decl.c (gnat_to_gnu_entity): For a constant object whose type has self-referential...
[official-gcc.git] / gcc / jump.c
blob1aa0c6db6d873a50e3a3888b5fe24d27dc6415df
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
24 operate with jumps.
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
34 The subroutines redirect_jump and invert_jump are used
35 from other passes as well. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "hard-reg-set.h"
45 #include "regs.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
48 #include "recog.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "real.h"
52 #include "except.h"
53 #include "diagnostic.h"
54 #include "toplev.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "timevar.h"
58 #include "tree-pass.h"
59 #include "target.h"
61 /* Optimize jump y; x: ... y: jumpif... x?
62 Don't know if it is worth bothering with. */
63 /* Optimize two cases of conditional jump to conditional jump?
64 This can never delete any instruction or make anything dead,
65 or even change what is live at any point.
66 So perhaps let combiner do it. */
68 static void init_label_info (rtx);
69 static void mark_all_labels (rtx);
70 static void mark_jump_label_1 (rtx, rtx, bool, bool);
71 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
72 static int invert_exp_1 (rtx, rtx);
73 static int returnjump_p_1 (rtx *, void *);
75 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
76 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
77 instructions and jumping insns that have labels as operands
78 (e.g. cbranchsi4). */
79 void
80 rebuild_jump_labels (rtx f)
82 rtx insn;
84 timevar_push (TV_REBUILD_JUMP);
85 init_label_info (f);
86 mark_all_labels (f);
88 /* Keep track of labels used from static data; we don't track them
89 closely enough to delete them here, so make sure their reference
90 count doesn't drop to zero. */
92 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
93 if (LABEL_P (XEXP (insn, 0)))
94 LABEL_NUSES (XEXP (insn, 0))++;
95 timevar_pop (TV_REBUILD_JUMP);
98 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
99 non-fallthru insn. This is not generally true, as multiple barriers
100 may have crept in, or the BARRIER may be separated from the last
101 real insn by one or more NOTEs.
103 This simple pass moves barriers and removes duplicates so that the
104 old code is happy.
106 unsigned int
107 cleanup_barriers (void)
109 rtx insn, next, prev;
110 for (insn = get_insns (); insn; insn = next)
112 next = NEXT_INSN (insn);
113 if (BARRIER_P (insn))
115 prev = prev_nonnote_insn (insn);
116 if (BARRIER_P (prev))
117 delete_insn (insn);
118 else if (prev != PREV_INSN (insn))
119 reorder_insns (insn, insn, prev);
122 return 0;
125 struct rtl_opt_pass pass_cleanup_barriers =
128 RTL_PASS,
129 "barriers", /* name */
130 NULL, /* gate */
131 cleanup_barriers, /* execute */
132 NULL, /* sub */
133 NULL, /* next */
134 0, /* static_pass_number */
135 0, /* tv_id */
136 0, /* properties_required */
137 0, /* properties_provided */
138 0, /* properties_destroyed */
139 0, /* todo_flags_start */
140 TODO_dump_func /* todo_flags_finish */
145 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
146 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
147 notes whose labels don't occur in the insn any more. */
149 static void
150 init_label_info (rtx f)
152 rtx insn;
154 for (insn = f; insn; insn = NEXT_INSN (insn))
156 if (LABEL_P (insn))
157 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
159 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
160 sticky and not reset here; that way we won't lose association
161 with a label when e.g. the source for a target register
162 disappears out of reach for targets that may use jump-target
163 registers. Jump transformations are supposed to transform
164 any REG_LABEL_TARGET notes. The target label reference in a
165 branch may disappear from the branch (and from the
166 instruction before it) for other reasons, like register
167 allocation. */
169 if (INSN_P (insn))
171 rtx note, next;
173 for (note = REG_NOTES (insn); note; note = next)
175 next = XEXP (note, 1);
176 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
177 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
178 remove_note (insn, note);
184 /* Mark the label each jump jumps to.
185 Combine consecutive labels, and count uses of labels. */
187 static void
188 mark_all_labels (rtx f)
190 rtx insn;
191 rtx prev_nonjump_insn = NULL;
193 for (insn = f; insn; insn = NEXT_INSN (insn))
194 if (INSN_P (insn))
196 mark_jump_label (PATTERN (insn), insn, 0);
198 /* If the previous non-jump insn sets something to a label,
199 something that this jump insn uses, make that label the primary
200 target of this insn if we don't yet have any. That previous
201 insn must be a single_set and not refer to more than one label.
202 The jump insn must not refer to other labels as jump targets
203 and must be a plain (set (pc) ...), maybe in a parallel, and
204 may refer to the item being set only directly or as one of the
205 arms in an IF_THEN_ELSE. */
206 if (! INSN_DELETED_P (insn)
207 && JUMP_P (insn)
208 && JUMP_LABEL (insn) == NULL)
210 rtx label_note = NULL;
211 rtx pc = pc_set (insn);
212 rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
214 if (prev_nonjump_insn != NULL)
215 label_note
216 = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
218 if (label_note != NULL && pc_src != NULL)
220 rtx label_set = single_set (prev_nonjump_insn);
221 rtx label_dest
222 = label_set != NULL ? SET_DEST (label_set) : NULL;
224 if (label_set != NULL
225 /* The source must be the direct LABEL_REF, not a
226 PLUS, UNSPEC, IF_THEN_ELSE etc. */
227 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
228 && (rtx_equal_p (label_dest, pc_src)
229 || (GET_CODE (pc_src) == IF_THEN_ELSE
230 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
231 || rtx_equal_p (label_dest,
232 XEXP (pc_src, 2))))))
235 /* The CODE_LABEL referred to in the note must be the
236 CODE_LABEL in the LABEL_REF of the "set". We can
237 conveniently use it for the marker function, which
238 requires a LABEL_REF wrapping. */
239 gcc_assert (XEXP (label_note, 0)
240 == XEXP (SET_SRC (label_set), 0));
242 mark_jump_label_1 (label_set, insn, false, true);
243 gcc_assert (JUMP_LABEL (insn)
244 == XEXP (SET_SRC (label_set), 0));
248 else if (! INSN_DELETED_P (insn))
249 prev_nonjump_insn = insn;
251 else if (LABEL_P (insn))
252 prev_nonjump_insn = NULL;
254 /* If we are in cfglayout mode, there may be non-insns between the
255 basic blocks. If those non-insns represent tablejump data, they
256 contain label references that we must record. */
257 if (current_ir_type () == IR_RTL_CFGLAYOUT)
259 basic_block bb;
260 rtx insn;
261 FOR_EACH_BB (bb)
263 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
264 if (INSN_P (insn))
266 gcc_assert (JUMP_TABLE_DATA_P (insn));
267 mark_jump_label (PATTERN (insn), insn, 0);
270 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
271 if (INSN_P (insn))
273 gcc_assert (JUMP_TABLE_DATA_P (insn));
274 mark_jump_label (PATTERN (insn), insn, 0);
280 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
281 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
282 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
283 know whether it's source is floating point or integer comparison. Machine
284 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
285 to help this function avoid overhead in these cases. */
286 enum rtx_code
287 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
288 const_rtx arg1, const_rtx insn)
290 enum machine_mode mode;
292 /* If this is not actually a comparison, we can't reverse it. */
293 if (GET_RTX_CLASS (code) != RTX_COMPARE
294 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
295 return UNKNOWN;
297 mode = GET_MODE (arg0);
298 if (mode == VOIDmode)
299 mode = GET_MODE (arg1);
301 /* First see if machine description supplies us way to reverse the
302 comparison. Give it priority over everything else to allow
303 machine description to do tricks. */
304 if (GET_MODE_CLASS (mode) == MODE_CC
305 && REVERSIBLE_CC_MODE (mode))
307 #ifdef REVERSE_CONDITION
308 return REVERSE_CONDITION (code, mode);
309 #endif
310 return reverse_condition (code);
313 /* Try a few special cases based on the comparison code. */
314 switch (code)
316 case GEU:
317 case GTU:
318 case LEU:
319 case LTU:
320 case NE:
321 case EQ:
322 /* It is always safe to reverse EQ and NE, even for the floating
323 point. Similarly the unsigned comparisons are never used for
324 floating point so we can reverse them in the default way. */
325 return reverse_condition (code);
326 case ORDERED:
327 case UNORDERED:
328 case LTGT:
329 case UNEQ:
330 /* In case we already see unordered comparison, we can be sure to
331 be dealing with floating point so we don't need any more tests. */
332 return reverse_condition_maybe_unordered (code);
333 case UNLT:
334 case UNLE:
335 case UNGT:
336 case UNGE:
337 /* We don't have safe way to reverse these yet. */
338 return UNKNOWN;
339 default:
340 break;
343 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
345 const_rtx prev;
346 /* Try to search for the comparison to determine the real mode.
347 This code is expensive, but with sane machine description it
348 will be never used, since REVERSIBLE_CC_MODE will return true
349 in all cases. */
350 if (! insn)
351 return UNKNOWN;
353 /* These CONST_CAST's are okay because prev_nonnote_insn just
354 returns it's argument and we assign it to a const_rtx
355 variable. */
356 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
357 prev != 0 && !LABEL_P (prev);
358 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
360 const_rtx set = set_of (arg0, prev);
361 if (set && GET_CODE (set) == SET
362 && rtx_equal_p (SET_DEST (set), arg0))
364 rtx src = SET_SRC (set);
366 if (GET_CODE (src) == COMPARE)
368 rtx comparison = src;
369 arg0 = XEXP (src, 0);
370 mode = GET_MODE (arg0);
371 if (mode == VOIDmode)
372 mode = GET_MODE (XEXP (comparison, 1));
373 break;
375 /* We can get past reg-reg moves. This may be useful for model
376 of i387 comparisons that first move flag registers around. */
377 if (REG_P (src))
379 arg0 = src;
380 continue;
383 /* If register is clobbered in some ununderstandable way,
384 give up. */
385 if (set)
386 return UNKNOWN;
390 /* Test for an integer condition, or a floating-point comparison
391 in which NaNs can be ignored. */
392 if (GET_CODE (arg0) == CONST_INT
393 || (GET_MODE (arg0) != VOIDmode
394 && GET_MODE_CLASS (mode) != MODE_CC
395 && !HONOR_NANS (mode)))
396 return reverse_condition (code);
398 return UNKNOWN;
401 /* A wrapper around the previous function to take COMPARISON as rtx
402 expression. This simplifies many callers. */
403 enum rtx_code
404 reversed_comparison_code (const_rtx comparison, const_rtx insn)
406 if (!COMPARISON_P (comparison))
407 return UNKNOWN;
408 return reversed_comparison_code_parts (GET_CODE (comparison),
409 XEXP (comparison, 0),
410 XEXP (comparison, 1), insn);
413 /* Return comparison with reversed code of EXP.
414 Return NULL_RTX in case we fail to do the reversal. */
416 reversed_comparison (const_rtx exp, enum machine_mode mode)
418 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
419 if (reversed_code == UNKNOWN)
420 return NULL_RTX;
421 else
422 return simplify_gen_relational (reversed_code, mode, VOIDmode,
423 XEXP (exp, 0), XEXP (exp, 1));
427 /* Given an rtx-code for a comparison, return the code for the negated
428 comparison. If no such code exists, return UNKNOWN.
430 WATCH OUT! reverse_condition is not safe to use on a jump that might
431 be acting on the results of an IEEE floating point comparison, because
432 of the special treatment of non-signaling nans in comparisons.
433 Use reversed_comparison_code instead. */
435 enum rtx_code
436 reverse_condition (enum rtx_code code)
438 switch (code)
440 case EQ:
441 return NE;
442 case NE:
443 return EQ;
444 case GT:
445 return LE;
446 case GE:
447 return LT;
448 case LT:
449 return GE;
450 case LE:
451 return GT;
452 case GTU:
453 return LEU;
454 case GEU:
455 return LTU;
456 case LTU:
457 return GEU;
458 case LEU:
459 return GTU;
460 case UNORDERED:
461 return ORDERED;
462 case ORDERED:
463 return UNORDERED;
465 case UNLT:
466 case UNLE:
467 case UNGT:
468 case UNGE:
469 case UNEQ:
470 case LTGT:
471 return UNKNOWN;
473 default:
474 gcc_unreachable ();
478 /* Similar, but we're allowed to generate unordered comparisons, which
479 makes it safe for IEEE floating-point. Of course, we have to recognize
480 that the target will support them too... */
482 enum rtx_code
483 reverse_condition_maybe_unordered (enum rtx_code code)
485 switch (code)
487 case EQ:
488 return NE;
489 case NE:
490 return EQ;
491 case GT:
492 return UNLE;
493 case GE:
494 return UNLT;
495 case LT:
496 return UNGE;
497 case LE:
498 return UNGT;
499 case LTGT:
500 return UNEQ;
501 case UNORDERED:
502 return ORDERED;
503 case ORDERED:
504 return UNORDERED;
505 case UNLT:
506 return GE;
507 case UNLE:
508 return GT;
509 case UNGT:
510 return LE;
511 case UNGE:
512 return LT;
513 case UNEQ:
514 return LTGT;
516 default:
517 gcc_unreachable ();
521 /* Similar, but return the code when two operands of a comparison are swapped.
522 This IS safe for IEEE floating-point. */
524 enum rtx_code
525 swap_condition (enum rtx_code code)
527 switch (code)
529 case EQ:
530 case NE:
531 case UNORDERED:
532 case ORDERED:
533 case UNEQ:
534 case LTGT:
535 return code;
537 case GT:
538 return LT;
539 case GE:
540 return LE;
541 case LT:
542 return GT;
543 case LE:
544 return GE;
545 case GTU:
546 return LTU;
547 case GEU:
548 return LEU;
549 case LTU:
550 return GTU;
551 case LEU:
552 return GEU;
553 case UNLT:
554 return UNGT;
555 case UNLE:
556 return UNGE;
557 case UNGT:
558 return UNLT;
559 case UNGE:
560 return UNLE;
562 default:
563 gcc_unreachable ();
567 /* Given a comparison CODE, return the corresponding unsigned comparison.
568 If CODE is an equality comparison or already an unsigned comparison,
569 CODE is returned. */
571 enum rtx_code
572 unsigned_condition (enum rtx_code code)
574 switch (code)
576 case EQ:
577 case NE:
578 case GTU:
579 case GEU:
580 case LTU:
581 case LEU:
582 return code;
584 case GT:
585 return GTU;
586 case GE:
587 return GEU;
588 case LT:
589 return LTU;
590 case LE:
591 return LEU;
593 default:
594 gcc_unreachable ();
598 /* Similarly, return the signed version of a comparison. */
600 enum rtx_code
601 signed_condition (enum rtx_code code)
603 switch (code)
605 case EQ:
606 case NE:
607 case GT:
608 case GE:
609 case LT:
610 case LE:
611 return code;
613 case GTU:
614 return GT;
615 case GEU:
616 return GE;
617 case LTU:
618 return LT;
619 case LEU:
620 return LE;
622 default:
623 gcc_unreachable ();
627 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
628 truth of CODE1 implies the truth of CODE2. */
631 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
633 /* UNKNOWN comparison codes can happen as a result of trying to revert
634 comparison codes.
635 They can't match anything, so we have to reject them here. */
636 if (code1 == UNKNOWN || code2 == UNKNOWN)
637 return 0;
639 if (code1 == code2)
640 return 1;
642 switch (code1)
644 case UNEQ:
645 if (code2 == UNLE || code2 == UNGE)
646 return 1;
647 break;
649 case EQ:
650 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
651 || code2 == ORDERED)
652 return 1;
653 break;
655 case UNLT:
656 if (code2 == UNLE || code2 == NE)
657 return 1;
658 break;
660 case LT:
661 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
662 return 1;
663 break;
665 case UNGT:
666 if (code2 == UNGE || code2 == NE)
667 return 1;
668 break;
670 case GT:
671 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
672 return 1;
673 break;
675 case GE:
676 case LE:
677 if (code2 == ORDERED)
678 return 1;
679 break;
681 case LTGT:
682 if (code2 == NE || code2 == ORDERED)
683 return 1;
684 break;
686 case LTU:
687 if (code2 == LEU || code2 == NE)
688 return 1;
689 break;
691 case GTU:
692 if (code2 == GEU || code2 == NE)
693 return 1;
694 break;
696 case UNORDERED:
697 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
698 || code2 == UNGE || code2 == UNGT)
699 return 1;
700 break;
702 default:
703 break;
706 return 0;
709 /* Return 1 if INSN is an unconditional jump and nothing else. */
712 simplejump_p (const_rtx insn)
714 return (JUMP_P (insn)
715 && GET_CODE (PATTERN (insn)) == SET
716 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
717 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
720 /* Return nonzero if INSN is a (possibly) conditional jump
721 and nothing more.
723 Use of this function is deprecated, since we need to support combined
724 branch and compare insns. Use any_condjump_p instead whenever possible. */
727 condjump_p (const_rtx insn)
729 const_rtx x = PATTERN (insn);
731 if (GET_CODE (x) != SET
732 || GET_CODE (SET_DEST (x)) != PC)
733 return 0;
735 x = SET_SRC (x);
736 if (GET_CODE (x) == LABEL_REF)
737 return 1;
738 else
739 return (GET_CODE (x) == IF_THEN_ELSE
740 && ((GET_CODE (XEXP (x, 2)) == PC
741 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
742 || GET_CODE (XEXP (x, 1)) == RETURN))
743 || (GET_CODE (XEXP (x, 1)) == PC
744 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
745 || GET_CODE (XEXP (x, 2)) == RETURN))));
748 /* Return nonzero if INSN is a (possibly) conditional jump inside a
749 PARALLEL.
751 Use this function is deprecated, since we need to support combined
752 branch and compare insns. Use any_condjump_p instead whenever possible. */
755 condjump_in_parallel_p (const_rtx insn)
757 const_rtx x = PATTERN (insn);
759 if (GET_CODE (x) != PARALLEL)
760 return 0;
761 else
762 x = XVECEXP (x, 0, 0);
764 if (GET_CODE (x) != SET)
765 return 0;
766 if (GET_CODE (SET_DEST (x)) != PC)
767 return 0;
768 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
769 return 1;
770 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
771 return 0;
772 if (XEXP (SET_SRC (x), 2) == pc_rtx
773 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
774 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
775 return 1;
776 if (XEXP (SET_SRC (x), 1) == pc_rtx
777 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
778 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
779 return 1;
780 return 0;
783 /* Return set of PC, otherwise NULL. */
786 pc_set (const_rtx insn)
788 rtx pat;
789 if (!JUMP_P (insn))
790 return NULL_RTX;
791 pat = PATTERN (insn);
793 /* The set is allowed to appear either as the insn pattern or
794 the first set in a PARALLEL. */
795 if (GET_CODE (pat) == PARALLEL)
796 pat = XVECEXP (pat, 0, 0);
797 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
798 return pat;
800 return NULL_RTX;
803 /* Return true when insn is an unconditional direct jump,
804 possibly bundled inside a PARALLEL. */
807 any_uncondjump_p (const_rtx insn)
809 const_rtx x = pc_set (insn);
810 if (!x)
811 return 0;
812 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
813 return 0;
814 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
815 return 0;
816 return 1;
819 /* Return true when insn is a conditional jump. This function works for
820 instructions containing PC sets in PARALLELs. The instruction may have
821 various other effects so before removing the jump you must verify
822 onlyjump_p.
824 Note that unlike condjump_p it returns false for unconditional jumps. */
827 any_condjump_p (const_rtx insn)
829 const_rtx x = pc_set (insn);
830 enum rtx_code a, b;
832 if (!x)
833 return 0;
834 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
835 return 0;
837 a = GET_CODE (XEXP (SET_SRC (x), 1));
838 b = GET_CODE (XEXP (SET_SRC (x), 2));
840 return ((b == PC && (a == LABEL_REF || a == RETURN))
841 || (a == PC && (b == LABEL_REF || b == RETURN)));
844 /* Return the label of a conditional jump. */
847 condjump_label (const_rtx insn)
849 rtx x = pc_set (insn);
851 if (!x)
852 return NULL_RTX;
853 x = SET_SRC (x);
854 if (GET_CODE (x) == LABEL_REF)
855 return x;
856 if (GET_CODE (x) != IF_THEN_ELSE)
857 return NULL_RTX;
858 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
859 return XEXP (x, 1);
860 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
861 return XEXP (x, 2);
862 return NULL_RTX;
865 /* Return true if INSN is a (possibly conditional) return insn. */
867 static int
868 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
870 rtx x = *loc;
872 return x && (GET_CODE (x) == RETURN
873 || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
877 returnjump_p (rtx insn)
879 if (!JUMP_P (insn))
880 return 0;
881 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
884 /* Return true if INSN is a jump that only transfers control and
885 nothing more. */
888 onlyjump_p (const_rtx insn)
890 rtx set;
892 if (!JUMP_P (insn))
893 return 0;
895 set = single_set (insn);
896 if (set == NULL)
897 return 0;
898 if (GET_CODE (SET_DEST (set)) != PC)
899 return 0;
900 if (side_effects_p (SET_SRC (set)))
901 return 0;
903 return 1;
906 #ifdef HAVE_cc0
908 /* Return nonzero if X is an RTX that only sets the condition codes
909 and has no side effects. */
912 only_sets_cc0_p (const_rtx x)
914 if (! x)
915 return 0;
917 if (INSN_P (x))
918 x = PATTERN (x);
920 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
923 /* Return 1 if X is an RTX that does nothing but set the condition codes
924 and CLOBBER or USE registers.
925 Return -1 if X does explicitly set the condition codes,
926 but also does other things. */
929 sets_cc0_p (const_rtx x)
931 if (! x)
932 return 0;
934 if (INSN_P (x))
935 x = PATTERN (x);
937 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
938 return 1;
939 if (GET_CODE (x) == PARALLEL)
941 int i;
942 int sets_cc0 = 0;
943 int other_things = 0;
944 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
946 if (GET_CODE (XVECEXP (x, 0, i)) == SET
947 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
948 sets_cc0 = 1;
949 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
950 other_things = 1;
952 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
954 return 0;
956 #endif
958 /* Find all CODE_LABELs referred to in X, and increment their use
959 counts. If INSN is a JUMP_INSN and there is at least one
960 CODE_LABEL referenced in INSN as a jump target, then store the last
961 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
962 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
963 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
964 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
965 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
967 Note that two labels separated by a loop-beginning note
968 must be kept distinct if we have not yet done loop-optimization,
969 because the gap between them is where loop-optimize
970 will want to move invariant code to. CROSS_JUMP tells us
971 that loop-optimization is done with. */
973 void
974 mark_jump_label (rtx x, rtx insn, int in_mem)
976 mark_jump_label_1 (x, insn, in_mem != 0,
977 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
980 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
981 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
982 jump-target; when the JUMP_LABEL field of INSN should be set or a
983 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
984 note. */
986 static void
987 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
989 RTX_CODE code = GET_CODE (x);
990 int i;
991 const char *fmt;
993 switch (code)
995 case PC:
996 case CC0:
997 case REG:
998 case CONST_INT:
999 case CONST_DOUBLE:
1000 case CLOBBER:
1001 case CALL:
1002 return;
1004 case MEM:
1005 in_mem = true;
1006 break;
1008 case SEQUENCE:
1009 for (i = 0; i < XVECLEN (x, 0); i++)
1010 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1011 XVECEXP (x, 0, i), 0);
1012 return;
1014 case SYMBOL_REF:
1015 if (!in_mem)
1016 return;
1018 /* If this is a constant-pool reference, see if it is a label. */
1019 if (CONSTANT_POOL_ADDRESS_P (x))
1020 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1021 break;
1023 /* Handle operands in the condition of an if-then-else as for a
1024 non-jump insn. */
1025 case IF_THEN_ELSE:
1026 if (!is_target)
1027 break;
1028 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1029 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1030 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1031 return;
1033 case LABEL_REF:
1035 rtx label = XEXP (x, 0);
1037 /* Ignore remaining references to unreachable labels that
1038 have been deleted. */
1039 if (NOTE_P (label)
1040 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1041 break;
1043 gcc_assert (LABEL_P (label));
1045 /* Ignore references to labels of containing functions. */
1046 if (LABEL_REF_NONLOCAL_P (x))
1047 break;
1049 XEXP (x, 0) = label;
1050 if (! insn || ! INSN_DELETED_P (insn))
1051 ++LABEL_NUSES (label);
1053 if (insn)
1055 if (is_target
1056 /* Do not change a previous setting of JUMP_LABEL. If the
1057 JUMP_LABEL slot is occupied by a different label,
1058 create a note for this label. */
1059 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1060 JUMP_LABEL (insn) = label;
1061 else
1063 enum reg_note kind
1064 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1066 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1067 for LABEL unless there already is one. All uses of
1068 a label, except for the primary target of a jump,
1069 must have such a note. */
1070 if (! find_reg_note (insn, kind, label))
1071 REG_NOTES (insn)
1072 = gen_rtx_INSN_LIST (kind, label, REG_NOTES (insn));
1075 return;
1078 /* Do walk the labels in a vector, but not the first operand of an
1079 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1080 case ADDR_VEC:
1081 case ADDR_DIFF_VEC:
1082 if (! INSN_DELETED_P (insn))
1084 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1086 for (i = 0; i < XVECLEN (x, eltnum); i++)
1087 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1088 is_target);
1090 return;
1092 default:
1093 break;
1096 fmt = GET_RTX_FORMAT (code);
1098 /* The primary target of a tablejump is the label of the ADDR_VEC,
1099 which is canonically mentioned *last* in the insn. To get it
1100 marked as JUMP_LABEL, we iterate over items in reverse order. */
1101 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1103 if (fmt[i] == 'e')
1104 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1105 else if (fmt[i] == 'E')
1107 int j;
1109 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1110 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1111 is_target);
1117 /* Delete insn INSN from the chain of insns and update label ref counts
1118 and delete insns now unreachable.
1120 Returns the first insn after INSN that was not deleted.
1122 Usage of this instruction is deprecated. Use delete_insn instead and
1123 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1126 delete_related_insns (rtx insn)
1128 int was_code_label = (LABEL_P (insn));
1129 rtx note;
1130 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1132 while (next && INSN_DELETED_P (next))
1133 next = NEXT_INSN (next);
1135 /* This insn is already deleted => return first following nondeleted. */
1136 if (INSN_DELETED_P (insn))
1137 return next;
1139 delete_insn (insn);
1141 /* If instruction is followed by a barrier,
1142 delete the barrier too. */
1144 if (next != 0 && BARRIER_P (next))
1145 delete_insn (next);
1147 /* If deleting a jump, decrement the count of the label,
1148 and delete the label if it is now unused. */
1150 if (JUMP_P (insn) && JUMP_LABEL (insn))
1152 rtx lab = JUMP_LABEL (insn), lab_next;
1154 if (LABEL_NUSES (lab) == 0)
1155 /* This can delete NEXT or PREV,
1156 either directly if NEXT is JUMP_LABEL (INSN),
1157 or indirectly through more levels of jumps. */
1158 delete_related_insns (lab);
1159 else if (tablejump_p (insn, NULL, &lab_next))
1161 /* If we're deleting the tablejump, delete the dispatch table.
1162 We may not be able to kill the label immediately preceding
1163 just yet, as it might be referenced in code leading up to
1164 the tablejump. */
1165 delete_related_insns (lab_next);
1169 /* Likewise if we're deleting a dispatch table. */
1171 if (JUMP_P (insn)
1172 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
1173 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
1175 rtx pat = PATTERN (insn);
1176 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1177 int len = XVECLEN (pat, diff_vec_p);
1179 for (i = 0; i < len; i++)
1180 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1181 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1182 while (next && INSN_DELETED_P (next))
1183 next = NEXT_INSN (next);
1184 return next;
1187 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1188 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1189 if (INSN_P (insn))
1190 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1191 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1192 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1193 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1194 && LABEL_P (XEXP (note, 0)))
1195 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1196 delete_related_insns (XEXP (note, 0));
1198 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1199 prev = PREV_INSN (prev);
1201 /* If INSN was a label and a dispatch table follows it,
1202 delete the dispatch table. The tablejump must have gone already.
1203 It isn't useful to fall through into a table. */
1205 if (was_code_label
1206 && NEXT_INSN (insn) != 0
1207 && JUMP_P (NEXT_INSN (insn))
1208 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
1209 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
1210 next = delete_related_insns (NEXT_INSN (insn));
1212 /* If INSN was a label, delete insns following it if now unreachable. */
1214 if (was_code_label && prev && BARRIER_P (prev))
1216 enum rtx_code code;
1217 while (next)
1219 code = GET_CODE (next);
1220 if (code == NOTE)
1221 next = NEXT_INSN (next);
1222 /* Keep going past other deleted labels to delete what follows. */
1223 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1224 next = NEXT_INSN (next);
1225 else if (code == BARRIER || INSN_P (next))
1226 /* Note: if this deletes a jump, it can cause more
1227 deletion of unreachable code, after a different label.
1228 As long as the value from this recursive call is correct,
1229 this invocation functions correctly. */
1230 next = delete_related_insns (next);
1231 else
1232 break;
1236 /* I feel a little doubtful about this loop,
1237 but I see no clean and sure alternative way
1238 to find the first insn after INSN that is not now deleted.
1239 I hope this works. */
1240 while (next && INSN_DELETED_P (next))
1241 next = NEXT_INSN (next);
1242 return next;
1245 /* Delete a range of insns from FROM to TO, inclusive.
1246 This is for the sake of peephole optimization, so assume
1247 that whatever these insns do will still be done by a new
1248 peephole insn that will replace them. */
1250 void
1251 delete_for_peephole (rtx from, rtx to)
1253 rtx insn = from;
1255 while (1)
1257 rtx next = NEXT_INSN (insn);
1258 rtx prev = PREV_INSN (insn);
1260 if (!NOTE_P (insn))
1262 INSN_DELETED_P (insn) = 1;
1264 /* Patch this insn out of the chain. */
1265 /* We don't do this all at once, because we
1266 must preserve all NOTEs. */
1267 if (prev)
1268 NEXT_INSN (prev) = next;
1270 if (next)
1271 PREV_INSN (next) = prev;
1274 if (insn == to)
1275 break;
1276 insn = next;
1279 /* Note that if TO is an unconditional jump
1280 we *do not* delete the BARRIER that follows,
1281 since the peephole that replaces this sequence
1282 is also an unconditional jump in that case. */
1285 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1286 NLABEL as a return. Accrue modifications into the change group. */
1288 static void
1289 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1291 rtx x = *loc;
1292 RTX_CODE code = GET_CODE (x);
1293 int i;
1294 const char *fmt;
1296 if (code == LABEL_REF)
1298 if (XEXP (x, 0) == olabel)
1300 rtx n;
1301 if (nlabel)
1302 n = gen_rtx_LABEL_REF (Pmode, nlabel);
1303 else
1304 n = gen_rtx_RETURN (VOIDmode);
1306 validate_change (insn, loc, n, 1);
1307 return;
1310 else if (code == RETURN && olabel == 0)
1312 if (nlabel)
1313 x = gen_rtx_LABEL_REF (Pmode, nlabel);
1314 else
1315 x = gen_rtx_RETURN (VOIDmode);
1316 if (loc == &PATTERN (insn))
1317 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1318 validate_change (insn, loc, x, 1);
1319 return;
1322 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1323 && GET_CODE (SET_SRC (x)) == LABEL_REF
1324 && XEXP (SET_SRC (x), 0) == olabel)
1326 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1327 return;
1330 fmt = GET_RTX_FORMAT (code);
1331 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1333 if (fmt[i] == 'e')
1334 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1335 else if (fmt[i] == 'E')
1337 int j;
1338 for (j = 0; j < XVECLEN (x, i); j++)
1339 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1344 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1345 the modifications into the change group. Return false if we did
1346 not see how to do that. */
1349 redirect_jump_1 (rtx jump, rtx nlabel)
1351 int ochanges = num_validated_changes ();
1352 rtx *loc;
1354 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1355 loc = &XVECEXP (PATTERN (jump), 0, 0);
1356 else
1357 loc = &PATTERN (jump);
1359 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1360 return num_validated_changes () > ochanges;
1363 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1364 jump target label is unused as a result, it and the code following
1365 it may be deleted.
1367 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1368 RETURN insn.
1370 The return value will be 1 if the change was made, 0 if it wasn't
1371 (this can only occur for NLABEL == 0). */
1374 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1376 rtx olabel = JUMP_LABEL (jump);
1378 if (nlabel == olabel)
1379 return 1;
1381 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1382 return 0;
1384 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1385 return 1;
1388 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1389 NLABEL in JUMP.
1390 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1391 count has dropped to zero. */
1392 void
1393 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1394 int invert)
1396 rtx note;
1398 gcc_assert (JUMP_LABEL (jump) == olabel);
1400 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1401 moving FUNCTION_END note. Just sanity check that no user still worry
1402 about this. */
1403 gcc_assert (delete_unused >= 0);
1404 JUMP_LABEL (jump) = nlabel;
1405 if (nlabel)
1406 ++LABEL_NUSES (nlabel);
1408 /* Update labels in any REG_EQUAL note. */
1409 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1411 if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1412 remove_note (jump, note);
1413 else
1415 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1416 confirm_change_group ();
1420 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1421 /* Undefined labels will remain outside the insn stream. */
1422 && INSN_UID (olabel))
1423 delete_related_insns (olabel);
1424 if (invert)
1425 invert_br_probabilities (jump);
1428 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1429 modifications into the change group. Return nonzero for success. */
1430 static int
1431 invert_exp_1 (rtx x, rtx insn)
1433 RTX_CODE code = GET_CODE (x);
1435 if (code == IF_THEN_ELSE)
1437 rtx comp = XEXP (x, 0);
1438 rtx tem;
1439 enum rtx_code reversed_code;
1441 /* We can do this in two ways: The preferable way, which can only
1442 be done if this is not an integer comparison, is to reverse
1443 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1444 of the IF_THEN_ELSE. If we can't do either, fail. */
1446 reversed_code = reversed_comparison_code (comp, insn);
1448 if (reversed_code != UNKNOWN)
1450 validate_change (insn, &XEXP (x, 0),
1451 gen_rtx_fmt_ee (reversed_code,
1452 GET_MODE (comp), XEXP (comp, 0),
1453 XEXP (comp, 1)),
1455 return 1;
1458 tem = XEXP (x, 1);
1459 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1460 validate_change (insn, &XEXP (x, 2), tem, 1);
1461 return 1;
1463 else
1464 return 0;
1467 /* Invert the condition of the jump JUMP, and make it jump to label
1468 NLABEL instead of where it jumps now. Accrue changes into the
1469 change group. Return false if we didn't see how to perform the
1470 inversion and redirection. */
1473 invert_jump_1 (rtx jump, rtx nlabel)
1475 rtx x = pc_set (jump);
1476 int ochanges;
1477 int ok;
1479 ochanges = num_validated_changes ();
1480 gcc_assert (x);
1481 ok = invert_exp_1 (SET_SRC (x), jump);
1482 gcc_assert (ok);
1484 if (num_validated_changes () == ochanges)
1485 return 0;
1487 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1488 in Pmode, so checking this is not merely an optimization. */
1489 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1492 /* Invert the condition of the jump JUMP, and make it jump to label
1493 NLABEL instead of where it jumps now. Return true if successful. */
1496 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1498 rtx olabel = JUMP_LABEL (jump);
1500 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1502 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1503 return 1;
1505 cancel_changes (0);
1506 return 0;
1510 /* Like rtx_equal_p except that it considers two REGs as equal
1511 if they renumber to the same value and considers two commutative
1512 operations to be the same if the order of the operands has been
1513 reversed. */
1516 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1518 int i;
1519 const enum rtx_code code = GET_CODE (x);
1520 const char *fmt;
1522 if (x == y)
1523 return 1;
1525 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1526 && (REG_P (y) || (GET_CODE (y) == SUBREG
1527 && REG_P (SUBREG_REG (y)))))
1529 int reg_x = -1, reg_y = -1;
1530 int byte_x = 0, byte_y = 0;
1532 if (GET_MODE (x) != GET_MODE (y))
1533 return 0;
1535 /* If we haven't done any renumbering, don't
1536 make any assumptions. */
1537 if (reg_renumber == 0)
1538 return rtx_equal_p (x, y);
1540 if (code == SUBREG)
1542 reg_x = REGNO (SUBREG_REG (x));
1543 byte_x = SUBREG_BYTE (x);
1545 if (reg_renumber[reg_x] >= 0)
1547 reg_x = subreg_regno_offset (reg_renumber[reg_x],
1548 GET_MODE (SUBREG_REG (x)),
1549 byte_x,
1550 GET_MODE (x));
1551 byte_x = 0;
1554 else
1556 reg_x = REGNO (x);
1557 if (reg_renumber[reg_x] >= 0)
1558 reg_x = reg_renumber[reg_x];
1561 if (GET_CODE (y) == SUBREG)
1563 reg_y = REGNO (SUBREG_REG (y));
1564 byte_y = SUBREG_BYTE (y);
1566 if (reg_renumber[reg_y] >= 0)
1568 reg_y = subreg_regno_offset (reg_renumber[reg_y],
1569 GET_MODE (SUBREG_REG (y)),
1570 byte_y,
1571 GET_MODE (y));
1572 byte_y = 0;
1575 else
1577 reg_y = REGNO (y);
1578 if (reg_renumber[reg_y] >= 0)
1579 reg_y = reg_renumber[reg_y];
1582 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1585 /* Now we have disposed of all the cases
1586 in which different rtx codes can match. */
1587 if (code != GET_CODE (y))
1588 return 0;
1590 switch (code)
1592 case PC:
1593 case CC0:
1594 case ADDR_VEC:
1595 case ADDR_DIFF_VEC:
1596 case CONST_INT:
1597 case CONST_DOUBLE:
1598 return 0;
1600 case LABEL_REF:
1601 /* We can't assume nonlocal labels have their following insns yet. */
1602 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1603 return XEXP (x, 0) == XEXP (y, 0);
1605 /* Two label-refs are equivalent if they point at labels
1606 in the same position in the instruction stream. */
1607 return (next_real_insn (XEXP (x, 0))
1608 == next_real_insn (XEXP (y, 0)));
1610 case SYMBOL_REF:
1611 return XSTR (x, 0) == XSTR (y, 0);
1613 case CODE_LABEL:
1614 /* If we didn't match EQ equality above, they aren't the same. */
1615 return 0;
1617 default:
1618 break;
1621 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1623 if (GET_MODE (x) != GET_MODE (y))
1624 return 0;
1626 /* For commutative operations, the RTX match if the operand match in any
1627 order. Also handle the simple binary and unary cases without a loop. */
1628 if (targetm.commutative_p (x, UNKNOWN))
1629 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1630 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1631 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1632 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1633 else if (NON_COMMUTATIVE_P (x))
1634 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1635 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1636 else if (UNARY_P (x))
1637 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1639 /* Compare the elements. If any pair of corresponding elements
1640 fail to match, return 0 for the whole things. */
1642 fmt = GET_RTX_FORMAT (code);
1643 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1645 int j;
1646 switch (fmt[i])
1648 case 'w':
1649 if (XWINT (x, i) != XWINT (y, i))
1650 return 0;
1651 break;
1653 case 'i':
1654 if (XINT (x, i) != XINT (y, i))
1655 return 0;
1656 break;
1658 case 't':
1659 if (XTREE (x, i) != XTREE (y, i))
1660 return 0;
1661 break;
1663 case 's':
1664 if (strcmp (XSTR (x, i), XSTR (y, i)))
1665 return 0;
1666 break;
1668 case 'e':
1669 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1670 return 0;
1671 break;
1673 case 'u':
1674 if (XEXP (x, i) != XEXP (y, i))
1675 return 0;
1676 /* Fall through. */
1677 case '0':
1678 break;
1680 case 'E':
1681 if (XVECLEN (x, i) != XVECLEN (y, i))
1682 return 0;
1683 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1684 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1685 return 0;
1686 break;
1688 default:
1689 gcc_unreachable ();
1692 return 1;
1695 /* If X is a hard register or equivalent to one or a subregister of one,
1696 return the hard register number. If X is a pseudo register that was not
1697 assigned a hard register, return the pseudo register number. Otherwise,
1698 return -1. Any rtx is valid for X. */
1701 true_regnum (const_rtx x)
1703 if (REG_P (x))
1705 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1706 return reg_renumber[REGNO (x)];
1707 return REGNO (x);
1709 if (GET_CODE (x) == SUBREG)
1711 int base = true_regnum (SUBREG_REG (x));
1712 if (base >= 0
1713 && base < FIRST_PSEUDO_REGISTER
1714 && subreg_offset_representable_p (REGNO (SUBREG_REG (x)),
1715 GET_MODE (SUBREG_REG (x)),
1716 SUBREG_BYTE (x), GET_MODE (x)))
1717 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
1718 GET_MODE (SUBREG_REG (x)),
1719 SUBREG_BYTE (x), GET_MODE (x));
1721 return -1;
1724 /* Return regno of the register REG and handle subregs too. */
1725 unsigned int
1726 reg_or_subregno (const_rtx reg)
1728 if (GET_CODE (reg) == SUBREG)
1729 reg = SUBREG_REG (reg);
1730 gcc_assert (REG_P (reg));
1731 return REGNO (reg);