1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
34 #include "coretypes.h"
43 #include "insn-config.h"
47 #include "tree-pass.h"
52 #include "cfgcleanup.h"
57 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
59 /* Set to true when we are running first pass of try_optimize_cfg loop. */
60 static bool first_pass
;
62 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
63 static bool crossjumps_occurred
;
65 /* Set to true if we couldn't run an optimization due to stale liveness
66 information; we should run df_analyze to enable more opportunities. */
67 static bool block_was_dirty
;
69 static bool try_crossjump_to_edge (int, edge
, edge
, enum replace_direction
);
70 static bool try_crossjump_bb (int, basic_block
);
71 static bool outgoing_edges_match (int, basic_block
, basic_block
);
72 static enum replace_direction
old_insns_match_p (int, rtx_insn
*, rtx_insn
*);
74 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
75 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
76 static bool try_optimize_cfg (int);
77 static bool try_simplify_condjump (basic_block
);
78 static bool try_forward_edges (int, basic_block
);
79 static edge
thread_jump (edge
, basic_block
);
80 static bool mark_effect (rtx
, bitmap
);
81 static void notice_new_block (basic_block
);
82 static void update_forwarder_flag (basic_block
);
83 static void merge_memattrs (rtx
, rtx
);
85 /* Set flags for newly created block. */
88 notice_new_block (basic_block bb
)
93 if (forwarder_block_p (bb
))
94 bb
->flags
|= BB_FORWARDER_BLOCK
;
97 /* Recompute forwarder flag after block has been modified. */
100 update_forwarder_flag (basic_block bb
)
102 if (forwarder_block_p (bb
))
103 bb
->flags
|= BB_FORWARDER_BLOCK
;
105 bb
->flags
&= ~BB_FORWARDER_BLOCK
;
108 /* Simplify a conditional jump around an unconditional jump.
109 Return true if something changed. */
112 try_simplify_condjump (basic_block cbranch_block
)
114 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
115 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
116 rtx_insn
*cbranch_insn
;
118 /* Verify that there are exactly two successors. */
119 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
122 /* Verify that we've got a normal conditional branch at the end
124 cbranch_insn
= BB_END (cbranch_block
);
125 if (!any_condjump_p (cbranch_insn
))
128 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
129 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
131 /* The next block must not have multiple predecessors, must not
132 be the last block in the function, and must contain just the
133 unconditional jump. */
134 jump_block
= cbranch_fallthru_edge
->dest
;
135 if (!single_pred_p (jump_block
)
136 || jump_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
137 || !FORWARDER_BLOCK_P (jump_block
))
139 jump_dest_block
= single_succ (jump_block
);
141 /* If we are partitioning hot/cold basic blocks, we don't want to
142 mess up unconditional or indirect jumps that cross between hot
145 Basic block partitioning may result in some jumps that appear to
146 be optimizable (or blocks that appear to be mergeable), but which really
147 must be left untouched (they are required to make it safely across
148 partition boundaries). See the comments at the top of
149 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
151 if (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
152 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
))
155 /* The conditional branch must target the block after the
156 unconditional branch. */
157 cbranch_dest_block
= cbranch_jump_edge
->dest
;
159 if (cbranch_dest_block
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
160 || jump_dest_block
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
161 || !can_fallthru (jump_block
, cbranch_dest_block
))
164 /* Invert the conditional branch. */
165 if (!invert_jump (as_a
<rtx_jump_insn
*> (cbranch_insn
),
166 block_label (jump_dest_block
), 0))
170 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
171 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
173 /* Success. Update the CFG to match. Note that after this point
174 the edge variable names appear backwards; the redirection is done
175 this way to preserve edge profile data. */
176 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
178 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
180 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
181 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
182 update_br_prob_note (cbranch_block
);
184 /* Delete the block with the unconditional jump, and clean up the mess. */
185 delete_basic_block (jump_block
);
186 tidy_fallthru_edge (cbranch_jump_edge
);
187 update_forwarder_flag (cbranch_block
);
192 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
193 on register. Used by jump threading. */
196 mark_effect (rtx exp
, regset nonequal
)
199 switch (GET_CODE (exp
))
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
204 dest
= XEXP (exp
, 0);
206 bitmap_clear_range (nonequal
, REGNO (dest
), REG_NREGS (dest
));
210 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
212 dest
= SET_DEST (exp
);
217 bitmap_set_range (nonequal
, REGNO (dest
), REG_NREGS (dest
));
225 /* Return true if X contains a register in NONEQUAL. */
227 mentions_nonequal_regs (const_rtx x
, regset nonequal
)
229 subrtx_iterator::array_type array
;
230 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
235 unsigned int end_regno
= END_REGNO (x
);
236 for (unsigned int regno
= REGNO (x
); regno
< end_regno
; ++regno
)
237 if (REGNO_REG_SET_P (nonequal
, regno
))
244 /* Attempt to prove that the basic block B will have no side effects and
245 always continues in the same edge if reached via E. Return the edge
246 if exist, NULL otherwise. */
249 thread_jump (edge e
, basic_block b
)
251 rtx set1
, set2
, cond1
, cond2
;
253 enum rtx_code code1
, code2
, reversed_code2
;
254 bool reverse1
= false;
258 reg_set_iterator rsi
;
260 if (b
->flags
& BB_NONTHREADABLE_BLOCK
)
263 /* At the moment, we do handle only conditional jumps, but later we may
264 want to extend this code to tablejumps and others. */
265 if (EDGE_COUNT (e
->src
->succs
) != 2)
267 if (EDGE_COUNT (b
->succs
) != 2)
269 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
273 /* Second branch must end with onlyjump, as we will eliminate the jump. */
274 if (!any_condjump_p (BB_END (e
->src
)))
277 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
279 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
283 set1
= pc_set (BB_END (e
->src
));
284 set2
= pc_set (BB_END (b
));
285 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
286 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
289 cond1
= XEXP (SET_SRC (set1
), 0);
290 cond2
= XEXP (SET_SRC (set2
), 0);
292 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
294 code1
= GET_CODE (cond1
);
296 code2
= GET_CODE (cond2
);
297 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
299 if (!comparison_dominates_p (code1
, code2
)
300 && !comparison_dominates_p (code1
, reversed_code2
))
303 /* Ensure that the comparison operators are equivalent.
304 ??? This is far too pessimistic. We should allow swapped operands,
305 different CCmodes, or for example comparisons for interval, that
306 dominate even when operands are not equivalent. */
307 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
308 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
311 /* Short circuit cases where block B contains some side effects, as we can't
313 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
314 insn
= NEXT_INSN (insn
))
315 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
317 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
323 /* First process all values computed in the source basic block. */
324 for (insn
= NEXT_INSN (BB_HEAD (e
->src
));
325 insn
!= NEXT_INSN (BB_END (e
->src
));
326 insn
= NEXT_INSN (insn
))
328 cselib_process_insn (insn
);
330 nonequal
= BITMAP_ALLOC (NULL
);
331 CLEAR_REG_SET (nonequal
);
333 /* Now assume that we've continued by the edge E to B and continue
334 processing as if it were same basic block.
335 Our goal is to prove that whole block is an NOOP. */
337 for (insn
= NEXT_INSN (BB_HEAD (b
));
338 insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
339 insn
= NEXT_INSN (insn
))
343 rtx pat
= PATTERN (insn
);
345 if (GET_CODE (pat
) == PARALLEL
)
347 for (i
= 0; i
< (unsigned)XVECLEN (pat
, 0); i
++)
348 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
351 failed
|= mark_effect (pat
, nonequal
);
354 cselib_process_insn (insn
);
357 /* Later we should clear nonequal of dead registers. So far we don't
358 have life information in cfg_cleanup. */
361 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
365 /* cond2 must not mention any register that is not equal to the
367 if (mentions_nonequal_regs (cond2
, nonequal
))
370 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
373 BITMAP_FREE (nonequal
);
375 if ((comparison_dominates_p (code1
, code2
) != 0)
376 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
377 return BRANCH_EDGE (b
);
379 return FALLTHRU_EDGE (b
);
382 BITMAP_FREE (nonequal
);
387 /* Attempt to forward edges leaving basic block B.
388 Return true if successful. */
391 try_forward_edges (int mode
, basic_block b
)
393 bool changed
= false;
395 edge e
, *threaded_edges
= NULL
;
397 /* If we are partitioning hot/cold basic blocks, we don't want to
398 mess up unconditional or indirect jumps that cross between hot
401 Basic block partitioning may result in some jumps that appear to
402 be optimizable (or blocks that appear to be mergeable), but which really
403 must be left untouched (they are required to make it safely across
404 partition boundaries). See the comments at the top of
405 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
407 if (JUMP_P (BB_END (b
)) && CROSSING_JUMP_P (BB_END (b
)))
410 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
412 basic_block target
, first
;
413 location_t goto_locus
;
415 bool threaded
= false;
416 int nthreaded_edges
= 0;
417 bool may_thread
= first_pass
|| (b
->flags
& BB_MODIFIED
) != 0;
419 /* Skip complex edges because we don't know how to update them.
421 Still handle fallthru edges, as we can succeed to forward fallthru
422 edge to the same place as the branch edge of conditional branch
423 and turn conditional branch to an unconditional branch. */
424 if (e
->flags
& EDGE_COMPLEX
)
430 target
= first
= e
->dest
;
431 counter
= NUM_FIXED_BLOCKS
;
432 goto_locus
= e
->goto_locus
;
434 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
435 up jumps that cross between hot/cold sections.
437 Basic block partitioning may result in some jumps that appear
438 to be optimizable (or blocks that appear to be mergeable), but which
439 really must be left untouched (they are required to make it safely
440 across partition boundaries). See the comments at the top of
441 bb-reorder.c:partition_hot_cold_basic_blocks for complete
444 if (first
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
445 && JUMP_P (BB_END (first
))
446 && CROSSING_JUMP_P (BB_END (first
)))
449 while (counter
< n_basic_blocks_for_fn (cfun
))
451 basic_block new_target
= NULL
;
452 bool new_target_threaded
= false;
453 may_thread
|= (target
->flags
& BB_MODIFIED
) != 0;
455 if (FORWARDER_BLOCK_P (target
)
456 && !(single_succ_edge (target
)->flags
& EDGE_CROSSING
)
457 && single_succ (target
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
459 /* Bypass trivial infinite loops. */
460 new_target
= single_succ (target
);
461 if (target
== new_target
)
462 counter
= n_basic_blocks_for_fn (cfun
);
465 /* When not optimizing, ensure that edges or forwarder
466 blocks with different locus are not optimized out. */
467 location_t new_locus
= single_succ_edge (target
)->goto_locus
;
468 location_t locus
= goto_locus
;
470 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
471 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
472 && new_locus
!= locus
)
476 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
479 rtx_insn
*last
= BB_END (target
);
480 if (DEBUG_INSN_P (last
))
481 last
= prev_nondebug_insn (last
);
482 if (last
&& INSN_P (last
))
483 new_locus
= INSN_LOCATION (last
);
485 new_locus
= UNKNOWN_LOCATION
;
487 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
488 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
489 && new_locus
!= locus
)
493 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
502 /* Allow to thread only over one edge at time to simplify updating
504 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
506 edge t
= thread_jump (e
, target
);
510 threaded_edges
= XNEWVEC (edge
,
511 n_basic_blocks_for_fn (cfun
));
516 /* Detect an infinite loop across blocks not
517 including the start block. */
518 for (i
= 0; i
< nthreaded_edges
; ++i
)
519 if (threaded_edges
[i
] == t
)
521 if (i
< nthreaded_edges
)
523 counter
= n_basic_blocks_for_fn (cfun
);
528 /* Detect an infinite loop across the start block. */
532 gcc_assert (nthreaded_edges
533 < (n_basic_blocks_for_fn (cfun
)
534 - NUM_FIXED_BLOCKS
));
535 threaded_edges
[nthreaded_edges
++] = t
;
537 new_target
= t
->dest
;
538 new_target_threaded
= true;
547 threaded
|= new_target_threaded
;
550 if (counter
>= n_basic_blocks_for_fn (cfun
))
553 fprintf (dump_file
, "Infinite loop in BB %i.\n",
556 else if (target
== first
)
557 ; /* We didn't do anything. */
560 /* Save the values now, as the edge may get removed. */
561 profile_count edge_count
= e
->count ();
564 e
->goto_locus
= goto_locus
;
566 /* Don't force if target is exit block. */
567 if (threaded
&& target
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
569 notice_new_block (redirect_edge_and_branch_force (e
, target
));
571 fprintf (dump_file
, "Conditionals threaded.\n");
573 else if (!redirect_edge_and_branch (e
, target
))
577 "Forwarding edge %i->%i to %i failed.\n",
578 b
->index
, e
->dest
->index
, target
->index
);
583 /* We successfully forwarded the edge. Now update profile
584 data: for each edge we traversed in the chain, remove
585 the original edge's execution count. */
590 if (!single_succ_p (first
))
592 gcc_assert (n
< nthreaded_edges
);
593 t
= threaded_edges
[n
++];
594 gcc_assert (t
->src
== first
);
595 update_bb_profile_for_threading (first
, edge_count
, t
);
596 update_br_prob_note (first
);
600 first
->count
-= edge_count
;
601 /* It is possible that as the result of
602 threading we've removed edge as it is
603 threaded to the fallthru edge. Avoid
604 getting out of sync. */
605 if (n
< nthreaded_edges
606 && first
== threaded_edges
[n
]->src
)
608 t
= single_succ_edge (first
);
613 while (first
!= target
);
621 free (threaded_edges
);
626 /* Blocks A and B are to be merged into a single block. A has no incoming
627 fallthru edge, so it can be moved before B without adding or modifying
628 any jumps (aside from the jump from A to B). */
631 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
635 /* If we are partitioning hot/cold basic blocks, we don't want to
636 mess up unconditional or indirect jumps that cross between hot
639 Basic block partitioning may result in some jumps that appear to
640 be optimizable (or blocks that appear to be mergeable), but which really
641 must be left untouched (they are required to make it safely across
642 partition boundaries). See the comments at the top of
643 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
645 if (BB_PARTITION (a
) != BB_PARTITION (b
))
648 barrier
= next_nonnote_insn (BB_END (a
));
649 gcc_assert (BARRIER_P (barrier
));
650 delete_insn (barrier
);
652 /* Scramble the insn chain. */
653 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
654 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
658 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
661 /* Swap the records for the two blocks around. */
664 link_block (a
, b
->prev_bb
);
666 /* Now blocks A and B are contiguous. Merge them. */
670 /* Blocks A and B are to be merged into a single block. B has no outgoing
671 fallthru edge, so it can be moved after A without adding or modifying
672 any jumps (aside from the jump from A to B). */
675 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
677 rtx_insn
*barrier
, *real_b_end
;
679 rtx_jump_table_data
*table
;
681 /* If we are partitioning hot/cold basic blocks, we don't want to
682 mess up unconditional or indirect jumps that cross between hot
685 Basic block partitioning may result in some jumps that appear to
686 be optimizable (or blocks that appear to be mergeable), but which really
687 must be left untouched (they are required to make it safely across
688 partition boundaries). See the comments at the top of
689 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
691 if (BB_PARTITION (a
) != BB_PARTITION (b
))
694 real_b_end
= BB_END (b
);
696 /* If there is a jump table following block B temporarily add the jump table
697 to block B so that it will also be moved to the correct location. */
698 if (tablejump_p (BB_END (b
), &label
, &table
)
699 && prev_active_insn (label
) == BB_END (b
))
704 /* There had better have been a barrier there. Delete it. */
705 barrier
= NEXT_INSN (BB_END (b
));
706 if (barrier
&& BARRIER_P (barrier
))
707 delete_insn (barrier
);
710 /* Scramble the insn chain. */
711 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
713 /* Restore the real end of b. */
714 BB_END (b
) = real_b_end
;
717 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
720 /* Now blocks A and B are contiguous. Merge them. */
724 /* Attempt to merge basic blocks that are potentially non-adjacent.
725 Return NULL iff the attempt failed, otherwise return basic block
726 where cleanup_cfg should continue. Because the merging commonly
727 moves basic block away or introduces another optimization
728 possibility, return basic block just before B so cleanup_cfg don't
731 It may be good idea to return basic block before C in the case
732 C has been moved after B and originally appeared earlier in the
733 insn sequence, but we have no information available about the
734 relative ordering of these two. Hopefully it is not too common. */
737 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
741 /* If we are partitioning hot/cold basic blocks, we don't want to
742 mess up unconditional or indirect jumps that cross between hot
745 Basic block partitioning may result in some jumps that appear to
746 be optimizable (or blocks that appear to be mergeable), but which really
747 must be left untouched (they are required to make it safely across
748 partition boundaries). See the comments at the top of
749 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
751 if (BB_PARTITION (b
) != BB_PARTITION (c
))
754 /* If B has a fallthru edge to C, no need to move anything. */
755 if (e
->flags
& EDGE_FALLTHRU
)
757 int b_index
= b
->index
, c_index
= c
->index
;
759 /* Protect the loop latches. */
760 if (current_loops
&& c
->loop_father
->latch
== c
)
764 update_forwarder_flag (b
);
767 fprintf (dump_file
, "Merged %d and %d without moving.\n",
770 return b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? b
: b
->prev_bb
;
773 /* Otherwise we will need to move code around. Do that only if expensive
774 transformations are allowed. */
775 else if (mode
& CLEANUP_EXPENSIVE
)
777 edge tmp_edge
, b_fallthru_edge
;
778 bool c_has_outgoing_fallthru
;
779 bool b_has_incoming_fallthru
;
781 /* Avoid overactive code motion, as the forwarder blocks should be
782 eliminated by edge redirection instead. One exception might have
783 been if B is a forwarder block and C has no fallthru edge, but
784 that should be cleaned up by bb-reorder instead. */
785 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
788 /* We must make sure to not munge nesting of lexical blocks,
789 and loop notes. This is done by squeezing out all the notes
790 and leaving them there to lie. Not ideal, but functional. */
792 tmp_edge
= find_fallthru_edge (c
->succs
);
793 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
795 tmp_edge
= find_fallthru_edge (b
->preds
);
796 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
797 b_fallthru_edge
= tmp_edge
;
800 next
= next
->prev_bb
;
802 /* Otherwise, we're going to try to move C after B. If C does
803 not have an outgoing fallthru, then it can be moved
804 immediately after B without introducing or modifying jumps. */
805 if (! c_has_outgoing_fallthru
)
807 merge_blocks_move_successor_nojumps (b
, c
);
808 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
811 /* If B does not have an incoming fallthru, then it can be moved
812 immediately before C without introducing or modifying jumps.
813 C cannot be the first block, so we do not have to worry about
814 accessing a non-existent block. */
816 if (b_has_incoming_fallthru
)
820 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
822 bb
= force_nonfallthru (b_fallthru_edge
);
824 notice_new_block (bb
);
827 merge_blocks_move_predecessor_nojumps (b
, c
);
828 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
835 /* Removes the memory attributes of MEM expression
836 if they are not equal. */
839 merge_memattrs (rtx x
, rtx y
)
848 if (x
== 0 || y
== 0)
853 if (code
!= GET_CODE (y
))
856 if (GET_MODE (x
) != GET_MODE (y
))
859 if (code
== MEM
&& !mem_attrs_eq_p (MEM_ATTRS (x
), MEM_ATTRS (y
)))
863 else if (! MEM_ATTRS (y
))
867 HOST_WIDE_INT mem_size
;
869 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
871 set_mem_alias_set (x
, 0);
872 set_mem_alias_set (y
, 0);
875 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
879 clear_mem_offset (x
);
880 clear_mem_offset (y
);
882 else if (MEM_OFFSET_KNOWN_P (x
) != MEM_OFFSET_KNOWN_P (y
)
883 || (MEM_OFFSET_KNOWN_P (x
)
884 && MEM_OFFSET (x
) != MEM_OFFSET (y
)))
886 clear_mem_offset (x
);
887 clear_mem_offset (y
);
890 if (MEM_SIZE_KNOWN_P (x
) && MEM_SIZE_KNOWN_P (y
))
892 mem_size
= MAX (MEM_SIZE (x
), MEM_SIZE (y
));
893 set_mem_size (x
, mem_size
);
894 set_mem_size (y
, mem_size
);
902 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
903 set_mem_align (y
, MEM_ALIGN (x
));
908 if (MEM_READONLY_P (x
) != MEM_READONLY_P (y
))
910 MEM_READONLY_P (x
) = 0;
911 MEM_READONLY_P (y
) = 0;
913 if (MEM_NOTRAP_P (x
) != MEM_NOTRAP_P (y
))
915 MEM_NOTRAP_P (x
) = 0;
916 MEM_NOTRAP_P (y
) = 0;
918 if (MEM_VOLATILE_P (x
) != MEM_VOLATILE_P (y
))
920 MEM_VOLATILE_P (x
) = 1;
921 MEM_VOLATILE_P (y
) = 1;
925 fmt
= GET_RTX_FORMAT (code
);
926 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
931 /* Two vectors must have the same length. */
932 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
935 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
936 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
941 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
948 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
949 different single sets S1 and S2. */
952 equal_different_set_p (rtx p1
, rtx s1
, rtx p2
, rtx s2
)
957 if (p1
== s1
&& p2
== s2
)
960 if (GET_CODE (p1
) != PARALLEL
|| GET_CODE (p2
) != PARALLEL
)
963 if (XVECLEN (p1
, 0) != XVECLEN (p2
, 0))
966 for (i
= 0; i
< XVECLEN (p1
, 0); i
++)
968 e1
= XVECEXP (p1
, 0, i
);
969 e2
= XVECEXP (p2
, 0, i
);
970 if (e1
== s1
&& e2
== s2
)
973 ? rtx_renumbered_equal_p (e1
, e2
) : rtx_equal_p (e1
, e2
))
983 /* NOTE1 is the REG_EQUAL note, if any, attached to an insn
984 that is a single_set with a SET_SRC of SRC1. Similarly
987 So effectively NOTE1/NOTE2 are an alternate form of
988 SRC1/SRC2 respectively.
990 Return nonzero if SRC1 or NOTE1 has the same constant
991 integer value as SRC2 or NOTE2. Else return zero. */
993 values_equal_p (rtx note1
, rtx note2
, rtx src1
, rtx src2
)
997 && CONST_INT_P (XEXP (note1
, 0))
998 && rtx_equal_p (XEXP (note1
, 0), XEXP (note2
, 0)))
1003 && CONST_INT_P (src1
)
1004 && CONST_INT_P (src2
)
1005 && rtx_equal_p (src1
, src2
))
1009 && CONST_INT_P (src2
)
1010 && rtx_equal_p (XEXP (note1
, 0), src2
))
1014 && CONST_INT_P (src1
)
1015 && rtx_equal_p (XEXP (note2
, 0), src1
))
1021 /* Examine register notes on I1 and I2 and return:
1022 - dir_forward if I1 can be replaced by I2, or
1023 - dir_backward if I2 can be replaced by I1, or
1024 - dir_both if both are the case. */
1026 static enum replace_direction
1027 can_replace_by (rtx_insn
*i1
, rtx_insn
*i2
)
1029 rtx s1
, s2
, d1
, d2
, src1
, src2
, note1
, note2
;
1032 /* Check for 2 sets. */
1033 s1
= single_set (i1
);
1034 s2
= single_set (i2
);
1035 if (s1
== NULL_RTX
|| s2
== NULL_RTX
)
1038 /* Check that the 2 sets set the same dest. */
1041 if (!(reload_completed
1042 ? rtx_renumbered_equal_p (d1
, d2
) : rtx_equal_p (d1
, d2
)))
1045 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1046 set dest to the same value. */
1047 note1
= find_reg_equal_equiv_note (i1
);
1048 note2
= find_reg_equal_equiv_note (i2
);
1050 src1
= SET_SRC (s1
);
1051 src2
= SET_SRC (s2
);
1053 if (!values_equal_p (note1
, note2
, src1
, src2
))
1056 if (!equal_different_set_p (PATTERN (i1
), s1
, PATTERN (i2
), s2
))
1059 /* Although the 2 sets set dest to the same value, we cannot replace
1060 (set (dest) (const_int))
1063 because we don't know if the reg is live and has the same value at the
1064 location of replacement. */
1065 c1
= CONST_INT_P (src1
);
1066 c2
= CONST_INT_P (src2
);
1072 return dir_backward
;
1077 /* Merges directions A and B. */
1079 static enum replace_direction
1080 merge_dir (enum replace_direction a
, enum replace_direction b
)
1082 /* Implements the following table:
1101 /* Array of flags indexed by reg note kind, true if the given
1102 reg note is CFA related. */
1103 static const bool reg_note_cfa_p
[] = {
1105 #define DEF_REG_NOTE(NAME) false,
1106 #define REG_CFA_NOTE(NAME) true,
1107 #include "reg-notes.def"
1113 /* Return true if I1 and I2 have identical CFA notes (the same order
1114 and equivalent content). */
1117 insns_have_identical_cfa_notes (rtx_insn
*i1
, rtx_insn
*i2
)
1120 for (n1
= REG_NOTES (i1
), n2
= REG_NOTES (i2
); ;
1121 n1
= XEXP (n1
, 1), n2
= XEXP (n2
, 1))
1123 /* Skip over reg notes not related to CFI information. */
1124 while (n1
&& !reg_note_cfa_p
[REG_NOTE_KIND (n1
)])
1126 while (n2
&& !reg_note_cfa_p
[REG_NOTE_KIND (n2
)])
1128 if (n1
== NULL_RTX
&& n2
== NULL_RTX
)
1130 if (n1
== NULL_RTX
|| n2
== NULL_RTX
)
1132 if (XEXP (n1
, 0) == XEXP (n2
, 0))
1134 else if (XEXP (n1
, 0) == NULL_RTX
|| XEXP (n2
, 0) == NULL_RTX
)
1136 else if (!(reload_completed
1137 ? rtx_renumbered_equal_p (XEXP (n1
, 0), XEXP (n2
, 0))
1138 : rtx_equal_p (XEXP (n1
, 0), XEXP (n2
, 0))))
1143 /* Examine I1 and I2 and return:
1144 - dir_forward if I1 can be replaced by I2, or
1145 - dir_backward if I2 can be replaced by I1, or
1146 - dir_both if both are the case. */
1148 static enum replace_direction
1149 old_insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx_insn
*i1
, rtx_insn
*i2
)
1153 /* Verify that I1 and I2 are equivalent. */
1154 if (GET_CODE (i1
) != GET_CODE (i2
))
1157 /* __builtin_unreachable() may lead to empty blocks (ending with
1158 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1159 if (NOTE_INSN_BASIC_BLOCK_P (i1
) && NOTE_INSN_BASIC_BLOCK_P (i2
))
1162 /* ??? Do not allow cross-jumping between different stack levels. */
1163 p1
= find_reg_note (i1
, REG_ARGS_SIZE
, NULL
);
1164 p2
= find_reg_note (i2
, REG_ARGS_SIZE
, NULL
);
1169 if (!rtx_equal_p (p1
, p2
))
1172 /* ??? Worse, this adjustment had better be constant lest we
1173 have differing incoming stack levels. */
1174 if (!frame_pointer_needed
1175 && find_args_size_adjust (i1
) == HOST_WIDE_INT_MIN
)
1181 /* Do not allow cross-jumping between frame related insns and other
1183 if (RTX_FRAME_RELATED_P (i1
) != RTX_FRAME_RELATED_P (i2
))
1189 if (GET_CODE (p1
) != GET_CODE (p2
))
1192 /* If this is a CALL_INSN, compare register usage information.
1193 If we don't check this on stack register machines, the two
1194 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1195 numbers of stack registers in the same basic block.
1196 If we don't check this on machines with delay slots, a delay slot may
1197 be filled that clobbers a parameter expected by the subroutine.
1199 ??? We take the simple route for now and assume that if they're
1200 equal, they were constructed identically.
1202 Also check for identical exception regions. */
1206 /* Ensure the same EH region. */
1207 rtx n1
= find_reg_note (i1
, REG_EH_REGION
, 0);
1208 rtx n2
= find_reg_note (i2
, REG_EH_REGION
, 0);
1213 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1216 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
1217 CALL_INSN_FUNCTION_USAGE (i2
))
1218 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
))
1221 /* For address sanitizer, never crossjump __asan_report_* builtins,
1222 otherwise errors might be reported on incorrect lines. */
1223 if (flag_sanitize
& SANITIZE_ADDRESS
)
1225 rtx call
= get_call_rtx_from (i1
);
1226 if (call
&& GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
1228 rtx symbol
= XEXP (XEXP (call
, 0), 0);
1229 if (SYMBOL_REF_DECL (symbol
)
1230 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
1232 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
1234 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1235 >= BUILT_IN_ASAN_REPORT_LOAD1
1236 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1237 <= BUILT_IN_ASAN_STOREN
)
1244 /* If both i1 and i2 are frame related, verify all the CFA notes
1245 in the same order and with the same content. */
1246 if (RTX_FRAME_RELATED_P (i1
) && !insns_have_identical_cfa_notes (i1
, i2
))
1250 /* If cross_jump_death_matters is not 0, the insn's mode
1251 indicates whether or not the insn contains any stack-like
1254 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
1256 /* If register stack conversion has already been done, then
1257 death notes must also be compared before it is certain that
1258 the two instruction streams match. */
1261 HARD_REG_SET i1_regset
, i2_regset
;
1263 CLEAR_HARD_REG_SET (i1_regset
);
1264 CLEAR_HARD_REG_SET (i2_regset
);
1266 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1267 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1268 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1270 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1271 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1272 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1274 if (!hard_reg_set_equal_p (i1_regset
, i2_regset
))
1279 if (reload_completed
1280 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1283 return can_replace_by (i1
, i2
);
1286 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1287 flow_find_head_matching_sequence, ensure the notes match. */
1290 merge_notes (rtx_insn
*i1
, rtx_insn
*i2
)
1292 /* If the merged insns have different REG_EQUAL notes, then
1294 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1295 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1297 if (equiv1
&& !equiv2
)
1298 remove_note (i1
, equiv1
);
1299 else if (!equiv1
&& equiv2
)
1300 remove_note (i2
, equiv2
);
1301 else if (equiv1
&& equiv2
1302 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1304 remove_note (i1
, equiv1
);
1305 remove_note (i2
, equiv2
);
1309 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1310 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1311 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1312 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1313 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1316 walk_to_nondebug_insn (rtx_insn
**i1
, basic_block
*bb1
, bool follow_fallthru
,
1321 *did_fallthru
= false;
1324 while (!NONDEBUG_INSN_P (*i1
))
1326 if (*i1
!= BB_HEAD (*bb1
))
1328 *i1
= PREV_INSN (*i1
);
1332 if (!follow_fallthru
)
1335 fallthru
= find_fallthru_edge ((*bb1
)->preds
);
1336 if (!fallthru
|| fallthru
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1337 || !single_succ_p (fallthru
->src
))
1340 *bb1
= fallthru
->src
;
1341 *i1
= BB_END (*bb1
);
1342 *did_fallthru
= true;
1346 /* Look through the insns at the end of BB1 and BB2 and find the longest
1347 sequence that are either equivalent, or allow forward or backward
1348 replacement. Store the first insns for that sequence in *F1 and *F2 and
1349 return the sequence length.
1351 DIR_P indicates the allowed replacement direction on function entry, and
1352 the actual replacement direction on function exit. If NULL, only equivalent
1353 sequences are allowed.
1355 To simplify callers of this function, if the blocks match exactly,
1356 store the head of the blocks in *F1 and *F2. */
1359 flow_find_cross_jump (basic_block bb1
, basic_block bb2
, rtx_insn
**f1
,
1360 rtx_insn
**f2
, enum replace_direction
*dir_p
)
1362 rtx_insn
*i1
, *i2
, *last1
, *last2
, *afterlast1
, *afterlast2
;
1364 enum replace_direction dir
, last_dir
, afterlast_dir
;
1365 bool follow_fallthru
, did_fallthru
;
1371 afterlast_dir
= dir
;
1372 last_dir
= afterlast_dir
;
1374 /* Skip simple jumps at the end of the blocks. Complex jumps still
1375 need to be compared for equivalence, which we'll do below. */
1378 last1
= afterlast1
= last2
= afterlast2
= NULL
;
1380 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1383 i1
= PREV_INSN (i1
);
1388 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1391 /* Count everything except for unconditional jump as insn.
1392 Don't count any jumps if dir_p is NULL. */
1393 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
&& dir_p
)
1395 i2
= PREV_INSN (i2
);
1400 /* In the following example, we can replace all jumps to C by jumps to A.
1402 This removes 4 duplicate insns.
1403 [bb A] insn1 [bb C] insn1
1409 We could also replace all jumps to A by jumps to C, but that leaves B
1410 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1411 step, all jumps to B would be replaced with jumps to the middle of C,
1412 achieving the same result with more effort.
1413 So we allow only the first possibility, which means that we don't allow
1414 fallthru in the block that's being replaced. */
1416 follow_fallthru
= dir_p
&& dir
!= dir_forward
;
1417 walk_to_nondebug_insn (&i1
, &bb1
, follow_fallthru
, &did_fallthru
);
1421 follow_fallthru
= dir_p
&& dir
!= dir_backward
;
1422 walk_to_nondebug_insn (&i2
, &bb2
, follow_fallthru
, &did_fallthru
);
1426 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1429 /* Do not turn corssing edge to non-crossing or vice versa after
1431 if (BB_PARTITION (BLOCK_FOR_INSN (i1
))
1432 != BB_PARTITION (BLOCK_FOR_INSN (i2
))
1433 && reload_completed
)
1436 dir
= merge_dir (dir
, old_insns_match_p (0, i1
, i2
));
1437 if (dir
== dir_none
|| (!dir_p
&& dir
!= dir_both
))
1440 merge_memattrs (i1
, i2
);
1442 /* Don't begin a cross-jump with a NOTE insn. */
1445 merge_notes (i1
, i2
);
1447 afterlast1
= last1
, afterlast2
= last2
;
1448 last1
= i1
, last2
= i2
;
1449 afterlast_dir
= last_dir
;
1451 if (active_insn_p (i1
))
1455 i1
= PREV_INSN (i1
);
1456 i2
= PREV_INSN (i2
);
1459 /* Don't allow the insn after a compare to be shared by
1460 cross-jumping unless the compare is also shared. */
1461 if (HAVE_cc0
&& ninsns
&& reg_mentioned_p (cc0_rtx
, last1
)
1462 && ! sets_cc0_p (last1
))
1463 last1
= afterlast1
, last2
= afterlast2
, last_dir
= afterlast_dir
, ninsns
--;
1465 /* Include preceding notes and labels in the cross-jump. One,
1466 this may bring us to the head of the blocks as requested above.
1467 Two, it keeps line number notes as matched as may be. */
1470 bb1
= BLOCK_FOR_INSN (last1
);
1471 while (last1
!= BB_HEAD (bb1
) && !NONDEBUG_INSN_P (PREV_INSN (last1
)))
1472 last1
= PREV_INSN (last1
);
1474 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1475 last1
= PREV_INSN (last1
);
1477 bb2
= BLOCK_FOR_INSN (last2
);
1478 while (last2
!= BB_HEAD (bb2
) && !NONDEBUG_INSN_P (PREV_INSN (last2
)))
1479 last2
= PREV_INSN (last2
);
1481 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1482 last2
= PREV_INSN (last2
);
1493 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1494 the head of the two blocks. Do not include jumps at the end.
1495 If STOP_AFTER is nonzero, stop after finding that many matching
1496 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1497 non-zero, only count active insns. */
1500 flow_find_head_matching_sequence (basic_block bb1
, basic_block bb2
, rtx_insn
**f1
,
1501 rtx_insn
**f2
, int stop_after
)
1503 rtx_insn
*i1
, *i2
, *last1
, *last2
, *beforelast1
, *beforelast2
;
1507 int nehedges1
= 0, nehedges2
= 0;
1509 FOR_EACH_EDGE (e
, ei
, bb1
->succs
)
1510 if (e
->flags
& EDGE_EH
)
1512 FOR_EACH_EDGE (e
, ei
, bb2
->succs
)
1513 if (e
->flags
& EDGE_EH
)
1518 last1
= beforelast1
= last2
= beforelast2
= NULL
;
1522 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1523 while (!NONDEBUG_INSN_P (i1
) && i1
!= BB_END (bb1
))
1525 if (NOTE_P (i1
) && NOTE_KIND (i1
) == NOTE_INSN_EPILOGUE_BEG
)
1527 i1
= NEXT_INSN (i1
);
1530 while (!NONDEBUG_INSN_P (i2
) && i2
!= BB_END (bb2
))
1532 if (NOTE_P (i2
) && NOTE_KIND (i2
) == NOTE_INSN_EPILOGUE_BEG
)
1534 i2
= NEXT_INSN (i2
);
1537 if ((i1
== BB_END (bb1
) && !NONDEBUG_INSN_P (i1
))
1538 || (i2
== BB_END (bb2
) && !NONDEBUG_INSN_P (i2
)))
1541 if (NOTE_P (i1
) || NOTE_P (i2
)
1542 || JUMP_P (i1
) || JUMP_P (i2
))
1545 /* A sanity check to make sure we're not merging insns with different
1546 effects on EH. If only one of them ends a basic block, it shouldn't
1547 have an EH edge; if both end a basic block, there should be the same
1548 number of EH edges. */
1549 if ((i1
== BB_END (bb1
) && i2
!= BB_END (bb2
)
1551 || (i2
== BB_END (bb2
) && i1
!= BB_END (bb1
)
1553 || (i1
== BB_END (bb1
) && i2
== BB_END (bb2
)
1554 && nehedges1
!= nehedges2
))
1557 if (old_insns_match_p (0, i1
, i2
) != dir_both
)
1560 merge_memattrs (i1
, i2
);
1562 /* Don't begin a cross-jump with a NOTE insn. */
1565 merge_notes (i1
, i2
);
1567 beforelast1
= last1
, beforelast2
= last2
;
1568 last1
= i1
, last2
= i2
;
1569 if (!stop_after
|| active_insn_p (i1
))
1573 if (i1
== BB_END (bb1
) || i2
== BB_END (bb2
)
1574 || (stop_after
> 0 && ninsns
== stop_after
))
1577 i1
= NEXT_INSN (i1
);
1578 i2
= NEXT_INSN (i2
);
1581 /* Don't allow a compare to be shared by cross-jumping unless the insn
1582 after the compare is also shared. */
1583 if (HAVE_cc0
&& ninsns
&& reg_mentioned_p (cc0_rtx
, last1
)
1584 && sets_cc0_p (last1
))
1585 last1
= beforelast1
, last2
= beforelast2
, ninsns
--;
1596 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1597 the branch instruction. This means that if we commonize the control
1598 flow before end of the basic block, the semantic remains unchanged.
1600 We may assume that there exists one edge with a common destination. */
1603 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1605 int nehedges1
= 0, nehedges2
= 0;
1606 edge fallthru1
= 0, fallthru2
= 0;
1610 /* If we performed shrink-wrapping, edges to the exit block can
1611 only be distinguished for JUMP_INSNs. The two paths may differ in
1612 whether they went through the prologue. Sibcalls are fine, we know
1613 that we either didn't need or inserted an epilogue before them. */
1614 if (crtl
->shrink_wrapped
1615 && single_succ_p (bb1
)
1616 && single_succ (bb1
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
1617 && !JUMP_P (BB_END (bb1
))
1618 && !(CALL_P (BB_END (bb1
)) && SIBLING_CALL_P (BB_END (bb1
))))
1621 /* If BB1 has only one successor, we may be looking at either an
1622 unconditional jump, or a fake edge to exit. */
1623 if (single_succ_p (bb1
)
1624 && (single_succ_edge (bb1
)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1625 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1626 return (single_succ_p (bb2
)
1627 && (single_succ_edge (bb2
)->flags
1628 & (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1629 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1631 /* Match conditional jumps - this may get tricky when fallthru and branch
1632 edges are crossed. */
1633 if (EDGE_COUNT (bb1
->succs
) == 2
1634 && any_condjump_p (BB_END (bb1
))
1635 && onlyjump_p (BB_END (bb1
)))
1637 edge b1
, f1
, b2
, f2
;
1638 bool reverse
, match
;
1639 rtx set1
, set2
, cond1
, cond2
;
1640 enum rtx_code code1
, code2
;
1642 if (EDGE_COUNT (bb2
->succs
) != 2
1643 || !any_condjump_p (BB_END (bb2
))
1644 || !onlyjump_p (BB_END (bb2
)))
1647 b1
= BRANCH_EDGE (bb1
);
1648 b2
= BRANCH_EDGE (bb2
);
1649 f1
= FALLTHRU_EDGE (bb1
);
1650 f2
= FALLTHRU_EDGE (bb2
);
1652 /* Get around possible forwarders on fallthru edges. Other cases
1653 should be optimized out already. */
1654 if (FORWARDER_BLOCK_P (f1
->dest
))
1655 f1
= single_succ_edge (f1
->dest
);
1657 if (FORWARDER_BLOCK_P (f2
->dest
))
1658 f2
= single_succ_edge (f2
->dest
);
1660 /* To simplify use of this function, return false if there are
1661 unneeded forwarder blocks. These will get eliminated later
1662 during cleanup_cfg. */
1663 if (FORWARDER_BLOCK_P (f1
->dest
)
1664 || FORWARDER_BLOCK_P (f2
->dest
)
1665 || FORWARDER_BLOCK_P (b1
->dest
)
1666 || FORWARDER_BLOCK_P (b2
->dest
))
1669 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1671 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1676 set1
= pc_set (BB_END (bb1
));
1677 set2
= pc_set (BB_END (bb2
));
1678 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1679 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1682 cond1
= XEXP (SET_SRC (set1
), 0);
1683 cond2
= XEXP (SET_SRC (set2
), 0);
1684 code1
= GET_CODE (cond1
);
1686 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1688 code2
= GET_CODE (cond2
);
1690 if (code2
== UNKNOWN
)
1693 /* Verify codes and operands match. */
1694 match
= ((code1
== code2
1695 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1696 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1697 || (code1
== swap_condition (code2
)
1698 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1700 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1703 /* If we return true, we will join the blocks. Which means that
1704 we will only have one branch prediction bit to work with. Thus
1705 we require the existing branches to have probabilities that are
1708 && optimize_bb_for_speed_p (bb1
)
1709 && optimize_bb_for_speed_p (bb2
))
1711 profile_probability prob2
;
1713 if (b1
->dest
== b2
->dest
)
1714 prob2
= b2
->probability
;
1716 /* Do not use f2 probability as f2 may be forwarded. */
1717 prob2
= b2
->probability
.invert ();
1719 /* Fail if the difference in probabilities is greater than 50%.
1720 This rules out two well-predicted branches with opposite
1722 if (b1
->probability
.differs_lot_from_p (prob2
))
1727 "Outcomes of branch in bb %i and %i differ too"
1728 " much (", bb1
->index
, bb2
->index
);
1729 b1
->probability
.dump (dump_file
);
1730 prob2
.dump (dump_file
);
1731 fprintf (dump_file
, ")\n");
1737 if (dump_file
&& match
)
1738 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1739 bb1
->index
, bb2
->index
);
1744 /* Generic case - we are seeing a computed jump, table jump or trapping
1747 /* Check whether there are tablejumps in the end of BB1 and BB2.
1748 Return true if they are identical. */
1750 rtx_insn
*label1
, *label2
;
1751 rtx_jump_table_data
*table1
, *table2
;
1753 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1754 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1755 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1757 /* The labels should never be the same rtx. If they really are same
1758 the jump tables are same too. So disable crossjumping of blocks BB1
1759 and BB2 because when deleting the common insns in the end of BB1
1760 by delete_basic_block () the jump table would be deleted too. */
1761 /* If LABEL2 is referenced in BB1->END do not do anything
1762 because we would loose information when replacing
1763 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1764 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1766 /* Set IDENTICAL to true when the tables are identical. */
1767 bool identical
= false;
1770 p1
= PATTERN (table1
);
1771 p2
= PATTERN (table2
);
1772 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1776 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1777 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1778 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1779 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1784 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1785 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1793 /* Temporarily replace references to LABEL1 with LABEL2
1794 in BB1->END so that we could compare the instructions. */
1795 replace_label_in_insn (BB_END (bb1
), label1
, label2
, false);
1797 match
= (old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
))
1799 if (dump_file
&& match
)
1801 "Tablejumps in bb %i and %i match.\n",
1802 bb1
->index
, bb2
->index
);
1804 /* Set the original label in BB1->END because when deleting
1805 a block whose end is a tablejump, the tablejump referenced
1806 from the instruction is deleted too. */
1807 replace_label_in_insn (BB_END (bb1
), label2
, label1
, false);
1816 /* Find the last non-debug non-note instruction in each bb, except
1817 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1818 handles that case specially. old_insns_match_p does not handle
1819 other types of instruction notes. */
1820 rtx_insn
*last1
= BB_END (bb1
);
1821 rtx_insn
*last2
= BB_END (bb2
);
1822 while (!NOTE_INSN_BASIC_BLOCK_P (last1
) &&
1823 (DEBUG_INSN_P (last1
) || NOTE_P (last1
)))
1824 last1
= PREV_INSN (last1
);
1825 while (!NOTE_INSN_BASIC_BLOCK_P (last2
) &&
1826 (DEBUG_INSN_P (last2
) || NOTE_P (last2
)))
1827 last2
= PREV_INSN (last2
);
1828 gcc_assert (last1
&& last2
);
1830 /* First ensure that the instructions match. There may be many outgoing
1831 edges so this test is generally cheaper. */
1832 if (old_insns_match_p (mode
, last1
, last2
) != dir_both
)
1835 /* Search the outgoing edges, ensure that the counts do match, find possible
1836 fallthru and exception handling edges since these needs more
1838 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1841 bool nonfakeedges
= false;
1842 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1844 e2
= EDGE_SUCC (bb2
, ei
.index
);
1846 if ((e1
->flags
& EDGE_FAKE
) == 0)
1847 nonfakeedges
= true;
1849 if (e1
->flags
& EDGE_EH
)
1852 if (e2
->flags
& EDGE_EH
)
1855 if (e1
->flags
& EDGE_FALLTHRU
)
1857 if (e2
->flags
& EDGE_FALLTHRU
)
1861 /* If number of edges of various types does not match, fail. */
1862 if (nehedges1
!= nehedges2
1863 || (fallthru1
!= 0) != (fallthru2
!= 0))
1866 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1867 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1868 attempt to optimize, as the two basic blocks might have different
1869 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1870 traps there should be REG_ARG_SIZE notes, they could be missing
1871 for __builtin_unreachable () uses though. */
1873 && !ACCUMULATE_OUTGOING_ARGS
1875 || !find_reg_note (last1
, REG_ARGS_SIZE
, NULL
)))
1878 /* fallthru edges must be forwarded to the same destination. */
1881 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1882 ? single_succ (fallthru1
->dest
): fallthru1
->dest
);
1883 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1884 ? single_succ (fallthru2
->dest
): fallthru2
->dest
);
1890 /* Ensure the same EH region. */
1892 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1893 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1898 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1902 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1903 version of sequence abstraction. */
1904 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1908 basic_block d1
= e1
->dest
;
1910 if (FORWARDER_BLOCK_P (d1
))
1911 d1
= EDGE_SUCC (d1
, 0)->dest
;
1913 FOR_EACH_EDGE (e2
, ei
, bb1
->succs
)
1915 basic_block d2
= e2
->dest
;
1916 if (FORWARDER_BLOCK_P (d2
))
1917 d2
= EDGE_SUCC (d2
, 0)->dest
;
1929 /* Returns true if BB basic block has a preserve label. */
1932 block_has_preserve_label (basic_block bb
)
1936 && LABEL_PRESERVE_P (block_label (bb
)));
1939 /* E1 and E2 are edges with the same destination block. Search their
1940 predecessors for common code. If found, redirect control flow from
1941 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1942 or the other way around (dir_backward). DIR specifies the allowed
1943 replacement direction. */
1946 try_crossjump_to_edge (int mode
, edge e1
, edge e2
,
1947 enum replace_direction dir
)
1950 basic_block src1
= e1
->src
, src2
= e2
->src
;
1951 basic_block redirect_to
, redirect_from
, to_remove
;
1952 basic_block osrc1
, osrc2
, redirect_edges_to
, tmp
;
1953 rtx_insn
*newpos1
, *newpos2
;
1957 newpos1
= newpos2
= NULL
;
1959 /* Search backward through forwarder blocks. We don't need to worry
1960 about multiple entry or chained forwarders, as they will be optimized
1961 away. We do this to look past the unconditional jump following a
1962 conditional jump that is required due to the current CFG shape. */
1963 if (single_pred_p (src1
)
1964 && FORWARDER_BLOCK_P (src1
))
1965 e1
= single_pred_edge (src1
), src1
= e1
->src
;
1967 if (single_pred_p (src2
)
1968 && FORWARDER_BLOCK_P (src2
))
1969 e2
= single_pred_edge (src2
), src2
= e2
->src
;
1971 /* Nothing to do if we reach ENTRY, or a common source block. */
1972 if (src1
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) || src2
1973 == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1978 /* Seeing more than 1 forwarder blocks would confuse us later... */
1979 if (FORWARDER_BLOCK_P (e1
->dest
)
1980 && FORWARDER_BLOCK_P (single_succ (e1
->dest
)))
1983 if (FORWARDER_BLOCK_P (e2
->dest
)
1984 && FORWARDER_BLOCK_P (single_succ (e2
->dest
)))
1987 /* Likewise with dead code (possibly newly created by the other optimizations
1989 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
1992 /* Do not turn corssing edge to non-crossing or vice versa after reload. */
1993 if (BB_PARTITION (src1
) != BB_PARTITION (src2
)
1994 && reload_completed
)
1997 /* Look for the common insn sequence, part the first ... */
1998 if (!outgoing_edges_match (mode
, src1
, src2
))
2001 /* ... and part the second. */
2002 nmatch
= flow_find_cross_jump (src1
, src2
, &newpos1
, &newpos2
, &dir
);
2006 if (newpos1
!= NULL_RTX
)
2007 src1
= BLOCK_FOR_INSN (newpos1
);
2008 if (newpos2
!= NULL_RTX
)
2009 src2
= BLOCK_FOR_INSN (newpos2
);
2011 /* Check that SRC1 and SRC2 have preds again. They may have changed
2012 above due to the call to flow_find_cross_jump. */
2013 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
2016 if (dir
== dir_backward
)
2018 std::swap (osrc1
, osrc2
);
2019 std::swap (src1
, src2
);
2021 std::swap (newpos1
, newpos2
);
2024 /* Don't proceed with the crossjump unless we found a sufficient number
2025 of matching instructions or the 'from' block was totally matched
2026 (such that its predecessors will hopefully be redirected and the
2028 if ((nmatch
< PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS
))
2029 && (newpos1
!= BB_HEAD (src1
)))
2032 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
2033 if (block_has_preserve_label (e1
->dest
)
2034 && (e1
->flags
& EDGE_ABNORMAL
))
2037 /* Here we know that the insns in the end of SRC1 which are common with SRC2
2039 If we have tablejumps in the end of SRC1 and SRC2
2040 they have been already compared for equivalence in outgoing_edges_match ()
2041 so replace the references to TABLE1 by references to TABLE2. */
2043 rtx_insn
*label1
, *label2
;
2044 rtx_jump_table_data
*table1
, *table2
;
2046 if (tablejump_p (BB_END (osrc1
), &label1
, &table1
)
2047 && tablejump_p (BB_END (osrc2
), &label2
, &table2
)
2048 && label1
!= label2
)
2052 /* Replace references to LABEL1 with LABEL2. */
2053 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2055 /* Do not replace the label in SRC1->END because when deleting
2056 a block whose end is a tablejump, the tablejump referenced
2057 from the instruction is deleted too. */
2058 if (insn
!= BB_END (osrc1
))
2059 replace_label_in_insn (insn
, label1
, label2
, true);
2064 /* Avoid splitting if possible. We must always split when SRC2 has
2065 EH predecessor edges, or we may end up with basic blocks with both
2066 normal and EH predecessor edges. */
2067 if (newpos2
== BB_HEAD (src2
)
2068 && !(EDGE_PRED (src2
, 0)->flags
& EDGE_EH
))
2072 if (newpos2
== BB_HEAD (src2
))
2074 /* Skip possible basic block header. */
2075 if (LABEL_P (newpos2
))
2076 newpos2
= NEXT_INSN (newpos2
);
2077 while (DEBUG_INSN_P (newpos2
))
2078 newpos2
= NEXT_INSN (newpos2
);
2079 if (NOTE_P (newpos2
))
2080 newpos2
= NEXT_INSN (newpos2
);
2081 while (DEBUG_INSN_P (newpos2
))
2082 newpos2
= NEXT_INSN (newpos2
);
2086 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
2087 src2
->index
, nmatch
);
2088 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
2093 "Cross jumping from bb %i to bb %i; %i common insns\n",
2094 src1
->index
, src2
->index
, nmatch
);
2096 /* We may have some registers visible through the block. */
2097 df_set_bb_dirty (redirect_to
);
2100 redirect_edges_to
= redirect_to
;
2102 redirect_edges_to
= osrc2
;
2104 /* Recompute the counts of destinations of outgoing edges. */
2105 FOR_EACH_EDGE (s
, ei
, redirect_edges_to
->succs
)
2109 basic_block d
= s
->dest
;
2111 if (FORWARDER_BLOCK_P (d
))
2112 d
= single_succ (d
);
2114 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
2116 basic_block d2
= s2
->dest
;
2117 if (FORWARDER_BLOCK_P (d2
))
2118 d2
= single_succ (d2
);
2123 /* Take care to update possible forwarder blocks. We verified
2124 that there is no more than one in the chain, so we can't run
2125 into infinite loop. */
2126 if (FORWARDER_BLOCK_P (s
->dest
))
2127 s
->dest
->count
+= s
->count ();
2129 if (FORWARDER_BLOCK_P (s2
->dest
))
2130 s2
->dest
->count
-= s
->count ();
2132 /* FIXME: Is this correct? Should be rewritten to count API. */
2133 if (redirect_edges_to
->count
.nonzero_p () && src1
->count
.nonzero_p ())
2134 s
->probability
= s
->probability
.combine_with_freq
2135 (redirect_edges_to
->count
.to_frequency (cfun
),
2136 s2
->probability
, src1
->count
.to_frequency (cfun
));
2139 /* Adjust count for the block. An earlier jump
2140 threading pass may have left the profile in an inconsistent
2141 state (see update_bb_profile_for_threading) so we must be
2142 prepared for overflows. */
2146 tmp
->count
+= src1
->count
;
2147 if (tmp
== redirect_edges_to
)
2149 tmp
= find_fallthru_edge (tmp
->succs
)->dest
;
2152 update_br_prob_note (redirect_edges_to
);
2154 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2156 /* Skip possible basic block header. */
2157 if (LABEL_P (newpos1
))
2158 newpos1
= NEXT_INSN (newpos1
);
2160 while (DEBUG_INSN_P (newpos1
))
2161 newpos1
= NEXT_INSN (newpos1
);
2163 if (NOTE_INSN_BASIC_BLOCK_P (newpos1
))
2164 newpos1
= NEXT_INSN (newpos1
);
2166 while (DEBUG_INSN_P (newpos1
))
2167 newpos1
= NEXT_INSN (newpos1
);
2169 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
2170 to_remove
= single_succ (redirect_from
);
2172 redirect_edge_and_branch_force (single_succ_edge (redirect_from
), redirect_to
);
2173 delete_basic_block (to_remove
);
2175 update_forwarder_flag (redirect_from
);
2176 if (redirect_to
!= src2
)
2177 update_forwarder_flag (src2
);
2182 /* Search the predecessors of BB for common insn sequences. When found,
2183 share code between them by redirecting control flow. Return true if
2184 any changes made. */
2187 try_crossjump_bb (int mode
, basic_block bb
)
2189 edge e
, e2
, fallthru
;
2191 unsigned max
, ix
, ix2
;
2193 /* Nothing to do if there is not at least two incoming edges. */
2194 if (EDGE_COUNT (bb
->preds
) < 2)
2197 /* Don't crossjump if this block ends in a computed jump,
2198 unless we are optimizing for size. */
2199 if (optimize_bb_for_size_p (bb
)
2200 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2201 && computed_jump_p (BB_END (bb
)))
2204 /* If we are partitioning hot/cold basic blocks, we don't want to
2205 mess up unconditional or indirect jumps that cross between hot
2208 Basic block partitioning may result in some jumps that appear to
2209 be optimizable (or blocks that appear to be mergeable), but which really
2210 must be left untouched (they are required to make it safely across
2211 partition boundaries). See the comments at the top of
2212 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2214 if (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) !=
2215 BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
2216 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
))
2219 /* It is always cheapest to redirect a block that ends in a branch to
2220 a block that falls through into BB, as that adds no branches to the
2221 program. We'll try that combination first. */
2223 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
2225 if (EDGE_COUNT (bb
->preds
) > max
)
2228 fallthru
= find_fallthru_edge (bb
->preds
);
2231 for (ix
= 0; ix
< EDGE_COUNT (bb
->preds
);)
2233 e
= EDGE_PRED (bb
, ix
);
2236 /* As noted above, first try with the fallthru predecessor (or, a
2237 fallthru predecessor if we are in cfglayout mode). */
2240 /* Don't combine the fallthru edge into anything else.
2241 If there is a match, we'll do it the other way around. */
2244 /* If nothing changed since the last attempt, there is nothing
2247 && !((e
->src
->flags
& BB_MODIFIED
)
2248 || (fallthru
->src
->flags
& BB_MODIFIED
)))
2251 if (try_crossjump_to_edge (mode
, e
, fallthru
, dir_forward
))
2259 /* Non-obvious work limiting check: Recognize that we're going
2260 to call try_crossjump_bb on every basic block. So if we have
2261 two blocks with lots of outgoing edges (a switch) and they
2262 share lots of common destinations, then we would do the
2263 cross-jump check once for each common destination.
2265 Now, if the blocks actually are cross-jump candidates, then
2266 all of their destinations will be shared. Which means that
2267 we only need check them for cross-jump candidacy once. We
2268 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2269 choosing to do the check from the block for which the edge
2270 in question is the first successor of A. */
2271 if (EDGE_SUCC (e
->src
, 0) != e
)
2274 for (ix2
= 0; ix2
< EDGE_COUNT (bb
->preds
); ix2
++)
2276 e2
= EDGE_PRED (bb
, ix2
);
2281 /* We've already checked the fallthru edge above. */
2285 /* The "first successor" check above only prevents multiple
2286 checks of crossjump(A,B). In order to prevent redundant
2287 checks of crossjump(B,A), require that A be the block
2288 with the lowest index. */
2289 if (e
->src
->index
> e2
->src
->index
)
2292 /* If nothing changed since the last attempt, there is nothing
2295 && !((e
->src
->flags
& BB_MODIFIED
)
2296 || (e2
->src
->flags
& BB_MODIFIED
)))
2299 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2301 if (try_crossjump_to_edge (mode
, e
, e2
, dir_both
))
2311 crossjumps_occurred
= true;
2316 /* Search the successors of BB for common insn sequences. When found,
2317 share code between them by moving it across the basic block
2318 boundary. Return true if any changes made. */
2321 try_head_merge_bb (basic_block bb
)
2323 basic_block final_dest_bb
= NULL
;
2324 int max_match
= INT_MAX
;
2326 rtx_insn
**headptr
, **currptr
, **nextptr
;
2327 bool changed
, moveall
;
2329 rtx_insn
*e0_last_head
;
2331 rtx_insn
*move_before
;
2332 unsigned nedges
= EDGE_COUNT (bb
->succs
);
2333 rtx_insn
*jump
= BB_END (bb
);
2334 regset live
, live_union
;
2336 /* Nothing to do if there is not at least two outgoing edges. */
2340 /* Don't crossjump if this block ends in a computed jump,
2341 unless we are optimizing for size. */
2342 if (optimize_bb_for_size_p (bb
)
2343 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2344 && computed_jump_p (BB_END (bb
)))
2347 cond
= get_condition (jump
, &move_before
, true, false);
2348 if (cond
== NULL_RTX
)
2350 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2351 move_before
= prev_nonnote_nondebug_insn (jump
);
2356 for (ix
= 0; ix
< nedges
; ix
++)
2357 if (EDGE_SUCC (bb
, ix
)->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2360 for (ix
= 0; ix
< nedges
; ix
++)
2362 edge e
= EDGE_SUCC (bb
, ix
);
2363 basic_block other_bb
= e
->dest
;
2365 if (df_get_bb_dirty (other_bb
))
2367 block_was_dirty
= true;
2371 if (e
->flags
& EDGE_ABNORMAL
)
2374 /* Normally, all destination blocks must only be reachable from this
2375 block, i.e. they must have one incoming edge.
2377 There is one special case we can handle, that of multiple consecutive
2378 jumps where the first jumps to one of the targets of the second jump.
2379 This happens frequently in switch statements for default labels.
2380 The structure is as follows:
2386 jump with targets A, B, C, D...
2388 has two incoming edges, from FINAL_DEST_BB and BB
2390 In this case, we can try to move the insns through BB and into
2392 if (EDGE_COUNT (other_bb
->preds
) != 1)
2394 edge incoming_edge
, incoming_bb_other_edge
;
2397 if (final_dest_bb
!= NULL
2398 || EDGE_COUNT (other_bb
->preds
) != 2)
2401 /* We must be able to move the insns across the whole block. */
2402 move_before
= BB_HEAD (bb
);
2403 while (!NONDEBUG_INSN_P (move_before
))
2404 move_before
= NEXT_INSN (move_before
);
2406 if (EDGE_COUNT (bb
->preds
) != 1)
2408 incoming_edge
= EDGE_PRED (bb
, 0);
2409 final_dest_bb
= incoming_edge
->src
;
2410 if (EDGE_COUNT (final_dest_bb
->succs
) != 2)
2412 FOR_EACH_EDGE (incoming_bb_other_edge
, ei
, final_dest_bb
->succs
)
2413 if (incoming_bb_other_edge
!= incoming_edge
)
2415 if (incoming_bb_other_edge
->dest
!= other_bb
)
2420 e0
= EDGE_SUCC (bb
, 0);
2421 e0_last_head
= NULL
;
2424 for (ix
= 1; ix
< nedges
; ix
++)
2426 edge e
= EDGE_SUCC (bb
, ix
);
2427 rtx_insn
*e0_last
, *e_last
;
2430 nmatch
= flow_find_head_matching_sequence (e0
->dest
, e
->dest
,
2431 &e0_last
, &e_last
, 0);
2435 if (nmatch
< max_match
)
2438 e0_last_head
= e0_last
;
2442 /* If we matched an entire block, we probably have to avoid moving the
2445 && e0_last_head
== BB_END (e0
->dest
)
2446 && (find_reg_note (e0_last_head
, REG_EH_REGION
, 0)
2447 || control_flow_insn_p (e0_last_head
)))
2453 e0_last_head
= prev_real_insn (e0_last_head
);
2454 while (DEBUG_INSN_P (e0_last_head
));
2460 /* We must find a union of the live registers at each of the end points. */
2461 live
= BITMAP_ALLOC (NULL
);
2462 live_union
= BITMAP_ALLOC (NULL
);
2464 currptr
= XNEWVEC (rtx_insn
*, nedges
);
2465 headptr
= XNEWVEC (rtx_insn
*, nedges
);
2466 nextptr
= XNEWVEC (rtx_insn
*, nedges
);
2468 for (ix
= 0; ix
< nedges
; ix
++)
2471 basic_block merge_bb
= EDGE_SUCC (bb
, ix
)->dest
;
2472 rtx_insn
*head
= BB_HEAD (merge_bb
);
2474 while (!NONDEBUG_INSN_P (head
))
2475 head
= NEXT_INSN (head
);
2479 /* Compute the end point and live information */
2480 for (j
= 1; j
< max_match
; j
++)
2482 head
= NEXT_INSN (head
);
2483 while (!NONDEBUG_INSN_P (head
));
2484 simulate_backwards_to_point (merge_bb
, live
, head
);
2485 IOR_REG_SET (live_union
, live
);
2488 /* If we're moving across two blocks, verify the validity of the
2489 first move, then adjust the target and let the loop below deal
2490 with the final move. */
2491 if (final_dest_bb
!= NULL
)
2493 rtx_insn
*move_upto
;
2495 moveall
= can_move_insns_across (currptr
[0], e0_last_head
, move_before
,
2496 jump
, e0
->dest
, live_union
,
2500 if (move_upto
== NULL_RTX
)
2503 while (e0_last_head
!= move_upto
)
2505 df_simulate_one_insn_backwards (e0
->dest
, e0_last_head
,
2507 e0_last_head
= PREV_INSN (e0_last_head
);
2510 if (e0_last_head
== NULL_RTX
)
2513 jump
= BB_END (final_dest_bb
);
2514 cond
= get_condition (jump
, &move_before
, true, false);
2515 if (cond
== NULL_RTX
)
2517 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2518 move_before
= prev_nonnote_nondebug_insn (jump
);
2526 rtx_insn
*move_upto
;
2527 moveall
= can_move_insns_across (currptr
[0], e0_last_head
,
2528 move_before
, jump
, e0
->dest
, live_union
,
2530 if (!moveall
&& move_upto
== NULL_RTX
)
2532 if (jump
== move_before
)
2535 /* Try again, using a different insertion point. */
2538 /* Don't try moving before a cc0 user, as that may invalidate
2540 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2546 if (final_dest_bb
&& !moveall
)
2547 /* We haven't checked whether a partial move would be OK for the first
2548 move, so we have to fail this case. */
2554 if (currptr
[0] == move_upto
)
2556 for (ix
= 0; ix
< nedges
; ix
++)
2558 rtx_insn
*curr
= currptr
[ix
];
2560 curr
= NEXT_INSN (curr
);
2561 while (!NONDEBUG_INSN_P (curr
));
2566 /* If we can't currently move all of the identical insns, remember
2567 each insn after the range that we'll merge. */
2569 for (ix
= 0; ix
< nedges
; ix
++)
2571 rtx_insn
*curr
= currptr
[ix
];
2573 curr
= NEXT_INSN (curr
);
2574 while (!NONDEBUG_INSN_P (curr
));
2578 reorder_insns (headptr
[0], currptr
[0], PREV_INSN (move_before
));
2579 df_set_bb_dirty (EDGE_SUCC (bb
, 0)->dest
);
2580 if (final_dest_bb
!= NULL
)
2581 df_set_bb_dirty (final_dest_bb
);
2582 df_set_bb_dirty (bb
);
2583 for (ix
= 1; ix
< nedges
; ix
++)
2585 df_set_bb_dirty (EDGE_SUCC (bb
, ix
)->dest
);
2586 delete_insn_chain (headptr
[ix
], currptr
[ix
], false);
2590 if (jump
== move_before
)
2593 /* For the unmerged insns, try a different insertion point. */
2596 /* Don't try moving before a cc0 user, as that may invalidate
2598 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2601 for (ix
= 0; ix
< nedges
; ix
++)
2602 currptr
[ix
] = headptr
[ix
] = nextptr
[ix
];
2612 crossjumps_occurred
|= changed
;
2617 /* Return true if BB contains just bb note, or bb note followed
2618 by only DEBUG_INSNs. */
2621 trivially_empty_bb_p (basic_block bb
)
2623 rtx_insn
*insn
= BB_END (bb
);
2627 if (insn
== BB_HEAD (bb
))
2629 if (!DEBUG_INSN_P (insn
))
2631 insn
= PREV_INSN (insn
);
2635 /* Return true if BB contains just a return and possibly a USE of the
2636 return value. Fill in *RET and *USE with the return and use insns
2637 if any found, otherwise NULL. All CLOBBERs are ignored. */
2640 bb_is_just_return (basic_block bb
, rtx_insn
**ret
, rtx_insn
**use
)
2645 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2648 FOR_BB_INSNS (bb
, insn
)
2649 if (NONDEBUG_INSN_P (insn
))
2651 rtx pat
= PATTERN (insn
);
2653 if (!*ret
&& ANY_RETURN_P (pat
))
2655 else if (!*ret
&& !*use
&& GET_CODE (pat
) == USE
2656 && REG_P (XEXP (pat
, 0))
2657 && REG_FUNCTION_VALUE_P (XEXP (pat
, 0)))
2659 else if (GET_CODE (pat
) != CLOBBER
)
2666 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2667 instructions etc. Return nonzero if changes were made. */
2670 try_optimize_cfg (int mode
)
2672 bool changed_overall
= false;
2675 basic_block bb
, b
, next
;
2677 if (mode
& (CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
2680 crossjumps_occurred
= false;
2682 FOR_EACH_BB_FN (bb
, cfun
)
2683 update_forwarder_flag (bb
);
2685 if (! targetm
.cannot_modify_jumps_p ())
2688 /* Attempt to merge blocks as made possible by edge removal. If
2689 a block has only one successor, and the successor has only
2690 one predecessor, they may be combined. */
2693 block_was_dirty
= false;
2699 "\n\ntry_optimize_cfg iteration %i\n\n",
2702 for (b
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
; b
2703 != EXIT_BLOCK_PTR_FOR_FN (cfun
);)
2707 bool changed_here
= false;
2709 /* Delete trivially dead basic blocks. This is either
2710 blocks with no predecessors, or empty blocks with no
2711 successors. However if the empty block with no
2712 successors is the successor of the ENTRY_BLOCK, it is
2713 kept. This ensures that the ENTRY_BLOCK will have a
2714 successor which is a precondition for many RTL
2715 passes. Empty blocks may result from expanding
2716 __builtin_unreachable (). */
2717 if (EDGE_COUNT (b
->preds
) == 0
2718 || (EDGE_COUNT (b
->succs
) == 0
2719 && trivially_empty_bb_p (b
)
2720 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->dest
2724 if (EDGE_COUNT (b
->preds
) > 0)
2729 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2732 && BARRIER_P (BB_FOOTER (b
)))
2733 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2734 if ((e
->flags
& EDGE_FALLTHRU
)
2735 && BB_FOOTER (e
->src
) == NULL
)
2739 BB_FOOTER (e
->src
) = BB_FOOTER (b
);
2740 BB_FOOTER (b
) = NULL
;
2745 BB_FOOTER (e
->src
) = emit_barrier ();
2752 rtx_insn
*last
= get_last_bb_insn (b
);
2753 if (last
&& BARRIER_P (last
))
2754 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2755 if ((e
->flags
& EDGE_FALLTHRU
))
2756 emit_barrier_after (BB_END (e
->src
));
2759 delete_basic_block (b
);
2761 /* Avoid trying to remove the exit block. */
2762 b
= (c
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? c
->next_bb
: c
);
2766 /* Remove code labels no longer used. */
2767 if (single_pred_p (b
)
2768 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2769 && !(single_pred_edge (b
)->flags
& EDGE_COMPLEX
)
2770 && LABEL_P (BB_HEAD (b
))
2771 && !LABEL_PRESERVE_P (BB_HEAD (b
))
2772 /* If the previous block ends with a branch to this
2773 block, we can't delete the label. Normally this
2774 is a condjump that is yet to be simplified, but
2775 if CASE_DROPS_THRU, this can be a tablejump with
2776 some element going to the same place as the
2777 default (fallthru). */
2778 && (single_pred (b
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
)
2779 || !JUMP_P (BB_END (single_pred (b
)))
2780 || ! label_is_jump_target_p (BB_HEAD (b
),
2781 BB_END (single_pred (b
)))))
2783 delete_insn (BB_HEAD (b
));
2785 fprintf (dump_file
, "Deleted label in block %i.\n",
2789 /* If we fall through an empty block, we can remove it. */
2790 if (!(mode
& (CLEANUP_CFGLAYOUT
| CLEANUP_NO_INSN_DEL
))
2791 && single_pred_p (b
)
2792 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2793 && !LABEL_P (BB_HEAD (b
))
2794 && FORWARDER_BLOCK_P (b
)
2795 /* Note that forwarder_block_p true ensures that
2796 there is a successor for this block. */
2797 && (single_succ_edge (b
)->flags
& EDGE_FALLTHRU
)
2798 && n_basic_blocks_for_fn (cfun
) > NUM_FIXED_BLOCKS
+ 1)
2802 "Deleting fallthru block %i.\n",
2805 c
= ((b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2806 ? b
->next_bb
: b
->prev_bb
);
2807 redirect_edge_succ_nodup (single_pred_edge (b
),
2809 delete_basic_block (b
);
2815 /* Merge B with its single successor, if any. */
2816 if (single_succ_p (b
)
2817 && (s
= single_succ_edge (b
))
2818 && !(s
->flags
& EDGE_COMPLEX
)
2819 && (c
= s
->dest
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2820 && single_pred_p (c
)
2823 /* When not in cfg_layout mode use code aware of reordering
2824 INSN. This code possibly creates new basic blocks so it
2825 does not fit merge_blocks interface and is kept here in
2826 hope that it will become useless once more of compiler
2827 is transformed to use cfg_layout mode. */
2829 if ((mode
& CLEANUP_CFGLAYOUT
)
2830 && can_merge_blocks_p (b
, c
))
2832 merge_blocks (b
, c
);
2833 update_forwarder_flag (b
);
2834 changed_here
= true;
2836 else if (!(mode
& CLEANUP_CFGLAYOUT
)
2837 /* If the jump insn has side effects,
2838 we can't kill the edge. */
2839 && (!JUMP_P (BB_END (b
))
2840 || (reload_completed
2841 ? simplejump_p (BB_END (b
))
2842 : (onlyjump_p (BB_END (b
))
2843 && !tablejump_p (BB_END (b
),
2845 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
2848 changed_here
= true;
2852 /* Try to change a branch to a return to just that return. */
2853 rtx_insn
*ret
, *use
;
2854 if (single_succ_p (b
)
2855 && onlyjump_p (BB_END (b
))
2856 && bb_is_just_return (single_succ (b
), &ret
, &use
))
2858 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2862 emit_insn_before (copy_insn (PATTERN (use
)),
2865 fprintf (dump_file
, "Changed jump %d->%d to return.\n",
2866 b
->index
, single_succ (b
)->index
);
2867 redirect_edge_succ (single_succ_edge (b
),
2868 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2869 single_succ_edge (b
)->flags
&= ~EDGE_CROSSING
;
2870 changed_here
= true;
2874 /* Try to change a conditional branch to a return to the
2875 respective conditional return. */
2876 if (EDGE_COUNT (b
->succs
) == 2
2877 && any_condjump_p (BB_END (b
))
2878 && bb_is_just_return (BRANCH_EDGE (b
)->dest
, &ret
, &use
))
2880 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2884 emit_insn_before (copy_insn (PATTERN (use
)),
2887 fprintf (dump_file
, "Changed conditional jump %d->%d "
2888 "to conditional return.\n",
2889 b
->index
, BRANCH_EDGE (b
)->dest
->index
);
2890 redirect_edge_succ (BRANCH_EDGE (b
),
2891 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2892 BRANCH_EDGE (b
)->flags
&= ~EDGE_CROSSING
;
2893 changed_here
= true;
2897 /* Try to flip a conditional branch that falls through to
2898 a return so that it becomes a conditional return and a
2899 new jump to the original branch target. */
2900 if (EDGE_COUNT (b
->succs
) == 2
2901 && BRANCH_EDGE (b
)->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2902 && any_condjump_p (BB_END (b
))
2903 && bb_is_just_return (FALLTHRU_EDGE (b
)->dest
, &ret
, &use
))
2905 if (invert_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2906 JUMP_LABEL (BB_END (b
)), 0))
2908 basic_block new_ft
= BRANCH_EDGE (b
)->dest
;
2909 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2913 emit_insn_before (copy_insn (PATTERN (use
)),
2916 fprintf (dump_file
, "Changed conditional jump "
2917 "%d->%d to conditional return, adding "
2918 "fall-through jump.\n",
2919 b
->index
, BRANCH_EDGE (b
)->dest
->index
);
2920 redirect_edge_succ (BRANCH_EDGE (b
),
2921 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2922 BRANCH_EDGE (b
)->flags
&= ~EDGE_CROSSING
;
2923 std::swap (BRANCH_EDGE (b
)->probability
,
2924 FALLTHRU_EDGE (b
)->probability
);
2925 update_br_prob_note (b
);
2926 basic_block jb
= force_nonfallthru (FALLTHRU_EDGE (b
));
2927 notice_new_block (jb
);
2928 if (!redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (jb
)),
2929 block_label (new_ft
), 0))
2931 redirect_edge_succ (single_succ_edge (jb
), new_ft
);
2932 changed_here
= true;
2936 /* Invert the jump back to what it was. This should
2938 if (!invert_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2939 JUMP_LABEL (BB_END (b
)), 0))
2945 /* Simplify branch over branch. */
2946 if ((mode
& CLEANUP_EXPENSIVE
)
2947 && !(mode
& CLEANUP_CFGLAYOUT
)
2948 && try_simplify_condjump (b
))
2949 changed_here
= true;
2951 /* If B has a single outgoing edge, but uses a
2952 non-trivial jump instruction without side-effects, we
2953 can either delete the jump entirely, or replace it
2954 with a simple unconditional jump. */
2955 if (single_succ_p (b
)
2956 && single_succ (b
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2957 && onlyjump_p (BB_END (b
))
2958 && !CROSSING_JUMP_P (BB_END (b
))
2959 && try_redirect_by_replacing_jump (single_succ_edge (b
),
2961 (mode
& CLEANUP_CFGLAYOUT
) != 0))
2963 update_forwarder_flag (b
);
2964 changed_here
= true;
2967 /* Simplify branch to branch. */
2968 if (try_forward_edges (mode
, b
))
2970 update_forwarder_flag (b
);
2971 changed_here
= true;
2974 /* Look for shared code between blocks. */
2975 if ((mode
& CLEANUP_CROSSJUMP
)
2976 && try_crossjump_bb (mode
, b
))
2977 changed_here
= true;
2979 if ((mode
& CLEANUP_CROSSJUMP
)
2980 /* This can lengthen register lifetimes. Do it only after
2983 && try_head_merge_bb (b
))
2984 changed_here
= true;
2986 /* Don't get confused by the index shift caused by
2994 if ((mode
& CLEANUP_CROSSJUMP
)
2995 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR_FOR_FN (cfun
)))
2998 if (block_was_dirty
)
3000 /* This should only be set by head-merging. */
3001 gcc_assert (mode
& CLEANUP_CROSSJUMP
);
3007 /* Edge forwarding in particular can cause hot blocks previously
3008 reached by both hot and cold blocks to become dominated only
3009 by cold blocks. This will cause the verification below to fail,
3010 and lead to now cold code in the hot section. This is not easy
3011 to detect and fix during edge forwarding, and in some cases
3012 is only visible after newly unreachable blocks are deleted,
3013 which will be done in fixup_partitions. */
3014 fixup_partitions ();
3015 checking_verify_flow_info ();
3018 changed_overall
|= changed
;
3024 FOR_ALL_BB_FN (b
, cfun
)
3025 b
->flags
&= ~(BB_FORWARDER_BLOCK
| BB_NONTHREADABLE_BLOCK
);
3027 return changed_overall
;
3030 /* Delete all unreachable basic blocks. */
3033 delete_unreachable_blocks (void)
3035 bool changed
= false;
3036 basic_block b
, prev_bb
;
3038 find_unreachable_blocks ();
3040 /* When we're in GIMPLE mode and there may be debug insns, we should
3041 delete blocks in reverse dominator order, so as to get a chance
3042 to substitute all released DEFs into debug stmts. If we don't
3043 have dominators information, walking blocks backward gets us a
3044 better chance of retaining most debug information than
3046 if (MAY_HAVE_DEBUG_INSNS
&& current_ir_type () == IR_GIMPLE
3047 && dom_info_available_p (CDI_DOMINATORS
))
3049 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
3050 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
3052 prev_bb
= b
->prev_bb
;
3054 if (!(b
->flags
& BB_REACHABLE
))
3056 /* Speed up the removal of blocks that don't dominate
3057 others. Walking backwards, this should be the common
3059 if (!first_dom_son (CDI_DOMINATORS
, b
))
3060 delete_basic_block (b
);
3064 = get_all_dominated_blocks (CDI_DOMINATORS
, b
);
3070 prev_bb
= b
->prev_bb
;
3072 gcc_assert (!(b
->flags
& BB_REACHABLE
));
3074 delete_basic_block (b
);
3086 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
3087 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
3089 prev_bb
= b
->prev_bb
;
3091 if (!(b
->flags
& BB_REACHABLE
))
3093 delete_basic_block (b
);
3100 tidy_fallthru_edges ();
3104 /* Delete any jump tables never referenced. We can't delete them at the
3105 time of removing tablejump insn as they are referenced by the preceding
3106 insns computing the destination, so we delay deleting and garbagecollect
3107 them once life information is computed. */
3109 delete_dead_jumptables (void)
3113 /* A dead jump table does not belong to any basic block. Scan insns
3114 between two adjacent basic blocks. */
3115 FOR_EACH_BB_FN (bb
, cfun
)
3117 rtx_insn
*insn
, *next
;
3119 for (insn
= NEXT_INSN (BB_END (bb
));
3120 insn
&& !NOTE_INSN_BASIC_BLOCK_P (insn
);
3123 next
= NEXT_INSN (insn
);
3125 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
3126 && JUMP_TABLE_DATA_P (next
))
3128 rtx_insn
*label
= insn
, *jump
= next
;
3131 fprintf (dump_file
, "Dead jumptable %i removed\n",
3134 next
= NEXT_INSN (next
);
3136 delete_insn (label
);
3143 /* Tidy the CFG by deleting unreachable code and whatnot. */
3146 cleanup_cfg (int mode
)
3148 bool changed
= false;
3150 /* Set the cfglayout mode flag here. We could update all the callers
3151 but that is just inconvenient, especially given that we eventually
3152 want to have cfglayout mode as the default. */
3153 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
3154 mode
|= CLEANUP_CFGLAYOUT
;
3156 timevar_push (TV_CLEANUP_CFG
);
3157 if (delete_unreachable_blocks ())
3160 /* We've possibly created trivially dead code. Cleanup it right
3161 now to introduce more opportunities for try_optimize_cfg. */
3162 if (!(mode
& (CLEANUP_NO_INSN_DEL
))
3163 && !reload_completed
)
3164 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3169 /* To tail-merge blocks ending in the same noreturn function (e.g.
3170 a call to abort) we have to insert fake edges to exit. Do this
3171 here once. The fake edges do not interfere with any other CFG
3173 if (mode
& CLEANUP_CROSSJUMP
)
3174 add_noreturn_fake_exit_edges ();
3176 if (!dbg_cnt (cfg_cleanup
))
3179 while (try_optimize_cfg (mode
))
3181 delete_unreachable_blocks (), changed
= true;
3182 if (!(mode
& CLEANUP_NO_INSN_DEL
))
3184 /* Try to remove some trivially dead insns when doing an expensive
3185 cleanup. But delete_trivially_dead_insns doesn't work after
3186 reload (it only handles pseudos) and run_fast_dce is too costly
3187 to run in every iteration.
3189 For effective cross jumping, we really want to run a fast DCE to
3190 clean up any dead conditions, or they get in the way of performing
3193 Other transformations in cleanup_cfg are not so sensitive to dead
3194 code, so delete_trivially_dead_insns or even doing nothing at all
3196 if ((mode
& CLEANUP_EXPENSIVE
) && !reload_completed
3197 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3199 if ((mode
& CLEANUP_CROSSJUMP
) && crossjumps_occurred
)
3206 if (mode
& CLEANUP_CROSSJUMP
)
3207 remove_fake_exit_edges ();
3209 /* Don't call delete_dead_jumptables in cfglayout mode, because
3210 that function assumes that jump tables are in the insns stream.
3211 But we also don't _have_ to delete dead jumptables in cfglayout
3212 mode because we shouldn't even be looking at things that are
3213 not in a basic block. Dead jumptables are cleaned up when
3214 going out of cfglayout mode. */
3215 if (!(mode
& CLEANUP_CFGLAYOUT
))
3216 delete_dead_jumptables ();
3218 /* ??? We probably do this way too often. */
3221 || (mode
& CLEANUP_CFG_CHANGED
)))
3223 timevar_push (TV_REPAIR_LOOPS
);
3224 /* The above doesn't preserve dominance info if available. */
3225 gcc_assert (!dom_info_available_p (CDI_DOMINATORS
));
3226 calculate_dominance_info (CDI_DOMINATORS
);
3227 fix_loop_structure (NULL
);
3228 free_dominance_info (CDI_DOMINATORS
);
3229 timevar_pop (TV_REPAIR_LOOPS
);
3232 timevar_pop (TV_CLEANUP_CFG
);
3239 const pass_data pass_data_jump
=
3241 RTL_PASS
, /* type */
3243 OPTGROUP_NONE
, /* optinfo_flags */
3244 TV_JUMP
, /* tv_id */
3245 0, /* properties_required */
3246 0, /* properties_provided */
3247 0, /* properties_destroyed */
3248 0, /* todo_flags_start */
3249 0, /* todo_flags_finish */
3252 class pass_jump
: public rtl_opt_pass
3255 pass_jump (gcc::context
*ctxt
)
3256 : rtl_opt_pass (pass_data_jump
, ctxt
)
3259 /* opt_pass methods: */
3260 virtual unsigned int execute (function
*);
3262 }; // class pass_jump
3265 pass_jump::execute (function
*)
3267 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3269 dump_flow_info (dump_file
, dump_flags
);
3270 cleanup_cfg ((optimize
? CLEANUP_EXPENSIVE
: 0)
3271 | (flag_thread_jumps
? CLEANUP_THREADING
: 0));
3278 make_pass_jump (gcc::context
*ctxt
)
3280 return new pass_jump (ctxt
);
3285 const pass_data pass_data_jump2
=
3287 RTL_PASS
, /* type */
3289 OPTGROUP_NONE
, /* optinfo_flags */
3290 TV_JUMP
, /* tv_id */
3291 0, /* properties_required */
3292 0, /* properties_provided */
3293 0, /* properties_destroyed */
3294 0, /* todo_flags_start */
3295 0, /* todo_flags_finish */
3298 class pass_jump2
: public rtl_opt_pass
3301 pass_jump2 (gcc::context
*ctxt
)
3302 : rtl_opt_pass (pass_data_jump2
, ctxt
)
3305 /* opt_pass methods: */
3306 virtual unsigned int execute (function
*)
3308 cleanup_cfg (flag_crossjumping
? CLEANUP_CROSSJUMP
: 0);
3312 }; // class pass_jump2
3317 make_pass_jump2 (gcc::context
*ctxt
)
3319 return new pass_jump2 (ctxt
);