_Decl_Needed
: Boolean;
5340 -- If the derived type has fewer discriminants than its parent, the
5341 -- corresponding record is also a derived type, in order to account for
5342 -- the bound discriminants. We create a full type declaration for it in
5345 Constraint_Present
: constant Boolean :=
5346 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5347 N_Subtype_Indication
;
5349 D_Constraint
: Node_Id
;
5350 New_Constraint
: Elist_Id
;
5351 Old_Disc
: Entity_Id
;
5352 New_Disc
: Entity_Id
;
5356 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
5357 Corr_Decl_Needed
:= False;
5360 if Present
(Discriminant_Specifications
(N
))
5361 and then Constraint_Present
5363 Old_Disc
:= First_Discriminant
(Parent_Type
);
5364 New_Disc
:= First
(Discriminant_Specifications
(N
));
5365 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
5366 Next_Discriminant
(Old_Disc
);
5371 if Present
(Old_Disc
) and then Expander_Active
then
5373 -- The new type has fewer discriminants, so we need to create a new
5374 -- corresponding record, which is derived from the corresponding
5375 -- record of the parent, and has a stored constraint that captures
5376 -- the values of the discriminant constraints. The corresponding
5377 -- record is needed only if expander is active and code generation is
5380 -- The type declaration for the derived corresponding record has the
5381 -- same discriminant part and constraints as the current declaration.
5382 -- Copy the unanalyzed tree to build declaration.
5384 Corr_Decl_Needed
:= True;
5385 New_N
:= Copy_Separate_Tree
(N
);
5388 Make_Full_Type_Declaration
(Loc
,
5389 Defining_Identifier
=> Corr_Record
,
5390 Discriminant_Specifications
=>
5391 Discriminant_Specifications
(New_N
),
5393 Make_Derived_Type_Definition
(Loc
,
5394 Subtype_Indication
=>
5395 Make_Subtype_Indication
(Loc
,
5398 (Corresponding_Record_Type
(Parent_Type
), Loc
),
5401 (Subtype_Indication
(Type_Definition
(New_N
))))));
5404 -- Copy Storage_Size and Relative_Deadline variables if task case
5406 if Is_Task_Type
(Parent_Type
) then
5407 Set_Storage_Size_Variable
(Derived_Type
,
5408 Storage_Size_Variable
(Parent_Type
));
5409 Set_Relative_Deadline_Variable
(Derived_Type
,
5410 Relative_Deadline_Variable
(Parent_Type
));
5413 if Present
(Discriminant_Specifications
(N
)) then
5414 Push_Scope
(Derived_Type
);
5415 Check_Or_Process_Discriminants
(N
, Derived_Type
);
5417 if Constraint_Present
then
5419 Expand_To_Stored_Constraint
5421 Build_Discriminant_Constraints
5423 Subtype_Indication
(Type_Definition
(N
)), True));
5428 elsif Constraint_Present
then
5430 -- Build constrained subtype, copying the constraint, and derive
5431 -- from it to create a derived constrained type.
5434 Loc
: constant Source_Ptr
:= Sloc
(N
);
5435 Anon
: constant Entity_Id
:=
5436 Make_Defining_Identifier
(Loc
,
5437 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
5442 Make_Subtype_Declaration
(Loc
,
5443 Defining_Identifier
=> Anon
,
5444 Subtype_Indication
=>
5445 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
5446 Insert_Before
(N
, Decl
);
5449 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
5450 New_Occurrence_Of
(Anon
, Loc
));
5451 Set_Analyzed
(Derived_Type
, False);
5457 -- By default, operations and private data are inherited from parent.
5458 -- However, in the presence of bound discriminants, a new corresponding
5459 -- record will be created, see below.
5461 Set_Has_Discriminants
5462 (Derived_Type
, Has_Discriminants
(Parent_Type
));
5463 Set_Corresponding_Record_Type
5464 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
5466 -- Is_Constrained is set according the parent subtype, but is set to
5467 -- False if the derived type is declared with new discriminants.
5471 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
5472 and then not Present
(Discriminant_Specifications
(N
)));
5474 if Constraint_Present
then
5475 if not Has_Discriminants
(Parent_Type
) then
5476 Error_Msg_N
("untagged parent must have discriminants", N
);
5478 elsif Present
(Discriminant_Specifications
(N
)) then
5480 -- Verify that new discriminants are used to constrain old ones
5485 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
5487 Old_Disc
:= First_Discriminant
(Parent_Type
);
5489 while Present
(D_Constraint
) loop
5490 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
5492 -- Positional constraint. If it is a reference to a new
5493 -- discriminant, it constrains the corresponding old one.
5495 if Nkind
(D_Constraint
) = N_Identifier
then
5496 New_Disc
:= First_Discriminant
(Derived_Type
);
5497 while Present
(New_Disc
) loop
5498 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
5499 Next_Discriminant
(New_Disc
);
5502 if Present
(New_Disc
) then
5503 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
5507 Next_Discriminant
(Old_Disc
);
5509 -- if this is a named constraint, search by name for the old
5510 -- discriminants constrained by the new one.
5512 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
5514 -- Find new discriminant with that name
5516 New_Disc
:= First_Discriminant
(Derived_Type
);
5517 while Present
(New_Disc
) loop
5519 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
5520 Next_Discriminant
(New_Disc
);
5523 if Present
(New_Disc
) then
5525 -- Verify that new discriminant renames some discriminant
5526 -- of the parent type, and associate the new discriminant
5527 -- with one or more old ones that it renames.
5533 Selector
:= First
(Selector_Names
(D_Constraint
));
5534 while Present
(Selector
) loop
5535 Old_Disc
:= First_Discriminant
(Parent_Type
);
5536 while Present
(Old_Disc
) loop
5537 exit when Chars
(Old_Disc
) = Chars
(Selector
);
5538 Next_Discriminant
(Old_Disc
);
5541 if Present
(Old_Disc
) then
5542 Set_Corresponding_Discriminant
5543 (New_Disc
, Old_Disc
);
5552 Next
(D_Constraint
);
5555 New_Disc
:= First_Discriminant
(Derived_Type
);
5556 while Present
(New_Disc
) loop
5557 if No
(Corresponding_Discriminant
(New_Disc
)) then
5559 ("new discriminant& must constrain old one", N
, New_Disc
);
5562 Subtypes_Statically_Compatible
5564 Etype
(Corresponding_Discriminant
(New_Disc
)))
5567 ("& not statically compatible with parent discriminant",
5571 Next_Discriminant
(New_Disc
);
5575 elsif Present
(Discriminant_Specifications
(N
)) then
5577 ("missing discriminant constraint in untagged derivation", N
);
5580 -- The entity chain of the derived type includes the new discriminants
5581 -- but shares operations with the parent.
5583 if Present
(Discriminant_Specifications
(N
)) then
5584 Old_Disc
:= First_Discriminant
(Parent_Type
);
5585 while Present
(Old_Disc
) loop
5586 if No
(Next_Entity
(Old_Disc
))
5587 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
5590 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
5594 Next_Discriminant
(Old_Disc
);
5598 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
5599 if Has_Discriminants
(Parent_Type
) then
5600 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5601 Set_Discriminant_Constraint
(
5602 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
5606 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
5608 Set_Has_Completion
(Derived_Type
);
5610 if Corr_Decl_Needed
then
5611 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
5612 Insert_After
(N
, Corr_Decl
);
5613 Analyze
(Corr_Decl
);
5614 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
5616 end Build_Derived_Concurrent_Type
;
5618 ------------------------------------
5619 -- Build_Derived_Enumeration_Type --
5620 ------------------------------------
5622 procedure Build_Derived_Enumeration_Type
5624 Parent_Type
: Entity_Id
;
5625 Derived_Type
: Entity_Id
)
5627 Loc
: constant Source_Ptr
:= Sloc
(N
);
5628 Def
: constant Node_Id
:= Type_Definition
(N
);
5629 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
5630 Implicit_Base
: Entity_Id
;
5631 Literal
: Entity_Id
;
5632 New_Lit
: Entity_Id
;
5633 Literals_List
: List_Id
;
5634 Type_Decl
: Node_Id
;
5636 Rang_Expr
: Node_Id
;
5639 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5640 -- not have explicit literals lists we need to process types derived
5641 -- from them specially. This is handled by Derived_Standard_Character.
5642 -- If the parent type is a generic type, there are no literals either,
5643 -- and we construct the same skeletal representation as for the generic
5646 if Is_Standard_Character_Type
(Parent_Type
) then
5647 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
5649 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
5655 if Nkind
(Indic
) /= N_Subtype_Indication
then
5657 Make_Attribute_Reference
(Loc
,
5658 Attribute_Name
=> Name_First
,
5659 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5660 Set_Etype
(Lo
, Derived_Type
);
5663 Make_Attribute_Reference
(Loc
,
5664 Attribute_Name
=> Name_Last
,
5665 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5666 Set_Etype
(Hi
, Derived_Type
);
5668 Set_Scalar_Range
(Derived_Type
,
5674 -- Analyze subtype indication and verify compatibility
5675 -- with parent type.
5677 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
5678 Base_Type
(Parent_Type
)
5681 ("illegal constraint for formal discrete type", N
);
5687 -- If a constraint is present, analyze the bounds to catch
5688 -- premature usage of the derived literals.
5690 if Nkind
(Indic
) = N_Subtype_Indication
5691 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
5693 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
5694 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
5697 -- Introduce an implicit base type for the derived type even if there
5698 -- is no constraint attached to it, since this seems closer to the
5699 -- Ada semantics. Build a full type declaration tree for the derived
5700 -- type using the implicit base type as the defining identifier. The
5701 -- build a subtype declaration tree which applies the constraint (if
5702 -- any) have it replace the derived type declaration.
5704 Literal
:= First_Literal
(Parent_Type
);
5705 Literals_List
:= New_List
;
5706 while Present
(Literal
)
5707 and then Ekind
(Literal
) = E_Enumeration_Literal
5709 -- Literals of the derived type have the same representation as
5710 -- those of the parent type, but this representation can be
5711 -- overridden by an explicit representation clause. Indicate
5712 -- that there is no explicit representation given yet. These
5713 -- derived literals are implicit operations of the new type,
5714 -- and can be overridden by explicit ones.
5716 if Nkind
(Literal
) = N_Defining_Character_Literal
then
5718 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
5720 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
5723 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
5724 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
5725 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
5726 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
5727 Set_Alias
(New_Lit
, Literal
);
5728 Set_Is_Known_Valid
(New_Lit
, True);
5730 Append
(New_Lit
, Literals_List
);
5731 Next_Literal
(Literal
);
5735 Make_Defining_Identifier
(Sloc
(Derived_Type
),
5736 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
5738 -- Indicate the proper nature of the derived type. This must be done
5739 -- before analysis of the literals, to recognize cases when a literal
5740 -- may be hidden by a previous explicit function definition (cf.
5743 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
5744 Set_Etype
(Derived_Type
, Implicit_Base
);
5747 Make_Full_Type_Declaration
(Loc
,
5748 Defining_Identifier
=> Implicit_Base
,
5749 Discriminant_Specifications
=> No_List
,
5751 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
5753 Mark_Rewrite_Insertion
(Type_Decl
);
5754 Insert_Before
(N
, Type_Decl
);
5755 Analyze
(Type_Decl
);
5757 -- After the implicit base is analyzed its Etype needs to be changed
5758 -- to reflect the fact that it is derived from the parent type which
5759 -- was ignored during analysis. We also set the size at this point.
5761 Set_Etype
(Implicit_Base
, Parent_Type
);
5763 Set_Size_Info
(Implicit_Base
, Parent_Type
);
5764 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
5765 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
5767 -- Copy other flags from parent type
5769 Set_Has_Non_Standard_Rep
5770 (Implicit_Base
, Has_Non_Standard_Rep
5772 Set_Has_Pragma_Ordered
5773 (Implicit_Base
, Has_Pragma_Ordered
5775 Set_Has_Delayed_Freeze
(Implicit_Base
);
5777 -- Process the subtype indication including a validation check on the
5778 -- constraint, if any. If a constraint is given, its bounds must be
5779 -- implicitly converted to the new type.
5781 if Nkind
(Indic
) = N_Subtype_Indication
then
5783 R
: constant Node_Id
:=
5784 Range_Expression
(Constraint
(Indic
));
5787 if Nkind
(R
) = N_Range
then
5788 Hi
:= Build_Scalar_Bound
5789 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
5790 Lo
:= Build_Scalar_Bound
5791 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
5794 -- Constraint is a Range attribute. Replace with explicit
5795 -- mention of the bounds of the prefix, which must be a
5798 Analyze
(Prefix
(R
));
5800 Convert_To
(Implicit_Base
,
5801 Make_Attribute_Reference
(Loc
,
5802 Attribute_Name
=> Name_Last
,
5804 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5807 Convert_To
(Implicit_Base
,
5808 Make_Attribute_Reference
(Loc
,
5809 Attribute_Name
=> Name_First
,
5811 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5818 (Type_High_Bound
(Parent_Type
),
5819 Parent_Type
, Implicit_Base
);
5822 (Type_Low_Bound
(Parent_Type
),
5823 Parent_Type
, Implicit_Base
);
5831 -- If we constructed a default range for the case where no range
5832 -- was given, then the expressions in the range must not freeze
5833 -- since they do not correspond to expressions in the source.
5835 if Nkind
(Indic
) /= N_Subtype_Indication
then
5836 Set_Must_Not_Freeze
(Lo
);
5837 Set_Must_Not_Freeze
(Hi
);
5838 Set_Must_Not_Freeze
(Rang_Expr
);
5842 Make_Subtype_Declaration
(Loc
,
5843 Defining_Identifier
=> Derived_Type
,
5844 Subtype_Indication
=>
5845 Make_Subtype_Indication
(Loc
,
5846 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
5848 Make_Range_Constraint
(Loc
,
5849 Range_Expression
=> Rang_Expr
))));
5853 -- Apply a range check. Since this range expression doesn't have an
5854 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5857 if Nkind
(Indic
) = N_Subtype_Indication
then
5858 Apply_Range_Check
(Range_Expression
(Constraint
(Indic
)),
5860 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
5863 end Build_Derived_Enumeration_Type
;
5865 --------------------------------
5866 -- Build_Derived_Numeric_Type --
5867 --------------------------------
5869 procedure Build_Derived_Numeric_Type
5871 Parent_Type
: Entity_Id
;
5872 Derived_Type
: Entity_Id
)
5874 Loc
: constant Source_Ptr
:= Sloc
(N
);
5875 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5876 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5877 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5878 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
5879 N_Subtype_Indication
;
5880 Implicit_Base
: Entity_Id
;
5886 -- Process the subtype indication including a validation check on
5887 -- the constraint if any.
5889 Discard_Node
(Process_Subtype
(Indic
, N
));
5891 -- Introduce an implicit base type for the derived type even if there
5892 -- is no constraint attached to it, since this seems closer to the Ada
5896 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5898 Set_Etype
(Implicit_Base
, Parent_Base
);
5899 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5900 Set_Size_Info
(Implicit_Base
, Parent_Base
);
5901 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
5902 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
5903 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
5905 -- Set RM Size for discrete type or decimal fixed-point type
5906 -- Ordinary fixed-point is excluded, why???
5908 if Is_Discrete_Type
(Parent_Base
)
5909 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
5911 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
5914 Set_Has_Delayed_Freeze
(Implicit_Base
);
5916 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
5917 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
5919 Set_Scalar_Range
(Implicit_Base
,
5924 if Has_Infinities
(Parent_Base
) then
5925 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
5928 -- The Derived_Type, which is the entity of the declaration, is a
5929 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5930 -- absence of an explicit constraint.
5932 Set_Etype
(Derived_Type
, Implicit_Base
);
5934 -- If we did not have a constraint, then the Ekind is set from the
5935 -- parent type (otherwise Process_Subtype has set the bounds)
5937 if No_Constraint
then
5938 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
5941 -- If we did not have a range constraint, then set the range from the
5942 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
5945 or else not Has_Range_Constraint
(Indic
)
5947 Set_Scalar_Range
(Derived_Type
,
5949 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
5950 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
5951 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5953 if Has_Infinities
(Parent_Type
) then
5954 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
5957 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
5960 Set_Is_Descendent_Of_Address
(Derived_Type
,
5961 Is_Descendent_Of_Address
(Parent_Type
));
5962 Set_Is_Descendent_Of_Address
(Implicit_Base
,
5963 Is_Descendent_Of_Address
(Parent_Type
));
5965 -- Set remaining type-specific fields, depending on numeric type
5967 if Is_Modular_Integer_Type
(Parent_Type
) then
5968 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
5970 Set_Non_Binary_Modulus
5971 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
5974 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
5976 elsif Is_Floating_Point_Type
(Parent_Type
) then
5978 -- Digits of base type is always copied from the digits value of
5979 -- the parent base type, but the digits of the derived type will
5980 -- already have been set if there was a constraint present.
5982 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
5983 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
5985 if No_Constraint
then
5986 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
5989 elsif Is_Fixed_Point_Type
(Parent_Type
) then
5991 -- Small of base type and derived type are always copied from the
5992 -- parent base type, since smalls never change. The delta of the
5993 -- base type is also copied from the parent base type. However the
5994 -- delta of the derived type will have been set already if a
5995 -- constraint was present.
5997 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
5998 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
5999 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6001 if No_Constraint
then
6002 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6005 -- The scale and machine radix in the decimal case are always
6006 -- copied from the parent base type.
6008 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6009 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6010 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6012 Set_Machine_Radix_10
6013 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6014 Set_Machine_Radix_10
6015 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6017 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6019 if No_Constraint
then
6020 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6023 -- the analysis of the subtype_indication sets the
6024 -- digits value of the derived type.
6031 -- The type of the bounds is that of the parent type, and they
6032 -- must be converted to the derived type.
6034 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6036 -- The implicit_base should be frozen when the derived type is frozen,
6037 -- but note that it is used in the conversions of the bounds. For fixed
6038 -- types we delay the determination of the bounds until the proper
6039 -- freezing point. For other numeric types this is rejected by GCC, for
6040 -- reasons that are currently unclear (???), so we choose to freeze the
6041 -- implicit base now. In the case of integers and floating point types
6042 -- this is harmless because subsequent representation clauses cannot
6043 -- affect anything, but it is still baffling that we cannot use the
6044 -- same mechanism for all derived numeric types.
6046 -- There is a further complication: actually *some* representation
6047 -- clauses can affect the implicit base type. Namely, attribute
6048 -- definition clauses for stream-oriented attributes need to set the
6049 -- corresponding TSS entries on the base type, and this normally cannot
6050 -- be done after the base type is frozen, so the circuitry in
6051 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
6052 -- not use Set_TSS in this case.
6054 if Is_Fixed_Point_Type
(Parent_Type
) then
6055 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6057 Freeze_Before
(N
, Implicit_Base
);
6059 end Build_Derived_Numeric_Type
;
6061 --------------------------------
6062 -- Build_Derived_Private_Type --
6063 --------------------------------
6065 procedure Build_Derived_Private_Type
6067 Parent_Type
: Entity_Id
;
6068 Derived_Type
: Entity_Id
;
6069 Is_Completion
: Boolean;
6070 Derive_Subps
: Boolean := True)
6072 Loc
: constant Source_Ptr
:= Sloc
(N
);
6073 Der_Base
: Entity_Id
;
6075 Full_Decl
: Node_Id
:= Empty
;
6076 Full_Der
: Entity_Id
;
6078 Last_Discr
: Entity_Id
;
6079 Par_Scope
: constant Entity_Id
:= Scope
(Base_Type
(Parent_Type
));
6080 Swapped
: Boolean := False;
6082 procedure Copy_And_Build
;
6083 -- Copy derived type declaration, replace parent with its full view,
6084 -- and analyze new declaration.
6086 --------------------
6087 -- Copy_And_Build --
6088 --------------------
6090 procedure Copy_And_Build
is
6094 if Ekind
(Parent_Type
) in Record_Kind
6096 (Ekind
(Parent_Type
) in Enumeration_Kind
6097 and then not Is_Standard_Character_Type
(Parent_Type
)
6098 and then not Is_Generic_Type
(Root_Type
(Parent_Type
)))
6100 Full_N
:= New_Copy_Tree
(N
);
6101 Insert_After
(N
, Full_N
);
6102 Build_Derived_Type
(
6103 Full_N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
6106 Build_Derived_Type
(
6107 N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
6111 -- Start of processing for Build_Derived_Private_Type
6114 if Is_Tagged_Type
(Parent_Type
) then
6115 Full_P
:= Full_View
(Parent_Type
);
6117 -- A type extension of a type with unknown discriminants is an
6118 -- indefinite type that the back-end cannot handle directly.
6119 -- We treat it as a private type, and build a completion that is
6120 -- derived from the full view of the parent, and hopefully has
6121 -- known discriminants.
6123 -- If the full view of the parent type has an underlying record view,
6124 -- use it to generate the underlying record view of this derived type
6125 -- (required for chains of derivations with unknown discriminants).
6127 -- Minor optimization: we avoid the generation of useless underlying
6128 -- record view entities if the private type declaration has unknown
6129 -- discriminants but its corresponding full view has no
6132 if Has_Unknown_Discriminants
(Parent_Type
)
6133 and then Present
(Full_P
)
6134 and then (Has_Discriminants
(Full_P
)
6135 or else Present
(Underlying_Record_View
(Full_P
)))
6136 and then not In_Open_Scopes
(Par_Scope
)
6137 and then Expander_Active
6140 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
6141 New_Ext
: constant Node_Id
:=
6143 (Record_Extension_Part
(Type_Definition
(N
)));
6147 Build_Derived_Record_Type
6148 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6150 -- Build anonymous completion, as a derivation from the full
6151 -- view of the parent. This is not a completion in the usual
6152 -- sense, because the current type is not private.
6155 Make_Full_Type_Declaration
(Loc
,
6156 Defining_Identifier
=> Full_Der
,
6158 Make_Derived_Type_Definition
(Loc
,
6159 Subtype_Indication
=>
6161 (Subtype_Indication
(Type_Definition
(N
))),
6162 Record_Extension_Part
=> New_Ext
));
6164 -- If the parent type has an underlying record view, use it
6165 -- here to build the new underlying record view.
6167 if Present
(Underlying_Record_View
(Full_P
)) then
6169 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
6171 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
6172 Underlying_Record_View
(Full_P
));
6175 Install_Private_Declarations
(Par_Scope
);
6176 Install_Visible_Declarations
(Par_Scope
);
6177 Insert_Before
(N
, Decl
);
6179 -- Mark entity as an underlying record view before analysis,
6180 -- to avoid generating the list of its primitive operations
6181 -- (which is not really required for this entity) and thus
6182 -- prevent spurious errors associated with missing overriding
6183 -- of abstract primitives (overridden only for Derived_Type).
6185 Set_Ekind
(Full_Der
, E_Record_Type
);
6186 Set_Is_Underlying_Record_View
(Full_Der
);
6190 pragma Assert
(Has_Discriminants
(Full_Der
)
6191 and then not Has_Unknown_Discriminants
(Full_Der
));
6193 Uninstall_Declarations
(Par_Scope
);
6195 -- Freeze the underlying record view, to prevent generation of
6196 -- useless dispatching information, which is simply shared with
6197 -- the real derived type.
6199 Set_Is_Frozen
(Full_Der
);
6201 -- Set up links between real entity and underlying record view
6203 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
6204 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
6207 -- If discriminants are known, build derived record
6210 Build_Derived_Record_Type
6211 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6216 elsif Has_Discriminants
(Parent_Type
) then
6217 if Present
(Full_View
(Parent_Type
)) then
6218 if not Is_Completion
then
6220 -- Copy declaration for subsequent analysis, to provide a
6221 -- completion for what is a private declaration. Indicate that
6222 -- the full type is internally generated.
6224 Full_Decl
:= New_Copy_Tree
(N
);
6225 Full_Der
:= New_Copy
(Derived_Type
);
6226 Set_Comes_From_Source
(Full_Decl
, False);
6227 Set_Comes_From_Source
(Full_Der
, False);
6228 Set_Parent
(Full_Der
, Full_Decl
);
6230 Insert_After
(N
, Full_Decl
);
6233 -- If this is a completion, the full view being built is itself
6234 -- private. We build a subtype of the parent with the same
6235 -- constraints as this full view, to convey to the back end the
6236 -- constrained components and the size of this subtype. If the
6237 -- parent is constrained, its full view can serve as the
6238 -- underlying full view of the derived type.
6240 if No
(Discriminant_Specifications
(N
)) then
6241 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6242 N_Subtype_Indication
6244 Build_Underlying_Full_View
(N
, Derived_Type
, Parent_Type
);
6246 elsif Is_Constrained
(Full_View
(Parent_Type
)) then
6247 Set_Underlying_Full_View
6248 (Derived_Type
, Full_View
(Parent_Type
));
6252 -- If there are new discriminants, the parent subtype is
6253 -- constrained by them, but it is not clear how to build
6254 -- the Underlying_Full_View in this case???
6261 -- Build partial view of derived type from partial view of parent
6263 Build_Derived_Record_Type
6264 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6266 if Present
(Full_View
(Parent_Type
)) and then not Is_Completion
then
6267 if not In_Open_Scopes
(Par_Scope
)
6268 or else not In_Same_Source_Unit
(N
, Parent_Type
)
6270 -- Swap partial and full views temporarily
6272 Install_Private_Declarations
(Par_Scope
);
6273 Install_Visible_Declarations
(Par_Scope
);
6277 -- Build full view of derived type from full view of parent which
6278 -- is now installed. Subprograms have been derived on the partial
6279 -- view, the completion does not derive them anew.
6281 if not Is_Tagged_Type
(Parent_Type
) then
6283 -- If the parent is itself derived from another private type,
6284 -- installing the private declarations has not affected its
6285 -- privacy status, so use its own full view explicitly.
6287 if Is_Private_Type
(Parent_Type
) then
6288 Build_Derived_Record_Type
6289 (Full_Decl
, Full_View
(Parent_Type
), Full_Der
, False);
6291 Build_Derived_Record_Type
6292 (Full_Decl
, Parent_Type
, Full_Der
, False);
6296 -- If full view of parent is tagged, the completion inherits
6297 -- the proper primitive operations.
6299 Set_Defining_Identifier
(Full_Decl
, Full_Der
);
6300 Build_Derived_Record_Type
6301 (Full_Decl
, Parent_Type
, Full_Der
, Derive_Subps
);
6304 -- The full declaration has been introduced into the tree and
6305 -- processed in the step above. It should not be analyzed again
6306 -- (when encountered later in the current list of declarations)
6307 -- to prevent spurious name conflicts. The full entity remains
6310 Set_Analyzed
(Full_Decl
);
6313 Uninstall_Declarations
(Par_Scope
);
6315 if In_Open_Scopes
(Par_Scope
) then
6316 Install_Visible_Declarations
(Par_Scope
);
6320 Der_Base
:= Base_Type
(Derived_Type
);
6321 Set_Full_View
(Derived_Type
, Full_Der
);
6322 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
6324 -- Copy the discriminant list from full view to the partial views
6325 -- (base type and its subtype). Gigi requires that the partial and
6326 -- full views have the same discriminants.
6328 -- Note that since the partial view is pointing to discriminants
6329 -- in the full view, their scope will be that of the full view.
6330 -- This might cause some front end problems and need adjustment???
6332 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
6333 Set_First_Entity
(Der_Base
, Discr
);
6336 Last_Discr
:= Discr
;
6337 Next_Discriminant
(Discr
);
6338 exit when No
(Discr
);
6341 Set_Last_Entity
(Der_Base
, Last_Discr
);
6343 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
6344 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
6345 Set_Stored_Constraint
(Full_Der
, Stored_Constraint
(Derived_Type
));
6348 -- If this is a completion, the derived type stays private and
6349 -- there is no need to create a further full view, except in the
6350 -- unusual case when the derivation is nested within a child unit,
6356 elsif Present
(Full_View
(Parent_Type
))
6357 and then Has_Discriminants
(Full_View
(Parent_Type
))
6359 if Has_Unknown_Discriminants
(Parent_Type
)
6360 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6361 N_Subtype_Indication
6364 ("cannot constrain type with unknown discriminants",
6365 Subtype_Indication
(Type_Definition
(N
)));
6369 -- If full view of parent is a record type, build full view as a
6370 -- derivation from the parent's full view. Partial view remains
6371 -- private. For code generation and linking, the full view must have
6372 -- the same public status as the partial one. This full view is only
6373 -- needed if the parent type is in an enclosing scope, so that the
6374 -- full view may actually become visible, e.g. in a child unit. This
6375 -- is both more efficient, and avoids order of freezing problems with
6376 -- the added entities.
6378 if not Is_Private_Type
(Full_View
(Parent_Type
))
6379 and then (In_Open_Scopes
(Scope
(Parent_Type
)))
6382 Make_Defining_Identifier
6383 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6384 Set_Is_Itype
(Full_Der
);
6385 Set_Has_Private_Declaration
(Full_Der
);
6386 Set_Has_Private_Declaration
(Derived_Type
);
6387 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6388 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6389 Set_Full_View
(Derived_Type
, Full_Der
);
6390 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
6391 Full_P
:= Full_View
(Parent_Type
);
6392 Exchange_Declarations
(Parent_Type
);
6394 Exchange_Declarations
(Full_P
);
6397 Build_Derived_Record_Type
6398 (N
, Full_View
(Parent_Type
), Derived_Type
,
6399 Derive_Subps
=> False);
6402 -- In any case, the primitive operations are inherited from the
6403 -- parent type, not from the internal full view.
6405 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
6407 if Derive_Subps
then
6408 Derive_Subprograms
(Parent_Type
, Derived_Type
);
6412 -- Untagged type, No discriminants on either view
6414 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6415 N_Subtype_Indication
6418 ("illegal constraint on type without discriminants", N
);
6421 if Present
(Discriminant_Specifications
(N
))
6422 and then Present
(Full_View
(Parent_Type
))
6423 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6425 Error_Msg_N
("cannot add discriminants to untagged type", N
);
6428 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6429 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6430 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
6431 Set_Has_Controlled_Component
6432 (Derived_Type
, Has_Controlled_Component
6435 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6437 if not Is_Controlled
(Parent_Type
) then
6438 Set_Finalize_Storage_Only
6439 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
6442 -- Construct the implicit full view by deriving from full view of the
6443 -- parent type. In order to get proper visibility, we install the
6444 -- parent scope and its declarations.
6446 -- ??? If the parent is untagged private and its completion is
6447 -- tagged, this mechanism will not work because we cannot derive from
6448 -- the tagged full view unless we have an extension.
6450 if Present
(Full_View
(Parent_Type
))
6451 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6452 and then not Is_Completion
6455 Make_Defining_Identifier
6456 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6457 Set_Is_Itype
(Full_Der
);
6458 Set_Has_Private_Declaration
(Full_Der
);
6459 Set_Has_Private_Declaration
(Derived_Type
);
6460 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6461 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6462 Set_Full_View
(Derived_Type
, Full_Der
);
6464 if not In_Open_Scopes
(Par_Scope
) then
6465 Install_Private_Declarations
(Par_Scope
);
6466 Install_Visible_Declarations
(Par_Scope
);
6468 Uninstall_Declarations
(Par_Scope
);
6470 -- If parent scope is open and in another unit, and parent has a
6471 -- completion, then the derivation is taking place in the visible
6472 -- part of a child unit. In that case retrieve the full view of
6473 -- the parent momentarily.
6475 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6476 Full_P
:= Full_View
(Parent_Type
);
6477 Exchange_Declarations
(Parent_Type
);
6479 Exchange_Declarations
(Full_P
);
6481 -- Otherwise it is a local derivation
6487 Set_Scope
(Full_Der
, Current_Scope
);
6488 Set_Is_First_Subtype
(Full_Der
,
6489 Is_First_Subtype
(Derived_Type
));
6490 Set_Has_Size_Clause
(Full_Der
, False);
6491 Set_Has_Alignment_Clause
(Full_Der
, False);
6492 Set_Next_Entity
(Full_Der
, Empty
);
6493 Set_Has_Delayed_Freeze
(Full_Der
);
6494 Set_Is_Frozen
(Full_Der
, False);
6495 Set_Freeze_Node
(Full_Der
, Empty
);
6496 Set_Depends_On_Private
(Full_Der
,
6497 Has_Private_Component
(Full_Der
));
6498 Set_Public_Status
(Full_Der
);
6502 Set_Has_Unknown_Discriminants
(Derived_Type
,
6503 Has_Unknown_Discriminants
(Parent_Type
));
6505 if Is_Private_Type
(Derived_Type
) then
6506 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
6509 if Is_Private_Type
(Parent_Type
)
6510 and then Base_Type
(Parent_Type
) = Parent_Type
6511 and then In_Open_Scopes
(Scope
(Parent_Type
))
6513 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
6515 if Is_Child_Unit
(Scope
(Current_Scope
))
6516 and then Is_Completion
6517 and then In_Private_Part
(Current_Scope
)
6518 and then Scope
(Parent_Type
) /= Current_Scope
6520 -- This is the unusual case where a type completed by a private
6521 -- derivation occurs within a package nested in a child unit, and
6522 -- the parent is declared in an ancestor. In this case, the full
6523 -- view of the parent type will become visible in the body of
6524 -- the enclosing child, and only then will the current type be
6525 -- possibly non-private. We build a underlying full view that
6526 -- will be installed when the enclosing child body is compiled.
6529 Make_Defining_Identifier
6530 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6531 Set_Is_Itype
(Full_Der
);
6532 Build_Itype_Reference
(Full_Der
, N
);
6534 -- The full view will be used to swap entities on entry/exit to
6535 -- the body, and must appear in the entity list for the package.
6537 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
6538 Set_Has_Private_Declaration
(Full_Der
);
6539 Set_Has_Private_Declaration
(Derived_Type
);
6540 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6541 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6542 Full_P
:= Full_View
(Parent_Type
);
6543 Exchange_Declarations
(Parent_Type
);
6545 Exchange_Declarations
(Full_P
);
6546 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
6549 end Build_Derived_Private_Type
;
6551 -------------------------------
6552 -- Build_Derived_Record_Type --
6553 -------------------------------
6557 -- Ideally we would like to use the same model of type derivation for
6558 -- tagged and untagged record types. Unfortunately this is not quite
6559 -- possible because the semantics of representation clauses is different
6560 -- for tagged and untagged records under inheritance. Consider the
6563 -- type R (...) is [tagged] record ... end record;
6564 -- type T (...) is new R (...) [with ...];
6566 -- The representation clauses for T can specify a completely different
6567 -- record layout from R's. Hence the same component can be placed in two
6568 -- very different positions in objects of type T and R. If R and T are
6569 -- tagged types, representation clauses for T can only specify the layout
6570 -- of non inherited components, thus components that are common in R and T
6571 -- have the same position in objects of type R and T.
6573 -- This has two implications. The first is that the entire tree for R's
6574 -- declaration needs to be copied for T in the untagged case, so that T
6575 -- can be viewed as a record type of its own with its own representation
6576 -- clauses. The second implication is the way we handle discriminants.
6577 -- Specifically, in the untagged case we need a way to communicate to Gigi
6578 -- what are the real discriminants in the record, while for the semantics
6579 -- we need to consider those introduced by the user to rename the
6580 -- discriminants in the parent type. This is handled by introducing the
6581 -- notion of stored discriminants. See below for more.
6583 -- Fortunately the way regular components are inherited can be handled in
6584 -- the same way in tagged and untagged types.
6586 -- To complicate things a bit more the private view of a private extension
6587 -- cannot be handled in the same way as the full view (for one thing the
6588 -- semantic rules are somewhat different). We will explain what differs
6591 -- 2. DISCRIMINANTS UNDER INHERITANCE
6593 -- The semantic rules governing the discriminants of derived types are
6596 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6597 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6599 -- If parent type has discriminants, then the discriminants that are
6600 -- declared in the derived type are [3.4 (11)]:
6602 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6605 -- o Otherwise, each discriminant of the parent type (implicitly declared
6606 -- in the same order with the same specifications). In this case, the
6607 -- discriminants are said to be "inherited", or if unknown in the parent
6608 -- are also unknown in the derived type.
6610 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6612 -- o The parent subtype shall be constrained;
6614 -- o If the parent type is not a tagged type, then each discriminant of
6615 -- the derived type shall be used in the constraint defining a parent
6616 -- subtype. [Implementation note: This ensures that the new discriminant
6617 -- can share storage with an existing discriminant.]
6619 -- For the derived type each discriminant of the parent type is either
6620 -- inherited, constrained to equal some new discriminant of the derived
6621 -- type, or constrained to the value of an expression.
6623 -- When inherited or constrained to equal some new discriminant, the
6624 -- parent discriminant and the discriminant of the derived type are said
6627 -- If a discriminant of the parent type is constrained to a specific value
6628 -- in the derived type definition, then the discriminant is said to be
6629 -- "specified" by that derived type definition.
6631 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6633 -- We have spoken about stored discriminants in point 1 (introduction)
6634 -- above. There are two sort of stored discriminants: implicit and
6635 -- explicit. As long as the derived type inherits the same discriminants as
6636 -- the root record type, stored discriminants are the same as regular
6637 -- discriminants, and are said to be implicit. However, if any discriminant
6638 -- in the root type was renamed in the derived type, then the derived
6639 -- type will contain explicit stored discriminants. Explicit stored
6640 -- discriminants are discriminants in addition to the semantically visible
6641 -- discriminants defined for the derived type. Stored discriminants are
6642 -- used by Gigi to figure out what are the physical discriminants in
6643 -- objects of the derived type (see precise definition in einfo.ads).
6644 -- As an example, consider the following:
6646 -- type R (D1, D2, D3 : Int) is record ... end record;
6647 -- type T1 is new R;
6648 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6649 -- type T3 is new T2;
6650 -- type T4 (Y : Int) is new T3 (Y, 99);
6652 -- The following table summarizes the discriminants and stored
6653 -- discriminants in R and T1 through T4.
6655 -- Type Discrim Stored Discrim Comment
6656 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6657 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6658 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6659 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6660 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6662 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6663 -- find the corresponding discriminant in the parent type, while
6664 -- Original_Record_Component (abbreviated ORC below), the actual physical
6665 -- component that is renamed. Finally the field Is_Completely_Hidden
6666 -- (abbreviated ICH below) is set for all explicit stored discriminants
6667 -- (see einfo.ads for more info). For the above example this gives:
6669 -- Discrim CD ORC ICH
6670 -- ^^^^^^^ ^^ ^^^ ^^^
6671 -- D1 in R empty itself no
6672 -- D2 in R empty itself no
6673 -- D3 in R empty itself no
6675 -- D1 in T1 D1 in R itself no
6676 -- D2 in T1 D2 in R itself no
6677 -- D3 in T1 D3 in R itself no
6679 -- X1 in T2 D3 in T1 D3 in T2 no
6680 -- X2 in T2 D1 in T1 D1 in T2 no
6681 -- D1 in T2 empty itself yes
6682 -- D2 in T2 empty itself yes
6683 -- D3 in T2 empty itself yes
6685 -- X1 in T3 X1 in T2 D3 in T3 no
6686 -- X2 in T3 X2 in T2 D1 in T3 no
6687 -- D1 in T3 empty itself yes
6688 -- D2 in T3 empty itself yes
6689 -- D3 in T3 empty itself yes
6691 -- Y in T4 X1 in T3 D3 in T3 no
6692 -- D1 in T3 empty itself yes
6693 -- D2 in T3 empty itself yes
6694 -- D3 in T3 empty itself yes
6696 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6698 -- Type derivation for tagged types is fairly straightforward. If no
6699 -- discriminants are specified by the derived type, these are inherited
6700 -- from the parent. No explicit stored discriminants are ever necessary.
6701 -- The only manipulation that is done to the tree is that of adding a
6702 -- _parent field with parent type and constrained to the same constraint
6703 -- specified for the parent in the derived type definition. For instance:
6705 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6706 -- type T1 is new R with null record;
6707 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6709 -- are changed into:
6711 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6712 -- _parent : R (D1, D2, D3);
6715 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6716 -- _parent : T1 (X2, 88, X1);
6719 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6720 -- ORC and ICH fields are:
6722 -- Discrim CD ORC ICH
6723 -- ^^^^^^^ ^^ ^^^ ^^^
6724 -- D1 in R empty itself no
6725 -- D2 in R empty itself no
6726 -- D3 in R empty itself no
6728 -- D1 in T1 D1 in R D1 in R no
6729 -- D2 in T1 D2 in R D2 in R no
6730 -- D3 in T1 D3 in R D3 in R no
6732 -- X1 in T2 D3 in T1 D3 in R no
6733 -- X2 in T2 D1 in T1 D1 in R no
6735 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6737 -- Regardless of whether we dealing with a tagged or untagged type
6738 -- we will transform all derived type declarations of the form
6740 -- type T is new R (...) [with ...];
6742 -- subtype S is R (...);
6743 -- type T is new S [with ...];
6745 -- type BT is new R [with ...];
6746 -- subtype T is BT (...);
6748 -- That is, the base derived type is constrained only if it has no
6749 -- discriminants. The reason for doing this is that GNAT's semantic model
6750 -- assumes that a base type with discriminants is unconstrained.
6752 -- Note that, strictly speaking, the above transformation is not always
6753 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6755 -- procedure B34011A is
6756 -- type REC (D : integer := 0) is record
6761 -- type T6 is new Rec;
6762 -- function F return T6;
6767 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6770 -- The definition of Q6.U is illegal. However transforming Q6.U into
6772 -- type BaseU is new T6;
6773 -- subtype U is BaseU (Q6.F.I)
6775 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6776 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6777 -- the transformation described above.
6779 -- There is another instance where the above transformation is incorrect.
6783 -- type Base (D : Integer) is tagged null record;
6784 -- procedure P (X : Base);
6786 -- type Der is new Base (2) with null record;
6787 -- procedure P (X : Der);
6790 -- Then the above transformation turns this into
6792 -- type Der_Base is new Base with null record;
6793 -- -- procedure P (X : Base) is implicitly inherited here
6794 -- -- as procedure P (X : Der_Base).
6796 -- subtype Der is Der_Base (2);
6797 -- procedure P (X : Der);
6798 -- -- The overriding of P (X : Der_Base) is illegal since we
6799 -- -- have a parameter conformance problem.
6801 -- To get around this problem, after having semantically processed Der_Base
6802 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6803 -- Discriminant_Constraint from Der so that when parameter conformance is
6804 -- checked when P is overridden, no semantic errors are flagged.
6806 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6808 -- Regardless of whether we are dealing with a tagged or untagged type
6809 -- we will transform all derived type declarations of the form
6811 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6812 -- type T is new R [with ...];
6814 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6816 -- The reason for such transformation is that it allows us to implement a
6817 -- very clean form of component inheritance as explained below.
6819 -- Note that this transformation is not achieved by direct tree rewriting
6820 -- and manipulation, but rather by redoing the semantic actions that the
6821 -- above transformation will entail. This is done directly in routine
6822 -- Inherit_Components.
6824 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
6826 -- In both tagged and untagged derived types, regular non discriminant
6827 -- components are inherited in the derived type from the parent type. In
6828 -- the absence of discriminants component, inheritance is straightforward
6829 -- as components can simply be copied from the parent.
6831 -- If the parent has discriminants, inheriting components constrained with
6832 -- these discriminants requires caution. Consider the following example:
6834 -- type R (D1, D2 : Positive) is [tagged] record
6835 -- S : String (D1 .. D2);
6838 -- type T1 is new R [with null record];
6839 -- type T2 (X : positive) is new R (1, X) [with null record];
6841 -- As explained in 6. above, T1 is rewritten as
6842 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
6843 -- which makes the treatment for T1 and T2 identical.
6845 -- What we want when inheriting S, is that references to D1 and D2 in R are
6846 -- replaced with references to their correct constraints, i.e. D1 and D2 in
6847 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
6848 -- with either discriminant references in the derived type or expressions.
6849 -- This replacement is achieved as follows: before inheriting R's
6850 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
6851 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
6852 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
6853 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
6854 -- by String (1 .. X).
6856 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
6858 -- We explain here the rules governing private type extensions relevant to
6859 -- type derivation. These rules are explained on the following example:
6861 -- type D [(...)] is new A [(...)] with private; <-- partial view
6862 -- type D [(...)] is new P [(...)] with null record; <-- full view
6864 -- Type A is called the ancestor subtype of the private extension.
6865 -- Type P is the parent type of the full view of the private extension. It
6866 -- must be A or a type derived from A.
6868 -- The rules concerning the discriminants of private type extensions are
6871 -- o If a private extension inherits known discriminants from the ancestor
6872 -- subtype, then the full view shall also inherit its discriminants from
6873 -- the ancestor subtype and the parent subtype of the full view shall be
6874 -- constrained if and only if the ancestor subtype is constrained.
6876 -- o If a partial view has unknown discriminants, then the full view may
6877 -- define a definite or an indefinite subtype, with or without
6880 -- o If a partial view has neither known nor unknown discriminants, then
6881 -- the full view shall define a definite subtype.
6883 -- o If the ancestor subtype of a private extension has constrained
6884 -- discriminants, then the parent subtype of the full view shall impose a
6885 -- statically matching constraint on those discriminants.
6887 -- This means that only the following forms of private extensions are
6890 -- type D is new A with private; <-- partial view
6891 -- type D is new P with null record; <-- full view
6893 -- If A has no discriminants than P has no discriminants, otherwise P must
6894 -- inherit A's discriminants.
6896 -- type D is new A (...) with private; <-- partial view
6897 -- type D is new P (:::) with null record; <-- full view
6899 -- P must inherit A's discriminants and (...) and (:::) must statically
6902 -- subtype A is R (...);
6903 -- type D is new A with private; <-- partial view
6904 -- type D is new P with null record; <-- full view
6906 -- P must have inherited R's discriminants and must be derived from A or
6907 -- any of its subtypes.
6909 -- type D (..) is new A with private; <-- partial view
6910 -- type D (..) is new P [(:::)] with null record; <-- full view
6912 -- No specific constraints on P's discriminants or constraint (:::).
6913 -- Note that A can be unconstrained, but the parent subtype P must either
6914 -- be constrained or (:::) must be present.
6916 -- type D (..) is new A [(...)] with private; <-- partial view
6917 -- type D (..) is new P [(:::)] with null record; <-- full view
6919 -- P's constraints on A's discriminants must statically match those
6920 -- imposed by (...).
6922 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6924 -- The full view of a private extension is handled exactly as described
6925 -- above. The model chose for the private view of a private extension is
6926 -- the same for what concerns discriminants (i.e. they receive the same
6927 -- treatment as in the tagged case). However, the private view of the
6928 -- private extension always inherits the components of the parent base,
6929 -- without replacing any discriminant reference. Strictly speaking this is
6930 -- incorrect. However, Gigi never uses this view to generate code so this
6931 -- is a purely semantic issue. In theory, a set of transformations similar
6932 -- to those given in 5. and 6. above could be applied to private views of
6933 -- private extensions to have the same model of component inheritance as
6934 -- for non private extensions. However, this is not done because it would
6935 -- further complicate private type processing. Semantically speaking, this
6936 -- leaves us in an uncomfortable situation. As an example consider:
6939 -- type R (D : integer) is tagged record
6940 -- S : String (1 .. D);
6942 -- procedure P (X : R);
6943 -- type T is new R (1) with private;
6945 -- type T is new R (1) with null record;
6948 -- This is transformed into:
6951 -- type R (D : integer) is tagged record
6952 -- S : String (1 .. D);
6954 -- procedure P (X : R);
6955 -- type T is new R (1) with private;
6957 -- type BaseT is new R with null record;
6958 -- subtype T is BaseT (1);
6961 -- (strictly speaking the above is incorrect Ada)
6963 -- From the semantic standpoint the private view of private extension T
6964 -- should be flagged as constrained since one can clearly have
6968 -- in a unit withing Pack. However, when deriving subprograms for the
6969 -- private view of private extension T, T must be seen as unconstrained
6970 -- since T has discriminants (this is a constraint of the current
6971 -- subprogram derivation model). Thus, when processing the private view of
6972 -- a private extension such as T, we first mark T as unconstrained, we
6973 -- process it, we perform program derivation and just before returning from
6974 -- Build_Derived_Record_Type we mark T as constrained.
6976 -- ??? Are there are other uncomfortable cases that we will have to
6979 -- 10. RECORD_TYPE_WITH_PRIVATE complications
6981 -- Types that are derived from a visible record type and have a private
6982 -- extension present other peculiarities. They behave mostly like private
6983 -- types, but if they have primitive operations defined, these will not
6984 -- have the proper signatures for further inheritance, because other
6985 -- primitive operations will use the implicit base that we define for
6986 -- private derivations below. This affect subprogram inheritance (see
6987 -- Derive_Subprograms for details). We also derive the implicit base from
6988 -- the base type of the full view, so that the implicit base is a record
6989 -- type and not another private type, This avoids infinite loops.
6991 procedure Build_Derived_Record_Type
6993 Parent_Type
: Entity_Id
;
6994 Derived_Type
: Entity_Id
;
6995 Derive_Subps
: Boolean := True)
6997 Discriminant_Specs
: constant Boolean :=
6998 Present
(Discriminant_Specifications
(N
));
6999 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7000 Loc
: constant Source_Ptr
:= Sloc
(N
);
7001 Private_Extension
: constant Boolean :=
7002 Nkind
(N
) = N_Private_Extension_Declaration
;
7003 Assoc_List
: Elist_Id
;
7004 Constraint_Present
: Boolean;
7006 Discrim
: Entity_Id
;
7008 Inherit_Discrims
: Boolean := False;
7009 Last_Discrim
: Entity_Id
;
7010 New_Base
: Entity_Id
;
7012 New_Discrs
: Elist_Id
;
7013 New_Indic
: Node_Id
;
7014 Parent_Base
: Entity_Id
;
7015 Save_Etype
: Entity_Id
;
7016 Save_Discr_Constr
: Elist_Id
;
7017 Save_Next_Entity
: Entity_Id
;
7020 Discs
: Elist_Id
:= New_Elmt_List
;
7021 -- An empty Discs list means that there were no constraints in the
7022 -- subtype indication or that there was an error processing it.
7025 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7026 and then Present
(Full_View
(Parent_Type
))
7027 and then Has_Discriminants
(Parent_Type
)
7029 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7031 Parent_Base
:= Base_Type
(Parent_Type
);
7034 -- AI05-0115 : if this is a derivation from a private type in some
7035 -- other scope that may lead to invisible components for the derived
7036 -- type, mark it accordingly.
7038 if Is_Private_Type
(Parent_Type
) then
7039 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7042 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7043 and then In_Private_Part
(Scope
(Parent_Type
))
7048 Set_Has_Private_Ancestor
(Derived_Type
);
7052 Set_Has_Private_Ancestor
7053 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7056 -- Before we start the previously documented transformations, here is
7057 -- little fix for size and alignment of tagged types. Normally when we
7058 -- derive type D from type P, we copy the size and alignment of P as the
7059 -- default for D, and in the absence of explicit representation clauses
7060 -- for D, the size and alignment are indeed the same as the parent.
7062 -- But this is wrong for tagged types, since fields may be added, and
7063 -- the default size may need to be larger, and the default alignment may
7064 -- need to be larger.
7066 -- We therefore reset the size and alignment fields in the tagged case.
7067 -- Note that the size and alignment will in any case be at least as
7068 -- large as the parent type (since the derived type has a copy of the
7069 -- parent type in the _parent field)
7071 -- The type is also marked as being tagged here, which is needed when
7072 -- processing components with a self-referential anonymous access type
7073 -- in the call to Check_Anonymous_Access_Components below. Note that
7074 -- this flag is also set later on for completeness.
7077 Set_Is_Tagged_Type
(Derived_Type
);
7078 Init_Size_Align
(Derived_Type
);
7081 -- STEP 0a: figure out what kind of derived type declaration we have
7083 if Private_Extension
then
7085 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7088 Type_Def
:= Type_Definition
(N
);
7090 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7091 -- Parent_Base can be a private type or private extension. However,
7092 -- for tagged types with an extension the newly added fields are
7093 -- visible and hence the Derived_Type is always an E_Record_Type.
7094 -- (except that the parent may have its own private fields).
7095 -- For untagged types we preserve the Ekind of the Parent_Base.
7097 if Present
(Record_Extension_Part
(Type_Def
)) then
7098 Set_Ekind
(Derived_Type
, E_Record_Type
);
7100 -- Create internal access types for components with anonymous
7103 if Ada_Version
>= Ada_2005
then
7104 Check_Anonymous_Access_Components
7105 (N
, Derived_Type
, Derived_Type
,
7106 Component_List
(Record_Extension_Part
(Type_Def
)));
7110 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7114 -- Indic can either be an N_Identifier if the subtype indication
7115 -- contains no constraint or an N_Subtype_Indication if the subtype
7116 -- indication has a constraint.
7118 Indic
:= Subtype_Indication
(Type_Def
);
7119 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7121 -- Check that the type has visible discriminants. The type may be
7122 -- a private type with unknown discriminants whose full view has
7123 -- discriminants which are invisible.
7125 if Constraint_Present
then
7126 if not Has_Discriminants
(Parent_Base
)
7128 (Has_Unknown_Discriminants
(Parent_Base
)
7129 and then Is_Private_Type
(Parent_Base
))
7132 ("invalid constraint: type has no discriminant",
7133 Constraint
(Indic
));
7135 Constraint_Present
:= False;
7136 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7138 elsif Is_Constrained
(Parent_Type
) then
7140 ("invalid constraint: parent type is already constrained",
7141 Constraint
(Indic
));
7143 Constraint_Present
:= False;
7144 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7148 -- STEP 0b: If needed, apply transformation given in point 5. above
7150 if not Private_Extension
7151 and then Has_Discriminants
(Parent_Type
)
7152 and then not Discriminant_Specs
7153 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
7155 -- First, we must analyze the constraint (see comment in point 5.)
7157 if Constraint_Present
then
7158 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7160 if Has_Discriminants
(Derived_Type
)
7161 and then Has_Private_Declaration
(Derived_Type
)
7162 and then Present
(Discriminant_Constraint
(Derived_Type
))
7164 -- Verify that constraints of the full view statically match
7165 -- those given in the partial view.
7171 C1
:= First_Elmt
(New_Discrs
);
7172 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
7173 while Present
(C1
) and then Present
(C2
) loop
7174 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7176 (Is_OK_Static_Expression
(Node
(C1
))
7178 Is_OK_Static_Expression
(Node
(C2
))
7180 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
7186 "constraint not conformant to previous declaration",
7197 -- Insert and analyze the declaration for the unconstrained base type
7199 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
7202 Make_Full_Type_Declaration
(Loc
,
7203 Defining_Identifier
=> New_Base
,
7205 Make_Derived_Type_Definition
(Loc
,
7206 Abstract_Present
=> Abstract_Present
(Type_Def
),
7207 Limited_Present
=> Limited_Present
(Type_Def
),
7208 Subtype_Indication
=>
7209 New_Occurrence_Of
(Parent_Base
, Loc
),
7210 Record_Extension_Part
=>
7211 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
7212 Interface_List
=> Interface_List
(Type_Def
)));
7214 Set_Parent
(New_Decl
, Parent
(N
));
7215 Mark_Rewrite_Insertion
(New_Decl
);
7216 Insert_Before
(N
, New_Decl
);
7218 -- In the extension case, make sure ancestor is frozen appropriately
7219 -- (see also non-discriminated case below).
7221 if Present
(Record_Extension_Part
(Type_Def
))
7222 or else Is_Interface
(Parent_Base
)
7224 Freeze_Before
(New_Decl
, Parent_Type
);
7227 -- Note that this call passes False for the Derive_Subps parameter
7228 -- because subprogram derivation is deferred until after creating
7229 -- the subtype (see below).
7232 (New_Decl
, Parent_Base
, New_Base
,
7233 Is_Completion
=> True, Derive_Subps
=> False);
7235 -- ??? This needs re-examination to determine whether the
7236 -- above call can simply be replaced by a call to Analyze.
7238 Set_Analyzed
(New_Decl
);
7240 -- Insert and analyze the declaration for the constrained subtype
7242 if Constraint_Present
then
7244 Make_Subtype_Indication
(Loc
,
7245 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7246 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
7250 Constr_List
: constant List_Id
:= New_List
;
7255 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
7256 while Present
(C
) loop
7259 -- It is safe here to call New_Copy_Tree since
7260 -- Force_Evaluation was called on each constraint in
7261 -- Build_Discriminant_Constraints.
7263 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
7269 Make_Subtype_Indication
(Loc
,
7270 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7272 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
7277 Make_Subtype_Declaration
(Loc
,
7278 Defining_Identifier
=> Derived_Type
,
7279 Subtype_Indication
=> New_Indic
));
7283 -- Derivation of subprograms must be delayed until the full subtype
7284 -- has been established, to ensure proper overriding of subprograms
7285 -- inherited by full types. If the derivations occurred as part of
7286 -- the call to Build_Derived_Type above, then the check for type
7287 -- conformance would fail because earlier primitive subprograms
7288 -- could still refer to the full type prior the change to the new
7289 -- subtype and hence would not match the new base type created here.
7290 -- Subprograms are not derived, however, when Derive_Subps is False
7291 -- (since otherwise there could be redundant derivations).
7293 if Derive_Subps
then
7294 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7297 -- For tagged types the Discriminant_Constraint of the new base itype
7298 -- is inherited from the first subtype so that no subtype conformance
7299 -- problem arise when the first subtype overrides primitive
7300 -- operations inherited by the implicit base type.
7303 Set_Discriminant_Constraint
7304 (New_Base
, Discriminant_Constraint
(Derived_Type
));
7310 -- If we get here Derived_Type will have no discriminants or it will be
7311 -- a discriminated unconstrained base type.
7313 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7317 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7318 -- The declaration of a specific descendant of an interface type
7319 -- freezes the interface type (RM 13.14).
7321 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
7322 Freeze_Before
(N
, Parent_Type
);
7325 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7326 -- cannot be declared at a deeper level than its parent type is
7327 -- removed. The check on derivation within a generic body is also
7328 -- relaxed, but there's a restriction that a derived tagged type
7329 -- cannot be declared in a generic body if it's derived directly
7330 -- or indirectly from a formal type of that generic.
7332 if Ada_Version
>= Ada_2005
then
7333 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
7335 Ancestor_Type
: Entity_Id
;
7338 -- Check to see if any ancestor of the derived type is a
7341 Ancestor_Type
:= Parent_Type
;
7342 while not Is_Generic_Type
(Ancestor_Type
)
7343 and then Etype
(Ancestor_Type
) /= Ancestor_Type
7345 Ancestor_Type
:= Etype
(Ancestor_Type
);
7348 -- If the derived type does have a formal type as an
7349 -- ancestor, then it's an error if the derived type is
7350 -- declared within the body of the generic unit that
7351 -- declares the formal type in its generic formal part. It's
7352 -- sufficient to check whether the ancestor type is declared
7353 -- inside the same generic body as the derived type (such as
7354 -- within a nested generic spec), in which case the
7355 -- derivation is legal. If the formal type is declared
7356 -- outside of that generic body, then it's guaranteed that
7357 -- the derived type is declared within the generic body of
7358 -- the generic unit declaring the formal type.
7360 if Is_Generic_Type
(Ancestor_Type
)
7361 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
7362 Enclosing_Generic_Body
(Derived_Type
)
7365 ("parent type of& must not be descendant of formal type"
7366 & " of an enclosing generic body",
7367 Indic
, Derived_Type
);
7372 elsif Type_Access_Level
(Derived_Type
) /=
7373 Type_Access_Level
(Parent_Type
)
7374 and then not Is_Generic_Type
(Derived_Type
)
7376 if Is_Controlled
(Parent_Type
) then
7378 ("controlled type must be declared at the library level",
7382 ("type extension at deeper accessibility level than parent",
7388 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
7392 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
7395 ("parent type of& must not be outside generic body"
7397 Indic
, Derived_Type
);
7403 -- Ada 2005 (AI-251)
7405 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
7407 -- "The declaration of a specific descendant of an interface type
7408 -- freezes the interface type" (RM 13.14).
7413 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
7414 Iface
:= First
(Interface_List
(Type_Def
));
7415 while Present
(Iface
) loop
7416 Freeze_Before
(N
, Etype
(Iface
));
7423 -- STEP 1b : preliminary cleanup of the full view of private types
7425 -- If the type is already marked as having discriminants, then it's the
7426 -- completion of a private type or private extension and we need to
7427 -- retain the discriminants from the partial view if the current
7428 -- declaration has Discriminant_Specifications so that we can verify
7429 -- conformance. However, we must remove any existing components that
7430 -- were inherited from the parent (and attached in Copy_And_Swap)
7431 -- because the full type inherits all appropriate components anyway, and
7432 -- we do not want the partial view's components interfering.
7434 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
7435 Discrim
:= First_Discriminant
(Derived_Type
);
7437 Last_Discrim
:= Discrim
;
7438 Next_Discriminant
(Discrim
);
7439 exit when No
(Discrim
);
7442 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
7444 -- In all other cases wipe out the list of inherited components (even
7445 -- inherited discriminants), it will be properly rebuilt here.
7448 Set_First_Entity
(Derived_Type
, Empty
);
7449 Set_Last_Entity
(Derived_Type
, Empty
);
7452 -- STEP 1c: Initialize some flags for the Derived_Type
7454 -- The following flags must be initialized here so that
7455 -- Process_Discriminants can check that discriminants of tagged types do
7456 -- not have a default initial value and that access discriminants are
7457 -- only specified for limited records. For completeness, these flags are
7458 -- also initialized along with all the other flags below.
7460 -- AI-419: Limitedness is not inherited from an interface parent, so to
7461 -- be limited in that case the type must be explicitly declared as
7462 -- limited. However, task and protected interfaces are always limited.
7464 if Limited_Present
(Type_Def
) then
7465 Set_Is_Limited_Record
(Derived_Type
);
7467 elsif Is_Limited_Record
(Parent_Type
)
7468 or else (Present
(Full_View
(Parent_Type
))
7469 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
7471 if not Is_Interface
(Parent_Type
)
7472 or else Is_Synchronized_Interface
(Parent_Type
)
7473 or else Is_Protected_Interface
(Parent_Type
)
7474 or else Is_Task_Interface
(Parent_Type
)
7476 Set_Is_Limited_Record
(Derived_Type
);
7480 -- STEP 2a: process discriminants of derived type if any
7482 Push_Scope
(Derived_Type
);
7484 if Discriminant_Specs
then
7485 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
7487 -- The following call initializes fields Has_Discriminants and
7488 -- Discriminant_Constraint, unless we are processing the completion
7489 -- of a private type declaration.
7491 Check_Or_Process_Discriminants
(N
, Derived_Type
);
7493 -- For untagged types, the constraint on the Parent_Type must be
7494 -- present and is used to rename the discriminants.
7496 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
7497 Error_Msg_N
("untagged parent must have discriminants", Indic
);
7499 elsif not Is_Tagged
and then not Constraint_Present
then
7501 ("discriminant constraint needed for derived untagged records",
7504 -- Otherwise the parent subtype must be constrained unless we have a
7505 -- private extension.
7507 elsif not Constraint_Present
7508 and then not Private_Extension
7509 and then not Is_Constrained
(Parent_Type
)
7512 ("unconstrained type not allowed in this context", Indic
);
7514 elsif Constraint_Present
then
7515 -- The following call sets the field Corresponding_Discriminant
7516 -- for the discriminants in the Derived_Type.
7518 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
7520 -- For untagged types all new discriminants must rename
7521 -- discriminants in the parent. For private extensions new
7522 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7524 Discrim
:= First_Discriminant
(Derived_Type
);
7525 while Present
(Discrim
) loop
7527 and then No
(Corresponding_Discriminant
(Discrim
))
7530 ("new discriminants must constrain old ones", Discrim
);
7532 elsif Private_Extension
7533 and then Present
(Corresponding_Discriminant
(Discrim
))
7536 ("only static constraints allowed for parent"
7537 & " discriminants in the partial view", Indic
);
7541 -- If a new discriminant is used in the constraint, then its
7542 -- subtype must be statically compatible with the parent
7543 -- discriminant's subtype (3.7(15)).
7545 -- However, if the record contains an array constrained by
7546 -- the discriminant but with some different bound, the compiler
7547 -- attemps to create a smaller range for the discriminant type.
7548 -- (See exp_ch3.Adjust_Discriminants). In this case, where
7549 -- the discriminant type is a scalar type, the check must use
7550 -- the original discriminant type in the parent declaration.
7553 Corr_Disc
: constant Entity_Id
:=
7554 Corresponding_Discriminant
(Discrim
);
7555 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
7556 Corr_Type
: Entity_Id
;
7559 if Present
(Corr_Disc
) then
7560 if Is_Scalar_Type
(Disc_Type
) then
7562 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
7564 Corr_Type
:= Etype
(Corr_Disc
);
7568 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
7571 ("subtype must be compatible "
7572 & "with parent discriminant",
7578 Next_Discriminant
(Discrim
);
7581 -- Check whether the constraints of the full view statically
7582 -- match those imposed by the parent subtype [7.3(13)].
7584 if Present
(Stored_Constraint
(Derived_Type
)) then
7589 C1
:= First_Elmt
(Discs
);
7590 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
7591 while Present
(C1
) and then Present
(C2
) loop
7593 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7596 ("not conformant with previous declaration",
7607 -- STEP 2b: No new discriminants, inherit discriminants if any
7610 if Private_Extension
then
7611 Set_Has_Unknown_Discriminants
7613 Has_Unknown_Discriminants
(Parent_Type
)
7614 or else Unknown_Discriminants_Present
(N
));
7616 -- The partial view of the parent may have unknown discriminants,
7617 -- but if the full view has discriminants and the parent type is
7618 -- in scope they must be inherited.
7620 elsif Has_Unknown_Discriminants
(Parent_Type
)
7622 (not Has_Discriminants
(Parent_Type
)
7623 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
7625 Set_Has_Unknown_Discriminants
(Derived_Type
);
7628 if not Has_Unknown_Discriminants
(Derived_Type
)
7629 and then not Has_Unknown_Discriminants
(Parent_Base
)
7630 and then Has_Discriminants
(Parent_Type
)
7632 Inherit_Discrims
:= True;
7633 Set_Has_Discriminants
7634 (Derived_Type
, True);
7635 Set_Discriminant_Constraint
7636 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
7639 -- The following test is true for private types (remember
7640 -- transformation 5. is not applied to those) and in an error
7643 if Constraint_Present
then
7644 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7647 -- For now mark a new derived type as constrained only if it has no
7648 -- discriminants. At the end of Build_Derived_Record_Type we properly
7649 -- set this flag in the case of private extensions. See comments in
7650 -- point 9. just before body of Build_Derived_Record_Type.
7654 not (Inherit_Discrims
7655 or else Has_Unknown_Discriminants
(Derived_Type
)));
7658 -- STEP 3: initialize fields of derived type
7660 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
7661 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7663 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7664 -- but cannot be interfaces
7666 if not Private_Extension
7667 and then Ekind
(Derived_Type
) /= E_Private_Type
7668 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
7670 if Interface_Present
(Type_Def
) then
7671 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
7674 Set_Interfaces
(Derived_Type
, No_Elist
);
7677 -- Fields inherited from the Parent_Type
7679 Set_Has_Specified_Layout
7680 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
7681 Set_Is_Limited_Composite
7682 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
7683 Set_Is_Private_Composite
7684 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
7686 -- Fields inherited from the Parent_Base
7688 Set_Has_Controlled_Component
7689 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
7690 Set_Has_Non_Standard_Rep
7691 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7692 Set_Has_Primitive_Operations
7693 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
7695 -- Fields inherited from the Parent_Base in the non-private case
7697 if Ekind
(Derived_Type
) = E_Record_Type
then
7698 Set_Has_Complex_Representation
7699 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
7702 -- Fields inherited from the Parent_Base for record types
7704 if Is_Record_Type
(Derived_Type
) then
7707 Parent_Full
: Entity_Id
;
7710 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7711 -- Parent_Base can be a private type or private extension. Go
7712 -- to the full view here to get the E_Record_Type specific flags.
7714 if Present
(Full_View
(Parent_Base
)) then
7715 Parent_Full
:= Full_View
(Parent_Base
);
7717 Parent_Full
:= Parent_Base
;
7720 Set_OK_To_Reorder_Components
7721 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
7725 -- Set fields for private derived types
7727 if Is_Private_Type
(Derived_Type
) then
7728 Set_Depends_On_Private
(Derived_Type
, True);
7729 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7731 -- Inherit fields from non private record types. If this is the
7732 -- completion of a derivation from a private type, the parent itself
7733 -- is private, and the attributes come from its full view, which must
7737 if Is_Private_Type
(Parent_Base
)
7738 and then not Is_Record_Type
(Parent_Base
)
7740 Set_Component_Alignment
7741 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
7743 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
7745 Set_Component_Alignment
7746 (Derived_Type
, Component_Alignment
(Parent_Base
));
7748 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
7752 -- Set fields for tagged types
7755 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
7757 -- All tagged types defined in Ada.Finalization are controlled
7759 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
7760 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
7761 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
7763 Set_Is_Controlled
(Derived_Type
);
7765 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
7768 -- Minor optimization: there is no need to generate the class-wide
7769 -- entity associated with an underlying record view.
7771 if not Is_Underlying_Record_View
(Derived_Type
) then
7772 Make_Class_Wide_Type
(Derived_Type
);
7775 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
7777 if Has_Discriminants
(Derived_Type
)
7778 and then Constraint_Present
7780 Set_Stored_Constraint
7781 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
7784 if Ada_Version
>= Ada_2005
then
7786 Ifaces_List
: Elist_Id
;
7789 -- Checks rules 3.9.4 (13/2 and 14/2)
7791 if Comes_From_Source
(Derived_Type
)
7792 and then not Is_Private_Type
(Derived_Type
)
7793 and then Is_Interface
(Parent_Type
)
7794 and then not Is_Interface
(Derived_Type
)
7796 if Is_Task_Interface
(Parent_Type
) then
7798 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
7801 elsif Is_Protected_Interface
(Parent_Type
) then
7803 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
7808 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
7810 Check_Interfaces
(N
, Type_Def
);
7812 -- Ada 2005 (AI-251): Collect the list of progenitors that are
7813 -- not already in the parents.
7817 Ifaces_List
=> Ifaces_List
,
7818 Exclude_Parents
=> True);
7820 Set_Interfaces
(Derived_Type
, Ifaces_List
);
7822 -- If the derived type is the anonymous type created for
7823 -- a declaration whose parent has a constraint, propagate
7824 -- the interface list to the source type. This must be done
7825 -- prior to the completion of the analysis of the source type
7826 -- because the components in the extension may contain current
7827 -- instances whose legality depends on some ancestor.
7829 if Is_Itype
(Derived_Type
) then
7831 Def
: constant Node_Id
:=
7832 Associated_Node_For_Itype
(Derived_Type
);
7835 and then Nkind
(Def
) = N_Full_Type_Declaration
7838 (Defining_Identifier
(Def
), Ifaces_List
);
7846 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
7847 Set_Has_Non_Standard_Rep
7848 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7851 -- STEP 4: Inherit components from the parent base and constrain them.
7852 -- Apply the second transformation described in point 6. above.
7854 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
7855 or else not Has_Discriminants
(Parent_Type
)
7856 or else not Is_Constrained
(Parent_Type
)
7860 Constrs
:= Discriminant_Constraint
(Parent_Type
);
7865 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
7867 -- STEP 5a: Copy the parent record declaration for untagged types
7869 if not Is_Tagged
then
7871 -- Discriminant_Constraint (Derived_Type) has been properly
7872 -- constructed. Save it and temporarily set it to Empty because we
7873 -- do not want the call to New_Copy_Tree below to mess this list.
7875 if Has_Discriminants
(Derived_Type
) then
7876 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
7877 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
7879 Save_Discr_Constr
:= No_Elist
;
7882 -- Save the Etype field of Derived_Type. It is correctly set now,
7883 -- but the call to New_Copy tree may remap it to point to itself,
7884 -- which is not what we want. Ditto for the Next_Entity field.
7886 Save_Etype
:= Etype
(Derived_Type
);
7887 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
7889 -- Assoc_List maps all stored discriminants in the Parent_Base to
7890 -- stored discriminants in the Derived_Type. It is fundamental that
7891 -- no types or itypes with discriminants other than the stored
7892 -- discriminants appear in the entities declared inside
7893 -- Derived_Type, since the back end cannot deal with it.
7897 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
7899 -- Restore the fields saved prior to the New_Copy_Tree call
7900 -- and compute the stored constraint.
7902 Set_Etype
(Derived_Type
, Save_Etype
);
7903 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
7905 if Has_Discriminants
(Derived_Type
) then
7906 Set_Discriminant_Constraint
7907 (Derived_Type
, Save_Discr_Constr
);
7908 Set_Stored_Constraint
7909 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
7910 Replace_Components
(Derived_Type
, New_Decl
);
7911 Set_Has_Implicit_Dereference
7912 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
7915 -- Insert the new derived type declaration
7917 Rewrite
(N
, New_Decl
);
7919 -- STEP 5b: Complete the processing for record extensions in generics
7921 -- There is no completion for record extensions declared in the
7922 -- parameter part of a generic, so we need to complete processing for
7923 -- these generic record extensions here. The Record_Type_Definition call
7924 -- will change the Ekind of the components from E_Void to E_Component.
7926 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
7927 Record_Type_Definition
(Empty
, Derived_Type
);
7929 -- STEP 5c: Process the record extension for non private tagged types
7931 elsif not Private_Extension
then
7933 -- Add the _parent field in the derived type
7935 Expand_Record_Extension
(Derived_Type
, Type_Def
);
7937 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
7938 -- implemented interfaces if we are in expansion mode
7941 and then Has_Interfaces
(Derived_Type
)
7943 Add_Interface_Tag_Components
(N
, Derived_Type
);
7946 -- Analyze the record extension
7948 Record_Type_Definition
7949 (Record_Extension_Part
(Type_Def
), Derived_Type
);
7954 -- Nothing else to do if there is an error in the derivation.
7955 -- An unusual case: the full view may be derived from a type in an
7956 -- instance, when the partial view was used illegally as an actual
7957 -- in that instance, leading to a circular definition.
7959 if Etype
(Derived_Type
) = Any_Type
7960 or else Etype
(Parent_Type
) = Derived_Type
7965 -- Set delayed freeze and then derive subprograms, we need to do
7966 -- this in this order so that derived subprograms inherit the
7967 -- derived freeze if necessary.
7969 Set_Has_Delayed_Freeze
(Derived_Type
);
7971 if Derive_Subps
then
7972 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7975 -- If we have a private extension which defines a constrained derived
7976 -- type mark as constrained here after we have derived subprograms. See
7977 -- comment on point 9. just above the body of Build_Derived_Record_Type.
7979 if Private_Extension
and then Inherit_Discrims
then
7980 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
7981 Set_Is_Constrained
(Derived_Type
, True);
7982 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
7984 elsif Is_Constrained
(Parent_Type
) then
7986 (Derived_Type
, True);
7987 Set_Discriminant_Constraint
7988 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
7992 -- Update the class-wide type, which shares the now-completed entity
7993 -- list with its specific type. In case of underlying record views,
7994 -- we do not generate the corresponding class wide entity.
7997 and then not Is_Underlying_Record_View
(Derived_Type
)
8000 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8002 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8004 end Build_Derived_Record_Type
;
8006 ------------------------
8007 -- Build_Derived_Type --
8008 ------------------------
8010 procedure Build_Derived_Type
8012 Parent_Type
: Entity_Id
;
8013 Derived_Type
: Entity_Id
;
8014 Is_Completion
: Boolean;
8015 Derive_Subps
: Boolean := True)
8017 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8020 -- Set common attributes
8022 Set_Scope
(Derived_Type
, Current_Scope
);
8024 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8025 Set_Etype
(Derived_Type
, Parent_Base
);
8026 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8028 Set_Size_Info
(Derived_Type
, Parent_Type
);
8029 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8030 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8031 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8033 -- If the parent type is a private subtype, the convention on the base
8034 -- type may be set in the private part, and not propagated to the
8035 -- subtype until later, so we obtain the convention from the base type.
8037 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8039 -- Propagate invariant information. The new type has invariants if
8040 -- they are inherited from the parent type, and these invariants can
8041 -- be further inherited, so both flags are set.
8043 -- We similarly inherit predicates
8045 if Has_Predicates
(Parent_Type
) then
8046 Set_Has_Predicates
(Derived_Type
);
8049 -- The derived type inherits the representation clauses of the parent.
8050 -- However, for a private type that is completed by a derivation, there
8051 -- may be operation attributes that have been specified already (stream
8052 -- attributes and External_Tag) and those must be provided. Finally,
8053 -- if the partial view is a private extension, the representation items
8054 -- of the parent have been inherited already, and should not be chained
8055 -- twice to the derived type.
8057 if Is_Tagged_Type
(Parent_Type
)
8058 and then Present
(First_Rep_Item
(Derived_Type
))
8060 -- The existing items are either operational items or items inherited
8061 -- from a private extension declaration.
8065 -- Used to iterate over representation items of the derived type
8068 -- Last representation item of the (non-empty) representation
8069 -- item list of the derived type.
8071 Found
: Boolean := False;
8074 Rep
:= First_Rep_Item
(Derived_Type
);
8076 while Present
(Rep
) loop
8077 if Rep
= First_Rep_Item
(Parent_Type
) then
8082 Rep
:= Next_Rep_Item
(Rep
);
8084 if Present
(Rep
) then
8090 -- Here if we either encountered the parent type's first rep
8091 -- item on the derived type's rep item list (in which case
8092 -- Found is True, and we have nothing else to do), or if we
8093 -- reached the last rep item of the derived type, which is
8094 -- Last_Rep, in which case we further chain the parent type's
8095 -- rep items to those of the derived type.
8098 Set_Next_Rep_Item
(Last_Rep
, First_Rep_Item
(Parent_Type
));
8103 Set_First_Rep_Item
(Derived_Type
, First_Rep_Item
(Parent_Type
));
8106 case Ekind
(Parent_Type
) is
8107 when Numeric_Kind
=>
8108 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
8111 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
8115 | Class_Wide_Kind
=>
8116 Build_Derived_Record_Type
8117 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
8120 when Enumeration_Kind
=>
8121 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
8124 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
8126 when Incomplete_Or_Private_Kind
=>
8127 Build_Derived_Private_Type
8128 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
8130 -- For discriminated types, the derivation includes deriving
8131 -- primitive operations. For others it is done below.
8133 if Is_Tagged_Type
(Parent_Type
)
8134 or else Has_Discriminants
(Parent_Type
)
8135 or else (Present
(Full_View
(Parent_Type
))
8136 and then Has_Discriminants
(Full_View
(Parent_Type
)))
8141 when Concurrent_Kind
=>
8142 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
8145 raise Program_Error
;
8148 if Etype
(Derived_Type
) = Any_Type
then
8152 -- Set delayed freeze and then derive subprograms, we need to do this
8153 -- in this order so that derived subprograms inherit the derived freeze
8156 Set_Has_Delayed_Freeze
(Derived_Type
);
8157 if Derive_Subps
then
8158 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8161 Set_Has_Primitive_Operations
8162 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
8163 end Build_Derived_Type
;
8165 -----------------------
8166 -- Build_Discriminal --
8167 -----------------------
8169 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
8170 D_Minal
: Entity_Id
;
8171 CR_Disc
: Entity_Id
;
8174 -- A discriminal has the same name as the discriminant
8176 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8178 Set_Ekind
(D_Minal
, E_In_Parameter
);
8179 Set_Mechanism
(D_Minal
, Default_Mechanism
);
8180 Set_Etype
(D_Minal
, Etype
(Discrim
));
8181 Set_Scope
(D_Minal
, Current_Scope
);
8183 Set_Discriminal
(Discrim
, D_Minal
);
8184 Set_Discriminal_Link
(D_Minal
, Discrim
);
8186 -- For task types, build at once the discriminants of the corresponding
8187 -- record, which are needed if discriminants are used in entry defaults
8188 -- and in family bounds.
8190 if Is_Concurrent_Type
(Current_Scope
)
8191 or else Is_Limited_Type
(Current_Scope
)
8193 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8195 Set_Ekind
(CR_Disc
, E_In_Parameter
);
8196 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
8197 Set_Etype
(CR_Disc
, Etype
(Discrim
));
8198 Set_Scope
(CR_Disc
, Current_Scope
);
8199 Set_Discriminal_Link
(CR_Disc
, Discrim
);
8200 Set_CR_Discriminant
(Discrim
, CR_Disc
);
8202 end Build_Discriminal
;
8204 ------------------------------------
8205 -- Build_Discriminant_Constraints --
8206 ------------------------------------
8208 function Build_Discriminant_Constraints
8211 Derived_Def
: Boolean := False) return Elist_Id
8213 C
: constant Node_Id
:= Constraint
(Def
);
8214 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
8216 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
8217 -- Saves the expression corresponding to a given discriminant in T
8219 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
8220 -- Return the Position number within array Discr_Expr of a discriminant
8221 -- D within the discriminant list of the discriminated type T.
8227 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
8231 Disc
:= First_Discriminant
(T
);
8232 for J
in Discr_Expr
'Range loop
8237 Next_Discriminant
(Disc
);
8240 -- Note: Since this function is called on discriminants that are
8241 -- known to belong to the discriminated type, falling through the
8242 -- loop with no match signals an internal compiler error.
8244 raise Program_Error
;
8247 -- Declarations local to Build_Discriminant_Constraints
8251 Elist
: constant Elist_Id
:= New_Elmt_List
;
8259 Discrim_Present
: Boolean := False;
8261 -- Start of processing for Build_Discriminant_Constraints
8264 -- The following loop will process positional associations only.
8265 -- For a positional association, the (single) discriminant is
8266 -- implicitly specified by position, in textual order (RM 3.7.2).
8268 Discr
:= First_Discriminant
(T
);
8269 Constr
:= First
(Constraints
(C
));
8270 for D
in Discr_Expr
'Range loop
8271 exit when Nkind
(Constr
) = N_Discriminant_Association
;
8274 Error_Msg_N
("too few discriminants given in constraint", C
);
8275 return New_Elmt_List
;
8277 elsif Nkind
(Constr
) = N_Range
8278 or else (Nkind
(Constr
) = N_Attribute_Reference
8280 Attribute_Name
(Constr
) = Name_Range
)
8283 ("a range is not a valid discriminant constraint", Constr
);
8284 Discr_Expr
(D
) := Error
;
8287 Analyze_And_Resolve
(Constr
, Base_Type
(Etype
(Discr
)));
8288 Discr_Expr
(D
) := Constr
;
8291 Next_Discriminant
(Discr
);
8295 if No
(Discr
) and then Present
(Constr
) then
8296 Error_Msg_N
("too many discriminants given in constraint", Constr
);
8297 return New_Elmt_List
;
8300 -- Named associations can be given in any order, but if both positional
8301 -- and named associations are used in the same discriminant constraint,
8302 -- then positional associations must occur first, at their normal
8303 -- position. Hence once a named association is used, the rest of the
8304 -- discriminant constraint must use only named associations.
8306 while Present
(Constr
) loop
8308 -- Positional association forbidden after a named association
8310 if Nkind
(Constr
) /= N_Discriminant_Association
then
8311 Error_Msg_N
("positional association follows named one", Constr
);
8312 return New_Elmt_List
;
8314 -- Otherwise it is a named association
8317 -- E records the type of the discriminants in the named
8318 -- association. All the discriminants specified in the same name
8319 -- association must have the same type.
8323 -- Search the list of discriminants in T to see if the simple name
8324 -- given in the constraint matches any of them.
8326 Id
:= First
(Selector_Names
(Constr
));
8327 while Present
(Id
) loop
8330 -- If Original_Discriminant is present, we are processing a
8331 -- generic instantiation and this is an instance node. We need
8332 -- to find the name of the corresponding discriminant in the
8333 -- actual record type T and not the name of the discriminant in
8334 -- the generic formal. Example:
8337 -- type G (D : int) is private;
8339 -- subtype W is G (D => 1);
8341 -- type Rec (X : int) is record ... end record;
8342 -- package Q is new P (G => Rec);
8344 -- At the point of the instantiation, formal type G is Rec
8345 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8346 -- which really looks like "subtype W is Rec (D => 1);" at
8347 -- the point of instantiation, we want to find the discriminant
8348 -- that corresponds to D in Rec, i.e. X.
8350 if Present
(Original_Discriminant
(Id
))
8351 and then In_Instance
8353 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
8357 Discr
:= First_Discriminant
(T
);
8358 while Present
(Discr
) loop
8359 if Chars
(Discr
) = Chars
(Id
) then
8364 Next_Discriminant
(Discr
);
8368 Error_Msg_N
("& does not match any discriminant", Id
);
8369 return New_Elmt_List
;
8371 -- If the parent type is a generic formal, preserve the
8372 -- name of the discriminant for subsequent instances.
8373 -- see comment at the beginning of this if statement.
8375 elsif Is_Generic_Type
(Root_Type
(T
)) then
8376 Set_Original_Discriminant
(Id
, Discr
);
8380 Position
:= Pos_Of_Discr
(T
, Discr
);
8382 if Present
(Discr_Expr
(Position
)) then
8383 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
8386 -- Each discriminant specified in the same named association
8387 -- must be associated with a separate copy of the
8388 -- corresponding expression.
8390 if Present
(Next
(Id
)) then
8391 Expr
:= New_Copy_Tree
(Expression
(Constr
));
8392 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
8394 Expr
:= Expression
(Constr
);
8397 Discr_Expr
(Position
) := Expr
;
8398 Analyze_And_Resolve
(Expr
, Base_Type
(Etype
(Discr
)));
8401 -- A discriminant association with more than one discriminant
8402 -- name is only allowed if the named discriminants are all of
8403 -- the same type (RM 3.7.1(8)).
8406 E
:= Base_Type
(Etype
(Discr
));
8408 elsif Base_Type
(Etype
(Discr
)) /= E
then
8410 ("all discriminants in an association " &
8411 "must have the same type", Id
);
8421 -- A discriminant constraint must provide exactly one value for each
8422 -- discriminant of the type (RM 3.7.1(8)).
8424 for J
in Discr_Expr
'Range loop
8425 if No
(Discr_Expr
(J
)) then
8426 Error_Msg_N
("too few discriminants given in constraint", C
);
8427 return New_Elmt_List
;
8431 -- Determine if there are discriminant expressions in the constraint
8433 for J
in Discr_Expr
'Range loop
8434 if Denotes_Discriminant
8435 (Discr_Expr
(J
), Check_Concurrent
=> True)
8437 Discrim_Present
:= True;
8441 -- Build an element list consisting of the expressions given in the
8442 -- discriminant constraint and apply the appropriate checks. The list
8443 -- is constructed after resolving any named discriminant associations
8444 -- and therefore the expressions appear in the textual order of the
8447 Discr
:= First_Discriminant
(T
);
8448 for J
in Discr_Expr
'Range loop
8449 if Discr_Expr
(J
) /= Error
then
8450 Append_Elmt
(Discr_Expr
(J
), Elist
);
8452 -- If any of the discriminant constraints is given by a
8453 -- discriminant and we are in a derived type declaration we
8454 -- have a discriminant renaming. Establish link between new
8455 -- and old discriminant.
8457 if Denotes_Discriminant
(Discr_Expr
(J
)) then
8459 Set_Corresponding_Discriminant
8460 (Entity
(Discr_Expr
(J
)), Discr
);
8463 -- Force the evaluation of non-discriminant expressions.
8464 -- If we have found a discriminant in the constraint 3.4(26)
8465 -- and 3.8(18) demand that no range checks are performed are
8466 -- after evaluation. If the constraint is for a component
8467 -- definition that has a per-object constraint, expressions are
8468 -- evaluated but not checked either. In all other cases perform
8472 if Discrim_Present
then
8475 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
8477 Has_Per_Object_Constraint
8478 (Defining_Identifier
(Parent
(Parent
(Def
))))
8482 elsif Is_Access_Type
(Etype
(Discr
)) then
8483 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
8486 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
8489 Force_Evaluation
(Discr_Expr
(J
));
8492 -- Check that the designated type of an access discriminant's
8493 -- expression is not a class-wide type unless the discriminant's
8494 -- designated type is also class-wide.
8496 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
8497 and then not Is_Class_Wide_Type
8498 (Designated_Type
(Etype
(Discr
)))
8499 and then Etype
(Discr_Expr
(J
)) /= Any_Type
8500 and then Is_Class_Wide_Type
8501 (Designated_Type
(Etype
(Discr_Expr
(J
))))
8503 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
8505 elsif Is_Access_Type
(Etype
(Discr
))
8506 and then not Is_Access_Constant
(Etype
(Discr
))
8507 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
8508 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
8511 ("constraint for discriminant& must be access to variable",
8516 Next_Discriminant
(Discr
);
8520 end Build_Discriminant_Constraints
;
8522 ---------------------------------
8523 -- Build_Discriminated_Subtype --
8524 ---------------------------------
8526 procedure Build_Discriminated_Subtype
8530 Related_Nod
: Node_Id
;
8531 For_Access
: Boolean := False)
8533 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
8534 Constrained
: constant Boolean :=
8536 and then not Is_Empty_Elmt_List
(Elist
)
8537 and then not Is_Class_Wide_Type
(T
))
8538 or else Is_Constrained
(T
);
8541 if Ekind
(T
) = E_Record_Type
then
8543 Set_Ekind
(Def_Id
, E_Private_Subtype
);
8544 Set_Is_For_Access_Subtype
(Def_Id
, True);
8546 Set_Ekind
(Def_Id
, E_Record_Subtype
);
8549 -- Inherit preelaboration flag from base, for types for which it
8550 -- may have been set: records, private types, protected types.
8552 Set_Known_To_Have_Preelab_Init
8553 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8555 elsif Ekind
(T
) = E_Task_Type
then
8556 Set_Ekind
(Def_Id
, E_Task_Subtype
);
8558 elsif Ekind
(T
) = E_Protected_Type
then
8559 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
8560 Set_Known_To_Have_Preelab_Init
8561 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8563 elsif Is_Private_Type
(T
) then
8564 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
8565 Set_Known_To_Have_Preelab_Init
8566 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8568 elsif Is_Class_Wide_Type
(T
) then
8569 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
8572 -- Incomplete type. Attach subtype to list of dependents, to be
8573 -- completed with full view of parent type, unless is it the
8574 -- designated subtype of a record component within an init_proc.
8575 -- This last case arises for a component of an access type whose
8576 -- designated type is incomplete (e.g. a Taft Amendment type).
8577 -- The designated subtype is within an inner scope, and needs no
8578 -- elaboration, because only the access type is needed in the
8579 -- initialization procedure.
8581 Set_Ekind
(Def_Id
, Ekind
(T
));
8583 if For_Access
and then Within_Init_Proc
then
8586 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
8590 Set_Etype
(Def_Id
, T
);
8591 Init_Size_Align
(Def_Id
);
8592 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
8593 Set_Is_Constrained
(Def_Id
, Constrained
);
8595 Set_First_Entity
(Def_Id
, First_Entity
(T
));
8596 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
8597 Set_Has_Implicit_Dereference
8598 (Def_Id
, Has_Implicit_Dereference
(T
));
8600 -- If the subtype is the completion of a private declaration, there may
8601 -- have been representation clauses for the partial view, and they must
8602 -- be preserved. Build_Derived_Type chains the inherited clauses with
8603 -- the ones appearing on the extension. If this comes from a subtype
8604 -- declaration, all clauses are inherited.
8606 if No
(First_Rep_Item
(Def_Id
)) then
8607 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8610 if Is_Tagged_Type
(T
) then
8611 Set_Is_Tagged_Type
(Def_Id
);
8612 Make_Class_Wide_Type
(Def_Id
);
8615 Set_Stored_Constraint
(Def_Id
, No_Elist
);
8618 Set_Discriminant_Constraint
(Def_Id
, Elist
);
8619 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
8622 if Is_Tagged_Type
(T
) then
8624 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8625 -- concurrent record type (which has the list of primitive
8628 if Ada_Version
>= Ada_2005
8629 and then Is_Concurrent_Type
(T
)
8631 Set_Corresponding_Record_Type
(Def_Id
,
8632 Corresponding_Record_Type
(T
));
8634 Set_Direct_Primitive_Operations
(Def_Id
,
8635 Direct_Primitive_Operations
(T
));
8638 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
8641 -- Subtypes introduced by component declarations do not need to be
8642 -- marked as delayed, and do not get freeze nodes, because the semantics
8643 -- verifies that the parents of the subtypes are frozen before the
8644 -- enclosing record is frozen.
8646 if not Is_Type
(Scope
(Def_Id
)) then
8647 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
8649 if Is_Private_Type
(T
)
8650 and then Present
(Full_View
(T
))
8652 Conditional_Delay
(Def_Id
, Full_View
(T
));
8654 Conditional_Delay
(Def_Id
, T
);
8658 if Is_Record_Type
(T
) then
8659 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
8662 and then not Is_Empty_Elmt_List
(Elist
)
8663 and then not For_Access
8665 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
8666 elsif not For_Access
then
8667 Set_Cloned_Subtype
(Def_Id
, T
);
8670 end Build_Discriminated_Subtype
;
8672 ---------------------------
8673 -- Build_Itype_Reference --
8674 ---------------------------
8676 procedure Build_Itype_Reference
8680 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
8683 -- Itype references are only created for use by the back-end
8685 if Inside_A_Generic
then
8688 Set_Itype
(IR
, Ityp
);
8689 Insert_After
(Nod
, IR
);
8691 end Build_Itype_Reference
;
8693 ------------------------
8694 -- Build_Scalar_Bound --
8695 ------------------------
8697 function Build_Scalar_Bound
8700 Der_T
: Entity_Id
) return Node_Id
8702 New_Bound
: Entity_Id
;
8705 -- Note: not clear why this is needed, how can the original bound
8706 -- be unanalyzed at this point? and if it is, what business do we
8707 -- have messing around with it? and why is the base type of the
8708 -- parent type the right type for the resolution. It probably is
8709 -- not! It is OK for the new bound we are creating, but not for
8710 -- the old one??? Still if it never happens, no problem!
8712 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
8714 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
8715 New_Bound
:= New_Copy
(Bound
);
8716 Set_Etype
(New_Bound
, Der_T
);
8717 Set_Analyzed
(New_Bound
);
8719 elsif Is_Entity_Name
(Bound
) then
8720 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
8722 -- The following is almost certainly wrong. What business do we have
8723 -- relocating a node (Bound) that is presumably still attached to
8724 -- the tree elsewhere???
8727 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
8730 Set_Etype
(New_Bound
, Der_T
);
8732 end Build_Scalar_Bound
;
8734 --------------------------------
8735 -- Build_Underlying_Full_View --
8736 --------------------------------
8738 procedure Build_Underlying_Full_View
8743 Loc
: constant Source_Ptr
:= Sloc
(N
);
8744 Subt
: constant Entity_Id
:=
8745 Make_Defining_Identifier
8746 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
8753 procedure Set_Discriminant_Name
(Id
: Node_Id
);
8754 -- If the derived type has discriminants, they may rename discriminants
8755 -- of the parent. When building the full view of the parent, we need to
8756 -- recover the names of the original discriminants if the constraint is
8757 -- given by named associations.
8759 ---------------------------
8760 -- Set_Discriminant_Name --
8761 ---------------------------
8763 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
8767 Set_Original_Discriminant
(Id
, Empty
);
8769 if Has_Discriminants
(Typ
) then
8770 Disc
:= First_Discriminant
(Typ
);
8771 while Present
(Disc
) loop
8772 if Chars
(Disc
) = Chars
(Id
)
8773 and then Present
(Corresponding_Discriminant
(Disc
))
8775 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
8777 Next_Discriminant
(Disc
);
8780 end Set_Discriminant_Name
;
8782 -- Start of processing for Build_Underlying_Full_View
8785 if Nkind
(N
) = N_Full_Type_Declaration
then
8786 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
8788 elsif Nkind
(N
) = N_Subtype_Declaration
then
8789 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
8791 elsif Nkind
(N
) = N_Component_Declaration
then
8794 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
8797 raise Program_Error
;
8800 C
:= First
(Constraints
(Constr
));
8801 while Present
(C
) loop
8802 if Nkind
(C
) = N_Discriminant_Association
then
8803 Id
:= First
(Selector_Names
(C
));
8804 while Present
(Id
) loop
8805 Set_Discriminant_Name
(Id
);
8814 Make_Subtype_Declaration
(Loc
,
8815 Defining_Identifier
=> Subt
,
8816 Subtype_Indication
=>
8817 Make_Subtype_Indication
(Loc
,
8818 Subtype_Mark
=> New_Reference_To
(Par
, Loc
),
8819 Constraint
=> New_Copy_Tree
(Constr
)));
8821 -- If this is a component subtype for an outer itype, it is not
8822 -- a list member, so simply set the parent link for analysis: if
8823 -- the enclosing type does not need to be in a declarative list,
8824 -- neither do the components.
8826 if Is_List_Member
(N
)
8827 and then Nkind
(N
) /= N_Component_Declaration
8829 Insert_Before
(N
, Indic
);
8831 Set_Parent
(Indic
, Parent
(N
));
8835 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
8836 end Build_Underlying_Full_View
;
8838 -------------------------------
8839 -- Check_Abstract_Overriding --
8840 -------------------------------
8842 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
8843 Alias_Subp
: Entity_Id
;
8849 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
8850 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
8851 -- which has pragma Implemented already set. Check whether Subp's entity
8852 -- kind conforms to the implementation kind of the overridden routine.
8854 procedure Check_Pragma_Implemented
8856 Iface_Subp
: Entity_Id
);
8857 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
8858 -- Iface_Subp and both entities have pragma Implemented already set on
8859 -- them. Check whether the two implementation kinds are conforming.
8861 procedure Inherit_Pragma_Implemented
8863 Iface_Subp
: Entity_Id
);
8864 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
8865 -- subprogram Iface_Subp which has been marked by pragma Implemented.
8866 -- Propagate the implementation kind of Iface_Subp to Subp.
8868 ------------------------------
8869 -- Check_Pragma_Implemented --
8870 ------------------------------
8872 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
8873 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
8874 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
8875 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
8876 Contr_Typ
: Entity_Id
;
8877 Impl_Subp
: Entity_Id
;
8880 -- Subp must have an alias since it is a hidden entity used to link
8881 -- an interface subprogram to its overriding counterpart.
8883 pragma Assert
(Present
(Subp_Alias
));
8885 -- Handle aliases to synchronized wrappers
8887 Impl_Subp
:= Subp_Alias
;
8889 if Is_Primitive_Wrapper
(Impl_Subp
) then
8890 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
8893 -- Extract the type of the controlling formal
8895 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
8897 if Is_Concurrent_Record_Type
(Contr_Typ
) then
8898 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
8901 -- An interface subprogram whose implementation kind is By_Entry must
8902 -- be implemented by an entry.
8904 if Impl_Kind
= Name_By_Entry
8905 and then Ekind
(Impl_Subp
) /= E_Entry
8907 Error_Msg_Node_2
:= Iface_Alias
;
8909 ("type & must implement abstract subprogram & with an entry",
8910 Subp_Alias
, Contr_Typ
);
8912 elsif Impl_Kind
= Name_By_Protected_Procedure
then
8914 -- An interface subprogram whose implementation kind is By_
8915 -- Protected_Procedure cannot be implemented by a primitive
8916 -- procedure of a task type.
8918 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
8919 Error_Msg_Node_2
:= Contr_Typ
;
8921 ("interface subprogram & cannot be implemented by a " &
8922 "primitive procedure of task type &", Subp_Alias
,
8925 -- An interface subprogram whose implementation kind is By_
8926 -- Protected_Procedure must be implemented by a procedure.
8928 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
8929 Error_Msg_Node_2
:= Iface_Alias
;
8931 ("type & must implement abstract subprogram & with a " &
8932 "procedure", Subp_Alias
, Contr_Typ
);
8935 end Check_Pragma_Implemented
;
8937 ------------------------------
8938 -- Check_Pragma_Implemented --
8939 ------------------------------
8941 procedure Check_Pragma_Implemented
8943 Iface_Subp
: Entity_Id
)
8945 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
8946 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
8949 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
8950 -- and overriding subprogram are different. In general this is an
8951 -- error except when the implementation kind of the overridden
8952 -- subprograms is By_Any or Optional.
8954 if Iface_Kind
/= Subp_Kind
8955 and then Iface_Kind
/= Name_By_Any
8956 and then Iface_Kind
/= Name_Optional
8958 if Iface_Kind
= Name_By_Entry
then
8960 ("incompatible implementation kind, overridden subprogram " &
8961 "is marked By_Entry", Subp
);
8964 ("incompatible implementation kind, overridden subprogram " &
8965 "is marked By_Protected_Procedure", Subp
);
8968 end Check_Pragma_Implemented
;
8970 --------------------------------
8971 -- Inherit_Pragma_Implemented --
8972 --------------------------------
8974 procedure Inherit_Pragma_Implemented
8976 Iface_Subp
: Entity_Id
)
8978 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
8979 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
8980 Impl_Prag
: Node_Id
;
8983 -- Since the implementation kind is stored as a representation item
8984 -- rather than a flag, create a pragma node.
8988 Chars
=> Name_Implemented
,
8989 Pragma_Argument_Associations
=> New_List
(
8990 Make_Pragma_Argument_Association
(Loc
,
8992 New_Reference_To
(Subp
, Loc
)),
8994 Make_Pragma_Argument_Association
(Loc
,
8995 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
8997 -- The pragma doesn't need to be analyzed because it is internally
8998 -- build. It is safe to directly register it as a rep item since we
8999 -- are only interested in the characters of the implementation kind.
9001 Record_Rep_Item
(Subp
, Impl_Prag
);
9002 end Inherit_Pragma_Implemented
;
9004 -- Start of processing for Check_Abstract_Overriding
9007 Op_List
:= Primitive_Operations
(T
);
9009 -- Loop to check primitive operations
9011 Elmt
:= First_Elmt
(Op_List
);
9012 while Present
(Elmt
) loop
9013 Subp
:= Node
(Elmt
);
9014 Alias_Subp
:= Alias
(Subp
);
9016 -- Inherited subprograms are identified by the fact that they do not
9017 -- come from source, and the associated source location is the
9018 -- location of the first subtype of the derived type.
9020 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9021 -- subprograms that "require overriding".
9023 -- Special exception, do not complain about failure to override the
9024 -- stream routines _Input and _Output, as well as the primitive
9025 -- operations used in dispatching selects since we always provide
9026 -- automatic overridings for these subprograms.
9028 -- Also ignore this rule for convention CIL since .NET libraries
9029 -- do bizarre things with interfaces???
9031 -- The partial view of T may have been a private extension, for
9032 -- which inherited functions dispatching on result are abstract.
9033 -- If the full view is a null extension, there is no need for
9034 -- overriding in Ada 2005, but wrappers need to be built for them
9035 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9037 if Is_Null_Extension
(T
)
9038 and then Has_Controlling_Result
(Subp
)
9039 and then Ada_Version
>= Ada_2005
9040 and then Present
(Alias_Subp
)
9041 and then not Comes_From_Source
(Subp
)
9042 and then not Is_Abstract_Subprogram
(Alias_Subp
)
9043 and then not Is_Access_Type
(Etype
(Subp
))
9047 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9048 -- processing because this check is done with the aliased
9051 elsif Present
(Interface_Alias
(Subp
)) then
9054 elsif (Is_Abstract_Subprogram
(Subp
)
9055 or else Requires_Overriding
(Subp
)
9057 (Has_Controlling_Result
(Subp
)
9058 and then Present
(Alias_Subp
)
9059 and then not Comes_From_Source
(Subp
)
9060 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
9061 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
9062 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
9063 and then not Is_Abstract_Type
(T
)
9064 and then Convention
(T
) /= Convention_CIL
9065 and then not Is_Predefined_Interface_Primitive
(Subp
)
9067 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9068 -- with abstract interface types because the check will be done
9069 -- with the aliased entity (otherwise we generate a duplicated
9072 and then not Present
(Interface_Alias
(Subp
))
9074 if Present
(Alias_Subp
) then
9076 -- Only perform the check for a derived subprogram when the
9077 -- type has an explicit record extension. This avoids incorrect
9078 -- flagging of abstract subprograms for the case of a type
9079 -- without an extension that is derived from a formal type
9080 -- with a tagged actual (can occur within a private part).
9082 -- Ada 2005 (AI-391): In the case of an inherited function with
9083 -- a controlling result of the type, the rule does not apply if
9084 -- the type is a null extension (unless the parent function
9085 -- itself is abstract, in which case the function must still be
9086 -- be overridden). The expander will generate an overriding
9087 -- wrapper function calling the parent subprogram (see
9088 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9090 Type_Def
:= Type_Definition
(Parent
(T
));
9092 if Nkind
(Type_Def
) = N_Derived_Type_Definition
9093 and then Present
(Record_Extension_Part
(Type_Def
))
9095 (Ada_Version
< Ada_2005
9096 or else not Is_Null_Extension
(T
)
9097 or else Ekind
(Subp
) = E_Procedure
9098 or else not Has_Controlling_Result
(Subp
)
9099 or else Is_Abstract_Subprogram
(Alias_Subp
)
9100 or else Requires_Overriding
(Subp
)
9101 or else Is_Access_Type
(Etype
(Subp
)))
9103 -- Avoid reporting error in case of abstract predefined
9104 -- primitive inherited from interface type because the
9105 -- body of internally generated predefined primitives
9106 -- of tagged types are generated later by Freeze_Type
9108 if Is_Interface
(Root_Type
(T
))
9109 and then Is_Abstract_Subprogram
(Subp
)
9110 and then Is_Predefined_Dispatching_Operation
(Subp
)
9111 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
9117 ("type must be declared abstract or & overridden",
9120 -- Traverse the whole chain of aliased subprograms to
9121 -- complete the error notification. This is especially
9122 -- useful for traceability of the chain of entities when
9123 -- the subprogram corresponds with an interface
9124 -- subprogram (which may be defined in another package).
9126 if Present
(Alias_Subp
) then
9132 while Present
(Alias
(E
)) loop
9134 -- Avoid reporting redundant errors on entities
9135 -- inherited from interfaces
9137 if Sloc
(E
) /= Sloc
(T
) then
9138 Error_Msg_Sloc
:= Sloc
(E
);
9140 ("\& has been inherited #", T
, Subp
);
9146 Error_Msg_Sloc
:= Sloc
(E
);
9148 -- AI05-0068: report if there is an overriding
9149 -- non-abstract subprogram that is invisible.
9152 and then not Is_Abstract_Subprogram
(E
)
9155 ("\& subprogram# is not visible",
9160 ("\& has been inherited from subprogram #",
9167 -- Ada 2005 (AI-345): Protected or task type implementing
9168 -- abstract interfaces.
9170 elsif Is_Concurrent_Record_Type
(T
)
9171 and then Present
(Interfaces
(T
))
9173 -- The controlling formal of Subp must be of mode "out",
9174 -- "in out" or an access-to-variable to be overridden.
9176 if Ekind
(First_Formal
(Subp
)) = E_In_Parameter
9177 and then Ekind
(Subp
) /= E_Function
9179 if not Is_Predefined_Dispatching_Operation
(Subp
)
9180 and then Is_Protected_Type
9181 (Corresponding_Concurrent_Type
(T
))
9183 Error_Msg_PT
(T
, Subp
);
9186 -- Some other kind of overriding failure
9190 ("interface subprogram & must be overridden",
9193 -- Examine primitive operations of synchronized type,
9194 -- to find homonyms that have the wrong profile.
9201 First_Entity
(Corresponding_Concurrent_Type
(T
));
9202 while Present
(Prim
) loop
9203 if Chars
(Prim
) = Chars
(Subp
) then
9205 ("profile is not type conformant with "
9206 & "prefixed view profile of "
9207 & "inherited operation&", Prim
, Subp
);
9217 Error_Msg_Node_2
:= T
;
9219 ("abstract subprogram& not allowed for type&", Subp
);
9221 -- Also post unconditional warning on the type (unconditional
9222 -- so that if there are more than one of these cases, we get
9223 -- them all, and not just the first one).
9225 Error_Msg_Node_2
:= Subp
;
9226 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
9230 -- Ada 2012 (AI05-0030): Perform some checks related to pragma
9233 -- Subp is an expander-generated procedure which maps an interface
9234 -- alias to a protected wrapper. The interface alias is flagged by
9235 -- pragma Implemented. Ensure that Subp is a procedure when the
9236 -- implementation kind is By_Protected_Procedure or an entry when
9239 if Ada_Version
>= Ada_2012
9240 and then Is_Hidden
(Subp
)
9241 and then Present
(Interface_Alias
(Subp
))
9242 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
9244 Check_Pragma_Implemented
(Subp
);
9247 -- Subp is an interface primitive which overrides another interface
9248 -- primitive marked with pragma Implemented.
9250 if Ada_Version
>= Ada_2012
9251 and then Present
(Overridden_Operation
(Subp
))
9252 and then Has_Rep_Pragma
9253 (Overridden_Operation
(Subp
), Name_Implemented
)
9255 -- If the overriding routine is also marked by Implemented, check
9256 -- that the two implementation kinds are conforming.
9258 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
9259 Check_Pragma_Implemented
9261 Iface_Subp
=> Overridden_Operation
(Subp
));
9263 -- Otherwise the overriding routine inherits the implementation
9264 -- kind from the overridden subprogram.
9267 Inherit_Pragma_Implemented
9269 Iface_Subp
=> Overridden_Operation
(Subp
));
9275 end Check_Abstract_Overriding
;
9277 ------------------------------------------------
9278 -- Check_Access_Discriminant_Requires_Limited --
9279 ------------------------------------------------
9281 procedure Check_Access_Discriminant_Requires_Limited
9286 -- A discriminant_specification for an access discriminant shall appear
9287 -- only in the declaration for a task or protected type, or for a type
9288 -- with the reserved word 'limited' in its definition or in one of its
9289 -- ancestors (RM 3.7(10)).
9291 -- AI-0063: The proper condition is that type must be immutably limited,
9292 -- or else be a partial view.
9294 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
9295 if Is_Immutably_Limited_Type
(Current_Scope
)
9297 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
9298 and then Limited_Present
(Parent
(Current_Scope
)))
9304 ("access discriminants allowed only for limited types", Loc
);
9307 end Check_Access_Discriminant_Requires_Limited
;
9309 -----------------------------------
9310 -- Check_Aliased_Component_Types --
9311 -----------------------------------
9313 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
9317 -- ??? Also need to check components of record extensions, but not
9318 -- components of protected types (which are always limited).
9320 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9321 -- types to be unconstrained. This is safe because it is illegal to
9322 -- create access subtypes to such types with explicit discriminant
9325 if not Is_Limited_Type
(T
) then
9326 if Ekind
(T
) = E_Record_Type
then
9327 C
:= First_Component
(T
);
9328 while Present
(C
) loop
9330 and then Has_Discriminants
(Etype
(C
))
9331 and then not Is_Constrained
(Etype
(C
))
9332 and then not In_Instance_Body
9333 and then Ada_Version
< Ada_2005
9336 ("aliased component must be constrained (RM 3.6(11))",
9343 elsif Ekind
(T
) = E_Array_Type
then
9344 if Has_Aliased_Components
(T
)
9345 and then Has_Discriminants
(Component_Type
(T
))
9346 and then not Is_Constrained
(Component_Type
(T
))
9347 and then not In_Instance_Body
9348 and then Ada_Version
< Ada_2005
9351 ("aliased component type must be constrained (RM 3.6(11))",
9356 end Check_Aliased_Component_Types
;
9358 ----------------------
9359 -- Check_Completion --
9360 ----------------------
9362 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
9365 procedure Post_Error
;
9366 -- Post error message for lack of completion for entity E
9372 procedure Post_Error
is
9374 procedure Missing_Body
;
9375 -- Output missing body message
9381 procedure Missing_Body
is
9383 -- Spec is in same unit, so we can post on spec
9385 if In_Same_Source_Unit
(Body_Id
, E
) then
9386 Error_Msg_N
("missing body for &", E
);
9388 -- Spec is in a separate unit, so we have to post on the body
9391 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
9395 -- Start of processing for Post_Error
9398 if not Comes_From_Source
(E
) then
9400 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
9401 -- It may be an anonymous protected type created for a
9402 -- single variable. Post error on variable, if present.
9408 Var
:= First_Entity
(Current_Scope
);
9409 while Present
(Var
) loop
9410 exit when Etype
(Var
) = E
9411 and then Comes_From_Source
(Var
);
9416 if Present
(Var
) then
9423 -- If a generated entity has no completion, then either previous
9424 -- semantic errors have disabled the expansion phase, or else we had
9425 -- missing subunits, or else we are compiling without expansion,
9426 -- or else something is very wrong.
9428 if not Comes_From_Source
(E
) then
9430 (Serious_Errors_Detected
> 0
9431 or else Configurable_Run_Time_Violations
> 0
9432 or else Subunits_Missing
9433 or else not Expander_Active
);
9436 -- Here for source entity
9439 -- Here if no body to post the error message, so we post the error
9440 -- on the declaration that has no completion. This is not really
9441 -- the right place to post it, think about this later ???
9443 if No
(Body_Id
) then
9446 ("missing full declaration for }", Parent
(E
), E
);
9448 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
9451 -- Package body has no completion for a declaration that appears
9452 -- in the corresponding spec. Post error on the body, with a
9453 -- reference to the non-completed declaration.
9456 Error_Msg_Sloc
:= Sloc
(E
);
9459 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
9461 elsif Is_Overloadable
(E
)
9462 and then Current_Entity_In_Scope
(E
) /= E
9464 -- It may be that the completion is mistyped and appears as
9465 -- a distinct overloading of the entity.
9468 Candidate
: constant Entity_Id
:=
9469 Current_Entity_In_Scope
(E
);
9470 Decl
: constant Node_Id
:=
9471 Unit_Declaration_Node
(Candidate
);
9474 if Is_Overloadable
(Candidate
)
9475 and then Ekind
(Candidate
) = Ekind
(E
)
9476 and then Nkind
(Decl
) = N_Subprogram_Body
9477 and then Acts_As_Spec
(Decl
)
9479 Check_Type_Conformant
(Candidate
, E
);
9493 -- Start of processing for Check_Completion
9496 E
:= First_Entity
(Current_Scope
);
9497 while Present
(E
) loop
9498 if Is_Intrinsic_Subprogram
(E
) then
9501 -- The following situation requires special handling: a child unit
9502 -- that appears in the context clause of the body of its parent:
9504 -- procedure Parent.Child (...);
9506 -- with Parent.Child;
9507 -- package body Parent is
9509 -- Here Parent.Child appears as a local entity, but should not be
9510 -- flagged as requiring completion, because it is a compilation
9513 -- Ignore missing completion for a subprogram that does not come from
9514 -- source (including the _Call primitive operation of RAS types,
9515 -- which has to have the flag Comes_From_Source for other purposes):
9516 -- we assume that the expander will provide the missing completion.
9517 -- In case of previous errors, other expansion actions that provide
9518 -- bodies for null procedures with not be invoked, so inhibit message
9521 -- Note that E_Operator is not in the list that follows, because
9522 -- this kind is reserved for predefined operators, that are
9523 -- intrinsic and do not need completion.
9525 elsif Ekind
(E
) = E_Function
9526 or else Ekind
(E
) = E_Procedure
9527 or else Ekind
(E
) = E_Generic_Function
9528 or else Ekind
(E
) = E_Generic_Procedure
9530 if Has_Completion
(E
) then
9533 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
9536 elsif Is_Subprogram
(E
)
9537 and then (not Comes_From_Source
(E
)
9538 or else Chars
(E
) = Name_uCall
)
9543 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
9547 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
9548 and then Null_Present
(Parent
(E
))
9549 and then Serious_Errors_Detected
> 0
9557 elsif Is_Entry
(E
) then
9558 if not Has_Completion
(E
) and then
9559 (Ekind
(Scope
(E
)) = E_Protected_Object
9560 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
9565 elsif Is_Package_Or_Generic_Package
(E
) then
9566 if Unit_Requires_Body
(E
) then
9567 if not Has_Completion
(E
)
9568 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
9574 elsif not Is_Child_Unit
(E
) then
9575 May_Need_Implicit_Body
(E
);
9578 -- A formal incomplete type (Ada 2012) does not require a completion;
9579 -- other incomplete type declarations do.
9581 elsif Ekind
(E
) = E_Incomplete_Type
9582 and then No
(Underlying_Type
(E
))
9583 and then not Is_Generic_Type
(E
)
9587 elsif (Ekind
(E
) = E_Task_Type
or else
9588 Ekind
(E
) = E_Protected_Type
)
9589 and then not Has_Completion
(E
)
9593 -- A single task declared in the current scope is a constant, verify
9594 -- that the body of its anonymous type is in the same scope. If the
9595 -- task is defined elsewhere, this may be a renaming declaration for
9596 -- which no completion is needed.
9598 elsif Ekind
(E
) = E_Constant
9599 and then Ekind
(Etype
(E
)) = E_Task_Type
9600 and then not Has_Completion
(Etype
(E
))
9601 and then Scope
(Etype
(E
)) = Current_Scope
9605 elsif Ekind
(E
) = E_Protected_Object
9606 and then not Has_Completion
(Etype
(E
))
9610 elsif Ekind
(E
) = E_Record_Type
then
9611 if Is_Tagged_Type
(E
) then
9612 Check_Abstract_Overriding
(E
);
9613 Check_Conventions
(E
);
9616 Check_Aliased_Component_Types
(E
);
9618 elsif Ekind
(E
) = E_Array_Type
then
9619 Check_Aliased_Component_Types
(E
);
9625 end Check_Completion
;
9627 ------------------------------------
9628 -- Check_CPP_Type_Has_No_Defaults --
9629 ------------------------------------
9631 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
9632 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
9637 -- Obtain the component list
9639 if Nkind
(Tdef
) = N_Record_Definition
then
9640 Clist
:= Component_List
(Tdef
);
9641 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
9642 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
9645 -- Check all components to ensure no default expressions
9647 if Present
(Clist
) then
9648 Comp
:= First
(Component_Items
(Clist
));
9649 while Present
(Comp
) loop
9650 if Present
(Expression
(Comp
)) then
9652 ("component of imported 'C'P'P type cannot have "
9653 & "default expression", Expression
(Comp
));
9659 end Check_CPP_Type_Has_No_Defaults
;
9661 ----------------------------
9662 -- Check_Delta_Expression --
9663 ----------------------------
9665 procedure Check_Delta_Expression
(E
: Node_Id
) is
9667 if not (Is_Real_Type
(Etype
(E
))) then
9668 Wrong_Type
(E
, Any_Real
);
9670 elsif not Is_OK_Static_Expression
(E
) then
9671 Flag_Non_Static_Expr
9672 ("non-static expression used for delta value!", E
);
9674 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
9675 Error_Msg_N
("delta expression must be positive", E
);
9681 -- If any of above errors occurred, then replace the incorrect
9682 -- expression by the real 0.1, which should prevent further errors.
9685 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
9686 Analyze_And_Resolve
(E
, Standard_Float
);
9687 end Check_Delta_Expression
;
9689 -----------------------------
9690 -- Check_Digits_Expression --
9691 -----------------------------
9693 procedure Check_Digits_Expression
(E
: Node_Id
) is
9695 if not (Is_Integer_Type
(Etype
(E
))) then
9696 Wrong_Type
(E
, Any_Integer
);
9698 elsif not Is_OK_Static_Expression
(E
) then
9699 Flag_Non_Static_Expr
9700 ("non-static expression used for digits value!", E
);
9702 elsif Expr_Value
(E
) <= 0 then
9703 Error_Msg_N
("digits value must be greater than zero", E
);
9709 -- If any of above errors occurred, then replace the incorrect
9710 -- expression by the integer 1, which should prevent further errors.
9712 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
9713 Analyze_And_Resolve
(E
, Standard_Integer
);
9715 end Check_Digits_Expression
;
9717 --------------------------
9718 -- Check_Initialization --
9719 --------------------------
9721 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
9723 if Is_Limited_Type
(T
)
9724 and then not In_Instance
9725 and then not In_Inlined_Body
9727 if not OK_For_Limited_Init
(T
, Exp
) then
9729 -- In GNAT mode, this is just a warning, to allow it to be evilly
9730 -- turned off. Otherwise it is a real error.
9734 ("?cannot initialize entities of limited type!", Exp
);
9736 elsif Ada_Version
< Ada_2005
then
9738 -- The side effect removal machinery may generate illegal Ada
9739 -- code to avoid the usage of access types and 'reference in
9740 -- Alfa mode. Since this is legal code with respect to theorem
9741 -- proving, do not emit the error.
9744 and then Nkind
(Exp
) = N_Function_Call
9745 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
9746 and then not Comes_From_Source
9747 (Defining_Identifier
(Parent
(Exp
)))
9753 ("cannot initialize entities of limited type", Exp
);
9754 Explain_Limited_Type
(T
, Exp
);
9758 -- Specialize error message according to kind of illegal
9759 -- initial expression.
9761 if Nkind
(Exp
) = N_Type_Conversion
9762 and then Nkind
(Expression
(Exp
)) = N_Function_Call
9765 ("illegal context for call"
9766 & " to function with limited result", Exp
);
9770 ("initialization of limited object requires aggregate "
9771 & "or function call", Exp
);
9776 end Check_Initialization
;
9778 ----------------------
9779 -- Check_Interfaces --
9780 ----------------------
9782 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
9783 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
9786 Iface_Def
: Node_Id
;
9787 Iface_Typ
: Entity_Id
;
9788 Parent_Node
: Node_Id
;
9790 Is_Task
: Boolean := False;
9791 -- Set True if parent type or any progenitor is a task interface
9793 Is_Protected
: Boolean := False;
9794 -- Set True if parent type or any progenitor is a protected interface
9796 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
9797 -- Check that a progenitor is compatible with declaration.
9798 -- Error is posted on Error_Node.
9804 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
9805 Iface_Id
: constant Entity_Id
:=
9806 Defining_Identifier
(Parent
(Iface_Def
));
9810 if Nkind
(N
) = N_Private_Extension_Declaration
then
9813 Type_Def
:= Type_Definition
(N
);
9816 if Is_Task_Interface
(Iface_Id
) then
9819 elsif Is_Protected_Interface
(Iface_Id
) then
9820 Is_Protected
:= True;
9823 if Is_Synchronized_Interface
(Iface_Id
) then
9825 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
9826 -- extension derived from a synchronized interface must explicitly
9827 -- be declared synchronized, because the full view will be a
9828 -- synchronized type.
9830 if Nkind
(N
) = N_Private_Extension_Declaration
then
9831 if not Synchronized_Present
(N
) then
9833 ("private extension of& must be explicitly synchronized",
9837 -- However, by 3.9.4(16/2), a full type that is a record extension
9838 -- is never allowed to derive from a synchronized interface (note
9839 -- that interfaces must be excluded from this check, because those
9840 -- are represented by derived type definitions in some cases).
9842 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
9843 and then not Interface_Present
(Type_Definition
(N
))
9845 Error_Msg_N
("record extension cannot derive from synchronized"
9846 & " interface", Error_Node
);
9850 -- Check that the characteristics of the progenitor are compatible
9851 -- with the explicit qualifier in the declaration.
9852 -- The check only applies to qualifiers that come from source.
9853 -- Limited_Present also appears in the declaration of corresponding
9854 -- records, and the check does not apply to them.
9856 if Limited_Present
(Type_Def
)
9858 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
9860 if Is_Limited_Interface
(Parent_Type
)
9861 and then not Is_Limited_Interface
(Iface_Id
)
9864 ("progenitor& must be limited interface",
9865 Error_Node
, Iface_Id
);
9868 (Task_Present
(Iface_Def
)
9869 or else Protected_Present
(Iface_Def
)
9870 or else Synchronized_Present
(Iface_Def
))
9871 and then Nkind
(N
) /= N_Private_Extension_Declaration
9872 and then not Error_Posted
(N
)
9875 ("progenitor& must be limited interface",
9876 Error_Node
, Iface_Id
);
9879 -- Protected interfaces can only inherit from limited, synchronized
9880 -- or protected interfaces.
9882 elsif Nkind
(N
) = N_Full_Type_Declaration
9883 and then Protected_Present
(Type_Def
)
9885 if Limited_Present
(Iface_Def
)
9886 or else Synchronized_Present
(Iface_Def
)
9887 or else Protected_Present
(Iface_Def
)
9891 elsif Task_Present
(Iface_Def
) then
9892 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
9893 & " from task interface", Error_Node
);
9896 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
9897 & " from non-limited interface", Error_Node
);
9900 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
9901 -- limited and synchronized.
9903 elsif Synchronized_Present
(Type_Def
) then
9904 if Limited_Present
(Iface_Def
)
9905 or else Synchronized_Present
(Iface_Def
)
9909 elsif Protected_Present
(Iface_Def
)
9910 and then Nkind
(N
) /= N_Private_Extension_Declaration
9912 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9913 & " from protected interface", Error_Node
);
9915 elsif Task_Present
(Iface_Def
)
9916 and then Nkind
(N
) /= N_Private_Extension_Declaration
9918 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9919 & " from task interface", Error_Node
);
9921 elsif not Is_Limited_Interface
(Iface_Id
) then
9922 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9923 & " from non-limited interface", Error_Node
);
9926 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
9927 -- synchronized or task interfaces.
9929 elsif Nkind
(N
) = N_Full_Type_Declaration
9930 and then Task_Present
(Type_Def
)
9932 if Limited_Present
(Iface_Def
)
9933 or else Synchronized_Present
(Iface_Def
)
9934 or else Task_Present
(Iface_Def
)
9938 elsif Protected_Present
(Iface_Def
) then
9939 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
9940 & " protected interface", Error_Node
);
9943 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
9944 & " non-limited interface", Error_Node
);
9949 -- Start of processing for Check_Interfaces
9952 if Is_Interface
(Parent_Type
) then
9953 if Is_Task_Interface
(Parent_Type
) then
9956 elsif Is_Protected_Interface
(Parent_Type
) then
9957 Is_Protected
:= True;
9961 if Nkind
(N
) = N_Private_Extension_Declaration
then
9963 -- Check that progenitors are compatible with declaration
9965 Iface
:= First
(Interface_List
(Def
));
9966 while Present
(Iface
) loop
9967 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
9969 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
9970 Iface_Def
:= Type_Definition
(Parent_Node
);
9972 if not Is_Interface
(Iface_Typ
) then
9973 Diagnose_Interface
(Iface
, Iface_Typ
);
9976 Check_Ifaces
(Iface_Def
, Iface
);
9982 if Is_Task
and Is_Protected
then
9984 ("type cannot derive from task and protected interface", N
);
9990 -- Full type declaration of derived type.
9991 -- Check compatibility with parent if it is interface type
9993 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
9994 and then Is_Interface
(Parent_Type
)
9996 Parent_Node
:= Parent
(Parent_Type
);
9998 -- More detailed checks for interface varieties
10001 (Iface_Def
=> Type_Definition
(Parent_Node
),
10002 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
10005 Iface
:= First
(Interface_List
(Def
));
10006 while Present
(Iface
) loop
10007 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
10009 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
10010 Iface_Def
:= Type_Definition
(Parent_Node
);
10012 if not Is_Interface
(Iface_Typ
) then
10013 Diagnose_Interface
(Iface
, Iface_Typ
);
10016 -- "The declaration of a specific descendant of an interface
10017 -- type freezes the interface type" RM 13.14
10019 Freeze_Before
(N
, Iface_Typ
);
10020 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
10026 if Is_Task
and Is_Protected
then
10028 ("type cannot derive from task and protected interface", N
);
10030 end Check_Interfaces
;
10032 ------------------------------------
10033 -- Check_Or_Process_Discriminants --
10034 ------------------------------------
10036 -- If an incomplete or private type declaration was already given for the
10037 -- type, the discriminants may have already been processed if they were
10038 -- present on the incomplete declaration. In this case a full conformance
10039 -- check has been performed in Find_Type_Name, and we then recheck here
10040 -- some properties that can't be checked on the partial view alone.
10041 -- Otherwise we call Process_Discriminants.
10043 procedure Check_Or_Process_Discriminants
10046 Prev
: Entity_Id
:= Empty
)
10049 if Has_Discriminants
(T
) then
10051 -- Discriminants are already set on T if they were already present
10052 -- on the partial view. Make them visible to component declarations.
10056 -- Discriminant on T (full view) referencing expr on partial view
10058 Prev_D
: Entity_Id
;
10059 -- Entity of corresponding discriminant on partial view
10062 -- Discriminant specification for full view, expression is the
10063 -- syntactic copy on full view (which has been checked for
10064 -- conformance with partial view), only used here to post error
10068 D
:= First_Discriminant
(T
);
10069 New_D
:= First
(Discriminant_Specifications
(N
));
10070 while Present
(D
) loop
10071 Prev_D
:= Current_Entity
(D
);
10072 Set_Current_Entity
(D
);
10073 Set_Is_Immediately_Visible
(D
);
10074 Set_Homonym
(D
, Prev_D
);
10076 -- Handle the case where there is an untagged partial view and
10077 -- the full view is tagged: must disallow discriminants with
10078 -- defaults, unless compiling for Ada 2012, which allows a
10079 -- limited tagged type to have defaulted discriminants (see
10080 -- AI05-0214). However, suppress the error here if it was
10081 -- already reported on the default expression of the partial
10084 if Is_Tagged_Type
(T
)
10085 and then Present
(Expression
(Parent
(D
)))
10086 and then (not Is_Limited_Type
(Current_Scope
)
10087 or else Ada_Version
< Ada_2012
)
10088 and then not Error_Posted
(Expression
(Parent
(D
)))
10090 if Ada_Version
>= Ada_2012
then
10092 ("discriminants of nonlimited tagged type cannot have"
10094 Expression
(New_D
));
10097 ("discriminants of tagged type cannot have defaults",
10098 Expression
(New_D
));
10102 -- Ada 2005 (AI-230): Access discriminant allowed in
10103 -- non-limited record types.
10105 if Ada_Version
< Ada_2005
then
10107 -- This restriction gets applied to the full type here. It
10108 -- has already been applied earlier to the partial view.
10110 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
10113 Next_Discriminant
(D
);
10118 elsif Present
(Discriminant_Specifications
(N
)) then
10119 Process_Discriminants
(N
, Prev
);
10121 end Check_Or_Process_Discriminants
;
10123 ----------------------
10124 -- Check_Real_Bound --
10125 ----------------------
10127 procedure Check_Real_Bound
(Bound
: Node_Id
) is
10129 if not Is_Real_Type
(Etype
(Bound
)) then
10131 ("bound in real type definition must be of real type", Bound
);
10133 elsif not Is_OK_Static_Expression
(Bound
) then
10134 Flag_Non_Static_Expr
10135 ("non-static expression used for real type bound!", Bound
);
10142 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
10144 Resolve
(Bound
, Standard_Float
);
10145 end Check_Real_Bound
;
10147 ------------------------------
10148 -- Complete_Private_Subtype --
10149 ------------------------------
10151 procedure Complete_Private_Subtype
10154 Full_Base
: Entity_Id
;
10155 Related_Nod
: Node_Id
)
10157 Save_Next_Entity
: Entity_Id
;
10158 Save_Homonym
: Entity_Id
;
10161 -- Set semantic attributes for (implicit) private subtype completion.
10162 -- If the full type has no discriminants, then it is a copy of the full
10163 -- view of the base. Otherwise, it is a subtype of the base with a
10164 -- possible discriminant constraint. Save and restore the original
10165 -- Next_Entity field of full to ensure that the calls to Copy_Node
10166 -- do not corrupt the entity chain.
10168 -- Note that the type of the full view is the same entity as the type of
10169 -- the partial view. In this fashion, the subtype has access to the
10170 -- correct view of the parent.
10172 Save_Next_Entity
:= Next_Entity
(Full
);
10173 Save_Homonym
:= Homonym
(Priv
);
10175 case Ekind
(Full_Base
) is
10176 when E_Record_Type |
10182 Copy_Node
(Priv
, Full
);
10184 Set_Has_Discriminants
(Full
, Has_Discriminants
(Full_Base
));
10185 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
10186 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
10189 Copy_Node
(Full_Base
, Full
);
10190 Set_Chars
(Full
, Chars
(Priv
));
10191 Conditional_Delay
(Full
, Priv
);
10192 Set_Sloc
(Full
, Sloc
(Priv
));
10195 Set_Next_Entity
(Full
, Save_Next_Entity
);
10196 Set_Homonym
(Full
, Save_Homonym
);
10197 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
10199 -- Set common attributes for all subtypes: kind, convention, etc.
10201 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
10202 Set_Convention
(Full
, Convention
(Full_Base
));
10204 -- The Etype of the full view is inconsistent. Gigi needs to see the
10205 -- structural full view, which is what the current scheme gives:
10206 -- the Etype of the full view is the etype of the full base. However,
10207 -- if the full base is a derived type, the full view then looks like
10208 -- a subtype of the parent, not a subtype of the full base. If instead
10211 -- Set_Etype (Full, Full_Base);
10213 -- then we get inconsistencies in the front-end (confusion between
10214 -- views). Several outstanding bugs are related to this ???
10216 Set_Is_First_Subtype
(Full
, False);
10217 Set_Scope
(Full
, Scope
(Priv
));
10218 Set_Size_Info
(Full
, Full_Base
);
10219 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
10220 Set_Is_Itype
(Full
);
10222 -- A subtype of a private-type-without-discriminants, whose full-view
10223 -- has discriminants with default expressions, is not constrained!
10225 if not Has_Discriminants
(Priv
) then
10226 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
10228 if Has_Discriminants
(Full_Base
) then
10229 Set_Discriminant_Constraint
10230 (Full
, Discriminant_Constraint
(Full_Base
));
10232 -- The partial view may have been indefinite, the full view
10235 Set_Has_Unknown_Discriminants
10236 (Full
, Has_Unknown_Discriminants
(Full_Base
));
10240 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
10241 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
10243 -- Freeze the private subtype entity if its parent is delayed, and not
10244 -- already frozen. We skip this processing if the type is an anonymous
10245 -- subtype of a record component, or is the corresponding record of a
10246 -- protected type, since ???
10248 if not Is_Type
(Scope
(Full
)) then
10249 Set_Has_Delayed_Freeze
(Full
,
10250 Has_Delayed_Freeze
(Full_Base
)
10251 and then (not Is_Frozen
(Full_Base
)));
10254 Set_Freeze_Node
(Full
, Empty
);
10255 Set_Is_Frozen
(Full
, False);
10256 Set_Full_View
(Priv
, Full
);
10258 if Has_Discriminants
(Full
) then
10259 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
10260 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
10262 if Has_Unknown_Discriminants
(Full
) then
10263 Set_Discriminant_Constraint
(Full
, No_Elist
);
10267 if Ekind
(Full_Base
) = E_Record_Type
10268 and then Has_Discriminants
(Full_Base
)
10269 and then Has_Discriminants
(Priv
) -- might not, if errors
10270 and then not Has_Unknown_Discriminants
(Priv
)
10271 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
10273 Create_Constrained_Components
10274 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
10276 -- If the full base is itself derived from private, build a congruent
10277 -- subtype of its underlying type, for use by the back end. For a
10278 -- constrained record component, the declaration cannot be placed on
10279 -- the component list, but it must nevertheless be built an analyzed, to
10280 -- supply enough information for Gigi to compute the size of component.
10282 elsif Ekind
(Full_Base
) in Private_Kind
10283 and then Is_Derived_Type
(Full_Base
)
10284 and then Has_Discriminants
(Full_Base
)
10285 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
10287 if not Is_Itype
(Priv
)
10289 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
10291 Build_Underlying_Full_View
10292 (Parent
(Priv
), Full
, Etype
(Full_Base
));
10294 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
10295 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
10298 elsif Is_Record_Type
(Full_Base
) then
10300 -- Show Full is simply a renaming of Full_Base
10302 Set_Cloned_Subtype
(Full
, Full_Base
);
10305 -- It is unsafe to share to bounds of a scalar type, because the Itype
10306 -- is elaborated on demand, and if a bound is non-static then different
10307 -- orders of elaboration in different units will lead to different
10308 -- external symbols.
10310 if Is_Scalar_Type
(Full_Base
) then
10311 Set_Scalar_Range
(Full
,
10312 Make_Range
(Sloc
(Related_Nod
),
10314 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
10316 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
10318 -- This completion inherits the bounds of the full parent, but if
10319 -- the parent is an unconstrained floating point type, so is the
10322 if Is_Floating_Point_Type
(Full_Base
) then
10323 Set_Includes_Infinities
10324 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
10328 -- ??? It seems that a lot of fields are missing that should be copied
10329 -- from Full_Base to Full. Here are some that are introduced in a
10330 -- non-disruptive way but a cleanup is necessary.
10332 if Is_Tagged_Type
(Full_Base
) then
10333 Set_Is_Tagged_Type
(Full
);
10334 Set_Direct_Primitive_Operations
(Full
,
10335 Direct_Primitive_Operations
(Full_Base
));
10337 -- Inherit class_wide type of full_base in case the partial view was
10338 -- not tagged. Otherwise it has already been created when the private
10339 -- subtype was analyzed.
10341 if No
(Class_Wide_Type
(Full
)) then
10342 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
10345 -- If this is a subtype of a protected or task type, constrain its
10346 -- corresponding record, unless this is a subtype without constraints,
10347 -- i.e. a simple renaming as with an actual subtype in an instance.
10349 elsif Is_Concurrent_Type
(Full_Base
) then
10350 if Has_Discriminants
(Full
)
10351 and then Present
(Corresponding_Record_Type
(Full_Base
))
10353 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
10355 Set_Corresponding_Record_Type
(Full
,
10356 Constrain_Corresponding_Record
10357 (Full
, Corresponding_Record_Type
(Full_Base
),
10358 Related_Nod
, Full_Base
));
10361 Set_Corresponding_Record_Type
(Full
,
10362 Corresponding_Record_Type
(Full_Base
));
10366 -- Link rep item chain, and also setting of Has_Predicates from private
10367 -- subtype to full subtype, since we will need these on the full subtype
10368 -- to create the predicate function. Note that the full subtype may
10369 -- already have rep items, inherited from the full view of the base
10370 -- type, so we must be sure not to overwrite these entries.
10375 Next_Item
: Node_Id
;
10378 Item
:= First_Rep_Item
(Full
);
10380 -- If no existing rep items on full type, we can just link directly
10381 -- to the list of items on the private type.
10384 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
10386 -- Otherwise, search to the end of items currently linked to the full
10387 -- subtype and append the private items to the end. However, if Priv
10388 -- and Full already have the same list of rep items, then the append
10389 -- is not done, as that would create a circularity.
10391 elsif Item
/= First_Rep_Item
(Priv
) then
10395 Next_Item
:= Next_Rep_Item
(Item
);
10396 exit when No
(Next_Item
);
10399 -- If the private view has aspect specifications, the full view
10400 -- inherits them. Since these aspects may already have been
10401 -- attached to the full view during derivation, do not append
10402 -- them if already present.
10404 if Item
= First_Rep_Item
(Priv
) then
10410 -- And link the private type items at the end of the chain
10413 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
10418 -- Make sure Has_Predicates is set on full type if it is set on the
10419 -- private type. Note that it may already be set on the full type and
10420 -- if so, we don't want to unset it.
10422 if Has_Predicates
(Priv
) then
10423 Set_Has_Predicates
(Full
);
10425 end Complete_Private_Subtype
;
10427 ----------------------------
10428 -- Constant_Redeclaration --
10429 ----------------------------
10431 procedure Constant_Redeclaration
10436 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
10437 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
10440 procedure Check_Possible_Deferred_Completion
10441 (Prev_Id
: Entity_Id
;
10442 Prev_Obj_Def
: Node_Id
;
10443 Curr_Obj_Def
: Node_Id
);
10444 -- Determine whether the two object definitions describe the partial
10445 -- and the full view of a constrained deferred constant. Generate
10446 -- a subtype for the full view and verify that it statically matches
10447 -- the subtype of the partial view.
10449 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
10450 -- If deferred constant is an access type initialized with an allocator,
10451 -- check whether there is an illegal recursion in the definition,
10452 -- through a default value of some record subcomponent. This is normally
10453 -- detected when generating init procs, but requires this additional
10454 -- mechanism when expansion is disabled.
10456 ----------------------------------------
10457 -- Check_Possible_Deferred_Completion --
10458 ----------------------------------------
10460 procedure Check_Possible_Deferred_Completion
10461 (Prev_Id
: Entity_Id
;
10462 Prev_Obj_Def
: Node_Id
;
10463 Curr_Obj_Def
: Node_Id
)
10466 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
10467 and then Present
(Constraint
(Prev_Obj_Def
))
10468 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
10469 and then Present
(Constraint
(Curr_Obj_Def
))
10472 Loc
: constant Source_Ptr
:= Sloc
(N
);
10473 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
10474 Decl
: constant Node_Id
:=
10475 Make_Subtype_Declaration
(Loc
,
10476 Defining_Identifier
=> Def_Id
,
10477 Subtype_Indication
=>
10478 Relocate_Node
(Curr_Obj_Def
));
10481 Insert_Before_And_Analyze
(N
, Decl
);
10482 Set_Etype
(Id
, Def_Id
);
10484 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
10485 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
10486 Error_Msg_N
("subtype does not statically match deferred " &
10487 "declaration#", N
);
10491 end Check_Possible_Deferred_Completion
;
10493 ---------------------------------
10494 -- Check_Recursive_Declaration --
10495 ---------------------------------
10497 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
10501 if Is_Record_Type
(Typ
) then
10502 Comp
:= First_Component
(Typ
);
10503 while Present
(Comp
) loop
10504 if Comes_From_Source
(Comp
) then
10505 if Present
(Expression
(Parent
(Comp
)))
10506 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
10507 and then Entity
(Expression
(Parent
(Comp
))) = Prev
10509 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
10511 ("illegal circularity with declaration for&#",
10515 elsif Is_Record_Type
(Etype
(Comp
)) then
10516 Check_Recursive_Declaration
(Etype
(Comp
));
10520 Next_Component
(Comp
);
10523 end Check_Recursive_Declaration
;
10525 -- Start of processing for Constant_Redeclaration
10528 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
10529 if Nkind
(Object_Definition
10530 (Parent
(Prev
))) = N_Subtype_Indication
10532 -- Find type of new declaration. The constraints of the two
10533 -- views must match statically, but there is no point in
10534 -- creating an itype for the full view.
10536 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
10537 Find_Type
(Subtype_Mark
(Obj_Def
));
10538 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
10541 Find_Type
(Obj_Def
);
10542 New_T
:= Entity
(Obj_Def
);
10548 -- The full view may impose a constraint, even if the partial
10549 -- view does not, so construct the subtype.
10551 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
10556 -- Current declaration is illegal, diagnosed below in Enter_Name
10562 -- If previous full declaration or a renaming declaration exists, or if
10563 -- a homograph is present, let Enter_Name handle it, either with an
10564 -- error or with the removal of an overridden implicit subprogram.
10566 if Ekind
(Prev
) /= E_Constant
10567 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
10568 or else Present
(Expression
(Parent
(Prev
)))
10569 or else Present
(Full_View
(Prev
))
10573 -- Verify that types of both declarations match, or else that both types
10574 -- are anonymous access types whose designated subtypes statically match
10575 -- (as allowed in Ada 2005 by AI-385).
10577 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
10579 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
10580 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
10581 or else Is_Access_Constant
(Etype
(New_T
)) /=
10582 Is_Access_Constant
(Etype
(Prev
))
10583 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
10584 Can_Never_Be_Null
(Etype
(Prev
))
10585 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
10586 Null_Exclusion_Present
(Parent
(Id
))
10587 or else not Subtypes_Statically_Match
10588 (Designated_Type
(Etype
(Prev
)),
10589 Designated_Type
(Etype
(New_T
))))
10591 Error_Msg_Sloc
:= Sloc
(Prev
);
10592 Error_Msg_N
("type does not match declaration#", N
);
10593 Set_Full_View
(Prev
, Id
);
10594 Set_Etype
(Id
, Any_Type
);
10597 Null_Exclusion_Present
(Parent
(Prev
))
10598 and then not Null_Exclusion_Present
(N
)
10600 Error_Msg_Sloc
:= Sloc
(Prev
);
10601 Error_Msg_N
("null-exclusion does not match declaration#", N
);
10602 Set_Full_View
(Prev
, Id
);
10603 Set_Etype
(Id
, Any_Type
);
10605 -- If so, process the full constant declaration
10608 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
10609 -- the deferred declaration is constrained, then the subtype defined
10610 -- by the subtype_indication in the full declaration shall match it
10613 Check_Possible_Deferred_Completion
10615 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
10616 Curr_Obj_Def
=> Obj_Def
);
10618 Set_Full_View
(Prev
, Id
);
10619 Set_Is_Public
(Id
, Is_Public
(Prev
));
10620 Set_Is_Internal
(Id
);
10621 Append_Entity
(Id
, Current_Scope
);
10623 -- Check ALIASED present if present before (RM 7.4(7))
10625 if Is_Aliased
(Prev
)
10626 and then not Aliased_Present
(N
)
10628 Error_Msg_Sloc
:= Sloc
(Prev
);
10629 Error_Msg_N
("ALIASED required (see declaration#)", N
);
10632 -- Check that placement is in private part and that the incomplete
10633 -- declaration appeared in the visible part.
10635 if Ekind
(Current_Scope
) = E_Package
10636 and then not In_Private_Part
(Current_Scope
)
10638 Error_Msg_Sloc
:= Sloc
(Prev
);
10640 ("full constant for declaration#"
10641 & " must be in private part", N
);
10643 elsif Ekind
(Current_Scope
) = E_Package
10645 List_Containing
(Parent
(Prev
)) /=
10646 Visible_Declarations
10647 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
10650 ("deferred constant must be declared in visible part",
10654 if Is_Access_Type
(T
)
10655 and then Nkind
(Expression
(N
)) = N_Allocator
10657 Check_Recursive_Declaration
(Designated_Type
(T
));
10660 end Constant_Redeclaration
;
10662 ----------------------
10663 -- Constrain_Access --
10664 ----------------------
10666 procedure Constrain_Access
10667 (Def_Id
: in out Entity_Id
;
10669 Related_Nod
: Node_Id
)
10671 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10672 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
10673 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
10674 Constraint_OK
: Boolean := True;
10676 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean;
10677 -- Simple predicate to test for defaulted discriminants
10678 -- Shouldn't this be in sem_util???
10680 ---------------------------------
10681 -- Has_Defaulted_Discriminants --
10682 ---------------------------------
10684 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean is
10686 return Has_Discriminants
(Typ
)
10687 and then Present
(First_Discriminant
(Typ
))
10689 (Discriminant_Default_Value
(First_Discriminant
(Typ
)));
10690 end Has_Defaulted_Discriminants
;
10692 -- Start of processing for Constrain_Access
10695 if Is_Array_Type
(Desig_Type
) then
10696 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
10698 elsif (Is_Record_Type
(Desig_Type
)
10699 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
10700 and then not Is_Constrained
(Desig_Type
)
10702 -- ??? The following code is a temporary kludge to ignore a
10703 -- discriminant constraint on access type if it is constraining
10704 -- the current record. Avoid creating the implicit subtype of the
10705 -- record we are currently compiling since right now, we cannot
10706 -- handle these. For now, just return the access type itself.
10708 if Desig_Type
= Current_Scope
10709 and then No
(Def_Id
)
10711 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
10712 Def_Id
:= Entity
(Subtype_Mark
(S
));
10714 -- This call added to ensure that the constraint is analyzed
10715 -- (needed for a B test). Note that we still return early from
10716 -- this procedure to avoid recursive processing. ???
10718 Constrain_Discriminated_Type
10719 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
10723 -- Enforce rule that the constraint is illegal if there is an
10724 -- unconstrained view of the designated type. This means that the
10725 -- partial view (either a private type declaration or a derivation
10726 -- from a private type) has no discriminants. (Defect Report
10727 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
10729 -- Rule updated for Ada 2005: the private type is said to have
10730 -- a constrained partial view, given that objects of the type
10731 -- can be declared. Furthermore, the rule applies to all access
10732 -- types, unlike the rule concerning default discriminants (see
10735 if (Ekind
(T
) = E_General_Access_Type
10736 or else Ada_Version
>= Ada_2005
)
10737 and then Has_Private_Declaration
(Desig_Type
)
10738 and then In_Open_Scopes
(Scope
(Desig_Type
))
10739 and then Has_Discriminants
(Desig_Type
)
10742 Pack
: constant Node_Id
:=
10743 Unit_Declaration_Node
(Scope
(Desig_Type
));
10748 if Nkind
(Pack
) = N_Package_Declaration
then
10749 Decls
:= Visible_Declarations
(Specification
(Pack
));
10750 Decl
:= First
(Decls
);
10751 while Present
(Decl
) loop
10752 if (Nkind
(Decl
) = N_Private_Type_Declaration
10754 Chars
(Defining_Identifier
(Decl
)) =
10755 Chars
(Desig_Type
))
10758 (Nkind
(Decl
) = N_Full_Type_Declaration
10760 Chars
(Defining_Identifier
(Decl
)) =
10762 and then Is_Derived_Type
(Desig_Type
)
10764 Has_Private_Declaration
(Etype
(Desig_Type
)))
10766 if No
(Discriminant_Specifications
(Decl
)) then
10768 ("cannot constrain access type if designated " &
10769 "type has constrained partial view", S
);
10781 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
10782 For_Access
=> True);
10784 elsif (Is_Task_Type
(Desig_Type
)
10785 or else Is_Protected_Type
(Desig_Type
))
10786 and then not Is_Constrained
(Desig_Type
)
10788 Constrain_Concurrent
10789 (Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
10792 Error_Msg_N
("invalid constraint on access type", S
);
10793 Desig_Subtype
:= Desig_Type
; -- Ignore invalid constraint.
10794 Constraint_OK
:= False;
10797 if No
(Def_Id
) then
10798 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
10800 Set_Ekind
(Def_Id
, E_Access_Subtype
);
10803 if Constraint_OK
then
10804 Set_Etype
(Def_Id
, Base_Type
(T
));
10806 if Is_Private_Type
(Desig_Type
) then
10807 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
10810 Set_Etype
(Def_Id
, Any_Type
);
10813 Set_Size_Info
(Def_Id
, T
);
10814 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
10815 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
10816 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10817 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
10819 Conditional_Delay
(Def_Id
, T
);
10821 -- AI-363 : Subtypes of general access types whose designated types have
10822 -- default discriminants are disallowed. In instances, the rule has to
10823 -- be checked against the actual, of which T is the subtype. In a
10824 -- generic body, the rule is checked assuming that the actual type has
10825 -- defaulted discriminants.
10827 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
10828 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
10829 and then Has_Defaulted_Discriminants
(Desig_Type
)
10831 if Ada_Version
< Ada_2005
then
10833 ("access subtype of general access type would not " &
10834 "be allowed in Ada 2005?", S
);
10837 ("access subtype of general access type not allowed", S
);
10840 Error_Msg_N
("\discriminants have defaults", S
);
10842 elsif Is_Access_Type
(T
)
10843 and then Is_Generic_Type
(Desig_Type
)
10844 and then Has_Discriminants
(Desig_Type
)
10845 and then In_Package_Body
(Current_Scope
)
10847 if Ada_Version
< Ada_2005
then
10849 ("access subtype would not be allowed in generic body " &
10850 "in Ada 2005?", S
);
10853 ("access subtype not allowed in generic body", S
);
10857 ("\designated type is a discriminated formal", S
);
10860 end Constrain_Access
;
10862 ---------------------
10863 -- Constrain_Array --
10864 ---------------------
10866 procedure Constrain_Array
10867 (Def_Id
: in out Entity_Id
;
10869 Related_Nod
: Node_Id
;
10870 Related_Id
: Entity_Id
;
10871 Suffix
: Character)
10873 C
: constant Node_Id
:= Constraint
(SI
);
10874 Number_Of_Constraints
: Nat
:= 0;
10877 Constraint_OK
: Boolean := True;
10880 T
:= Entity
(Subtype_Mark
(SI
));
10882 if Ekind
(T
) in Access_Kind
then
10883 T
:= Designated_Type
(T
);
10886 -- If an index constraint follows a subtype mark in a subtype indication
10887 -- then the type or subtype denoted by the subtype mark must not already
10888 -- impose an index constraint. The subtype mark must denote either an
10889 -- unconstrained array type or an access type whose designated type
10890 -- is such an array type... (RM 3.6.1)
10892 if Is_Constrained
(T
) then
10893 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
10894 Constraint_OK
:= False;
10897 S
:= First
(Constraints
(C
));
10898 while Present
(S
) loop
10899 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
10903 -- In either case, the index constraint must provide a discrete
10904 -- range for each index of the array type and the type of each
10905 -- discrete range must be the same as that of the corresponding
10906 -- index. (RM 3.6.1)
10908 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
10909 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
10910 Constraint_OK
:= False;
10913 S
:= First
(Constraints
(C
));
10914 Index
:= First_Index
(T
);
10917 -- Apply constraints to each index type
10919 for J
in 1 .. Number_Of_Constraints
loop
10920 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
10928 if No
(Def_Id
) then
10930 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
10931 Set_Parent
(Def_Id
, Related_Nod
);
10934 Set_Ekind
(Def_Id
, E_Array_Subtype
);
10937 Set_Size_Info
(Def_Id
, (T
));
10938 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10939 Set_Etype
(Def_Id
, Base_Type
(T
));
10941 if Constraint_OK
then
10942 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
10944 Set_First_Index
(Def_Id
, First_Index
(T
));
10947 Set_Is_Constrained
(Def_Id
, True);
10948 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
10949 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10951 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
10952 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
10954 -- A subtype does not inherit the packed_array_type of is parent. We
10955 -- need to initialize the attribute because if Def_Id is previously
10956 -- analyzed through a limited_with clause, it will have the attributes
10957 -- of an incomplete type, one of which is an Elist that overlaps the
10958 -- Packed_Array_Type field.
10960 Set_Packed_Array_Type
(Def_Id
, Empty
);
10962 -- Build a freeze node if parent still needs one. Also make sure that
10963 -- the Depends_On_Private status is set because the subtype will need
10964 -- reprocessing at the time the base type does, and also we must set a
10965 -- conditional delay.
10967 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
10968 Conditional_Delay
(Def_Id
, T
);
10969 end Constrain_Array
;
10971 ------------------------------
10972 -- Constrain_Component_Type --
10973 ------------------------------
10975 function Constrain_Component_Type
10977 Constrained_Typ
: Entity_Id
;
10978 Related_Node
: Node_Id
;
10980 Constraints
: Elist_Id
) return Entity_Id
10982 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
10983 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
10985 function Build_Constrained_Array_Type
10986 (Old_Type
: Entity_Id
) return Entity_Id
;
10987 -- If Old_Type is an array type, one of whose indexes is constrained
10988 -- by a discriminant, build an Itype whose constraint replaces the
10989 -- discriminant with its value in the constraint.
10991 function Build_Constrained_Discriminated_Type
10992 (Old_Type
: Entity_Id
) return Entity_Id
;
10993 -- Ditto for record components
10995 function Build_Constrained_Access_Type
10996 (Old_Type
: Entity_Id
) return Entity_Id
;
10997 -- Ditto for access types. Makes use of previous two functions, to
10998 -- constrain designated type.
11000 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
11001 -- T is an array or discriminated type, C is a list of constraints
11002 -- that apply to T. This routine builds the constrained subtype.
11004 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
11005 -- Returns True if Expr is a discriminant
11007 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
11008 -- Find the value of discriminant Discrim in Constraint
11010 -----------------------------------
11011 -- Build_Constrained_Access_Type --
11012 -----------------------------------
11014 function Build_Constrained_Access_Type
11015 (Old_Type
: Entity_Id
) return Entity_Id
11017 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
11019 Desig_Subtype
: Entity_Id
;
11023 -- if the original access type was not embedded in the enclosing
11024 -- type definition, there is no need to produce a new access
11025 -- subtype. In fact every access type with an explicit constraint
11026 -- generates an itype whose scope is the enclosing record.
11028 if not Is_Type
(Scope
(Old_Type
)) then
11031 elsif Is_Array_Type
(Desig_Type
) then
11032 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
11034 elsif Has_Discriminants
(Desig_Type
) then
11036 -- This may be an access type to an enclosing record type for
11037 -- which we are constructing the constrained components. Return
11038 -- the enclosing record subtype. This is not always correct,
11039 -- but avoids infinite recursion. ???
11041 Desig_Subtype
:= Any_Type
;
11043 for J
in reverse 0 .. Scope_Stack
.Last
loop
11044 Scop
:= Scope_Stack
.Table
(J
).Entity
;
11047 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
11049 Desig_Subtype
:= Scop
;
11052 exit when not Is_Type
(Scop
);
11055 if Desig_Subtype
= Any_Type
then
11057 Build_Constrained_Discriminated_Type
(Desig_Type
);
11064 if Desig_Subtype
/= Desig_Type
then
11066 -- The Related_Node better be here or else we won't be able
11067 -- to attach new itypes to a node in the tree.
11069 pragma Assert
(Present
(Related_Node
));
11071 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
11073 Set_Etype
(Itype
, Base_Type
(Old_Type
));
11074 Set_Size_Info
(Itype
, (Old_Type
));
11075 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
11076 Set_Depends_On_Private
(Itype
, Has_Private_Component
11078 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
11081 -- The new itype needs freezing when it depends on a not frozen
11082 -- type and the enclosing subtype needs freezing.
11084 if Has_Delayed_Freeze
(Constrained_Typ
)
11085 and then not Is_Frozen
(Constrained_Typ
)
11087 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
11095 end Build_Constrained_Access_Type
;
11097 ----------------------------------
11098 -- Build_Constrained_Array_Type --
11099 ----------------------------------
11101 function Build_Constrained_Array_Type
11102 (Old_Type
: Entity_Id
) return Entity_Id
11106 Old_Index
: Node_Id
;
11107 Range_Node
: Node_Id
;
11108 Constr_List
: List_Id
;
11110 Need_To_Create_Itype
: Boolean := False;
11113 Old_Index
:= First_Index
(Old_Type
);
11114 while Present
(Old_Index
) loop
11115 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
11117 if Is_Discriminant
(Lo_Expr
)
11118 or else Is_Discriminant
(Hi_Expr
)
11120 Need_To_Create_Itype
:= True;
11123 Next_Index
(Old_Index
);
11126 if Need_To_Create_Itype
then
11127 Constr_List
:= New_List
;
11129 Old_Index
:= First_Index
(Old_Type
);
11130 while Present
(Old_Index
) loop
11131 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
11133 if Is_Discriminant
(Lo_Expr
) then
11134 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
11137 if Is_Discriminant
(Hi_Expr
) then
11138 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
11143 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
11145 Append
(Range_Node
, To
=> Constr_List
);
11147 Next_Index
(Old_Index
);
11150 return Build_Subtype
(Old_Type
, Constr_List
);
11155 end Build_Constrained_Array_Type
;
11157 ------------------------------------------
11158 -- Build_Constrained_Discriminated_Type --
11159 ------------------------------------------
11161 function Build_Constrained_Discriminated_Type
11162 (Old_Type
: Entity_Id
) return Entity_Id
11165 Constr_List
: List_Id
;
11166 Old_Constraint
: Elmt_Id
;
11168 Need_To_Create_Itype
: Boolean := False;
11171 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
11172 while Present
(Old_Constraint
) loop
11173 Expr
:= Node
(Old_Constraint
);
11175 if Is_Discriminant
(Expr
) then
11176 Need_To_Create_Itype
:= True;
11179 Next_Elmt
(Old_Constraint
);
11182 if Need_To_Create_Itype
then
11183 Constr_List
:= New_List
;
11185 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
11186 while Present
(Old_Constraint
) loop
11187 Expr
:= Node
(Old_Constraint
);
11189 if Is_Discriminant
(Expr
) then
11190 Expr
:= Get_Discr_Value
(Expr
);
11193 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
11195 Next_Elmt
(Old_Constraint
);
11198 return Build_Subtype
(Old_Type
, Constr_List
);
11203 end Build_Constrained_Discriminated_Type
;
11205 -------------------
11206 -- Build_Subtype --
11207 -------------------
11209 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
11211 Subtyp_Decl
: Node_Id
;
11212 Def_Id
: Entity_Id
;
11213 Btyp
: Entity_Id
:= Base_Type
(T
);
11216 -- The Related_Node better be here or else we won't be able to
11217 -- attach new itypes to a node in the tree.
11219 pragma Assert
(Present
(Related_Node
));
11221 -- If the view of the component's type is incomplete or private
11222 -- with unknown discriminants, then the constraint must be applied
11223 -- to the full type.
11225 if Has_Unknown_Discriminants
(Btyp
)
11226 and then Present
(Underlying_Type
(Btyp
))
11228 Btyp
:= Underlying_Type
(Btyp
);
11232 Make_Subtype_Indication
(Loc
,
11233 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
11234 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
11236 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
11239 Make_Subtype_Declaration
(Loc
,
11240 Defining_Identifier
=> Def_Id
,
11241 Subtype_Indication
=> Indic
);
11243 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
11245 -- Itypes must be analyzed with checks off (see package Itypes)
11247 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
11252 ---------------------
11253 -- Get_Discr_Value --
11254 ---------------------
11256 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
11261 -- The discriminant may be declared for the type, in which case we
11262 -- find it by iterating over the list of discriminants. If the
11263 -- discriminant is inherited from a parent type, it appears as the
11264 -- corresponding discriminant of the current type. This will be the
11265 -- case when constraining an inherited component whose constraint is
11266 -- given by a discriminant of the parent.
11268 D
:= First_Discriminant
(Typ
);
11269 E
:= First_Elmt
(Constraints
);
11271 while Present
(D
) loop
11272 if D
= Entity
(Discrim
)
11273 or else D
= CR_Discriminant
(Entity
(Discrim
))
11274 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
11279 Next_Discriminant
(D
);
11283 -- The Corresponding_Discriminant mechanism is incomplete, because
11284 -- the correspondence between new and old discriminants is not one
11285 -- to one: one new discriminant can constrain several old ones. In
11286 -- that case, scan sequentially the stored_constraint, the list of
11287 -- discriminants of the parents, and the constraints.
11288 -- Previous code checked for the present of the Stored_Constraint
11289 -- list for the derived type, but did not use it at all. Should it
11290 -- be present when the component is a discriminated task type?
11292 if Is_Derived_Type
(Typ
)
11293 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
11295 D
:= First_Discriminant
(Etype
(Typ
));
11296 E
:= First_Elmt
(Constraints
);
11297 while Present
(D
) loop
11298 if D
= Entity
(Discrim
) then
11302 Next_Discriminant
(D
);
11307 -- Something is wrong if we did not find the value
11309 raise Program_Error
;
11310 end Get_Discr_Value
;
11312 ---------------------
11313 -- Is_Discriminant --
11314 ---------------------
11316 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
11317 Discrim_Scope
: Entity_Id
;
11320 if Denotes_Discriminant
(Expr
) then
11321 Discrim_Scope
:= Scope
(Entity
(Expr
));
11323 -- Either we have a reference to one of Typ's discriminants,
11325 pragma Assert
(Discrim_Scope
= Typ
11327 -- or to the discriminants of the parent type, in the case
11328 -- of a derivation of a tagged type with variants.
11330 or else Discrim_Scope
= Etype
(Typ
)
11331 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
11333 -- or same as above for the case where the discriminants
11334 -- were declared in Typ's private view.
11336 or else (Is_Private_Type
(Discrim_Scope
)
11337 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
11339 -- or else we are deriving from the full view and the
11340 -- discriminant is declared in the private entity.
11342 or else (Is_Private_Type
(Typ
)
11343 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
11345 -- Or we are constrained the corresponding record of a
11346 -- synchronized type that completes a private declaration.
11348 or else (Is_Concurrent_Record_Type
(Typ
)
11350 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
11352 -- or we have a class-wide type, in which case make sure the
11353 -- discriminant found belongs to the root type.
11355 or else (Is_Class_Wide_Type
(Typ
)
11356 and then Etype
(Typ
) = Discrim_Scope
));
11361 -- In all other cases we have something wrong
11364 end Is_Discriminant
;
11366 -- Start of processing for Constrain_Component_Type
11369 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
11370 and then Comes_From_Source
(Parent
(Comp
))
11371 and then Comes_From_Source
11372 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
11375 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
11377 return Compon_Type
;
11379 elsif Is_Array_Type
(Compon_Type
) then
11380 return Build_Constrained_Array_Type
(Compon_Type
);
11382 elsif Has_Discriminants
(Compon_Type
) then
11383 return Build_Constrained_Discriminated_Type
(Compon_Type
);
11385 elsif Is_Access_Type
(Compon_Type
) then
11386 return Build_Constrained_Access_Type
(Compon_Type
);
11389 return Compon_Type
;
11391 end Constrain_Component_Type
;
11393 --------------------------
11394 -- Constrain_Concurrent --
11395 --------------------------
11397 -- For concurrent types, the associated record value type carries the same
11398 -- discriminants, so when we constrain a concurrent type, we must constrain
11399 -- the corresponding record type as well.
11401 procedure Constrain_Concurrent
11402 (Def_Id
: in out Entity_Id
;
11404 Related_Nod
: Node_Id
;
11405 Related_Id
: Entity_Id
;
11406 Suffix
: Character)
11408 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11409 -- case of a private subtype (needed when only doing semantic analysis).
11411 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
11415 if Ekind
(T_Ent
) in Access_Kind
then
11416 T_Ent
:= Designated_Type
(T_Ent
);
11419 T_Val
:= Corresponding_Record_Type
(T_Ent
);
11421 if Present
(T_Val
) then
11423 if No
(Def_Id
) then
11424 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11427 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
11429 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
11430 Set_Corresponding_Record_Type
(Def_Id
,
11431 Constrain_Corresponding_Record
11432 (Def_Id
, T_Val
, Related_Nod
, Related_Id
));
11435 -- If there is no associated record, expansion is disabled and this
11436 -- is a generic context. Create a subtype in any case, so that
11437 -- semantic analysis can proceed.
11439 if No
(Def_Id
) then
11440 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11443 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
11445 end Constrain_Concurrent
;
11447 ------------------------------------
11448 -- Constrain_Corresponding_Record --
11449 ------------------------------------
11451 function Constrain_Corresponding_Record
11452 (Prot_Subt
: Entity_Id
;
11453 Corr_Rec
: Entity_Id
;
11454 Related_Nod
: Node_Id
;
11455 Related_Id
: Entity_Id
) return Entity_Id
11457 T_Sub
: constant Entity_Id
:=
11458 Create_Itype
(E_Record_Subtype
, Related_Nod
, Related_Id
, 'V');
11461 Set_Etype
(T_Sub
, Corr_Rec
);
11462 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
11463 Set_Is_Constrained
(T_Sub
, True);
11464 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
11465 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
11467 -- As elsewhere, we do not want to create a freeze node for this itype
11468 -- if it is created for a constrained component of an enclosing record
11469 -- because references to outer discriminants will appear out of scope.
11471 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
11472 Conditional_Delay
(T_Sub
, Corr_Rec
);
11474 Set_Is_Frozen
(T_Sub
);
11477 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
11478 Set_Discriminant_Constraint
11479 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
11480 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
11481 Create_Constrained_Components
11482 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
11485 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
11488 end Constrain_Corresponding_Record
;
11490 -----------------------
11491 -- Constrain_Decimal --
11492 -----------------------
11494 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
11495 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11496 C
: constant Node_Id
:= Constraint
(S
);
11497 Loc
: constant Source_Ptr
:= Sloc
(C
);
11498 Range_Expr
: Node_Id
;
11499 Digits_Expr
: Node_Id
;
11504 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
11506 if Nkind
(C
) = N_Range_Constraint
then
11507 Range_Expr
:= Range_Expression
(C
);
11508 Digits_Val
:= Digits_Value
(T
);
11511 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
11513 Check_SPARK_Restriction
("digits constraint is not allowed", S
);
11515 Digits_Expr
:= Digits_Expression
(C
);
11516 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
11518 Check_Digits_Expression
(Digits_Expr
);
11519 Digits_Val
:= Expr_Value
(Digits_Expr
);
11521 if Digits_Val
> Digits_Value
(T
) then
11523 ("digits expression is incompatible with subtype", C
);
11524 Digits_Val
:= Digits_Value
(T
);
11527 if Present
(Range_Constraint
(C
)) then
11528 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
11530 Range_Expr
:= Empty
;
11534 Set_Etype
(Def_Id
, Base_Type
(T
));
11535 Set_Size_Info
(Def_Id
, (T
));
11536 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11537 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
11538 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
11539 Set_Small_Value
(Def_Id
, Small_Value
(T
));
11540 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
11541 Set_Digits_Value
(Def_Id
, Digits_Val
);
11543 -- Manufacture range from given digits value if no range present
11545 if No
(Range_Expr
) then
11546 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
11550 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
11552 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
11555 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
11556 Set_Discrete_RM_Size
(Def_Id
);
11558 -- Unconditionally delay the freeze, since we cannot set size
11559 -- information in all cases correctly until the freeze point.
11561 Set_Has_Delayed_Freeze
(Def_Id
);
11562 end Constrain_Decimal
;
11564 ----------------------------------
11565 -- Constrain_Discriminated_Type --
11566 ----------------------------------
11568 procedure Constrain_Discriminated_Type
11569 (Def_Id
: Entity_Id
;
11571 Related_Nod
: Node_Id
;
11572 For_Access
: Boolean := False)
11574 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11577 Elist
: Elist_Id
:= New_Elmt_List
;
11579 procedure Fixup_Bad_Constraint
;
11580 -- This is called after finding a bad constraint, and after having
11581 -- posted an appropriate error message. The mission is to leave the
11582 -- entity T in as reasonable state as possible!
11584 --------------------------
11585 -- Fixup_Bad_Constraint --
11586 --------------------------
11588 procedure Fixup_Bad_Constraint
is
11590 -- Set a reasonable Ekind for the entity. For an incomplete type,
11591 -- we can't do much, but for other types, we can set the proper
11592 -- corresponding subtype kind.
11594 if Ekind
(T
) = E_Incomplete_Type
then
11595 Set_Ekind
(Def_Id
, Ekind
(T
));
11597 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
11600 -- Set Etype to the known type, to reduce chances of cascaded errors
11602 Set_Etype
(Def_Id
, E
);
11603 Set_Error_Posted
(Def_Id
);
11604 end Fixup_Bad_Constraint
;
11606 -- Start of processing for Constrain_Discriminated_Type
11609 C
:= Constraint
(S
);
11611 -- A discriminant constraint is only allowed in a subtype indication,
11612 -- after a subtype mark. This subtype mark must denote either a type
11613 -- with discriminants, or an access type whose designated type is a
11614 -- type with discriminants. A discriminant constraint specifies the
11615 -- values of these discriminants (RM 3.7.2(5)).
11617 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
11619 if Ekind
(T
) in Access_Kind
then
11620 T
:= Designated_Type
(T
);
11623 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
11624 -- Avoid generating an error for access-to-incomplete subtypes.
11626 if Ada_Version
>= Ada_2005
11627 and then Ekind
(T
) = E_Incomplete_Type
11628 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
11629 and then not Is_Itype
(Def_Id
)
11631 -- A little sanity check, emit an error message if the type
11632 -- has discriminants to begin with. Type T may be a regular
11633 -- incomplete type or imported via a limited with clause.
11635 if Has_Discriminants
(T
)
11637 (From_With_Type
(T
)
11638 and then Present
(Non_Limited_View
(T
))
11639 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
11640 N_Full_Type_Declaration
11641 and then Present
(Discriminant_Specifications
11642 (Parent
(Non_Limited_View
(T
)))))
11645 ("(Ada 2005) incomplete subtype may not be constrained", C
);
11647 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
11650 Fixup_Bad_Constraint
;
11653 -- Check that the type has visible discriminants. The type may be
11654 -- a private type with unknown discriminants whose full view has
11655 -- discriminants which are invisible.
11657 elsif not Has_Discriminants
(T
)
11659 (Has_Unknown_Discriminants
(T
)
11660 and then Is_Private_Type
(T
))
11662 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
11663 Fixup_Bad_Constraint
;
11666 elsif Is_Constrained
(E
)
11667 or else (Ekind
(E
) = E_Class_Wide_Subtype
11668 and then Present
(Discriminant_Constraint
(E
)))
11670 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
11671 Fixup_Bad_Constraint
;
11675 -- T may be an unconstrained subtype (e.g. a generic actual).
11676 -- Constraint applies to the base type.
11678 T
:= Base_Type
(T
);
11680 Elist
:= Build_Discriminant_Constraints
(T
, S
);
11682 -- If the list returned was empty we had an error in building the
11683 -- discriminant constraint. We have also already signalled an error
11684 -- in the incomplete type case
11686 if Is_Empty_Elmt_List
(Elist
) then
11687 Fixup_Bad_Constraint
;
11691 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
11692 end Constrain_Discriminated_Type
;
11694 ---------------------------
11695 -- Constrain_Enumeration --
11696 ---------------------------
11698 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
11699 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11700 C
: constant Node_Id
:= Constraint
(S
);
11703 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11705 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
11707 Set_Etype
(Def_Id
, Base_Type
(T
));
11708 Set_Size_Info
(Def_Id
, (T
));
11709 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11710 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11712 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11714 Set_Discrete_RM_Size
(Def_Id
);
11715 end Constrain_Enumeration
;
11717 ----------------------
11718 -- Constrain_Float --
11719 ----------------------
11721 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
11722 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11728 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
11730 Set_Etype
(Def_Id
, Base_Type
(T
));
11731 Set_Size_Info
(Def_Id
, (T
));
11732 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11734 -- Process the constraint
11736 C
:= Constraint
(S
);
11738 -- Digits constraint present
11740 if Nkind
(C
) = N_Digits_Constraint
then
11742 Check_SPARK_Restriction
("digits constraint is not allowed", S
);
11743 Check_Restriction
(No_Obsolescent_Features
, C
);
11745 if Warn_On_Obsolescent_Feature
then
11747 ("subtype digits constraint is an " &
11748 "obsolescent feature (RM J.3(8))?", C
);
11751 D
:= Digits_Expression
(C
);
11752 Analyze_And_Resolve
(D
, Any_Integer
);
11753 Check_Digits_Expression
(D
);
11754 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
11756 -- Check that digits value is in range. Obviously we can do this
11757 -- at compile time, but it is strictly a runtime check, and of
11758 -- course there is an ACVC test that checks this!
11760 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
11761 Error_Msg_Uint_1
:= Digits_Value
(T
);
11762 Error_Msg_N
("?digits value is too large, maximum is ^", D
);
11764 Make_Raise_Constraint_Error
(Sloc
(D
),
11765 Reason
=> CE_Range_Check_Failed
);
11766 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
11769 C
:= Range_Constraint
(C
);
11771 -- No digits constraint present
11774 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
11777 -- Range constraint present
11779 if Nkind
(C
) = N_Range_Constraint
then
11780 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11782 -- No range constraint present
11785 pragma Assert
(No
(C
));
11786 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
11789 Set_Is_Constrained
(Def_Id
);
11790 end Constrain_Float
;
11792 ---------------------
11793 -- Constrain_Index --
11794 ---------------------
11796 procedure Constrain_Index
11799 Related_Nod
: Node_Id
;
11800 Related_Id
: Entity_Id
;
11801 Suffix
: Character;
11802 Suffix_Index
: Nat
)
11804 Def_Id
: Entity_Id
;
11805 R
: Node_Id
:= Empty
;
11806 T
: constant Entity_Id
:= Etype
(Index
);
11809 if Nkind
(S
) = N_Range
11811 (Nkind
(S
) = N_Attribute_Reference
11812 and then Attribute_Name
(S
) = Name_Range
)
11814 -- A Range attribute will be transformed into N_Range by Resolve
11820 Process_Range_Expr_In_Decl
(R
, T
, Empty_List
);
11822 if not Error_Posted
(S
)
11824 (Nkind
(S
) /= N_Range
11825 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
11826 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
11828 if Base_Type
(T
) /= Any_Type
11829 and then Etype
(Low_Bound
(S
)) /= Any_Type
11830 and then Etype
(High_Bound
(S
)) /= Any_Type
11832 Error_Msg_N
("range expected", S
);
11836 elsif Nkind
(S
) = N_Subtype_Indication
then
11838 -- The parser has verified that this is a discrete indication
11840 Resolve_Discrete_Subtype_Indication
(S
, T
);
11841 R
:= Range_Expression
(Constraint
(S
));
11843 -- Capture values of bounds and generate temporaries for them if
11844 -- needed, since checks may cause duplication of the expressions
11845 -- which must not be reevaluated.
11847 -- The forced evaluation removes side effects from expressions,
11848 -- which should occur also in Alfa mode. Otherwise, we end up with
11849 -- unexpected insertions of actions at places where this is not
11850 -- supposed to occur, e.g. on default parameters of a call.
11852 if Expander_Active
then
11853 Force_Evaluation
(Low_Bound
(R
));
11854 Force_Evaluation
(High_Bound
(R
));
11857 elsif Nkind
(S
) = N_Discriminant_Association
then
11859 -- Syntactically valid in subtype indication
11861 Error_Msg_N
("invalid index constraint", S
);
11862 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
11865 -- Subtype_Mark case, no anonymous subtypes to construct
11870 if Is_Entity_Name
(S
) then
11871 if not Is_Type
(Entity
(S
)) then
11872 Error_Msg_N
("expect subtype mark for index constraint", S
);
11874 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
11875 Wrong_Type
(S
, Base_Type
(T
));
11877 -- Check error of subtype with predicate in index constraint
11880 Bad_Predicated_Subtype_Use
11881 ("subtype& has predicate, not allowed in index constraint",
11888 Error_Msg_N
("invalid index constraint", S
);
11889 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
11895 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
11897 Set_Etype
(Def_Id
, Base_Type
(T
));
11899 if Is_Modular_Integer_Type
(T
) then
11900 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11902 elsif Is_Integer_Type
(T
) then
11903 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11906 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11907 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11908 Set_First_Literal
(Def_Id
, First_Literal
(T
));
11911 Set_Size_Info
(Def_Id
, (T
));
11912 Set_RM_Size
(Def_Id
, RM_Size
(T
));
11913 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11915 Set_Scalar_Range
(Def_Id
, R
);
11917 Set_Etype
(S
, Def_Id
);
11918 Set_Discrete_RM_Size
(Def_Id
);
11919 end Constrain_Index
;
11921 -----------------------
11922 -- Constrain_Integer --
11923 -----------------------
11925 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
11926 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11927 C
: constant Node_Id
:= Constraint
(S
);
11930 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11932 if Is_Modular_Integer_Type
(T
) then
11933 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11935 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11938 Set_Etype
(Def_Id
, Base_Type
(T
));
11939 Set_Size_Info
(Def_Id
, (T
));
11940 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11941 Set_Discrete_RM_Size
(Def_Id
);
11942 end Constrain_Integer
;
11944 ------------------------------
11945 -- Constrain_Ordinary_Fixed --
11946 ------------------------------
11948 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
11949 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11955 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
11956 Set_Etype
(Def_Id
, Base_Type
(T
));
11957 Set_Size_Info
(Def_Id
, (T
));
11958 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11959 Set_Small_Value
(Def_Id
, Small_Value
(T
));
11961 -- Process the constraint
11963 C
:= Constraint
(S
);
11965 -- Delta constraint present
11967 if Nkind
(C
) = N_Delta_Constraint
then
11969 Check_SPARK_Restriction
("delta constraint is not allowed", S
);
11970 Check_Restriction
(No_Obsolescent_Features
, C
);
11972 if Warn_On_Obsolescent_Feature
then
11974 ("subtype delta constraint is an " &
11975 "obsolescent feature (RM J.3(7))?");
11978 D
:= Delta_Expression
(C
);
11979 Analyze_And_Resolve
(D
, Any_Real
);
11980 Check_Delta_Expression
(D
);
11981 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
11983 -- Check that delta value is in range. Obviously we can do this
11984 -- at compile time, but it is strictly a runtime check, and of
11985 -- course there is an ACVC test that checks this!
11987 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
11988 Error_Msg_N
("?delta value is too small", D
);
11990 Make_Raise_Constraint_Error
(Sloc
(D
),
11991 Reason
=> CE_Range_Check_Failed
);
11992 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
11995 C
:= Range_Constraint
(C
);
11997 -- No delta constraint present
12000 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
12003 -- Range constraint present
12005 if Nkind
(C
) = N_Range_Constraint
then
12006 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
12008 -- No range constraint present
12011 pragma Assert
(No
(C
));
12012 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
12016 Set_Discrete_RM_Size
(Def_Id
);
12018 -- Unconditionally delay the freeze, since we cannot set size
12019 -- information in all cases correctly until the freeze point.
12021 Set_Has_Delayed_Freeze
(Def_Id
);
12022 end Constrain_Ordinary_Fixed
;
12024 -----------------------
12025 -- Contain_Interface --
12026 -----------------------
12028 function Contain_Interface
12029 (Iface
: Entity_Id
;
12030 Ifaces
: Elist_Id
) return Boolean
12032 Iface_Elmt
: Elmt_Id
;
12035 if Present
(Ifaces
) then
12036 Iface_Elmt
:= First_Elmt
(Ifaces
);
12037 while Present
(Iface_Elmt
) loop
12038 if Node
(Iface_Elmt
) = Iface
then
12042 Next_Elmt
(Iface_Elmt
);
12047 end Contain_Interface
;
12049 ---------------------------
12050 -- Convert_Scalar_Bounds --
12051 ---------------------------
12053 procedure Convert_Scalar_Bounds
12055 Parent_Type
: Entity_Id
;
12056 Derived_Type
: Entity_Id
;
12059 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
12066 -- Defend against previous errors
12068 if No
(Scalar_Range
(Derived_Type
)) then
12072 Lo
:= Build_Scalar_Bound
12073 (Type_Low_Bound
(Derived_Type
),
12074 Parent_Type
, Implicit_Base
);
12076 Hi
:= Build_Scalar_Bound
12077 (Type_High_Bound
(Derived_Type
),
12078 Parent_Type
, Implicit_Base
);
12085 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
12087 Set_Parent
(Rng
, N
);
12088 Set_Scalar_Range
(Derived_Type
, Rng
);
12090 -- Analyze the bounds
12092 Analyze_And_Resolve
(Lo
, Implicit_Base
);
12093 Analyze_And_Resolve
(Hi
, Implicit_Base
);
12095 -- Analyze the range itself, except that we do not analyze it if
12096 -- the bounds are real literals, and we have a fixed-point type.
12097 -- The reason for this is that we delay setting the bounds in this
12098 -- case till we know the final Small and Size values (see circuit
12099 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12101 if Is_Fixed_Point_Type
(Parent_Type
)
12102 and then Nkind
(Lo
) = N_Real_Literal
12103 and then Nkind
(Hi
) = N_Real_Literal
12107 -- Here we do the analysis of the range
12109 -- Note: we do this manually, since if we do a normal Analyze and
12110 -- Resolve call, there are problems with the conversions used for
12111 -- the derived type range.
12114 Set_Etype
(Rng
, Implicit_Base
);
12115 Set_Analyzed
(Rng
, True);
12117 end Convert_Scalar_Bounds
;
12119 -------------------
12120 -- Copy_And_Swap --
12121 -------------------
12123 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
12125 -- Initialize new full declaration entity by copying the pertinent
12126 -- fields of the corresponding private declaration entity.
12128 -- We temporarily set Ekind to a value appropriate for a type to
12129 -- avoid assert failures in Einfo from checking for setting type
12130 -- attributes on something that is not a type. Ekind (Priv) is an
12131 -- appropriate choice, since it allowed the attributes to be set
12132 -- in the first place. This Ekind value will be modified later.
12134 Set_Ekind
(Full
, Ekind
(Priv
));
12136 -- Also set Etype temporarily to Any_Type, again, in the absence
12137 -- of errors, it will be properly reset, and if there are errors,
12138 -- then we want a value of Any_Type to remain.
12140 Set_Etype
(Full
, Any_Type
);
12142 -- Now start copying attributes
12144 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
12146 if Has_Discriminants
(Full
) then
12147 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
12148 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
12151 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
12152 Set_Homonym
(Full
, Homonym
(Priv
));
12153 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
12154 Set_Is_Public
(Full
, Is_Public
(Priv
));
12155 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
12156 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
12157 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
12158 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
12159 Set_Has_Pragma_Unreferenced_Objects
12160 (Full
, Has_Pragma_Unreferenced_Objects
12163 Conditional_Delay
(Full
, Priv
);
12165 if Is_Tagged_Type
(Full
) then
12166 Set_Direct_Primitive_Operations
(Full
,
12167 Direct_Primitive_Operations
(Priv
));
12169 if Is_Base_Type
(Priv
) then
12170 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
12174 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
12175 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
12176 Set_Scope
(Full
, Scope
(Priv
));
12177 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
12178 Set_First_Entity
(Full
, First_Entity
(Priv
));
12179 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
12181 -- If access types have been recorded for later handling, keep them in
12182 -- the full view so that they get handled when the full view freeze
12183 -- node is expanded.
12185 if Present
(Freeze_Node
(Priv
))
12186 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
12188 Ensure_Freeze_Node
(Full
);
12189 Set_Access_Types_To_Process
12190 (Freeze_Node
(Full
),
12191 Access_Types_To_Process
(Freeze_Node
(Priv
)));
12194 -- Swap the two entities. Now Private is the full type entity and Full
12195 -- is the private one. They will be swapped back at the end of the
12196 -- private part. This swapping ensures that the entity that is visible
12197 -- in the private part is the full declaration.
12199 Exchange_Entities
(Priv
, Full
);
12200 Append_Entity
(Full
, Scope
(Full
));
12203 -------------------------------------
12204 -- Copy_Array_Base_Type_Attributes --
12205 -------------------------------------
12207 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
12209 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
12210 Set_Component_Type
(T1
, Component_Type
(T2
));
12211 Set_Component_Size
(T1
, Component_Size
(T2
));
12212 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
12213 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
12214 Set_Has_Task
(T1
, Has_Task
(T2
));
12215 Set_Is_Packed
(T1
, Is_Packed
(T2
));
12216 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
12217 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
12218 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
12219 end Copy_Array_Base_Type_Attributes
;
12221 -----------------------------------
12222 -- Copy_Array_Subtype_Attributes --
12223 -----------------------------------
12225 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
12227 Set_Size_Info
(T1
, T2
);
12229 Set_First_Index
(T1
, First_Index
(T2
));
12230 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
12231 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
12232 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
12233 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
12234 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
12235 Set_First_Rep_Item
(T1
, First_Rep_Item
(T2
));
12236 Set_Convention
(T1
, Convention
(T2
));
12237 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
12238 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
12239 Set_Packed_Array_Type
(T1
, Packed_Array_Type
(T2
));
12240 end Copy_Array_Subtype_Attributes
;
12242 -----------------------------------
12243 -- Create_Constrained_Components --
12244 -----------------------------------
12246 procedure Create_Constrained_Components
12248 Decl_Node
: Node_Id
;
12250 Constraints
: Elist_Id
)
12252 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
12253 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
12254 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
12255 Assoc_List
: constant List_Id
:= New_List
;
12256 Discr_Val
: Elmt_Id
;
12260 Is_Static
: Boolean := True;
12262 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
12263 -- Collect parent type components that do not appear in a variant part
12265 procedure Create_All_Components
;
12266 -- Iterate over Comp_List to create the components of the subtype
12268 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
12269 -- Creates a new component from Old_Compon, copying all the fields from
12270 -- it, including its Etype, inserts the new component in the Subt entity
12271 -- chain and returns the new component.
12273 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
12274 -- If true, and discriminants are static, collect only components from
12275 -- variants selected by discriminant values.
12277 ------------------------------
12278 -- Collect_Fixed_Components --
12279 ------------------------------
12281 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
12283 -- Build association list for discriminants, and find components of the
12284 -- variant part selected by the values of the discriminants.
12286 Old_C
:= First_Discriminant
(Typ
);
12287 Discr_Val
:= First_Elmt
(Constraints
);
12288 while Present
(Old_C
) loop
12289 Append_To
(Assoc_List
,
12290 Make_Component_Association
(Loc
,
12291 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
12292 Expression
=> New_Copy
(Node
(Discr_Val
))));
12294 Next_Elmt
(Discr_Val
);
12295 Next_Discriminant
(Old_C
);
12298 -- The tag and the possible parent component are unconditionally in
12301 if Is_Tagged_Type
(Typ
)
12302 or else Has_Controlled_Component
(Typ
)
12304 Old_C
:= First_Component
(Typ
);
12305 while Present
(Old_C
) loop
12306 if Chars
((Old_C
)) = Name_uTag
12307 or else Chars
((Old_C
)) = Name_uParent
12309 Append_Elmt
(Old_C
, Comp_List
);
12312 Next_Component
(Old_C
);
12315 end Collect_Fixed_Components
;
12317 ---------------------------
12318 -- Create_All_Components --
12319 ---------------------------
12321 procedure Create_All_Components
is
12325 Comp
:= First_Elmt
(Comp_List
);
12326 while Present
(Comp
) loop
12327 Old_C
:= Node
(Comp
);
12328 New_C
:= Create_Component
(Old_C
);
12332 Constrain_Component_Type
12333 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
12334 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12338 end Create_All_Components
;
12340 ----------------------
12341 -- Create_Component --
12342 ----------------------
12344 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
12345 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
12348 if Ekind
(Old_Compon
) = E_Discriminant
12349 and then Is_Completely_Hidden
(Old_Compon
)
12351 -- This is a shadow discriminant created for a discriminant of
12352 -- the parent type, which needs to be present in the subtype.
12353 -- Give the shadow discriminant an internal name that cannot
12354 -- conflict with that of visible components.
12356 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
12359 -- Set the parent so we have a proper link for freezing etc. This is
12360 -- not a real parent pointer, since of course our parent does not own
12361 -- up to us and reference us, we are an illegitimate child of the
12362 -- original parent!
12364 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
12366 -- If the old component's Esize was already determined and is a
12367 -- static value, then the new component simply inherits it. Otherwise
12368 -- the old component's size may require run-time determination, but
12369 -- the new component's size still might be statically determinable
12370 -- (if, for example it has a static constraint). In that case we want
12371 -- Layout_Type to recompute the component's size, so we reset its
12372 -- size and positional fields.
12374 if Frontend_Layout_On_Target
12375 and then not Known_Static_Esize
(Old_Compon
)
12377 Set_Esize
(New_Compon
, Uint_0
);
12378 Init_Normalized_First_Bit
(New_Compon
);
12379 Init_Normalized_Position
(New_Compon
);
12380 Init_Normalized_Position_Max
(New_Compon
);
12383 -- We do not want this node marked as Comes_From_Source, since
12384 -- otherwise it would get first class status and a separate cross-
12385 -- reference line would be generated. Illegitimate children do not
12386 -- rate such recognition.
12388 Set_Comes_From_Source
(New_Compon
, False);
12390 -- But it is a real entity, and a birth certificate must be properly
12391 -- registered by entering it into the entity list.
12393 Enter_Name
(New_Compon
);
12396 end Create_Component
;
12398 -----------------------
12399 -- Is_Variant_Record --
12400 -----------------------
12402 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
12404 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
12405 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
12406 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
12409 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
12410 end Is_Variant_Record
;
12412 -- Start of processing for Create_Constrained_Components
12415 pragma Assert
(Subt
/= Base_Type
(Subt
));
12416 pragma Assert
(Typ
= Base_Type
(Typ
));
12418 Set_First_Entity
(Subt
, Empty
);
12419 Set_Last_Entity
(Subt
, Empty
);
12421 -- Check whether constraint is fully static, in which case we can
12422 -- optimize the list of components.
12424 Discr_Val
:= First_Elmt
(Constraints
);
12425 while Present
(Discr_Val
) loop
12426 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
12427 Is_Static
:= False;
12431 Next_Elmt
(Discr_Val
);
12434 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
12438 -- Inherit the discriminants of the parent type
12440 Add_Discriminants
: declare
12446 Old_C
:= First_Discriminant
(Typ
);
12448 while Present
(Old_C
) loop
12449 Num_Disc
:= Num_Disc
+ 1;
12450 New_C
:= Create_Component
(Old_C
);
12451 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12452 Next_Discriminant
(Old_C
);
12455 -- For an untagged derived subtype, the number of discriminants may
12456 -- be smaller than the number of inherited discriminants, because
12457 -- several of them may be renamed by a single new discriminant or
12458 -- constrained. In this case, add the hidden discriminants back into
12459 -- the subtype, because they need to be present if the optimizer of
12460 -- the GCC 4.x back-end decides to break apart assignments between
12461 -- objects using the parent view into member-wise assignments.
12465 if Is_Derived_Type
(Typ
)
12466 and then not Is_Tagged_Type
(Typ
)
12468 Old_C
:= First_Stored_Discriminant
(Typ
);
12470 while Present
(Old_C
) loop
12471 Num_Gird
:= Num_Gird
+ 1;
12472 Next_Stored_Discriminant
(Old_C
);
12476 if Num_Gird
> Num_Disc
then
12478 -- Find out multiple uses of new discriminants, and add hidden
12479 -- components for the extra renamed discriminants. We recognize
12480 -- multiple uses through the Corresponding_Discriminant of a
12481 -- new discriminant: if it constrains several old discriminants,
12482 -- this field points to the last one in the parent type. The
12483 -- stored discriminants of the derived type have the same name
12484 -- as those of the parent.
12488 New_Discr
: Entity_Id
;
12489 Old_Discr
: Entity_Id
;
12492 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
12493 Old_Discr
:= First_Stored_Discriminant
(Typ
);
12494 while Present
(Constr
) loop
12495 if Is_Entity_Name
(Node
(Constr
))
12496 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
12498 New_Discr
:= Entity
(Node
(Constr
));
12500 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
12503 -- The new discriminant has been used to rename a
12504 -- subsequent old discriminant. Introduce a shadow
12505 -- component for the current old discriminant.
12507 New_C
:= Create_Component
(Old_Discr
);
12508 Set_Original_Record_Component
(New_C
, Old_Discr
);
12512 -- The constraint has eliminated the old discriminant.
12513 -- Introduce a shadow component.
12515 New_C
:= Create_Component
(Old_Discr
);
12516 Set_Original_Record_Component
(New_C
, Old_Discr
);
12519 Next_Elmt
(Constr
);
12520 Next_Stored_Discriminant
(Old_Discr
);
12524 end Add_Discriminants
;
12527 and then Is_Variant_Record
(Typ
)
12529 Collect_Fixed_Components
(Typ
);
12531 Gather_Components
(
12533 Component_List
(Type_Definition
(Parent
(Typ
))),
12534 Governed_By
=> Assoc_List
,
12536 Report_Errors
=> Errors
);
12537 pragma Assert
(not Errors
);
12539 Create_All_Components
;
12541 -- If the subtype declaration is created for a tagged type derivation
12542 -- with constraints, we retrieve the record definition of the parent
12543 -- type to select the components of the proper variant.
12546 and then Is_Tagged_Type
(Typ
)
12547 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
12549 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
12550 and then Is_Variant_Record
(Parent_Type
)
12552 Collect_Fixed_Components
(Typ
);
12554 Gather_Components
(
12556 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
12557 Governed_By
=> Assoc_List
,
12559 Report_Errors
=> Errors
);
12560 pragma Assert
(not Errors
);
12562 -- If the tagged derivation has a type extension, collect all the
12563 -- new components therein.
12566 (Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
12568 Old_C
:= First_Component
(Typ
);
12569 while Present
(Old_C
) loop
12570 if Original_Record_Component
(Old_C
) = Old_C
12571 and then Chars
(Old_C
) /= Name_uTag
12572 and then Chars
(Old_C
) /= Name_uParent
12574 Append_Elmt
(Old_C
, Comp_List
);
12577 Next_Component
(Old_C
);
12581 Create_All_Components
;
12584 -- If discriminants are not static, or if this is a multi-level type
12585 -- extension, we have to include all components of the parent type.
12587 Old_C
:= First_Component
(Typ
);
12588 while Present
(Old_C
) loop
12589 New_C
:= Create_Component
(Old_C
);
12593 Constrain_Component_Type
12594 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
12595 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12597 Next_Component
(Old_C
);
12602 end Create_Constrained_Components
;
12604 ------------------------------------------
12605 -- Decimal_Fixed_Point_Type_Declaration --
12606 ------------------------------------------
12608 procedure Decimal_Fixed_Point_Type_Declaration
12612 Loc
: constant Source_Ptr
:= Sloc
(Def
);
12613 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
12614 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
12615 Implicit_Base
: Entity_Id
;
12622 Check_SPARK_Restriction
12623 ("decimal fixed point type is not allowed", Def
);
12624 Check_Restriction
(No_Fixed_Point
, Def
);
12626 -- Create implicit base type
12629 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
12630 Set_Etype
(Implicit_Base
, Implicit_Base
);
12632 -- Analyze and process delta expression
12634 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
12636 Check_Delta_Expression
(Delta_Expr
);
12637 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
12639 -- Check delta is power of 10, and determine scale value from it
12645 Scale_Val
:= Uint_0
;
12648 if Val
< Ureal_1
then
12649 while Val
< Ureal_1
loop
12650 Val
:= Val
* Ureal_10
;
12651 Scale_Val
:= Scale_Val
+ 1;
12654 if Scale_Val
> 18 then
12655 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
12656 Scale_Val
:= UI_From_Int
(+18);
12660 while Val
> Ureal_1
loop
12661 Val
:= Val
/ Ureal_10
;
12662 Scale_Val
:= Scale_Val
- 1;
12665 if Scale_Val
< -18 then
12666 Error_Msg_N
("scale is less than minimum value of -18", Def
);
12667 Scale_Val
:= UI_From_Int
(-18);
12671 if Val
/= Ureal_1
then
12672 Error_Msg_N
("delta expression must be a power of 10", Def
);
12673 Delta_Val
:= Ureal_10
** (-Scale_Val
);
12677 -- Set delta, scale and small (small = delta for decimal type)
12679 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
12680 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
12681 Set_Small_Value
(Implicit_Base
, Delta_Val
);
12683 -- Analyze and process digits expression
12685 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
12686 Check_Digits_Expression
(Digs_Expr
);
12687 Digs_Val
:= Expr_Value
(Digs_Expr
);
12689 if Digs_Val
> 18 then
12690 Digs_Val
:= UI_From_Int
(+18);
12691 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
12694 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
12695 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
12697 -- Set range of base type from digits value for now. This will be
12698 -- expanded to represent the true underlying base range by Freeze.
12700 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
12702 -- Note: We leave size as zero for now, size will be set at freeze
12703 -- time. We have to do this for ordinary fixed-point, because the size
12704 -- depends on the specified small, and we might as well do the same for
12705 -- decimal fixed-point.
12707 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
12709 -- If there are bounds given in the declaration use them as the
12710 -- bounds of the first named subtype.
12712 if Present
(Real_Range_Specification
(Def
)) then
12714 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
12715 Low
: constant Node_Id
:= Low_Bound
(RRS
);
12716 High
: constant Node_Id
:= High_Bound
(RRS
);
12721 Analyze_And_Resolve
(Low
, Any_Real
);
12722 Analyze_And_Resolve
(High
, Any_Real
);
12723 Check_Real_Bound
(Low
);
12724 Check_Real_Bound
(High
);
12725 Low_Val
:= Expr_Value_R
(Low
);
12726 High_Val
:= Expr_Value_R
(High
);
12728 if Low_Val
< (-Bound_Val
) then
12730 ("range low bound too small for digits value", Low
);
12731 Low_Val
:= -Bound_Val
;
12734 if High_Val
> Bound_Val
then
12736 ("range high bound too large for digits value", High
);
12737 High_Val
:= Bound_Val
;
12740 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
12743 -- If no explicit range, use range that corresponds to given
12744 -- digits value. This will end up as the final range for the
12748 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
12751 -- Complete entity for first subtype
12753 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
12754 Set_Etype
(T
, Implicit_Base
);
12755 Set_Size_Info
(T
, Implicit_Base
);
12756 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
12757 Set_Digits_Value
(T
, Digs_Val
);
12758 Set_Delta_Value
(T
, Delta_Val
);
12759 Set_Small_Value
(T
, Delta_Val
);
12760 Set_Scale_Value
(T
, Scale_Val
);
12761 Set_Is_Constrained
(T
);
12762 end Decimal_Fixed_Point_Type_Declaration
;
12764 -----------------------------------
12765 -- Derive_Progenitor_Subprograms --
12766 -----------------------------------
12768 procedure Derive_Progenitor_Subprograms
12769 (Parent_Type
: Entity_Id
;
12770 Tagged_Type
: Entity_Id
)
12775 Iface_Elmt
: Elmt_Id
;
12776 Iface_Subp
: Entity_Id
;
12777 New_Subp
: Entity_Id
:= Empty
;
12778 Prim_Elmt
: Elmt_Id
;
12783 pragma Assert
(Ada_Version
>= Ada_2005
12784 and then Is_Record_Type
(Tagged_Type
)
12785 and then Is_Tagged_Type
(Tagged_Type
)
12786 and then Has_Interfaces
(Tagged_Type
));
12788 -- Step 1: Transfer to the full-view primitives associated with the
12789 -- partial-view that cover interface primitives. Conceptually this
12790 -- work should be done later by Process_Full_View; done here to
12791 -- simplify its implementation at later stages. It can be safely
12792 -- done here because interfaces must be visible in the partial and
12793 -- private view (RM 7.3(7.3/2)).
12795 -- Small optimization: This work is only required if the parent is
12796 -- abstract. If the tagged type is not abstract, it cannot have
12797 -- abstract primitives (the only entities in the list of primitives of
12798 -- non-abstract tagged types that can reference abstract primitives
12799 -- through its Alias attribute are the internal entities that have
12800 -- attribute Interface_Alias, and these entities are generated later
12801 -- by Add_Internal_Interface_Entities).
12803 if In_Private_Part
(Current_Scope
)
12804 and then Is_Abstract_Type
(Parent_Type
)
12806 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
12807 while Present
(Elmt
) loop
12808 Subp
:= Node
(Elmt
);
12810 -- At this stage it is not possible to have entities in the list
12811 -- of primitives that have attribute Interface_Alias
12813 pragma Assert
(No
(Interface_Alias
(Subp
)));
12815 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
12817 if Is_Interface
(Typ
) then
12818 E
:= Find_Primitive_Covering_Interface
12819 (Tagged_Type
=> Tagged_Type
,
12820 Iface_Prim
=> Subp
);
12823 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
12825 Replace_Elmt
(Elmt
, E
);
12826 Remove_Homonym
(Subp
);
12834 -- Step 2: Add primitives of progenitors that are not implemented by
12835 -- parents of Tagged_Type
12837 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
12838 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
12839 while Present
(Iface_Elmt
) loop
12840 Iface
:= Node
(Iface_Elmt
);
12842 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
12843 while Present
(Prim_Elmt
) loop
12844 Iface_Subp
:= Node
(Prim_Elmt
);
12846 -- Exclude derivation of predefined primitives except those
12847 -- that come from source, or are inherited from one that comes
12848 -- from source. Required to catch declarations of equality
12849 -- operators of interfaces. For example:
12851 -- type Iface is interface;
12852 -- function "=" (Left, Right : Iface) return Boolean;
12854 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
12855 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
12857 E
:= Find_Primitive_Covering_Interface
12858 (Tagged_Type
=> Tagged_Type
,
12859 Iface_Prim
=> Iface_Subp
);
12861 -- If not found we derive a new primitive leaving its alias
12862 -- attribute referencing the interface primitive
12866 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
12868 -- Ada 2012 (AI05-0197): If the covering primitive's name
12869 -- differs from the name of the interface primitive then it
12870 -- is a private primitive inherited from a parent type. In
12871 -- such case, given that Tagged_Type covers the interface,
12872 -- the inherited private primitive becomes visible. For such
12873 -- purpose we add a new entity that renames the inherited
12874 -- private primitive.
12876 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
12877 pragma Assert
(Has_Suffix
(E
, 'P'));
12879 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
12880 Set_Alias
(New_Subp
, E
);
12881 Set_Is_Abstract_Subprogram
(New_Subp
,
12882 Is_Abstract_Subprogram
(E
));
12884 -- Propagate to the full view interface entities associated
12885 -- with the partial view
12887 elsif In_Private_Part
(Current_Scope
)
12888 and then Present
(Alias
(E
))
12889 and then Alias
(E
) = Iface_Subp
12891 List_Containing
(Parent
(E
)) /=
12892 Private_Declarations
12894 (Unit_Declaration_Node
(Current_Scope
)))
12896 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
12900 Next_Elmt
(Prim_Elmt
);
12903 Next_Elmt
(Iface_Elmt
);
12906 end Derive_Progenitor_Subprograms
;
12908 -----------------------
12909 -- Derive_Subprogram --
12910 -----------------------
12912 procedure Derive_Subprogram
12913 (New_Subp
: in out Entity_Id
;
12914 Parent_Subp
: Entity_Id
;
12915 Derived_Type
: Entity_Id
;
12916 Parent_Type
: Entity_Id
;
12917 Actual_Subp
: Entity_Id
:= Empty
)
12919 Formal
: Entity_Id
;
12920 -- Formal parameter of parent primitive operation
12922 Formal_Of_Actual
: Entity_Id
;
12923 -- Formal parameter of actual operation, when the derivation is to
12924 -- create a renaming for a primitive operation of an actual in an
12927 New_Formal
: Entity_Id
;
12928 -- Formal of inherited operation
12930 Visible_Subp
: Entity_Id
:= Parent_Subp
;
12932 function Is_Private_Overriding
return Boolean;
12933 -- If Subp is a private overriding of a visible operation, the inherited
12934 -- operation derives from the overridden op (even though its body is the
12935 -- overriding one) and the inherited operation is visible now. See
12936 -- sem_disp to see the full details of the handling of the overridden
12937 -- subprogram, which is removed from the list of primitive operations of
12938 -- the type. The overridden subprogram is saved locally in Visible_Subp,
12939 -- and used to diagnose abstract operations that need overriding in the
12942 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
12943 -- When the type is an anonymous access type, create a new access type
12944 -- designating the derived type.
12946 procedure Set_Derived_Name
;
12947 -- This procedure sets the appropriate Chars name for New_Subp. This
12948 -- is normally just a copy of the parent name. An exception arises for
12949 -- type support subprograms, where the name is changed to reflect the
12950 -- name of the derived type, e.g. if type foo is derived from type bar,
12951 -- then a procedure barDA is derived with a name fooDA.
12953 ---------------------------
12954 -- Is_Private_Overriding --
12955 ---------------------------
12957 function Is_Private_Overriding
return Boolean is
12961 -- If the parent is not a dispatching operation there is no
12962 -- need to investigate overridings
12964 if not Is_Dispatching_Operation
(Parent_Subp
) then
12968 -- The visible operation that is overridden is a homonym of the
12969 -- parent subprogram. We scan the homonym chain to find the one
12970 -- whose alias is the subprogram we are deriving.
12972 Prev
:= Current_Entity
(Parent_Subp
);
12973 while Present
(Prev
) loop
12974 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
12975 and then Alias
(Prev
) = Parent_Subp
12976 and then Scope
(Parent_Subp
) = Scope
(Prev
)
12977 and then not Is_Hidden
(Prev
)
12979 Visible_Subp
:= Prev
;
12983 Prev
:= Homonym
(Prev
);
12987 end Is_Private_Overriding
;
12993 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
12994 Acc_Type
: Entity_Id
;
12995 Par
: constant Node_Id
:= Parent
(Derived_Type
);
12998 -- When the type is an anonymous access type, create a new access
12999 -- type designating the derived type. This itype must be elaborated
13000 -- at the point of the derivation, not on subsequent calls that may
13001 -- be out of the proper scope for Gigi, so we insert a reference to
13002 -- it after the derivation.
13004 if Ekind
(Etype
(Id
)) = E_Anonymous_Access_Type
then
13006 Desig_Typ
: Entity_Id
:= Designated_Type
(Etype
(Id
));
13009 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
13010 and then Present
(Full_View
(Desig_Typ
))
13011 and then not Is_Private_Type
(Parent_Type
)
13013 Desig_Typ
:= Full_View
(Desig_Typ
);
13016 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
13018 -- Ada 2005 (AI-251): Handle also derivations of abstract
13019 -- interface primitives.
13021 or else (Is_Interface
(Desig_Typ
)
13022 and then not Is_Class_Wide_Type
(Desig_Typ
))
13024 Acc_Type
:= New_Copy
(Etype
(Id
));
13025 Set_Etype
(Acc_Type
, Acc_Type
);
13026 Set_Scope
(Acc_Type
, New_Subp
);
13028 -- Compute size of anonymous access type
13030 if Is_Array_Type
(Desig_Typ
)
13031 and then not Is_Constrained
(Desig_Typ
)
13033 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
13035 Init_Size
(Acc_Type
, System_Address_Size
);
13038 Init_Alignment
(Acc_Type
);
13039 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
13041 Set_Etype
(New_Id
, Acc_Type
);
13042 Set_Scope
(New_Id
, New_Subp
);
13044 -- Create a reference to it
13045 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
13048 Set_Etype
(New_Id
, Etype
(Id
));
13052 elsif Base_Type
(Etype
(Id
)) = Base_Type
(Parent_Type
)
13054 (Ekind
(Etype
(Id
)) = E_Record_Type_With_Private
13055 and then Present
(Full_View
(Etype
(Id
)))
13057 Base_Type
(Full_View
(Etype
(Id
))) = Base_Type
(Parent_Type
))
13059 -- Constraint checks on formals are generated during expansion,
13060 -- based on the signature of the original subprogram. The bounds
13061 -- of the derived type are not relevant, and thus we can use
13062 -- the base type for the formals. However, the return type may be
13063 -- used in a context that requires that the proper static bounds
13064 -- be used (a case statement, for example) and for those cases
13065 -- we must use the derived type (first subtype), not its base.
13067 -- If the derived_type_definition has no constraints, we know that
13068 -- the derived type has the same constraints as the first subtype
13069 -- of the parent, and we can also use it rather than its base,
13070 -- which can lead to more efficient code.
13072 if Etype
(Id
) = Parent_Type
then
13073 if Is_Scalar_Type
(Parent_Type
)
13075 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
13077 Set_Etype
(New_Id
, Derived_Type
);
13079 elsif Nkind
(Par
) = N_Full_Type_Declaration
13081 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
13084 (Subtype_Indication
(Type_Definition
(Par
)))
13086 Set_Etype
(New_Id
, Derived_Type
);
13089 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
13093 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
13097 Set_Etype
(New_Id
, Etype
(Id
));
13101 ----------------------
13102 -- Set_Derived_Name --
13103 ----------------------
13105 procedure Set_Derived_Name
is
13106 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
13108 if Nm
= TSS_Null
then
13109 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
13111 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
13113 end Set_Derived_Name
;
13115 -- Start of processing for Derive_Subprogram
13119 New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
13120 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
13121 Set_Contract
(New_Subp
, Make_Contract
(Sloc
(New_Subp
)));
13123 -- Check whether the inherited subprogram is a private operation that
13124 -- should be inherited but not yet made visible. Such subprograms can
13125 -- become visible at a later point (e.g., the private part of a public
13126 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13127 -- following predicate is true, then this is not such a private
13128 -- operation and the subprogram simply inherits the name of the parent
13129 -- subprogram. Note the special check for the names of controlled
13130 -- operations, which are currently exempted from being inherited with
13131 -- a hidden name because they must be findable for generation of
13132 -- implicit run-time calls.
13134 if not Is_Hidden
(Parent_Subp
)
13135 or else Is_Internal
(Parent_Subp
)
13136 or else Is_Private_Overriding
13137 or else Is_Internal_Name
(Chars
(Parent_Subp
))
13138 or else Chars
(Parent_Subp
) = Name_Initialize
13139 or else Chars
(Parent_Subp
) = Name_Adjust
13140 or else Chars
(Parent_Subp
) = Name_Finalize
13144 -- An inherited dispatching equality will be overridden by an internally
13145 -- generated one, or by an explicit one, so preserve its name and thus
13146 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13147 -- private operation it may become invisible if the full view has
13148 -- progenitors, and the dispatch table will be malformed.
13149 -- We check that the type is limited to handle the anomalous declaration
13150 -- of Limited_Controlled, which is derived from a non-limited type, and
13151 -- which is handled specially elsewhere as well.
13153 elsif Chars
(Parent_Subp
) = Name_Op_Eq
13154 and then Is_Dispatching_Operation
(Parent_Subp
)
13155 and then Etype
(Parent_Subp
) = Standard_Boolean
13156 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
13158 Etype
(First_Formal
(Parent_Subp
)) =
13159 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
13163 -- If parent is hidden, this can be a regular derivation if the
13164 -- parent is immediately visible in a non-instantiating context,
13165 -- or if we are in the private part of an instance. This test
13166 -- should still be refined ???
13168 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13169 -- operation as a non-visible operation in cases where the parent
13170 -- subprogram might not be visible now, but was visible within the
13171 -- original generic, so it would be wrong to make the inherited
13172 -- subprogram non-visible now. (Not clear if this test is fully
13173 -- correct; are there any cases where we should declare the inherited
13174 -- operation as not visible to avoid it being overridden, e.g., when
13175 -- the parent type is a generic actual with private primitives ???)
13177 -- (they should be treated the same as other private inherited
13178 -- subprograms, but it's not clear how to do this cleanly). ???
13180 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
13181 and then Is_Immediately_Visible
(Parent_Subp
)
13182 and then not In_Instance
)
13183 or else In_Instance_Not_Visible
13187 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13188 -- overrides an interface primitive because interface primitives
13189 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13191 elsif Ada_Version
>= Ada_2005
13192 and then Is_Dispatching_Operation
(Parent_Subp
)
13193 and then Covers_Some_Interface
(Parent_Subp
)
13197 -- Otherwise, the type is inheriting a private operation, so enter
13198 -- it with a special name so it can't be overridden.
13201 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
13204 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
13206 if Present
(Actual_Subp
) then
13207 Replace_Type
(Actual_Subp
, New_Subp
);
13209 Replace_Type
(Parent_Subp
, New_Subp
);
13212 Conditional_Delay
(New_Subp
, Parent_Subp
);
13214 -- If we are creating a renaming for a primitive operation of an
13215 -- actual of a generic derived type, we must examine the signature
13216 -- of the actual primitive, not that of the generic formal, which for
13217 -- example may be an interface. However the name and initial value
13218 -- of the inherited operation are those of the formal primitive.
13220 Formal
:= First_Formal
(Parent_Subp
);
13222 if Present
(Actual_Subp
) then
13223 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
13225 Formal_Of_Actual
:= Empty
;
13228 while Present
(Formal
) loop
13229 New_Formal
:= New_Copy
(Formal
);
13231 -- Normally we do not go copying parents, but in the case of
13232 -- formals, we need to link up to the declaration (which is the
13233 -- parameter specification), and it is fine to link up to the
13234 -- original formal's parameter specification in this case.
13236 Set_Parent
(New_Formal
, Parent
(Formal
));
13237 Append_Entity
(New_Formal
, New_Subp
);
13239 if Present
(Formal_Of_Actual
) then
13240 Replace_Type
(Formal_Of_Actual
, New_Formal
);
13241 Next_Formal
(Formal_Of_Actual
);
13243 Replace_Type
(Formal
, New_Formal
);
13246 Next_Formal
(Formal
);
13249 -- If this derivation corresponds to a tagged generic actual, then
13250 -- primitive operations rename those of the actual. Otherwise the
13251 -- primitive operations rename those of the parent type, If the parent
13252 -- renames an intrinsic operator, so does the new subprogram. We except
13253 -- concatenation, which is always properly typed, and does not get
13254 -- expanded as other intrinsic operations.
13256 if No
(Actual_Subp
) then
13257 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
13258 Set_Is_Intrinsic_Subprogram
(New_Subp
);
13260 if Present
(Alias
(Parent_Subp
))
13261 and then Chars
(Parent_Subp
) /= Name_Op_Concat
13263 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
13265 Set_Alias
(New_Subp
, Parent_Subp
);
13269 Set_Alias
(New_Subp
, Parent_Subp
);
13273 Set_Alias
(New_Subp
, Actual_Subp
);
13276 -- Derived subprograms of a tagged type must inherit the convention
13277 -- of the parent subprogram (a requirement of AI-117). Derived
13278 -- subprograms of untagged types simply get convention Ada by default.
13280 if Is_Tagged_Type
(Derived_Type
) then
13281 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
13284 -- Predefined controlled operations retain their name even if the parent
13285 -- is hidden (see above), but they are not primitive operations if the
13286 -- ancestor is not visible, for example if the parent is a private
13287 -- extension completed with a controlled extension. Note that a full
13288 -- type that is controlled can break privacy: the flag Is_Controlled is
13289 -- set on both views of the type.
13291 if Is_Controlled
(Parent_Type
)
13293 (Chars
(Parent_Subp
) = Name_Initialize
13294 or else Chars
(Parent_Subp
) = Name_Adjust
13295 or else Chars
(Parent_Subp
) = Name_Finalize
)
13296 and then Is_Hidden
(Parent_Subp
)
13297 and then not Is_Visibly_Controlled
(Parent_Type
)
13299 Set_Is_Hidden
(New_Subp
);
13302 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
13303 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
13305 if Ekind
(Parent_Subp
) = E_Procedure
then
13306 Set_Is_Valued_Procedure
13307 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
13309 Set_Has_Controlling_Result
13310 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
13313 -- No_Return must be inherited properly. If this is overridden in the
13314 -- case of a dispatching operation, then a check is made in Sem_Disp
13315 -- that the overriding operation is also No_Return (no such check is
13316 -- required for the case of non-dispatching operation.
13318 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
13320 -- A derived function with a controlling result is abstract. If the
13321 -- Derived_Type is a nonabstract formal generic derived type, then
13322 -- inherited operations are not abstract: the required check is done at
13323 -- instantiation time. If the derivation is for a generic actual, the
13324 -- function is not abstract unless the actual is.
13326 if Is_Generic_Type
(Derived_Type
)
13327 and then not Is_Abstract_Type
(Derived_Type
)
13331 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13332 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13334 elsif Ada_Version
>= Ada_2005
13335 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
13336 or else (Is_Tagged_Type
(Derived_Type
)
13337 and then Etype
(New_Subp
) = Derived_Type
13338 and then not Is_Null_Extension
(Derived_Type
))
13339 or else (Is_Tagged_Type
(Derived_Type
)
13340 and then Ekind
(Etype
(New_Subp
)) =
13341 E_Anonymous_Access_Type
13342 and then Designated_Type
(Etype
(New_Subp
)) =
13344 and then not Is_Null_Extension
(Derived_Type
)))
13345 and then No
(Actual_Subp
)
13347 if not Is_Tagged_Type
(Derived_Type
)
13348 or else Is_Abstract_Type
(Derived_Type
)
13349 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
13351 Set_Is_Abstract_Subprogram
(New_Subp
);
13353 Set_Requires_Overriding
(New_Subp
);
13356 elsif Ada_Version
< Ada_2005
13357 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
13358 or else (Is_Tagged_Type
(Derived_Type
)
13359 and then Etype
(New_Subp
) = Derived_Type
13360 and then No
(Actual_Subp
)))
13362 Set_Is_Abstract_Subprogram
(New_Subp
);
13364 -- AI05-0097 : an inherited operation that dispatches on result is
13365 -- abstract if the derived type is abstract, even if the parent type
13366 -- is concrete and the derived type is a null extension.
13368 elsif Has_Controlling_Result
(Alias
(New_Subp
))
13369 and then Is_Abstract_Type
(Etype
(New_Subp
))
13371 Set_Is_Abstract_Subprogram
(New_Subp
);
13373 -- Finally, if the parent type is abstract we must verify that all
13374 -- inherited operations are either non-abstract or overridden, or that
13375 -- the derived type itself is abstract (this check is performed at the
13376 -- end of a package declaration, in Check_Abstract_Overriding). A
13377 -- private overriding in the parent type will not be visible in the
13378 -- derivation if we are not in an inner package or in a child unit of
13379 -- the parent type, in which case the abstractness of the inherited
13380 -- operation is carried to the new subprogram.
13382 elsif Is_Abstract_Type
(Parent_Type
)
13383 and then not In_Open_Scopes
(Scope
(Parent_Type
))
13384 and then Is_Private_Overriding
13385 and then Is_Abstract_Subprogram
(Visible_Subp
)
13387 if No
(Actual_Subp
) then
13388 Set_Alias
(New_Subp
, Visible_Subp
);
13389 Set_Is_Abstract_Subprogram
(New_Subp
, True);
13392 -- If this is a derivation for an instance of a formal derived
13393 -- type, abstractness comes from the primitive operation of the
13394 -- actual, not from the operation inherited from the ancestor.
13396 Set_Is_Abstract_Subprogram
13397 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
13401 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
13403 -- Check for case of a derived subprogram for the instantiation of a
13404 -- formal derived tagged type, if so mark the subprogram as dispatching
13405 -- and inherit the dispatching attributes of the actual subprogram. The
13406 -- derived subprogram is effectively renaming of the actual subprogram,
13407 -- so it needs to have the same attributes as the actual.
13409 if Present
(Actual_Subp
)
13410 and then Is_Dispatching_Operation
(Actual_Subp
)
13412 Set_Is_Dispatching_Operation
(New_Subp
);
13414 if Present
(DTC_Entity
(Actual_Subp
)) then
13415 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
13416 Set_DT_Position
(New_Subp
, DT_Position
(Actual_Subp
));
13420 -- Indicate that a derived subprogram does not require a body and that
13421 -- it does not require processing of default expressions.
13423 Set_Has_Completion
(New_Subp
);
13424 Set_Default_Expressions_Processed
(New_Subp
);
13426 if Ekind
(New_Subp
) = E_Function
then
13427 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
13429 end Derive_Subprogram
;
13431 ------------------------
13432 -- Derive_Subprograms --
13433 ------------------------
13435 procedure Derive_Subprograms
13436 (Parent_Type
: Entity_Id
;
13437 Derived_Type
: Entity_Id
;
13438 Generic_Actual
: Entity_Id
:= Empty
)
13440 Op_List
: constant Elist_Id
:=
13441 Collect_Primitive_Operations
(Parent_Type
);
13443 function Check_Derived_Type
return Boolean;
13444 -- Check that all the entities derived from Parent_Type are found in
13445 -- the list of primitives of Derived_Type exactly in the same order.
13447 procedure Derive_Interface_Subprogram
13448 (New_Subp
: in out Entity_Id
;
13450 Actual_Subp
: Entity_Id
);
13451 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
13452 -- (which is an interface primitive). If Generic_Actual is present then
13453 -- Actual_Subp is the actual subprogram corresponding with the generic
13454 -- subprogram Subp.
13456 function Check_Derived_Type
return Boolean is
13460 New_Subp
: Entity_Id
;
13465 -- Traverse list of entities in the current scope searching for
13466 -- an incomplete type whose full-view is derived type
13468 E
:= First_Entity
(Scope
(Derived_Type
));
13470 and then E
/= Derived_Type
13472 if Ekind
(E
) = E_Incomplete_Type
13473 and then Present
(Full_View
(E
))
13474 and then Full_View
(E
) = Derived_Type
13476 -- Disable this test if Derived_Type completes an incomplete
13477 -- type because in such case more primitives can be added
13478 -- later to the list of primitives of Derived_Type by routine
13479 -- Process_Incomplete_Dependents
13484 E
:= Next_Entity
(E
);
13487 List
:= Collect_Primitive_Operations
(Derived_Type
);
13488 Elmt
:= First_Elmt
(List
);
13490 Op_Elmt
:= First_Elmt
(Op_List
);
13491 while Present
(Op_Elmt
) loop
13492 Subp
:= Node
(Op_Elmt
);
13493 New_Subp
:= Node
(Elmt
);
13495 -- At this early stage Derived_Type has no entities with attribute
13496 -- Interface_Alias. In addition, such primitives are always
13497 -- located at the end of the list of primitives of Parent_Type.
13498 -- Therefore, if found we can safely stop processing pending
13501 exit when Present
(Interface_Alias
(Subp
));
13503 -- Handle hidden entities
13505 if not Is_Predefined_Dispatching_Operation
(Subp
)
13506 and then Is_Hidden
(Subp
)
13508 if Present
(New_Subp
)
13509 and then Primitive_Names_Match
(Subp
, New_Subp
)
13515 if not Present
(New_Subp
)
13516 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
13517 or else not Primitive_Names_Match
(Subp
, New_Subp
)
13525 Next_Elmt
(Op_Elmt
);
13529 end Check_Derived_Type
;
13531 ---------------------------------
13532 -- Derive_Interface_Subprogram --
13533 ---------------------------------
13535 procedure Derive_Interface_Subprogram
13536 (New_Subp
: in out Entity_Id
;
13538 Actual_Subp
: Entity_Id
)
13540 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
13541 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
13544 pragma Assert
(Is_Interface
(Iface_Type
));
13547 (New_Subp
=> New_Subp
,
13548 Parent_Subp
=> Iface_Subp
,
13549 Derived_Type
=> Derived_Type
,
13550 Parent_Type
=> Iface_Type
,
13551 Actual_Subp
=> Actual_Subp
);
13553 -- Given that this new interface entity corresponds with a primitive
13554 -- of the parent that was not overridden we must leave it associated
13555 -- with its parent primitive to ensure that it will share the same
13556 -- dispatch table slot when overridden.
13558 if No
(Actual_Subp
) then
13559 Set_Alias
(New_Subp
, Subp
);
13561 -- For instantiations this is not needed since the previous call to
13562 -- Derive_Subprogram leaves the entity well decorated.
13565 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
13568 end Derive_Interface_Subprogram
;
13572 Alias_Subp
: Entity_Id
;
13573 Act_List
: Elist_Id
;
13574 Act_Elmt
: Elmt_Id
:= No_Elmt
;
13575 Act_Subp
: Entity_Id
:= Empty
;
13577 Need_Search
: Boolean := False;
13578 New_Subp
: Entity_Id
:= Empty
;
13579 Parent_Base
: Entity_Id
;
13582 -- Start of processing for Derive_Subprograms
13585 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
13586 and then Has_Discriminants
(Parent_Type
)
13587 and then Present
(Full_View
(Parent_Type
))
13589 Parent_Base
:= Full_View
(Parent_Type
);
13591 Parent_Base
:= Parent_Type
;
13594 if Present
(Generic_Actual
) then
13595 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
13596 Act_Elmt
:= First_Elmt
(Act_List
);
13599 -- Derive primitives inherited from the parent. Note that if the generic
13600 -- actual is present, this is not really a type derivation, it is a
13601 -- completion within an instance.
13603 -- Case 1: Derived_Type does not implement interfaces
13605 if not Is_Tagged_Type
(Derived_Type
)
13606 or else (not Has_Interfaces
(Derived_Type
)
13607 and then not (Present
(Generic_Actual
)
13609 Has_Interfaces
(Generic_Actual
)))
13611 Elmt
:= First_Elmt
(Op_List
);
13612 while Present
(Elmt
) loop
13613 Subp
:= Node
(Elmt
);
13615 -- Literals are derived earlier in the process of building the
13616 -- derived type, and are skipped here.
13618 if Ekind
(Subp
) = E_Enumeration_Literal
then
13621 -- The actual is a direct descendant and the common primitive
13622 -- operations appear in the same order.
13624 -- If the generic parent type is present, the derived type is an
13625 -- instance of a formal derived type, and within the instance its
13626 -- operations are those of the actual. We derive from the formal
13627 -- type but make the inherited operations aliases of the
13628 -- corresponding operations of the actual.
13631 pragma Assert
(No
(Node
(Act_Elmt
))
13632 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
13634 Type_Conformant
(Subp
, Node
(Act_Elmt
),
13635 Skip_Controlling_Formals
=> True)));
13638 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
13640 if Present
(Act_Elmt
) then
13641 Next_Elmt
(Act_Elmt
);
13648 -- Case 2: Derived_Type implements interfaces
13651 -- If the parent type has no predefined primitives we remove
13652 -- predefined primitives from the list of primitives of generic
13653 -- actual to simplify the complexity of this algorithm.
13655 if Present
(Generic_Actual
) then
13657 Has_Predefined_Primitives
: Boolean := False;
13660 -- Check if the parent type has predefined primitives
13662 Elmt
:= First_Elmt
(Op_List
);
13663 while Present
(Elmt
) loop
13664 Subp
:= Node
(Elmt
);
13666 if Is_Predefined_Dispatching_Operation
(Subp
)
13667 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
13669 Has_Predefined_Primitives
:= True;
13676 -- Remove predefined primitives of Generic_Actual. We must use
13677 -- an auxiliary list because in case of tagged types the value
13678 -- returned by Collect_Primitive_Operations is the value stored
13679 -- in its Primitive_Operations attribute (and we don't want to
13680 -- modify its current contents).
13682 if not Has_Predefined_Primitives
then
13684 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
13687 Elmt
:= First_Elmt
(Act_List
);
13688 while Present
(Elmt
) loop
13689 Subp
:= Node
(Elmt
);
13691 if not Is_Predefined_Dispatching_Operation
(Subp
)
13692 or else Comes_From_Source
(Subp
)
13694 Append_Elmt
(Subp
, Aux_List
);
13700 Act_List
:= Aux_List
;
13704 Act_Elmt
:= First_Elmt
(Act_List
);
13705 Act_Subp
:= Node
(Act_Elmt
);
13709 -- Stage 1: If the generic actual is not present we derive the
13710 -- primitives inherited from the parent type. If the generic parent
13711 -- type is present, the derived type is an instance of a formal
13712 -- derived type, and within the instance its operations are those of
13713 -- the actual. We derive from the formal type but make the inherited
13714 -- operations aliases of the corresponding operations of the actual.
13716 Elmt
:= First_Elmt
(Op_List
);
13717 while Present
(Elmt
) loop
13718 Subp
:= Node
(Elmt
);
13719 Alias_Subp
:= Ultimate_Alias
(Subp
);
13721 -- Do not derive internal entities of the parent that link
13722 -- interface primitives with their covering primitive. These
13723 -- entities will be added to this type when frozen.
13725 if Present
(Interface_Alias
(Subp
)) then
13729 -- If the generic actual is present find the corresponding
13730 -- operation in the generic actual. If the parent type is a
13731 -- direct ancestor of the derived type then, even if it is an
13732 -- interface, the operations are inherited from the primary
13733 -- dispatch table and are in the proper order. If we detect here
13734 -- that primitives are not in the same order we traverse the list
13735 -- of primitive operations of the actual to find the one that
13736 -- implements the interface primitive.
13740 (Present
(Generic_Actual
)
13741 and then Present
(Act_Subp
)
13743 (Primitive_Names_Match
(Subp
, Act_Subp
)
13745 Type_Conformant
(Subp
, Act_Subp
,
13746 Skip_Controlling_Formals
=> True)))
13748 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
13749 Use_Full_View
=> True));
13751 -- Remember that we need searching for all pending primitives
13753 Need_Search
:= True;
13755 -- Handle entities associated with interface primitives
13757 if Present
(Alias_Subp
)
13758 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
13759 and then not Is_Predefined_Dispatching_Operation
(Subp
)
13761 -- Search for the primitive in the homonym chain
13764 Find_Primitive_Covering_Interface
13765 (Tagged_Type
=> Generic_Actual
,
13766 Iface_Prim
=> Alias_Subp
);
13768 -- Previous search may not locate primitives covering
13769 -- interfaces defined in generics units or instantiations.
13770 -- (it fails if the covering primitive has formals whose
13771 -- type is also defined in generics or instantiations).
13772 -- In such case we search in the list of primitives of the
13773 -- generic actual for the internal entity that links the
13774 -- interface primitive and the covering primitive.
13777 and then Is_Generic_Type
(Parent_Type
)
13779 -- This code has been designed to handle only generic
13780 -- formals that implement interfaces that are defined
13781 -- in a generic unit or instantiation. If this code is
13782 -- needed for other cases we must review it because
13783 -- (given that it relies on Original_Location to locate
13784 -- the primitive of Generic_Actual that covers the
13785 -- interface) it could leave linked through attribute
13786 -- Alias entities of unrelated instantiations).
13790 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
13792 Instantiation_Depth
13793 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
13796 Iface_Prim_Loc
: constant Source_Ptr
:=
13797 Original_Location
(Sloc
(Alias_Subp
));
13802 First_Elmt
(Primitive_Operations
(Generic_Actual
));
13804 Search
: while Present
(Elmt
) loop
13805 Prim
:= Node
(Elmt
);
13807 if Present
(Interface_Alias
(Prim
))
13808 and then Original_Location
13809 (Sloc
(Interface_Alias
(Prim
)))
13812 Act_Subp
:= Alias
(Prim
);
13821 pragma Assert
(Present
(Act_Subp
)
13822 or else Is_Abstract_Type
(Generic_Actual
)
13823 or else Serious_Errors_Detected
> 0);
13825 -- Handle predefined primitives plus the rest of user-defined
13829 Act_Elmt
:= First_Elmt
(Act_List
);
13830 while Present
(Act_Elmt
) loop
13831 Act_Subp
:= Node
(Act_Elmt
);
13833 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
13834 and then Type_Conformant
13836 Skip_Controlling_Formals
=> True)
13837 and then No
(Interface_Alias
(Act_Subp
));
13839 Next_Elmt
(Act_Elmt
);
13842 if No
(Act_Elmt
) then
13848 -- Case 1: If the parent is a limited interface then it has the
13849 -- predefined primitives of synchronized interfaces. However, the
13850 -- actual type may be a non-limited type and hence it does not
13851 -- have such primitives.
13853 if Present
(Generic_Actual
)
13854 and then not Present
(Act_Subp
)
13855 and then Is_Limited_Interface
(Parent_Base
)
13856 and then Is_Predefined_Interface_Primitive
(Subp
)
13860 -- Case 2: Inherit entities associated with interfaces that were
13861 -- not covered by the parent type. We exclude here null interface
13862 -- primitives because they do not need special management.
13864 -- We also exclude interface operations that are renamings. If the
13865 -- subprogram is an explicit renaming of an interface primitive,
13866 -- it is a regular primitive operation, and the presence of its
13867 -- alias is not relevant: it has to be derived like any other
13870 elsif Present
(Alias
(Subp
))
13871 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
13872 N_Subprogram_Renaming_Declaration
13873 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
13875 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
13876 and then Null_Present
(Parent
(Alias_Subp
)))
13878 -- If this is an abstract private type then we transfer the
13879 -- derivation of the interface primitive from the partial view
13880 -- to the full view. This is safe because all the interfaces
13881 -- must be visible in the partial view. Done to avoid adding
13882 -- a new interface derivation to the private part of the
13883 -- enclosing package; otherwise this new derivation would be
13884 -- decorated as hidden when the analysis of the enclosing
13885 -- package completes.
13887 if Is_Abstract_Type
(Derived_Type
)
13888 and then In_Private_Part
(Current_Scope
)
13889 and then Has_Private_Declaration
(Derived_Type
)
13892 Partial_View
: Entity_Id
;
13897 Partial_View
:= First_Entity
(Current_Scope
);
13899 exit when No
(Partial_View
)
13900 or else (Has_Private_Declaration
(Partial_View
)
13902 Full_View
(Partial_View
) = Derived_Type
);
13904 Next_Entity
(Partial_View
);
13907 -- If the partial view was not found then the source code
13908 -- has errors and the derivation is not needed.
13910 if Present
(Partial_View
) then
13912 First_Elmt
(Primitive_Operations
(Partial_View
));
13913 while Present
(Elmt
) loop
13914 Ent
:= Node
(Elmt
);
13916 if Present
(Alias
(Ent
))
13917 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
13920 (Ent
, Primitive_Operations
(Derived_Type
));
13927 -- If the interface primitive was not found in the
13928 -- partial view then this interface primitive was
13929 -- overridden. We add a derivation to activate in
13930 -- Derive_Progenitor_Subprograms the machinery to
13934 Derive_Interface_Subprogram
13935 (New_Subp
=> New_Subp
,
13937 Actual_Subp
=> Act_Subp
);
13942 Derive_Interface_Subprogram
13943 (New_Subp
=> New_Subp
,
13945 Actual_Subp
=> Act_Subp
);
13948 -- Case 3: Common derivation
13952 (New_Subp
=> New_Subp
,
13953 Parent_Subp
=> Subp
,
13954 Derived_Type
=> Derived_Type
,
13955 Parent_Type
=> Parent_Base
,
13956 Actual_Subp
=> Act_Subp
);
13959 -- No need to update Act_Elm if we must search for the
13960 -- corresponding operation in the generic actual
13963 and then Present
(Act_Elmt
)
13965 Next_Elmt
(Act_Elmt
);
13966 Act_Subp
:= Node
(Act_Elmt
);
13973 -- Inherit additional operations from progenitors. If the derived
13974 -- type is a generic actual, there are not new primitive operations
13975 -- for the type because it has those of the actual, and therefore
13976 -- nothing needs to be done. The renamings generated above are not
13977 -- primitive operations, and their purpose is simply to make the
13978 -- proper operations visible within an instantiation.
13980 if No
(Generic_Actual
) then
13981 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
13985 -- Final check: Direct descendants must have their primitives in the
13986 -- same order. We exclude from this test untagged types and instances
13987 -- of formal derived types. We skip this test if we have already
13988 -- reported serious errors in the sources.
13990 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
13991 or else Present
(Generic_Actual
)
13992 or else Serious_Errors_Detected
> 0
13993 or else Check_Derived_Type
);
13994 end Derive_Subprograms
;
13996 --------------------------------
13997 -- Derived_Standard_Character --
13998 --------------------------------
14000 procedure Derived_Standard_Character
14002 Parent_Type
: Entity_Id
;
14003 Derived_Type
: Entity_Id
)
14005 Loc
: constant Source_Ptr
:= Sloc
(N
);
14006 Def
: constant Node_Id
:= Type_Definition
(N
);
14007 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
14008 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
14009 Implicit_Base
: constant Entity_Id
:=
14011 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
14017 Discard_Node
(Process_Subtype
(Indic
, N
));
14019 Set_Etype
(Implicit_Base
, Parent_Base
);
14020 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
14021 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
14023 Set_Is_Character_Type
(Implicit_Base
, True);
14024 Set_Has_Delayed_Freeze
(Implicit_Base
);
14026 -- The bounds of the implicit base are the bounds of the parent base.
14027 -- Note that their type is the parent base.
14029 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
14030 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
14032 Set_Scalar_Range
(Implicit_Base
,
14035 High_Bound
=> Hi
));
14037 Conditional_Delay
(Derived_Type
, Parent_Type
);
14039 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
14040 Set_Etype
(Derived_Type
, Implicit_Base
);
14041 Set_Size_Info
(Derived_Type
, Parent_Type
);
14043 if Unknown_RM_Size
(Derived_Type
) then
14044 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
14047 Set_Is_Character_Type
(Derived_Type
, True);
14049 if Nkind
(Indic
) /= N_Subtype_Indication
then
14051 -- If no explicit constraint, the bounds are those
14052 -- of the parent type.
14054 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
14055 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
14056 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
14059 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
14061 -- Because the implicit base is used in the conversion of the bounds, we
14062 -- have to freeze it now. This is similar to what is done for numeric
14063 -- types, and it equally suspicious, but otherwise a non-static bound
14064 -- will have a reference to an unfrozen type, which is rejected by Gigi
14065 -- (???). This requires specific care for definition of stream
14066 -- attributes. For details, see comments at the end of
14067 -- Build_Derived_Numeric_Type.
14069 Freeze_Before
(N
, Implicit_Base
);
14070 end Derived_Standard_Character
;
14072 ------------------------------
14073 -- Derived_Type_Declaration --
14074 ------------------------------
14076 procedure Derived_Type_Declaration
14079 Is_Completion
: Boolean)
14081 Parent_Type
: Entity_Id
;
14083 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
14084 -- Check whether the parent type is a generic formal, or derives
14085 -- directly or indirectly from one.
14087 ------------------------
14088 -- Comes_From_Generic --
14089 ------------------------
14091 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
14093 if Is_Generic_Type
(Typ
) then
14096 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
14099 elsif Is_Private_Type
(Typ
)
14100 and then Present
(Full_View
(Typ
))
14101 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
14105 elsif Is_Generic_Actual_Type
(Typ
) then
14111 end Comes_From_Generic
;
14115 Def
: constant Node_Id
:= Type_Definition
(N
);
14116 Iface_Def
: Node_Id
;
14117 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
14118 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
14119 Parent_Node
: Node_Id
;
14122 -- Start of processing for Derived_Type_Declaration
14125 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
14127 -- Ada 2005 (AI-251): In case of interface derivation check that the
14128 -- parent is also an interface.
14130 if Interface_Present
(Def
) then
14131 Check_SPARK_Restriction
("interface is not allowed", Def
);
14133 if not Is_Interface
(Parent_Type
) then
14134 Diagnose_Interface
(Indic
, Parent_Type
);
14137 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
14138 Iface_Def
:= Type_Definition
(Parent_Node
);
14140 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14141 -- other limited interfaces.
14143 if Limited_Present
(Def
) then
14144 if Limited_Present
(Iface_Def
) then
14147 elsif Protected_Present
(Iface_Def
) then
14149 ("descendant of& must be declared"
14150 & " as a protected interface",
14153 elsif Synchronized_Present
(Iface_Def
) then
14155 ("descendant of& must be declared"
14156 & " as a synchronized interface",
14159 elsif Task_Present
(Iface_Def
) then
14161 ("descendant of& must be declared as a task interface",
14166 ("(Ada 2005) limited interface cannot "
14167 & "inherit from non-limited interface", Indic
);
14170 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14171 -- from non-limited or limited interfaces.
14173 elsif not Protected_Present
(Def
)
14174 and then not Synchronized_Present
(Def
)
14175 and then not Task_Present
(Def
)
14177 if Limited_Present
(Iface_Def
) then
14180 elsif Protected_Present
(Iface_Def
) then
14182 ("descendant of& must be declared"
14183 & " as a protected interface",
14186 elsif Synchronized_Present
(Iface_Def
) then
14188 ("descendant of& must be declared"
14189 & " as a synchronized interface",
14192 elsif Task_Present
(Iface_Def
) then
14194 ("descendant of& must be declared as a task interface",
14203 if Is_Tagged_Type
(Parent_Type
)
14204 and then Is_Concurrent_Type
(Parent_Type
)
14205 and then not Is_Interface
(Parent_Type
)
14208 ("parent type of a record extension cannot be "
14209 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
14210 Set_Etype
(T
, Any_Type
);
14214 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14217 if Is_Tagged_Type
(Parent_Type
)
14218 and then Is_Non_Empty_List
(Interface_List
(Def
))
14225 Intf
:= First
(Interface_List
(Def
));
14226 while Present
(Intf
) loop
14227 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
14229 if not Is_Interface
(T
) then
14230 Diagnose_Interface
(Intf
, T
);
14232 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14233 -- a limited type from having a nonlimited progenitor.
14235 elsif (Limited_Present
(Def
)
14236 or else (not Is_Interface
(Parent_Type
)
14237 and then Is_Limited_Type
(Parent_Type
)))
14238 and then not Is_Limited_Interface
(T
)
14241 ("progenitor interface& of limited type must be limited",
14250 if Parent_Type
= Any_Type
14251 or else Etype
(Parent_Type
) = Any_Type
14252 or else (Is_Class_Wide_Type
(Parent_Type
)
14253 and then Etype
(Parent_Type
) = T
)
14255 -- If Parent_Type is undefined or illegal, make new type into a
14256 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14257 -- errors. If this is a self-definition, emit error now.
14260 or else T
= Etype
(Parent_Type
)
14262 Error_Msg_N
("type cannot be used in its own definition", Indic
);
14265 Set_Ekind
(T
, Ekind
(Parent_Type
));
14266 Set_Etype
(T
, Any_Type
);
14267 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
14269 if Is_Tagged_Type
(T
)
14270 and then Is_Record_Type
(T
)
14272 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
14278 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14279 -- an interface is special because the list of interfaces in the full
14280 -- view can be given in any order. For example:
14282 -- type A is interface;
14283 -- type B is interface and A;
14284 -- type D is new B with private;
14286 -- type D is new A and B with null record; -- 1 --
14288 -- In this case we perform the following transformation of -1-:
14290 -- type D is new B and A with null record;
14292 -- If the parent of the full-view covers the parent of the partial-view
14293 -- we have two possible cases:
14295 -- 1) They have the same parent
14296 -- 2) The parent of the full-view implements some further interfaces
14298 -- In both cases we do not need to perform the transformation. In the
14299 -- first case the source program is correct and the transformation is
14300 -- not needed; in the second case the source program does not fulfill
14301 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14304 -- This transformation not only simplifies the rest of the analysis of
14305 -- this type declaration but also simplifies the correct generation of
14306 -- the object layout to the expander.
14308 if In_Private_Part
(Current_Scope
)
14309 and then Is_Interface
(Parent_Type
)
14313 Partial_View
: Entity_Id
;
14314 Partial_View_Parent
: Entity_Id
;
14315 New_Iface
: Node_Id
;
14318 -- Look for the associated private type declaration
14320 Partial_View
:= First_Entity
(Current_Scope
);
14322 exit when No
(Partial_View
)
14323 or else (Has_Private_Declaration
(Partial_View
)
14324 and then Full_View
(Partial_View
) = T
);
14326 Next_Entity
(Partial_View
);
14329 -- If the partial view was not found then the source code has
14330 -- errors and the transformation is not needed.
14332 if Present
(Partial_View
) then
14333 Partial_View_Parent
:= Etype
(Partial_View
);
14335 -- If the parent of the full-view covers the parent of the
14336 -- partial-view we have nothing else to do.
14338 if Interface_Present_In_Ancestor
14339 (Parent_Type
, Partial_View_Parent
)
14343 -- Traverse the list of interfaces of the full-view to look
14344 -- for the parent of the partial-view and perform the tree
14348 Iface
:= First
(Interface_List
(Def
));
14349 while Present
(Iface
) loop
14350 if Etype
(Iface
) = Etype
(Partial_View
) then
14351 Rewrite
(Subtype_Indication
(Def
),
14352 New_Copy
(Subtype_Indication
14353 (Parent
(Partial_View
))));
14356 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
14357 Append
(New_Iface
, Interface_List
(Def
));
14359 -- Analyze the transformed code
14361 Derived_Type_Declaration
(T
, N
, Is_Completion
);
14372 -- Only composite types other than array types are allowed to have
14373 -- discriminants. In SPARK, no types are allowed to have discriminants.
14375 if Present
(Discriminant_Specifications
(N
)) then
14376 if (Is_Elementary_Type
(Parent_Type
)
14377 or else Is_Array_Type
(Parent_Type
))
14378 and then not Error_Posted
(N
)
14381 ("elementary or array type cannot have discriminants",
14382 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
14383 Set_Has_Discriminants
(T
, False);
14385 Check_SPARK_Restriction
("discriminant type is not allowed", N
);
14389 -- In Ada 83, a derived type defined in a package specification cannot
14390 -- be used for further derivation until the end of its visible part.
14391 -- Note that derivation in the private part of the package is allowed.
14393 if Ada_Version
= Ada_83
14394 and then Is_Derived_Type
(Parent_Type
)
14395 and then In_Visible_Part
(Scope
(Parent_Type
))
14397 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
14399 ("(Ada 83): premature use of type for derivation", Indic
);
14403 -- Check for early use of incomplete or private type
14405 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
14406 Error_Msg_N
("premature derivation of incomplete type", Indic
);
14409 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
14410 and then not Comes_From_Generic
(Parent_Type
))
14411 or else Has_Private_Component
(Parent_Type
)
14413 -- The ancestor type of a formal type can be incomplete, in which
14414 -- case only the operations of the partial view are available in the
14415 -- generic. Subsequent checks may be required when the full view is
14416 -- analyzed to verify that a derivation from a tagged type has an
14419 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
14422 elsif No
(Underlying_Type
(Parent_Type
))
14423 or else Has_Private_Component
(Parent_Type
)
14426 ("premature derivation of derived or private type", Indic
);
14428 -- Flag the type itself as being in error, this prevents some
14429 -- nasty problems with subsequent uses of the malformed type.
14431 Set_Error_Posted
(T
);
14433 -- Check that within the immediate scope of an untagged partial
14434 -- view it's illegal to derive from the partial view if the
14435 -- full view is tagged. (7.3(7))
14437 -- We verify that the Parent_Type is a partial view by checking
14438 -- that it is not a Full_Type_Declaration (i.e. a private type or
14439 -- private extension declaration), to distinguish a partial view
14440 -- from a derivation from a private type which also appears as
14441 -- E_Private_Type. If the parent base type is not declared in an
14442 -- enclosing scope there is no need to check.
14444 elsif Present
(Full_View
(Parent_Type
))
14445 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
14446 and then not Is_Tagged_Type
(Parent_Type
)
14447 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
14448 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14451 ("premature derivation from type with tagged full view",
14456 -- Check that form of derivation is appropriate
14458 Taggd
:= Is_Tagged_Type
(Parent_Type
);
14460 -- Perhaps the parent type should be changed to the class-wide type's
14461 -- specific type in this case to prevent cascading errors ???
14463 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
14464 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
14468 if Present
(Extension
) and then not Taggd
then
14470 ("type derived from untagged type cannot have extension", Indic
);
14472 elsif No
(Extension
) and then Taggd
then
14474 -- If this declaration is within a private part (or body) of a
14475 -- generic instantiation then the derivation is allowed (the parent
14476 -- type can only appear tagged in this case if it's a generic actual
14477 -- type, since it would otherwise have been rejected in the analysis
14478 -- of the generic template).
14480 if not Is_Generic_Actual_Type
(Parent_Type
)
14481 or else In_Visible_Part
(Scope
(Parent_Type
))
14483 if Is_Class_Wide_Type
(Parent_Type
) then
14485 ("parent type must not be a class-wide type", Indic
);
14487 -- Use specific type to prevent cascaded errors.
14489 Parent_Type
:= Etype
(Parent_Type
);
14493 ("type derived from tagged type must have extension", Indic
);
14498 -- AI-443: Synchronized formal derived types require a private
14499 -- extension. There is no point in checking the ancestor type or
14500 -- the progenitors since the construct is wrong to begin with.
14502 if Ada_Version
>= Ada_2005
14503 and then Is_Generic_Type
(T
)
14504 and then Present
(Original_Node
(N
))
14507 Decl
: constant Node_Id
:= Original_Node
(N
);
14510 if Nkind
(Decl
) = N_Formal_Type_Declaration
14511 and then Nkind
(Formal_Type_Definition
(Decl
)) =
14512 N_Formal_Derived_Type_Definition
14513 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
14514 and then No
(Extension
)
14516 -- Avoid emitting a duplicate error message
14518 and then not Error_Posted
(Indic
)
14521 ("synchronized derived type must have extension", N
);
14526 if Null_Exclusion_Present
(Def
)
14527 and then not Is_Access_Type
(Parent_Type
)
14529 Error_Msg_N
("null exclusion can only apply to an access type", N
);
14532 -- Avoid deriving parent primitives of underlying record views
14534 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
14535 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
14537 -- AI-419: The parent type of an explicitly limited derived type must
14538 -- be a limited type or a limited interface.
14540 if Limited_Present
(Def
) then
14541 Set_Is_Limited_Record
(T
);
14543 if Is_Interface
(T
) then
14544 Set_Is_Limited_Interface
(T
);
14547 if not Is_Limited_Type
(Parent_Type
)
14549 (not Is_Interface
(Parent_Type
)
14550 or else not Is_Limited_Interface
(Parent_Type
))
14552 -- AI05-0096: a derivation in the private part of an instance is
14553 -- legal if the generic formal is untagged limited, and the actual
14556 if Is_Generic_Actual_Type
(Parent_Type
)
14557 and then In_Private_Part
(Current_Scope
)
14560 (Generic_Parent_Type
(Parent
(Parent_Type
)))
14566 ("parent type& of limited type must be limited",
14572 -- In SPARK, there are no derived type definitions other than type
14573 -- extensions of tagged record types.
14575 if No
(Extension
) then
14576 Check_SPARK_Restriction
("derived type is not allowed", N
);
14578 end Derived_Type_Declaration
;
14580 ------------------------
14581 -- Diagnose_Interface --
14582 ------------------------
14584 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
14586 if not Is_Interface
(E
)
14587 and then E
/= Any_Type
14589 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
14591 end Diagnose_Interface
;
14593 ----------------------------------
14594 -- Enumeration_Type_Declaration --
14595 ----------------------------------
14597 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
14604 -- Create identifier node representing lower bound
14606 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
14607 L
:= First
(Literals
(Def
));
14608 Set_Chars
(B_Node
, Chars
(L
));
14609 Set_Entity
(B_Node
, L
);
14610 Set_Etype
(B_Node
, T
);
14611 Set_Is_Static_Expression
(B_Node
, True);
14613 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
14614 Set_Low_Bound
(R_Node
, B_Node
);
14616 Set_Ekind
(T
, E_Enumeration_Type
);
14617 Set_First_Literal
(T
, L
);
14619 Set_Is_Constrained
(T
);
14623 -- Loop through literals of enumeration type setting pos and rep values
14624 -- except that if the Ekind is already set, then it means the literal
14625 -- was already constructed (case of a derived type declaration and we
14626 -- should not disturb the Pos and Rep values.
14628 while Present
(L
) loop
14629 if Ekind
(L
) /= E_Enumeration_Literal
then
14630 Set_Ekind
(L
, E_Enumeration_Literal
);
14631 Set_Enumeration_Pos
(L
, Ev
);
14632 Set_Enumeration_Rep
(L
, Ev
);
14633 Set_Is_Known_Valid
(L
, True);
14637 New_Overloaded_Entity
(L
);
14638 Generate_Definition
(L
);
14639 Set_Convention
(L
, Convention_Intrinsic
);
14641 -- Case of character literal
14643 if Nkind
(L
) = N_Defining_Character_Literal
then
14644 Set_Is_Character_Type
(T
, True);
14646 -- Check violation of No_Wide_Characters
14648 if Restriction_Check_Required
(No_Wide_Characters
) then
14649 Get_Name_String
(Chars
(L
));
14651 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
14652 Check_Restriction
(No_Wide_Characters
, L
);
14661 -- Now create a node representing upper bound
14663 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
14664 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
14665 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
14666 Set_Etype
(B_Node
, T
);
14667 Set_Is_Static_Expression
(B_Node
, True);
14669 Set_High_Bound
(R_Node
, B_Node
);
14671 -- Initialize various fields of the type. Some of this information
14672 -- may be overwritten later through rep.clauses.
14674 Set_Scalar_Range
(T
, R_Node
);
14675 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
14676 Set_Enum_Esize
(T
);
14677 Set_Enum_Pos_To_Rep
(T
, Empty
);
14679 -- Set Discard_Names if configuration pragma set, or if there is
14680 -- a parameterless pragma in the current declarative region
14682 if Global_Discard_Names
14683 or else Discard_Names
(Scope
(T
))
14685 Set_Discard_Names
(T
);
14688 -- Process end label if there is one
14690 if Present
(Def
) then
14691 Process_End_Label
(Def
, 'e', T
);
14693 end Enumeration_Type_Declaration
;
14695 ---------------------------------
14696 -- Expand_To_Stored_Constraint --
14697 ---------------------------------
14699 function Expand_To_Stored_Constraint
14701 Constraint
: Elist_Id
) return Elist_Id
14703 Explicitly_Discriminated_Type
: Entity_Id
;
14704 Expansion
: Elist_Id
;
14705 Discriminant
: Entity_Id
;
14707 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
14708 -- Find the nearest type that actually specifies discriminants
14710 ---------------------------------
14711 -- Type_With_Explicit_Discrims --
14712 ---------------------------------
14714 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
14715 Typ
: constant E
:= Base_Type
(Id
);
14718 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
14719 if Present
(Full_View
(Typ
)) then
14720 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
14724 if Has_Discriminants
(Typ
) then
14729 if Etype
(Typ
) = Typ
then
14731 elsif Has_Discriminants
(Typ
) then
14734 return Type_With_Explicit_Discrims
(Etype
(Typ
));
14737 end Type_With_Explicit_Discrims
;
14739 -- Start of processing for Expand_To_Stored_Constraint
14743 or else Is_Empty_Elmt_List
(Constraint
)
14748 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
14750 if No
(Explicitly_Discriminated_Type
) then
14754 Expansion
:= New_Elmt_List
;
14757 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
14758 while Present
(Discriminant
) loop
14760 Get_Discriminant_Value
(
14761 Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
14763 Next_Stored_Discriminant
(Discriminant
);
14767 end Expand_To_Stored_Constraint
;
14769 ---------------------------
14770 -- Find_Hidden_Interface --
14771 ---------------------------
14773 function Find_Hidden_Interface
14775 Dest
: Elist_Id
) return Entity_Id
14778 Iface_Elmt
: Elmt_Id
;
14781 if Present
(Src
) and then Present
(Dest
) then
14782 Iface_Elmt
:= First_Elmt
(Src
);
14783 while Present
(Iface_Elmt
) loop
14784 Iface
:= Node
(Iface_Elmt
);
14786 if Is_Interface
(Iface
)
14787 and then not Contain_Interface
(Iface
, Dest
)
14792 Next_Elmt
(Iface_Elmt
);
14797 end Find_Hidden_Interface
;
14799 --------------------
14800 -- Find_Type_Name --
14801 --------------------
14803 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
14804 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
14806 New_Id
: Entity_Id
;
14807 Prev_Par
: Node_Id
;
14809 procedure Check_Duplicate_Aspects
;
14810 -- Check that aspects specified in a completion have not been specified
14811 -- already in the partial view. Type_Invariant and others can be
14812 -- specified on either view but never on both.
14814 procedure Tag_Mismatch
;
14815 -- Diagnose a tagged partial view whose full view is untagged.
14816 -- We post the message on the full view, with a reference to
14817 -- the previous partial view. The partial view can be private
14818 -- or incomplete, and these are handled in a different manner,
14819 -- so we determine the position of the error message from the
14820 -- respective slocs of both.
14822 -----------------------------
14823 -- Check_Duplicate_Aspects --
14824 -----------------------------
14825 procedure Check_Duplicate_Aspects
is
14826 Prev_Aspects
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
14827 Full_Aspects
: constant List_Id
:= Aspect_Specifications
(N
);
14828 F_Spec
, P_Spec
: Node_Id
;
14831 if Present
(Prev_Aspects
) and then Present
(Full_Aspects
) then
14832 F_Spec
:= First
(Full_Aspects
);
14833 while Present
(F_Spec
) loop
14834 P_Spec
:= First
(Prev_Aspects
);
14835 while Present
(P_Spec
) loop
14837 Chars
(Identifier
(P_Spec
)) = Chars
(Identifier
(F_Spec
))
14840 ("aspect already specified in private declaration",
14852 end Check_Duplicate_Aspects
;
14858 procedure Tag_Mismatch
is
14860 if Sloc
(Prev
) < Sloc
(Id
) then
14861 if Ada_Version
>= Ada_2012
14862 and then Nkind
(N
) = N_Private_Type_Declaration
14865 ("declaration of private } must be a tagged type ", Id
, Prev
);
14868 ("full declaration of } must be a tagged type ", Id
, Prev
);
14871 if Ada_Version
>= Ada_2012
14872 and then Nkind
(N
) = N_Private_Type_Declaration
14875 ("declaration of private } must be a tagged type ", Prev
, Id
);
14878 ("full declaration of } must be a tagged type ", Prev
, Id
);
14883 -- Start of processing for Find_Type_Name
14886 -- Find incomplete declaration, if one was given
14888 Prev
:= Current_Entity_In_Scope
(Id
);
14890 -- New type declaration
14896 -- Previous declaration exists
14899 Prev_Par
:= Parent
(Prev
);
14901 -- Error if not incomplete/private case except if previous
14902 -- declaration is implicit, etc. Enter_Name will emit error if
14905 if not Is_Incomplete_Or_Private_Type
(Prev
) then
14909 -- Check invalid completion of private or incomplete type
14911 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
14912 N_Task_Type_Declaration
,
14913 N_Protected_Type_Declaration
)
14915 (Ada_Version
< Ada_2012
14916 or else not Is_Incomplete_Type
(Prev
)
14917 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
14918 N_Private_Extension_Declaration
))
14920 -- Completion must be a full type declarations (RM 7.3(4))
14922 Error_Msg_Sloc
:= Sloc
(Prev
);
14923 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
14925 -- Set scope of Id to avoid cascaded errors. Entity is never
14926 -- examined again, except when saving globals in generics.
14928 Set_Scope
(Id
, Current_Scope
);
14931 -- If this is a repeated incomplete declaration, no further
14932 -- checks are possible.
14934 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
14938 -- Case of full declaration of incomplete type
14940 elsif Ekind
(Prev
) = E_Incomplete_Type
14941 and then (Ada_Version
< Ada_2012
14942 or else No
(Full_View
(Prev
))
14943 or else not Is_Private_Type
(Full_View
(Prev
)))
14946 -- Indicate that the incomplete declaration has a matching full
14947 -- declaration. The defining occurrence of the incomplete
14948 -- declaration remains the visible one, and the procedure
14949 -- Get_Full_View dereferences it whenever the type is used.
14951 if Present
(Full_View
(Prev
)) then
14952 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
14955 Set_Full_View
(Prev
, Id
);
14956 Append_Entity
(Id
, Current_Scope
);
14957 Set_Is_Public
(Id
, Is_Public
(Prev
));
14958 Set_Is_Internal
(Id
);
14961 -- If the incomplete view is tagged, a class_wide type has been
14962 -- created already. Use it for the private type as well, in order
14963 -- to prevent multiple incompatible class-wide types that may be
14964 -- created for self-referential anonymous access components.
14966 if Is_Tagged_Type
(Prev
)
14967 and then Present
(Class_Wide_Type
(Prev
))
14969 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
14970 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
14972 -- If the incomplete type is completed by a private declaration
14973 -- the class-wide type remains associated with the incomplete
14974 -- type, to prevent order-of-elaboration issues in gigi, else
14975 -- we associate the class-wide type with the known full view.
14977 if Nkind
(N
) /= N_Private_Type_Declaration
then
14978 Set_Etype
(Class_Wide_Type
(Id
), Id
);
14982 -- Case of full declaration of private type
14985 -- If the private type was a completion of an incomplete type then
14986 -- update Prev to reference the private type
14988 if Ada_Version
>= Ada_2012
14989 and then Ekind
(Prev
) = E_Incomplete_Type
14990 and then Present
(Full_View
(Prev
))
14991 and then Is_Private_Type
(Full_View
(Prev
))
14993 Prev
:= Full_View
(Prev
);
14994 Prev_Par
:= Parent
(Prev
);
14997 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
14998 if Etype
(Prev
) /= Prev
then
15000 -- Prev is a private subtype or a derived type, and needs
15003 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
15006 elsif Ekind
(Prev
) = E_Private_Type
15007 and then Nkind_In
(N
, N_Task_Type_Declaration
,
15008 N_Protected_Type_Declaration
)
15011 ("completion of nonlimited type cannot be limited", N
);
15013 elsif Ekind
(Prev
) = E_Record_Type_With_Private
15014 and then Nkind_In
(N
, N_Task_Type_Declaration
,
15015 N_Protected_Type_Declaration
)
15017 if not Is_Limited_Record
(Prev
) then
15019 ("completion of nonlimited type cannot be limited", N
);
15021 elsif No
(Interface_List
(N
)) then
15023 ("completion of tagged private type must be tagged",
15027 elsif Nkind
(N
) = N_Full_Type_Declaration
15029 Nkind
(Type_Definition
(N
)) = N_Record_Definition
15030 and then Interface_Present
(Type_Definition
(N
))
15033 ("completion of private type cannot be an interface", N
);
15036 -- Ada 2005 (AI-251): Private extension declaration of a task
15037 -- type or a protected type. This case arises when covering
15038 -- interface types.
15040 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
15041 N_Protected_Type_Declaration
)
15045 elsif Nkind
(N
) /= N_Full_Type_Declaration
15046 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
15049 ("full view of private extension must be an extension", N
);
15051 elsif not (Abstract_Present
(Parent
(Prev
)))
15052 and then Abstract_Present
(Type_Definition
(N
))
15055 ("full view of non-abstract extension cannot be abstract", N
);
15058 if not In_Private_Part
(Current_Scope
) then
15060 ("declaration of full view must appear in private part", N
);
15063 if Ada_Version
>= Ada_2012
then
15064 Check_Duplicate_Aspects
;
15067 Copy_And_Swap
(Prev
, Id
);
15068 Set_Has_Private_Declaration
(Prev
);
15069 Set_Has_Private_Declaration
(Id
);
15071 -- Preserve aspect and iterator flags that may have been set on
15072 -- the partial view.
15074 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
15075 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
15077 -- If no error, propagate freeze_node from private to full view.
15078 -- It may have been generated for an early operational item.
15080 if Present
(Freeze_Node
(Id
))
15081 and then Serious_Errors_Detected
= 0
15082 and then No
(Full_View
(Id
))
15084 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
15085 Set_Freeze_Node
(Id
, Empty
);
15086 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
15089 Set_Full_View
(Id
, Prev
);
15093 -- Verify that full declaration conforms to partial one
15095 if Is_Incomplete_Or_Private_Type
(Prev
)
15096 and then Present
(Discriminant_Specifications
(Prev_Par
))
15098 if Present
(Discriminant_Specifications
(N
)) then
15099 if Ekind
(Prev
) = E_Incomplete_Type
then
15100 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
15102 Check_Discriminant_Conformance
(N
, Prev
, Id
);
15107 ("missing discriminants in full type declaration", N
);
15109 -- To avoid cascaded errors on subsequent use, share the
15110 -- discriminants of the partial view.
15112 Set_Discriminant_Specifications
(N
,
15113 Discriminant_Specifications
(Prev_Par
));
15117 -- A prior untagged partial view can have an associated class-wide
15118 -- type due to use of the class attribute, and in this case the full
15119 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15120 -- of incomplete tagged declarations, but we check for it.
15123 and then (Is_Tagged_Type
(Prev
)
15124 or else Present
(Class_Wide_Type
(Prev
)))
15126 -- Ada 2012 (AI05-0162): A private type may be the completion of
15127 -- an incomplete type
15129 if Ada_Version
>= Ada_2012
15130 and then Is_Incomplete_Type
(Prev
)
15131 and then Nkind_In
(N
, N_Private_Type_Declaration
,
15132 N_Private_Extension_Declaration
)
15134 -- No need to check private extensions since they are tagged
15136 if Nkind
(N
) = N_Private_Type_Declaration
15137 and then not Tagged_Present
(N
)
15142 -- The full declaration is either a tagged type (including
15143 -- a synchronized type that implements interfaces) or a
15144 -- type extension, otherwise this is an error.
15146 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
15147 N_Protected_Type_Declaration
)
15149 if No
(Interface_List
(N
))
15150 and then not Error_Posted
(N
)
15155 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
15157 -- Indicate that the previous declaration (tagged incomplete
15158 -- or private declaration) requires the same on the full one.
15160 if not Tagged_Present
(Type_Definition
(N
)) then
15162 Set_Is_Tagged_Type
(Id
);
15165 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
15166 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
15168 ("full declaration of } must be a record extension",
15171 -- Set some attributes to produce a usable full view
15173 Set_Is_Tagged_Type
(Id
);
15182 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
15183 and then Present
(Premature_Use
(Parent
(Prev
)))
15185 Error_Msg_Sloc
:= Sloc
(N
);
15187 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
15192 end Find_Type_Name
;
15194 -------------------------
15195 -- Find_Type_Of_Object --
15196 -------------------------
15198 function Find_Type_Of_Object
15199 (Obj_Def
: Node_Id
;
15200 Related_Nod
: Node_Id
) return Entity_Id
15202 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
15203 P
: Node_Id
:= Parent
(Obj_Def
);
15208 -- If the parent is a component_definition node we climb to the
15209 -- component_declaration node
15211 if Nkind
(P
) = N_Component_Definition
then
15215 -- Case of an anonymous array subtype
15217 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
15218 N_Unconstrained_Array_Definition
)
15221 Array_Type_Declaration
(T
, Obj_Def
);
15223 -- Create an explicit subtype whenever possible
15225 elsif Nkind
(P
) /= N_Component_Declaration
15226 and then Def_Kind
= N_Subtype_Indication
15228 -- Base name of subtype on object name, which will be unique in
15229 -- the current scope.
15231 -- If this is a duplicate declaration, return base type, to avoid
15232 -- generating duplicate anonymous types.
15234 if Error_Posted
(P
) then
15235 Analyze
(Subtype_Mark
(Obj_Def
));
15236 return Entity
(Subtype_Mark
(Obj_Def
));
15241 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
15243 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
15245 Insert_Action
(Obj_Def
,
15246 Make_Subtype_Declaration
(Sloc
(P
),
15247 Defining_Identifier
=> T
,
15248 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
15250 -- This subtype may need freezing, and this will not be done
15251 -- automatically if the object declaration is not in declarative
15252 -- part. Since this is an object declaration, the type cannot always
15253 -- be frozen here. Deferred constants do not freeze their type
15254 -- (which often enough will be private).
15256 if Nkind
(P
) = N_Object_Declaration
15257 and then Constant_Present
(P
)
15258 and then No
(Expression
(P
))
15262 Insert_Actions
(Obj_Def
, Freeze_Entity
(T
, P
));
15265 -- Ada 2005 AI-406: the object definition in an object declaration
15266 -- can be an access definition.
15268 elsif Def_Kind
= N_Access_Definition
then
15269 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
15271 Set_Is_Local_Anonymous_Access
15273 V
=> (Ada_Version
< Ada_2012
)
15274 or else (Nkind
(P
) /= N_Object_Declaration
)
15275 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
15277 -- Otherwise, the object definition is just a subtype_mark
15280 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
15282 -- If expansion is disabled an object definition that is an aggregate
15283 -- will not get expanded and may lead to scoping problems in the back
15284 -- end, if the object is referenced in an inner scope. In that case
15285 -- create an itype reference for the object definition now. This
15286 -- may be redundant in some cases, but harmless.
15289 and then Nkind
(Related_Nod
) = N_Object_Declaration
15292 Build_Itype_Reference
(T
, Related_Nod
);
15297 end Find_Type_Of_Object
;
15299 --------------------------------
15300 -- Find_Type_Of_Subtype_Indic --
15301 --------------------------------
15303 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
15307 -- Case of subtype mark with a constraint
15309 if Nkind
(S
) = N_Subtype_Indication
then
15310 Find_Type
(Subtype_Mark
(S
));
15311 Typ
:= Entity
(Subtype_Mark
(S
));
15314 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
15317 ("incorrect constraint for this kind of type", Constraint
(S
));
15318 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
15321 -- Otherwise we have a subtype mark without a constraint
15323 elsif Error_Posted
(S
) then
15324 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
15332 -- Check No_Wide_Characters restriction
15334 Check_Wide_Character_Restriction
(Typ
, S
);
15337 end Find_Type_Of_Subtype_Indic
;
15339 -------------------------------------
15340 -- Floating_Point_Type_Declaration --
15341 -------------------------------------
15343 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
15344 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
15345 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
15347 Base_Typ
: Entity_Id
;
15348 Implicit_Base
: Entity_Id
;
15351 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
15352 -- Find if given digits value, and possibly a specified range, allows
15353 -- derivation from specified type
15355 function Find_Base_Type
return Entity_Id
;
15356 -- Find a predefined base type that Def can derive from, or generate
15357 -- an error and substitute Long_Long_Float if none exists.
15359 ---------------------
15360 -- Can_Derive_From --
15361 ---------------------
15363 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
15364 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
15367 -- Check specified "digits" constraint
15369 if Digs_Val
> Digits_Value
(E
) then
15373 -- Avoid types not matching pragma Float_Representation, if present
15375 if (Opt
.Float_Format
= 'I' and then Float_Rep
(E
) /= IEEE_Binary
)
15377 (Opt
.Float_Format
= 'V' and then Float_Rep
(E
) /= VAX_Native
)
15382 -- Check for matching range, if specified
15384 if Present
(Spec
) then
15385 if Expr_Value_R
(Type_Low_Bound
(E
)) >
15386 Expr_Value_R
(Low_Bound
(Spec
))
15391 if Expr_Value_R
(Type_High_Bound
(E
)) <
15392 Expr_Value_R
(High_Bound
(Spec
))
15399 end Can_Derive_From
;
15401 --------------------
15402 -- Find_Base_Type --
15403 --------------------
15405 function Find_Base_Type
return Entity_Id
is
15406 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
15409 -- Iterate over the predefined types in order, returning the first
15410 -- one that Def can derive from.
15412 while Present
(Choice
) loop
15413 if Can_Derive_From
(Node
(Choice
)) then
15414 return Node
(Choice
);
15417 Next_Elmt
(Choice
);
15420 -- If we can't derive from any existing type, use Long_Long_Float
15421 -- and give appropriate message explaining the problem.
15423 if Digs_Val
> Max_Digs_Val
then
15424 -- It might be the case that there is a type with the requested
15425 -- range, just not the combination of digits and range.
15428 ("no predefined type has requested range and precision",
15429 Real_Range_Specification
(Def
));
15433 ("range too large for any predefined type",
15434 Real_Range_Specification
(Def
));
15437 return Standard_Long_Long_Float
;
15438 end Find_Base_Type
;
15440 -- Start of processing for Floating_Point_Type_Declaration
15443 Check_Restriction
(No_Floating_Point
, Def
);
15445 -- Create an implicit base type
15448 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
15450 -- Analyze and verify digits value
15452 Analyze_And_Resolve
(Digs
, Any_Integer
);
15453 Check_Digits_Expression
(Digs
);
15454 Digs_Val
:= Expr_Value
(Digs
);
15456 -- Process possible range spec and find correct type to derive from
15458 Process_Real_Range_Specification
(Def
);
15460 -- Check that requested number of digits is not too high.
15462 if Digs_Val
> Max_Digs_Val
then
15463 -- The check for Max_Base_Digits may be somewhat expensive, as it
15464 -- requires reading System, so only do it when necessary.
15467 Max_Base_Digits
: constant Uint
:=
15470 (Parent
(RTE
(RE_Max_Base_Digits
))));
15473 if Digs_Val
> Max_Base_Digits
then
15474 Error_Msg_Uint_1
:= Max_Base_Digits
;
15475 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
15477 elsif No
(Real_Range_Specification
(Def
)) then
15478 Error_Msg_Uint_1
:= Max_Digs_Val
;
15479 Error_Msg_N
("types with more than ^ digits need range spec "
15480 & "(RM 3.5.7(6))", Digs
);
15485 -- Find a suitable type to derive from or complain and use a substitute
15487 Base_Typ
:= Find_Base_Type
;
15489 -- If there are bounds given in the declaration use them as the bounds
15490 -- of the type, otherwise use the bounds of the predefined base type
15491 -- that was chosen based on the Digits value.
15493 if Present
(Real_Range_Specification
(Def
)) then
15494 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
15495 Set_Is_Constrained
(T
);
15497 -- The bounds of this range must be converted to machine numbers
15498 -- in accordance with RM 4.9(38).
15500 Bound
:= Type_Low_Bound
(T
);
15502 if Nkind
(Bound
) = N_Real_Literal
then
15504 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
15505 Set_Is_Machine_Number
(Bound
);
15508 Bound
:= Type_High_Bound
(T
);
15510 if Nkind
(Bound
) = N_Real_Literal
then
15512 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
15513 Set_Is_Machine_Number
(Bound
);
15517 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
15520 -- Complete definition of implicit base and declared first subtype
15522 Set_Etype
(Implicit_Base
, Base_Typ
);
15524 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
15525 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
15526 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
15527 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
15528 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
15529 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
15531 Set_Ekind
(T
, E_Floating_Point_Subtype
);
15532 Set_Etype
(T
, Implicit_Base
);
15534 Set_Size_Info
(T
, (Implicit_Base
));
15535 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
15536 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
15537 Set_Digits_Value
(T
, Digs_Val
);
15538 end Floating_Point_Type_Declaration
;
15540 ----------------------------
15541 -- Get_Discriminant_Value --
15542 ----------------------------
15544 -- This is the situation:
15546 -- There is a non-derived type
15548 -- type T0 (Dx, Dy, Dz...)
15550 -- There are zero or more levels of derivation, with each derivation
15551 -- either purely inheriting the discriminants, or defining its own.
15553 -- type Ti is new Ti-1
15555 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
15557 -- subtype Ti is ...
15559 -- The subtype issue is avoided by the use of Original_Record_Component,
15560 -- and the fact that derived subtypes also derive the constraints.
15562 -- This chain leads back from
15564 -- Typ_For_Constraint
15566 -- Typ_For_Constraint has discriminants, and the value for each
15567 -- discriminant is given by its corresponding Elmt of Constraints.
15569 -- Discriminant is some discriminant in this hierarchy
15571 -- We need to return its value
15573 -- We do this by recursively searching each level, and looking for
15574 -- Discriminant. Once we get to the bottom, we start backing up
15575 -- returning the value for it which may in turn be a discriminant
15576 -- further up, so on the backup we continue the substitution.
15578 function Get_Discriminant_Value
15579 (Discriminant
: Entity_Id
;
15580 Typ_For_Constraint
: Entity_Id
;
15581 Constraint
: Elist_Id
) return Node_Id
15583 function Root_Corresponding_Discriminant
15584 (Discr
: Entity_Id
) return Entity_Id
;
15585 -- Given a discriminant, traverse the chain of inherited discriminants
15586 -- and return the topmost discriminant.
15588 function Search_Derivation_Levels
15590 Discrim_Values
: Elist_Id
;
15591 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
15592 -- This is the routine that performs the recursive search of levels
15593 -- as described above.
15595 -------------------------------------
15596 -- Root_Corresponding_Discriminant --
15597 -------------------------------------
15599 function Root_Corresponding_Discriminant
15600 (Discr
: Entity_Id
) return Entity_Id
15606 while Present
(Corresponding_Discriminant
(D
)) loop
15607 D
:= Corresponding_Discriminant
(D
);
15611 end Root_Corresponding_Discriminant
;
15613 ------------------------------
15614 -- Search_Derivation_Levels --
15615 ------------------------------
15617 function Search_Derivation_Levels
15619 Discrim_Values
: Elist_Id
;
15620 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
15624 Result
: Node_Or_Entity_Id
;
15625 Result_Entity
: Node_Id
;
15628 -- If inappropriate type, return Error, this happens only in
15629 -- cascaded error situations, and we want to avoid a blow up.
15631 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
15635 -- Look deeper if possible. Use Stored_Constraints only for
15636 -- untagged types. For tagged types use the given constraint.
15637 -- This asymmetry needs explanation???
15639 if not Stored_Discrim_Values
15640 and then Present
(Stored_Constraint
(Ti
))
15641 and then not Is_Tagged_Type
(Ti
)
15644 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
15647 Td
: constant Entity_Id
:= Etype
(Ti
);
15651 Result
:= Discriminant
;
15654 if Present
(Stored_Constraint
(Ti
)) then
15656 Search_Derivation_Levels
15657 (Td
, Stored_Constraint
(Ti
), True);
15660 Search_Derivation_Levels
15661 (Td
, Discrim_Values
, Stored_Discrim_Values
);
15667 -- Extra underlying places to search, if not found above. For
15668 -- concurrent types, the relevant discriminant appears in the
15669 -- corresponding record. For a type derived from a private type
15670 -- without discriminant, the full view inherits the discriminants
15671 -- of the full view of the parent.
15673 if Result
= Discriminant
then
15674 if Is_Concurrent_Type
(Ti
)
15675 and then Present
(Corresponding_Record_Type
(Ti
))
15678 Search_Derivation_Levels
(
15679 Corresponding_Record_Type
(Ti
),
15681 Stored_Discrim_Values
);
15683 elsif Is_Private_Type
(Ti
)
15684 and then not Has_Discriminants
(Ti
)
15685 and then Present
(Full_View
(Ti
))
15686 and then Etype
(Full_View
(Ti
)) /= Ti
15689 Search_Derivation_Levels
(
15692 Stored_Discrim_Values
);
15696 -- If Result is not a (reference to a) discriminant, return it,
15697 -- otherwise set Result_Entity to the discriminant.
15699 if Nkind
(Result
) = N_Defining_Identifier
then
15700 pragma Assert
(Result
= Discriminant
);
15701 Result_Entity
:= Result
;
15704 if not Denotes_Discriminant
(Result
) then
15708 Result_Entity
:= Entity
(Result
);
15711 -- See if this level of derivation actually has discriminants
15712 -- because tagged derivations can add them, hence the lower
15713 -- levels need not have any.
15715 if not Has_Discriminants
(Ti
) then
15719 -- Scan Ti's discriminants for Result_Entity,
15720 -- and return its corresponding value, if any.
15722 Result_Entity
:= Original_Record_Component
(Result_Entity
);
15724 Assoc
:= First_Elmt
(Discrim_Values
);
15726 if Stored_Discrim_Values
then
15727 Disc
:= First_Stored_Discriminant
(Ti
);
15729 Disc
:= First_Discriminant
(Ti
);
15732 while Present
(Disc
) loop
15733 pragma Assert
(Present
(Assoc
));
15735 if Original_Record_Component
(Disc
) = Result_Entity
then
15736 return Node
(Assoc
);
15741 if Stored_Discrim_Values
then
15742 Next_Stored_Discriminant
(Disc
);
15744 Next_Discriminant
(Disc
);
15748 -- Could not find it
15751 end Search_Derivation_Levels
;
15755 Result
: Node_Or_Entity_Id
;
15757 -- Start of processing for Get_Discriminant_Value
15760 -- ??? This routine is a gigantic mess and will be deleted. For the
15761 -- time being just test for the trivial case before calling recurse.
15763 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
15769 D
:= First_Discriminant
(Typ_For_Constraint
);
15770 E
:= First_Elmt
(Constraint
);
15771 while Present
(D
) loop
15772 if Chars
(D
) = Chars
(Discriminant
) then
15776 Next_Discriminant
(D
);
15782 Result
:= Search_Derivation_Levels
15783 (Typ_For_Constraint
, Constraint
, False);
15785 -- ??? hack to disappear when this routine is gone
15787 if Nkind
(Result
) = N_Defining_Identifier
then
15793 D
:= First_Discriminant
(Typ_For_Constraint
);
15794 E
:= First_Elmt
(Constraint
);
15795 while Present
(D
) loop
15796 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
15800 Next_Discriminant
(D
);
15806 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
15808 end Get_Discriminant_Value
;
15810 --------------------------
15811 -- Has_Range_Constraint --
15812 --------------------------
15814 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
15815 C
: constant Node_Id
:= Constraint
(N
);
15818 if Nkind
(C
) = N_Range_Constraint
then
15821 elsif Nkind
(C
) = N_Digits_Constraint
then
15823 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
15825 Present
(Range_Constraint
(C
));
15827 elsif Nkind
(C
) = N_Delta_Constraint
then
15828 return Present
(Range_Constraint
(C
));
15833 end Has_Range_Constraint
;
15835 ------------------------
15836 -- Inherit_Components --
15837 ------------------------
15839 function Inherit_Components
15841 Parent_Base
: Entity_Id
;
15842 Derived_Base
: Entity_Id
;
15843 Is_Tagged
: Boolean;
15844 Inherit_Discr
: Boolean;
15845 Discs
: Elist_Id
) return Elist_Id
15847 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
15849 procedure Inherit_Component
15850 (Old_C
: Entity_Id
;
15851 Plain_Discrim
: Boolean := False;
15852 Stored_Discrim
: Boolean := False);
15853 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
15854 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
15855 -- True, Old_C is a stored discriminant. If they are both false then
15856 -- Old_C is a regular component.
15858 -----------------------
15859 -- Inherit_Component --
15860 -----------------------
15862 procedure Inherit_Component
15863 (Old_C
: Entity_Id
;
15864 Plain_Discrim
: Boolean := False;
15865 Stored_Discrim
: Boolean := False)
15867 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
15868 -- Id denotes the entity of an access discriminant or anonymous
15869 -- access component. Set the type of Id to either the same type of
15870 -- Old_C or create a new one depending on whether the parent and
15871 -- the child types are in the same scope.
15873 ------------------------
15874 -- Set_Anonymous_Type --
15875 ------------------------
15877 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
15878 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
15881 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
15882 Set_Etype
(Id
, Old_Typ
);
15884 -- The parent and the derived type are in two different scopes.
15885 -- Reuse the type of the original discriminant / component by
15886 -- copying it in order to preserve all attributes.
15890 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
15893 Set_Etype
(Id
, Typ
);
15895 -- Since we do not generate component declarations for
15896 -- inherited components, associate the itype with the
15899 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
15900 Set_Scope
(Typ
, Derived_Base
);
15903 end Set_Anonymous_Type
;
15905 -- Local variables and constants
15907 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
15909 Corr_Discrim
: Entity_Id
;
15910 Discrim
: Entity_Id
;
15912 -- Start of processing for Inherit_Component
15915 pragma Assert
(not Is_Tagged
or else not Stored_Discrim
);
15917 Set_Parent
(New_C
, Parent
(Old_C
));
15919 -- Regular discriminants and components must be inserted in the scope
15920 -- of the Derived_Base. Do it here.
15922 if not Stored_Discrim
then
15923 Enter_Name
(New_C
);
15926 -- For tagged types the Original_Record_Component must point to
15927 -- whatever this field was pointing to in the parent type. This has
15928 -- already been achieved by the call to New_Copy above.
15930 if not Is_Tagged
then
15931 Set_Original_Record_Component
(New_C
, New_C
);
15934 -- Set the proper type of an access discriminant
15936 if Ekind
(New_C
) = E_Discriminant
15937 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
15939 Set_Anonymous_Type
(New_C
);
15942 -- If we have inherited a component then see if its Etype contains
15943 -- references to Parent_Base discriminants. In this case, replace
15944 -- these references with the constraints given in Discs. We do not
15945 -- do this for the partial view of private types because this is
15946 -- not needed (only the components of the full view will be used
15947 -- for code generation) and cause problem. We also avoid this
15948 -- transformation in some error situations.
15950 if Ekind
(New_C
) = E_Component
then
15952 -- Set the proper type of an anonymous access component
15954 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
15955 Set_Anonymous_Type
(New_C
);
15957 elsif (Is_Private_Type
(Derived_Base
)
15958 and then not Is_Generic_Type
(Derived_Base
))
15959 or else (Is_Empty_Elmt_List
(Discs
)
15960 and then not Expander_Active
)
15962 Set_Etype
(New_C
, Etype
(Old_C
));
15965 -- The current component introduces a circularity of the
15968 -- limited with Pack_2;
15969 -- package Pack_1 is
15970 -- type T_1 is tagged record
15971 -- Comp : access Pack_2.T_2;
15977 -- package Pack_2 is
15978 -- type T_2 is new Pack_1.T_1 with ...;
15983 Constrain_Component_Type
15984 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
15988 -- In derived tagged types it is illegal to reference a non
15989 -- discriminant component in the parent type. To catch this, mark
15990 -- these components with an Ekind of E_Void. This will be reset in
15991 -- Record_Type_Definition after processing the record extension of
15992 -- the derived type.
15994 -- If the declaration is a private extension, there is no further
15995 -- record extension to process, and the components retain their
15996 -- current kind, because they are visible at this point.
15998 if Is_Tagged
and then Ekind
(New_C
) = E_Component
15999 and then Nkind
(N
) /= N_Private_Extension_Declaration
16001 Set_Ekind
(New_C
, E_Void
);
16004 if Plain_Discrim
then
16005 Set_Corresponding_Discriminant
(New_C
, Old_C
);
16006 Build_Discriminal
(New_C
);
16008 -- If we are explicitly inheriting a stored discriminant it will be
16009 -- completely hidden.
16011 elsif Stored_Discrim
then
16012 Set_Corresponding_Discriminant
(New_C
, Empty
);
16013 Set_Discriminal
(New_C
, Empty
);
16014 Set_Is_Completely_Hidden
(New_C
);
16016 -- Set the Original_Record_Component of each discriminant in the
16017 -- derived base to point to the corresponding stored that we just
16020 Discrim
:= First_Discriminant
(Derived_Base
);
16021 while Present
(Discrim
) loop
16022 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
16024 -- Corr_Discrim could be missing in an error situation
16026 if Present
(Corr_Discrim
)
16027 and then Original_Record_Component
(Corr_Discrim
) = Old_C
16029 Set_Original_Record_Component
(Discrim
, New_C
);
16032 Next_Discriminant
(Discrim
);
16035 Append_Entity
(New_C
, Derived_Base
);
16038 if not Is_Tagged
then
16039 Append_Elmt
(Old_C
, Assoc_List
);
16040 Append_Elmt
(New_C
, Assoc_List
);
16042 end Inherit_Component
;
16044 -- Variables local to Inherit_Component
16046 Loc
: constant Source_Ptr
:= Sloc
(N
);
16048 Parent_Discrim
: Entity_Id
;
16049 Stored_Discrim
: Entity_Id
;
16051 Component
: Entity_Id
;
16053 -- Start of processing for Inherit_Components
16056 if not Is_Tagged
then
16057 Append_Elmt
(Parent_Base
, Assoc_List
);
16058 Append_Elmt
(Derived_Base
, Assoc_List
);
16061 -- Inherit parent discriminants if needed
16063 if Inherit_Discr
then
16064 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
16065 while Present
(Parent_Discrim
) loop
16066 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
16067 Next_Discriminant
(Parent_Discrim
);
16071 -- Create explicit stored discrims for untagged types when necessary
16073 if not Has_Unknown_Discriminants
(Derived_Base
)
16074 and then Has_Discriminants
(Parent_Base
)
16075 and then not Is_Tagged
16078 or else First_Discriminant
(Parent_Base
) /=
16079 First_Stored_Discriminant
(Parent_Base
))
16081 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
16082 while Present
(Stored_Discrim
) loop
16083 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
16084 Next_Stored_Discriminant
(Stored_Discrim
);
16088 -- See if we can apply the second transformation for derived types, as
16089 -- explained in point 6. in the comments above Build_Derived_Record_Type
16090 -- This is achieved by appending Derived_Base discriminants into Discs,
16091 -- which has the side effect of returning a non empty Discs list to the
16092 -- caller of Inherit_Components, which is what we want. This must be
16093 -- done for private derived types if there are explicit stored
16094 -- discriminants, to ensure that we can retrieve the values of the
16095 -- constraints provided in the ancestors.
16098 and then Is_Empty_Elmt_List
(Discs
)
16099 and then Present
(First_Discriminant
(Derived_Base
))
16101 (not Is_Private_Type
(Derived_Base
)
16102 or else Is_Completely_Hidden
16103 (First_Stored_Discriminant
(Derived_Base
))
16104 or else Is_Generic_Type
(Derived_Base
))
16106 D
:= First_Discriminant
(Derived_Base
);
16107 while Present
(D
) loop
16108 Append_Elmt
(New_Reference_To
(D
, Loc
), Discs
);
16109 Next_Discriminant
(D
);
16113 -- Finally, inherit non-discriminant components unless they are not
16114 -- visible because defined or inherited from the full view of the
16115 -- parent. Don't inherit the _parent field of the parent type.
16117 Component
:= First_Entity
(Parent_Base
);
16118 while Present
(Component
) loop
16120 -- Ada 2005 (AI-251): Do not inherit components associated with
16121 -- secondary tags of the parent.
16123 if Ekind
(Component
) = E_Component
16124 and then Present
(Related_Type
(Component
))
16128 elsif Ekind
(Component
) /= E_Component
16129 or else Chars
(Component
) = Name_uParent
16133 -- If the derived type is within the parent type's declarative
16134 -- region, then the components can still be inherited even though
16135 -- they aren't visible at this point. This can occur for cases
16136 -- such as within public child units where the components must
16137 -- become visible upon entering the child unit's private part.
16139 elsif not Is_Visible_Component
(Component
)
16140 and then not In_Open_Scopes
(Scope
(Parent_Base
))
16144 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
16145 E_Limited_Private_Type
)
16150 Inherit_Component
(Component
);
16153 Next_Entity
(Component
);
16156 -- For tagged derived types, inherited discriminants cannot be used in
16157 -- component declarations of the record extension part. To achieve this
16158 -- we mark the inherited discriminants as not visible.
16160 if Is_Tagged
and then Inherit_Discr
then
16161 D
:= First_Discriminant
(Derived_Base
);
16162 while Present
(D
) loop
16163 Set_Is_Immediately_Visible
(D
, False);
16164 Next_Discriminant
(D
);
16169 end Inherit_Components
;
16171 -----------------------
16172 -- Is_Constant_Bound --
16173 -----------------------
16175 function Is_Constant_Bound
(Exp
: Node_Id
) return Boolean is
16177 if Compile_Time_Known_Value
(Exp
) then
16180 elsif Is_Entity_Name
(Exp
)
16181 and then Present
(Entity
(Exp
))
16183 return Is_Constant_Object
(Entity
(Exp
))
16184 or else Ekind
(Entity
(Exp
)) = E_Enumeration_Literal
;
16186 elsif Nkind
(Exp
) in N_Binary_Op
then
16187 return Is_Constant_Bound
(Left_Opnd
(Exp
))
16188 and then Is_Constant_Bound
(Right_Opnd
(Exp
))
16189 and then Scope
(Entity
(Exp
)) = Standard_Standard
;
16194 end Is_Constant_Bound
;
16196 -----------------------
16197 -- Is_Null_Extension --
16198 -----------------------
16200 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
16201 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
16202 Comp_List
: Node_Id
;
16206 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
16207 or else not Is_Tagged_Type
(T
)
16208 or else Nkind
(Type_Definition
(Type_Decl
)) /=
16209 N_Derived_Type_Definition
16210 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
16216 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
16218 if Present
(Discriminant_Specifications
(Type_Decl
)) then
16221 elsif Present
(Comp_List
)
16222 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
16224 Comp
:= First
(Component_Items
(Comp_List
));
16226 -- Only user-defined components are relevant. The component list
16227 -- may also contain a parent component and internal components
16228 -- corresponding to secondary tags, but these do not determine
16229 -- whether this is a null extension.
16231 while Present
(Comp
) loop
16232 if Comes_From_Source
(Comp
) then
16243 end Is_Null_Extension
;
16245 ------------------------------
16246 -- Is_Valid_Constraint_Kind --
16247 ------------------------------
16249 function Is_Valid_Constraint_Kind
16250 (T_Kind
: Type_Kind
;
16251 Constraint_Kind
: Node_Kind
) return Boolean
16255 when Enumeration_Kind |
16257 return Constraint_Kind
= N_Range_Constraint
;
16259 when Decimal_Fixed_Point_Kind
=>
16260 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
16261 N_Range_Constraint
);
16263 when Ordinary_Fixed_Point_Kind
=>
16264 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
16265 N_Range_Constraint
);
16268 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
16269 N_Range_Constraint
);
16276 E_Incomplete_Type |
16279 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
16282 return True; -- Error will be detected later
16284 end Is_Valid_Constraint_Kind
;
16286 --------------------------
16287 -- Is_Visible_Component --
16288 --------------------------
16290 function Is_Visible_Component
(C
: Entity_Id
) return Boolean is
16291 Original_Comp
: Entity_Id
:= Empty
;
16292 Original_Scope
: Entity_Id
;
16293 Type_Scope
: Entity_Id
;
16295 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
16296 -- Check whether parent type of inherited component is declared locally,
16297 -- possibly within a nested package or instance. The current scope is
16298 -- the derived record itself.
16300 -------------------
16301 -- Is_Local_Type --
16302 -------------------
16304 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
16308 Scop
:= Scope
(Typ
);
16309 while Present
(Scop
)
16310 and then Scop
/= Standard_Standard
16312 if Scop
= Scope
(Current_Scope
) then
16316 Scop
:= Scope
(Scop
);
16322 -- Start of processing for Is_Visible_Component
16325 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
16326 Original_Comp
:= Original_Record_Component
(C
);
16329 if No
(Original_Comp
) then
16331 -- Premature usage, or previous error
16336 Original_Scope
:= Scope
(Original_Comp
);
16337 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
16340 -- This test only concerns tagged types
16342 if not Is_Tagged_Type
(Original_Scope
) then
16345 -- If it is _Parent or _Tag, there is no visibility issue
16347 elsif not Comes_From_Source
(Original_Comp
) then
16350 -- Discriminants are always visible
16352 elsif Ekind
(Original_Comp
) = E_Discriminant
16353 and then not Has_Unknown_Discriminants
(Original_Scope
)
16357 -- In the body of an instantiation, no need to check for the visibility
16360 elsif In_Instance_Body
then
16363 -- If the component has been declared in an ancestor which is currently
16364 -- a private type, then it is not visible. The same applies if the
16365 -- component's containing type is not in an open scope and the original
16366 -- component's enclosing type is a visible full view of a private type
16367 -- (which can occur in cases where an attempt is being made to reference
16368 -- a component in a sibling package that is inherited from a visible
16369 -- component of a type in an ancestor package; the component in the
16370 -- sibling package should not be visible even though the component it
16371 -- inherited from is visible). This does not apply however in the case
16372 -- where the scope of the type is a private child unit, or when the
16373 -- parent comes from a local package in which the ancestor is currently
16374 -- visible. The latter suppression of visibility is needed for cases
16375 -- that are tested in B730006.
16377 elsif Is_Private_Type
(Original_Scope
)
16379 (not Is_Private_Descendant
(Type_Scope
)
16380 and then not In_Open_Scopes
(Type_Scope
)
16381 and then Has_Private_Declaration
(Original_Scope
))
16383 -- If the type derives from an entity in a formal package, there
16384 -- are no additional visible components.
16386 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
16387 N_Formal_Package_Declaration
16391 -- if we are not in the private part of the current package, there
16392 -- are no additional visible components.
16394 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
16395 and then not In_Private_Part
(Scope
(Current_Scope
))
16400 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
16401 and then In_Open_Scopes
(Scope
(Original_Scope
))
16402 and then Is_Local_Type
(Type_Scope
);
16405 -- There is another weird way in which a component may be invisible
16406 -- when the private and the full view are not derived from the same
16407 -- ancestor. Here is an example :
16409 -- type A1 is tagged record F1 : integer; end record;
16410 -- type A2 is new A1 with record F2 : integer; end record;
16411 -- type T is new A1 with private;
16413 -- type T is new A2 with null record;
16415 -- In this case, the full view of T inherits F1 and F2 but the private
16416 -- view inherits only F1
16420 Ancestor
: Entity_Id
:= Scope
(C
);
16424 if Ancestor
= Original_Scope
then
16426 elsif Ancestor
= Etype
(Ancestor
) then
16430 Ancestor
:= Etype
(Ancestor
);
16434 end Is_Visible_Component
;
16436 --------------------------
16437 -- Make_Class_Wide_Type --
16438 --------------------------
16440 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
16441 CW_Type
: Entity_Id
;
16443 Next_E
: Entity_Id
;
16446 if Present
(Class_Wide_Type
(T
)) then
16448 -- The class-wide type is a partially decorated entity created for a
16449 -- unanalyzed tagged type referenced through a limited with clause.
16450 -- When the tagged type is analyzed, its class-wide type needs to be
16451 -- redecorated. Note that we reuse the entity created by Decorate_
16452 -- Tagged_Type in order to preserve all links.
16454 if Materialize_Entity
(Class_Wide_Type
(T
)) then
16455 CW_Type
:= Class_Wide_Type
(T
);
16456 Set_Materialize_Entity
(CW_Type
, False);
16458 -- The class wide type can have been defined by the partial view, in
16459 -- which case everything is already done.
16465 -- Default case, we need to create a new class-wide type
16469 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
16472 -- Inherit root type characteristics
16474 CW_Name
:= Chars
(CW_Type
);
16475 Next_E
:= Next_Entity
(CW_Type
);
16476 Copy_Node
(T
, CW_Type
);
16477 Set_Comes_From_Source
(CW_Type
, False);
16478 Set_Chars
(CW_Type
, CW_Name
);
16479 Set_Parent
(CW_Type
, Parent
(T
));
16480 Set_Next_Entity
(CW_Type
, Next_E
);
16482 -- Ensure we have a new freeze node for the class-wide type. The partial
16483 -- view may have freeze action of its own, requiring a proper freeze
16484 -- node, and the same freeze node cannot be shared between the two
16487 Set_Has_Delayed_Freeze
(CW_Type
);
16488 Set_Freeze_Node
(CW_Type
, Empty
);
16490 -- Customize the class-wide type: It has no prim. op., it cannot be
16491 -- abstract and its Etype points back to the specific root type.
16493 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
16494 Set_Is_Tagged_Type
(CW_Type
, True);
16495 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
16496 Set_Is_Abstract_Type
(CW_Type
, False);
16497 Set_Is_Constrained
(CW_Type
, False);
16498 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
16500 if Ekind
(T
) = E_Class_Wide_Subtype
then
16501 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
16503 Set_Etype
(CW_Type
, T
);
16506 -- If this is the class_wide type of a constrained subtype, it does
16507 -- not have discriminants.
16509 Set_Has_Discriminants
(CW_Type
,
16510 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
16512 Set_Has_Unknown_Discriminants
(CW_Type
, True);
16513 Set_Class_Wide_Type
(T
, CW_Type
);
16514 Set_Equivalent_Type
(CW_Type
, Empty
);
16516 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
16518 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
16519 end Make_Class_Wide_Type
;
16525 procedure Make_Index
16527 Related_Nod
: Node_Id
;
16528 Related_Id
: Entity_Id
:= Empty
;
16529 Suffix_Index
: Nat
:= 1;
16530 In_Iter_Schm
: Boolean := False)
16534 Def_Id
: Entity_Id
:= Empty
;
16535 Found
: Boolean := False;
16538 -- For a discrete range used in a constrained array definition and
16539 -- defined by a range, an implicit conversion to the predefined type
16540 -- INTEGER is assumed if each bound is either a numeric literal, a named
16541 -- number, or an attribute, and the type of both bounds (prior to the
16542 -- implicit conversion) is the type universal_integer. Otherwise, both
16543 -- bounds must be of the same discrete type, other than universal
16544 -- integer; this type must be determinable independently of the
16545 -- context, but using the fact that the type must be discrete and that
16546 -- both bounds must have the same type.
16548 -- Character literals also have a universal type in the absence of
16549 -- of additional context, and are resolved to Standard_Character.
16551 if Nkind
(I
) = N_Range
then
16553 -- The index is given by a range constraint. The bounds are known
16554 -- to be of a consistent type.
16556 if not Is_Overloaded
(I
) then
16559 -- For universal bounds, choose the specific predefined type
16561 if T
= Universal_Integer
then
16562 T
:= Standard_Integer
;
16564 elsif T
= Any_Character
then
16565 Ambiguous_Character
(Low_Bound
(I
));
16567 T
:= Standard_Character
;
16570 -- The node may be overloaded because some user-defined operators
16571 -- are available, but if a universal interpretation exists it is
16572 -- also the selected one.
16574 elsif Universal_Interpretation
(I
) = Universal_Integer
then
16575 T
:= Standard_Integer
;
16581 Ind
: Interp_Index
;
16585 Get_First_Interp
(I
, Ind
, It
);
16586 while Present
(It
.Typ
) loop
16587 if Is_Discrete_Type
(It
.Typ
) then
16590 and then not Covers
(It
.Typ
, T
)
16591 and then not Covers
(T
, It
.Typ
)
16593 Error_Msg_N
("ambiguous bounds in discrete range", I
);
16601 Get_Next_Interp
(Ind
, It
);
16604 if T
= Any_Type
then
16605 Error_Msg_N
("discrete type required for range", I
);
16606 Set_Etype
(I
, Any_Type
);
16609 elsif T
= Universal_Integer
then
16610 T
:= Standard_Integer
;
16615 if not Is_Discrete_Type
(T
) then
16616 Error_Msg_N
("discrete type required for range", I
);
16617 Set_Etype
(I
, Any_Type
);
16621 if Nkind
(Low_Bound
(I
)) = N_Attribute_Reference
16622 and then Attribute_Name
(Low_Bound
(I
)) = Name_First
16623 and then Is_Entity_Name
(Prefix
(Low_Bound
(I
)))
16624 and then Is_Type
(Entity
(Prefix
(Low_Bound
(I
))))
16625 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(I
))))
16627 -- The type of the index will be the type of the prefix, as long
16628 -- as the upper bound is 'Last of the same type.
16630 Def_Id
:= Entity
(Prefix
(Low_Bound
(I
)));
16632 if Nkind
(High_Bound
(I
)) /= N_Attribute_Reference
16633 or else Attribute_Name
(High_Bound
(I
)) /= Name_Last
16634 or else not Is_Entity_Name
(Prefix
(High_Bound
(I
)))
16635 or else Entity
(Prefix
(High_Bound
(I
))) /= Def_Id
16642 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
16644 elsif Nkind
(I
) = N_Subtype_Indication
then
16646 -- The index is given by a subtype with a range constraint
16648 T
:= Base_Type
(Entity
(Subtype_Mark
(I
)));
16650 if not Is_Discrete_Type
(T
) then
16651 Error_Msg_N
("discrete type required for range", I
);
16652 Set_Etype
(I
, Any_Type
);
16656 R
:= Range_Expression
(Constraint
(I
));
16659 Process_Range_Expr_In_Decl
16660 (R
, Entity
(Subtype_Mark
(I
)), In_Iter_Schm
=> In_Iter_Schm
);
16662 elsif Nkind
(I
) = N_Attribute_Reference
then
16664 -- The parser guarantees that the attribute is a RANGE attribute
16666 -- If the node denotes the range of a type mark, that is also the
16667 -- resulting type, and we do no need to create an Itype for it.
16669 if Is_Entity_Name
(Prefix
(I
))
16670 and then Comes_From_Source
(I
)
16671 and then Is_Type
(Entity
(Prefix
(I
)))
16672 and then Is_Discrete_Type
(Entity
(Prefix
(I
)))
16674 Def_Id
:= Entity
(Prefix
(I
));
16677 Analyze_And_Resolve
(I
);
16681 -- If none of the above, must be a subtype. We convert this to a
16682 -- range attribute reference because in the case of declared first
16683 -- named subtypes, the types in the range reference can be different
16684 -- from the type of the entity. A range attribute normalizes the
16685 -- reference and obtains the correct types for the bounds.
16687 -- This transformation is in the nature of an expansion, is only
16688 -- done if expansion is active. In particular, it is not done on
16689 -- formal generic types, because we need to retain the name of the
16690 -- original index for instantiation purposes.
16693 if not Is_Entity_Name
(I
) or else not Is_Type
(Entity
(I
)) then
16694 Error_Msg_N
("invalid subtype mark in discrete range ", I
);
16695 Set_Etype
(I
, Any_Integer
);
16699 -- The type mark may be that of an incomplete type. It is only
16700 -- now that we can get the full view, previous analysis does
16701 -- not look specifically for a type mark.
16703 Set_Entity
(I
, Get_Full_View
(Entity
(I
)));
16704 Set_Etype
(I
, Entity
(I
));
16705 Def_Id
:= Entity
(I
);
16707 if not Is_Discrete_Type
(Def_Id
) then
16708 Error_Msg_N
("discrete type required for index", I
);
16709 Set_Etype
(I
, Any_Type
);
16714 if Expander_Active
then
16716 Make_Attribute_Reference
(Sloc
(I
),
16717 Attribute_Name
=> Name_Range
,
16718 Prefix
=> Relocate_Node
(I
)));
16720 -- The original was a subtype mark that does not freeze. This
16721 -- means that the rewritten version must not freeze either.
16723 Set_Must_Not_Freeze
(I
);
16724 Set_Must_Not_Freeze
(Prefix
(I
));
16726 -- Is order critical??? if so, document why, if not
16727 -- use Analyze_And_Resolve
16729 Analyze_And_Resolve
(I
);
16733 -- If expander is inactive, type is legal, nothing else to construct
16740 if not Is_Discrete_Type
(T
) then
16741 Error_Msg_N
("discrete type required for range", I
);
16742 Set_Etype
(I
, Any_Type
);
16745 elsif T
= Any_Type
then
16746 Set_Etype
(I
, Any_Type
);
16750 -- We will now create the appropriate Itype to describe the range, but
16751 -- first a check. If we originally had a subtype, then we just label
16752 -- the range with this subtype. Not only is there no need to construct
16753 -- a new subtype, but it is wrong to do so for two reasons:
16755 -- 1. A legality concern, if we have a subtype, it must not freeze,
16756 -- and the Itype would cause freezing incorrectly
16758 -- 2. An efficiency concern, if we created an Itype, it would not be
16759 -- recognized as the same type for the purposes of eliminating
16760 -- checks in some circumstances.
16762 -- We signal this case by setting the subtype entity in Def_Id
16764 if No
(Def_Id
) then
16766 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
16767 Set_Etype
(Def_Id
, Base_Type
(T
));
16769 if Is_Signed_Integer_Type
(T
) then
16770 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
16772 elsif Is_Modular_Integer_Type
(T
) then
16773 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
16776 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
16777 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
16778 Set_First_Literal
(Def_Id
, First_Literal
(T
));
16781 Set_Size_Info
(Def_Id
, (T
));
16782 Set_RM_Size
(Def_Id
, RM_Size
(T
));
16783 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
16785 Set_Scalar_Range
(Def_Id
, R
);
16786 Conditional_Delay
(Def_Id
, T
);
16788 -- In the subtype indication case, if the immediate parent of the
16789 -- new subtype is non-static, then the subtype we create is non-
16790 -- static, even if its bounds are static.
16792 if Nkind
(I
) = N_Subtype_Indication
16793 and then not Is_Static_Subtype
(Entity
(Subtype_Mark
(I
)))
16795 Set_Is_Non_Static_Subtype
(Def_Id
);
16799 -- Final step is to label the index with this constructed type
16801 Set_Etype
(I
, Def_Id
);
16804 ------------------------------
16805 -- Modular_Type_Declaration --
16806 ------------------------------
16808 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16809 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
16812 procedure Set_Modular_Size
(Bits
: Int
);
16813 -- Sets RM_Size to Bits, and Esize to normal word size above this
16815 ----------------------
16816 -- Set_Modular_Size --
16817 ----------------------
16819 procedure Set_Modular_Size
(Bits
: Int
) is
16821 Set_RM_Size
(T
, UI_From_Int
(Bits
));
16826 elsif Bits
<= 16 then
16827 Init_Esize
(T
, 16);
16829 elsif Bits
<= 32 then
16830 Init_Esize
(T
, 32);
16833 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
16836 if not Non_Binary_Modulus
(T
)
16837 and then Esize
(T
) = RM_Size
(T
)
16839 Set_Is_Known_Valid
(T
);
16841 end Set_Modular_Size
;
16843 -- Start of processing for Modular_Type_Declaration
16846 -- If the mod expression is (exactly) 2 * literal, where literal is
16847 -- 64 or less,then almost certainly the * was meant to be **. Warn!
16849 if Warn_On_Suspicious_Modulus_Value
16850 and then Nkind
(Mod_Expr
) = N_Op_Multiply
16851 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
16852 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
16853 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
16854 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
16856 Error_Msg_N
("suspicious MOD value, was '*'* intended'??", Mod_Expr
);
16859 -- Proceed with analysis of mod expression
16861 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
16863 Set_Ekind
(T
, E_Modular_Integer_Type
);
16864 Init_Alignment
(T
);
16865 Set_Is_Constrained
(T
);
16867 if not Is_OK_Static_Expression
(Mod_Expr
) then
16868 Flag_Non_Static_Expr
16869 ("non-static expression used for modular type bound!", Mod_Expr
);
16870 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
16872 M_Val
:= Expr_Value
(Mod_Expr
);
16876 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
16877 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
16880 Set_Modulus
(T
, M_Val
);
16882 -- Create bounds for the modular type based on the modulus given in
16883 -- the type declaration and then analyze and resolve those bounds.
16885 Set_Scalar_Range
(T
,
16886 Make_Range
(Sloc
(Mod_Expr
),
16887 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
16888 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
16890 -- Properly analyze the literals for the range. We do this manually
16891 -- because we can't go calling Resolve, since we are resolving these
16892 -- bounds with the type, and this type is certainly not complete yet!
16894 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
16895 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
16896 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
16897 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
16899 -- Loop through powers of two to find number of bits required
16901 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
16905 if M_Val
= 2 ** Bits
then
16906 Set_Modular_Size
(Bits
);
16911 elsif M_Val
< 2 ** Bits
then
16912 Check_SPARK_Restriction
("modulus should be a power of 2", T
);
16913 Set_Non_Binary_Modulus
(T
);
16915 if Bits
> System_Max_Nonbinary_Modulus_Power
then
16916 Error_Msg_Uint_1
:=
16917 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
16919 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
16920 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
16924 -- In the non-binary case, set size as per RM 13.3(55)
16926 Set_Modular_Size
(Bits
);
16933 -- If we fall through, then the size exceed System.Max_Binary_Modulus
16934 -- so we just signal an error and set the maximum size.
16936 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
16937 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
16939 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
16940 Init_Alignment
(T
);
16942 end Modular_Type_Declaration
;
16944 --------------------------
16945 -- New_Concatenation_Op --
16946 --------------------------
16948 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
16949 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
16952 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
16953 -- Create abbreviated declaration for the formal of a predefined
16954 -- Operator 'Op' of type 'Typ'
16956 --------------------
16957 -- Make_Op_Formal --
16958 --------------------
16960 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
16961 Formal
: Entity_Id
;
16963 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
16964 Set_Etype
(Formal
, Typ
);
16965 Set_Mechanism
(Formal
, Default_Mechanism
);
16967 end Make_Op_Formal
;
16969 -- Start of processing for New_Concatenation_Op
16972 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
16974 Set_Ekind
(Op
, E_Operator
);
16975 Set_Scope
(Op
, Current_Scope
);
16976 Set_Etype
(Op
, Typ
);
16977 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
16978 Set_Is_Immediately_Visible
(Op
);
16979 Set_Is_Intrinsic_Subprogram
(Op
);
16980 Set_Has_Completion
(Op
);
16981 Append_Entity
(Op
, Current_Scope
);
16983 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
16985 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
16986 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
16987 end New_Concatenation_Op
;
16989 -------------------------
16990 -- OK_For_Limited_Init --
16991 -------------------------
16993 -- ???Check all calls of this, and compare the conditions under which it's
16996 function OK_For_Limited_Init
16998 Exp
: Node_Id
) return Boolean
17001 return Is_CPP_Constructor_Call
(Exp
)
17002 or else (Ada_Version
>= Ada_2005
17003 and then not Debug_Flag_Dot_L
17004 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
17005 end OK_For_Limited_Init
;
17007 -------------------------------
17008 -- OK_For_Limited_Init_In_05 --
17009 -------------------------------
17011 function OK_For_Limited_Init_In_05
17013 Exp
: Node_Id
) return Boolean
17016 -- An object of a limited interface type can be initialized with any
17017 -- expression of a nonlimited descendant type.
17019 if Is_Class_Wide_Type
(Typ
)
17020 and then Is_Limited_Interface
(Typ
)
17021 and then not Is_Limited_Type
(Etype
(Exp
))
17026 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17027 -- case of limited aggregates (including extension aggregates), and
17028 -- function calls. The function call may have been given in prefixed
17029 -- notation, in which case the original node is an indexed component.
17030 -- If the function is parameterless, the original node was an explicit
17031 -- dereference. The function may also be parameterless, in which case
17032 -- the source node is just an identifier.
17034 case Nkind
(Original_Node
(Exp
)) is
17035 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
17038 when N_Identifier
=>
17039 return Present
(Entity
(Original_Node
(Exp
)))
17040 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
17042 when N_Qualified_Expression
=>
17044 OK_For_Limited_Init_In_05
17045 (Typ
, Expression
(Original_Node
(Exp
)));
17047 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17048 -- with a function call, the expander has rewritten the call into an
17049 -- N_Type_Conversion node to force displacement of the pointer to
17050 -- reference the component containing the secondary dispatch table.
17051 -- Otherwise a type conversion is not a legal context.
17052 -- A return statement for a build-in-place function returning a
17053 -- synchronized type also introduces an unchecked conversion.
17055 when N_Type_Conversion |
17056 N_Unchecked_Type_Conversion
=>
17057 return not Comes_From_Source
(Exp
)
17059 OK_For_Limited_Init_In_05
17060 (Typ
, Expression
(Original_Node
(Exp
)));
17062 when N_Indexed_Component |
17063 N_Selected_Component |
17064 N_Explicit_Dereference
=>
17065 return Nkind
(Exp
) = N_Function_Call
;
17067 -- A use of 'Input is a function call, hence allowed. Normally the
17068 -- attribute will be changed to a call, but the attribute by itself
17069 -- can occur with -gnatc.
17071 when N_Attribute_Reference
=>
17072 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
17074 -- For a case expression, all dependent expressions must be legal
17076 when N_Case_Expression
=>
17081 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
17082 while Present
(Alt
) loop
17083 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
17093 -- For an if expression, all dependent expressions must be legal
17095 when N_If_Expression
=>
17097 Then_Expr
: constant Node_Id
:=
17098 Next
(First
(Expressions
(Original_Node
(Exp
))));
17099 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
17101 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
17103 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
17109 end OK_For_Limited_Init_In_05
;
17111 -------------------------------------------
17112 -- Ordinary_Fixed_Point_Type_Declaration --
17113 -------------------------------------------
17115 procedure Ordinary_Fixed_Point_Type_Declaration
17119 Loc
: constant Source_Ptr
:= Sloc
(Def
);
17120 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
17121 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
17122 Implicit_Base
: Entity_Id
;
17129 Check_Restriction
(No_Fixed_Point
, Def
);
17131 -- Create implicit base type
17134 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
17135 Set_Etype
(Implicit_Base
, Implicit_Base
);
17137 -- Analyze and process delta expression
17139 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
17141 Check_Delta_Expression
(Delta_Expr
);
17142 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
17144 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
17146 -- Compute default small from given delta, which is the largest power
17147 -- of two that does not exceed the given delta value.
17157 if Delta_Val
< Ureal_1
then
17158 while Delta_Val
< Tmp
loop
17159 Tmp
:= Tmp
/ Ureal_2
;
17160 Scale
:= Scale
+ 1;
17165 Tmp
:= Tmp
* Ureal_2
;
17166 exit when Tmp
> Delta_Val
;
17167 Scale
:= Scale
- 1;
17171 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
17174 Set_Small_Value
(Implicit_Base
, Small_Val
);
17176 -- If no range was given, set a dummy range
17178 if RRS
<= Empty_Or_Error
then
17179 Low_Val
:= -Small_Val
;
17180 High_Val
:= Small_Val
;
17182 -- Otherwise analyze and process given range
17186 Low
: constant Node_Id
:= Low_Bound
(RRS
);
17187 High
: constant Node_Id
:= High_Bound
(RRS
);
17190 Analyze_And_Resolve
(Low
, Any_Real
);
17191 Analyze_And_Resolve
(High
, Any_Real
);
17192 Check_Real_Bound
(Low
);
17193 Check_Real_Bound
(High
);
17195 -- Obtain and set the range
17197 Low_Val
:= Expr_Value_R
(Low
);
17198 High_Val
:= Expr_Value_R
(High
);
17200 if Low_Val
> High_Val
then
17201 Error_Msg_NE
("?fixed point type& has null range", Def
, T
);
17206 -- The range for both the implicit base and the declared first subtype
17207 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17208 -- set a temporary range in place. Note that the bounds of the base
17209 -- type will be widened to be symmetrical and to fill the available
17210 -- bits when the type is frozen.
17212 -- We could do this with all discrete types, and probably should, but
17213 -- we absolutely have to do it for fixed-point, since the end-points
17214 -- of the range and the size are determined by the small value, which
17215 -- could be reset before the freeze point.
17217 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
17218 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
17220 -- Complete definition of first subtype
17222 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
17223 Set_Etype
(T
, Implicit_Base
);
17224 Init_Size_Align
(T
);
17225 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
17226 Set_Small_Value
(T
, Small_Val
);
17227 Set_Delta_Value
(T
, Delta_Val
);
17228 Set_Is_Constrained
(T
);
17230 end Ordinary_Fixed_Point_Type_Declaration
;
17232 ----------------------------------------
17233 -- Prepare_Private_Subtype_Completion --
17234 ----------------------------------------
17236 procedure Prepare_Private_Subtype_Completion
17238 Related_Nod
: Node_Id
)
17240 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
17241 Full_B
: constant Entity_Id
:= Full_View
(Id_B
);
17245 if Present
(Full_B
) then
17247 -- The Base_Type is already completed, we can complete the subtype
17248 -- now. We have to create a new entity with the same name, Thus we
17249 -- can't use Create_Itype.
17251 -- This is messy, should be fixed ???
17253 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
17254 Set_Is_Itype
(Full
);
17255 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
17256 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
17259 -- The parent subtype may be private, but the base might not, in some
17260 -- nested instances. In that case, the subtype does not need to be
17261 -- exchanged. It would still be nice to make private subtypes and their
17262 -- bases consistent at all times ???
17264 if Is_Private_Type
(Id_B
) then
17265 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
17268 end Prepare_Private_Subtype_Completion
;
17270 ---------------------------
17271 -- Process_Discriminants --
17272 ---------------------------
17274 procedure Process_Discriminants
17276 Prev
: Entity_Id
:= Empty
)
17278 Elist
: constant Elist_Id
:= New_Elmt_List
;
17281 Discr_Number
: Uint
;
17282 Discr_Type
: Entity_Id
;
17283 Default_Present
: Boolean := False;
17284 Default_Not_Present
: Boolean := False;
17287 -- A composite type other than an array type can have discriminants.
17288 -- On entry, the current scope is the composite type.
17290 -- The discriminants are initially entered into the scope of the type
17291 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17292 -- use, as explained at the end of this procedure.
17294 Discr
:= First
(Discriminant_Specifications
(N
));
17295 while Present
(Discr
) loop
17296 Enter_Name
(Defining_Identifier
(Discr
));
17298 -- For navigation purposes we add a reference to the discriminant
17299 -- in the entity for the type. If the current declaration is a
17300 -- completion, place references on the partial view. Otherwise the
17301 -- type is the current scope.
17303 if Present
(Prev
) then
17305 -- The references go on the partial view, if present. If the
17306 -- partial view has discriminants, the references have been
17307 -- generated already.
17309 if not Has_Discriminants
(Prev
) then
17310 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
17314 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
17317 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
17318 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
17320 -- Ada 2005 (AI-254)
17322 if Present
(Access_To_Subprogram_Definition
17323 (Discriminant_Type
(Discr
)))
17324 and then Protected_Present
(Access_To_Subprogram_Definition
17325 (Discriminant_Type
(Discr
)))
17328 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
17332 Find_Type
(Discriminant_Type
(Discr
));
17333 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
17335 if Error_Posted
(Discriminant_Type
(Discr
)) then
17336 Discr_Type
:= Any_Type
;
17340 if Is_Access_Type
(Discr_Type
) then
17342 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17345 if Ada_Version
< Ada_2005
then
17346 Check_Access_Discriminant_Requires_Limited
17347 (Discr
, Discriminant_Type
(Discr
));
17350 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
17352 ("(Ada 83) access discriminant not allowed", Discr
);
17355 elsif not Is_Discrete_Type
(Discr_Type
) then
17356 Error_Msg_N
("discriminants must have a discrete or access type",
17357 Discriminant_Type
(Discr
));
17360 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
17362 -- If a discriminant specification includes the assignment compound
17363 -- delimiter followed by an expression, the expression is the default
17364 -- expression of the discriminant; the default expression must be of
17365 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17366 -- a default expression, we do the special preanalysis, since this
17367 -- expression does not freeze (see "Handling of Default and Per-
17368 -- Object Expressions" in spec of package Sem).
17370 if Present
(Expression
(Discr
)) then
17371 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
17373 if Nkind
(N
) = N_Formal_Type_Declaration
then
17375 ("discriminant defaults not allowed for formal type",
17376 Expression
(Discr
));
17378 -- Flag an error for a tagged type with defaulted discriminants,
17379 -- excluding limited tagged types when compiling for Ada 2012
17380 -- (see AI05-0214).
17382 elsif Is_Tagged_Type
(Current_Scope
)
17383 and then (not Is_Limited_Type
(Current_Scope
)
17384 or else Ada_Version
< Ada_2012
)
17385 and then Comes_From_Source
(N
)
17387 -- Note: see similar test in Check_Or_Process_Discriminants, to
17388 -- handle the (illegal) case of the completion of an untagged
17389 -- view with discriminants with defaults by a tagged full view.
17390 -- We skip the check if Discr does not come from source, to
17391 -- account for the case of an untagged derived type providing
17392 -- defaults for a renamed discriminant from a private untagged
17393 -- ancestor with a tagged full view (ACATS B460006).
17395 if Ada_Version
>= Ada_2012
then
17397 ("discriminants of nonlimited tagged type cannot have"
17399 Expression
(Discr
));
17402 ("discriminants of tagged type cannot have defaults",
17403 Expression
(Discr
));
17407 Default_Present
:= True;
17408 Append_Elmt
(Expression
(Discr
), Elist
);
17410 -- Tag the defining identifiers for the discriminants with
17411 -- their corresponding default expressions from the tree.
17413 Set_Discriminant_Default_Value
17414 (Defining_Identifier
(Discr
), Expression
(Discr
));
17418 Default_Not_Present
:= True;
17421 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17422 -- Discr_Type but with the null-exclusion attribute
17424 if Ada_Version
>= Ada_2005
then
17426 -- Ada 2005 (AI-231): Static checks
17428 if Can_Never_Be_Null
(Discr_Type
) then
17429 Null_Exclusion_Static_Checks
(Discr
);
17431 elsif Is_Access_Type
(Discr_Type
)
17432 and then Null_Exclusion_Present
(Discr
)
17434 -- No need to check itypes because in their case this check
17435 -- was done at their point of creation
17437 and then not Is_Itype
(Discr_Type
)
17439 if Can_Never_Be_Null
(Discr_Type
) then
17441 ("`NOT NULL` not allowed (& already excludes null)",
17446 Set_Etype
(Defining_Identifier
(Discr
),
17447 Create_Null_Excluding_Itype
17449 Related_Nod
=> Discr
));
17451 -- Check for improper null exclusion if the type is otherwise
17452 -- legal for a discriminant.
17454 elsif Null_Exclusion_Present
(Discr
)
17455 and then Is_Discrete_Type
(Discr_Type
)
17458 ("null exclusion can only apply to an access type", Discr
);
17461 -- Ada 2005 (AI-402): access discriminants of nonlimited types
17462 -- can't have defaults. Synchronized types, or types that are
17463 -- explicitly limited are fine, but special tests apply to derived
17464 -- types in generics: in a generic body we have to assume the
17465 -- worst, and therefore defaults are not allowed if the parent is
17466 -- a generic formal private type (see ACATS B370001).
17468 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
17469 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
17470 or else Is_Limited_Record
(Current_Scope
)
17471 or else Is_Concurrent_Type
(Current_Scope
)
17472 or else Is_Concurrent_Record_Type
(Current_Scope
)
17473 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
17475 if not Is_Derived_Type
(Current_Scope
)
17476 or else not Is_Generic_Type
(Etype
(Current_Scope
))
17477 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
17478 or else Limited_Present
17479 (Type_Definition
(Parent
(Current_Scope
)))
17484 Error_Msg_N
("access discriminants of nonlimited types",
17485 Expression
(Discr
));
17486 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
17489 elsif Present
(Expression
(Discr
)) then
17491 ("(Ada 2005) access discriminants of nonlimited types",
17492 Expression
(Discr
));
17493 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
17501 -- An element list consisting of the default expressions of the
17502 -- discriminants is constructed in the above loop and used to set
17503 -- the Discriminant_Constraint attribute for the type. If an object
17504 -- is declared of this (record or task) type without any explicit
17505 -- discriminant constraint given, this element list will form the
17506 -- actual parameters for the corresponding initialization procedure
17509 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
17510 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
17512 -- Default expressions must be provided either for all or for none
17513 -- of the discriminants of a discriminant part. (RM 3.7.1)
17515 if Default_Present
and then Default_Not_Present
then
17517 ("incomplete specification of defaults for discriminants", N
);
17520 -- The use of the name of a discriminant is not allowed in default
17521 -- expressions of a discriminant part if the specification of the
17522 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
17524 -- To detect this, the discriminant names are entered initially with an
17525 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
17526 -- attempt to use a void entity (for example in an expression that is
17527 -- type-checked) produces the error message: premature usage. Now after
17528 -- completing the semantic analysis of the discriminant part, we can set
17529 -- the Ekind of all the discriminants appropriately.
17531 Discr
:= First
(Discriminant_Specifications
(N
));
17532 Discr_Number
:= Uint_1
;
17533 while Present
(Discr
) loop
17534 Id
:= Defining_Identifier
(Discr
);
17535 Set_Ekind
(Id
, E_Discriminant
);
17536 Init_Component_Location
(Id
);
17538 Set_Discriminant_Number
(Id
, Discr_Number
);
17540 -- Make sure this is always set, even in illegal programs
17542 Set_Corresponding_Discriminant
(Id
, Empty
);
17544 -- Initialize the Original_Record_Component to the entity itself.
17545 -- Inherit_Components will propagate the right value to
17546 -- discriminants in derived record types.
17548 Set_Original_Record_Component
(Id
, Id
);
17550 -- Create the discriminal for the discriminant
17552 Build_Discriminal
(Id
);
17555 Discr_Number
:= Discr_Number
+ 1;
17558 Set_Has_Discriminants
(Current_Scope
);
17559 end Process_Discriminants
;
17561 -----------------------
17562 -- Process_Full_View --
17563 -----------------------
17565 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
17566 Priv_Parent
: Entity_Id
;
17567 Full_Parent
: Entity_Id
;
17568 Full_Indic
: Node_Id
;
17570 procedure Collect_Implemented_Interfaces
17572 Ifaces
: Elist_Id
);
17573 -- Ada 2005: Gather all the interfaces that Typ directly or
17574 -- inherently implements. Duplicate entries are not added to
17575 -- the list Ifaces.
17577 ------------------------------------
17578 -- Collect_Implemented_Interfaces --
17579 ------------------------------------
17581 procedure Collect_Implemented_Interfaces
17586 Iface_Elmt
: Elmt_Id
;
17589 -- Abstract interfaces are only associated with tagged record types
17591 if not Is_Tagged_Type
(Typ
)
17592 or else not Is_Record_Type
(Typ
)
17597 -- Recursively climb to the ancestors
17599 if Etype
(Typ
) /= Typ
17601 -- Protect the frontend against wrong cyclic declarations like:
17603 -- type B is new A with private;
17604 -- type C is new A with private;
17606 -- type B is new C with null record;
17607 -- type C is new B with null record;
17609 and then Etype
(Typ
) /= Priv_T
17610 and then Etype
(Typ
) /= Full_T
17612 -- Keep separate the management of private type declarations
17614 if Ekind
(Typ
) = E_Record_Type_With_Private
then
17616 -- Handle the following erroneous case:
17617 -- type Private_Type is tagged private;
17619 -- type Private_Type is new Type_Implementing_Iface;
17621 if Present
(Full_View
(Typ
))
17622 and then Etype
(Typ
) /= Full_View
(Typ
)
17624 if Is_Interface
(Etype
(Typ
)) then
17625 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
17628 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
17631 -- Non-private types
17634 if Is_Interface
(Etype
(Typ
)) then
17635 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
17638 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
17642 -- Handle entities in the list of abstract interfaces
17644 if Present
(Interfaces
(Typ
)) then
17645 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
17646 while Present
(Iface_Elmt
) loop
17647 Iface
:= Node
(Iface_Elmt
);
17649 pragma Assert
(Is_Interface
(Iface
));
17651 if not Contain_Interface
(Iface
, Ifaces
) then
17652 Append_Elmt
(Iface
, Ifaces
);
17653 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
17656 Next_Elmt
(Iface_Elmt
);
17659 end Collect_Implemented_Interfaces
;
17661 -- Start of processing for Process_Full_View
17664 -- First some sanity checks that must be done after semantic
17665 -- decoration of the full view and thus cannot be placed with other
17666 -- similar checks in Find_Type_Name
17668 if not Is_Limited_Type
(Priv_T
)
17669 and then (Is_Limited_Type
(Full_T
)
17670 or else Is_Limited_Composite
(Full_T
))
17672 if In_Instance
then
17676 ("completion of nonlimited type cannot be limited", Full_T
);
17677 Explain_Limited_Type
(Full_T
, Full_T
);
17680 elsif Is_Abstract_Type
(Full_T
)
17681 and then not Is_Abstract_Type
(Priv_T
)
17684 ("completion of nonabstract type cannot be abstract", Full_T
);
17686 elsif Is_Tagged_Type
(Priv_T
)
17687 and then Is_Limited_Type
(Priv_T
)
17688 and then not Is_Limited_Type
(Full_T
)
17690 -- If pragma CPP_Class was applied to the private declaration
17691 -- propagate the limitedness to the full-view
17693 if Is_CPP_Class
(Priv_T
) then
17694 Set_Is_Limited_Record
(Full_T
);
17696 -- GNAT allow its own definition of Limited_Controlled to disobey
17697 -- this rule in order in ease the implementation. This test is safe
17698 -- because Root_Controlled is defined in a child of System that
17699 -- normal programs are not supposed to use.
17701 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
17702 Set_Is_Limited_Composite
(Full_T
);
17705 ("completion of limited tagged type must be limited", Full_T
);
17708 elsif Is_Generic_Type
(Priv_T
) then
17709 Error_Msg_N
("generic type cannot have a completion", Full_T
);
17712 -- Check that ancestor interfaces of private and full views are
17713 -- consistent. We omit this check for synchronized types because
17714 -- they are performed on the corresponding record type when frozen.
17716 if Ada_Version
>= Ada_2005
17717 and then Is_Tagged_Type
(Priv_T
)
17718 and then Is_Tagged_Type
(Full_T
)
17719 and then not Is_Concurrent_Type
(Full_T
)
17723 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
17724 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
17727 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
17728 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
17730 -- Ada 2005 (AI-251): The partial view shall be a descendant of
17731 -- an interface type if and only if the full type is descendant
17732 -- of the interface type (AARM 7.3 (7.3/2)).
17734 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
17736 if Present
(Iface
) then
17738 ("interface & not implemented by full type " &
17739 "(RM-2005 7.3 (7.3/2))", Priv_T
, Iface
);
17742 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
17744 if Present
(Iface
) then
17746 ("interface & not implemented by partial view " &
17747 "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
17752 if Is_Tagged_Type
(Priv_T
)
17753 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17754 and then Is_Derived_Type
(Full_T
)
17756 Priv_Parent
:= Etype
(Priv_T
);
17758 -- The full view of a private extension may have been transformed
17759 -- into an unconstrained derived type declaration and a subtype
17760 -- declaration (see build_derived_record_type for details).
17762 if Nkind
(N
) = N_Subtype_Declaration
then
17763 Full_Indic
:= Subtype_Indication
(N
);
17764 Full_Parent
:= Etype
(Base_Type
(Full_T
));
17766 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
17767 Full_Parent
:= Etype
(Full_T
);
17770 -- Check that the parent type of the full type is a descendant of
17771 -- the ancestor subtype given in the private extension. If either
17772 -- entity has an Etype equal to Any_Type then we had some previous
17773 -- error situation [7.3(8)].
17775 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
17778 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
17779 -- any order. Therefore we don't have to check that its parent must
17780 -- be a descendant of the parent of the private type declaration.
17782 elsif Is_Interface
(Priv_Parent
)
17783 and then Is_Interface
(Full_Parent
)
17787 -- Ada 2005 (AI-251): If the parent of the private type declaration
17788 -- is an interface there is no need to check that it is an ancestor
17789 -- of the associated full type declaration. The required tests for
17790 -- this case are performed by Build_Derived_Record_Type.
17792 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
17793 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
17796 ("parent of full type must descend from parent"
17797 & " of private extension", Full_Indic
);
17799 -- First check a formal restriction, and then proceed with checking
17800 -- Ada rules. Since the formal restriction is not a serious error, we
17801 -- don't prevent further error detection for this check, hence the
17806 -- In formal mode, when completing a private extension the type
17807 -- named in the private part must be exactly the same as that
17808 -- named in the visible part.
17810 if Priv_Parent
/= Full_Parent
then
17811 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
17812 Check_SPARK_Restriction
("% expected", Full_Indic
);
17815 -- Check the rules of 7.3(10): if the private extension inherits
17816 -- known discriminants, then the full type must also inherit those
17817 -- discriminants from the same (ancestor) type, and the parent
17818 -- subtype of the full type must be constrained if and only if
17819 -- the ancestor subtype of the private extension is constrained.
17821 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
17822 and then not Has_Unknown_Discriminants
(Priv_T
)
17823 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
17826 Priv_Indic
: constant Node_Id
:=
17827 Subtype_Indication
(Parent
(Priv_T
));
17829 Priv_Constr
: constant Boolean :=
17830 Is_Constrained
(Priv_Parent
)
17832 Nkind
(Priv_Indic
) = N_Subtype_Indication
17834 Is_Constrained
(Entity
(Priv_Indic
));
17836 Full_Constr
: constant Boolean :=
17837 Is_Constrained
(Full_Parent
)
17839 Nkind
(Full_Indic
) = N_Subtype_Indication
17841 Is_Constrained
(Entity
(Full_Indic
));
17843 Priv_Discr
: Entity_Id
;
17844 Full_Discr
: Entity_Id
;
17847 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
17848 Full_Discr
:= First_Discriminant
(Full_Parent
);
17849 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
17850 if Original_Record_Component
(Priv_Discr
) =
17851 Original_Record_Component
(Full_Discr
)
17853 Corresponding_Discriminant
(Priv_Discr
) =
17854 Corresponding_Discriminant
(Full_Discr
)
17861 Next_Discriminant
(Priv_Discr
);
17862 Next_Discriminant
(Full_Discr
);
17865 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
17867 ("full view must inherit discriminants of the parent"
17868 & " type used in the private extension", Full_Indic
);
17870 elsif Priv_Constr
and then not Full_Constr
then
17872 ("parent subtype of full type must be constrained",
17875 elsif Full_Constr
and then not Priv_Constr
then
17877 ("parent subtype of full type must be unconstrained",
17882 -- Check the rules of 7.3(12): if a partial view has neither
17883 -- known or unknown discriminants, then the full type
17884 -- declaration shall define a definite subtype.
17886 elsif not Has_Unknown_Discriminants
(Priv_T
)
17887 and then not Has_Discriminants
(Priv_T
)
17888 and then not Is_Constrained
(Full_T
)
17891 ("full view must define a constrained type if partial view"
17892 & " has no discriminants", Full_T
);
17895 -- ??????? Do we implement the following properly ?????
17896 -- If the ancestor subtype of a private extension has constrained
17897 -- discriminants, then the parent subtype of the full view shall
17898 -- impose a statically matching constraint on those discriminants
17903 -- For untagged types, verify that a type without discriminants
17904 -- is not completed with an unconstrained type.
17906 if not Is_Indefinite_Subtype
(Priv_T
)
17907 and then Is_Indefinite_Subtype
(Full_T
)
17909 Error_Msg_N
("full view of type must be definite subtype", Full_T
);
17913 -- AI-419: verify that the use of "limited" is consistent
17916 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
17919 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17920 and then not Limited_Present
(Parent
(Priv_T
))
17921 and then not Synchronized_Present
(Parent
(Priv_T
))
17922 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
17924 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
17925 and then Limited_Present
(Type_Definition
(Orig_Decl
))
17928 ("full view of non-limited extension cannot be limited", N
);
17932 -- Ada 2005 (AI-443): A synchronized private extension must be
17933 -- completed by a task or protected type.
17935 if Ada_Version
>= Ada_2005
17936 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17937 and then Synchronized_Present
(Parent
(Priv_T
))
17938 and then not Is_Concurrent_Type
(Full_T
)
17940 Error_Msg_N
("full view of synchronized extension must " &
17941 "be synchronized type", N
);
17944 -- Ada 2005 AI-363: if the full view has discriminants with
17945 -- defaults, it is illegal to declare constrained access subtypes
17946 -- whose designated type is the current type. This allows objects
17947 -- of the type that are declared in the heap to be unconstrained.
17949 if not Has_Unknown_Discriminants
(Priv_T
)
17950 and then not Has_Discriminants
(Priv_T
)
17951 and then Has_Discriminants
(Full_T
)
17953 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
17955 Set_Has_Constrained_Partial_View
(Full_T
);
17956 Set_Has_Constrained_Partial_View
(Priv_T
);
17959 -- Create a full declaration for all its subtypes recorded in
17960 -- Private_Dependents and swap them similarly to the base type. These
17961 -- are subtypes that have been define before the full declaration of
17962 -- the private type. We also swap the entry in Private_Dependents list
17963 -- so we can properly restore the private view on exit from the scope.
17966 Priv_Elmt
: Elmt_Id
;
17971 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
17972 while Present
(Priv_Elmt
) loop
17973 Priv
:= Node
(Priv_Elmt
);
17975 if Ekind_In
(Priv
, E_Private_Subtype
,
17976 E_Limited_Private_Subtype
,
17977 E_Record_Subtype_With_Private
)
17979 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
17980 Set_Is_Itype
(Full
);
17981 Set_Parent
(Full
, Parent
(Priv
));
17982 Set_Associated_Node_For_Itype
(Full
, N
);
17984 -- Now we need to complete the private subtype, but since the
17985 -- base type has already been swapped, we must also swap the
17986 -- subtypes (and thus, reverse the arguments in the call to
17987 -- Complete_Private_Subtype).
17989 Copy_And_Swap
(Priv
, Full
);
17990 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
17991 Replace_Elmt
(Priv_Elmt
, Full
);
17994 Next_Elmt
(Priv_Elmt
);
17998 -- If the private view was tagged, copy the new primitive operations
17999 -- from the private view to the full view.
18001 if Is_Tagged_Type
(Full_T
) then
18003 Disp_Typ
: Entity_Id
;
18004 Full_List
: Elist_Id
;
18006 Prim_Elmt
: Elmt_Id
;
18007 Priv_List
: Elist_Id
;
18011 L
: Elist_Id
) return Boolean;
18012 -- Determine whether list L contains element E
18020 L
: Elist_Id
) return Boolean
18022 List_Elmt
: Elmt_Id
;
18025 List_Elmt
:= First_Elmt
(L
);
18026 while Present
(List_Elmt
) loop
18027 if Node
(List_Elmt
) = E
then
18031 Next_Elmt
(List_Elmt
);
18037 -- Start of processing
18040 if Is_Tagged_Type
(Priv_T
) then
18041 Priv_List
:= Primitive_Operations
(Priv_T
);
18042 Prim_Elmt
:= First_Elmt
(Priv_List
);
18044 -- In the case of a concurrent type completing a private tagged
18045 -- type, primitives may have been declared in between the two
18046 -- views. These subprograms need to be wrapped the same way
18047 -- entries and protected procedures are handled because they
18048 -- cannot be directly shared by the two views.
18050 if Is_Concurrent_Type
(Full_T
) then
18052 Conc_Typ
: constant Entity_Id
:=
18053 Corresponding_Record_Type
(Full_T
);
18054 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
18055 Wrap_Spec
: Node_Id
;
18058 while Present
(Prim_Elmt
) loop
18059 Prim
:= Node
(Prim_Elmt
);
18061 if Comes_From_Source
(Prim
)
18062 and then not Is_Abstract_Subprogram
(Prim
)
18065 Make_Subprogram_Declaration
(Sloc
(Prim
),
18069 Obj_Typ
=> Conc_Typ
,
18071 Parameter_Specifications
(
18074 Insert_After
(Curr_Nod
, Wrap_Spec
);
18075 Curr_Nod
:= Wrap_Spec
;
18077 Analyze
(Wrap_Spec
);
18080 Next_Elmt
(Prim_Elmt
);
18086 -- For non-concurrent types, transfer explicit primitives, but
18087 -- omit those inherited from the parent of the private view
18088 -- since they will be re-inherited later on.
18091 Full_List
:= Primitive_Operations
(Full_T
);
18093 while Present
(Prim_Elmt
) loop
18094 Prim
:= Node
(Prim_Elmt
);
18096 if Comes_From_Source
(Prim
)
18097 and then not Contains
(Prim
, Full_List
)
18099 Append_Elmt
(Prim
, Full_List
);
18102 Next_Elmt
(Prim_Elmt
);
18106 -- Untagged private view
18109 Full_List
:= Primitive_Operations
(Full_T
);
18111 -- In this case the partial view is untagged, so here we locate
18112 -- all of the earlier primitives that need to be treated as
18113 -- dispatching (those that appear between the two views). Note
18114 -- that these additional operations must all be new operations
18115 -- (any earlier operations that override inherited operations
18116 -- of the full view will already have been inserted in the
18117 -- primitives list, marked by Check_Operation_From_Private_View
18118 -- as dispatching. Note that implicit "/=" operators are
18119 -- excluded from being added to the primitives list since they
18120 -- shouldn't be treated as dispatching (tagged "/=" is handled
18123 Prim
:= Next_Entity
(Full_T
);
18124 while Present
(Prim
) and then Prim
/= Priv_T
loop
18125 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
18126 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
18128 if Disp_Typ
= Full_T
18129 and then (Chars
(Prim
) /= Name_Op_Ne
18130 or else Comes_From_Source
(Prim
))
18132 Check_Controlling_Formals
(Full_T
, Prim
);
18134 if not Is_Dispatching_Operation
(Prim
) then
18135 Append_Elmt
(Prim
, Full_List
);
18136 Set_Is_Dispatching_Operation
(Prim
, True);
18137 Set_DT_Position
(Prim
, No_Uint
);
18140 elsif Is_Dispatching_Operation
(Prim
)
18141 and then Disp_Typ
/= Full_T
18144 -- Verify that it is not otherwise controlled by a
18145 -- formal or a return value of type T.
18147 Check_Controlling_Formals
(Disp_Typ
, Prim
);
18151 Next_Entity
(Prim
);
18155 -- For the tagged case, the two views can share the same primitive
18156 -- operations list and the same class-wide type. Update attributes
18157 -- of the class-wide type which depend on the full declaration.
18159 if Is_Tagged_Type
(Priv_T
) then
18160 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
18161 Set_Class_Wide_Type
18162 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
18164 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
18169 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
18171 if Known_To_Have_Preelab_Init
(Priv_T
) then
18173 -- Case where there is a pragma Preelaborable_Initialization. We
18174 -- always allow this in predefined units, which is a bit of a kludge,
18175 -- but it means we don't have to struggle to meet the requirements in
18176 -- the RM for having Preelaborable Initialization. Otherwise we
18177 -- require that the type meets the RM rules. But we can't check that
18178 -- yet, because of the rule about overriding Initialize, so we simply
18179 -- set a flag that will be checked at freeze time.
18181 if not In_Predefined_Unit
(Full_T
) then
18182 Set_Must_Have_Preelab_Init
(Full_T
);
18186 -- If pragma CPP_Class was applied to the private type declaration,
18187 -- propagate it now to the full type declaration.
18189 if Is_CPP_Class
(Priv_T
) then
18190 Set_Is_CPP_Class
(Full_T
);
18191 Set_Convention
(Full_T
, Convention_CPP
);
18193 -- Check that components of imported CPP types do not have default
18196 Check_CPP_Type_Has_No_Defaults
(Full_T
);
18199 -- If the private view has user specified stream attributes, then so has
18202 -- Why the test, how could these flags be already set in Full_T ???
18204 if Has_Specified_Stream_Read
(Priv_T
) then
18205 Set_Has_Specified_Stream_Read
(Full_T
);
18208 if Has_Specified_Stream_Write
(Priv_T
) then
18209 Set_Has_Specified_Stream_Write
(Full_T
);
18212 if Has_Specified_Stream_Input
(Priv_T
) then
18213 Set_Has_Specified_Stream_Input
(Full_T
);
18216 if Has_Specified_Stream_Output
(Priv_T
) then
18217 Set_Has_Specified_Stream_Output
(Full_T
);
18220 -- Propagate invariants to full type
18222 if Has_Invariants
(Priv_T
) then
18223 Set_Has_Invariants
(Full_T
);
18224 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
18227 if Has_Inheritable_Invariants
(Priv_T
) then
18228 Set_Has_Inheritable_Invariants
(Full_T
);
18231 -- Propagate predicates to full type
18233 if Has_Predicates
(Priv_T
) then
18234 Set_Predicate_Function
(Priv_T
, Predicate_Function
(Full_T
));
18235 Set_Has_Predicates
(Full_T
);
18237 end Process_Full_View
;
18239 -----------------------------------
18240 -- Process_Incomplete_Dependents --
18241 -----------------------------------
18243 procedure Process_Incomplete_Dependents
18245 Full_T
: Entity_Id
;
18248 Inc_Elmt
: Elmt_Id
;
18249 Priv_Dep
: Entity_Id
;
18250 New_Subt
: Entity_Id
;
18252 Disc_Constraint
: Elist_Id
;
18255 if No
(Private_Dependents
(Inc_T
)) then
18259 -- Itypes that may be generated by the completion of an incomplete
18260 -- subtype are not used by the back-end and not attached to the tree.
18261 -- They are created only for constraint-checking purposes.
18263 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
18264 while Present
(Inc_Elmt
) loop
18265 Priv_Dep
:= Node
(Inc_Elmt
);
18267 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
18269 -- An Access_To_Subprogram type may have a return type or a
18270 -- parameter type that is incomplete. Replace with the full view.
18272 if Etype
(Priv_Dep
) = Inc_T
then
18273 Set_Etype
(Priv_Dep
, Full_T
);
18277 Formal
: Entity_Id
;
18280 Formal
:= First_Formal
(Priv_Dep
);
18281 while Present
(Formal
) loop
18282 if Etype
(Formal
) = Inc_T
then
18283 Set_Etype
(Formal
, Full_T
);
18286 Next_Formal
(Formal
);
18290 elsif Is_Overloadable
(Priv_Dep
) then
18292 -- If a subprogram in the incomplete dependents list is primitive
18293 -- for a tagged full type then mark it as a dispatching operation,
18294 -- check whether it overrides an inherited subprogram, and check
18295 -- restrictions on its controlling formals. Note that a protected
18296 -- operation is never dispatching: only its wrapper operation
18297 -- (which has convention Ada) is.
18299 if Is_Tagged_Type
(Full_T
)
18300 and then Is_Primitive
(Priv_Dep
)
18301 and then Convention
(Priv_Dep
) /= Convention_Protected
18303 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
18304 Set_Is_Dispatching_Operation
(Priv_Dep
);
18305 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
18308 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
18310 -- Can happen during processing of a body before the completion
18311 -- of a TA type. Ignore, because spec is also on dependent list.
18315 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18316 -- corresponding subtype of the full view.
18318 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
18319 Set_Subtype_Indication
18320 (Parent
(Priv_Dep
), New_Reference_To
(Full_T
, Sloc
(Priv_Dep
)));
18321 Set_Etype
(Priv_Dep
, Full_T
);
18322 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
18323 Set_Analyzed
(Parent
(Priv_Dep
), False);
18325 -- Reanalyze the declaration, suppressing the call to
18326 -- Enter_Name to avoid duplicate names.
18328 Analyze_Subtype_Declaration
18329 (N
=> Parent
(Priv_Dep
),
18332 -- Dependent is a subtype
18335 -- We build a new subtype indication using the full view of the
18336 -- incomplete parent. The discriminant constraints have been
18337 -- elaborated already at the point of the subtype declaration.
18339 New_Subt
:= Create_Itype
(E_Void
, N
);
18341 if Has_Discriminants
(Full_T
) then
18342 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
18344 Disc_Constraint
:= No_Elist
;
18347 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
18348 Set_Full_View
(Priv_Dep
, New_Subt
);
18351 Next_Elmt
(Inc_Elmt
);
18353 end Process_Incomplete_Dependents
;
18355 --------------------------------
18356 -- Process_Range_Expr_In_Decl --
18357 --------------------------------
18359 procedure Process_Range_Expr_In_Decl
18362 Check_List
: List_Id
:= Empty_List
;
18363 R_Check_Off
: Boolean := False;
18364 In_Iter_Schm
: Boolean := False)
18367 R_Checks
: Check_Result
;
18368 Insert_Node
: Node_Id
;
18369 Def_Id
: Entity_Id
;
18372 Analyze_And_Resolve
(R
, Base_Type
(T
));
18374 if Nkind
(R
) = N_Range
then
18376 -- In SPARK, all ranges should be static, with the exception of the
18377 -- discrete type definition of a loop parameter specification.
18379 if not In_Iter_Schm
18380 and then not Is_Static_Range
(R
)
18382 Check_SPARK_Restriction
("range should be static", R
);
18385 Lo
:= Low_Bound
(R
);
18386 Hi
:= High_Bound
(R
);
18388 -- We need to ensure validity of the bounds here, because if we
18389 -- go ahead and do the expansion, then the expanded code will get
18390 -- analyzed with range checks suppressed and we miss the check.
18392 Validity_Check_Range
(R
);
18394 -- If there were errors in the declaration, try and patch up some
18395 -- common mistakes in the bounds. The cases handled are literals
18396 -- which are Integer where the expected type is Real and vice versa.
18397 -- These corrections allow the compilation process to proceed further
18398 -- along since some basic assumptions of the format of the bounds
18401 if Etype
(R
) = Any_Type
then
18403 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
18405 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
18407 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
18409 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
18411 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
18413 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
18415 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
18417 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
18424 -- If the bounds of the range have been mistakenly given as string
18425 -- literals (perhaps in place of character literals), then an error
18426 -- has already been reported, but we rewrite the string literal as a
18427 -- bound of the range's type to avoid blowups in later processing
18428 -- that looks at static values.
18430 if Nkind
(Lo
) = N_String_Literal
then
18432 Make_Attribute_Reference
(Sloc
(Lo
),
18433 Attribute_Name
=> Name_First
,
18434 Prefix
=> New_Reference_To
(T
, Sloc
(Lo
))));
18435 Analyze_And_Resolve
(Lo
);
18438 if Nkind
(Hi
) = N_String_Literal
then
18440 Make_Attribute_Reference
(Sloc
(Hi
),
18441 Attribute_Name
=> Name_First
,
18442 Prefix
=> New_Reference_To
(T
, Sloc
(Hi
))));
18443 Analyze_And_Resolve
(Hi
);
18446 -- If bounds aren't scalar at this point then exit, avoiding
18447 -- problems with further processing of the range in this procedure.
18449 if not Is_Scalar_Type
(Etype
(Lo
)) then
18453 -- Resolve (actually Sem_Eval) has checked that the bounds are in
18454 -- then range of the base type. Here we check whether the bounds
18455 -- are in the range of the subtype itself. Note that if the bounds
18456 -- represent the null range the Constraint_Error exception should
18459 -- ??? The following code should be cleaned up as follows
18461 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
18462 -- is done in the call to Range_Check (R, T); below
18464 -- 2. The use of R_Check_Off should be investigated and possibly
18465 -- removed, this would clean up things a bit.
18467 if Is_Null_Range
(Lo
, Hi
) then
18471 -- Capture values of bounds and generate temporaries for them
18472 -- if needed, before applying checks, since checks may cause
18473 -- duplication of the expression without forcing evaluation.
18475 -- The forced evaluation removes side effects from expressions,
18476 -- which should occur also in Alfa mode. Otherwise, we end up with
18477 -- unexpected insertions of actions at places where this is not
18478 -- supposed to occur, e.g. on default parameters of a call.
18480 if Expander_Active
then
18481 Force_Evaluation
(Lo
);
18482 Force_Evaluation
(Hi
);
18485 -- We use a flag here instead of suppressing checks on the
18486 -- type because the type we check against isn't necessarily
18487 -- the place where we put the check.
18489 if not R_Check_Off
then
18490 R_Checks
:= Get_Range_Checks
(R
, T
);
18492 -- Look up tree to find an appropriate insertion point. We
18493 -- can't just use insert_actions because later processing
18494 -- depends on the insertion node. Prior to Ada 2012 the
18495 -- insertion point could only be a declaration or a loop, but
18496 -- quantified expressions can appear within any context in an
18497 -- expression, and the insertion point can be any statement,
18498 -- pragma, or declaration.
18500 Insert_Node
:= Parent
(R
);
18501 while Present
(Insert_Node
) loop
18503 Nkind
(Insert_Node
) in N_Declaration
18506 (Insert_Node
, N_Component_Declaration
,
18507 N_Loop_Parameter_Specification
,
18508 N_Function_Specification
,
18509 N_Procedure_Specification
);
18511 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
18512 or else Nkind
(Insert_Node
) in
18513 N_Statement_Other_Than_Procedure_Call
18514 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
18517 Insert_Node
:= Parent
(Insert_Node
);
18520 -- Why would Type_Decl not be present??? Without this test,
18521 -- short regression tests fail.
18523 if Present
(Insert_Node
) then
18525 -- Case of loop statement. Verify that the range is part
18526 -- of the subtype indication of the iteration scheme.
18528 if Nkind
(Insert_Node
) = N_Loop_Statement
then
18533 Indic
:= Parent
(R
);
18534 while Present
(Indic
)
18535 and then Nkind
(Indic
) /= N_Subtype_Indication
18537 Indic
:= Parent
(Indic
);
18540 if Present
(Indic
) then
18541 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
18543 Insert_Range_Checks
18547 Sloc
(Insert_Node
),
18549 Do_Before
=> True);
18553 -- Insertion before a declaration. If the declaration
18554 -- includes discriminants, the list of applicable checks
18555 -- is given by the caller.
18557 elsif Nkind
(Insert_Node
) in N_Declaration
then
18558 Def_Id
:= Defining_Identifier
(Insert_Node
);
18560 if (Ekind
(Def_Id
) = E_Record_Type
18561 and then Depends_On_Discriminant
(R
))
18563 (Ekind
(Def_Id
) = E_Protected_Type
18564 and then Has_Discriminants
(Def_Id
))
18566 Append_Range_Checks
18568 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
18571 Insert_Range_Checks
18573 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
18577 -- Insertion before a statement. Range appears in the
18578 -- context of a quantified expression. Insertion will
18579 -- take place when expression is expanded.
18588 -- Case of other than an explicit N_Range node
18590 -- The forced evaluation removes side effects from expressions, which
18591 -- should occur also in Alfa mode. Otherwise, we end up with unexpected
18592 -- insertions of actions at places where this is not supposed to occur,
18593 -- e.g. on default parameters of a call.
18595 elsif Expander_Active
then
18596 Get_Index_Bounds
(R
, Lo
, Hi
);
18597 Force_Evaluation
(Lo
);
18598 Force_Evaluation
(Hi
);
18600 end Process_Range_Expr_In_Decl
;
18602 --------------------------------------
18603 -- Process_Real_Range_Specification --
18604 --------------------------------------
18606 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
18607 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
18610 Err
: Boolean := False;
18612 procedure Analyze_Bound
(N
: Node_Id
);
18613 -- Analyze and check one bound
18615 -------------------
18616 -- Analyze_Bound --
18617 -------------------
18619 procedure Analyze_Bound
(N
: Node_Id
) is
18621 Analyze_And_Resolve
(N
, Any_Real
);
18623 if not Is_OK_Static_Expression
(N
) then
18624 Flag_Non_Static_Expr
18625 ("bound in real type definition is not static!", N
);
18630 -- Start of processing for Process_Real_Range_Specification
18633 if Present
(Spec
) then
18634 Lo
:= Low_Bound
(Spec
);
18635 Hi
:= High_Bound
(Spec
);
18636 Analyze_Bound
(Lo
);
18637 Analyze_Bound
(Hi
);
18639 -- If error, clear away junk range specification
18642 Set_Real_Range_Specification
(Def
, Empty
);
18645 end Process_Real_Range_Specification
;
18647 ---------------------
18648 -- Process_Subtype --
18649 ---------------------
18651 function Process_Subtype
18653 Related_Nod
: Node_Id
;
18654 Related_Id
: Entity_Id
:= Empty
;
18655 Suffix
: Character := ' ') return Entity_Id
18658 Def_Id
: Entity_Id
;
18659 Error_Node
: Node_Id
;
18660 Full_View_Id
: Entity_Id
;
18661 Subtype_Mark_Id
: Entity_Id
;
18663 May_Have_Null_Exclusion
: Boolean;
18665 procedure Check_Incomplete
(T
: Entity_Id
);
18666 -- Called to verify that an incomplete type is not used prematurely
18668 ----------------------
18669 -- Check_Incomplete --
18670 ----------------------
18672 procedure Check_Incomplete
(T
: Entity_Id
) is
18674 -- Ada 2005 (AI-412): Incomplete subtypes are legal
18676 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
18678 not (Ada_Version
>= Ada_2005
18680 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
18682 (Nkind
(Parent
(T
)) = N_Subtype_Indication
18683 and then Nkind
(Parent
(Parent
(T
))) =
18684 N_Subtype_Declaration
)))
18686 Error_Msg_N
("invalid use of type before its full declaration", T
);
18688 end Check_Incomplete
;
18690 -- Start of processing for Process_Subtype
18693 -- Case of no constraints present
18695 if Nkind
(S
) /= N_Subtype_Indication
then
18697 Check_Incomplete
(S
);
18700 -- Ada 2005 (AI-231): Static check
18702 if Ada_Version
>= Ada_2005
18703 and then Present
(P
)
18704 and then Null_Exclusion_Present
(P
)
18705 and then Nkind
(P
) /= N_Access_To_Object_Definition
18706 and then not Is_Access_Type
(Entity
(S
))
18708 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
18711 -- The following is ugly, can't we have a range or even a flag???
18713 May_Have_Null_Exclusion
:=
18714 Nkind_In
(P
, N_Access_Definition
,
18715 N_Access_Function_Definition
,
18716 N_Access_Procedure_Definition
,
18717 N_Access_To_Object_Definition
,
18719 N_Component_Definition
)
18721 Nkind_In
(P
, N_Derived_Type_Definition
,
18722 N_Discriminant_Specification
,
18723 N_Formal_Object_Declaration
,
18724 N_Object_Declaration
,
18725 N_Object_Renaming_Declaration
,
18726 N_Parameter_Specification
,
18727 N_Subtype_Declaration
);
18729 -- Create an Itype that is a duplicate of Entity (S) but with the
18730 -- null-exclusion attribute.
18732 if May_Have_Null_Exclusion
18733 and then Is_Access_Type
(Entity
(S
))
18734 and then Null_Exclusion_Present
(P
)
18736 -- No need to check the case of an access to object definition.
18737 -- It is correct to define double not-null pointers.
18740 -- type Not_Null_Int_Ptr is not null access Integer;
18741 -- type Acc is not null access Not_Null_Int_Ptr;
18743 and then Nkind
(P
) /= N_Access_To_Object_Definition
18745 if Can_Never_Be_Null
(Entity
(S
)) then
18746 case Nkind
(Related_Nod
) is
18747 when N_Full_Type_Declaration
=>
18748 if Nkind
(Type_Definition
(Related_Nod
))
18749 in N_Array_Type_Definition
18753 (Component_Definition
18754 (Type_Definition
(Related_Nod
)));
18757 Subtype_Indication
(Type_Definition
(Related_Nod
));
18760 when N_Subtype_Declaration
=>
18761 Error_Node
:= Subtype_Indication
(Related_Nod
);
18763 when N_Object_Declaration
=>
18764 Error_Node
:= Object_Definition
(Related_Nod
);
18766 when N_Component_Declaration
=>
18768 Subtype_Indication
(Component_Definition
(Related_Nod
));
18770 when N_Allocator
=>
18771 Error_Node
:= Expression
(Related_Nod
);
18774 pragma Assert
(False);
18775 Error_Node
:= Related_Nod
;
18779 ("`NOT NULL` not allowed (& already excludes null)",
18785 Create_Null_Excluding_Itype
18787 Related_Nod
=> P
));
18788 Set_Entity
(S
, Etype
(S
));
18793 -- Case of constraint present, so that we have an N_Subtype_Indication
18794 -- node (this node is created only if constraints are present).
18797 Find_Type
(Subtype_Mark
(S
));
18799 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
18801 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
18802 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
18804 Check_Incomplete
(Subtype_Mark
(S
));
18808 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
18810 -- Explicit subtype declaration case
18812 if Nkind
(P
) = N_Subtype_Declaration
then
18813 Def_Id
:= Defining_Identifier
(P
);
18815 -- Explicit derived type definition case
18817 elsif Nkind
(P
) = N_Derived_Type_Definition
then
18818 Def_Id
:= Defining_Identifier
(Parent
(P
));
18820 -- Implicit case, the Def_Id must be created as an implicit type.
18821 -- The one exception arises in the case of concurrent types, array
18822 -- and access types, where other subsidiary implicit types may be
18823 -- created and must appear before the main implicit type. In these
18824 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
18825 -- has not yet been called to create Def_Id.
18828 if Is_Array_Type
(Subtype_Mark_Id
)
18829 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
18830 or else Is_Access_Type
(Subtype_Mark_Id
)
18834 -- For the other cases, we create a new unattached Itype,
18835 -- and set the indication to ensure it gets attached later.
18839 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
18843 -- If the kind of constraint is invalid for this kind of type,
18844 -- then give an error, and then pretend no constraint was given.
18846 if not Is_Valid_Constraint_Kind
18847 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
18850 ("incorrect constraint for this kind of type", Constraint
(S
));
18852 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
18854 -- Set Ekind of orphan itype, to prevent cascaded errors
18856 if Present
(Def_Id
) then
18857 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
18860 -- Make recursive call, having got rid of the bogus constraint
18862 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
18865 -- Remaining processing depends on type. Select on Base_Type kind to
18866 -- ensure getting to the concrete type kind in the case of a private
18867 -- subtype (needed when only doing semantic analysis).
18869 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
18870 when Access_Kind
=>
18871 Constrain_Access
(Def_Id
, S
, Related_Nod
);
18874 and then Is_Itype
(Designated_Type
(Def_Id
))
18875 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
18876 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
18878 Build_Itype_Reference
18879 (Designated_Type
(Def_Id
), Related_Nod
);
18883 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
18885 when Decimal_Fixed_Point_Kind
=>
18886 Constrain_Decimal
(Def_Id
, S
);
18888 when Enumeration_Kind
=>
18889 Constrain_Enumeration
(Def_Id
, S
);
18891 when Ordinary_Fixed_Point_Kind
=>
18892 Constrain_Ordinary_Fixed
(Def_Id
, S
);
18895 Constrain_Float
(Def_Id
, S
);
18897 when Integer_Kind
=>
18898 Constrain_Integer
(Def_Id
, S
);
18900 when E_Record_Type |
18903 E_Incomplete_Type
=>
18904 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
18906 if Ekind
(Def_Id
) = E_Incomplete_Type
then
18907 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
18910 when Private_Kind
=>
18911 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
18912 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
18914 -- In case of an invalid constraint prevent further processing
18915 -- since the type constructed is missing expected fields.
18917 if Etype
(Def_Id
) = Any_Type
then
18921 -- If the full view is that of a task with discriminants,
18922 -- we must constrain both the concurrent type and its
18923 -- corresponding record type. Otherwise we will just propagate
18924 -- the constraint to the full view, if available.
18926 if Present
(Full_View
(Subtype_Mark_Id
))
18927 and then Has_Discriminants
(Subtype_Mark_Id
)
18928 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
18931 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
18933 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
18934 Constrain_Concurrent
(Full_View_Id
, S
,
18935 Related_Nod
, Related_Id
, Suffix
);
18936 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
18937 Set_Full_View
(Def_Id
, Full_View_Id
);
18939 -- Introduce an explicit reference to the private subtype,
18940 -- to prevent scope anomalies in gigi if first use appears
18941 -- in a nested context, e.g. a later function body.
18942 -- Should this be generated in other contexts than a full
18943 -- type declaration?
18945 if Is_Itype
(Def_Id
)
18947 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
18949 Build_Itype_Reference
(Def_Id
, Parent
(P
));
18953 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
18956 when Concurrent_Kind
=>
18957 Constrain_Concurrent
(Def_Id
, S
,
18958 Related_Nod
, Related_Id
, Suffix
);
18961 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
18964 -- Size and Convention are always inherited from the base type
18966 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
18967 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
18971 end Process_Subtype
;
18973 ---------------------------------------
18974 -- Check_Anonymous_Access_Components --
18975 ---------------------------------------
18977 procedure Check_Anonymous_Access_Components
18978 (Typ_Decl
: Node_Id
;
18981 Comp_List
: Node_Id
)
18983 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
18984 Anon_Access
: Entity_Id
;
18987 Comp_Def
: Node_Id
;
18989 Type_Def
: Node_Id
;
18991 procedure Build_Incomplete_Type_Declaration
;
18992 -- If the record type contains components that include an access to the
18993 -- current record, then create an incomplete type declaration for the
18994 -- record, to be used as the designated type of the anonymous access.
18995 -- This is done only once, and only if there is no previous partial
18996 -- view of the type.
18998 function Designates_T
(Subt
: Node_Id
) return Boolean;
18999 -- Check whether a node designates the enclosing record type, or 'Class
19002 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
19003 -- Check whether an access definition includes a reference to
19004 -- the enclosing record type. The reference can be a subtype mark
19005 -- in the access definition itself, a 'Class attribute reference, or
19006 -- recursively a reference appearing in a parameter specification
19007 -- or result definition of an access_to_subprogram definition.
19009 --------------------------------------
19010 -- Build_Incomplete_Type_Declaration --
19011 --------------------------------------
19013 procedure Build_Incomplete_Type_Declaration
is
19018 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19019 -- it's "is new ... with record" or else "is tagged record ...".
19021 Is_Tagged
: constant Boolean :=
19022 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
19025 (Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
19027 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
19028 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
19031 -- If there is a previous partial view, no need to create a new one
19032 -- If the partial view, given by Prev, is incomplete, If Prev is
19033 -- a private declaration, full declaration is flagged accordingly.
19035 if Prev
/= Typ
then
19037 Make_Class_Wide_Type
(Prev
);
19038 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
19039 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
19044 elsif Has_Private_Declaration
(Typ
) then
19046 -- If we refer to T'Class inside T, and T is the completion of a
19047 -- private type, then we need to make sure the class-wide type
19051 Make_Class_Wide_Type
(Typ
);
19056 -- If there was a previous anonymous access type, the incomplete
19057 -- type declaration will have been created already.
19059 elsif Present
(Current_Entity
(Typ
))
19060 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
19061 and then Full_View
(Current_Entity
(Typ
)) = Typ
19064 and then Comes_From_Source
(Current_Entity
(Typ
))
19065 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
19067 Make_Class_Wide_Type
(Typ
);
19069 ("incomplete view of tagged type should be declared tagged?",
19070 Parent
(Current_Entity
(Typ
)));
19075 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
19076 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
19078 -- Type has already been inserted into the current scope. Remove
19079 -- it, and add incomplete declaration for type, so that subsequent
19080 -- anonymous access types can use it. The entity is unchained from
19081 -- the homonym list and from immediate visibility. After analysis,
19082 -- the entity in the incomplete declaration becomes immediately
19083 -- visible in the record declaration that follows.
19085 H
:= Current_Entity
(Typ
);
19088 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
19091 and then Homonym
(H
) /= Typ
19093 H
:= Homonym
(Typ
);
19096 Set_Homonym
(H
, Homonym
(Typ
));
19099 Insert_Before
(Typ_Decl
, Decl
);
19101 Set_Full_View
(Inc_T
, Typ
);
19105 -- Create a common class-wide type for both views, and set the
19106 -- Etype of the class-wide type to the full view.
19108 Make_Class_Wide_Type
(Inc_T
);
19109 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
19110 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
19113 end Build_Incomplete_Type_Declaration
;
19119 function Designates_T
(Subt
: Node_Id
) return Boolean is
19120 Type_Id
: constant Name_Id
:= Chars
(Typ
);
19122 function Names_T
(Nam
: Node_Id
) return Boolean;
19123 -- The record type has not been introduced in the current scope
19124 -- yet, so we must examine the name of the type itself, either
19125 -- an identifier T, or an expanded name of the form P.T, where
19126 -- P denotes the current scope.
19132 function Names_T
(Nam
: Node_Id
) return Boolean is
19134 if Nkind
(Nam
) = N_Identifier
then
19135 return Chars
(Nam
) = Type_Id
;
19137 elsif Nkind
(Nam
) = N_Selected_Component
then
19138 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
19139 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
19140 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
19142 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
19143 return Chars
(Selector_Name
(Prefix
(Nam
))) =
19144 Chars
(Current_Scope
);
19158 -- Start of processing for Designates_T
19161 if Nkind
(Subt
) = N_Identifier
then
19162 return Chars
(Subt
) = Type_Id
;
19164 -- Reference can be through an expanded name which has not been
19165 -- analyzed yet, and which designates enclosing scopes.
19167 elsif Nkind
(Subt
) = N_Selected_Component
then
19168 if Names_T
(Subt
) then
19171 -- Otherwise it must denote an entity that is already visible.
19172 -- The access definition may name a subtype of the enclosing
19173 -- type, if there is a previous incomplete declaration for it.
19176 Find_Selected_Component
(Subt
);
19178 Is_Entity_Name
(Subt
)
19179 and then Scope
(Entity
(Subt
)) = Current_Scope
19181 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
19183 (Is_Class_Wide_Type
(Entity
(Subt
))
19185 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
19189 -- A reference to the current type may appear as the prefix of
19190 -- a 'Class attribute.
19192 elsif Nkind
(Subt
) = N_Attribute_Reference
19193 and then Attribute_Name
(Subt
) = Name_Class
19195 return Names_T
(Prefix
(Subt
));
19206 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
19207 Param_Spec
: Node_Id
;
19209 Acc_Subprg
: constant Node_Id
:=
19210 Access_To_Subprogram_Definition
(Acc_Def
);
19213 if No
(Acc_Subprg
) then
19214 return Designates_T
(Subtype_Mark
(Acc_Def
));
19217 -- Component is an access_to_subprogram: examine its formals,
19218 -- and result definition in the case of an access_to_function.
19220 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
19221 while Present
(Param_Spec
) loop
19222 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
19223 and then Mentions_T
(Parameter_Type
(Param_Spec
))
19227 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
19234 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
19235 if Nkind
(Result_Definition
(Acc_Subprg
)) =
19236 N_Access_Definition
19238 return Mentions_T
(Result_Definition
(Acc_Subprg
));
19240 return Designates_T
(Result_Definition
(Acc_Subprg
));
19247 -- Start of processing for Check_Anonymous_Access_Components
19250 if No
(Comp_List
) then
19254 Comp
:= First
(Component_Items
(Comp_List
));
19255 while Present
(Comp
) loop
19256 if Nkind
(Comp
) = N_Component_Declaration
19258 (Access_Definition
(Component_Definition
(Comp
)))
19260 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
19262 Comp_Def
:= Component_Definition
(Comp
);
19264 Access_To_Subprogram_Definition
19265 (Access_Definition
(Comp_Def
));
19267 Build_Incomplete_Type_Declaration
;
19268 Anon_Access
:= Make_Temporary
(Loc
, 'S');
19270 -- Create a declaration for the anonymous access type: either
19271 -- an access_to_object or an access_to_subprogram.
19273 if Present
(Acc_Def
) then
19274 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
19276 Make_Access_Function_Definition
(Loc
,
19277 Parameter_Specifications
=>
19278 Parameter_Specifications
(Acc_Def
),
19279 Result_Definition
=> Result_Definition
(Acc_Def
));
19282 Make_Access_Procedure_Definition
(Loc
,
19283 Parameter_Specifications
=>
19284 Parameter_Specifications
(Acc_Def
));
19289 Make_Access_To_Object_Definition
(Loc
,
19290 Subtype_Indication
=>
19293 (Access_Definition
(Comp_Def
))));
19295 Set_Constant_Present
19296 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
19298 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
19301 Set_Null_Exclusion_Present
19303 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
19306 Make_Full_Type_Declaration
(Loc
,
19307 Defining_Identifier
=> Anon_Access
,
19308 Type_Definition
=> Type_Def
);
19310 Insert_Before
(Typ_Decl
, Decl
);
19313 -- If an access to subprogram, create the extra formals
19315 if Present
(Acc_Def
) then
19316 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
19318 -- If an access to object, preserve entity of designated type,
19319 -- for ASIS use, before rewriting the component definition.
19326 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
19328 -- If the access definition is to the current record,
19329 -- the visible entity at this point is an incomplete
19330 -- type. Retrieve the full view to simplify ASIS queries
19332 if Ekind
(Desig
) = E_Incomplete_Type
then
19333 Desig
:= Full_View
(Desig
);
19337 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
19342 Make_Component_Definition
(Loc
,
19343 Subtype_Indication
=>
19344 New_Occurrence_Of
(Anon_Access
, Loc
)));
19346 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
19347 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
19349 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
19352 Set_Is_Local_Anonymous_Access
(Anon_Access
);
19358 if Present
(Variant_Part
(Comp_List
)) then
19362 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
19363 while Present
(V
) loop
19364 Check_Anonymous_Access_Components
19365 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
19366 Next_Non_Pragma
(V
);
19370 end Check_Anonymous_Access_Components
;
19372 ----------------------------------
19373 -- Preanalyze_Assert_Expression --
19374 ----------------------------------
19376 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19378 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
19379 Preanalyze_Spec_Expression
(N
, T
);
19380 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
19381 end Preanalyze_Assert_Expression
;
19383 --------------------------------
19384 -- Preanalyze_Spec_Expression --
19385 --------------------------------
19387 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19388 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
19390 In_Spec_Expression
:= True;
19391 Preanalyze_And_Resolve
(N
, T
);
19392 In_Spec_Expression
:= Save_In_Spec_Expression
;
19393 end Preanalyze_Spec_Expression
;
19395 -----------------------------
19396 -- Record_Type_Declaration --
19397 -----------------------------
19399 procedure Record_Type_Declaration
19404 Def
: constant Node_Id
:= Type_Definition
(N
);
19405 Is_Tagged
: Boolean;
19406 Tag_Comp
: Entity_Id
;
19409 -- These flags must be initialized before calling Process_Discriminants
19410 -- because this routine makes use of them.
19412 Set_Ekind
(T
, E_Record_Type
);
19414 Init_Size_Align
(T
);
19415 Set_Interfaces
(T
, No_Elist
);
19416 Set_Stored_Constraint
(T
, No_Elist
);
19420 if Ada_Version
< Ada_2005
19421 or else not Interface_Present
(Def
)
19423 if Limited_Present
(Def
) then
19424 Check_SPARK_Restriction
("limited is not allowed", N
);
19427 if Abstract_Present
(Def
) then
19428 Check_SPARK_Restriction
("abstract is not allowed", N
);
19431 -- The flag Is_Tagged_Type might have already been set by
19432 -- Find_Type_Name if it detected an error for declaration T. This
19433 -- arises in the case of private tagged types where the full view
19434 -- omits the word tagged.
19437 Tagged_Present
(Def
)
19438 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
19440 Set_Is_Tagged_Type
(T
, Is_Tagged
);
19441 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
19443 -- Type is abstract if full declaration carries keyword, or if
19444 -- previous partial view did.
19446 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
19447 or else Abstract_Present
(Def
));
19450 Check_SPARK_Restriction
("interface is not allowed", N
);
19453 Analyze_Interface_Declaration
(T
, Def
);
19455 if Present
(Discriminant_Specifications
(N
)) then
19457 ("interface types cannot have discriminants",
19458 Defining_Identifier
19459 (First
(Discriminant_Specifications
(N
))));
19463 -- First pass: if there are self-referential access components,
19464 -- create the required anonymous access type declarations, and if
19465 -- need be an incomplete type declaration for T itself.
19467 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
19469 if Ada_Version
>= Ada_2005
19470 and then Present
(Interface_List
(Def
))
19472 Check_Interfaces
(N
, Def
);
19475 Ifaces_List
: Elist_Id
;
19478 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
19479 -- already in the parents.
19483 Ifaces_List
=> Ifaces_List
,
19484 Exclude_Parents
=> True);
19486 Set_Interfaces
(T
, Ifaces_List
);
19490 -- Records constitute a scope for the component declarations within.
19491 -- The scope is created prior to the processing of these declarations.
19492 -- Discriminants are processed first, so that they are visible when
19493 -- processing the other components. The Ekind of the record type itself
19494 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
19496 -- Enter record scope
19500 -- If an incomplete or private type declaration was already given for
19501 -- the type, then this scope already exists, and the discriminants have
19502 -- been declared within. We must verify that the full declaration
19503 -- matches the incomplete one.
19505 Check_Or_Process_Discriminants
(N
, T
, Prev
);
19507 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
19508 Set_Has_Delayed_Freeze
(T
, True);
19510 -- For tagged types add a manually analyzed component corresponding
19511 -- to the component _tag, the corresponding piece of tree will be
19512 -- expanded as part of the freezing actions if it is not a CPP_Class.
19516 -- Do not add the tag unless we are in expansion mode
19518 if Expander_Active
then
19519 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
19520 Enter_Name
(Tag_Comp
);
19522 Set_Ekind
(Tag_Comp
, E_Component
);
19523 Set_Is_Tag
(Tag_Comp
);
19524 Set_Is_Aliased
(Tag_Comp
);
19525 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
19526 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
19527 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
19528 Init_Component_Location
(Tag_Comp
);
19530 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
19531 -- implemented interfaces.
19533 if Has_Interfaces
(T
) then
19534 Add_Interface_Tag_Components
(N
, T
);
19538 Make_Class_Wide_Type
(T
);
19539 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
19542 -- We must suppress range checks when processing record components in
19543 -- the presence of discriminants, since we don't want spurious checks to
19544 -- be generated during their analysis, but Suppress_Range_Checks flags
19545 -- must be reset the after processing the record definition.
19547 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
19548 -- couldn't we just use the normal range check suppression method here.
19549 -- That would seem cleaner ???
19551 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
19552 Set_Kill_Range_Checks
(T
, True);
19553 Record_Type_Definition
(Def
, Prev
);
19554 Set_Kill_Range_Checks
(T
, False);
19556 Record_Type_Definition
(Def
, Prev
);
19559 -- Exit from record scope
19563 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
19564 -- the implemented interfaces and associate them an aliased entity.
19567 and then not Is_Empty_List
(Interface_List
(Def
))
19569 Derive_Progenitor_Subprograms
(T
, T
);
19571 end Record_Type_Declaration
;
19573 ----------------------------
19574 -- Record_Type_Definition --
19575 ----------------------------
19577 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
19578 Component
: Entity_Id
;
19579 Ctrl_Components
: Boolean := False;
19580 Final_Storage_Only
: Boolean;
19584 if Ekind
(Prev_T
) = E_Incomplete_Type
then
19585 T
:= Full_View
(Prev_T
);
19590 -- In SPARK, tagged types and type extensions may only be declared in
19591 -- the specification of library unit packages.
19593 if Present
(Def
) and then Is_Tagged_Type
(T
) then
19599 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
19600 Typ
:= Parent
(Def
);
19603 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
19604 Typ
:= Parent
(Parent
(Def
));
19607 Ctxt
:= Parent
(Typ
);
19609 if Nkind
(Ctxt
) = N_Package_Body
19610 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
19612 Check_SPARK_Restriction
19613 ("type should be defined in package specification", Typ
);
19615 elsif Nkind
(Ctxt
) /= N_Package_Specification
19616 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
19618 Check_SPARK_Restriction
19619 ("type should be defined in library unit package", Typ
);
19624 Final_Storage_Only
:= not Is_Controlled
(T
);
19626 -- Ada 2005: check whether an explicit Limited is present in a derived
19627 -- type declaration.
19629 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
19630 and then Limited_Present
(Parent
(Def
))
19632 Set_Is_Limited_Record
(T
);
19635 -- If the component list of a record type is defined by the reserved
19636 -- word null and there is no discriminant part, then the record type has
19637 -- no components and all records of the type are null records (RM 3.7)
19638 -- This procedure is also called to process the extension part of a
19639 -- record extension, in which case the current scope may have inherited
19643 or else No
(Component_List
(Def
))
19644 or else Null_Present
(Component_List
(Def
))
19646 if not Is_Tagged_Type
(T
) then
19647 Check_SPARK_Restriction
("non-tagged record cannot be null", Def
);
19651 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
19653 if Present
(Variant_Part
(Component_List
(Def
))) then
19654 Check_SPARK_Restriction
("variant part is not allowed", Def
);
19655 Analyze
(Variant_Part
(Component_List
(Def
)));
19659 -- After completing the semantic analysis of the record definition,
19660 -- record components, both new and inherited, are accessible. Set their
19661 -- kind accordingly. Exclude malformed itypes from illegal declarations,
19662 -- whose Ekind may be void.
19664 Component
:= First_Entity
(Current_Scope
);
19665 while Present
(Component
) loop
19666 if Ekind
(Component
) = E_Void
19667 and then not Is_Itype
(Component
)
19669 Set_Ekind
(Component
, E_Component
);
19670 Init_Component_Location
(Component
);
19673 if Has_Task
(Etype
(Component
)) then
19677 if Ekind
(Component
) /= E_Component
then
19680 -- Do not set Has_Controlled_Component on a class-wide equivalent
19681 -- type. See Make_CW_Equivalent_Type.
19683 elsif not Is_Class_Wide_Equivalent_Type
(T
)
19684 and then (Has_Controlled_Component
(Etype
(Component
))
19685 or else (Chars
(Component
) /= Name_uParent
19686 and then Is_Controlled
(Etype
(Component
))))
19688 Set_Has_Controlled_Component
(T
, True);
19689 Final_Storage_Only
:=
19691 and then Finalize_Storage_Only
(Etype
(Component
));
19692 Ctrl_Components
:= True;
19695 Next_Entity
(Component
);
19698 -- A Type is Finalize_Storage_Only only if all its controlled components
19701 if Ctrl_Components
then
19702 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
19705 -- Place reference to end record on the proper entity, which may
19706 -- be a partial view.
19708 if Present
(Def
) then
19709 Process_End_Label
(Def
, 'e', Prev_T
);
19711 end Record_Type_Definition
;
19713 ------------------------
19714 -- Replace_Components --
19715 ------------------------
19717 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
19718 function Process
(N
: Node_Id
) return Traverse_Result
;
19724 function Process
(N
: Node_Id
) return Traverse_Result
is
19728 if Nkind
(N
) = N_Discriminant_Specification
then
19729 Comp
:= First_Discriminant
(Typ
);
19730 while Present
(Comp
) loop
19731 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
19732 Set_Defining_Identifier
(N
, Comp
);
19736 Next_Discriminant
(Comp
);
19739 elsif Nkind
(N
) = N_Component_Declaration
then
19740 Comp
:= First_Component
(Typ
);
19741 while Present
(Comp
) loop
19742 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
19743 Set_Defining_Identifier
(N
, Comp
);
19747 Next_Component
(Comp
);
19754 procedure Replace
is new Traverse_Proc
(Process
);
19756 -- Start of processing for Replace_Components
19760 end Replace_Components
;
19762 -------------------------------
19763 -- Set_Completion_Referenced --
19764 -------------------------------
19766 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
19768 -- If in main unit, mark entity that is a completion as referenced,
19769 -- warnings go on the partial view when needed.
19771 if In_Extended_Main_Source_Unit
(E
) then
19772 Set_Referenced
(E
);
19774 end Set_Completion_Referenced
;
19776 ---------------------
19777 -- Set_Fixed_Range --
19778 ---------------------
19780 -- The range for fixed-point types is complicated by the fact that we
19781 -- do not know the exact end points at the time of the declaration. This
19782 -- is true for three reasons:
19784 -- A size clause may affect the fudging of the end-points.
19785 -- A small clause may affect the values of the end-points.
19786 -- We try to include the end-points if it does not affect the size.
19788 -- This means that the actual end-points must be established at the
19789 -- point when the type is frozen. Meanwhile, we first narrow the range
19790 -- as permitted (so that it will fit if necessary in a small specified
19791 -- size), and then build a range subtree with these narrowed bounds.
19792 -- Set_Fixed_Range constructs the range from real literal values, and
19793 -- sets the range as the Scalar_Range of the given fixed-point type entity.
19795 -- The parent of this range is set to point to the entity so that it is
19796 -- properly hooked into the tree (unlike normal Scalar_Range entries for
19797 -- other scalar types, which are just pointers to the range in the
19798 -- original tree, this would otherwise be an orphan).
19800 -- The tree is left unanalyzed. When the type is frozen, the processing
19801 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
19802 -- analyzed, and uses this as an indication that it should complete
19803 -- work on the range (it will know the final small and size values).
19805 procedure Set_Fixed_Range
19811 S
: constant Node_Id
:=
19813 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
19814 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
19816 Set_Scalar_Range
(E
, S
);
19819 -- Before the freeze point, the bounds of a fixed point are universal
19820 -- and carry the corresponding type.
19822 Set_Etype
(Low_Bound
(S
), Universal_Real
);
19823 Set_Etype
(High_Bound
(S
), Universal_Real
);
19824 end Set_Fixed_Range
;
19826 ----------------------------------
19827 -- Set_Scalar_Range_For_Subtype --
19828 ----------------------------------
19830 procedure Set_Scalar_Range_For_Subtype
19831 (Def_Id
: Entity_Id
;
19835 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
19838 -- Defend against previous error
19840 if Nkind
(R
) = N_Error
then
19844 Set_Scalar_Range
(Def_Id
, R
);
19846 -- We need to link the range into the tree before resolving it so
19847 -- that types that are referenced, including importantly the subtype
19848 -- itself, are properly frozen (Freeze_Expression requires that the
19849 -- expression be properly linked into the tree). Of course if it is
19850 -- already linked in, then we do not disturb the current link.
19852 if No
(Parent
(R
)) then
19853 Set_Parent
(R
, Def_Id
);
19856 -- Reset the kind of the subtype during analysis of the range, to
19857 -- catch possible premature use in the bounds themselves.
19859 Set_Ekind
(Def_Id
, E_Void
);
19860 Process_Range_Expr_In_Decl
(R
, Subt
);
19861 Set_Ekind
(Def_Id
, Kind
);
19862 end Set_Scalar_Range_For_Subtype
;
19864 --------------------------------------------------------
19865 -- Set_Stored_Constraint_From_Discriminant_Constraint --
19866 --------------------------------------------------------
19868 procedure Set_Stored_Constraint_From_Discriminant_Constraint
19872 -- Make sure set if encountered during Expand_To_Stored_Constraint
19874 Set_Stored_Constraint
(E
, No_Elist
);
19876 -- Give it the right value
19878 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
19879 Set_Stored_Constraint
(E
,
19880 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
19882 end Set_Stored_Constraint_From_Discriminant_Constraint
;
19884 -------------------------------------
19885 -- Signed_Integer_Type_Declaration --
19886 -------------------------------------
19888 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
19889 Implicit_Base
: Entity_Id
;
19890 Base_Typ
: Entity_Id
;
19893 Errs
: Boolean := False;
19897 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
19898 -- Determine whether given bounds allow derivation from specified type
19900 procedure Check_Bound
(Expr
: Node_Id
);
19901 -- Check bound to make sure it is integral and static. If not, post
19902 -- appropriate error message and set Errs flag
19904 ---------------------
19905 -- Can_Derive_From --
19906 ---------------------
19908 -- Note we check both bounds against both end values, to deal with
19909 -- strange types like ones with a range of 0 .. -12341234.
19911 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
19912 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
19913 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
19915 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
19917 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
19918 end Can_Derive_From
;
19924 procedure Check_Bound
(Expr
: Node_Id
) is
19926 -- If a range constraint is used as an integer type definition, each
19927 -- bound of the range must be defined by a static expression of some
19928 -- integer type, but the two bounds need not have the same integer
19929 -- type (Negative bounds are allowed.) (RM 3.5.4)
19931 if not Is_Integer_Type
(Etype
(Expr
)) then
19933 ("integer type definition bounds must be of integer type", Expr
);
19936 elsif not Is_OK_Static_Expression
(Expr
) then
19937 Flag_Non_Static_Expr
19938 ("non-static expression used for integer type bound!", Expr
);
19941 -- The bounds are folded into literals, and we set their type to be
19942 -- universal, to avoid typing difficulties: we cannot set the type
19943 -- of the literal to the new type, because this would be a forward
19944 -- reference for the back end, and if the original type is user-
19945 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
19948 if Is_Entity_Name
(Expr
) then
19949 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
19952 Set_Etype
(Expr
, Universal_Integer
);
19956 -- Start of processing for Signed_Integer_Type_Declaration
19959 -- Create an anonymous base type
19962 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
19964 -- Analyze and check the bounds, they can be of any integer type
19966 Lo
:= Low_Bound
(Def
);
19967 Hi
:= High_Bound
(Def
);
19969 -- Arbitrarily use Integer as the type if either bound had an error
19971 if Hi
= Error
or else Lo
= Error
then
19972 Base_Typ
:= Any_Integer
;
19973 Set_Error_Posted
(T
, True);
19975 -- Here both bounds are OK expressions
19978 Analyze_And_Resolve
(Lo
, Any_Integer
);
19979 Analyze_And_Resolve
(Hi
, Any_Integer
);
19985 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
19986 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
19989 -- Find type to derive from
19991 Lo_Val
:= Expr_Value
(Lo
);
19992 Hi_Val
:= Expr_Value
(Hi
);
19994 if Can_Derive_From
(Standard_Short_Short_Integer
) then
19995 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
19997 elsif Can_Derive_From
(Standard_Short_Integer
) then
19998 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
20000 elsif Can_Derive_From
(Standard_Integer
) then
20001 Base_Typ
:= Base_Type
(Standard_Integer
);
20003 elsif Can_Derive_From
(Standard_Long_Integer
) then
20004 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
20006 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
20007 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
20010 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
20011 Error_Msg_N
("integer type definition bounds out of range", Def
);
20012 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
20013 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
20017 -- Complete both implicit base and declared first subtype entities
20019 Set_Etype
(Implicit_Base
, Base_Typ
);
20020 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
20021 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
20022 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
20024 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
20025 Set_Etype
(T
, Implicit_Base
);
20027 -- In formal verification mode, restrict the base type's range to the
20028 -- minimum allowed by RM 3.5.4, namely the smallest symmetric range
20029 -- around zero with a possible extra negative value that contains the
20030 -- subtype range. Keep Size, RM_Size and First_Rep_Item info, which
20031 -- should not be relied upon in formal verification.
20033 if Strict_Alfa_Mode
then
20037 Dloc
: constant Source_Ptr
:= Sloc
(Def
);
20043 -- If the subtype range is empty, the smallest base type range
20044 -- is the symmetric range around zero containing Lo_Val and
20047 if UI_Gt
(Lo_Val
, Hi_Val
) then
20048 Sym_Hi_Val
:= UI_Max
(UI_Abs
(Lo_Val
), UI_Abs
(Hi_Val
));
20049 Sym_Lo_Val
:= UI_Negate
(Sym_Hi_Val
);
20051 -- Otherwise, if the subtype range is not empty and Hi_Val has
20052 -- the largest absolute value, Hi_Val is non negative and the
20053 -- smallest base type range is the symmetric range around zero
20054 -- containing Hi_Val.
20056 elsif UI_Le
(UI_Abs
(Lo_Val
), UI_Abs
(Hi_Val
)) then
20057 Sym_Hi_Val
:= Hi_Val
;
20058 Sym_Lo_Val
:= UI_Negate
(Hi_Val
);
20060 -- Otherwise, the subtype range is not empty, Lo_Val has the
20061 -- strictly largest absolute value, Lo_Val is negative and the
20062 -- smallest base type range is the symmetric range around zero
20063 -- with an extra negative value Lo_Val.
20066 Sym_Lo_Val
:= Lo_Val
;
20067 Sym_Hi_Val
:= UI_Sub
(UI_Negate
(Lo_Val
), Uint_1
);
20070 Lbound
:= Make_Integer_Literal
(Dloc
, Sym_Lo_Val
);
20071 Ubound
:= Make_Integer_Literal
(Dloc
, Sym_Hi_Val
);
20072 Set_Is_Static_Expression
(Lbound
);
20073 Set_Is_Static_Expression
(Ubound
);
20074 Analyze_And_Resolve
(Lbound
, Any_Integer
);
20075 Analyze_And_Resolve
(Ubound
, Any_Integer
);
20077 Bounds
:= Make_Range
(Dloc
, Lbound
, Ubound
);
20078 Set_Etype
(Bounds
, Base_Typ
);
20080 Set_Scalar_Range
(Implicit_Base
, Bounds
);
20084 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
20087 Set_Size_Info
(T
, (Implicit_Base
));
20088 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
20089 Set_Scalar_Range
(T
, Def
);
20090 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
20091 Set_Is_Constrained
(T
);
20092 end Signed_Integer_Type_Declaration
;