decl.c (gnat_to_gnu_entity): For a constant object whose type has self-referential...
[official-gcc.git] / gcc / cfgcleanup.c
blob203963e02ccfb6764a8bbf0e27d6fbd5f9f4e265
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "cfglayout.h"
52 #include "emit-rtl.h"
53 #include "tree-pass.h"
54 #include "cfgloop.h"
55 #include "expr.h"
56 #include "df.h"
57 #include "dce.h"
58 #include "dbgcnt.h"
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass;
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured;
68 static bool try_crossjump_to_edge (int, edge, edge);
69 static bool try_crossjump_bb (int, basic_block);
70 static bool outgoing_edges_match (int, basic_block, basic_block);
71 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
72 static bool old_insns_match_p (int, rtx, rtx);
74 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
75 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
76 static bool try_optimize_cfg (int);
77 static bool try_simplify_condjump (basic_block);
78 static bool try_forward_edges (int, basic_block);
79 static edge thread_jump (edge, basic_block);
80 static bool mark_effect (rtx, bitmap);
81 static void notice_new_block (basic_block);
82 static void update_forwarder_flag (basic_block);
83 static int mentions_nonequal_regs (rtx *, void *);
84 static void merge_memattrs (rtx, rtx);
86 /* Set flags for newly created block. */
88 static void
89 notice_new_block (basic_block bb)
91 if (!bb)
92 return;
94 if (forwarder_block_p (bb))
95 bb->flags |= BB_FORWARDER_BLOCK;
98 /* Recompute forwarder flag after block has been modified. */
100 static void
101 update_forwarder_flag (basic_block bb)
103 if (forwarder_block_p (bb))
104 bb->flags |= BB_FORWARDER_BLOCK;
105 else
106 bb->flags &= ~BB_FORWARDER_BLOCK;
109 /* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
112 static bool
113 try_simplify_condjump (basic_block cbranch_block)
115 basic_block jump_block, jump_dest_block, cbranch_dest_block;
116 edge cbranch_jump_edge, cbranch_fallthru_edge;
117 rtx cbranch_insn;
119 /* Verify that there are exactly two successors. */
120 if (EDGE_COUNT (cbranch_block->succs) != 2)
121 return false;
123 /* Verify that we've got a normal conditional branch at the end
124 of the block. */
125 cbranch_insn = BB_END (cbranch_block);
126 if (!any_condjump_p (cbranch_insn))
127 return false;
129 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
130 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block = cbranch_fallthru_edge->dest;
136 if (!single_pred_p (jump_block)
137 || jump_block->next_bb == EXIT_BLOCK_PTR
138 || !FORWARDER_BLOCK_P (jump_block))
139 return false;
140 jump_dest_block = single_succ (jump_block);
142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
144 and cold sections.
146 Basic block partitioning may result in some jumps that appear to
147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
150 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
152 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
153 || (cbranch_jump_edge->flags & EDGE_CROSSING))
154 return false;
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block = cbranch_jump_edge->dest;
160 if (cbranch_dest_block == EXIT_BLOCK_PTR
161 || !can_fallthru (jump_block, cbranch_dest_block))
162 return false;
164 /* Invert the conditional branch. */
165 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
166 return false;
168 if (dump_file)
169 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
170 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
172 /* Success. Update the CFG to match. Note that after this point
173 the edge variable names appear backwards; the redirection is done
174 this way to preserve edge profile data. */
175 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
176 cbranch_dest_block);
177 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
178 jump_dest_block);
179 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
180 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
181 update_br_prob_note (cbranch_block);
183 /* Delete the block with the unconditional jump, and clean up the mess. */
184 delete_basic_block (jump_block);
185 tidy_fallthru_edge (cbranch_jump_edge);
186 update_forwarder_flag (cbranch_block);
188 return true;
191 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
192 on register. Used by jump threading. */
194 static bool
195 mark_effect (rtx exp, regset nonequal)
197 int regno;
198 rtx dest;
199 switch (GET_CODE (exp))
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
203 case CLOBBER:
204 if (REG_P (XEXP (exp, 0)))
206 dest = XEXP (exp, 0);
207 regno = REGNO (dest);
208 CLEAR_REGNO_REG_SET (nonequal, regno);
209 if (regno < FIRST_PSEUDO_REGISTER)
211 int n = hard_regno_nregs[regno][GET_MODE (dest)];
212 while (--n > 0)
213 CLEAR_REGNO_REG_SET (nonequal, regno + n);
216 return false;
218 case SET:
219 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
220 return false;
221 dest = SET_DEST (exp);
222 if (dest == pc_rtx)
223 return false;
224 if (!REG_P (dest))
225 return true;
226 regno = REGNO (dest);
227 SET_REGNO_REG_SET (nonequal, regno);
228 if (regno < FIRST_PSEUDO_REGISTER)
230 int n = hard_regno_nregs[regno][GET_MODE (dest)];
231 while (--n > 0)
232 SET_REGNO_REG_SET (nonequal, regno + n);
234 return false;
236 default:
237 return false;
241 /* Return nonzero if X is a register set in regset DATA.
242 Called via for_each_rtx. */
243 static int
244 mentions_nonequal_regs (rtx *x, void *data)
246 regset nonequal = (regset) data;
247 if (REG_P (*x))
249 int regno;
251 regno = REGNO (*x);
252 if (REGNO_REG_SET_P (nonequal, regno))
253 return 1;
254 if (regno < FIRST_PSEUDO_REGISTER)
256 int n = hard_regno_nregs[regno][GET_MODE (*x)];
257 while (--n > 0)
258 if (REGNO_REG_SET_P (nonequal, regno + n))
259 return 1;
262 return 0;
264 /* Attempt to prove that the basic block B will have no side effects and
265 always continues in the same edge if reached via E. Return the edge
266 if exist, NULL otherwise. */
268 static edge
269 thread_jump (edge e, basic_block b)
271 rtx set1, set2, cond1, cond2, insn;
272 enum rtx_code code1, code2, reversed_code2;
273 bool reverse1 = false;
274 unsigned i;
275 regset nonequal;
276 bool failed = false;
277 reg_set_iterator rsi;
279 if (b->flags & BB_NONTHREADABLE_BLOCK)
280 return NULL;
282 /* At the moment, we do handle only conditional jumps, but later we may
283 want to extend this code to tablejumps and others. */
284 if (EDGE_COUNT (e->src->succs) != 2)
285 return NULL;
286 if (EDGE_COUNT (b->succs) != 2)
288 b->flags |= BB_NONTHREADABLE_BLOCK;
289 return NULL;
292 /* Second branch must end with onlyjump, as we will eliminate the jump. */
293 if (!any_condjump_p (BB_END (e->src)))
294 return NULL;
296 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
298 b->flags |= BB_NONTHREADABLE_BLOCK;
299 return NULL;
302 set1 = pc_set (BB_END (e->src));
303 set2 = pc_set (BB_END (b));
304 if (((e->flags & EDGE_FALLTHRU) != 0)
305 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
306 reverse1 = true;
308 cond1 = XEXP (SET_SRC (set1), 0);
309 cond2 = XEXP (SET_SRC (set2), 0);
310 if (reverse1)
311 code1 = reversed_comparison_code (cond1, BB_END (e->src));
312 else
313 code1 = GET_CODE (cond1);
315 code2 = GET_CODE (cond2);
316 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
318 if (!comparison_dominates_p (code1, code2)
319 && !comparison_dominates_p (code1, reversed_code2))
320 return NULL;
322 /* Ensure that the comparison operators are equivalent.
323 ??? This is far too pessimistic. We should allow swapped operands,
324 different CCmodes, or for example comparisons for interval, that
325 dominate even when operands are not equivalent. */
326 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
327 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
328 return NULL;
330 /* Short circuit cases where block B contains some side effects, as we can't
331 safely bypass it. */
332 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
333 insn = NEXT_INSN (insn))
334 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
336 b->flags |= BB_NONTHREADABLE_BLOCK;
337 return NULL;
340 cselib_init (false);
342 /* First process all values computed in the source basic block. */
343 for (insn = NEXT_INSN (BB_HEAD (e->src));
344 insn != NEXT_INSN (BB_END (e->src));
345 insn = NEXT_INSN (insn))
346 if (INSN_P (insn))
347 cselib_process_insn (insn);
349 nonequal = BITMAP_ALLOC (NULL);
350 CLEAR_REG_SET (nonequal);
352 /* Now assume that we've continued by the edge E to B and continue
353 processing as if it were same basic block.
354 Our goal is to prove that whole block is an NOOP. */
356 for (insn = NEXT_INSN (BB_HEAD (b));
357 insn != NEXT_INSN (BB_END (b)) && !failed;
358 insn = NEXT_INSN (insn))
360 if (INSN_P (insn))
362 rtx pat = PATTERN (insn);
364 if (GET_CODE (pat) == PARALLEL)
366 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
367 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
369 else
370 failed |= mark_effect (pat, nonequal);
373 cselib_process_insn (insn);
376 /* Later we should clear nonequal of dead registers. So far we don't
377 have life information in cfg_cleanup. */
378 if (failed)
380 b->flags |= BB_NONTHREADABLE_BLOCK;
381 goto failed_exit;
384 /* cond2 must not mention any register that is not equal to the
385 former block. */
386 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
387 goto failed_exit;
389 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
390 goto failed_exit;
392 BITMAP_FREE (nonequal);
393 cselib_finish ();
394 if ((comparison_dominates_p (code1, code2) != 0)
395 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
396 return BRANCH_EDGE (b);
397 else
398 return FALLTHRU_EDGE (b);
400 failed_exit:
401 BITMAP_FREE (nonequal);
402 cselib_finish ();
403 return NULL;
406 /* Attempt to forward edges leaving basic block B.
407 Return true if successful. */
409 static bool
410 try_forward_edges (int mode, basic_block b)
412 bool changed = false;
413 edge_iterator ei;
414 edge e, *threaded_edges = NULL;
416 /* If we are partitioning hot/cold basic blocks, we don't want to
417 mess up unconditional or indirect jumps that cross between hot
418 and cold sections.
420 Basic block partitioning may result in some jumps that appear to
421 be optimizable (or blocks that appear to be mergeable), but which really m
422 ust be left untouched (they are required to make it safely across
423 partition boundaries). See the comments at the top of
424 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
426 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
427 return false;
429 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
431 basic_block target, first;
432 int counter;
433 bool threaded = false;
434 int nthreaded_edges = 0;
435 bool may_thread = first_pass | df_get_bb_dirty (b);
437 /* Skip complex edges because we don't know how to update them.
439 Still handle fallthru edges, as we can succeed to forward fallthru
440 edge to the same place as the branch edge of conditional branch
441 and turn conditional branch to an unconditional branch. */
442 if (e->flags & EDGE_COMPLEX)
444 ei_next (&ei);
445 continue;
448 target = first = e->dest;
449 counter = NUM_FIXED_BLOCKS;
451 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
452 up jumps that cross between hot/cold sections.
454 Basic block partitioning may result in some jumps that appear
455 to be optimizable (or blocks that appear to be mergeable), but which
456 really must be left untouched (they are required to make it safely
457 across partition boundaries). See the comments at the top of
458 bb-reorder.c:partition_hot_cold_basic_blocks for complete
459 details. */
461 if (first != EXIT_BLOCK_PTR
462 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
463 return false;
465 while (counter < n_basic_blocks)
467 basic_block new_target = NULL;
468 bool new_target_threaded = false;
469 may_thread |= df_get_bb_dirty (target);
471 if (FORWARDER_BLOCK_P (target)
472 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
473 && single_succ (target) != EXIT_BLOCK_PTR)
475 /* Bypass trivial infinite loops. */
476 new_target = single_succ (target);
477 if (target == new_target)
478 counter = n_basic_blocks;
481 /* Allow to thread only over one edge at time to simplify updating
482 of probabilities. */
483 else if ((mode & CLEANUP_THREADING) && may_thread)
485 edge t = thread_jump (e, target);
486 if (t)
488 if (!threaded_edges)
489 threaded_edges = XNEWVEC (edge, n_basic_blocks);
490 else
492 int i;
494 /* Detect an infinite loop across blocks not
495 including the start block. */
496 for (i = 0; i < nthreaded_edges; ++i)
497 if (threaded_edges[i] == t)
498 break;
499 if (i < nthreaded_edges)
501 counter = n_basic_blocks;
502 break;
506 /* Detect an infinite loop across the start block. */
507 if (t->dest == b)
508 break;
510 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
511 threaded_edges[nthreaded_edges++] = t;
513 new_target = t->dest;
514 new_target_threaded = true;
518 if (!new_target)
519 break;
521 counter++;
522 target = new_target;
523 threaded |= new_target_threaded;
526 if (counter >= n_basic_blocks)
528 if (dump_file)
529 fprintf (dump_file, "Infinite loop in BB %i.\n",
530 target->index);
532 else if (target == first)
533 ; /* We didn't do anything. */
534 else
536 /* Save the values now, as the edge may get removed. */
537 gcov_type edge_count = e->count;
538 int edge_probability = e->probability;
539 int edge_frequency;
540 int n = 0;
542 /* Don't force if target is exit block. */
543 if (threaded && target != EXIT_BLOCK_PTR)
545 notice_new_block (redirect_edge_and_branch_force (e, target));
546 if (dump_file)
547 fprintf (dump_file, "Conditionals threaded.\n");
549 else if (!redirect_edge_and_branch (e, target))
551 if (dump_file)
552 fprintf (dump_file,
553 "Forwarding edge %i->%i to %i failed.\n",
554 b->index, e->dest->index, target->index);
555 ei_next (&ei);
556 continue;
559 /* We successfully forwarded the edge. Now update profile
560 data: for each edge we traversed in the chain, remove
561 the original edge's execution count. */
562 edge_frequency = ((edge_probability * b->frequency
563 + REG_BR_PROB_BASE / 2)
564 / REG_BR_PROB_BASE);
566 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
567 b->flags |= BB_FORWARDER_BLOCK;
571 edge t;
573 if (!single_succ_p (first))
575 gcc_assert (n < nthreaded_edges);
576 t = threaded_edges [n++];
577 gcc_assert (t->src == first);
578 update_bb_profile_for_threading (first, edge_frequency,
579 edge_count, t);
580 update_br_prob_note (first);
582 else
584 first->count -= edge_count;
585 if (first->count < 0)
586 first->count = 0;
587 first->frequency -= edge_frequency;
588 if (first->frequency < 0)
589 first->frequency = 0;
590 /* It is possible that as the result of
591 threading we've removed edge as it is
592 threaded to the fallthru edge. Avoid
593 getting out of sync. */
594 if (n < nthreaded_edges
595 && first == threaded_edges [n]->src)
596 n++;
597 t = single_succ_edge (first);
600 t->count -= edge_count;
601 if (t->count < 0)
602 t->count = 0;
603 first = t->dest;
605 while (first != target);
607 changed = true;
608 continue;
610 ei_next (&ei);
613 if (threaded_edges)
614 free (threaded_edges);
615 return changed;
619 /* Blocks A and B are to be merged into a single block. A has no incoming
620 fallthru edge, so it can be moved before B without adding or modifying
621 any jumps (aside from the jump from A to B). */
623 static void
624 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
626 rtx barrier;
628 /* If we are partitioning hot/cold basic blocks, we don't want to
629 mess up unconditional or indirect jumps that cross between hot
630 and cold sections.
632 Basic block partitioning may result in some jumps that appear to
633 be optimizable (or blocks that appear to be mergeable), but which really
634 must be left untouched (they are required to make it safely across
635 partition boundaries). See the comments at the top of
636 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
638 if (BB_PARTITION (a) != BB_PARTITION (b))
639 return;
641 barrier = next_nonnote_insn (BB_END (a));
642 gcc_assert (BARRIER_P (barrier));
643 delete_insn (barrier);
645 /* Scramble the insn chain. */
646 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
647 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
648 df_set_bb_dirty (a);
650 if (dump_file)
651 fprintf (dump_file, "Moved block %d before %d and merged.\n",
652 a->index, b->index);
654 /* Swap the records for the two blocks around. */
656 unlink_block (a);
657 link_block (a, b->prev_bb);
659 /* Now blocks A and B are contiguous. Merge them. */
660 merge_blocks (a, b);
663 /* Blocks A and B are to be merged into a single block. B has no outgoing
664 fallthru edge, so it can be moved after A without adding or modifying
665 any jumps (aside from the jump from A to B). */
667 static void
668 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
670 rtx barrier, real_b_end;
671 rtx label, table;
673 /* If we are partitioning hot/cold basic blocks, we don't want to
674 mess up unconditional or indirect jumps that cross between hot
675 and cold sections.
677 Basic block partitioning may result in some jumps that appear to
678 be optimizable (or blocks that appear to be mergeable), but which really
679 must be left untouched (they are required to make it safely across
680 partition boundaries). See the comments at the top of
681 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
683 if (BB_PARTITION (a) != BB_PARTITION (b))
684 return;
686 real_b_end = BB_END (b);
688 /* If there is a jump table following block B temporarily add the jump table
689 to block B so that it will also be moved to the correct location. */
690 if (tablejump_p (BB_END (b), &label, &table)
691 && prev_active_insn (label) == BB_END (b))
693 BB_END (b) = table;
696 /* There had better have been a barrier there. Delete it. */
697 barrier = NEXT_INSN (BB_END (b));
698 if (barrier && BARRIER_P (barrier))
699 delete_insn (barrier);
702 /* Scramble the insn chain. */
703 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
705 /* Restore the real end of b. */
706 BB_END (b) = real_b_end;
708 if (dump_file)
709 fprintf (dump_file, "Moved block %d after %d and merged.\n",
710 b->index, a->index);
712 /* Now blocks A and B are contiguous. Merge them. */
713 merge_blocks (a, b);
716 /* Attempt to merge basic blocks that are potentially non-adjacent.
717 Return NULL iff the attempt failed, otherwise return basic block
718 where cleanup_cfg should continue. Because the merging commonly
719 moves basic block away or introduces another optimization
720 possibility, return basic block just before B so cleanup_cfg don't
721 need to iterate.
723 It may be good idea to return basic block before C in the case
724 C has been moved after B and originally appeared earlier in the
725 insn sequence, but we have no information available about the
726 relative ordering of these two. Hopefully it is not too common. */
728 static basic_block
729 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
731 basic_block next;
733 /* If we are partitioning hot/cold basic blocks, we don't want to
734 mess up unconditional or indirect jumps that cross between hot
735 and cold sections.
737 Basic block partitioning may result in some jumps that appear to
738 be optimizable (or blocks that appear to be mergeable), but which really
739 must be left untouched (they are required to make it safely across
740 partition boundaries). See the comments at the top of
741 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
743 if (BB_PARTITION (b) != BB_PARTITION (c))
744 return NULL;
746 /* If B has a fallthru edge to C, no need to move anything. */
747 if (e->flags & EDGE_FALLTHRU)
749 int b_index = b->index, c_index = c->index;
750 merge_blocks (b, c);
751 update_forwarder_flag (b);
753 if (dump_file)
754 fprintf (dump_file, "Merged %d and %d without moving.\n",
755 b_index, c_index);
757 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
760 /* Otherwise we will need to move code around. Do that only if expensive
761 transformations are allowed. */
762 else if (mode & CLEANUP_EXPENSIVE)
764 edge tmp_edge, b_fallthru_edge;
765 bool c_has_outgoing_fallthru;
766 bool b_has_incoming_fallthru;
767 edge_iterator ei;
769 /* Avoid overactive code motion, as the forwarder blocks should be
770 eliminated by edge redirection instead. One exception might have
771 been if B is a forwarder block and C has no fallthru edge, but
772 that should be cleaned up by bb-reorder instead. */
773 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
774 return NULL;
776 /* We must make sure to not munge nesting of lexical blocks,
777 and loop notes. This is done by squeezing out all the notes
778 and leaving them there to lie. Not ideal, but functional. */
780 FOR_EACH_EDGE (tmp_edge, ei, c->succs)
781 if (tmp_edge->flags & EDGE_FALLTHRU)
782 break;
784 c_has_outgoing_fallthru = (tmp_edge != NULL);
786 FOR_EACH_EDGE (tmp_edge, ei, b->preds)
787 if (tmp_edge->flags & EDGE_FALLTHRU)
788 break;
790 b_has_incoming_fallthru = (tmp_edge != NULL);
791 b_fallthru_edge = tmp_edge;
792 next = b->prev_bb;
793 if (next == c)
794 next = next->prev_bb;
796 /* Otherwise, we're going to try to move C after B. If C does
797 not have an outgoing fallthru, then it can be moved
798 immediately after B without introducing or modifying jumps. */
799 if (! c_has_outgoing_fallthru)
801 merge_blocks_move_successor_nojumps (b, c);
802 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
805 /* If B does not have an incoming fallthru, then it can be moved
806 immediately before C without introducing or modifying jumps.
807 C cannot be the first block, so we do not have to worry about
808 accessing a non-existent block. */
810 if (b_has_incoming_fallthru)
812 basic_block bb;
814 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
815 return NULL;
816 bb = force_nonfallthru (b_fallthru_edge);
817 if (bb)
818 notice_new_block (bb);
821 merge_blocks_move_predecessor_nojumps (b, c);
822 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
825 return NULL;
829 /* Removes the memory attributes of MEM expression
830 if they are not equal. */
832 void
833 merge_memattrs (rtx x, rtx y)
835 int i;
836 int j;
837 enum rtx_code code;
838 const char *fmt;
840 if (x == y)
841 return;
842 if (x == 0 || y == 0)
843 return;
845 code = GET_CODE (x);
847 if (code != GET_CODE (y))
848 return;
850 if (GET_MODE (x) != GET_MODE (y))
851 return;
853 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
855 if (! MEM_ATTRS (x))
856 MEM_ATTRS (y) = 0;
857 else if (! MEM_ATTRS (y))
858 MEM_ATTRS (x) = 0;
859 else
861 rtx mem_size;
863 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
865 set_mem_alias_set (x, 0);
866 set_mem_alias_set (y, 0);
869 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
871 set_mem_expr (x, 0);
872 set_mem_expr (y, 0);
873 set_mem_offset (x, 0);
874 set_mem_offset (y, 0);
876 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
878 set_mem_offset (x, 0);
879 set_mem_offset (y, 0);
882 if (!MEM_SIZE (x))
883 mem_size = NULL_RTX;
884 else if (!MEM_SIZE (y))
885 mem_size = NULL_RTX;
886 else
887 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
888 INTVAL (MEM_SIZE (y))));
889 set_mem_size (x, mem_size);
890 set_mem_size (y, mem_size);
892 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
893 set_mem_align (y, MEM_ALIGN (x));
897 fmt = GET_RTX_FORMAT (code);
898 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
900 switch (fmt[i])
902 case 'E':
903 /* Two vectors must have the same length. */
904 if (XVECLEN (x, i) != XVECLEN (y, i))
905 return;
907 for (j = 0; j < XVECLEN (x, i); j++)
908 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
910 break;
912 case 'e':
913 merge_memattrs (XEXP (x, i), XEXP (y, i));
916 return;
920 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
922 static bool
923 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
925 rtx p1, p2;
927 /* Verify that I1 and I2 are equivalent. */
928 if (GET_CODE (i1) != GET_CODE (i2))
929 return false;
931 p1 = PATTERN (i1);
932 p2 = PATTERN (i2);
934 if (GET_CODE (p1) != GET_CODE (p2))
935 return false;
937 /* If this is a CALL_INSN, compare register usage information.
938 If we don't check this on stack register machines, the two
939 CALL_INSNs might be merged leaving reg-stack.c with mismatching
940 numbers of stack registers in the same basic block.
941 If we don't check this on machines with delay slots, a delay slot may
942 be filled that clobbers a parameter expected by the subroutine.
944 ??? We take the simple route for now and assume that if they're
945 equal, they were constructed identically. */
947 if (CALL_P (i1)
948 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
949 CALL_INSN_FUNCTION_USAGE (i2))
950 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
951 return false;
953 #ifdef STACK_REGS
954 /* If cross_jump_death_matters is not 0, the insn's mode
955 indicates whether or not the insn contains any stack-like
956 regs. */
958 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
960 /* If register stack conversion has already been done, then
961 death notes must also be compared before it is certain that
962 the two instruction streams match. */
964 rtx note;
965 HARD_REG_SET i1_regset, i2_regset;
967 CLEAR_HARD_REG_SET (i1_regset);
968 CLEAR_HARD_REG_SET (i2_regset);
970 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
971 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
972 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
974 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
975 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
976 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
978 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
979 return false;
981 #endif
983 if (reload_completed
984 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
985 return true;
987 /* Do not do EQUIV substitution after reload. First, we're undoing the
988 work of reload_cse. Second, we may be undoing the work of the post-
989 reload splitting pass. */
990 /* ??? Possibly add a new phase switch variable that can be used by
991 targets to disallow the troublesome insns after splitting. */
992 if (!reload_completed)
994 /* The following code helps take care of G++ cleanups. */
995 rtx equiv1 = find_reg_equal_equiv_note (i1);
996 rtx equiv2 = find_reg_equal_equiv_note (i2);
998 if (equiv1 && equiv2
999 /* If the equivalences are not to a constant, they may
1000 reference pseudos that no longer exist, so we can't
1001 use them. */
1002 && (! reload_completed
1003 || (CONSTANT_P (XEXP (equiv1, 0))
1004 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
1006 rtx s1 = single_set (i1);
1007 rtx s2 = single_set (i2);
1008 if (s1 != 0 && s2 != 0
1009 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1011 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1012 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1013 if (! rtx_renumbered_equal_p (p1, p2))
1014 cancel_changes (0);
1015 else if (apply_change_group ())
1016 return true;
1021 return false;
1024 /* Look through the insns at the end of BB1 and BB2 and find the longest
1025 sequence that are equivalent. Store the first insns for that sequence
1026 in *F1 and *F2 and return the sequence length.
1028 To simplify callers of this function, if the blocks match exactly,
1029 store the head of the blocks in *F1 and *F2. */
1031 static int
1032 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1033 basic_block bb2, rtx *f1, rtx *f2)
1035 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1036 int ninsns = 0;
1038 /* Skip simple jumps at the end of the blocks. Complex jumps still
1039 need to be compared for equivalence, which we'll do below. */
1041 i1 = BB_END (bb1);
1042 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1043 if (onlyjump_p (i1)
1044 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1046 last1 = i1;
1047 i1 = PREV_INSN (i1);
1050 i2 = BB_END (bb2);
1051 if (onlyjump_p (i2)
1052 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1054 last2 = i2;
1055 /* Count everything except for unconditional jump as insn. */
1056 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1057 ninsns++;
1058 i2 = PREV_INSN (i2);
1061 while (true)
1063 /* Ignore notes. */
1064 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1065 i1 = PREV_INSN (i1);
1067 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1068 i2 = PREV_INSN (i2);
1070 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1071 break;
1073 if (!old_insns_match_p (mode, i1, i2))
1074 break;
1076 merge_memattrs (i1, i2);
1078 /* Don't begin a cross-jump with a NOTE insn. */
1079 if (INSN_P (i1))
1081 /* If the merged insns have different REG_EQUAL notes, then
1082 remove them. */
1083 rtx equiv1 = find_reg_equal_equiv_note (i1);
1084 rtx equiv2 = find_reg_equal_equiv_note (i2);
1086 if (equiv1 && !equiv2)
1087 remove_note (i1, equiv1);
1088 else if (!equiv1 && equiv2)
1089 remove_note (i2, equiv2);
1090 else if (equiv1 && equiv2
1091 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1093 remove_note (i1, equiv1);
1094 remove_note (i2, equiv2);
1097 afterlast1 = last1, afterlast2 = last2;
1098 last1 = i1, last2 = i2;
1099 ninsns++;
1102 i1 = PREV_INSN (i1);
1103 i2 = PREV_INSN (i2);
1106 #ifdef HAVE_cc0
1107 /* Don't allow the insn after a compare to be shared by
1108 cross-jumping unless the compare is also shared. */
1109 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1110 last1 = afterlast1, last2 = afterlast2, ninsns--;
1111 #endif
1113 /* Include preceding notes and labels in the cross-jump. One,
1114 this may bring us to the head of the blocks as requested above.
1115 Two, it keeps line number notes as matched as may be. */
1116 if (ninsns)
1118 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1119 last1 = PREV_INSN (last1);
1121 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1122 last1 = PREV_INSN (last1);
1124 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1125 last2 = PREV_INSN (last2);
1127 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1128 last2 = PREV_INSN (last2);
1130 *f1 = last1;
1131 *f2 = last2;
1134 return ninsns;
1137 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1138 the branch instruction. This means that if we commonize the control
1139 flow before end of the basic block, the semantic remains unchanged.
1141 We may assume that there exists one edge with a common destination. */
1143 static bool
1144 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1146 int nehedges1 = 0, nehedges2 = 0;
1147 edge fallthru1 = 0, fallthru2 = 0;
1148 edge e1, e2;
1149 edge_iterator ei;
1151 /* If BB1 has only one successor, we may be looking at either an
1152 unconditional jump, or a fake edge to exit. */
1153 if (single_succ_p (bb1)
1154 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1155 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1156 return (single_succ_p (bb2)
1157 && (single_succ_edge (bb2)->flags
1158 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1159 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1161 /* Match conditional jumps - this may get tricky when fallthru and branch
1162 edges are crossed. */
1163 if (EDGE_COUNT (bb1->succs) == 2
1164 && any_condjump_p (BB_END (bb1))
1165 && onlyjump_p (BB_END (bb1)))
1167 edge b1, f1, b2, f2;
1168 bool reverse, match;
1169 rtx set1, set2, cond1, cond2;
1170 enum rtx_code code1, code2;
1172 if (EDGE_COUNT (bb2->succs) != 2
1173 || !any_condjump_p (BB_END (bb2))
1174 || !onlyjump_p (BB_END (bb2)))
1175 return false;
1177 b1 = BRANCH_EDGE (bb1);
1178 b2 = BRANCH_EDGE (bb2);
1179 f1 = FALLTHRU_EDGE (bb1);
1180 f2 = FALLTHRU_EDGE (bb2);
1182 /* Get around possible forwarders on fallthru edges. Other cases
1183 should be optimized out already. */
1184 if (FORWARDER_BLOCK_P (f1->dest))
1185 f1 = single_succ_edge (f1->dest);
1187 if (FORWARDER_BLOCK_P (f2->dest))
1188 f2 = single_succ_edge (f2->dest);
1190 /* To simplify use of this function, return false if there are
1191 unneeded forwarder blocks. These will get eliminated later
1192 during cleanup_cfg. */
1193 if (FORWARDER_BLOCK_P (f1->dest)
1194 || FORWARDER_BLOCK_P (f2->dest)
1195 || FORWARDER_BLOCK_P (b1->dest)
1196 || FORWARDER_BLOCK_P (b2->dest))
1197 return false;
1199 if (f1->dest == f2->dest && b1->dest == b2->dest)
1200 reverse = false;
1201 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1202 reverse = true;
1203 else
1204 return false;
1206 set1 = pc_set (BB_END (bb1));
1207 set2 = pc_set (BB_END (bb2));
1208 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1209 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1210 reverse = !reverse;
1212 cond1 = XEXP (SET_SRC (set1), 0);
1213 cond2 = XEXP (SET_SRC (set2), 0);
1214 code1 = GET_CODE (cond1);
1215 if (reverse)
1216 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1217 else
1218 code2 = GET_CODE (cond2);
1220 if (code2 == UNKNOWN)
1221 return false;
1223 /* Verify codes and operands match. */
1224 match = ((code1 == code2
1225 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1226 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1227 || (code1 == swap_condition (code2)
1228 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1229 XEXP (cond2, 0))
1230 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1231 XEXP (cond2, 1))));
1233 /* If we return true, we will join the blocks. Which means that
1234 we will only have one branch prediction bit to work with. Thus
1235 we require the existing branches to have probabilities that are
1236 roughly similar. */
1237 if (match
1238 && !optimize_size
1239 && maybe_hot_bb_p (bb1)
1240 && maybe_hot_bb_p (bb2))
1242 int prob2;
1244 if (b1->dest == b2->dest)
1245 prob2 = b2->probability;
1246 else
1247 /* Do not use f2 probability as f2 may be forwarded. */
1248 prob2 = REG_BR_PROB_BASE - b2->probability;
1250 /* Fail if the difference in probabilities is greater than 50%.
1251 This rules out two well-predicted branches with opposite
1252 outcomes. */
1253 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1255 if (dump_file)
1256 fprintf (dump_file,
1257 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1258 bb1->index, bb2->index, b1->probability, prob2);
1260 return false;
1264 if (dump_file && match)
1265 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1266 bb1->index, bb2->index);
1268 return match;
1271 /* Generic case - we are seeing a computed jump, table jump or trapping
1272 instruction. */
1274 /* Check whether there are tablejumps in the end of BB1 and BB2.
1275 Return true if they are identical. */
1277 rtx label1, label2;
1278 rtx table1, table2;
1280 if (tablejump_p (BB_END (bb1), &label1, &table1)
1281 && tablejump_p (BB_END (bb2), &label2, &table2)
1282 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1284 /* The labels should never be the same rtx. If they really are same
1285 the jump tables are same too. So disable crossjumping of blocks BB1
1286 and BB2 because when deleting the common insns in the end of BB1
1287 by delete_basic_block () the jump table would be deleted too. */
1288 /* If LABEL2 is referenced in BB1->END do not do anything
1289 because we would loose information when replacing
1290 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1291 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1293 /* Set IDENTICAL to true when the tables are identical. */
1294 bool identical = false;
1295 rtx p1, p2;
1297 p1 = PATTERN (table1);
1298 p2 = PATTERN (table2);
1299 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1301 identical = true;
1303 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1304 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1305 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1306 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1308 int i;
1310 identical = true;
1311 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1312 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1313 identical = false;
1316 if (identical)
1318 replace_label_data rr;
1319 bool match;
1321 /* Temporarily replace references to LABEL1 with LABEL2
1322 in BB1->END so that we could compare the instructions. */
1323 rr.r1 = label1;
1324 rr.r2 = label2;
1325 rr.update_label_nuses = false;
1326 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1328 match = old_insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1329 if (dump_file && match)
1330 fprintf (dump_file,
1331 "Tablejumps in bb %i and %i match.\n",
1332 bb1->index, bb2->index);
1334 /* Set the original label in BB1->END because when deleting
1335 a block whose end is a tablejump, the tablejump referenced
1336 from the instruction is deleted too. */
1337 rr.r1 = label2;
1338 rr.r2 = label1;
1339 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1341 return match;
1344 return false;
1348 /* First ensure that the instructions match. There may be many outgoing
1349 edges so this test is generally cheaper. */
1350 if (!old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1351 return false;
1353 /* Search the outgoing edges, ensure that the counts do match, find possible
1354 fallthru and exception handling edges since these needs more
1355 validation. */
1356 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1357 return false;
1359 FOR_EACH_EDGE (e1, ei, bb1->succs)
1361 e2 = EDGE_SUCC (bb2, ei.index);
1363 if (e1->flags & EDGE_EH)
1364 nehedges1++;
1366 if (e2->flags & EDGE_EH)
1367 nehedges2++;
1369 if (e1->flags & EDGE_FALLTHRU)
1370 fallthru1 = e1;
1371 if (e2->flags & EDGE_FALLTHRU)
1372 fallthru2 = e2;
1375 /* If number of edges of various types does not match, fail. */
1376 if (nehedges1 != nehedges2
1377 || (fallthru1 != 0) != (fallthru2 != 0))
1378 return false;
1380 /* fallthru edges must be forwarded to the same destination. */
1381 if (fallthru1)
1383 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1384 ? single_succ (fallthru1->dest): fallthru1->dest);
1385 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1386 ? single_succ (fallthru2->dest): fallthru2->dest);
1388 if (d1 != d2)
1389 return false;
1392 /* Ensure the same EH region. */
1394 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1395 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1397 if (!n1 && n2)
1398 return false;
1400 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1401 return false;
1404 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1405 version of sequence abstraction. */
1406 FOR_EACH_EDGE (e1, ei, bb2->succs)
1408 edge e2;
1409 edge_iterator ei;
1410 basic_block d1 = e1->dest;
1412 if (FORWARDER_BLOCK_P (d1))
1413 d1 = EDGE_SUCC (d1, 0)->dest;
1415 FOR_EACH_EDGE (e2, ei, bb1->succs)
1417 basic_block d2 = e2->dest;
1418 if (FORWARDER_BLOCK_P (d2))
1419 d2 = EDGE_SUCC (d2, 0)->dest;
1420 if (d1 == d2)
1421 break;
1424 if (!e2)
1425 return false;
1428 return true;
1431 /* Returns true if BB basic block has a preserve label. */
1433 static bool
1434 block_has_preserve_label (basic_block bb)
1436 return (bb
1437 && block_label (bb)
1438 && LABEL_PRESERVE_P (block_label (bb)));
1441 /* E1 and E2 are edges with the same destination block. Search their
1442 predecessors for common code. If found, redirect control flow from
1443 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1445 static bool
1446 try_crossjump_to_edge (int mode, edge e1, edge e2)
1448 int nmatch;
1449 basic_block src1 = e1->src, src2 = e2->src;
1450 basic_block redirect_to, redirect_from, to_remove;
1451 rtx newpos1, newpos2;
1452 edge s;
1453 edge_iterator ei;
1455 newpos1 = newpos2 = NULL_RTX;
1457 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1458 to try this optimization.
1460 Basic block partitioning may result in some jumps that appear to
1461 be optimizable (or blocks that appear to be mergeable), but which really
1462 must be left untouched (they are required to make it safely across
1463 partition boundaries). See the comments at the top of
1464 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1466 if (flag_reorder_blocks_and_partition && reload_completed)
1467 return false;
1469 /* Search backward through forwarder blocks. We don't need to worry
1470 about multiple entry or chained forwarders, as they will be optimized
1471 away. We do this to look past the unconditional jump following a
1472 conditional jump that is required due to the current CFG shape. */
1473 if (single_pred_p (src1)
1474 && FORWARDER_BLOCK_P (src1))
1475 e1 = single_pred_edge (src1), src1 = e1->src;
1477 if (single_pred_p (src2)
1478 && FORWARDER_BLOCK_P (src2))
1479 e2 = single_pred_edge (src2), src2 = e2->src;
1481 /* Nothing to do if we reach ENTRY, or a common source block. */
1482 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1483 return false;
1484 if (src1 == src2)
1485 return false;
1487 /* Seeing more than 1 forwarder blocks would confuse us later... */
1488 if (FORWARDER_BLOCK_P (e1->dest)
1489 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1490 return false;
1492 if (FORWARDER_BLOCK_P (e2->dest)
1493 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1494 return false;
1496 /* Likewise with dead code (possibly newly created by the other optimizations
1497 of cfg_cleanup). */
1498 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1499 return false;
1501 /* Look for the common insn sequence, part the first ... */
1502 if (!outgoing_edges_match (mode, src1, src2))
1503 return false;
1505 /* ... and part the second. */
1506 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1508 /* Don't proceed with the crossjump unless we found a sufficient number
1509 of matching instructions or the 'from' block was totally matched
1510 (such that its predecessors will hopefully be redirected and the
1511 block removed). */
1512 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1513 && (newpos1 != BB_HEAD (src1)))
1514 return false;
1516 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1517 if (block_has_preserve_label (e1->dest)
1518 && (e1->flags & EDGE_ABNORMAL))
1519 return false;
1521 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1522 will be deleted.
1523 If we have tablejumps in the end of SRC1 and SRC2
1524 they have been already compared for equivalence in outgoing_edges_match ()
1525 so replace the references to TABLE1 by references to TABLE2. */
1527 rtx label1, label2;
1528 rtx table1, table2;
1530 if (tablejump_p (BB_END (src1), &label1, &table1)
1531 && tablejump_p (BB_END (src2), &label2, &table2)
1532 && label1 != label2)
1534 replace_label_data rr;
1535 rtx insn;
1537 /* Replace references to LABEL1 with LABEL2. */
1538 rr.r1 = label1;
1539 rr.r2 = label2;
1540 rr.update_label_nuses = true;
1541 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1543 /* Do not replace the label in SRC1->END because when deleting
1544 a block whose end is a tablejump, the tablejump referenced
1545 from the instruction is deleted too. */
1546 if (insn != BB_END (src1))
1547 for_each_rtx (&insn, replace_label, &rr);
1552 /* Avoid splitting if possible. We must always split when SRC2 has
1553 EH predecessor edges, or we may end up with basic blocks with both
1554 normal and EH predecessor edges. */
1555 if (newpos2 == BB_HEAD (src2)
1556 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1557 redirect_to = src2;
1558 else
1560 if (newpos2 == BB_HEAD (src2))
1562 /* Skip possible basic block header. */
1563 if (LABEL_P (newpos2))
1564 newpos2 = NEXT_INSN (newpos2);
1565 if (NOTE_P (newpos2))
1566 newpos2 = NEXT_INSN (newpos2);
1569 if (dump_file)
1570 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1571 src2->index, nmatch);
1572 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1575 if (dump_file)
1576 fprintf (dump_file,
1577 "Cross jumping from bb %i to bb %i; %i common insns\n",
1578 src1->index, src2->index, nmatch);
1580 /* We may have some registers visible through the block. */
1581 df_set_bb_dirty (redirect_to);
1583 /* Recompute the frequencies and counts of outgoing edges. */
1584 FOR_EACH_EDGE (s, ei, redirect_to->succs)
1586 edge s2;
1587 edge_iterator ei;
1588 basic_block d = s->dest;
1590 if (FORWARDER_BLOCK_P (d))
1591 d = single_succ (d);
1593 FOR_EACH_EDGE (s2, ei, src1->succs)
1595 basic_block d2 = s2->dest;
1596 if (FORWARDER_BLOCK_P (d2))
1597 d2 = single_succ (d2);
1598 if (d == d2)
1599 break;
1602 s->count += s2->count;
1604 /* Take care to update possible forwarder blocks. We verified
1605 that there is no more than one in the chain, so we can't run
1606 into infinite loop. */
1607 if (FORWARDER_BLOCK_P (s->dest))
1609 single_succ_edge (s->dest)->count += s2->count;
1610 s->dest->count += s2->count;
1611 s->dest->frequency += EDGE_FREQUENCY (s);
1614 if (FORWARDER_BLOCK_P (s2->dest))
1616 single_succ_edge (s2->dest)->count -= s2->count;
1617 if (single_succ_edge (s2->dest)->count < 0)
1618 single_succ_edge (s2->dest)->count = 0;
1619 s2->dest->count -= s2->count;
1620 s2->dest->frequency -= EDGE_FREQUENCY (s);
1621 if (s2->dest->frequency < 0)
1622 s2->dest->frequency = 0;
1623 if (s2->dest->count < 0)
1624 s2->dest->count = 0;
1627 if (!redirect_to->frequency && !src1->frequency)
1628 s->probability = (s->probability + s2->probability) / 2;
1629 else
1630 s->probability
1631 = ((s->probability * redirect_to->frequency +
1632 s2->probability * src1->frequency)
1633 / (redirect_to->frequency + src1->frequency));
1636 /* Adjust count and frequency for the block. An earlier jump
1637 threading pass may have left the profile in an inconsistent
1638 state (see update_bb_profile_for_threading) so we must be
1639 prepared for overflows. */
1640 redirect_to->count += src1->count;
1641 redirect_to->frequency += src1->frequency;
1642 if (redirect_to->frequency > BB_FREQ_MAX)
1643 redirect_to->frequency = BB_FREQ_MAX;
1644 update_br_prob_note (redirect_to);
1646 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1648 /* Skip possible basic block header. */
1649 if (LABEL_P (newpos1))
1650 newpos1 = NEXT_INSN (newpos1);
1652 if (NOTE_P (newpos1))
1653 newpos1 = NEXT_INSN (newpos1);
1655 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1656 to_remove = single_succ (redirect_from);
1658 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
1659 delete_basic_block (to_remove);
1661 update_forwarder_flag (redirect_from);
1662 if (redirect_to != src2)
1663 update_forwarder_flag (src2);
1665 return true;
1668 /* Search the predecessors of BB for common insn sequences. When found,
1669 share code between them by redirecting control flow. Return true if
1670 any changes made. */
1672 static bool
1673 try_crossjump_bb (int mode, basic_block bb)
1675 edge e, e2, fallthru;
1676 bool changed;
1677 unsigned max, ix, ix2;
1678 basic_block ev, ev2;
1679 edge_iterator ei;
1681 /* Nothing to do if there is not at least two incoming edges. */
1682 if (EDGE_COUNT (bb->preds) < 2)
1683 return false;
1685 /* Don't crossjump if this block ends in a computed jump,
1686 unless we are optimizing for size. */
1687 if (!optimize_size
1688 && bb != EXIT_BLOCK_PTR
1689 && computed_jump_p (BB_END (bb)))
1690 return false;
1692 /* If we are partitioning hot/cold basic blocks, we don't want to
1693 mess up unconditional or indirect jumps that cross between hot
1694 and cold sections.
1696 Basic block partitioning may result in some jumps that appear to
1697 be optimizable (or blocks that appear to be mergeable), but which really
1698 must be left untouched (they are required to make it safely across
1699 partition boundaries). See the comments at the top of
1700 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1702 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
1703 BB_PARTITION (EDGE_PRED (bb, 1)->src)
1704 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
1705 return false;
1707 /* It is always cheapest to redirect a block that ends in a branch to
1708 a block that falls through into BB, as that adds no branches to the
1709 program. We'll try that combination first. */
1710 fallthru = NULL;
1711 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1713 if (EDGE_COUNT (bb->preds) > max)
1714 return false;
1716 FOR_EACH_EDGE (e, ei, bb->preds)
1718 if (e->flags & EDGE_FALLTHRU)
1720 fallthru = e;
1721 break;
1725 changed = false;
1726 for (ix = 0, ev = bb; ix < EDGE_COUNT (ev->preds); )
1728 e = EDGE_PRED (ev, ix);
1729 ix++;
1731 /* As noted above, first try with the fallthru predecessor (or, a
1732 fallthru predecessor if we are in cfglayout mode). */
1733 if (fallthru)
1735 /* Don't combine the fallthru edge into anything else.
1736 If there is a match, we'll do it the other way around. */
1737 if (e == fallthru)
1738 continue;
1739 /* If nothing changed since the last attempt, there is nothing
1740 we can do. */
1741 if (!first_pass
1742 && (!(df_get_bb_dirty (e->src))
1743 && !(df_get_bb_dirty (fallthru->src))))
1744 continue;
1746 if (try_crossjump_to_edge (mode, e, fallthru))
1748 changed = true;
1749 ix = 0;
1750 ev = bb;
1751 continue;
1755 /* Non-obvious work limiting check: Recognize that we're going
1756 to call try_crossjump_bb on every basic block. So if we have
1757 two blocks with lots of outgoing edges (a switch) and they
1758 share lots of common destinations, then we would do the
1759 cross-jump check once for each common destination.
1761 Now, if the blocks actually are cross-jump candidates, then
1762 all of their destinations will be shared. Which means that
1763 we only need check them for cross-jump candidacy once. We
1764 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1765 choosing to do the check from the block for which the edge
1766 in question is the first successor of A. */
1767 if (EDGE_SUCC (e->src, 0) != e)
1768 continue;
1770 for (ix2 = 0, ev2 = bb; ix2 < EDGE_COUNT (ev2->preds); )
1772 e2 = EDGE_PRED (ev2, ix2);
1773 ix2++;
1775 if (e2 == e)
1776 continue;
1778 /* We've already checked the fallthru edge above. */
1779 if (e2 == fallthru)
1780 continue;
1782 /* The "first successor" check above only prevents multiple
1783 checks of crossjump(A,B). In order to prevent redundant
1784 checks of crossjump(B,A), require that A be the block
1785 with the lowest index. */
1786 if (e->src->index > e2->src->index)
1787 continue;
1789 /* If nothing changed since the last attempt, there is nothing
1790 we can do. */
1791 if (!first_pass
1792 && (!(df_get_bb_dirty (e->src))
1793 && !(df_get_bb_dirty (e2->src))))
1794 continue;
1796 if (try_crossjump_to_edge (mode, e, e2))
1798 changed = true;
1799 ev2 = bb;
1800 ix = 0;
1801 break;
1806 if (changed)
1807 crossjumps_occured = true;
1809 return changed;
1812 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1813 instructions etc. Return nonzero if changes were made. */
1815 static bool
1816 try_optimize_cfg (int mode)
1818 bool changed_overall = false;
1819 bool changed;
1820 int iterations = 0;
1821 basic_block bb, b, next;
1823 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1824 clear_bb_flags ();
1826 crossjumps_occured = false;
1828 FOR_EACH_BB (bb)
1829 update_forwarder_flag (bb);
1831 if (! targetm.cannot_modify_jumps_p ())
1833 first_pass = true;
1834 /* Attempt to merge blocks as made possible by edge removal. If
1835 a block has only one successor, and the successor has only
1836 one predecessor, they may be combined. */
1839 changed = false;
1840 iterations++;
1842 if (dump_file)
1843 fprintf (dump_file,
1844 "\n\ntry_optimize_cfg iteration %i\n\n",
1845 iterations);
1847 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1849 basic_block c;
1850 edge s;
1851 bool changed_here = false;
1853 /* Delete trivially dead basic blocks. */
1854 if (EDGE_COUNT (b->preds) == 0)
1856 c = b->prev_bb;
1857 if (dump_file)
1858 fprintf (dump_file, "Deleting block %i.\n",
1859 b->index);
1861 delete_basic_block (b);
1862 if (!(mode & CLEANUP_CFGLAYOUT))
1863 changed = true;
1864 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
1865 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
1866 continue;
1869 /* Remove code labels no longer used. */
1870 if (single_pred_p (b)
1871 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
1872 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
1873 && LABEL_P (BB_HEAD (b))
1874 /* If the previous block ends with a branch to this
1875 block, we can't delete the label. Normally this
1876 is a condjump that is yet to be simplified, but
1877 if CASE_DROPS_THRU, this can be a tablejump with
1878 some element going to the same place as the
1879 default (fallthru). */
1880 && (single_pred (b) == ENTRY_BLOCK_PTR
1881 || !JUMP_P (BB_END (single_pred (b)))
1882 || ! label_is_jump_target_p (BB_HEAD (b),
1883 BB_END (single_pred (b)))))
1885 rtx label = BB_HEAD (b);
1887 delete_insn_chain (label, label, false);
1888 /* If the case label is undeletable, move it after the
1889 BASIC_BLOCK note. */
1890 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1892 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1894 reorder_insns_nobb (label, label, bb_note);
1895 BB_HEAD (b) = bb_note;
1896 if (BB_END (b) == bb_note)
1897 BB_END (b) = label;
1899 if (dump_file)
1900 fprintf (dump_file, "Deleted label in block %i.\n",
1901 b->index);
1904 /* If we fall through an empty block, we can remove it. */
1905 if (!(mode & CLEANUP_CFGLAYOUT)
1906 && single_pred_p (b)
1907 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
1908 && !LABEL_P (BB_HEAD (b))
1909 && FORWARDER_BLOCK_P (b)
1910 /* Note that forwarder_block_p true ensures that
1911 there is a successor for this block. */
1912 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
1913 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
1915 if (dump_file)
1916 fprintf (dump_file,
1917 "Deleting fallthru block %i.\n",
1918 b->index);
1920 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1921 redirect_edge_succ_nodup (single_pred_edge (b),
1922 single_succ (b));
1923 delete_basic_block (b);
1924 changed = true;
1925 b = c;
1928 if (single_succ_p (b)
1929 && (s = single_succ_edge (b))
1930 && !(s->flags & EDGE_COMPLEX)
1931 && (c = s->dest) != EXIT_BLOCK_PTR
1932 && single_pred_p (c)
1933 && b != c)
1935 /* When not in cfg_layout mode use code aware of reordering
1936 INSN. This code possibly creates new basic blocks so it
1937 does not fit merge_blocks interface and is kept here in
1938 hope that it will become useless once more of compiler
1939 is transformed to use cfg_layout mode. */
1941 if ((mode & CLEANUP_CFGLAYOUT)
1942 && can_merge_blocks_p (b, c))
1944 merge_blocks (b, c);
1945 update_forwarder_flag (b);
1946 changed_here = true;
1948 else if (!(mode & CLEANUP_CFGLAYOUT)
1949 /* If the jump insn has side effects,
1950 we can't kill the edge. */
1951 && (!JUMP_P (BB_END (b))
1952 || (reload_completed
1953 ? simplejump_p (BB_END (b))
1954 : (onlyjump_p (BB_END (b))
1955 && !tablejump_p (BB_END (b),
1956 NULL, NULL))))
1957 && (next = merge_blocks_move (s, b, c, mode)))
1959 b = next;
1960 changed_here = true;
1964 /* Simplify branch over branch. */
1965 if ((mode & CLEANUP_EXPENSIVE)
1966 && !(mode & CLEANUP_CFGLAYOUT)
1967 && try_simplify_condjump (b))
1968 changed_here = true;
1970 /* If B has a single outgoing edge, but uses a
1971 non-trivial jump instruction without side-effects, we
1972 can either delete the jump entirely, or replace it
1973 with a simple unconditional jump. */
1974 if (single_succ_p (b)
1975 && single_succ (b) != EXIT_BLOCK_PTR
1976 && onlyjump_p (BB_END (b))
1977 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
1978 && try_redirect_by_replacing_jump (single_succ_edge (b),
1979 single_succ (b),
1980 (mode & CLEANUP_CFGLAYOUT) != 0))
1982 update_forwarder_flag (b);
1983 changed_here = true;
1986 /* Simplify branch to branch. */
1987 if (try_forward_edges (mode, b))
1988 changed_here = true;
1990 /* Look for shared code between blocks. */
1991 if ((mode & CLEANUP_CROSSJUMP)
1992 && try_crossjump_bb (mode, b))
1993 changed_here = true;
1995 /* Don't get confused by the index shift caused by
1996 deleting blocks. */
1997 if (!changed_here)
1998 b = b->next_bb;
1999 else
2000 changed = true;
2003 if ((mode & CLEANUP_CROSSJUMP)
2004 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2005 changed = true;
2007 #ifdef ENABLE_CHECKING
2008 if (changed)
2009 verify_flow_info ();
2010 #endif
2012 changed_overall |= changed;
2013 first_pass = false;
2015 while (changed);
2018 FOR_ALL_BB (b)
2019 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2021 return changed_overall;
2024 /* Delete all unreachable basic blocks. */
2026 bool
2027 delete_unreachable_blocks (void)
2029 bool changed = false;
2030 basic_block b, next_bb;
2032 find_unreachable_blocks ();
2034 /* Delete all unreachable basic blocks. */
2036 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
2038 next_bb = b->next_bb;
2040 if (!(b->flags & BB_REACHABLE))
2042 delete_basic_block (b);
2043 changed = true;
2047 if (changed)
2048 tidy_fallthru_edges ();
2049 return changed;
2052 /* Delete any jump tables never referenced. We can't delete them at the
2053 time of removing tablejump insn as they are referenced by the preceding
2054 insns computing the destination, so we delay deleting and garbagecollect
2055 them once life information is computed. */
2056 void
2057 delete_dead_jumptables (void)
2059 basic_block bb;
2061 /* A dead jump table does not belong to any basic block. Scan insns
2062 between two adjacent basic blocks. */
2063 FOR_EACH_BB (bb)
2065 rtx insn, next;
2067 for (insn = NEXT_INSN (BB_END (bb));
2068 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2069 insn = next)
2071 next = NEXT_INSN (insn);
2072 if (LABEL_P (insn)
2073 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2074 && JUMP_P (next)
2075 && (GET_CODE (PATTERN (next)) == ADDR_VEC
2076 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
2078 rtx label = insn, jump = next;
2080 if (dump_file)
2081 fprintf (dump_file, "Dead jumptable %i removed\n",
2082 INSN_UID (insn));
2084 next = NEXT_INSN (next);
2085 delete_insn (jump);
2086 delete_insn (label);
2093 /* Tidy the CFG by deleting unreachable code and whatnot. */
2095 bool
2096 cleanup_cfg (int mode)
2098 bool changed = false;
2100 /* Set the cfglayout mode flag here. We could update all the callers
2101 but that is just inconvenient, especially given that we eventually
2102 want to have cfglayout mode as the default. */
2103 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2104 mode |= CLEANUP_CFGLAYOUT;
2106 timevar_push (TV_CLEANUP_CFG);
2107 if (delete_unreachable_blocks ())
2109 changed = true;
2110 /* We've possibly created trivially dead code. Cleanup it right
2111 now to introduce more opportunities for try_optimize_cfg. */
2112 if (!(mode & (CLEANUP_NO_INSN_DEL))
2113 && !reload_completed)
2114 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2117 compact_blocks ();
2119 /* To tail-merge blocks ending in the same noreturn function (e.g.
2120 a call to abort) we have to insert fake edges to exit. Do this
2121 here once. The fake edges do not interfere with any other CFG
2122 cleanups. */
2123 if (mode & CLEANUP_CROSSJUMP)
2124 add_noreturn_fake_exit_edges ();
2126 if (!dbg_cnt (cfg_cleanup))
2127 return changed;
2129 while (try_optimize_cfg (mode))
2131 delete_unreachable_blocks (), changed = true;
2132 if (!(mode & CLEANUP_NO_INSN_DEL))
2134 /* Try to remove some trivially dead insns when doing an expensive
2135 cleanup. But delete_trivially_dead_insns doesn't work after
2136 reload (it only handles pseudos) and run_fast_dce is too costly
2137 to run in every iteration.
2139 For effective cross jumping, we really want to run a fast DCE to
2140 clean up any dead conditions, or they get in the way of performing
2141 useful tail merges.
2143 Other transformations in cleanup_cfg are not so sensitive to dead
2144 code, so delete_trivially_dead_insns or even doing nothing at all
2145 is good enough. */
2146 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
2147 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2148 break;
2149 else if ((mode & CLEANUP_CROSSJUMP)
2150 && crossjumps_occured)
2151 run_fast_dce ();
2153 else
2154 break;
2157 if (mode & CLEANUP_CROSSJUMP)
2158 remove_fake_exit_edges ();
2160 /* Don't call delete_dead_jumptables in cfglayout mode, because
2161 that function assumes that jump tables are in the insns stream.
2162 But we also don't _have_ to delete dead jumptables in cfglayout
2163 mode because we shouldn't even be looking at things that are
2164 not in a basic block. Dead jumptables are cleaned up when
2165 going out of cfglayout mode. */
2166 if (!(mode & CLEANUP_CFGLAYOUT))
2167 delete_dead_jumptables ();
2169 timevar_pop (TV_CLEANUP_CFG);
2171 return changed;
2174 static unsigned int
2175 rest_of_handle_jump (void)
2177 delete_unreachable_blocks ();
2179 if (cfun->tail_call_emit)
2180 fixup_tail_calls ();
2181 return 0;
2184 struct rtl_opt_pass pass_jump =
2187 RTL_PASS,
2188 "sibling", /* name */
2189 NULL, /* gate */
2190 rest_of_handle_jump, /* execute */
2191 NULL, /* sub */
2192 NULL, /* next */
2193 0, /* static_pass_number */
2194 TV_JUMP, /* tv_id */
2195 0, /* properties_required */
2196 0, /* properties_provided */
2197 0, /* properties_destroyed */
2198 TODO_ggc_collect, /* todo_flags_start */
2199 TODO_verify_flow, /* todo_flags_finish */
2204 static unsigned int
2205 rest_of_handle_jump2 (void)
2207 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2208 if (dump_file)
2209 dump_flow_info (dump_file, dump_flags);
2210 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2211 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2212 return 0;
2216 struct rtl_opt_pass pass_jump2 =
2219 RTL_PASS,
2220 "jump", /* name */
2221 NULL, /* gate */
2222 rest_of_handle_jump2, /* execute */
2223 NULL, /* sub */
2224 NULL, /* next */
2225 0, /* static_pass_number */
2226 TV_JUMP, /* tv_id */
2227 0, /* properties_required */
2228 0, /* properties_provided */
2229 0, /* properties_destroyed */
2230 TODO_ggc_collect, /* todo_flags_start */
2231 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */