PR libfortran/47970
[official-gcc.git] / gcc / regrename.c
blob1823558f4517f2e4a62b84b808fcaa703bd3d24e
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "addresses.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "function.h"
35 #include "recog.h"
36 #include "flags.h"
37 #include "obstack.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "df.h"
41 #include "target.h"
42 #include "emit-rtl.h"
43 #include "regrename.h"
45 /* This file implements the RTL register renaming pass of the compiler. It is
46 a semi-local pass whose goal is to maximize the usage of the register file
47 of the processor by substituting registers for others in the solution given
48 by the register allocator. The algorithm is as follows:
50 1. Local def/use chains are built: within each basic block, chains are
51 opened and closed; if a chain isn't closed at the end of the block,
52 it is dropped. We pre-open chains if we have already examined a
53 predecessor block and found chains live at the end which match
54 live registers at the start of the new block.
56 2. We try to combine the local chains across basic block boundaries by
57 comparing chains that were open at the start or end of a block to
58 those in successor/predecessor blocks.
60 3. For each chain, the set of possible renaming registers is computed.
61 This takes into account the renaming of previously processed chains.
62 Optionally, a preferred class is computed for the renaming register.
64 4. The best renaming register is computed for the chain in the above set,
65 using a round-robin allocation. If a preferred class exists, then the
66 round-robin allocation is done within the class first, if possible.
67 The round-robin allocation of renaming registers itself is global.
69 5. If a renaming register has been found, it is substituted in the chain.
71 Targets can parameterize the pass by specifying a preferred class for the
72 renaming register for a given (super)class of registers to be renamed. */
74 #if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
75 #error "Use a different bitmap implementation for untracked_operands."
76 #endif
78 enum scan_actions
80 terminate_write,
81 terminate_dead,
82 mark_all_read,
83 mark_read,
84 mark_write,
85 /* mark_access is for marking the destination regs in
86 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
87 note is updated properly. */
88 mark_access
91 static const char * const scan_actions_name[] =
93 "terminate_write",
94 "terminate_dead",
95 "mark_all_read",
96 "mark_read",
97 "mark_write",
98 "mark_access"
101 /* TICK and THIS_TICK are used to record the last time we saw each
102 register. */
103 static int tick[FIRST_PSEUDO_REGISTER];
104 static int this_tick = 0;
106 static struct obstack rename_obstack;
108 /* If nonnull, the code calling into the register renamer requested
109 information about insn operands, and we store it here. */
110 VEC(insn_rr_info, heap) *insn_rr;
112 static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
113 enum op_type);
114 static bool build_def_use (basic_block);
116 /* The id to be given to the next opened chain. */
117 static unsigned current_id;
119 /* A mapping of unique id numbers to chains. */
120 static VEC(du_head_p, heap) *id_to_chain;
122 /* List of currently open chains. */
123 static struct du_head *open_chains;
125 /* Bitmap of open chains. The bits set always match the list found in
126 open_chains. */
127 static bitmap_head open_chains_set;
129 /* Record the registers being tracked in open_chains. */
130 static HARD_REG_SET live_in_chains;
132 /* Record the registers that are live but not tracked. The intersection
133 between this and live_in_chains is empty. */
134 static HARD_REG_SET live_hard_regs;
136 /* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis
137 is for a caller that requires operand data. Used in
138 record_operand_use. */
139 static operand_rr_info *cur_operand;
141 /* Return the chain corresponding to id number ID. Take into account that
142 chains may have been merged. */
143 du_head_p
144 regrename_chain_from_id (unsigned int id)
146 du_head_p first_chain = VEC_index (du_head_p, id_to_chain, id);
147 du_head_p chain = first_chain;
148 while (chain->id != id)
150 id = chain->id;
151 chain = VEC_index (du_head_p, id_to_chain, id);
153 first_chain->id = id;
154 return chain;
157 /* Dump all def/use chains, starting at id FROM. */
159 static void
160 dump_def_use_chain (int from)
162 du_head_p head;
163 int i;
164 FOR_EACH_VEC_ELT_FROM (du_head_p, id_to_chain, i, head, from)
166 struct du_chain *this_du = head->first;
168 fprintf (dump_file, "Register %s (%d):",
169 reg_names[head->regno], head->nregs);
170 while (this_du)
172 fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn),
173 reg_class_names[this_du->cl]);
174 this_du = this_du->next_use;
176 fprintf (dump_file, "\n");
177 head = head->next_chain;
181 static void
182 free_chain_data (void)
184 int i;
185 du_head_p ptr;
186 for (i = 0; VEC_iterate(du_head_p, id_to_chain, i, ptr); i++)
187 bitmap_clear (&ptr->conflicts);
189 VEC_free (du_head_p, heap, id_to_chain);
192 /* Walk all chains starting with CHAINS and record that they conflict with
193 another chain whose id is ID. */
195 static void
196 mark_conflict (struct du_head *chains, unsigned id)
198 while (chains)
200 bitmap_set_bit (&chains->conflicts, id);
201 chains = chains->next_chain;
205 /* Examine cur_operand, and if it is nonnull, record information about the
206 use THIS_DU which is part of the chain HEAD. */
208 static void
209 record_operand_use (struct du_head *head, struct du_chain *this_du)
211 if (cur_operand == NULL)
212 return;
213 gcc_assert (cur_operand->n_chains < MAX_REGS_PER_ADDRESS);
214 cur_operand->heads[cur_operand->n_chains] = head;
215 cur_operand->chains[cur_operand->n_chains++] = this_du;
218 /* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
219 and record its occurrence in *LOC, which is being written to in INSN.
220 This access requires a register of class CL. */
222 static du_head_p
223 create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc,
224 rtx insn, enum reg_class cl)
226 struct du_head *head = XOBNEW (&rename_obstack, struct du_head);
227 struct du_chain *this_du;
228 int nregs;
230 head->next_chain = open_chains;
231 head->regno = this_regno;
232 head->nregs = this_nregs;
233 head->need_caller_save_reg = 0;
234 head->cannot_rename = 0;
236 VEC_safe_push (du_head_p, heap, id_to_chain, head);
237 head->id = current_id++;
239 bitmap_initialize (&head->conflicts, &bitmap_default_obstack);
240 bitmap_copy (&head->conflicts, &open_chains_set);
241 mark_conflict (open_chains, head->id);
243 /* Since we're tracking this as a chain now, remove it from the
244 list of conflicting live hard registers and track it in
245 live_in_chains instead. */
246 nregs = head->nregs;
247 while (nregs-- > 0)
249 SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
250 CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
253 COPY_HARD_REG_SET (head->hard_conflicts, live_hard_regs);
254 bitmap_set_bit (&open_chains_set, head->id);
256 open_chains = head;
258 if (dump_file)
260 fprintf (dump_file, "Creating chain %s (%d)",
261 reg_names[head->regno], head->id);
262 if (insn != NULL_RTX)
263 fprintf (dump_file, " at insn %d", INSN_UID (insn));
264 fprintf (dump_file, "\n");
267 if (insn == NULL_RTX)
269 head->first = head->last = NULL;
270 return head;
273 this_du = XOBNEW (&rename_obstack, struct du_chain);
274 head->first = head->last = this_du;
276 this_du->next_use = 0;
277 this_du->loc = loc;
278 this_du->insn = insn;
279 this_du->cl = cl;
280 record_operand_use (head, this_du);
281 return head;
284 /* For a def-use chain HEAD, find which registers overlap its lifetime and
285 set the corresponding bits in *PSET. */
287 static void
288 merge_overlapping_regs (HARD_REG_SET *pset, struct du_head *head)
290 bitmap_iterator bi;
291 unsigned i;
292 IOR_HARD_REG_SET (*pset, head->hard_conflicts);
293 EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi)
295 du_head_p other = regrename_chain_from_id (i);
296 unsigned j = other->nregs;
297 gcc_assert (other != head);
298 while (j-- > 0)
299 SET_HARD_REG_BIT (*pset, other->regno + j);
303 /* Check if NEW_REG can be the candidate register to rename for
304 REG in THIS_HEAD chain. THIS_UNAVAILABLE is a set of unavailable hard
305 registers. */
307 static bool
308 check_new_reg_p (int reg ATTRIBUTE_UNUSED, int new_reg,
309 struct du_head *this_head, HARD_REG_SET this_unavailable)
311 enum machine_mode mode = GET_MODE (*this_head->first->loc);
312 int nregs = hard_regno_nregs[new_reg][mode];
313 int i;
314 struct du_chain *tmp;
316 for (i = nregs - 1; i >= 0; --i)
317 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
318 || fixed_regs[new_reg + i]
319 || global_regs[new_reg + i]
320 /* Can't use regs which aren't saved by the prologue. */
321 || (! df_regs_ever_live_p (new_reg + i)
322 && ! call_used_regs[new_reg + i])
323 #ifdef LEAF_REGISTERS
324 /* We can't use a non-leaf register if we're in a
325 leaf function. */
326 || (current_function_is_leaf
327 && !LEAF_REGISTERS[new_reg + i])
328 #endif
329 #ifdef HARD_REGNO_RENAME_OK
330 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
331 #endif
333 return false;
335 /* See whether it accepts all modes that occur in
336 definition and uses. */
337 for (tmp = this_head->first; tmp; tmp = tmp->next_use)
338 if ((! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
339 && ! DEBUG_INSN_P (tmp->insn))
340 || (this_head->need_caller_save_reg
341 && ! (HARD_REGNO_CALL_PART_CLOBBERED
342 (reg, GET_MODE (*tmp->loc)))
343 && (HARD_REGNO_CALL_PART_CLOBBERED
344 (new_reg, GET_MODE (*tmp->loc)))))
345 return false;
347 return true;
350 /* For the chain THIS_HEAD, compute and return the best register to
351 rename to. SUPER_CLASS is the superunion of register classes in
352 the chain. UNAVAILABLE is a set of registers that cannot be used.
353 OLD_REG is the register currently used for the chain. */
356 find_best_rename_reg (du_head_p this_head, enum reg_class super_class,
357 HARD_REG_SET *unavailable, int old_reg)
359 bool has_preferred_class;
360 enum reg_class preferred_class;
361 int pass;
362 int best_new_reg = old_reg;
364 /* Further narrow the set of registers we can use for renaming.
365 If the chain needs a call-saved register, mark the call-used
366 registers as unavailable. */
367 if (this_head->need_caller_save_reg)
368 IOR_HARD_REG_SET (*unavailable, call_used_reg_set);
370 /* Mark registers that overlap this chain's lifetime as unavailable. */
371 merge_overlapping_regs (unavailable, this_head);
373 /* Compute preferred rename class of super union of all the classes
374 in the chain. */
375 preferred_class
376 = (enum reg_class) targetm.preferred_rename_class (super_class);
378 /* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass
379 over registers that belong to PREFERRED_CLASS and try to find the
380 best register within the class. If that failed, we iterate in
381 the second pass over registers that don't belong to the class.
382 If PREFERRED_CLASS is NO_REGS, we iterate over all registers in
383 ascending order without any preference. */
384 has_preferred_class = (preferred_class != NO_REGS);
385 for (pass = (has_preferred_class ? 0 : 1); pass < 2; pass++)
387 int new_reg;
388 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
390 if (has_preferred_class
391 && (pass == 0)
392 != TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
393 new_reg))
394 continue;
396 /* In the first pass, we force the renaming of registers that
397 don't belong to PREFERRED_CLASS to registers that do, even
398 though the latters were used not very long ago. */
399 if (check_new_reg_p (old_reg, new_reg, this_head,
400 *unavailable)
401 && ((pass == 0
402 && !TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
403 best_new_reg))
404 || tick[best_new_reg] > tick[new_reg]))
405 best_new_reg = new_reg;
407 if (pass == 0 && best_new_reg != old_reg)
408 break;
410 return best_new_reg;
413 /* Perform register renaming on the current function. */
414 static void
415 rename_chains (void)
417 HARD_REG_SET unavailable;
418 du_head_p this_head;
419 int i;
421 memset (tick, 0, sizeof tick);
423 CLEAR_HARD_REG_SET (unavailable);
424 /* Don't clobber traceback for noreturn functions. */
425 if (frame_pointer_needed)
427 add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
428 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
429 add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
430 #endif
433 FOR_EACH_VEC_ELT (du_head_p, id_to_chain, i, this_head)
435 int best_new_reg;
436 int n_uses;
437 struct du_chain *tmp;
438 HARD_REG_SET this_unavailable;
439 int reg = this_head->regno;
440 enum reg_class super_class = NO_REGS;
442 if (this_head->cannot_rename)
443 continue;
445 if (fixed_regs[reg] || global_regs[reg]
446 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
447 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
448 #else
449 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
450 #endif
452 continue;
454 COPY_HARD_REG_SET (this_unavailable, unavailable);
456 /* Iterate over elements in the chain in order to:
457 1. Count number of uses, and narrow the set of registers we can
458 use for renaming.
459 2. Compute the superunion of register classes in this chain. */
460 n_uses = 0;
461 super_class = NO_REGS;
462 for (tmp = this_head->first; tmp; tmp = tmp->next_use)
464 if (DEBUG_INSN_P (tmp->insn))
465 continue;
466 n_uses++;
467 IOR_COMPL_HARD_REG_SET (this_unavailable,
468 reg_class_contents[tmp->cl]);
469 super_class
470 = reg_class_superunion[(int) super_class][(int) tmp->cl];
473 if (n_uses < 2)
474 continue;
476 best_new_reg = find_best_rename_reg (this_head, super_class,
477 &this_unavailable, reg);
479 if (dump_file)
481 fprintf (dump_file, "Register %s in insn %d",
482 reg_names[reg], INSN_UID (this_head->first->insn));
483 if (this_head->need_caller_save_reg)
484 fprintf (dump_file, " crosses a call");
487 if (best_new_reg == reg)
489 tick[reg] = ++this_tick;
490 if (dump_file)
491 fprintf (dump_file, "; no available better choice\n");
492 continue;
495 if (dump_file)
496 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
498 regrename_do_replace (this_head, best_new_reg);
499 tick[best_new_reg] = ++this_tick;
500 df_set_regs_ever_live (best_new_reg, true);
504 /* A structure to record information for each hard register at the start of
505 a basic block. */
506 struct incoming_reg_info {
507 /* Holds the number of registers used in the chain that gave us information
508 about this register. Zero means no information known yet, while a
509 negative value is used for something that is part of, but not the first
510 register in a multi-register value. */
511 int nregs;
512 /* Set to true if we have accesses that conflict in the number of registers
513 used. */
514 bool unusable;
517 /* A structure recording information about each basic block. It is saved
518 and restored around basic block boundaries.
519 A pointer to such a structure is stored in each basic block's aux field
520 during regrename_analyze, except for blocks we know can't be optimized
521 (such as entry and exit blocks). */
522 struct bb_rename_info
524 /* The basic block corresponding to this structure. */
525 basic_block bb;
526 /* Copies of the global information. */
527 bitmap_head open_chains_set;
528 bitmap_head incoming_open_chains_set;
529 struct incoming_reg_info incoming[FIRST_PSEUDO_REGISTER];
532 /* Initialize a rename_info structure P for basic block BB, which starts a new
533 scan. */
534 static void
535 init_rename_info (struct bb_rename_info *p, basic_block bb)
537 int i;
538 df_ref *def_rec;
539 HARD_REG_SET start_chains_set;
541 p->bb = bb;
542 bitmap_initialize (&p->open_chains_set, &bitmap_default_obstack);
543 bitmap_initialize (&p->incoming_open_chains_set, &bitmap_default_obstack);
545 open_chains = NULL;
546 bitmap_clear (&open_chains_set);
548 CLEAR_HARD_REG_SET (live_in_chains);
549 REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb));
550 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
552 df_ref def = *def_rec;
553 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
554 SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def));
557 /* Open chains based on information from (at least one) predecessor
558 block. This gives us a chance later on to combine chains across
559 basic block boundaries. Inconsistencies (in access sizes) will
560 be caught normally and dealt with conservatively by disabling the
561 chain for renaming, and there is no risk of losing optimization
562 opportunities by opening chains either: if we did not open the
563 chains, we'd have to track the live register as a hard reg, and
564 we'd be unable to rename it in any case. */
565 CLEAR_HARD_REG_SET (start_chains_set);
566 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
568 struct incoming_reg_info *iri = p->incoming + i;
569 if (iri->nregs > 0 && !iri->unusable
570 && range_in_hard_reg_set_p (live_hard_regs, i, iri->nregs))
572 SET_HARD_REG_BIT (start_chains_set, i);
573 remove_range_from_hard_reg_set (&live_hard_regs, i, iri->nregs);
576 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
578 struct incoming_reg_info *iri = p->incoming + i;
579 if (TEST_HARD_REG_BIT (start_chains_set, i))
581 du_head_p chain;
582 if (dump_file)
583 fprintf (dump_file, "opening incoming chain\n");
584 chain = create_new_chain (i, iri->nregs, NULL, NULL_RTX, NO_REGS);
585 bitmap_set_bit (&p->incoming_open_chains_set, chain->id);
590 /* Record in RI that the block corresponding to it has an incoming
591 live value, described by CHAIN. */
592 static void
593 set_incoming_from_chain (struct bb_rename_info *ri, du_head_p chain)
595 int i;
596 int incoming_nregs = ri->incoming[chain->regno].nregs;
597 int nregs;
599 /* If we've recorded the same information before, everything is fine. */
600 if (incoming_nregs == chain->nregs)
602 if (dump_file)
603 fprintf (dump_file, "reg %d/%d already recorded\n",
604 chain->regno, chain->nregs);
605 return;
608 /* If we have no information for any of the involved registers, update
609 the incoming array. */
610 nregs = chain->nregs;
611 while (nregs-- > 0)
612 if (ri->incoming[chain->regno + nregs].nregs != 0
613 || ri->incoming[chain->regno + nregs].unusable)
614 break;
615 if (nregs < 0)
617 nregs = chain->nregs;
618 ri->incoming[chain->regno].nregs = nregs;
619 while (nregs-- > 1)
620 ri->incoming[chain->regno + nregs].nregs = -nregs;
621 if (dump_file)
622 fprintf (dump_file, "recorded reg %d/%d\n",
623 chain->regno, chain->nregs);
624 return;
627 /* There must be some kind of conflict. Prevent both the old and
628 new ranges from being used. */
629 if (incoming_nregs < 0)
630 ri->incoming[chain->regno + incoming_nregs].unusable = true;
631 for (i = 0; i < chain->nregs; i++)
632 ri->incoming[chain->regno + i].unusable = true;
635 /* Merge the two chains C1 and C2 so that all conflict information is
636 recorded and C1, and the id of C2 is changed to that of C1. */
637 static void
638 merge_chains (du_head_p c1, du_head_p c2)
640 if (c1 == c2)
641 return;
643 if (c2->first != NULL)
645 if (c1->first == NULL)
646 c1->first = c2->first;
647 else
648 c1->last->next_use = c2->first;
649 c1->last = c2->last;
652 c2->first = c2->last = NULL;
653 c2->id = c1->id;
655 IOR_HARD_REG_SET (c1->hard_conflicts, c2->hard_conflicts);
656 bitmap_ior_into (&c1->conflicts, &c2->conflicts);
658 c1->need_caller_save_reg |= c2->need_caller_save_reg;
659 c1->cannot_rename |= c2->cannot_rename;
662 /* Analyze the current function and build chains for renaming. */
664 void
665 regrename_analyze (bitmap bb_mask)
667 struct bb_rename_info *rename_info;
668 int i;
669 basic_block bb;
670 int n_bbs;
671 int *inverse_postorder;
673 inverse_postorder = XNEWVEC (int, last_basic_block);
674 n_bbs = pre_and_rev_post_order_compute (NULL, inverse_postorder, false);
676 /* Gather some information about the blocks in this function. */
677 rename_info = XCNEWVEC (struct bb_rename_info, n_basic_blocks);
678 i = 0;
679 FOR_EACH_BB (bb)
681 struct bb_rename_info *ri = rename_info + i;
682 ri->bb = bb;
683 if (bb_mask != NULL && !bitmap_bit_p (bb_mask, bb->index))
684 bb->aux = NULL;
685 else
686 bb->aux = ri;
687 i++;
690 current_id = 0;
691 id_to_chain = VEC_alloc (du_head_p, heap, 0);
692 bitmap_initialize (&open_chains_set, &bitmap_default_obstack);
694 /* The order in which we visit blocks ensures that whenever
695 possible, we only process a block after at least one of its
696 predecessors, which provides a "seeding" effect to make the logic
697 in set_incoming_from_chain and init_rename_info useful. */
699 for (i = 0; i < n_bbs; i++)
701 basic_block bb1 = BASIC_BLOCK (inverse_postorder[i]);
702 struct bb_rename_info *this_info;
703 bool success;
704 edge e;
705 edge_iterator ei;
706 int old_length = VEC_length (du_head_p, id_to_chain);
708 this_info = (struct bb_rename_info *) bb1->aux;
709 if (this_info == NULL)
710 continue;
712 if (dump_file)
713 fprintf (dump_file, "\nprocessing block %d:\n", bb1->index);
715 init_rename_info (this_info, bb1);
717 success = build_def_use (bb1);
718 if (!success)
720 if (dump_file)
721 fprintf (dump_file, "failed\n");
722 bb1->aux = NULL;
723 VEC_truncate (du_head_p, id_to_chain, old_length);
724 current_id = old_length;
725 bitmap_clear (&this_info->incoming_open_chains_set);
726 open_chains = NULL;
727 if (insn_rr != NULL)
729 rtx insn;
730 FOR_BB_INSNS (bb1, insn)
732 insn_rr_info *p = VEC_index (insn_rr_info, insn_rr,
733 INSN_UID (insn));
734 p->op_info = NULL;
737 continue;
740 if (dump_file)
741 dump_def_use_chain (old_length);
742 bitmap_copy (&this_info->open_chains_set, &open_chains_set);
744 /* Add successor blocks to the worklist if necessary, and record
745 data about our own open chains at the end of this block, which
746 will be used to pre-open chains when processing the successors. */
747 FOR_EACH_EDGE (e, ei, bb1->succs)
749 struct bb_rename_info *dest_ri;
750 struct du_head *chain;
752 if (dump_file)
753 fprintf (dump_file, "successor block %d\n", e->dest->index);
755 if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
756 continue;
757 dest_ri = (struct bb_rename_info *)e->dest->aux;
758 if (dest_ri == NULL)
759 continue;
760 for (chain = open_chains; chain; chain = chain->next_chain)
761 set_incoming_from_chain (dest_ri, chain);
765 free (inverse_postorder);
767 /* Now, combine the chains data we have gathered across basic block
768 boundaries.
770 For every basic block, there may be chains open at the start, or at the
771 end. Rather than exclude them from renaming, we look for open chains
772 with matching registers at the other side of the CFG edge.
774 For a given chain using register R, open at the start of block B, we
775 must find an open chain using R on the other side of every edge leading
776 to B, if the register is live across this edge. In the code below,
777 N_PREDS_USED counts the number of edges where the register is live, and
778 N_PREDS_JOINED counts those where we found an appropriate chain for
779 joining.
781 We perform the analysis for both incoming and outgoing edges, but we
782 only need to merge once (in the second part, after verifying outgoing
783 edges). */
784 FOR_EACH_BB (bb)
786 struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux;
787 unsigned j;
788 bitmap_iterator bi;
790 if (bb_ri == NULL)
791 continue;
793 if (dump_file)
794 fprintf (dump_file, "processing bb %d in edges\n", bb->index);
796 EXECUTE_IF_SET_IN_BITMAP (&bb_ri->incoming_open_chains_set, 0, j, bi)
798 edge e;
799 edge_iterator ei;
800 struct du_head *chain = regrename_chain_from_id (j);
801 int n_preds_used = 0, n_preds_joined = 0;
803 FOR_EACH_EDGE (e, ei, bb->preds)
805 struct bb_rename_info *src_ri;
806 unsigned k;
807 bitmap_iterator bi2;
808 HARD_REG_SET live;
809 bool success = false;
811 REG_SET_TO_HARD_REG_SET (live, df_get_live_out (e->src));
812 if (!range_overlaps_hard_reg_set_p (live, chain->regno,
813 chain->nregs))
814 continue;
815 n_preds_used++;
817 if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
818 continue;
820 src_ri = (struct bb_rename_info *)e->src->aux;
821 if (src_ri == NULL)
822 continue;
824 EXECUTE_IF_SET_IN_BITMAP (&src_ri->open_chains_set,
825 0, k, bi2)
827 struct du_head *outgoing_chain = regrename_chain_from_id (k);
829 if (outgoing_chain->regno == chain->regno
830 && outgoing_chain->nregs == chain->nregs)
832 n_preds_joined++;
833 success = true;
834 break;
837 if (!success && dump_file)
838 fprintf (dump_file, "failure to match with pred block %d\n",
839 e->src->index);
841 if (n_preds_joined < n_preds_used)
843 if (dump_file)
844 fprintf (dump_file, "cannot rename chain %d\n", j);
845 chain->cannot_rename = 1;
849 FOR_EACH_BB (bb)
851 struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux;
852 unsigned j;
853 bitmap_iterator bi;
855 if (bb_ri == NULL)
856 continue;
858 if (dump_file)
859 fprintf (dump_file, "processing bb %d out edges\n", bb->index);
861 EXECUTE_IF_SET_IN_BITMAP (&bb_ri->open_chains_set, 0, j, bi)
863 edge e;
864 edge_iterator ei;
865 struct du_head *chain = regrename_chain_from_id (j);
866 int n_succs_used = 0, n_succs_joined = 0;
868 FOR_EACH_EDGE (e, ei, bb->succs)
870 bool printed = false;
871 struct bb_rename_info *dest_ri;
872 unsigned k;
873 bitmap_iterator bi2;
874 HARD_REG_SET live;
876 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (e->dest));
877 if (!range_overlaps_hard_reg_set_p (live, chain->regno,
878 chain->nregs))
879 continue;
881 n_succs_used++;
883 dest_ri = (struct bb_rename_info *)e->dest->aux;
884 if (dest_ri == NULL)
885 continue;
887 EXECUTE_IF_SET_IN_BITMAP (&dest_ri->incoming_open_chains_set,
888 0, k, bi2)
890 struct du_head *incoming_chain = regrename_chain_from_id (k);
892 if (incoming_chain->regno == chain->regno
893 && incoming_chain->nregs == chain->nregs)
895 if (dump_file)
897 if (!printed)
898 fprintf (dump_file,
899 "merging blocks for edge %d -> %d\n",
900 e->src->index, e->dest->index);
901 printed = true;
902 fprintf (dump_file,
903 " merging chains %d (->%d) and %d (->%d) [%s]\n",
904 k, incoming_chain->id, j, chain->id,
905 reg_names[incoming_chain->regno]);
908 merge_chains (chain, incoming_chain);
909 n_succs_joined++;
910 break;
914 if (n_succs_joined < n_succs_used)
916 if (dump_file)
917 fprintf (dump_file, "cannot rename chain %d\n",
919 chain->cannot_rename = 1;
924 free (rename_info);
926 FOR_EACH_BB (bb)
927 bb->aux = NULL;
930 void
931 regrename_do_replace (struct du_head *head, int reg)
933 struct du_chain *chain;
934 unsigned int base_regno = head->regno;
935 enum machine_mode mode;
937 for (chain = head->first; chain; chain = chain->next_use)
939 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
940 struct reg_attrs *attr = REG_ATTRS (*chain->loc);
941 int reg_ptr = REG_POINTER (*chain->loc);
943 if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno)
944 INSN_VAR_LOCATION_LOC (chain->insn) = gen_rtx_UNKNOWN_VAR_LOC ();
945 else
947 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
948 if (regno >= FIRST_PSEUDO_REGISTER)
949 ORIGINAL_REGNO (*chain->loc) = regno;
950 REG_ATTRS (*chain->loc) = attr;
951 REG_POINTER (*chain->loc) = reg_ptr;
954 df_insn_rescan (chain->insn);
957 mode = GET_MODE (*head->first->loc);
958 head->regno = reg;
959 head->nregs = hard_regno_nregs[reg][mode];
963 /* True if we found a register with a size mismatch, which means that we
964 can't track its lifetime accurately. If so, we abort the current block
965 without renaming. */
966 static bool fail_current_block;
968 /* Return true if OP is a reg for which all bits are set in PSET, false
969 if all bits are clear.
970 In other cases, set fail_current_block and return false. */
972 static bool
973 verify_reg_in_set (rtx op, HARD_REG_SET *pset)
975 unsigned regno, nregs;
976 bool all_live, all_dead;
977 if (!REG_P (op))
978 return false;
980 regno = REGNO (op);
981 nregs = hard_regno_nregs[regno][GET_MODE (op)];
982 all_live = all_dead = true;
983 while (nregs-- > 0)
984 if (TEST_HARD_REG_BIT (*pset, regno + nregs))
985 all_dead = false;
986 else
987 all_live = false;
988 if (!all_dead && !all_live)
990 fail_current_block = true;
991 return false;
993 return all_live;
996 /* Return true if OP is a reg that is being tracked already in some form.
997 May set fail_current_block if it sees an unhandled case of overlap. */
999 static bool
1000 verify_reg_tracked (rtx op)
1002 return (verify_reg_in_set (op, &live_hard_regs)
1003 || verify_reg_in_set (op, &live_in_chains));
1006 /* Called through note_stores. DATA points to a rtx_code, either SET or
1007 CLOBBER, which tells us which kind of rtx to look at. If we have a
1008 match, record the set register in live_hard_regs and in the hard_conflicts
1009 bitmap of open chains. */
1011 static void
1012 note_sets_clobbers (rtx x, const_rtx set, void *data)
1014 enum rtx_code code = *(enum rtx_code *)data;
1015 struct du_head *chain;
1017 if (GET_CODE (x) == SUBREG)
1018 x = SUBREG_REG (x);
1019 if (!REG_P (x) || GET_CODE (set) != code)
1020 return;
1021 /* There must not be pseudos at this point. */
1022 gcc_assert (HARD_REGISTER_P (x));
1023 add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x));
1024 for (chain = open_chains; chain; chain = chain->next_chain)
1025 add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x));
1028 static void
1029 scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action,
1030 enum op_type type)
1032 struct du_head **p;
1033 rtx x = *loc;
1034 enum machine_mode mode = GET_MODE (x);
1035 unsigned this_regno = REGNO (x);
1036 int this_nregs = hard_regno_nregs[this_regno][mode];
1038 if (action == mark_write)
1040 if (type == OP_OUT)
1041 create_new_chain (this_regno, this_nregs, loc, insn, cl);
1042 return;
1045 if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
1046 return;
1048 for (p = &open_chains; *p;)
1050 struct du_head *head = *p;
1051 struct du_head *next = head->next_chain;
1052 int exact_match = (head->regno == this_regno
1053 && head->nregs == this_nregs);
1054 int superset = (this_regno <= head->regno
1055 && this_regno + this_nregs >= head->regno + head->nregs);
1056 int subset = (this_regno >= head->regno
1057 && this_regno + this_nregs <= head->regno + head->nregs);
1059 if (!bitmap_bit_p (&open_chains_set, head->id)
1060 || head->regno + head->nregs <= this_regno
1061 || this_regno + this_nregs <= head->regno)
1063 p = &head->next_chain;
1064 continue;
1067 if (action == mark_read || action == mark_access)
1069 /* ??? Class NO_REGS can happen if the md file makes use of
1070 EXTRA_CONSTRAINTS to match registers. Which is arguably
1071 wrong, but there we are. */
1073 if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn)))
1075 if (dump_file)
1076 fprintf (dump_file,
1077 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1078 reg_names[head->regno], head->id, INSN_UID (insn),
1079 scan_actions_name[(int) action]);
1080 head->cannot_rename = 1;
1081 if (superset)
1083 unsigned nregs = this_nregs;
1084 head->regno = this_regno;
1085 head->nregs = this_nregs;
1086 while (nregs-- > 0)
1087 SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
1088 if (dump_file)
1089 fprintf (dump_file,
1090 "Widening register in chain %s (%d) at insn %d\n",
1091 reg_names[head->regno], head->id, INSN_UID (insn));
1093 else if (!subset)
1095 fail_current_block = true;
1096 if (dump_file)
1097 fprintf (dump_file,
1098 "Failing basic block due to unhandled overlap\n");
1101 else
1103 struct du_chain *this_du;
1104 this_du = XOBNEW (&rename_obstack, struct du_chain);
1105 this_du->next_use = 0;
1106 this_du->loc = loc;
1107 this_du->insn = insn;
1108 this_du->cl = cl;
1109 if (head->first == NULL)
1110 head->first = this_du;
1111 else
1112 head->last->next_use = this_du;
1113 record_operand_use (head, this_du);
1114 head->last = this_du;
1116 /* Avoid adding the same location in a DEBUG_INSN multiple times,
1117 which could happen with non-exact overlap. */
1118 if (DEBUG_INSN_P (insn))
1119 return;
1120 /* Otherwise, find any other chains that do not match exactly;
1121 ensure they all get marked unrenamable. */
1122 p = &head->next_chain;
1123 continue;
1126 /* Whether the terminated chain can be used for renaming
1127 depends on the action and this being an exact match.
1128 In either case, we remove this element from open_chains. */
1130 if ((action == terminate_dead || action == terminate_write)
1131 && (superset || subset))
1133 unsigned nregs;
1135 if (subset && !superset)
1136 head->cannot_rename = 1;
1137 bitmap_clear_bit (&open_chains_set, head->id);
1139 nregs = head->nregs;
1140 while (nregs-- > 0)
1142 CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs);
1143 if (subset && !superset
1144 && (head->regno + nregs < this_regno
1145 || head->regno + nregs >= this_regno + this_nregs))
1146 SET_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
1149 *p = next;
1150 if (dump_file)
1151 fprintf (dump_file,
1152 "Closing chain %s (%d) at insn %d (%s%s)\n",
1153 reg_names[head->regno], head->id, INSN_UID (insn),
1154 scan_actions_name[(int) action],
1155 superset ? ", superset" : subset ? ", subset" : "");
1157 else if (action == terminate_dead || action == terminate_write)
1159 /* In this case, tracking liveness gets too hard. Fail the
1160 entire basic block. */
1161 if (dump_file)
1162 fprintf (dump_file,
1163 "Failing basic block due to unhandled overlap\n");
1164 fail_current_block = true;
1165 return;
1167 else
1169 head->cannot_rename = 1;
1170 if (dump_file)
1171 fprintf (dump_file,
1172 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1173 reg_names[head->regno], head->id, INSN_UID (insn),
1174 scan_actions_name[(int) action]);
1175 p = &head->next_chain;
1180 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1181 BASE_REG_CLASS depending on how the register is being considered. */
1183 static void
1184 scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
1185 enum scan_actions action, enum machine_mode mode)
1187 rtx x = *loc;
1188 RTX_CODE code = GET_CODE (x);
1189 const char *fmt;
1190 int i, j;
1192 if (action == mark_write || action == mark_access)
1193 return;
1195 switch (code)
1197 case PLUS:
1199 rtx orig_op0 = XEXP (x, 0);
1200 rtx orig_op1 = XEXP (x, 1);
1201 RTX_CODE code0 = GET_CODE (orig_op0);
1202 RTX_CODE code1 = GET_CODE (orig_op1);
1203 rtx op0 = orig_op0;
1204 rtx op1 = orig_op1;
1205 rtx *locI = NULL;
1206 rtx *locB = NULL;
1207 enum rtx_code index_code = SCRATCH;
1209 if (GET_CODE (op0) == SUBREG)
1211 op0 = SUBREG_REG (op0);
1212 code0 = GET_CODE (op0);
1215 if (GET_CODE (op1) == SUBREG)
1217 op1 = SUBREG_REG (op1);
1218 code1 = GET_CODE (op1);
1221 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1222 || code0 == ZERO_EXTEND || code1 == MEM)
1224 locI = &XEXP (x, 0);
1225 locB = &XEXP (x, 1);
1226 index_code = GET_CODE (*locI);
1228 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1229 || code1 == ZERO_EXTEND || code0 == MEM)
1231 locI = &XEXP (x, 1);
1232 locB = &XEXP (x, 0);
1233 index_code = GET_CODE (*locI);
1235 else if (code0 == CONST_INT || code0 == CONST
1236 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1238 locB = &XEXP (x, 1);
1239 index_code = GET_CODE (XEXP (x, 0));
1241 else if (code1 == CONST_INT || code1 == CONST
1242 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1244 locB = &XEXP (x, 0);
1245 index_code = GET_CODE (XEXP (x, 1));
1247 else if (code0 == REG && code1 == REG)
1249 int index_op;
1250 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
1252 if (REGNO_OK_FOR_INDEX_P (regno1)
1253 && regno_ok_for_base_p (regno0, mode, PLUS, REG))
1254 index_op = 1;
1255 else if (REGNO_OK_FOR_INDEX_P (regno0)
1256 && regno_ok_for_base_p (regno1, mode, PLUS, REG))
1257 index_op = 0;
1258 else if (regno_ok_for_base_p (regno0, mode, PLUS, REG)
1259 || REGNO_OK_FOR_INDEX_P (regno1))
1260 index_op = 1;
1261 else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
1262 index_op = 0;
1263 else
1264 index_op = 1;
1266 locI = &XEXP (x, index_op);
1267 locB = &XEXP (x, !index_op);
1268 index_code = GET_CODE (*locI);
1270 else if (code0 == REG)
1272 locI = &XEXP (x, 0);
1273 locB = &XEXP (x, 1);
1274 index_code = GET_CODE (*locI);
1276 else if (code1 == REG)
1278 locI = &XEXP (x, 1);
1279 locB = &XEXP (x, 0);
1280 index_code = GET_CODE (*locI);
1283 if (locI)
1284 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
1285 if (locB)
1286 scan_rtx_address (insn, locB, base_reg_class (mode, PLUS, index_code),
1287 action, mode);
1289 return;
1292 case POST_INC:
1293 case POST_DEC:
1294 case POST_MODIFY:
1295 case PRE_INC:
1296 case PRE_DEC:
1297 case PRE_MODIFY:
1298 #ifndef AUTO_INC_DEC
1299 /* If the target doesn't claim to handle autoinc, this must be
1300 something special, like a stack push. Kill this chain. */
1301 action = mark_all_read;
1302 #endif
1303 break;
1305 case MEM:
1306 scan_rtx_address (insn, &XEXP (x, 0),
1307 base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
1308 GET_MODE (x));
1309 return;
1311 case REG:
1312 scan_rtx_reg (insn, loc, cl, action, OP_IN);
1313 return;
1315 default:
1316 break;
1319 fmt = GET_RTX_FORMAT (code);
1320 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1322 if (fmt[i] == 'e')
1323 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
1324 else if (fmt[i] == 'E')
1325 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1326 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
1330 static void
1331 scan_rtx (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action,
1332 enum op_type type)
1334 const char *fmt;
1335 rtx x = *loc;
1336 enum rtx_code code = GET_CODE (x);
1337 int i, j;
1339 code = GET_CODE (x);
1340 switch (code)
1342 case CONST:
1343 case CONST_INT:
1344 case CONST_DOUBLE:
1345 case CONST_FIXED:
1346 case CONST_VECTOR:
1347 case SYMBOL_REF:
1348 case LABEL_REF:
1349 case CC0:
1350 case PC:
1351 return;
1353 case REG:
1354 scan_rtx_reg (insn, loc, cl, action, type);
1355 return;
1357 case MEM:
1358 scan_rtx_address (insn, &XEXP (x, 0),
1359 base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
1360 GET_MODE (x));
1361 return;
1363 case SET:
1364 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN);
1365 scan_rtx (insn, &SET_DEST (x), cl, action,
1366 (GET_CODE (PATTERN (insn)) == COND_EXEC
1367 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
1368 return;
1370 case STRICT_LOW_PART:
1371 scan_rtx (insn, &XEXP (x, 0), cl, action,
1372 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT);
1373 return;
1375 case ZERO_EXTRACT:
1376 case SIGN_EXTRACT:
1377 scan_rtx (insn, &XEXP (x, 0), cl, action,
1378 (type == OP_IN ? OP_IN :
1379 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT));
1380 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN);
1381 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN);
1382 return;
1384 case POST_INC:
1385 case PRE_INC:
1386 case POST_DEC:
1387 case PRE_DEC:
1388 case POST_MODIFY:
1389 case PRE_MODIFY:
1390 /* Should only happen inside MEM. */
1391 gcc_unreachable ();
1393 case CLOBBER:
1394 scan_rtx (insn, &SET_DEST (x), cl, action,
1395 (GET_CODE (PATTERN (insn)) == COND_EXEC
1396 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
1397 return;
1399 case EXPR_LIST:
1400 scan_rtx (insn, &XEXP (x, 0), cl, action, type);
1401 if (XEXP (x, 1))
1402 scan_rtx (insn, &XEXP (x, 1), cl, action, type);
1403 return;
1405 default:
1406 break;
1409 fmt = GET_RTX_FORMAT (code);
1410 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1412 if (fmt[i] == 'e')
1413 scan_rtx (insn, &XEXP (x, i), cl, action, type);
1414 else if (fmt[i] == 'E')
1415 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1416 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type);
1420 /* Hide operands of the current insn (of which there are N_OPS) by
1421 substituting cc0 for them.
1422 Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
1423 For every bit set in DO_NOT_HIDE, we leave the operand alone.
1424 If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
1425 and earlyclobbers. */
1427 static void
1428 hide_operands (int n_ops, rtx *old_operands, rtx *old_dups,
1429 unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only)
1431 int i;
1432 int alt = which_alternative;
1433 for (i = 0; i < n_ops; i++)
1435 old_operands[i] = recog_data.operand[i];
1436 /* Don't squash match_operator or match_parallel here, since
1437 we don't know that all of the contained registers are
1438 reachable by proper operands. */
1439 if (recog_data.constraints[i][0] == '\0')
1440 continue;
1441 if (do_not_hide & (1 << i))
1442 continue;
1443 if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT
1444 || recog_op_alt[i][alt].earlyclobber)
1445 *recog_data.operand_loc[i] = cc0_rtx;
1447 for (i = 0; i < recog_data.n_dups; i++)
1449 int opn = recog_data.dup_num[i];
1450 old_dups[i] = *recog_data.dup_loc[i];
1451 if (do_not_hide & (1 << opn))
1452 continue;
1453 if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT
1454 || recog_op_alt[opn][alt].earlyclobber)
1455 *recog_data.dup_loc[i] = cc0_rtx;
1459 /* Undo the substitution performed by hide_operands. INSN is the insn we
1460 are processing; the arguments are the same as in hide_operands. */
1462 static void
1463 restore_operands (rtx insn, int n_ops, rtx *old_operands, rtx *old_dups)
1465 int i;
1466 for (i = 0; i < recog_data.n_dups; i++)
1467 *recog_data.dup_loc[i] = old_dups[i];
1468 for (i = 0; i < n_ops; i++)
1469 *recog_data.operand_loc[i] = old_operands[i];
1470 if (recog_data.n_dups)
1471 df_insn_rescan (insn);
1474 /* For each output operand of INSN, call scan_rtx to create a new
1475 open chain. Do this only for normal or earlyclobber outputs,
1476 depending on EARLYCLOBBER. If INSN_INFO is nonnull, use it to
1477 record information about the operands in the insn. */
1479 static void
1480 record_out_operands (rtx insn, bool earlyclobber, insn_rr_info *insn_info)
1482 int n_ops = recog_data.n_operands;
1483 int alt = which_alternative;
1485 int i;
1487 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1489 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1490 rtx *loc = (i < n_ops
1491 ? recog_data.operand_loc[opn]
1492 : recog_data.dup_loc[i - n_ops]);
1493 rtx op = *loc;
1494 enum reg_class cl = recog_op_alt[opn][alt].cl;
1496 struct du_head *prev_open;
1498 if (recog_data.operand_type[opn] != OP_OUT
1499 || recog_op_alt[opn][alt].earlyclobber != earlyclobber)
1500 continue;
1502 if (insn_info)
1503 cur_operand = insn_info->op_info + i;
1505 prev_open = open_chains;
1506 scan_rtx (insn, loc, cl, mark_write, OP_OUT);
1508 /* ??? Many targets have output constraints on the SET_DEST
1509 of a call insn, which is stupid, since these are certainly
1510 ABI defined hard registers. For these, and for asm operands
1511 that originally referenced hard registers, we must record that
1512 the chain cannot be renamed. */
1513 if (CALL_P (insn)
1514 || (asm_noperands (PATTERN (insn)) > 0
1515 && REG_P (op)
1516 && REGNO (op) == ORIGINAL_REGNO (op)))
1518 if (prev_open != open_chains)
1519 open_chains->cannot_rename = 1;
1522 cur_operand = NULL;
1525 /* Build def/use chain. */
1527 static bool
1528 build_def_use (basic_block bb)
1530 rtx insn;
1531 unsigned HOST_WIDE_INT untracked_operands;
1533 fail_current_block = false;
1535 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1537 if (NONDEBUG_INSN_P (insn))
1539 int n_ops;
1540 rtx note;
1541 rtx old_operands[MAX_RECOG_OPERANDS];
1542 rtx old_dups[MAX_DUP_OPERANDS];
1543 int i;
1544 int alt;
1545 int predicated;
1546 enum rtx_code set_code = SET;
1547 enum rtx_code clobber_code = CLOBBER;
1548 insn_rr_info *insn_info = NULL;
1550 /* Process the insn, determining its effect on the def-use
1551 chains and live hard registers. We perform the following
1552 steps with the register references in the insn, simulating
1553 its effect:
1554 (1) Deal with earlyclobber operands and CLOBBERs of non-operands
1555 by creating chains and marking hard regs live.
1556 (2) Any read outside an operand causes any chain it overlaps
1557 with to be marked unrenamable.
1558 (3) Any read inside an operand is added if there's already
1559 an open chain for it.
1560 (4) For any REG_DEAD note we find, close open chains that
1561 overlap it.
1562 (5) For any non-earlyclobber write we find, close open chains
1563 that overlap it.
1564 (6) For any non-earlyclobber write we find in an operand, make
1565 a new chain or mark the hard register as live.
1566 (7) For any REG_UNUSED, close any chains we just opened.
1568 We cannot deal with situations where we track a reg in one mode
1569 and see a reference in another mode; these will cause the chain
1570 to be marked unrenamable or even cause us to abort the entire
1571 basic block. */
1573 extract_insn (insn);
1574 if (! constrain_operands (1))
1575 fatal_insn_not_found (insn);
1576 preprocess_constraints ();
1577 alt = which_alternative;
1578 n_ops = recog_data.n_operands;
1579 untracked_operands = 0;
1581 if (insn_rr != NULL)
1583 insn_info = VEC_index (insn_rr_info, insn_rr, INSN_UID (insn));
1584 insn_info->op_info = XOBNEWVEC (&rename_obstack, operand_rr_info,
1585 recog_data.n_operands);
1586 memset (insn_info->op_info, 0,
1587 sizeof (operand_rr_info) * recog_data.n_operands);
1590 /* Simplify the code below by rewriting things to reflect
1591 matching constraints. Also promote OP_OUT to OP_INOUT in
1592 predicated instructions, but only for register operands
1593 that are already tracked, so that we can create a chain
1594 when the first SET makes a register live. */
1596 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1597 for (i = 0; i < n_ops; ++i)
1599 rtx op = recog_data.operand[i];
1600 int matches = recog_op_alt[i][alt].matches;
1601 if (matches >= 0)
1602 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1603 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1604 || (predicated && recog_data.operand_type[i] == OP_OUT))
1606 recog_data.operand_type[i] = OP_INOUT;
1607 /* A special case to deal with instruction patterns that
1608 have matching operands with different modes. If we're
1609 not already tracking such a reg, we won't start here,
1610 and we must instead make sure to make the operand visible
1611 to the machinery that tracks hard registers. */
1612 if (matches >= 0
1613 && (GET_MODE_SIZE (recog_data.operand_mode[i])
1614 != GET_MODE_SIZE (recog_data.operand_mode[matches]))
1615 && !verify_reg_in_set (op, &live_in_chains))
1617 untracked_operands |= 1 << i;
1618 untracked_operands |= 1 << matches;
1621 /* If there's an in-out operand with a register that is not
1622 being tracked at all yet, open a chain. */
1623 if (recog_data.operand_type[i] == OP_INOUT
1624 && !(untracked_operands & (1 << i))
1625 && REG_P (op)
1626 && !verify_reg_tracked (op))
1628 enum machine_mode mode = GET_MODE (op);
1629 unsigned this_regno = REGNO (op);
1630 unsigned this_nregs = hard_regno_nregs[this_regno][mode];
1631 create_new_chain (this_regno, this_nregs, NULL, NULL_RTX,
1632 NO_REGS);
1636 if (fail_current_block)
1637 break;
1639 /* Step 1a: Mark hard registers that are clobbered in this insn,
1640 outside an operand, as live. */
1641 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1642 false);
1643 note_stores (PATTERN (insn), note_sets_clobbers, &clobber_code);
1644 restore_operands (insn, n_ops, old_operands, old_dups);
1646 /* Step 1b: Begin new chains for earlyclobbered writes inside
1647 operands. */
1648 record_out_operands (insn, true, insn_info);
1650 /* Step 2: Mark chains for which we have reads outside operands
1651 as unrenamable.
1652 We do this by munging all operands into CC0, and closing
1653 everything remaining. */
1655 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1656 false);
1657 scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN);
1658 restore_operands (insn, n_ops, old_operands, old_dups);
1660 /* Step 2B: Can't rename function call argument registers. */
1661 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
1662 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
1663 NO_REGS, mark_all_read, OP_IN);
1665 /* Step 2C: Can't rename asm operands that were originally
1666 hard registers. */
1667 if (asm_noperands (PATTERN (insn)) > 0)
1668 for (i = 0; i < n_ops; i++)
1670 rtx *loc = recog_data.operand_loc[i];
1671 rtx op = *loc;
1673 if (REG_P (op)
1674 && REGNO (op) == ORIGINAL_REGNO (op)
1675 && (recog_data.operand_type[i] == OP_IN
1676 || recog_data.operand_type[i] == OP_INOUT))
1677 scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN);
1680 /* Step 3: Append to chains for reads inside operands. */
1681 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1683 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1684 rtx *loc = (i < n_ops
1685 ? recog_data.operand_loc[opn]
1686 : recog_data.dup_loc[i - n_ops]);
1687 enum reg_class cl = recog_op_alt[opn][alt].cl;
1688 enum op_type type = recog_data.operand_type[opn];
1690 /* Don't scan match_operand here, since we've no reg class
1691 information to pass down. Any operands that we could
1692 substitute in will be represented elsewhere. */
1693 if (recog_data.constraints[opn][0] == '\0'
1694 || untracked_operands & (1 << opn))
1695 continue;
1697 if (insn_info)
1698 cur_operand = i == opn ? insn_info->op_info + i : NULL;
1699 if (recog_op_alt[opn][alt].is_address)
1700 scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
1701 else
1702 scan_rtx (insn, loc, cl, mark_read, type);
1704 cur_operand = NULL;
1706 /* Step 3B: Record updates for regs in REG_INC notes, and
1707 source regs in REG_FRAME_RELATED_EXPR notes. */
1708 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1709 if (REG_NOTE_KIND (note) == REG_INC
1710 || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
1711 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
1712 OP_INOUT);
1714 /* Step 4: Close chains for registers that die here. */
1715 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1716 if (REG_NOTE_KIND (note) == REG_DEAD)
1718 remove_from_hard_reg_set (&live_hard_regs,
1719 GET_MODE (XEXP (note, 0)),
1720 REGNO (XEXP (note, 0)));
1721 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
1722 OP_IN);
1725 /* Step 4B: If this is a call, any chain live at this point
1726 requires a caller-saved reg. */
1727 if (CALL_P (insn))
1729 struct du_head *p;
1730 for (p = open_chains; p; p = p->next_chain)
1731 p->need_caller_save_reg = 1;
1734 /* Step 5: Close open chains that overlap writes. Similar to
1735 step 2, we hide in-out operands, since we do not want to
1736 close these chains. We also hide earlyclobber operands,
1737 since we've opened chains for them in step 1, and earlier
1738 chains they would overlap with must have been closed at
1739 the previous insn at the latest, as such operands cannot
1740 possibly overlap with any input operands. */
1742 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1743 true);
1744 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN);
1745 restore_operands (insn, n_ops, old_operands, old_dups);
1747 /* Step 6a: Mark hard registers that are set in this insn,
1748 outside an operand, as live. */
1749 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1750 false);
1751 note_stores (PATTERN (insn), note_sets_clobbers, &set_code);
1752 restore_operands (insn, n_ops, old_operands, old_dups);
1754 /* Step 6b: Begin new chains for writes inside operands. */
1755 record_out_operands (insn, false, insn_info);
1757 /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
1758 notes for update. */
1759 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1760 if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
1761 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
1762 OP_INOUT);
1764 /* Step 7: Close chains for registers that were never
1765 really used here. */
1766 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1767 if (REG_NOTE_KIND (note) == REG_UNUSED)
1769 remove_from_hard_reg_set (&live_hard_regs,
1770 GET_MODE (XEXP (note, 0)),
1771 REGNO (XEXP (note, 0)));
1772 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
1773 OP_IN);
1776 else if (DEBUG_INSN_P (insn)
1777 && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn)))
1779 scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn),
1780 ALL_REGS, mark_read, OP_IN);
1782 if (insn == BB_END (bb))
1783 break;
1786 if (fail_current_block)
1787 return false;
1789 return true;
1792 /* Initialize the register renamer. If INSN_INFO is true, ensure that
1793 insn_rr is nonnull. */
1794 void
1795 regrename_init (bool insn_info)
1797 gcc_obstack_init (&rename_obstack);
1798 insn_rr = NULL;
1799 if (insn_info)
1800 VEC_safe_grow_cleared (insn_rr_info, heap, insn_rr, get_max_uid ());
1803 /* Free all global data used by the register renamer. */
1804 void
1805 regrename_finish (void)
1807 VEC_free (insn_rr_info, heap, insn_rr);
1808 free_chain_data ();
1809 obstack_free (&rename_obstack, NULL);
1812 /* Perform register renaming on the current function. */
1814 static unsigned int
1815 regrename_optimize (void)
1817 df_set_flags (DF_LR_RUN_DCE);
1818 df_note_add_problem ();
1819 df_analyze ();
1820 df_set_flags (DF_DEFER_INSN_RESCAN);
1822 regrename_init (false);
1824 regrename_analyze (NULL);
1826 rename_chains ();
1828 regrename_finish ();
1830 return 0;
1833 static bool
1834 gate_handle_regrename (void)
1836 return (optimize > 0 && (flag_rename_registers));
1839 struct rtl_opt_pass pass_regrename =
1842 RTL_PASS,
1843 "rnreg", /* name */
1844 gate_handle_regrename, /* gate */
1845 regrename_optimize, /* execute */
1846 NULL, /* sub */
1847 NULL, /* next */
1848 0, /* static_pass_number */
1849 TV_RENAME_REGISTERS, /* tv_id */
1850 0, /* properties_required */
1851 0, /* properties_provided */
1852 0, /* properties_destroyed */
1853 0, /* todo_flags_start */
1854 TODO_df_finish | TODO_verify_rtl_sharing |
1855 0 /* todo_flags_finish */