1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
34 The subroutines redirect_jump and invert_jump are used
35 from other passes as well. */
39 #include "coretypes.h"
44 #include "hard-reg-set.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
53 #include "diagnostic.h"
58 #include "tree-pass.h"
61 /* Optimize jump y; x: ... y: jumpif... x?
62 Don't know if it is worth bothering with. */
63 /* Optimize two cases of conditional jump to conditional jump?
64 This can never delete any instruction or make anything dead,
65 or even change what is live at any point.
66 So perhaps let combiner do it. */
68 static void init_label_info (rtx
);
69 static void mark_all_labels (rtx
);
70 static void mark_jump_label_1 (rtx
, rtx
, bool, bool);
71 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
72 static int invert_exp_1 (rtx
, rtx
);
73 static int returnjump_p_1 (rtx
*, void *);
75 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
76 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
77 instructions and jumping insns that have labels as operands
80 rebuild_jump_labels (rtx f
)
84 timevar_push (TV_REBUILD_JUMP
);
88 /* Keep track of labels used from static data; we don't track them
89 closely enough to delete them here, so make sure their reference
90 count doesn't drop to zero. */
92 for (insn
= forced_labels
; insn
; insn
= XEXP (insn
, 1))
93 if (LABEL_P (XEXP (insn
, 0)))
94 LABEL_NUSES (XEXP (insn
, 0))++;
95 timevar_pop (TV_REBUILD_JUMP
);
98 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
99 non-fallthru insn. This is not generally true, as multiple barriers
100 may have crept in, or the BARRIER may be separated from the last
101 real insn by one or more NOTEs.
103 This simple pass moves barriers and removes duplicates so that the
107 cleanup_barriers (void)
109 rtx insn
, next
, prev
;
110 for (insn
= get_insns (); insn
; insn
= next
)
112 next
= NEXT_INSN (insn
);
113 if (BARRIER_P (insn
))
115 prev
= prev_nonnote_insn (insn
);
116 if (BARRIER_P (prev
))
118 else if (prev
!= PREV_INSN (insn
))
119 reorder_insns (insn
, insn
, prev
);
125 struct rtl_opt_pass pass_cleanup_barriers
=
129 "barriers", /* name */
131 cleanup_barriers
, /* execute */
134 0, /* static_pass_number */
136 0, /* properties_required */
137 0, /* properties_provided */
138 0, /* properties_destroyed */
139 0, /* todo_flags_start */
140 TODO_dump_func
/* todo_flags_finish */
145 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
146 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
147 notes whose labels don't occur in the insn any more. */
150 init_label_info (rtx f
)
154 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
157 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
159 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
160 sticky and not reset here; that way we won't lose association
161 with a label when e.g. the source for a target register
162 disappears out of reach for targets that may use jump-target
163 registers. Jump transformations are supposed to transform
164 any REG_LABEL_TARGET notes. The target label reference in a
165 branch may disappear from the branch (and from the
166 instruction before it) for other reasons, like register
173 for (note
= REG_NOTES (insn
); note
; note
= next
)
175 next
= XEXP (note
, 1);
176 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
177 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
178 remove_note (insn
, note
);
184 /* Mark the label each jump jumps to.
185 Combine consecutive labels, and count uses of labels. */
188 mark_all_labels (rtx f
)
191 rtx prev_nonjump_insn
= NULL
;
193 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
196 mark_jump_label (PATTERN (insn
), insn
, 0);
198 /* If the previous non-jump insn sets something to a label,
199 something that this jump insn uses, make that label the primary
200 target of this insn if we don't yet have any. That previous
201 insn must be a single_set and not refer to more than one label.
202 The jump insn must not refer to other labels as jump targets
203 and must be a plain (set (pc) ...), maybe in a parallel, and
204 may refer to the item being set only directly or as one of the
205 arms in an IF_THEN_ELSE. */
206 if (! INSN_DELETED_P (insn
)
208 && JUMP_LABEL (insn
) == NULL
)
210 rtx label_note
= NULL
;
211 rtx pc
= pc_set (insn
);
212 rtx pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
214 if (prev_nonjump_insn
!= NULL
)
216 = find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
218 if (label_note
!= NULL
&& pc_src
!= NULL
)
220 rtx label_set
= single_set (prev_nonjump_insn
);
222 = label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
224 if (label_set
!= NULL
225 /* The source must be the direct LABEL_REF, not a
226 PLUS, UNSPEC, IF_THEN_ELSE etc. */
227 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
228 && (rtx_equal_p (label_dest
, pc_src
)
229 || (GET_CODE (pc_src
) == IF_THEN_ELSE
230 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
231 || rtx_equal_p (label_dest
,
232 XEXP (pc_src
, 2))))))
235 /* The CODE_LABEL referred to in the note must be the
236 CODE_LABEL in the LABEL_REF of the "set". We can
237 conveniently use it for the marker function, which
238 requires a LABEL_REF wrapping. */
239 gcc_assert (XEXP (label_note
, 0)
240 == XEXP (SET_SRC (label_set
), 0));
242 mark_jump_label_1 (label_set
, insn
, false, true);
243 gcc_assert (JUMP_LABEL (insn
)
244 == XEXP (SET_SRC (label_set
), 0));
248 else if (! INSN_DELETED_P (insn
))
249 prev_nonjump_insn
= insn
;
251 else if (LABEL_P (insn
))
252 prev_nonjump_insn
= NULL
;
254 /* If we are in cfglayout mode, there may be non-insns between the
255 basic blocks. If those non-insns represent tablejump data, they
256 contain label references that we must record. */
257 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
263 for (insn
= bb
->il
.rtl
->header
; insn
; insn
= NEXT_INSN (insn
))
266 gcc_assert (JUMP_TABLE_DATA_P (insn
));
267 mark_jump_label (PATTERN (insn
), insn
, 0);
270 for (insn
= bb
->il
.rtl
->footer
; insn
; insn
= NEXT_INSN (insn
))
273 gcc_assert (JUMP_TABLE_DATA_P (insn
));
274 mark_jump_label (PATTERN (insn
), insn
, 0);
280 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
281 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
282 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
283 know whether it's source is floating point or integer comparison. Machine
284 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
285 to help this function avoid overhead in these cases. */
287 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
288 const_rtx arg1
, const_rtx insn
)
290 enum machine_mode mode
;
292 /* If this is not actually a comparison, we can't reverse it. */
293 if (GET_RTX_CLASS (code
) != RTX_COMPARE
294 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
297 mode
= GET_MODE (arg0
);
298 if (mode
== VOIDmode
)
299 mode
= GET_MODE (arg1
);
301 /* First see if machine description supplies us way to reverse the
302 comparison. Give it priority over everything else to allow
303 machine description to do tricks. */
304 if (GET_MODE_CLASS (mode
) == MODE_CC
305 && REVERSIBLE_CC_MODE (mode
))
307 #ifdef REVERSE_CONDITION
308 return REVERSE_CONDITION (code
, mode
);
310 return reverse_condition (code
);
313 /* Try a few special cases based on the comparison code. */
322 /* It is always safe to reverse EQ and NE, even for the floating
323 point. Similarly the unsigned comparisons are never used for
324 floating point so we can reverse them in the default way. */
325 return reverse_condition (code
);
330 /* In case we already see unordered comparison, we can be sure to
331 be dealing with floating point so we don't need any more tests. */
332 return reverse_condition_maybe_unordered (code
);
337 /* We don't have safe way to reverse these yet. */
343 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
346 /* Try to search for the comparison to determine the real mode.
347 This code is expensive, but with sane machine description it
348 will be never used, since REVERSIBLE_CC_MODE will return true
353 /* These CONST_CAST's are okay because prev_nonnote_insn just
354 returns it's argument and we assign it to a const_rtx
356 for (prev
= prev_nonnote_insn (CONST_CAST_RTX(insn
));
357 prev
!= 0 && !LABEL_P (prev
);
358 prev
= prev_nonnote_insn (CONST_CAST_RTX(prev
)))
360 const_rtx set
= set_of (arg0
, prev
);
361 if (set
&& GET_CODE (set
) == SET
362 && rtx_equal_p (SET_DEST (set
), arg0
))
364 rtx src
= SET_SRC (set
);
366 if (GET_CODE (src
) == COMPARE
)
368 rtx comparison
= src
;
369 arg0
= XEXP (src
, 0);
370 mode
= GET_MODE (arg0
);
371 if (mode
== VOIDmode
)
372 mode
= GET_MODE (XEXP (comparison
, 1));
375 /* We can get past reg-reg moves. This may be useful for model
376 of i387 comparisons that first move flag registers around. */
383 /* If register is clobbered in some ununderstandable way,
390 /* Test for an integer condition, or a floating-point comparison
391 in which NaNs can be ignored. */
392 if (GET_CODE (arg0
) == CONST_INT
393 || (GET_MODE (arg0
) != VOIDmode
394 && GET_MODE_CLASS (mode
) != MODE_CC
395 && !HONOR_NANS (mode
)))
396 return reverse_condition (code
);
401 /* A wrapper around the previous function to take COMPARISON as rtx
402 expression. This simplifies many callers. */
404 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
406 if (!COMPARISON_P (comparison
))
408 return reversed_comparison_code_parts (GET_CODE (comparison
),
409 XEXP (comparison
, 0),
410 XEXP (comparison
, 1), insn
);
413 /* Return comparison with reversed code of EXP.
414 Return NULL_RTX in case we fail to do the reversal. */
416 reversed_comparison (const_rtx exp
, enum machine_mode mode
)
418 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
419 if (reversed_code
== UNKNOWN
)
422 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
423 XEXP (exp
, 0), XEXP (exp
, 1));
427 /* Given an rtx-code for a comparison, return the code for the negated
428 comparison. If no such code exists, return UNKNOWN.
430 WATCH OUT! reverse_condition is not safe to use on a jump that might
431 be acting on the results of an IEEE floating point comparison, because
432 of the special treatment of non-signaling nans in comparisons.
433 Use reversed_comparison_code instead. */
436 reverse_condition (enum rtx_code code
)
478 /* Similar, but we're allowed to generate unordered comparisons, which
479 makes it safe for IEEE floating-point. Of course, we have to recognize
480 that the target will support them too... */
483 reverse_condition_maybe_unordered (enum rtx_code code
)
521 /* Similar, but return the code when two operands of a comparison are swapped.
522 This IS safe for IEEE floating-point. */
525 swap_condition (enum rtx_code code
)
567 /* Given a comparison CODE, return the corresponding unsigned comparison.
568 If CODE is an equality comparison or already an unsigned comparison,
572 unsigned_condition (enum rtx_code code
)
598 /* Similarly, return the signed version of a comparison. */
601 signed_condition (enum rtx_code code
)
627 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
628 truth of CODE1 implies the truth of CODE2. */
631 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
633 /* UNKNOWN comparison codes can happen as a result of trying to revert
635 They can't match anything, so we have to reject them here. */
636 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
645 if (code2
== UNLE
|| code2
== UNGE
)
650 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
656 if (code2
== UNLE
|| code2
== NE
)
661 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
666 if (code2
== UNGE
|| code2
== NE
)
671 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
677 if (code2
== ORDERED
)
682 if (code2
== NE
|| code2
== ORDERED
)
687 if (code2
== LEU
|| code2
== NE
)
692 if (code2
== GEU
|| code2
== NE
)
697 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
698 || code2
== UNGE
|| code2
== UNGT
)
709 /* Return 1 if INSN is an unconditional jump and nothing else. */
712 simplejump_p (const_rtx insn
)
714 return (JUMP_P (insn
)
715 && GET_CODE (PATTERN (insn
)) == SET
716 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
717 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
720 /* Return nonzero if INSN is a (possibly) conditional jump
723 Use of this function is deprecated, since we need to support combined
724 branch and compare insns. Use any_condjump_p instead whenever possible. */
727 condjump_p (const_rtx insn
)
729 const_rtx x
= PATTERN (insn
);
731 if (GET_CODE (x
) != SET
732 || GET_CODE (SET_DEST (x
)) != PC
)
736 if (GET_CODE (x
) == LABEL_REF
)
739 return (GET_CODE (x
) == IF_THEN_ELSE
740 && ((GET_CODE (XEXP (x
, 2)) == PC
741 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
742 || GET_CODE (XEXP (x
, 1)) == RETURN
))
743 || (GET_CODE (XEXP (x
, 1)) == PC
744 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
745 || GET_CODE (XEXP (x
, 2)) == RETURN
))));
748 /* Return nonzero if INSN is a (possibly) conditional jump inside a
751 Use this function is deprecated, since we need to support combined
752 branch and compare insns. Use any_condjump_p instead whenever possible. */
755 condjump_in_parallel_p (const_rtx insn
)
757 const_rtx x
= PATTERN (insn
);
759 if (GET_CODE (x
) != PARALLEL
)
762 x
= XVECEXP (x
, 0, 0);
764 if (GET_CODE (x
) != SET
)
766 if (GET_CODE (SET_DEST (x
)) != PC
)
768 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
770 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
772 if (XEXP (SET_SRC (x
), 2) == pc_rtx
773 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
774 || GET_CODE (XEXP (SET_SRC (x
), 1)) == RETURN
))
776 if (XEXP (SET_SRC (x
), 1) == pc_rtx
777 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
778 || GET_CODE (XEXP (SET_SRC (x
), 2)) == RETURN
))
783 /* Return set of PC, otherwise NULL. */
786 pc_set (const_rtx insn
)
791 pat
= PATTERN (insn
);
793 /* The set is allowed to appear either as the insn pattern or
794 the first set in a PARALLEL. */
795 if (GET_CODE (pat
) == PARALLEL
)
796 pat
= XVECEXP (pat
, 0, 0);
797 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
803 /* Return true when insn is an unconditional direct jump,
804 possibly bundled inside a PARALLEL. */
807 any_uncondjump_p (const_rtx insn
)
809 const_rtx x
= pc_set (insn
);
812 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
814 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
819 /* Return true when insn is a conditional jump. This function works for
820 instructions containing PC sets in PARALLELs. The instruction may have
821 various other effects so before removing the jump you must verify
824 Note that unlike condjump_p it returns false for unconditional jumps. */
827 any_condjump_p (const_rtx insn
)
829 const_rtx x
= pc_set (insn
);
834 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
837 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
838 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
840 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
))
841 || (a
== PC
&& (b
== LABEL_REF
|| b
== RETURN
)));
844 /* Return the label of a conditional jump. */
847 condjump_label (const_rtx insn
)
849 rtx x
= pc_set (insn
);
854 if (GET_CODE (x
) == LABEL_REF
)
856 if (GET_CODE (x
) != IF_THEN_ELSE
)
858 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
860 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
865 /* Return true if INSN is a (possibly conditional) return insn. */
868 returnjump_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
872 return x
&& (GET_CODE (x
) == RETURN
873 || (GET_CODE (x
) == SET
&& SET_IS_RETURN_P (x
)));
877 returnjump_p (rtx insn
)
881 return for_each_rtx (&PATTERN (insn
), returnjump_p_1
, NULL
);
884 /* Return true if INSN is a jump that only transfers control and
888 onlyjump_p (const_rtx insn
)
895 set
= single_set (insn
);
898 if (GET_CODE (SET_DEST (set
)) != PC
)
900 if (side_effects_p (SET_SRC (set
)))
908 /* Return nonzero if X is an RTX that only sets the condition codes
909 and has no side effects. */
912 only_sets_cc0_p (const_rtx x
)
920 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
923 /* Return 1 if X is an RTX that does nothing but set the condition codes
924 and CLOBBER or USE registers.
925 Return -1 if X does explicitly set the condition codes,
926 but also does other things. */
929 sets_cc0_p (const_rtx x
)
937 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
939 if (GET_CODE (x
) == PARALLEL
)
943 int other_things
= 0;
944 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
946 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
947 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
949 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
952 return ! sets_cc0
? 0 : other_things
? -1 : 1;
958 /* Find all CODE_LABELs referred to in X, and increment their use
959 counts. If INSN is a JUMP_INSN and there is at least one
960 CODE_LABEL referenced in INSN as a jump target, then store the last
961 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
962 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
963 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
964 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
965 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
967 Note that two labels separated by a loop-beginning note
968 must be kept distinct if we have not yet done loop-optimization,
969 because the gap between them is where loop-optimize
970 will want to move invariant code to. CROSS_JUMP tells us
971 that loop-optimization is done with. */
974 mark_jump_label (rtx x
, rtx insn
, int in_mem
)
976 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
977 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
980 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
981 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
982 jump-target; when the JUMP_LABEL field of INSN should be set or a
983 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
987 mark_jump_label_1 (rtx x
, rtx insn
, bool in_mem
, bool is_target
)
989 RTX_CODE code
= GET_CODE (x
);
1009 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1010 mark_jump_label (PATTERN (XVECEXP (x
, 0, i
)),
1011 XVECEXP (x
, 0, i
), 0);
1018 /* If this is a constant-pool reference, see if it is a label. */
1019 if (CONSTANT_POOL_ADDRESS_P (x
))
1020 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1023 /* Handle operands in the condition of an if-then-else as for a
1028 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1029 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1030 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1035 rtx label
= XEXP (x
, 0);
1037 /* Ignore remaining references to unreachable labels that
1038 have been deleted. */
1040 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1043 gcc_assert (LABEL_P (label
));
1045 /* Ignore references to labels of containing functions. */
1046 if (LABEL_REF_NONLOCAL_P (x
))
1049 XEXP (x
, 0) = label
;
1050 if (! insn
|| ! INSN_DELETED_P (insn
))
1051 ++LABEL_NUSES (label
);
1056 /* Do not change a previous setting of JUMP_LABEL. If the
1057 JUMP_LABEL slot is occupied by a different label,
1058 create a note for this label. */
1059 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1060 JUMP_LABEL (insn
) = label
;
1064 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1066 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1067 for LABEL unless there already is one. All uses of
1068 a label, except for the primary target of a jump,
1069 must have such a note. */
1070 if (! find_reg_note (insn
, kind
, label
))
1072 = gen_rtx_INSN_LIST (kind
, label
, REG_NOTES (insn
));
1078 /* Do walk the labels in a vector, but not the first operand of an
1079 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1082 if (! INSN_DELETED_P (insn
))
1084 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1086 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1087 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL_RTX
, in_mem
,
1096 fmt
= GET_RTX_FORMAT (code
);
1098 /* The primary target of a tablejump is the label of the ADDR_VEC,
1099 which is canonically mentioned *last* in the insn. To get it
1100 marked as JUMP_LABEL, we iterate over items in reverse order. */
1101 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1104 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1105 else if (fmt
[i
] == 'E')
1109 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1110 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1117 /* Delete insn INSN from the chain of insns and update label ref counts
1118 and delete insns now unreachable.
1120 Returns the first insn after INSN that was not deleted.
1122 Usage of this instruction is deprecated. Use delete_insn instead and
1123 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1126 delete_related_insns (rtx insn
)
1128 int was_code_label
= (LABEL_P (insn
));
1130 rtx next
= NEXT_INSN (insn
), prev
= PREV_INSN (insn
);
1132 while (next
&& INSN_DELETED_P (next
))
1133 next
= NEXT_INSN (next
);
1135 /* This insn is already deleted => return first following nondeleted. */
1136 if (INSN_DELETED_P (insn
))
1141 /* If instruction is followed by a barrier,
1142 delete the barrier too. */
1144 if (next
!= 0 && BARRIER_P (next
))
1147 /* If deleting a jump, decrement the count of the label,
1148 and delete the label if it is now unused. */
1150 if (JUMP_P (insn
) && JUMP_LABEL (insn
))
1152 rtx lab
= JUMP_LABEL (insn
), lab_next
;
1154 if (LABEL_NUSES (lab
) == 0)
1155 /* This can delete NEXT or PREV,
1156 either directly if NEXT is JUMP_LABEL (INSN),
1157 or indirectly through more levels of jumps. */
1158 delete_related_insns (lab
);
1159 else if (tablejump_p (insn
, NULL
, &lab_next
))
1161 /* If we're deleting the tablejump, delete the dispatch table.
1162 We may not be able to kill the label immediately preceding
1163 just yet, as it might be referenced in code leading up to
1165 delete_related_insns (lab_next
);
1169 /* Likewise if we're deleting a dispatch table. */
1172 && (GET_CODE (PATTERN (insn
)) == ADDR_VEC
1173 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
))
1175 rtx pat
= PATTERN (insn
);
1176 int i
, diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
1177 int len
= XVECLEN (pat
, diff_vec_p
);
1179 for (i
= 0; i
< len
; i
++)
1180 if (LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0)) == 0)
1181 delete_related_insns (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0));
1182 while (next
&& INSN_DELETED_P (next
))
1183 next
= NEXT_INSN (next
);
1187 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1188 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1190 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1191 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1192 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1193 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1194 && LABEL_P (XEXP (note
, 0)))
1195 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1196 delete_related_insns (XEXP (note
, 0));
1198 while (prev
&& (INSN_DELETED_P (prev
) || NOTE_P (prev
)))
1199 prev
= PREV_INSN (prev
);
1201 /* If INSN was a label and a dispatch table follows it,
1202 delete the dispatch table. The tablejump must have gone already.
1203 It isn't useful to fall through into a table. */
1206 && NEXT_INSN (insn
) != 0
1207 && JUMP_P (NEXT_INSN (insn
))
1208 && (GET_CODE (PATTERN (NEXT_INSN (insn
))) == ADDR_VEC
1209 || GET_CODE (PATTERN (NEXT_INSN (insn
))) == ADDR_DIFF_VEC
))
1210 next
= delete_related_insns (NEXT_INSN (insn
));
1212 /* If INSN was a label, delete insns following it if now unreachable. */
1214 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1219 code
= GET_CODE (next
);
1221 next
= NEXT_INSN (next
);
1222 /* Keep going past other deleted labels to delete what follows. */
1223 else if (code
== CODE_LABEL
&& INSN_DELETED_P (next
))
1224 next
= NEXT_INSN (next
);
1225 else if (code
== BARRIER
|| INSN_P (next
))
1226 /* Note: if this deletes a jump, it can cause more
1227 deletion of unreachable code, after a different label.
1228 As long as the value from this recursive call is correct,
1229 this invocation functions correctly. */
1230 next
= delete_related_insns (next
);
1236 /* I feel a little doubtful about this loop,
1237 but I see no clean and sure alternative way
1238 to find the first insn after INSN that is not now deleted.
1239 I hope this works. */
1240 while (next
&& INSN_DELETED_P (next
))
1241 next
= NEXT_INSN (next
);
1245 /* Delete a range of insns from FROM to TO, inclusive.
1246 This is for the sake of peephole optimization, so assume
1247 that whatever these insns do will still be done by a new
1248 peephole insn that will replace them. */
1251 delete_for_peephole (rtx from
, rtx to
)
1257 rtx next
= NEXT_INSN (insn
);
1258 rtx prev
= PREV_INSN (insn
);
1262 INSN_DELETED_P (insn
) = 1;
1264 /* Patch this insn out of the chain. */
1265 /* We don't do this all at once, because we
1266 must preserve all NOTEs. */
1268 NEXT_INSN (prev
) = next
;
1271 PREV_INSN (next
) = prev
;
1279 /* Note that if TO is an unconditional jump
1280 we *do not* delete the BARRIER that follows,
1281 since the peephole that replaces this sequence
1282 is also an unconditional jump in that case. */
1285 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1286 NLABEL as a return. Accrue modifications into the change group. */
1289 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1292 RTX_CODE code
= GET_CODE (x
);
1296 if (code
== LABEL_REF
)
1298 if (XEXP (x
, 0) == olabel
)
1302 n
= gen_rtx_LABEL_REF (Pmode
, nlabel
);
1304 n
= gen_rtx_RETURN (VOIDmode
);
1306 validate_change (insn
, loc
, n
, 1);
1310 else if (code
== RETURN
&& olabel
== 0)
1313 x
= gen_rtx_LABEL_REF (Pmode
, nlabel
);
1315 x
= gen_rtx_RETURN (VOIDmode
);
1316 if (loc
== &PATTERN (insn
))
1317 x
= gen_rtx_SET (VOIDmode
, pc_rtx
, x
);
1318 validate_change (insn
, loc
, x
, 1);
1322 if (code
== SET
&& nlabel
== 0 && SET_DEST (x
) == pc_rtx
1323 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1324 && XEXP (SET_SRC (x
), 0) == olabel
)
1326 validate_change (insn
, loc
, gen_rtx_RETURN (VOIDmode
), 1);
1330 fmt
= GET_RTX_FORMAT (code
);
1331 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1334 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1335 else if (fmt
[i
] == 'E')
1338 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1339 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1344 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1345 the modifications into the change group. Return false if we did
1346 not see how to do that. */
1349 redirect_jump_1 (rtx jump
, rtx nlabel
)
1351 int ochanges
= num_validated_changes ();
1354 if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1355 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1357 loc
= &PATTERN (jump
);
1359 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1360 return num_validated_changes () > ochanges
;
1363 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1364 jump target label is unused as a result, it and the code following
1367 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1370 The return value will be 1 if the change was made, 0 if it wasn't
1371 (this can only occur for NLABEL == 0). */
1374 redirect_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1376 rtx olabel
= JUMP_LABEL (jump
);
1378 if (nlabel
== olabel
)
1381 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1384 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1388 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1390 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1391 count has dropped to zero. */
1393 redirect_jump_2 (rtx jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1398 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1400 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1401 moving FUNCTION_END note. Just sanity check that no user still worry
1403 gcc_assert (delete_unused
>= 0);
1404 JUMP_LABEL (jump
) = nlabel
;
1406 ++LABEL_NUSES (nlabel
);
1408 /* Update labels in any REG_EQUAL note. */
1409 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1411 if (!nlabel
|| (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1412 remove_note (jump
, note
);
1415 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1416 confirm_change_group ();
1420 if (olabel
&& --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1421 /* Undefined labels will remain outside the insn stream. */
1422 && INSN_UID (olabel
))
1423 delete_related_insns (olabel
);
1425 invert_br_probabilities (jump
);
1428 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1429 modifications into the change group. Return nonzero for success. */
1431 invert_exp_1 (rtx x
, rtx insn
)
1433 RTX_CODE code
= GET_CODE (x
);
1435 if (code
== IF_THEN_ELSE
)
1437 rtx comp
= XEXP (x
, 0);
1439 enum rtx_code reversed_code
;
1441 /* We can do this in two ways: The preferable way, which can only
1442 be done if this is not an integer comparison, is to reverse
1443 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1444 of the IF_THEN_ELSE. If we can't do either, fail. */
1446 reversed_code
= reversed_comparison_code (comp
, insn
);
1448 if (reversed_code
!= UNKNOWN
)
1450 validate_change (insn
, &XEXP (x
, 0),
1451 gen_rtx_fmt_ee (reversed_code
,
1452 GET_MODE (comp
), XEXP (comp
, 0),
1459 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1460 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1467 /* Invert the condition of the jump JUMP, and make it jump to label
1468 NLABEL instead of where it jumps now. Accrue changes into the
1469 change group. Return false if we didn't see how to perform the
1470 inversion and redirection. */
1473 invert_jump_1 (rtx jump
, rtx nlabel
)
1475 rtx x
= pc_set (jump
);
1479 ochanges
= num_validated_changes ();
1481 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1484 if (num_validated_changes () == ochanges
)
1487 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1488 in Pmode, so checking this is not merely an optimization. */
1489 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1492 /* Invert the condition of the jump JUMP, and make it jump to label
1493 NLABEL instead of where it jumps now. Return true if successful. */
1496 invert_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1498 rtx olabel
= JUMP_LABEL (jump
);
1500 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1502 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1510 /* Like rtx_equal_p except that it considers two REGs as equal
1511 if they renumber to the same value and considers two commutative
1512 operations to be the same if the order of the operands has been
1516 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1519 const enum rtx_code code
= GET_CODE (x
);
1525 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1526 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1527 && REG_P (SUBREG_REG (y
)))))
1529 int reg_x
= -1, reg_y
= -1;
1530 int byte_x
= 0, byte_y
= 0;
1532 if (GET_MODE (x
) != GET_MODE (y
))
1535 /* If we haven't done any renumbering, don't
1536 make any assumptions. */
1537 if (reg_renumber
== 0)
1538 return rtx_equal_p (x
, y
);
1542 reg_x
= REGNO (SUBREG_REG (x
));
1543 byte_x
= SUBREG_BYTE (x
);
1545 if (reg_renumber
[reg_x
] >= 0)
1547 reg_x
= subreg_regno_offset (reg_renumber
[reg_x
],
1548 GET_MODE (SUBREG_REG (x
)),
1557 if (reg_renumber
[reg_x
] >= 0)
1558 reg_x
= reg_renumber
[reg_x
];
1561 if (GET_CODE (y
) == SUBREG
)
1563 reg_y
= REGNO (SUBREG_REG (y
));
1564 byte_y
= SUBREG_BYTE (y
);
1566 if (reg_renumber
[reg_y
] >= 0)
1568 reg_y
= subreg_regno_offset (reg_renumber
[reg_y
],
1569 GET_MODE (SUBREG_REG (y
)),
1578 if (reg_renumber
[reg_y
] >= 0)
1579 reg_y
= reg_renumber
[reg_y
];
1582 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1585 /* Now we have disposed of all the cases
1586 in which different rtx codes can match. */
1587 if (code
!= GET_CODE (y
))
1601 /* We can't assume nonlocal labels have their following insns yet. */
1602 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1603 return XEXP (x
, 0) == XEXP (y
, 0);
1605 /* Two label-refs are equivalent if they point at labels
1606 in the same position in the instruction stream. */
1607 return (next_real_insn (XEXP (x
, 0))
1608 == next_real_insn (XEXP (y
, 0)));
1611 return XSTR (x
, 0) == XSTR (y
, 0);
1614 /* If we didn't match EQ equality above, they aren't the same. */
1621 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1623 if (GET_MODE (x
) != GET_MODE (y
))
1626 /* For commutative operations, the RTX match if the operand match in any
1627 order. Also handle the simple binary and unary cases without a loop. */
1628 if (targetm
.commutative_p (x
, UNKNOWN
))
1629 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1630 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1631 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1632 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1633 else if (NON_COMMUTATIVE_P (x
))
1634 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1635 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1636 else if (UNARY_P (x
))
1637 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1639 /* Compare the elements. If any pair of corresponding elements
1640 fail to match, return 0 for the whole things. */
1642 fmt
= GET_RTX_FORMAT (code
);
1643 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1649 if (XWINT (x
, i
) != XWINT (y
, i
))
1654 if (XINT (x
, i
) != XINT (y
, i
))
1659 if (XTREE (x
, i
) != XTREE (y
, i
))
1664 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1669 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1674 if (XEXP (x
, i
) != XEXP (y
, i
))
1681 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1683 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1684 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1695 /* If X is a hard register or equivalent to one or a subregister of one,
1696 return the hard register number. If X is a pseudo register that was not
1697 assigned a hard register, return the pseudo register number. Otherwise,
1698 return -1. Any rtx is valid for X. */
1701 true_regnum (const_rtx x
)
1705 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
&& reg_renumber
[REGNO (x
)] >= 0)
1706 return reg_renumber
[REGNO (x
)];
1709 if (GET_CODE (x
) == SUBREG
)
1711 int base
= true_regnum (SUBREG_REG (x
));
1713 && base
< FIRST_PSEUDO_REGISTER
1714 && subreg_offset_representable_p (REGNO (SUBREG_REG (x
)),
1715 GET_MODE (SUBREG_REG (x
)),
1716 SUBREG_BYTE (x
), GET_MODE (x
)))
1717 return base
+ subreg_regno_offset (REGNO (SUBREG_REG (x
)),
1718 GET_MODE (SUBREG_REG (x
)),
1719 SUBREG_BYTE (x
), GET_MODE (x
));
1724 /* Return regno of the register REG and handle subregs too. */
1726 reg_or_subregno (const_rtx reg
)
1728 if (GET_CODE (reg
) == SUBREG
)
1729 reg
= SUBREG_REG (reg
);
1730 gcc_assert (REG_P (reg
));