* gcse.c: Remove an obsolete comment.
[official-gcc.git] / gcc / flow.c
blob172541d2fa58ba513850065ba41fcfc9719d1a06
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
141 #include "obstack.h"
142 #include "splay-tree.h"
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
164 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
165 #endif
166 #endif
168 /* This is the maximum number of times we process any given block if the
169 latest loop depth count is smaller than this number. Only used for the
170 failure strategy to avoid infinite loops in calculate_global_regs_live. */
171 #define MAX_LIVENESS_ROUNDS 20
173 /* Nonzero if the second flow pass has completed. */
174 int flow2_completed;
176 /* Maximum register number used in this function, plus one. */
178 int max_regno;
180 /* Indexed by n, giving various register information */
182 varray_type reg_n_info;
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
187 regset regs_live_at_setjmp;
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
193 rtx regs_may_share;
195 /* Set of registers that may be eliminable. These are handled specially
196 in updating regs_ever_live. */
198 static HARD_REG_SET elim_reg_set;
200 /* Holds information for tracking conditional register life information. */
201 struct reg_cond_life_info
203 /* A boolean expression of conditions under which a register is dead. */
204 rtx condition;
205 /* Conditions under which a register is dead at the basic block end. */
206 rtx orig_condition;
208 /* A boolean expression of conditions under which a register has been
209 stored into. */
210 rtx stores;
212 /* ??? Could store mask of bytes that are dead, so that we could finally
213 track lifetimes of multi-word registers accessed via subregs. */
216 /* For use in communicating between propagate_block and its subroutines.
217 Holds all information needed to compute life and def-use information. */
219 struct propagate_block_info
221 /* The basic block we're considering. */
222 basic_block bb;
224 /* Bit N is set if register N is conditionally or unconditionally live. */
225 regset reg_live;
227 /* Bit N is set if register N is set this insn. */
228 regset new_set;
230 /* Element N is the next insn that uses (hard or pseudo) register N
231 within the current basic block; or zero, if there is no such insn. */
232 rtx *reg_next_use;
234 /* Contains a list of all the MEMs we are tracking for dead store
235 elimination. */
236 rtx mem_set_list;
238 /* If non-null, record the set of registers set unconditionally in the
239 basic block. */
240 regset local_set;
242 /* If non-null, record the set of registers set conditionally in the
243 basic block. */
244 regset cond_local_set;
246 #ifdef HAVE_conditional_execution
247 /* Indexed by register number, holds a reg_cond_life_info for each
248 register that is not unconditionally live or dead. */
249 splay_tree reg_cond_dead;
251 /* Bit N is set if register N is in an expression in reg_cond_dead. */
252 regset reg_cond_reg;
253 #endif
255 /* The length of mem_set_list. */
256 int mem_set_list_len;
258 /* Nonzero if the value of CC0 is live. */
259 int cc0_live;
261 /* Flags controlling the set of information propagate_block collects. */
262 int flags;
263 /* Index of instruction being processed. */
264 int insn_num;
267 /* Number of dead insns removed. */
268 static int ndead;
270 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
271 where given register died. When the register is marked alive, we use the
272 information to compute amount of instructions life range cross.
273 (remember, we are walking backward). This can be computed as current
274 pbi->insn_num - reg_deaths[regno].
275 At the end of processing each basic block, the remaining live registers
276 are inspected and liferanges are increased same way so liverange of global
277 registers are computed correctly.
279 The array is maintained clear for dead registers, so it can be safely reused
280 for next basic block without expensive memset of the whole array after
281 reseting pbi->insn_num to 0. */
283 static int *reg_deaths;
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
289 /* Forward declarations */
290 static int verify_wide_reg_1 (rtx *, void *);
291 static void verify_wide_reg (int, basic_block);
292 static void verify_local_live_at_start (regset, basic_block);
293 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
294 static void notice_stack_pointer_modification (void);
295 static void mark_reg (rtx, void *);
296 static void mark_regs_live_at_end (regset);
297 static void calculate_global_regs_live (sbitmap, sbitmap, int);
298 static void propagate_block_delete_insn (rtx);
299 static rtx propagate_block_delete_libcall (rtx, rtx);
300 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
301 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
302 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
304 rtx, rtx, int);
305 static int find_regno_partial (rtx *, void *);
307 #ifdef HAVE_conditional_execution
308 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
309 static void free_reg_cond_life_info (splay_tree_value);
310 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
311 static void flush_reg_cond_reg (struct propagate_block_info *, int);
312 static rtx elim_reg_cond (rtx, unsigned int);
313 static rtx ior_reg_cond (rtx, rtx, int);
314 static rtx not_reg_cond (rtx);
315 static rtx and_reg_cond (rtx, rtx, int);
316 #endif
317 #ifdef AUTO_INC_DEC
318 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
319 rtx, rtx);
320 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
321 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
322 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
323 #endif
324 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
325 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
326 void debug_flow_info (void);
327 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
328 static int invalidate_mems_from_autoinc (rtx *, void *);
329 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
330 static void clear_log_links (sbitmap);
331 static int count_or_remove_death_notes_bb (basic_block, int);
332 static void allocate_bb_life_data (void);
334 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
335 note associated with the BLOCK. */
338 first_insn_after_basic_block_note (basic_block block)
340 rtx insn;
342 /* Get the first instruction in the block. */
343 insn = BB_HEAD (block);
345 if (insn == NULL_RTX)
346 return NULL_RTX;
347 if (LABEL_P (insn))
348 insn = NEXT_INSN (insn);
349 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
351 return NEXT_INSN (insn);
354 /* Perform data flow analysis for the whole control flow graph.
355 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
357 void
358 life_analysis (FILE *file, int flags)
360 #ifdef ELIMINABLE_REGS
361 int i;
362 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
363 #endif
365 /* Record which registers will be eliminated. We use this in
366 mark_used_regs. */
368 CLEAR_HARD_REG_SET (elim_reg_set);
370 #ifdef ELIMINABLE_REGS
371 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
372 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
373 #else
374 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
375 #endif
378 #ifdef CANNOT_CHANGE_MODE_CLASS
379 if (flags & PROP_REG_INFO)
380 init_subregs_of_mode ();
381 #endif
383 if (! optimize)
384 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
386 /* The post-reload life analysis have (on a global basis) the same
387 registers live as was computed by reload itself. elimination
388 Otherwise offsets and such may be incorrect.
390 Reload will make some registers as live even though they do not
391 appear in the rtl.
393 We don't want to create new auto-incs after reload, since they
394 are unlikely to be useful and can cause problems with shared
395 stack slots. */
396 if (reload_completed)
397 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
399 /* We want alias analysis information for local dead store elimination. */
400 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
401 init_alias_analysis ();
403 /* Always remove no-op moves. Do this before other processing so
404 that we don't have to keep re-scanning them. */
405 delete_noop_moves ();
407 /* Some targets can emit simpler epilogues if they know that sp was
408 not ever modified during the function. After reload, of course,
409 we've already emitted the epilogue so there's no sense searching. */
410 if (! reload_completed)
411 notice_stack_pointer_modification ();
413 /* Allocate and zero out data structures that will record the
414 data from lifetime analysis. */
415 allocate_reg_life_data ();
416 allocate_bb_life_data ();
418 /* Find the set of registers live on function exit. */
419 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
421 /* "Update" life info from zero. It'd be nice to begin the
422 relaxation with just the exit and noreturn blocks, but that set
423 is not immediately handy. */
425 if (flags & PROP_REG_INFO)
427 memset (regs_ever_live, 0, sizeof (regs_ever_live));
428 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
430 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
431 if (reg_deaths)
433 free (reg_deaths);
434 reg_deaths = NULL;
437 /* Clean up. */
438 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
439 end_alias_analysis ();
441 if (file)
442 dump_flow_info (file);
444 /* Removing dead insns should have made jumptables really dead. */
445 delete_dead_jumptables ();
448 /* A subroutine of verify_wide_reg, called through for_each_rtx.
449 Search for REGNO. If found, return 2 if it is not wider than
450 word_mode. */
452 static int
453 verify_wide_reg_1 (rtx *px, void *pregno)
455 rtx x = *px;
456 unsigned int regno = *(int *) pregno;
458 if (REG_P (x) && REGNO (x) == regno)
460 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
461 return 2;
462 return 1;
464 return 0;
467 /* A subroutine of verify_local_live_at_start. Search through insns
468 of BB looking for register REGNO. */
470 static void
471 verify_wide_reg (int regno, basic_block bb)
473 rtx head = BB_HEAD (bb), end = BB_END (bb);
475 while (1)
477 if (INSN_P (head))
479 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
480 if (r == 1)
481 return;
482 if (r == 2)
483 break;
485 if (head == end)
486 break;
487 head = NEXT_INSN (head);
489 if (dump_file)
491 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
492 dump_bb (bb, dump_file, 0);
494 fatal_error ("internal consistency failure");
497 /* A subroutine of update_life_info. Verify that there are no untoward
498 changes in live_at_start during a local update. */
500 static void
501 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
503 if (reload_completed)
505 /* After reload, there are no pseudos, nor subregs of multi-word
506 registers. The regsets should exactly match. */
507 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
509 if (dump_file)
511 fprintf (dump_file,
512 "live_at_start mismatch in bb %d, aborting\nNew:\n",
513 bb->index);
514 debug_bitmap_file (dump_file, new_live_at_start);
515 fputs ("Old:\n", dump_file);
516 dump_bb (bb, dump_file, 0);
518 fatal_error ("internal consistency failure");
521 else
523 unsigned i;
524 reg_set_iterator rsi;
526 /* Find the set of changed registers. */
527 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
529 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
531 /* No registers should die. */
532 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
534 if (dump_file)
536 fprintf (dump_file,
537 "Register %d died unexpectedly.\n", i);
538 dump_bb (bb, dump_file, 0);
540 fatal_error ("internal consistency failure");
542 /* Verify that the now-live register is wider than word_mode. */
543 verify_wide_reg (i, bb);
548 /* Updates life information starting with the basic blocks set in BLOCKS.
549 If BLOCKS is null, consider it to be the universal set.
551 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
552 we are only expecting local modifications to basic blocks. If we find
553 extra registers live at the beginning of a block, then we either killed
554 useful data, or we have a broken split that wants data not provided.
555 If we find registers removed from live_at_start, that means we have
556 a broken peephole that is killing a register it shouldn't.
558 ??? This is not true in one situation -- when a pre-reload splitter
559 generates subregs of a multi-word pseudo, current life analysis will
560 lose the kill. So we _can_ have a pseudo go live. How irritating.
562 It is also not true when a peephole decides that it doesn't need one
563 or more of the inputs.
565 Including PROP_REG_INFO does not properly refresh regs_ever_live
566 unless the caller resets it to zero. */
569 update_life_info (sbitmap blocks, enum update_life_extent extent,
570 int prop_flags)
572 regset tmp;
573 unsigned i;
574 int stabilized_prop_flags = prop_flags;
575 basic_block bb;
577 tmp = ALLOC_REG_SET (&reg_obstack);
578 ndead = 0;
580 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
581 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
583 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
584 ? TV_LIFE_UPDATE : TV_LIFE);
586 /* Changes to the CFG are only allowed when
587 doing a global update for the entire CFG. */
588 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
589 || (extent != UPDATE_LIFE_LOCAL && !blocks));
591 /* For a global update, we go through the relaxation process again. */
592 if (extent != UPDATE_LIFE_LOCAL)
594 for ( ; ; )
596 int changed = 0;
598 calculate_global_regs_live (blocks, blocks,
599 prop_flags & (PROP_SCAN_DEAD_CODE
600 | PROP_SCAN_DEAD_STORES
601 | PROP_ALLOW_CFG_CHANGES));
603 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
604 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
605 break;
607 /* Removing dead code may allow the CFG to be simplified which
608 in turn may allow for further dead code detection / removal. */
609 FOR_EACH_BB_REVERSE (bb)
611 COPY_REG_SET (tmp, bb->global_live_at_end);
612 changed |= propagate_block (bb, tmp, NULL, NULL,
613 prop_flags & (PROP_SCAN_DEAD_CODE
614 | PROP_SCAN_DEAD_STORES
615 | PROP_KILL_DEAD_CODE));
618 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
619 subsequent propagate_block calls, since removing or acting as
620 removing dead code can affect global register liveness, which
621 is supposed to be finalized for this call after this loop. */
622 stabilized_prop_flags
623 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
624 | PROP_KILL_DEAD_CODE);
626 if (! changed)
627 break;
629 /* We repeat regardless of what cleanup_cfg says. If there were
630 instructions deleted above, that might have been only a
631 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
632 Further improvement may be possible. */
633 cleanup_cfg (CLEANUP_EXPENSIVE);
635 /* Zap the life information from the last round. If we don't
636 do this, we can wind up with registers that no longer appear
637 in the code being marked live at entry. */
638 FOR_EACH_BB (bb)
640 CLEAR_REG_SET (bb->global_live_at_start);
641 CLEAR_REG_SET (bb->global_live_at_end);
645 /* If asked, remove notes from the blocks we'll update. */
646 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
647 count_or_remove_death_notes (blocks, 1);
650 /* Clear log links in case we are asked to (re)compute them. */
651 if (prop_flags & PROP_LOG_LINKS)
652 clear_log_links (blocks);
654 if (blocks)
656 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
658 bb = BASIC_BLOCK (i);
660 COPY_REG_SET (tmp, bb->global_live_at_end);
661 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
663 if (extent == UPDATE_LIFE_LOCAL)
664 verify_local_live_at_start (tmp, bb);
667 else
669 FOR_EACH_BB_REVERSE (bb)
671 COPY_REG_SET (tmp, bb->global_live_at_end);
673 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
675 if (extent == UPDATE_LIFE_LOCAL)
676 verify_local_live_at_start (tmp, bb);
680 FREE_REG_SET (tmp);
682 if (prop_flags & PROP_REG_INFO)
684 reg_set_iterator rsi;
686 /* The only pseudos that are live at the beginning of the function
687 are those that were not set anywhere in the function. local-alloc
688 doesn't know how to handle these correctly, so mark them as not
689 local to any one basic block. */
690 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
691 FIRST_PSEUDO_REGISTER, i, rsi)
692 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
694 /* We have a problem with any pseudoreg that lives across the setjmp.
695 ANSI says that if a user variable does not change in value between
696 the setjmp and the longjmp, then the longjmp preserves it. This
697 includes longjmp from a place where the pseudo appears dead.
698 (In principle, the value still exists if it is in scope.)
699 If the pseudo goes in a hard reg, some other value may occupy
700 that hard reg where this pseudo is dead, thus clobbering the pseudo.
701 Conclusion: such a pseudo must not go in a hard reg. */
702 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
703 FIRST_PSEUDO_REGISTER, i, rsi)
705 if (regno_reg_rtx[i] != 0)
707 REG_LIVE_LENGTH (i) = -1;
708 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
712 if (reg_deaths)
714 free (reg_deaths);
715 reg_deaths = NULL;
717 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
718 ? TV_LIFE_UPDATE : TV_LIFE);
719 if (ndead && dump_file)
720 fprintf (dump_file, "deleted %i dead insns\n", ndead);
721 return ndead;
724 /* Update life information in all blocks where BB_DIRTY is set. */
727 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
729 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
730 int n = 0;
731 basic_block bb;
732 int retval = 0;
734 sbitmap_zero (update_life_blocks);
735 FOR_EACH_BB (bb)
737 if (bb->flags & BB_DIRTY)
739 SET_BIT (update_life_blocks, bb->index);
740 n++;
744 if (n)
745 retval = update_life_info (update_life_blocks, extent, prop_flags);
747 sbitmap_free (update_life_blocks);
748 return retval;
751 /* Free the variables allocated by find_basic_blocks. */
753 void
754 free_basic_block_vars (void)
756 if (basic_block_info)
758 clear_edges ();
759 basic_block_info = NULL;
761 n_basic_blocks = 0;
762 last_basic_block = 0;
764 ENTRY_BLOCK_PTR->aux = NULL;
765 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
766 EXIT_BLOCK_PTR->aux = NULL;
767 EXIT_BLOCK_PTR->global_live_at_start = NULL;
770 /* Delete any insns that copy a register to itself. */
773 delete_noop_moves (void)
775 rtx insn, next;
776 basic_block bb;
777 int nnoops = 0;
779 FOR_EACH_BB (bb)
781 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
783 next = NEXT_INSN (insn);
784 if (INSN_P (insn) && noop_move_p (insn))
786 rtx note;
788 /* If we're about to remove the first insn of a libcall
789 then move the libcall note to the next real insn and
790 update the retval note. */
791 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
792 && XEXP (note, 0) != insn)
794 rtx new_libcall_insn = next_real_insn (insn);
795 rtx retval_note = find_reg_note (XEXP (note, 0),
796 REG_RETVAL, NULL_RTX);
797 REG_NOTES (new_libcall_insn)
798 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
799 REG_NOTES (new_libcall_insn));
800 XEXP (retval_note, 0) = new_libcall_insn;
803 delete_insn_and_edges (insn);
804 nnoops++;
808 if (nnoops && dump_file)
809 fprintf (dump_file, "deleted %i noop moves", nnoops);
810 return nnoops;
813 /* Delete any jump tables never referenced. We can't delete them at the
814 time of removing tablejump insn as they are referenced by the preceding
815 insns computing the destination, so we delay deleting and garbagecollect
816 them once life information is computed. */
817 void
818 delete_dead_jumptables (void)
820 rtx insn, next;
821 for (insn = get_insns (); insn; insn = next)
823 next = NEXT_INSN (insn);
824 if (LABEL_P (insn)
825 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
826 && JUMP_P (next)
827 && (GET_CODE (PATTERN (next)) == ADDR_VEC
828 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
830 if (dump_file)
831 fprintf (dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
832 delete_insn (NEXT_INSN (insn));
833 delete_insn (insn);
834 next = NEXT_INSN (next);
839 /* Determine if the stack pointer is constant over the life of the function.
840 Only useful before prologues have been emitted. */
842 static void
843 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
844 void *data ATTRIBUTE_UNUSED)
846 if (x == stack_pointer_rtx
847 /* The stack pointer is only modified indirectly as the result
848 of a push until later in flow. See the comments in rtl.texi
849 regarding Embedded Side-Effects on Addresses. */
850 || (MEM_P (x)
851 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
852 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
853 current_function_sp_is_unchanging = 0;
856 static void
857 notice_stack_pointer_modification (void)
859 basic_block bb;
860 rtx insn;
862 /* Assume that the stack pointer is unchanging if alloca hasn't
863 been used. */
864 current_function_sp_is_unchanging = !current_function_calls_alloca;
865 if (! current_function_sp_is_unchanging)
866 return;
868 FOR_EACH_BB (bb)
869 FOR_BB_INSNS (bb, insn)
871 if (INSN_P (insn))
873 /* Check if insn modifies the stack pointer. */
874 note_stores (PATTERN (insn),
875 notice_stack_pointer_modification_1,
876 NULL);
877 if (! current_function_sp_is_unchanging)
878 return;
883 /* Mark a register in SET. Hard registers in large modes get all
884 of their component registers set as well. */
886 static void
887 mark_reg (rtx reg, void *xset)
889 regset set = (regset) xset;
890 int regno = REGNO (reg);
892 gcc_assert (GET_MODE (reg) != BLKmode);
894 SET_REGNO_REG_SET (set, regno);
895 if (regno < FIRST_PSEUDO_REGISTER)
897 int n = hard_regno_nregs[regno][GET_MODE (reg)];
898 while (--n > 0)
899 SET_REGNO_REG_SET (set, regno + n);
903 /* Mark those regs which are needed at the end of the function as live
904 at the end of the last basic block. */
906 static void
907 mark_regs_live_at_end (regset set)
909 unsigned int i;
911 /* If exiting needs the right stack value, consider the stack pointer
912 live at the end of the function. */
913 if ((HAVE_epilogue && epilogue_completed)
914 || ! EXIT_IGNORE_STACK
915 || (! FRAME_POINTER_REQUIRED
916 && ! current_function_calls_alloca
917 && flag_omit_frame_pointer)
918 || current_function_sp_is_unchanging)
920 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
923 /* Mark the frame pointer if needed at the end of the function. If
924 we end up eliminating it, it will be removed from the live list
925 of each basic block by reload. */
927 if (! reload_completed || frame_pointer_needed)
929 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
930 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
931 /* If they are different, also mark the hard frame pointer as live. */
932 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
933 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
934 #endif
937 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
938 /* Many architectures have a GP register even without flag_pic.
939 Assume the pic register is not in use, or will be handled by
940 other means, if it is not fixed. */
941 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
942 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
943 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
944 #endif
946 /* Mark all global registers, and all registers used by the epilogue
947 as being live at the end of the function since they may be
948 referenced by our caller. */
949 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
950 if (global_regs[i] || EPILOGUE_USES (i))
951 SET_REGNO_REG_SET (set, i);
953 if (HAVE_epilogue && epilogue_completed)
955 /* Mark all call-saved registers that we actually used. */
956 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
957 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
958 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
959 SET_REGNO_REG_SET (set, i);
962 #ifdef EH_RETURN_DATA_REGNO
963 /* Mark the registers that will contain data for the handler. */
964 if (reload_completed && current_function_calls_eh_return)
965 for (i = 0; ; ++i)
967 unsigned regno = EH_RETURN_DATA_REGNO(i);
968 if (regno == INVALID_REGNUM)
969 break;
970 SET_REGNO_REG_SET (set, regno);
972 #endif
973 #ifdef EH_RETURN_STACKADJ_RTX
974 if ((! HAVE_epilogue || ! epilogue_completed)
975 && current_function_calls_eh_return)
977 rtx tmp = EH_RETURN_STACKADJ_RTX;
978 if (tmp && REG_P (tmp))
979 mark_reg (tmp, set);
981 #endif
982 #ifdef EH_RETURN_HANDLER_RTX
983 if ((! HAVE_epilogue || ! epilogue_completed)
984 && current_function_calls_eh_return)
986 rtx tmp = EH_RETURN_HANDLER_RTX;
987 if (tmp && REG_P (tmp))
988 mark_reg (tmp, set);
990 #endif
992 /* Mark function return value. */
993 diddle_return_value (mark_reg, set);
996 /* Propagate global life info around the graph of basic blocks. Begin
997 considering blocks with their corresponding bit set in BLOCKS_IN.
998 If BLOCKS_IN is null, consider it the universal set.
1000 BLOCKS_OUT is set for every block that was changed. */
1002 static void
1003 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1005 basic_block *queue, *qhead, *qtail, *qend, bb;
1006 regset tmp, new_live_at_end, invalidated_by_call;
1007 regset registers_made_dead;
1008 bool failure_strategy_required = false;
1009 int *block_accesses;
1011 /* The registers that are modified within this in block. */
1012 regset *local_sets;
1014 /* The registers that are conditionally modified within this block.
1015 In other words, regs that are set only as part of a COND_EXEC. */
1016 regset *cond_local_sets;
1018 int i;
1020 /* Some passes used to forget clear aux field of basic block causing
1021 sick behavior here. */
1022 #ifdef ENABLE_CHECKING
1023 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1024 gcc_assert (!bb->aux);
1025 #endif
1027 tmp = ALLOC_REG_SET (&reg_obstack);
1028 new_live_at_end = ALLOC_REG_SET (&reg_obstack);
1029 invalidated_by_call = ALLOC_REG_SET (&reg_obstack);
1030 registers_made_dead = ALLOC_REG_SET (&reg_obstack);
1032 /* Inconveniently, this is only readily available in hard reg set form. */
1033 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1034 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1035 SET_REGNO_REG_SET (invalidated_by_call, i);
1037 /* Allocate space for the sets of local properties. */
1038 local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1039 sizeof (regset));
1040 cond_local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1041 sizeof (regset));
1043 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1044 because the `head == tail' style test for an empty queue doesn't
1045 work with a full queue. */
1046 queue = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1)) * sizeof (*queue));
1047 qtail = queue;
1048 qhead = qend = queue + n_basic_blocks - (INVALID_BLOCK + 1);
1050 /* Queue the blocks set in the initial mask. Do this in reverse block
1051 number order so that we are more likely for the first round to do
1052 useful work. We use AUX non-null to flag that the block is queued. */
1053 if (blocks_in)
1055 FOR_EACH_BB (bb)
1056 if (TEST_BIT (blocks_in, bb->index))
1058 *--qhead = bb;
1059 bb->aux = bb;
1062 else
1064 FOR_EACH_BB (bb)
1066 *--qhead = bb;
1067 bb->aux = bb;
1071 block_accesses = xcalloc (last_basic_block, sizeof (int));
1073 /* We clean aux when we remove the initially-enqueued bbs, but we
1074 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1075 unconditionally. */
1076 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1078 if (blocks_out)
1079 sbitmap_zero (blocks_out);
1081 /* We work through the queue until there are no more blocks. What
1082 is live at the end of this block is precisely the union of what
1083 is live at the beginning of all its successors. So, we set its
1084 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1085 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1086 this block by walking through the instructions in this block in
1087 reverse order and updating as we go. If that changed
1088 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1089 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1091 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1092 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1093 must either be live at the end of the block, or used within the
1094 block. In the latter case, it will certainly never disappear
1095 from GLOBAL_LIVE_AT_START. In the former case, the register
1096 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1097 for one of the successor blocks. By induction, that cannot
1098 occur.
1100 ??? This reasoning doesn't work if we start from non-empty initial
1101 GLOBAL_LIVE_AT_START sets. And there are actually two problems:
1102 1) Updating may not terminate (endless oscillation).
1103 2) Even if it does (and it usually does), the resulting information
1104 may be inaccurate. Consider for example the following case:
1106 a = ...;
1107 while (...) {...} -- 'a' not mentioned at all
1108 ... = a;
1110 If the use of 'a' is deleted between two calculations of liveness
1111 information and the initial sets are not cleared, the information
1112 about a's liveness will get stuck inside the loop and the set will
1113 appear not to be dead.
1115 We do not attempt to solve 2) -- the information is conservatively
1116 correct (i.e. we never claim that something live is dead) and the
1117 amount of optimization opportunities missed due to this problem is
1118 not significant.
1120 1) is more serious. In order to fix it, we monitor the number of times
1121 each block is processed. Once one of the blocks has been processed more
1122 times than the maximum number of rounds, we use the following strategy:
1123 When a register disappears from one of the sets, we add it to a MAKE_DEAD
1124 set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
1125 add the blocks with changed sets into the queue. Thus we are guaranteed
1126 to terminate (the worst case corresponds to all registers in MADE_DEAD,
1127 in which case the original reasoning above is valid), but in general we
1128 only fix up a few offending registers.
1130 The maximum number of rounds for computing liveness is the largest of
1131 MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
1133 while (qhead != qtail)
1135 int rescan, changed;
1136 basic_block bb;
1137 edge e;
1138 edge_iterator ei;
1140 bb = *qhead++;
1141 if (qhead == qend)
1142 qhead = queue;
1143 bb->aux = NULL;
1145 /* Should we start using the failure strategy? */
1146 if (bb != ENTRY_BLOCK_PTR)
1148 int max_liveness_rounds =
1149 MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
1151 block_accesses[bb->index]++;
1152 if (block_accesses[bb->index] > max_liveness_rounds)
1153 failure_strategy_required = true;
1156 /* Begin by propagating live_at_start from the successor blocks. */
1157 CLEAR_REG_SET (new_live_at_end);
1159 if (EDGE_COUNT (bb->succs) > 0)
1160 FOR_EACH_EDGE (e, ei, bb->succs)
1162 basic_block sb = e->dest;
1164 /* Call-clobbered registers die across exception and
1165 call edges. */
1166 /* ??? Abnormal call edges ignored for the moment, as this gets
1167 confused by sibling call edges, which crashes reg-stack. */
1168 if (e->flags & EDGE_EH)
1169 bitmap_ior_and_compl_into (new_live_at_end,
1170 sb->global_live_at_start,
1171 invalidated_by_call);
1172 else
1173 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1175 /* If a target saves one register in another (instead of on
1176 the stack) the save register will need to be live for EH. */
1177 if (e->flags & EDGE_EH)
1178 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1179 if (EH_USES (i))
1180 SET_REGNO_REG_SET (new_live_at_end, i);
1182 else
1184 /* This might be a noreturn function that throws. And
1185 even if it isn't, getting the unwind info right helps
1186 debugging. */
1187 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1188 if (EH_USES (i))
1189 SET_REGNO_REG_SET (new_live_at_end, i);
1192 /* The all-important stack pointer must always be live. */
1193 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1195 /* Before reload, there are a few registers that must be forced
1196 live everywhere -- which might not already be the case for
1197 blocks within infinite loops. */
1198 if (! reload_completed)
1200 /* Any reference to any pseudo before reload is a potential
1201 reference of the frame pointer. */
1202 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1204 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1205 /* Pseudos with argument area equivalences may require
1206 reloading via the argument pointer. */
1207 if (fixed_regs[ARG_POINTER_REGNUM])
1208 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1209 #endif
1211 /* Any constant, or pseudo with constant equivalences, may
1212 require reloading from memory using the pic register. */
1213 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1214 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1215 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1218 if (bb == ENTRY_BLOCK_PTR)
1220 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1221 continue;
1224 /* On our first pass through this block, we'll go ahead and continue.
1225 Recognize first pass by checking if local_set is NULL for this
1226 basic block. On subsequent passes, we get to skip out early if
1227 live_at_end wouldn't have changed. */
1229 if (local_sets[bb->index - (INVALID_BLOCK + 1)] == NULL)
1231 local_sets[bb->index - (INVALID_BLOCK + 1)]
1232 = ALLOC_REG_SET (&reg_obstack);
1233 cond_local_sets[bb->index - (INVALID_BLOCK + 1)]
1234 = ALLOC_REG_SET (&reg_obstack);
1235 rescan = 1;
1237 else
1239 /* If any bits were removed from live_at_end, we'll have to
1240 rescan the block. This wouldn't be necessary if we had
1241 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1242 local_live is really dependent on live_at_end. */
1243 rescan = bitmap_intersect_compl_p (bb->global_live_at_end,
1244 new_live_at_end);
1246 if (!rescan)
1248 regset cond_local_set;
1250 /* If any of the registers in the new live_at_end set are
1251 conditionally set in this basic block, we must rescan.
1252 This is because conditional lifetimes at the end of the
1253 block do not just take the live_at_end set into
1254 account, but also the liveness at the start of each
1255 successor block. We can miss changes in those sets if
1256 we only compare the new live_at_end against the
1257 previous one. */
1258 cond_local_set = cond_local_sets[bb->index - (INVALID_BLOCK + 1)];
1259 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1262 if (!rescan)
1264 regset local_set;
1266 /* Find the set of changed bits. Take this opportunity
1267 to notice that this set is empty and early out. */
1268 bitmap_xor (tmp, bb->global_live_at_end, new_live_at_end);
1269 if (bitmap_empty_p (tmp))
1270 continue;
1272 /* If any of the changed bits overlap with local_sets[bb],
1273 we'll have to rescan the block. */
1274 local_set = local_sets[bb->index - (INVALID_BLOCK + 1)];
1275 rescan = bitmap_intersect_p (tmp, local_set);
1279 /* Let our caller know that BB changed enough to require its
1280 death notes updated. */
1281 if (blocks_out)
1282 SET_BIT (blocks_out, bb->index);
1284 if (! rescan)
1286 /* Add to live_at_start the set of all registers in
1287 new_live_at_end that aren't in the old live_at_end. */
1289 changed = bitmap_ior_and_compl_into (bb->global_live_at_start,
1290 new_live_at_end,
1291 bb->global_live_at_end);
1292 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1293 if (! changed)
1294 continue;
1296 else
1298 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1300 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1301 into live_at_start. */
1302 propagate_block (bb, new_live_at_end,
1303 local_sets[bb->index - (INVALID_BLOCK + 1)],
1304 cond_local_sets[bb->index - (INVALID_BLOCK + 1)],
1305 flags);
1307 /* If live_at start didn't change, no need to go farther. */
1308 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1309 continue;
1311 if (failure_strategy_required)
1313 /* Get the list of registers that were removed from the
1314 bb->global_live_at_start set. */
1315 bitmap_and_compl (tmp, bb->global_live_at_start,
1316 new_live_at_end);
1317 if (!bitmap_empty_p (tmp))
1319 bool pbb_changed;
1320 basic_block pbb;
1322 /* It should not happen that one of registers we have
1323 removed last time is disappears again before any other
1324 register does. */
1325 pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
1326 gcc_assert (pbb_changed);
1328 /* Now remove the registers from all sets. */
1329 FOR_EACH_BB (pbb)
1331 pbb_changed = false;
1333 pbb_changed
1334 |= bitmap_and_compl_into (pbb->global_live_at_start,
1335 registers_made_dead);
1336 pbb_changed
1337 |= bitmap_and_compl_into (pbb->global_live_at_end,
1338 registers_made_dead);
1339 if (!pbb_changed)
1340 continue;
1342 /* Note the (possible) change. */
1343 if (blocks_out)
1344 SET_BIT (blocks_out, pbb->index);
1346 /* Makes sure to really rescan the block. */
1347 if (local_sets[pbb->index - (INVALID_BLOCK + 1)])
1349 FREE_REG_SET (local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1350 FREE_REG_SET (cond_local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1351 local_sets[pbb->index - (INVALID_BLOCK + 1)] = 0;
1354 /* Add it to the queue. */
1355 if (pbb->aux == NULL)
1357 *qtail++ = pbb;
1358 if (qtail == qend)
1359 qtail = queue;
1360 pbb->aux = pbb;
1363 continue;
1365 } /* end of failure_strategy_required */
1367 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1370 /* Queue all predecessors of BB so that we may re-examine
1371 their live_at_end. */
1372 FOR_EACH_EDGE (e, ei, bb->preds)
1374 basic_block pb = e->src;
1375 if (pb->aux == NULL)
1377 *qtail++ = pb;
1378 if (qtail == qend)
1379 qtail = queue;
1380 pb->aux = pb;
1385 FREE_REG_SET (tmp);
1386 FREE_REG_SET (new_live_at_end);
1387 FREE_REG_SET (invalidated_by_call);
1388 FREE_REG_SET (registers_made_dead);
1390 if (blocks_out)
1392 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1394 basic_block bb = BASIC_BLOCK (i);
1395 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1396 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1399 else
1401 FOR_EACH_BB (bb)
1403 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1404 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1408 free (block_accesses);
1409 free (queue);
1410 free (cond_local_sets);
1411 free (local_sets);
1415 /* This structure is used to pass parameters to and from the
1416 the function find_regno_partial(). It is used to pass in the
1417 register number we are looking, as well as to return any rtx
1418 we find. */
1420 typedef struct {
1421 unsigned regno_to_find;
1422 rtx retval;
1423 } find_regno_partial_param;
1426 /* Find the rtx for the reg numbers specified in 'data' if it is
1427 part of an expression which only uses part of the register. Return
1428 it in the structure passed in. */
1429 static int
1430 find_regno_partial (rtx *ptr, void *data)
1432 find_regno_partial_param *param = (find_regno_partial_param *)data;
1433 unsigned reg = param->regno_to_find;
1434 param->retval = NULL_RTX;
1436 if (*ptr == NULL_RTX)
1437 return 0;
1439 switch (GET_CODE (*ptr))
1441 case ZERO_EXTRACT:
1442 case SIGN_EXTRACT:
1443 case STRICT_LOW_PART:
1444 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1446 param->retval = XEXP (*ptr, 0);
1447 return 1;
1449 break;
1451 case SUBREG:
1452 if (REG_P (SUBREG_REG (*ptr))
1453 && REGNO (SUBREG_REG (*ptr)) == reg)
1455 param->retval = SUBREG_REG (*ptr);
1456 return 1;
1458 break;
1460 default:
1461 break;
1464 return 0;
1467 /* Process all immediate successors of the entry block looking for pseudo
1468 registers which are live on entry. Find all of those whose first
1469 instance is a partial register reference of some kind, and initialize
1470 them to 0 after the entry block. This will prevent bit sets within
1471 registers whose value is unknown, and may contain some kind of sticky
1472 bits we don't want. */
1475 initialize_uninitialized_subregs (void)
1477 rtx insn;
1478 edge e;
1479 unsigned reg, did_something = 0;
1480 find_regno_partial_param param;
1481 edge_iterator ei;
1483 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1485 basic_block bb = e->dest;
1486 regset map = bb->global_live_at_start;
1487 reg_set_iterator rsi;
1489 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1491 int uid = REGNO_FIRST_UID (reg);
1492 rtx i;
1494 /* Find an insn which mentions the register we are looking for.
1495 Its preferable to have an instance of the register's rtl since
1496 there may be various flags set which we need to duplicate.
1497 If we can't find it, its probably an automatic whose initial
1498 value doesn't matter, or hopefully something we don't care about. */
1499 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1501 if (i != NULL_RTX)
1503 /* Found the insn, now get the REG rtx, if we can. */
1504 param.regno_to_find = reg;
1505 for_each_rtx (&i, find_regno_partial, &param);
1506 if (param.retval != NULL_RTX)
1508 start_sequence ();
1509 emit_move_insn (param.retval,
1510 CONST0_RTX (GET_MODE (param.retval)));
1511 insn = get_insns ();
1512 end_sequence ();
1513 insert_insn_on_edge (insn, e);
1514 did_something = 1;
1520 if (did_something)
1521 commit_edge_insertions ();
1522 return did_something;
1526 /* Subroutines of life analysis. */
1528 /* Allocate the permanent data structures that represent the results
1529 of life analysis. */
1531 static void
1532 allocate_bb_life_data (void)
1534 basic_block bb;
1536 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1538 bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1539 bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1542 regs_live_at_setjmp = ALLOC_REG_SET (&reg_obstack);
1545 void
1546 allocate_reg_life_data (void)
1548 int i;
1550 max_regno = max_reg_num ();
1551 gcc_assert (!reg_deaths);
1552 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1554 /* Recalculate the register space, in case it has grown. Old style
1555 vector oriented regsets would set regset_{size,bytes} here also. */
1556 allocate_reg_info (max_regno, FALSE, FALSE);
1558 /* Reset all the data we'll collect in propagate_block and its
1559 subroutines. */
1560 for (i = 0; i < max_regno; i++)
1562 REG_N_SETS (i) = 0;
1563 REG_N_REFS (i) = 0;
1564 REG_N_DEATHS (i) = 0;
1565 REG_N_CALLS_CROSSED (i) = 0;
1566 REG_LIVE_LENGTH (i) = 0;
1567 REG_FREQ (i) = 0;
1568 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1572 /* Delete dead instructions for propagate_block. */
1574 static void
1575 propagate_block_delete_insn (rtx insn)
1577 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1579 /* If the insn referred to a label, and that label was attached to
1580 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1581 pretty much mandatory to delete it, because the ADDR_VEC may be
1582 referencing labels that no longer exist.
1584 INSN may reference a deleted label, particularly when a jump
1585 table has been optimized into a direct jump. There's no
1586 real good way to fix up the reference to the deleted label
1587 when the label is deleted, so we just allow it here. */
1589 if (inote && LABEL_P (inote))
1591 rtx label = XEXP (inote, 0);
1592 rtx next;
1594 /* The label may be forced if it has been put in the constant
1595 pool. If that is the only use we must discard the table
1596 jump following it, but not the label itself. */
1597 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1598 && (next = next_nonnote_insn (label)) != NULL
1599 && JUMP_P (next)
1600 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1601 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1603 rtx pat = PATTERN (next);
1604 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1605 int len = XVECLEN (pat, diff_vec_p);
1606 int i;
1608 for (i = 0; i < len; i++)
1609 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1611 delete_insn_and_edges (next);
1612 ndead++;
1616 delete_insn_and_edges (insn);
1617 ndead++;
1620 /* Delete dead libcalls for propagate_block. Return the insn
1621 before the libcall. */
1623 static rtx
1624 propagate_block_delete_libcall (rtx insn, rtx note)
1626 rtx first = XEXP (note, 0);
1627 rtx before = PREV_INSN (first);
1629 delete_insn_chain_and_edges (first, insn);
1630 ndead++;
1631 return before;
1634 /* Update the life-status of regs for one insn. Return the previous insn. */
1637 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1639 rtx prev = PREV_INSN (insn);
1640 int flags = pbi->flags;
1641 int insn_is_dead = 0;
1642 int libcall_is_dead = 0;
1643 rtx note;
1644 unsigned i;
1646 if (! INSN_P (insn))
1647 return prev;
1649 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1650 if (flags & PROP_SCAN_DEAD_CODE)
1652 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1653 libcall_is_dead = (insn_is_dead && note != 0
1654 && libcall_dead_p (pbi, note, insn));
1657 /* If an instruction consists of just dead store(s) on final pass,
1658 delete it. */
1659 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1661 /* If we're trying to delete a prologue or epilogue instruction
1662 that isn't flagged as possibly being dead, something is wrong.
1663 But if we are keeping the stack pointer depressed, we might well
1664 be deleting insns that are used to compute the amount to update
1665 it by, so they are fine. */
1666 if (reload_completed
1667 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1668 && (TYPE_RETURNS_STACK_DEPRESSED
1669 (TREE_TYPE (current_function_decl))))
1670 && (((HAVE_epilogue || HAVE_prologue)
1671 && prologue_epilogue_contains (insn))
1672 || (HAVE_sibcall_epilogue
1673 && sibcall_epilogue_contains (insn)))
1674 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1675 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1677 /* Record sets. Do this even for dead instructions, since they
1678 would have killed the values if they hadn't been deleted. */
1679 mark_set_regs (pbi, PATTERN (insn), insn);
1681 /* CC0 is now known to be dead. Either this insn used it,
1682 in which case it doesn't anymore, or clobbered it,
1683 so the next insn can't use it. */
1684 pbi->cc0_live = 0;
1686 if (libcall_is_dead)
1687 prev = propagate_block_delete_libcall (insn, note);
1688 else
1691 /* If INSN contains a RETVAL note and is dead, but the libcall
1692 as a whole is not dead, then we want to remove INSN, but
1693 not the whole libcall sequence.
1695 However, we need to also remove the dangling REG_LIBCALL
1696 note so that we do not have mis-matched LIBCALL/RETVAL
1697 notes. In theory we could find a new location for the
1698 REG_RETVAL note, but it hardly seems worth the effort.
1700 NOTE at this point will be the RETVAL note if it exists. */
1701 if (note)
1703 rtx libcall_note;
1705 libcall_note
1706 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1707 remove_note (XEXP (note, 0), libcall_note);
1710 /* Similarly if INSN contains a LIBCALL note, remove the
1711 dangling REG_RETVAL note. */
1712 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1713 if (note)
1715 rtx retval_note;
1717 retval_note
1718 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1719 remove_note (XEXP (note, 0), retval_note);
1722 /* Now delete INSN. */
1723 propagate_block_delete_insn (insn);
1726 return prev;
1729 /* See if this is an increment or decrement that can be merged into
1730 a following memory address. */
1731 #ifdef AUTO_INC_DEC
1733 rtx x = single_set (insn);
1735 /* Does this instruction increment or decrement a register? */
1736 if ((flags & PROP_AUTOINC)
1737 && x != 0
1738 && REG_P (SET_DEST (x))
1739 && (GET_CODE (SET_SRC (x)) == PLUS
1740 || GET_CODE (SET_SRC (x)) == MINUS)
1741 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1742 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1743 /* Ok, look for a following memory ref we can combine with.
1744 If one is found, change the memory ref to a PRE_INC
1745 or PRE_DEC, cancel this insn, and return 1.
1746 Return 0 if nothing has been done. */
1747 && try_pre_increment_1 (pbi, insn))
1748 return prev;
1750 #endif /* AUTO_INC_DEC */
1752 CLEAR_REG_SET (pbi->new_set);
1754 /* If this is not the final pass, and this insn is copying the value of
1755 a library call and it's dead, don't scan the insns that perform the
1756 library call, so that the call's arguments are not marked live. */
1757 if (libcall_is_dead)
1759 /* Record the death of the dest reg. */
1760 mark_set_regs (pbi, PATTERN (insn), insn);
1762 insn = XEXP (note, 0);
1763 return PREV_INSN (insn);
1765 else if (GET_CODE (PATTERN (insn)) == SET
1766 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1767 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1768 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1769 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1771 /* We have an insn to pop a constant amount off the stack.
1772 (Such insns use PLUS regardless of the direction of the stack,
1773 and any insn to adjust the stack by a constant is always a pop
1774 or part of a push.)
1775 These insns, if not dead stores, have no effect on life, though
1776 they do have an effect on the memory stores we are tracking. */
1777 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1778 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1779 concludes that the stack pointer is not modified. */
1780 mark_set_regs (pbi, PATTERN (insn), insn);
1782 else
1784 rtx note;
1785 /* Any regs live at the time of a call instruction must not go
1786 in a register clobbered by calls. Find all regs now live and
1787 record this for them. */
1789 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1791 reg_set_iterator rsi;
1792 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1793 REG_N_CALLS_CROSSED (i)++;
1796 /* Record sets. Do this even for dead instructions, since they
1797 would have killed the values if they hadn't been deleted. */
1798 mark_set_regs (pbi, PATTERN (insn), insn);
1800 if (CALL_P (insn))
1802 regset live_at_end;
1803 bool sibcall_p;
1804 rtx note, cond;
1805 int i;
1807 cond = NULL_RTX;
1808 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1809 cond = COND_EXEC_TEST (PATTERN (insn));
1811 /* Non-constant calls clobber memory, constant calls do not
1812 clobber memory, though they may clobber outgoing arguments
1813 on the stack. */
1814 if (! CONST_OR_PURE_CALL_P (insn))
1816 free_EXPR_LIST_list (&pbi->mem_set_list);
1817 pbi->mem_set_list_len = 0;
1819 else
1820 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1822 /* There may be extra registers to be clobbered. */
1823 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1824 note;
1825 note = XEXP (note, 1))
1826 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1827 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1828 cond, insn, pbi->flags);
1830 /* Calls change all call-used and global registers; sibcalls do not
1831 clobber anything that must be preserved at end-of-function,
1832 except for return values. */
1834 sibcall_p = SIBLING_CALL_P (insn);
1835 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1836 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1837 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1838 && ! (sibcall_p
1839 && REGNO_REG_SET_P (live_at_end, i)
1840 && ! refers_to_regno_p (i, i+1,
1841 current_function_return_rtx,
1842 (rtx *) 0)))
1844 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1845 /* We do not want REG_UNUSED notes for these registers. */
1846 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1847 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1851 /* If an insn doesn't use CC0, it becomes dead since we assume
1852 that every insn clobbers it. So show it dead here;
1853 mark_used_regs will set it live if it is referenced. */
1854 pbi->cc0_live = 0;
1856 /* Record uses. */
1857 if (! insn_is_dead)
1858 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1859 if ((flags & PROP_EQUAL_NOTES)
1860 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1861 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1862 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1864 /* Sometimes we may have inserted something before INSN (such as a move)
1865 when we make an auto-inc. So ensure we will scan those insns. */
1866 #ifdef AUTO_INC_DEC
1867 prev = PREV_INSN (insn);
1868 #endif
1870 if (! insn_is_dead && CALL_P (insn))
1872 int i;
1873 rtx note, cond;
1875 cond = NULL_RTX;
1876 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1877 cond = COND_EXEC_TEST (PATTERN (insn));
1879 /* Calls use their arguments, and may clobber memory which
1880 address involves some register. */
1881 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1882 note;
1883 note = XEXP (note, 1))
1884 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1885 of which mark_used_regs knows how to handle. */
1886 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1888 /* The stack ptr is used (honorarily) by a CALL insn. */
1889 if ((flags & PROP_REG_INFO)
1890 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1891 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1892 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1894 /* Calls may also reference any of the global registers,
1895 so they are made live. */
1896 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1897 if (global_regs[i])
1898 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1902 pbi->insn_num++;
1904 return prev;
1907 /* Initialize a propagate_block_info struct for public consumption.
1908 Note that the structure itself is opaque to this file, but that
1909 the user can use the regsets provided here. */
1911 struct propagate_block_info *
1912 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1913 regset cond_local_set, int flags)
1915 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1917 pbi->bb = bb;
1918 pbi->reg_live = live;
1919 pbi->mem_set_list = NULL_RTX;
1920 pbi->mem_set_list_len = 0;
1921 pbi->local_set = local_set;
1922 pbi->cond_local_set = cond_local_set;
1923 pbi->cc0_live = 0;
1924 pbi->flags = flags;
1925 pbi->insn_num = 0;
1927 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1928 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1929 else
1930 pbi->reg_next_use = NULL;
1932 pbi->new_set = BITMAP_ALLOC (NULL);
1934 #ifdef HAVE_conditional_execution
1935 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1936 free_reg_cond_life_info);
1937 pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
1939 /* If this block ends in a conditional branch, for each register
1940 live from one side of the branch and not the other, record the
1941 register as conditionally dead. */
1942 if (JUMP_P (BB_END (bb))
1943 && any_condjump_p (BB_END (bb)))
1945 regset diff = ALLOC_REG_SET (&reg_obstack);
1946 basic_block bb_true, bb_false;
1947 unsigned i;
1949 /* Identify the successor blocks. */
1950 bb_true = EDGE_SUCC (bb, 0)->dest;
1951 if (EDGE_COUNT (bb->succs) > 1)
1953 bb_false = EDGE_SUCC (bb, 1)->dest;
1955 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1957 basic_block t = bb_false;
1958 bb_false = bb_true;
1959 bb_true = t;
1961 else
1962 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1964 else
1966 /* This can happen with a conditional jump to the next insn. */
1967 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1969 /* Simplest way to do nothing. */
1970 bb_false = bb_true;
1973 /* Compute which register lead different lives in the successors. */
1974 bitmap_xor (diff, bb_true->global_live_at_start,
1975 bb_false->global_live_at_start);
1977 if (!bitmap_empty_p (diff))
1979 /* Extract the condition from the branch. */
1980 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1981 rtx cond_true = XEXP (set_src, 0);
1982 rtx reg = XEXP (cond_true, 0);
1983 enum rtx_code inv_cond;
1985 if (GET_CODE (reg) == SUBREG)
1986 reg = SUBREG_REG (reg);
1988 /* We can only track conditional lifetimes if the condition is
1989 in the form of a reversible comparison of a register against
1990 zero. If the condition is more complex than that, then it is
1991 safe not to record any information. */
1992 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
1993 if (inv_cond != UNKNOWN
1994 && REG_P (reg)
1995 && XEXP (cond_true, 1) == const0_rtx)
1997 rtx cond_false
1998 = gen_rtx_fmt_ee (inv_cond,
1999 GET_MODE (cond_true), XEXP (cond_true, 0),
2000 XEXP (cond_true, 1));
2001 reg_set_iterator rsi;
2003 if (GET_CODE (XEXP (set_src, 1)) == PC)
2005 rtx t = cond_false;
2006 cond_false = cond_true;
2007 cond_true = t;
2010 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
2012 /* For each such register, mark it conditionally dead. */
2013 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
2015 struct reg_cond_life_info *rcli;
2016 rtx cond;
2018 rcli = xmalloc (sizeof (*rcli));
2020 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
2021 cond = cond_false;
2022 else
2023 cond = cond_true;
2024 rcli->condition = cond;
2025 rcli->stores = const0_rtx;
2026 rcli->orig_condition = cond;
2028 splay_tree_insert (pbi->reg_cond_dead, i,
2029 (splay_tree_value) rcli);
2034 FREE_REG_SET (diff);
2036 #endif
2038 /* If this block has no successors, any stores to the frame that aren't
2039 used later in the block are dead. So make a pass over the block
2040 recording any such that are made and show them dead at the end. We do
2041 a very conservative and simple job here. */
2042 if (optimize
2043 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2044 && (TYPE_RETURNS_STACK_DEPRESSED
2045 (TREE_TYPE (current_function_decl))))
2046 && (flags & PROP_SCAN_DEAD_STORES)
2047 && (EDGE_COUNT (bb->succs) == 0
2048 || (EDGE_COUNT (bb->succs) == 1
2049 && EDGE_SUCC (bb, 0)->dest == EXIT_BLOCK_PTR
2050 && ! current_function_calls_eh_return)))
2052 rtx insn, set;
2053 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
2054 if (NONJUMP_INSN_P (insn)
2055 && (set = single_set (insn))
2056 && MEM_P (SET_DEST (set)))
2058 rtx mem = SET_DEST (set);
2059 rtx canon_mem = canon_rtx (mem);
2061 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2062 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2063 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2064 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2065 add_to_mem_set_list (pbi, canon_mem);
2069 return pbi;
2072 /* Release a propagate_block_info struct. */
2074 void
2075 free_propagate_block_info (struct propagate_block_info *pbi)
2077 free_EXPR_LIST_list (&pbi->mem_set_list);
2079 BITMAP_FREE (pbi->new_set);
2081 #ifdef HAVE_conditional_execution
2082 splay_tree_delete (pbi->reg_cond_dead);
2083 BITMAP_FREE (pbi->reg_cond_reg);
2084 #endif
2086 if (pbi->flags & PROP_REG_INFO)
2088 int num = pbi->insn_num;
2089 unsigned i;
2090 reg_set_iterator rsi;
2092 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
2094 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2095 reg_deaths[i] = 0;
2098 if (pbi->reg_next_use)
2099 free (pbi->reg_next_use);
2101 free (pbi);
2104 /* Compute the registers live at the beginning of a basic block BB from
2105 those live at the end.
2107 When called, REG_LIVE contains those live at the end. On return, it
2108 contains those live at the beginning.
2110 LOCAL_SET, if non-null, will be set with all registers killed
2111 unconditionally by this basic block.
2112 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2113 killed conditionally by this basic block. If there is any unconditional
2114 set of a register, then the corresponding bit will be set in LOCAL_SET
2115 and cleared in COND_LOCAL_SET.
2116 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2117 case, the resulting set will be equal to the union of the two sets that
2118 would otherwise be computed.
2120 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2123 propagate_block (basic_block bb, regset live, regset local_set,
2124 regset cond_local_set, int flags)
2126 struct propagate_block_info *pbi;
2127 rtx insn, prev;
2128 int changed;
2130 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2132 if (flags & PROP_REG_INFO)
2134 unsigned i;
2135 reg_set_iterator rsi;
2137 /* Process the regs live at the end of the block.
2138 Mark them as not local to any one basic block. */
2139 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2140 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2143 /* Scan the block an insn at a time from end to beginning. */
2145 changed = 0;
2146 for (insn = BB_END (bb); ; insn = prev)
2148 /* If this is a call to `setjmp' et al, warn if any
2149 non-volatile datum is live. */
2150 if ((flags & PROP_REG_INFO)
2151 && CALL_P (insn)
2152 && find_reg_note (insn, REG_SETJMP, NULL))
2153 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2155 prev = propagate_one_insn (pbi, insn);
2156 if (!prev)
2157 changed |= insn != get_insns ();
2158 else
2159 changed |= NEXT_INSN (prev) != insn;
2161 if (insn == BB_HEAD (bb))
2162 break;
2165 free_propagate_block_info (pbi);
2167 return changed;
2170 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2171 (SET expressions whose destinations are registers dead after the insn).
2172 NEEDED is the regset that says which regs are alive after the insn.
2174 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2176 If X is the entire body of an insn, NOTES contains the reg notes
2177 pertaining to the insn. */
2179 static int
2180 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2181 rtx notes ATTRIBUTE_UNUSED)
2183 enum rtx_code code = GET_CODE (x);
2185 /* Don't eliminate insns that may trap. */
2186 if (flag_non_call_exceptions && may_trap_p (x))
2187 return 0;
2189 #ifdef AUTO_INC_DEC
2190 /* As flow is invoked after combine, we must take existing AUTO_INC
2191 expressions into account. */
2192 for (; notes; notes = XEXP (notes, 1))
2194 if (REG_NOTE_KIND (notes) == REG_INC)
2196 int regno = REGNO (XEXP (notes, 0));
2198 /* Don't delete insns to set global regs. */
2199 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2200 || REGNO_REG_SET_P (pbi->reg_live, regno))
2201 return 0;
2204 #endif
2206 /* If setting something that's a reg or part of one,
2207 see if that register's altered value will be live. */
2209 if (code == SET)
2211 rtx r = SET_DEST (x);
2213 #ifdef HAVE_cc0
2214 if (GET_CODE (r) == CC0)
2215 return ! pbi->cc0_live;
2216 #endif
2218 /* A SET that is a subroutine call cannot be dead. */
2219 if (GET_CODE (SET_SRC (x)) == CALL)
2221 if (! call_ok)
2222 return 0;
2225 /* Don't eliminate loads from volatile memory or volatile asms. */
2226 else if (volatile_refs_p (SET_SRC (x)))
2227 return 0;
2229 if (MEM_P (r))
2231 rtx temp, canon_r;
2233 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2234 return 0;
2236 canon_r = canon_rtx (r);
2238 /* Walk the set of memory locations we are currently tracking
2239 and see if one is an identical match to this memory location.
2240 If so, this memory write is dead (remember, we're walking
2241 backwards from the end of the block to the start). Since
2242 rtx_equal_p does not check the alias set or flags, we also
2243 must have the potential for them to conflict (anti_dependence). */
2244 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2245 if (anti_dependence (r, XEXP (temp, 0)))
2247 rtx mem = XEXP (temp, 0);
2249 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2250 && (GET_MODE_SIZE (GET_MODE (canon_r))
2251 <= GET_MODE_SIZE (GET_MODE (mem))))
2252 return 1;
2254 #ifdef AUTO_INC_DEC
2255 /* Check if memory reference matches an auto increment. Only
2256 post increment/decrement or modify are valid. */
2257 if (GET_MODE (mem) == GET_MODE (r)
2258 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2259 || GET_CODE (XEXP (mem, 0)) == POST_INC
2260 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2261 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2262 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2263 return 1;
2264 #endif
2267 else
2269 while (GET_CODE (r) == SUBREG
2270 || GET_CODE (r) == STRICT_LOW_PART
2271 || GET_CODE (r) == ZERO_EXTRACT)
2272 r = XEXP (r, 0);
2274 if (REG_P (r))
2276 int regno = REGNO (r);
2278 /* Obvious. */
2279 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2280 return 0;
2282 /* If this is a hard register, verify that subsequent
2283 words are not needed. */
2284 if (regno < FIRST_PSEUDO_REGISTER)
2286 int n = hard_regno_nregs[regno][GET_MODE (r)];
2288 while (--n > 0)
2289 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2290 return 0;
2293 /* Don't delete insns to set global regs. */
2294 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2295 return 0;
2297 /* Make sure insns to set the stack pointer aren't deleted. */
2298 if (regno == STACK_POINTER_REGNUM)
2299 return 0;
2301 /* ??? These bits might be redundant with the force live bits
2302 in calculate_global_regs_live. We would delete from
2303 sequential sets; whether this actually affects real code
2304 for anything but the stack pointer I don't know. */
2305 /* Make sure insns to set the frame pointer aren't deleted. */
2306 if (regno == FRAME_POINTER_REGNUM
2307 && (! reload_completed || frame_pointer_needed))
2308 return 0;
2309 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2310 if (regno == HARD_FRAME_POINTER_REGNUM
2311 && (! reload_completed || frame_pointer_needed))
2312 return 0;
2313 #endif
2315 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2316 /* Make sure insns to set arg pointer are never deleted
2317 (if the arg pointer isn't fixed, there will be a USE
2318 for it, so we can treat it normally). */
2319 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2320 return 0;
2321 #endif
2323 /* Otherwise, the set is dead. */
2324 return 1;
2329 /* If performing several activities, insn is dead if each activity
2330 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2331 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2332 worth keeping. */
2333 else if (code == PARALLEL)
2335 int i = XVECLEN (x, 0);
2337 for (i--; i >= 0; i--)
2338 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2339 && GET_CODE (XVECEXP (x, 0, i)) != USE
2340 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2341 return 0;
2343 return 1;
2346 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2347 is not necessarily true for hard registers until after reload. */
2348 else if (code == CLOBBER)
2350 if (REG_P (XEXP (x, 0))
2351 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2352 || reload_completed)
2353 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2354 return 1;
2357 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2358 Instances where it is still used are either (1) temporary and the USE
2359 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2360 or (3) hiding bugs elsewhere that are not properly representing data
2361 flow. */
2363 return 0;
2366 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2367 return 1 if the entire library call is dead.
2368 This is true if INSN copies a register (hard or pseudo)
2369 and if the hard return reg of the call insn is dead.
2370 (The caller should have tested the destination of the SET inside
2371 INSN already for death.)
2373 If this insn doesn't just copy a register, then we don't
2374 have an ordinary libcall. In that case, cse could not have
2375 managed to substitute the source for the dest later on,
2376 so we can assume the libcall is dead.
2378 PBI is the block info giving pseudoregs live before this insn.
2379 NOTE is the REG_RETVAL note of the insn. */
2381 static int
2382 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2384 rtx x = single_set (insn);
2386 if (x)
2388 rtx r = SET_SRC (x);
2390 if (REG_P (r) || GET_CODE (r) == SUBREG)
2392 rtx call = XEXP (note, 0);
2393 rtx call_pat;
2394 int i;
2396 /* Find the call insn. */
2397 while (call != insn && !CALL_P (call))
2398 call = NEXT_INSN (call);
2400 /* If there is none, do nothing special,
2401 since ordinary death handling can understand these insns. */
2402 if (call == insn)
2403 return 0;
2405 /* See if the hard reg holding the value is dead.
2406 If this is a PARALLEL, find the call within it. */
2407 call_pat = PATTERN (call);
2408 if (GET_CODE (call_pat) == PARALLEL)
2410 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2411 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2412 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2413 break;
2415 /* This may be a library call that is returning a value
2416 via invisible pointer. Do nothing special, since
2417 ordinary death handling can understand these insns. */
2418 if (i < 0)
2419 return 0;
2421 call_pat = XVECEXP (call_pat, 0, i);
2424 if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2425 return 0;
2427 while ((insn = PREV_INSN (insn)) != call)
2429 if (! INSN_P (insn))
2430 continue;
2431 if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2432 return 0;
2434 return 1;
2437 return 0;
2440 /* 1 if register REGNO was alive at a place where `setjmp' was called
2441 and was set more than once or is an argument.
2442 Such regs may be clobbered by `longjmp'. */
2445 regno_clobbered_at_setjmp (int regno)
2447 if (n_basic_blocks == 0)
2448 return 0;
2450 return ((REG_N_SETS (regno) > 1
2451 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2452 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2455 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2456 maximal list size; look for overlaps in mode and select the largest. */
2457 static void
2458 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2460 rtx i;
2462 /* We don't know how large a BLKmode store is, so we must not
2463 take them into consideration. */
2464 if (GET_MODE (mem) == BLKmode)
2465 return;
2467 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2469 rtx e = XEXP (i, 0);
2470 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2472 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2474 #ifdef AUTO_INC_DEC
2475 /* If we must store a copy of the mem, we can just modify
2476 the mode of the stored copy. */
2477 if (pbi->flags & PROP_AUTOINC)
2478 PUT_MODE (e, GET_MODE (mem));
2479 else
2480 #endif
2481 XEXP (i, 0) = mem;
2483 return;
2487 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2489 #ifdef AUTO_INC_DEC
2490 /* Store a copy of mem, otherwise the address may be
2491 scrogged by find_auto_inc. */
2492 if (pbi->flags & PROP_AUTOINC)
2493 mem = shallow_copy_rtx (mem);
2494 #endif
2495 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2496 pbi->mem_set_list_len++;
2500 /* INSN references memory, possibly using autoincrement addressing modes.
2501 Find any entries on the mem_set_list that need to be invalidated due
2502 to an address change. */
2504 static int
2505 invalidate_mems_from_autoinc (rtx *px, void *data)
2507 rtx x = *px;
2508 struct propagate_block_info *pbi = data;
2510 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2512 invalidate_mems_from_set (pbi, XEXP (x, 0));
2513 return -1;
2516 return 0;
2519 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2521 static void
2522 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2524 rtx temp = pbi->mem_set_list;
2525 rtx prev = NULL_RTX;
2526 rtx next;
2528 while (temp)
2530 next = XEXP (temp, 1);
2531 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2533 /* Splice this entry out of the list. */
2534 if (prev)
2535 XEXP (prev, 1) = next;
2536 else
2537 pbi->mem_set_list = next;
2538 free_EXPR_LIST_node (temp);
2539 pbi->mem_set_list_len--;
2541 else
2542 prev = temp;
2543 temp = next;
2547 /* Process the registers that are set within X. Their bits are set to
2548 1 in the regset DEAD, because they are dead prior to this insn.
2550 If INSN is nonzero, it is the insn being processed.
2552 FLAGS is the set of operations to perform. */
2554 static void
2555 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2557 rtx cond = NULL_RTX;
2558 rtx link;
2559 enum rtx_code code;
2560 int flags = pbi->flags;
2562 if (insn)
2563 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2565 if (REG_NOTE_KIND (link) == REG_INC)
2566 mark_set_1 (pbi, SET, XEXP (link, 0),
2567 (GET_CODE (x) == COND_EXEC
2568 ? COND_EXEC_TEST (x) : NULL_RTX),
2569 insn, flags);
2571 retry:
2572 switch (code = GET_CODE (x))
2574 case SET:
2575 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2576 flags |= PROP_ASM_SCAN;
2577 /* Fall through */
2578 case CLOBBER:
2579 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2580 return;
2582 case COND_EXEC:
2583 cond = COND_EXEC_TEST (x);
2584 x = COND_EXEC_CODE (x);
2585 goto retry;
2587 case PARALLEL:
2589 int i;
2591 /* We must scan forwards. If we have an asm, we need to set
2592 the PROP_ASM_SCAN flag before scanning the clobbers. */
2593 for (i = 0; i < XVECLEN (x, 0); i++)
2595 rtx sub = XVECEXP (x, 0, i);
2596 switch (code = GET_CODE (sub))
2598 case COND_EXEC:
2599 gcc_assert (!cond);
2601 cond = COND_EXEC_TEST (sub);
2602 sub = COND_EXEC_CODE (sub);
2603 if (GET_CODE (sub) == SET)
2604 goto mark_set;
2605 if (GET_CODE (sub) == CLOBBER)
2606 goto mark_clob;
2607 break;
2609 case SET:
2610 mark_set:
2611 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2612 flags |= PROP_ASM_SCAN;
2613 /* Fall through */
2614 case CLOBBER:
2615 mark_clob:
2616 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2617 break;
2619 case ASM_OPERANDS:
2620 flags |= PROP_ASM_SCAN;
2621 break;
2623 default:
2624 break;
2627 break;
2630 default:
2631 break;
2635 /* Process a single set, which appears in INSN. REG (which may not
2636 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2637 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2638 If the set is conditional (because it appear in a COND_EXEC), COND
2639 will be the condition. */
2641 static void
2642 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2644 int regno_first = -1, regno_last = -1;
2645 unsigned long not_dead = 0;
2646 int i;
2648 /* Modifying just one hardware register of a multi-reg value or just a
2649 byte field of a register does not mean the value from before this insn
2650 is now dead. Of course, if it was dead after it's unused now. */
2652 switch (GET_CODE (reg))
2654 case PARALLEL:
2655 /* Some targets place small structures in registers for return values of
2656 functions. We have to detect this case specially here to get correct
2657 flow information. */
2658 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2659 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2660 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2661 flags);
2662 return;
2664 case SIGN_EXTRACT:
2665 /* SIGN_EXTRACT cannot be an lvalue. */
2666 gcc_unreachable ();
2668 case ZERO_EXTRACT:
2669 case STRICT_LOW_PART:
2670 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2672 reg = XEXP (reg, 0);
2673 while (GET_CODE (reg) == SUBREG
2674 || GET_CODE (reg) == ZERO_EXTRACT
2675 || GET_CODE (reg) == STRICT_LOW_PART);
2676 if (MEM_P (reg))
2677 break;
2678 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2679 /* Fall through. */
2681 case REG:
2682 regno_last = regno_first = REGNO (reg);
2683 if (regno_first < FIRST_PSEUDO_REGISTER)
2684 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2685 break;
2687 case SUBREG:
2688 if (REG_P (SUBREG_REG (reg)))
2690 enum machine_mode outer_mode = GET_MODE (reg);
2691 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2693 /* Identify the range of registers affected. This is moderately
2694 tricky for hard registers. See alter_subreg. */
2696 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2697 if (regno_first < FIRST_PSEUDO_REGISTER)
2699 regno_first += subreg_regno_offset (regno_first, inner_mode,
2700 SUBREG_BYTE (reg),
2701 outer_mode);
2702 regno_last = (regno_first
2703 + hard_regno_nregs[regno_first][outer_mode] - 1);
2705 /* Since we've just adjusted the register number ranges, make
2706 sure REG matches. Otherwise some_was_live will be clear
2707 when it shouldn't have been, and we'll create incorrect
2708 REG_UNUSED notes. */
2709 reg = gen_rtx_REG (outer_mode, regno_first);
2711 else
2713 /* If the number of words in the subreg is less than the number
2714 of words in the full register, we have a well-defined partial
2715 set. Otherwise the high bits are undefined.
2717 This is only really applicable to pseudos, since we just took
2718 care of multi-word hard registers. */
2719 if (((GET_MODE_SIZE (outer_mode)
2720 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2721 < ((GET_MODE_SIZE (inner_mode)
2722 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2723 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2724 regno_first);
2726 reg = SUBREG_REG (reg);
2729 else
2730 reg = SUBREG_REG (reg);
2731 break;
2733 default:
2734 break;
2737 /* If this set is a MEM, then it kills any aliased writes.
2738 If this set is a REG, then it kills any MEMs which use the reg. */
2739 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2741 if (REG_P (reg))
2742 invalidate_mems_from_set (pbi, reg);
2744 /* If the memory reference had embedded side effects (autoincrement
2745 address modes) then we may need to kill some entries on the
2746 memory set list. */
2747 if (insn && MEM_P (reg))
2748 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2750 if (MEM_P (reg) && ! side_effects_p (reg)
2751 /* ??? With more effort we could track conditional memory life. */
2752 && ! cond)
2753 add_to_mem_set_list (pbi, canon_rtx (reg));
2756 if (REG_P (reg)
2757 && ! (regno_first == FRAME_POINTER_REGNUM
2758 && (! reload_completed || frame_pointer_needed))
2759 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2760 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2761 && (! reload_completed || frame_pointer_needed))
2762 #endif
2763 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2764 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2765 #endif
2768 int some_was_live = 0, some_was_dead = 0;
2770 for (i = regno_first; i <= regno_last; ++i)
2772 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2773 if (pbi->local_set)
2775 /* Order of the set operation matters here since both
2776 sets may be the same. */
2777 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2778 if (cond != NULL_RTX
2779 && ! REGNO_REG_SET_P (pbi->local_set, i))
2780 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2781 else
2782 SET_REGNO_REG_SET (pbi->local_set, i);
2784 if (code != CLOBBER)
2785 SET_REGNO_REG_SET (pbi->new_set, i);
2787 some_was_live |= needed_regno;
2788 some_was_dead |= ! needed_regno;
2791 #ifdef HAVE_conditional_execution
2792 /* Consider conditional death in deciding that the register needs
2793 a death note. */
2794 if (some_was_live && ! not_dead
2795 /* The stack pointer is never dead. Well, not strictly true,
2796 but it's very difficult to tell from here. Hopefully
2797 combine_stack_adjustments will fix up the most egregious
2798 errors. */
2799 && regno_first != STACK_POINTER_REGNUM)
2801 for (i = regno_first; i <= regno_last; ++i)
2802 if (! mark_regno_cond_dead (pbi, i, cond))
2803 not_dead |= ((unsigned long) 1) << (i - regno_first);
2805 #endif
2807 /* Additional data to record if this is the final pass. */
2808 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2809 | PROP_DEATH_NOTES | PROP_AUTOINC))
2811 rtx y;
2812 int blocknum = pbi->bb->index;
2814 y = NULL_RTX;
2815 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2817 y = pbi->reg_next_use[regno_first];
2819 /* The next use is no longer next, since a store intervenes. */
2820 for (i = regno_first; i <= regno_last; ++i)
2821 pbi->reg_next_use[i] = 0;
2824 if (flags & PROP_REG_INFO)
2826 for (i = regno_first; i <= regno_last; ++i)
2828 /* Count (weighted) references, stores, etc. This counts a
2829 register twice if it is modified, but that is correct. */
2830 REG_N_SETS (i) += 1;
2831 REG_N_REFS (i) += 1;
2832 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2834 /* The insns where a reg is live are normally counted
2835 elsewhere, but we want the count to include the insn
2836 where the reg is set, and the normal counting mechanism
2837 would not count it. */
2838 REG_LIVE_LENGTH (i) += 1;
2841 /* If this is a hard reg, record this function uses the reg. */
2842 if (regno_first < FIRST_PSEUDO_REGISTER)
2844 for (i = regno_first; i <= regno_last; i++)
2845 regs_ever_live[i] = 1;
2846 if (flags & PROP_ASM_SCAN)
2847 for (i = regno_first; i <= regno_last; i++)
2848 regs_asm_clobbered[i] = 1;
2850 else
2852 /* Keep track of which basic blocks each reg appears in. */
2853 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2854 REG_BASIC_BLOCK (regno_first) = blocknum;
2855 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2856 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2860 if (! some_was_dead)
2862 if (flags & PROP_LOG_LINKS)
2864 /* Make a logical link from the next following insn
2865 that uses this register, back to this insn.
2866 The following insns have already been processed.
2868 We don't build a LOG_LINK for hard registers containing
2869 in ASM_OPERANDs. If these registers get replaced,
2870 we might wind up changing the semantics of the insn,
2871 even if reload can make what appear to be valid
2872 assignments later.
2874 We don't build a LOG_LINK for global registers to
2875 or from a function call. We don't want to let
2876 combine think that it knows what is going on with
2877 global registers. */
2878 if (y && (BLOCK_NUM (y) == blocknum)
2879 && (regno_first >= FIRST_PSEUDO_REGISTER
2880 || (asm_noperands (PATTERN (y)) < 0
2881 && ! ((CALL_P (insn)
2882 || CALL_P (y))
2883 && global_regs[regno_first]))))
2884 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2887 else if (not_dead)
2889 else if (! some_was_live)
2891 if (flags & PROP_REG_INFO)
2892 REG_N_DEATHS (regno_first) += 1;
2894 if (flags & PROP_DEATH_NOTES)
2896 /* Note that dead stores have already been deleted
2897 when possible. If we get here, we have found a
2898 dead store that cannot be eliminated (because the
2899 same insn does something useful). Indicate this
2900 by marking the reg being set as dying here. */
2901 REG_NOTES (insn)
2902 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2905 else
2907 if (flags & PROP_DEATH_NOTES)
2909 /* This is a case where we have a multi-word hard register
2910 and some, but not all, of the words of the register are
2911 needed in subsequent insns. Write REG_UNUSED notes
2912 for those parts that were not needed. This case should
2913 be rare. */
2915 for (i = regno_first; i <= regno_last; ++i)
2916 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2917 REG_NOTES (insn)
2918 = alloc_EXPR_LIST (REG_UNUSED,
2919 regno_reg_rtx[i],
2920 REG_NOTES (insn));
2925 /* Mark the register as being dead. */
2926 if (some_was_live
2927 /* The stack pointer is never dead. Well, not strictly true,
2928 but it's very difficult to tell from here. Hopefully
2929 combine_stack_adjustments will fix up the most egregious
2930 errors. */
2931 && regno_first != STACK_POINTER_REGNUM)
2933 for (i = regno_first; i <= regno_last; ++i)
2934 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2936 if ((pbi->flags & PROP_REG_INFO)
2937 && REGNO_REG_SET_P (pbi->reg_live, i))
2939 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2940 reg_deaths[i] = 0;
2942 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2946 else if (REG_P (reg))
2948 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2949 pbi->reg_next_use[regno_first] = 0;
2951 if ((flags & PROP_REG_INFO) != 0
2952 && (flags & PROP_ASM_SCAN) != 0
2953 && regno_first < FIRST_PSEUDO_REGISTER)
2955 for (i = regno_first; i <= regno_last; i++)
2956 regs_asm_clobbered[i] = 1;
2960 /* If this is the last pass and this is a SCRATCH, show it will be dying
2961 here and count it. */
2962 else if (GET_CODE (reg) == SCRATCH)
2964 if (flags & PROP_DEATH_NOTES)
2965 REG_NOTES (insn)
2966 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2970 #ifdef HAVE_conditional_execution
2971 /* Mark REGNO conditionally dead.
2972 Return true if the register is now unconditionally dead. */
2974 static int
2975 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2977 /* If this is a store to a predicate register, the value of the
2978 predicate is changing, we don't know that the predicate as seen
2979 before is the same as that seen after. Flush all dependent
2980 conditions from reg_cond_dead. This will make all such
2981 conditionally live registers unconditionally live. */
2982 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2983 flush_reg_cond_reg (pbi, regno);
2985 /* If this is an unconditional store, remove any conditional
2986 life that may have existed. */
2987 if (cond == NULL_RTX)
2988 splay_tree_remove (pbi->reg_cond_dead, regno);
2989 else
2991 splay_tree_node node;
2992 struct reg_cond_life_info *rcli;
2993 rtx ncond;
2995 /* Otherwise this is a conditional set. Record that fact.
2996 It may have been conditionally used, or there may be a
2997 subsequent set with a complementary condition. */
2999 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
3000 if (node == NULL)
3002 /* The register was unconditionally live previously.
3003 Record the current condition as the condition under
3004 which it is dead. */
3005 rcli = xmalloc (sizeof (*rcli));
3006 rcli->condition = cond;
3007 rcli->stores = cond;
3008 rcli->orig_condition = const0_rtx;
3009 splay_tree_insert (pbi->reg_cond_dead, regno,
3010 (splay_tree_value) rcli);
3012 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3014 /* Not unconditionally dead. */
3015 return 0;
3017 else
3019 /* The register was conditionally live previously.
3020 Add the new condition to the old. */
3021 rcli = (struct reg_cond_life_info *) node->value;
3022 ncond = rcli->condition;
3023 ncond = ior_reg_cond (ncond, cond, 1);
3024 if (rcli->stores == const0_rtx)
3025 rcli->stores = cond;
3026 else if (rcli->stores != const1_rtx)
3027 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
3029 /* If the register is now unconditionally dead, remove the entry
3030 in the splay_tree. A register is unconditionally dead if the
3031 dead condition ncond is true. A register is also unconditionally
3032 dead if the sum of all conditional stores is an unconditional
3033 store (stores is true), and the dead condition is identically the
3034 same as the original dead condition initialized at the end of
3035 the block. This is a pointer compare, not an rtx_equal_p
3036 compare. */
3037 if (ncond == const1_rtx
3038 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
3039 splay_tree_remove (pbi->reg_cond_dead, regno);
3040 else
3042 rcli->condition = ncond;
3044 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3046 /* Not unconditionally dead. */
3047 return 0;
3052 return 1;
3055 /* Called from splay_tree_delete for pbi->reg_cond_life. */
3057 static void
3058 free_reg_cond_life_info (splay_tree_value value)
3060 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
3061 free (rcli);
3064 /* Helper function for flush_reg_cond_reg. */
3066 static int
3067 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3069 struct reg_cond_life_info *rcli;
3070 int *xdata = (int *) data;
3071 unsigned int regno = xdata[0];
3073 /* Don't need to search if last flushed value was farther on in
3074 the in-order traversal. */
3075 if (xdata[1] >= (int) node->key)
3076 return 0;
3078 /* Splice out portions of the expression that refer to regno. */
3079 rcli = (struct reg_cond_life_info *) node->value;
3080 rcli->condition = elim_reg_cond (rcli->condition, regno);
3081 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3082 rcli->stores = elim_reg_cond (rcli->stores, regno);
3084 /* If the entire condition is now false, signal the node to be removed. */
3085 if (rcli->condition == const0_rtx)
3087 xdata[1] = node->key;
3088 return -1;
3090 else
3091 gcc_assert (rcli->condition != const1_rtx);
3093 return 0;
3096 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3098 static void
3099 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3101 int pair[2];
3103 pair[0] = regno;
3104 pair[1] = -1;
3105 while (splay_tree_foreach (pbi->reg_cond_dead,
3106 flush_reg_cond_reg_1, pair) == -1)
3107 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3109 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3112 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3113 For ior/and, the ADD flag determines whether we want to add the new
3114 condition X to the old one unconditionally. If it is zero, we will
3115 only return a new expression if X allows us to simplify part of
3116 OLD, otherwise we return NULL to the caller.
3117 If ADD is nonzero, we will return a new condition in all cases. The
3118 toplevel caller of one of these functions should always pass 1 for
3119 ADD. */
3121 static rtx
3122 ior_reg_cond (rtx old, rtx x, int add)
3124 rtx op0, op1;
3126 if (COMPARISON_P (old))
3128 if (COMPARISON_P (x)
3129 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3130 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3131 return const1_rtx;
3132 if (GET_CODE (x) == GET_CODE (old)
3133 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3134 return old;
3135 if (! add)
3136 return NULL;
3137 return gen_rtx_IOR (0, old, x);
3140 switch (GET_CODE (old))
3142 case IOR:
3143 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3144 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3145 if (op0 != NULL || op1 != NULL)
3147 if (op0 == const0_rtx)
3148 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3149 if (op1 == const0_rtx)
3150 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3151 if (op0 == const1_rtx || op1 == const1_rtx)
3152 return const1_rtx;
3153 if (op0 == NULL)
3154 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3155 else if (rtx_equal_p (x, op0))
3156 /* (x | A) | x ~ (x | A). */
3157 return old;
3158 if (op1 == NULL)
3159 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3160 else if (rtx_equal_p (x, op1))
3161 /* (A | x) | x ~ (A | x). */
3162 return old;
3163 return gen_rtx_IOR (0, op0, op1);
3165 if (! add)
3166 return NULL;
3167 return gen_rtx_IOR (0, old, x);
3169 case AND:
3170 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3171 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3172 if (op0 != NULL || op1 != NULL)
3174 if (op0 == const1_rtx)
3175 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3176 if (op1 == const1_rtx)
3177 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3178 if (op0 == const0_rtx || op1 == const0_rtx)
3179 return const0_rtx;
3180 if (op0 == NULL)
3181 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3182 else if (rtx_equal_p (x, op0))
3183 /* (x & A) | x ~ x. */
3184 return op0;
3185 if (op1 == NULL)
3186 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3187 else if (rtx_equal_p (x, op1))
3188 /* (A & x) | x ~ x. */
3189 return op1;
3190 return gen_rtx_AND (0, op0, op1);
3192 if (! add)
3193 return NULL;
3194 return gen_rtx_IOR (0, old, x);
3196 case NOT:
3197 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3198 if (op0 != NULL)
3199 return not_reg_cond (op0);
3200 if (! add)
3201 return NULL;
3202 return gen_rtx_IOR (0, old, x);
3204 default:
3205 gcc_unreachable ();
3209 static rtx
3210 not_reg_cond (rtx x)
3212 if (x == const0_rtx)
3213 return const1_rtx;
3214 else if (x == const1_rtx)
3215 return const0_rtx;
3216 if (GET_CODE (x) == NOT)
3217 return XEXP (x, 0);
3218 if (COMPARISON_P (x)
3219 && REG_P (XEXP (x, 0)))
3221 gcc_assert (XEXP (x, 1) == const0_rtx);
3223 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3224 VOIDmode, XEXP (x, 0), const0_rtx);
3226 return gen_rtx_NOT (0, x);
3229 static rtx
3230 and_reg_cond (rtx old, rtx x, int add)
3232 rtx op0, op1;
3234 if (COMPARISON_P (old))
3236 if (COMPARISON_P (x)
3237 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3238 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3239 return const0_rtx;
3240 if (GET_CODE (x) == GET_CODE (old)
3241 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3242 return old;
3243 if (! add)
3244 return NULL;
3245 return gen_rtx_AND (0, old, x);
3248 switch (GET_CODE (old))
3250 case IOR:
3251 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3252 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3253 if (op0 != NULL || op1 != NULL)
3255 if (op0 == const0_rtx)
3256 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3257 if (op1 == const0_rtx)
3258 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3259 if (op0 == const1_rtx || op1 == const1_rtx)
3260 return const1_rtx;
3261 if (op0 == NULL)
3262 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3263 else if (rtx_equal_p (x, op0))
3264 /* (x | A) & x ~ x. */
3265 return op0;
3266 if (op1 == NULL)
3267 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3268 else if (rtx_equal_p (x, op1))
3269 /* (A | x) & x ~ x. */
3270 return op1;
3271 return gen_rtx_IOR (0, op0, op1);
3273 if (! add)
3274 return NULL;
3275 return gen_rtx_AND (0, old, x);
3277 case AND:
3278 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3279 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3280 if (op0 != NULL || op1 != NULL)
3282 if (op0 == const1_rtx)
3283 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3284 if (op1 == const1_rtx)
3285 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3286 if (op0 == const0_rtx || op1 == const0_rtx)
3287 return const0_rtx;
3288 if (op0 == NULL)
3289 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3290 else if (rtx_equal_p (x, op0))
3291 /* (x & A) & x ~ (x & A). */
3292 return old;
3293 if (op1 == NULL)
3294 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3295 else if (rtx_equal_p (x, op1))
3296 /* (A & x) & x ~ (A & x). */
3297 return old;
3298 return gen_rtx_AND (0, op0, op1);
3300 if (! add)
3301 return NULL;
3302 return gen_rtx_AND (0, old, x);
3304 case NOT:
3305 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3306 if (op0 != NULL)
3307 return not_reg_cond (op0);
3308 if (! add)
3309 return NULL;
3310 return gen_rtx_AND (0, old, x);
3312 default:
3313 gcc_unreachable ();
3317 /* Given a condition X, remove references to reg REGNO and return the
3318 new condition. The removal will be done so that all conditions
3319 involving REGNO are considered to evaluate to false. This function
3320 is used when the value of REGNO changes. */
3322 static rtx
3323 elim_reg_cond (rtx x, unsigned int regno)
3325 rtx op0, op1;
3327 if (COMPARISON_P (x))
3329 if (REGNO (XEXP (x, 0)) == regno)
3330 return const0_rtx;
3331 return x;
3334 switch (GET_CODE (x))
3336 case AND:
3337 op0 = elim_reg_cond (XEXP (x, 0), regno);
3338 op1 = elim_reg_cond (XEXP (x, 1), regno);
3339 if (op0 == const0_rtx || op1 == const0_rtx)
3340 return const0_rtx;
3341 if (op0 == const1_rtx)
3342 return op1;
3343 if (op1 == const1_rtx)
3344 return op0;
3345 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3346 return x;
3347 return gen_rtx_AND (0, op0, op1);
3349 case IOR:
3350 op0 = elim_reg_cond (XEXP (x, 0), regno);
3351 op1 = elim_reg_cond (XEXP (x, 1), regno);
3352 if (op0 == const1_rtx || op1 == const1_rtx)
3353 return const1_rtx;
3354 if (op0 == const0_rtx)
3355 return op1;
3356 if (op1 == const0_rtx)
3357 return op0;
3358 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3359 return x;
3360 return gen_rtx_IOR (0, op0, op1);
3362 case NOT:
3363 op0 = elim_reg_cond (XEXP (x, 0), regno);
3364 if (op0 == const0_rtx)
3365 return const1_rtx;
3366 if (op0 == const1_rtx)
3367 return const0_rtx;
3368 if (op0 != XEXP (x, 0))
3369 return not_reg_cond (op0);
3370 return x;
3372 default:
3373 gcc_unreachable ();
3376 #endif /* HAVE_conditional_execution */
3378 #ifdef AUTO_INC_DEC
3380 /* Try to substitute the auto-inc expression INC as the address inside
3381 MEM which occurs in INSN. Currently, the address of MEM is an expression
3382 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3383 that has a single set whose source is a PLUS of INCR_REG and something
3384 else. */
3386 static void
3387 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3388 rtx mem, rtx incr, rtx incr_reg)
3390 int regno = REGNO (incr_reg);
3391 rtx set = single_set (incr);
3392 rtx q = SET_DEST (set);
3393 rtx y = SET_SRC (set);
3394 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3395 int changed;
3397 /* Make sure this reg appears only once in this insn. */
3398 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3399 return;
3401 if (dead_or_set_p (incr, incr_reg)
3402 /* Mustn't autoinc an eliminable register. */
3403 && (regno >= FIRST_PSEUDO_REGISTER
3404 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3406 /* This is the simple case. Try to make the auto-inc. If
3407 we can't, we are done. Otherwise, we will do any
3408 needed updates below. */
3409 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3410 return;
3412 else if (REG_P (q)
3413 /* PREV_INSN used here to check the semi-open interval
3414 [insn,incr). */
3415 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3416 /* We must also check for sets of q as q may be
3417 a call clobbered hard register and there may
3418 be a call between PREV_INSN (insn) and incr. */
3419 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3421 /* We have *p followed sometime later by q = p+size.
3422 Both p and q must be live afterward,
3423 and q is not used between INSN and its assignment.
3424 Change it to q = p, ...*q..., q = q+size.
3425 Then fall into the usual case. */
3426 rtx insns, temp;
3428 start_sequence ();
3429 emit_move_insn (q, incr_reg);
3430 insns = get_insns ();
3431 end_sequence ();
3433 /* If we can't make the auto-inc, or can't make the
3434 replacement into Y, exit. There's no point in making
3435 the change below if we can't do the auto-inc and doing
3436 so is not correct in the pre-inc case. */
3438 XEXP (inc, 0) = q;
3439 validate_change (insn, &XEXP (mem, 0), inc, 1);
3440 validate_change (incr, &XEXP (y, opnum), q, 1);
3441 if (! apply_change_group ())
3442 return;
3444 /* We now know we'll be doing this change, so emit the
3445 new insn(s) and do the updates. */
3446 emit_insn_before (insns, insn);
3448 if (BB_HEAD (pbi->bb) == insn)
3449 BB_HEAD (pbi->bb) = insns;
3451 /* INCR will become a NOTE and INSN won't contain a
3452 use of INCR_REG. If a use of INCR_REG was just placed in
3453 the insn before INSN, make that the next use.
3454 Otherwise, invalidate it. */
3455 if (NONJUMP_INSN_P (PREV_INSN (insn))
3456 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3457 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3458 pbi->reg_next_use[regno] = PREV_INSN (insn);
3459 else
3460 pbi->reg_next_use[regno] = 0;
3462 incr_reg = q;
3463 regno = REGNO (q);
3465 if ((pbi->flags & PROP_REG_INFO)
3466 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3467 reg_deaths[regno] = pbi->insn_num;
3469 /* REGNO is now used in INCR which is below INSN, but
3470 it previously wasn't live here. If we don't mark
3471 it as live, we'll put a REG_DEAD note for it
3472 on this insn, which is incorrect. */
3473 SET_REGNO_REG_SET (pbi->reg_live, regno);
3475 /* If there are any calls between INSN and INCR, show
3476 that REGNO now crosses them. */
3477 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3478 if (CALL_P (temp))
3479 REG_N_CALLS_CROSSED (regno)++;
3481 /* Invalidate alias info for Q since we just changed its value. */
3482 clear_reg_alias_info (q);
3484 else
3485 return;
3487 /* If we haven't returned, it means we were able to make the
3488 auto-inc, so update the status. First, record that this insn
3489 has an implicit side effect. */
3491 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3493 /* Modify the old increment-insn to simply copy
3494 the already-incremented value of our register. */
3495 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3496 gcc_assert (changed);
3498 /* If that makes it a no-op (copying the register into itself) delete
3499 it so it won't appear to be a "use" and a "set" of this
3500 register. */
3501 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3503 /* If the original source was dead, it's dead now. */
3504 rtx note;
3506 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3508 remove_note (incr, note);
3509 if (XEXP (note, 0) != incr_reg)
3511 unsigned int regno = REGNO (XEXP (note, 0));
3513 if ((pbi->flags & PROP_REG_INFO)
3514 && REGNO_REG_SET_P (pbi->reg_live, regno))
3516 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3517 reg_deaths[regno] = 0;
3519 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3523 SET_INSN_DELETED (incr);
3526 if (regno >= FIRST_PSEUDO_REGISTER)
3528 /* Count an extra reference to the reg. When a reg is
3529 incremented, spilling it is worse, so we want to make
3530 that less likely. */
3531 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3533 /* Count the increment as a setting of the register,
3534 even though it isn't a SET in rtl. */
3535 REG_N_SETS (regno)++;
3539 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3540 reference. */
3542 static void
3543 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3545 rtx addr = XEXP (x, 0);
3546 HOST_WIDE_INT offset = 0;
3547 rtx set, y, incr, inc_val;
3548 int regno;
3549 int size = GET_MODE_SIZE (GET_MODE (x));
3551 if (JUMP_P (insn))
3552 return;
3554 /* Here we detect use of an index register which might be good for
3555 postincrement, postdecrement, preincrement, or predecrement. */
3557 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3558 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3560 if (!REG_P (addr))
3561 return;
3563 regno = REGNO (addr);
3565 /* Is the next use an increment that might make auto-increment? */
3566 incr = pbi->reg_next_use[regno];
3567 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3568 return;
3569 set = single_set (incr);
3570 if (set == 0 || GET_CODE (set) != SET)
3571 return;
3572 y = SET_SRC (set);
3574 if (GET_CODE (y) != PLUS)
3575 return;
3577 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3578 inc_val = XEXP (y, 1);
3579 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3580 inc_val = XEXP (y, 0);
3581 else
3582 return;
3584 if (GET_CODE (inc_val) == CONST_INT)
3586 if (HAVE_POST_INCREMENT
3587 && (INTVAL (inc_val) == size && offset == 0))
3588 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3589 incr, addr);
3590 else if (HAVE_POST_DECREMENT
3591 && (INTVAL (inc_val) == -size && offset == 0))
3592 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3593 incr, addr);
3594 else if (HAVE_PRE_INCREMENT
3595 && (INTVAL (inc_val) == size && offset == size))
3596 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3597 incr, addr);
3598 else if (HAVE_PRE_DECREMENT
3599 && (INTVAL (inc_val) == -size && offset == -size))
3600 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3601 incr, addr);
3602 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3603 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3604 gen_rtx_PLUS (Pmode,
3605 addr,
3606 inc_val)),
3607 insn, x, incr, addr);
3608 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3609 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3610 gen_rtx_PLUS (Pmode,
3611 addr,
3612 inc_val)),
3613 insn, x, incr, addr);
3615 else if (REG_P (inc_val)
3616 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3617 NEXT_INSN (incr)))
3620 if (HAVE_POST_MODIFY_REG && offset == 0)
3621 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3622 gen_rtx_PLUS (Pmode,
3623 addr,
3624 inc_val)),
3625 insn, x, incr, addr);
3629 #endif /* AUTO_INC_DEC */
3631 static void
3632 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3633 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3635 unsigned int regno_first, regno_last, i;
3636 int some_was_live, some_was_dead, some_not_set;
3638 regno_last = regno_first = REGNO (reg);
3639 if (regno_first < FIRST_PSEUDO_REGISTER)
3640 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3642 /* Find out if any of this register is live after this instruction. */
3643 some_was_live = some_was_dead = 0;
3644 for (i = regno_first; i <= regno_last; ++i)
3646 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3647 some_was_live |= needed_regno;
3648 some_was_dead |= ! needed_regno;
3651 /* Find out if any of the register was set this insn. */
3652 some_not_set = 0;
3653 for (i = regno_first; i <= regno_last; ++i)
3654 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3656 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3658 /* Record where each reg is used, so when the reg is set we know
3659 the next insn that uses it. */
3660 pbi->reg_next_use[regno_first] = insn;
3663 if (pbi->flags & PROP_REG_INFO)
3665 if (regno_first < FIRST_PSEUDO_REGISTER)
3667 /* If this is a register we are going to try to eliminate,
3668 don't mark it live here. If we are successful in
3669 eliminating it, it need not be live unless it is used for
3670 pseudos, in which case it will have been set live when it
3671 was allocated to the pseudos. If the register will not
3672 be eliminated, reload will set it live at that point.
3674 Otherwise, record that this function uses this register. */
3675 /* ??? The PPC backend tries to "eliminate" on the pic
3676 register to itself. This should be fixed. In the mean
3677 time, hack around it. */
3679 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3680 && (regno_first == FRAME_POINTER_REGNUM
3681 || regno_first == ARG_POINTER_REGNUM)))
3682 for (i = regno_first; i <= regno_last; ++i)
3683 regs_ever_live[i] = 1;
3685 else
3687 /* Keep track of which basic block each reg appears in. */
3689 int blocknum = pbi->bb->index;
3690 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3691 REG_BASIC_BLOCK (regno_first) = blocknum;
3692 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3693 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3695 /* Count (weighted) number of uses of each reg. */
3696 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3697 REG_N_REFS (regno_first)++;
3699 for (i = regno_first; i <= regno_last; ++i)
3700 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3702 gcc_assert (!reg_deaths[i]);
3703 reg_deaths[i] = pbi->insn_num;
3707 /* Record and count the insns in which a reg dies. If it is used in
3708 this insn and was dead below the insn then it dies in this insn.
3709 If it was set in this insn, we do not make a REG_DEAD note;
3710 likewise if we already made such a note. */
3711 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3712 && some_was_dead
3713 && some_not_set)
3715 /* Check for the case where the register dying partially
3716 overlaps the register set by this insn. */
3717 if (regno_first != regno_last)
3718 for (i = regno_first; i <= regno_last; ++i)
3719 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3721 /* If none of the words in X is needed, make a REG_DEAD note.
3722 Otherwise, we must make partial REG_DEAD notes. */
3723 if (! some_was_live)
3725 if ((pbi->flags & PROP_DEATH_NOTES)
3726 && ! find_regno_note (insn, REG_DEAD, regno_first))
3727 REG_NOTES (insn)
3728 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3730 if (pbi->flags & PROP_REG_INFO)
3731 REG_N_DEATHS (regno_first)++;
3733 else
3735 /* Don't make a REG_DEAD note for a part of a register
3736 that is set in the insn. */
3737 for (i = regno_first; i <= regno_last; ++i)
3738 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3739 && ! dead_or_set_regno_p (insn, i))
3740 REG_NOTES (insn)
3741 = alloc_EXPR_LIST (REG_DEAD,
3742 regno_reg_rtx[i],
3743 REG_NOTES (insn));
3747 /* Mark the register as being live. */
3748 for (i = regno_first; i <= regno_last; ++i)
3750 #ifdef HAVE_conditional_execution
3751 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3752 #endif
3754 SET_REGNO_REG_SET (pbi->reg_live, i);
3756 #ifdef HAVE_conditional_execution
3757 /* If this is a conditional use, record that fact. If it is later
3758 conditionally set, we'll know to kill the register. */
3759 if (cond != NULL_RTX)
3761 splay_tree_node node;
3762 struct reg_cond_life_info *rcli;
3763 rtx ncond;
3765 if (this_was_live)
3767 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3768 if (node == NULL)
3770 /* The register was unconditionally live previously.
3771 No need to do anything. */
3773 else
3775 /* The register was conditionally live previously.
3776 Subtract the new life cond from the old death cond. */
3777 rcli = (struct reg_cond_life_info *) node->value;
3778 ncond = rcli->condition;
3779 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3781 /* If the register is now unconditionally live,
3782 remove the entry in the splay_tree. */
3783 if (ncond == const0_rtx)
3784 splay_tree_remove (pbi->reg_cond_dead, i);
3785 else
3787 rcli->condition = ncond;
3788 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3789 REGNO (XEXP (cond, 0)));
3793 else
3795 /* The register was not previously live at all. Record
3796 the condition under which it is still dead. */
3797 rcli = xmalloc (sizeof (*rcli));
3798 rcli->condition = not_reg_cond (cond);
3799 rcli->stores = const0_rtx;
3800 rcli->orig_condition = const0_rtx;
3801 splay_tree_insert (pbi->reg_cond_dead, i,
3802 (splay_tree_value) rcli);
3804 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3807 else if (this_was_live)
3809 /* The register may have been conditionally live previously, but
3810 is now unconditionally live. Remove it from the conditionally
3811 dead list, so that a conditional set won't cause us to think
3812 it dead. */
3813 splay_tree_remove (pbi->reg_cond_dead, i);
3815 #endif
3819 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3820 This is done assuming the registers needed from X are those that
3821 have 1-bits in PBI->REG_LIVE.
3823 INSN is the containing instruction. If INSN is dead, this function
3824 is not called. */
3826 static void
3827 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3829 RTX_CODE code;
3830 int regno;
3831 int flags = pbi->flags;
3833 retry:
3834 if (!x)
3835 return;
3836 code = GET_CODE (x);
3837 switch (code)
3839 case LABEL_REF:
3840 case SYMBOL_REF:
3841 case CONST_INT:
3842 case CONST:
3843 case CONST_DOUBLE:
3844 case CONST_VECTOR:
3845 case PC:
3846 case ADDR_VEC:
3847 case ADDR_DIFF_VEC:
3848 return;
3850 #ifdef HAVE_cc0
3851 case CC0:
3852 pbi->cc0_live = 1;
3853 return;
3854 #endif
3856 case CLOBBER:
3857 /* If we are clobbering a MEM, mark any registers inside the address
3858 as being used. */
3859 if (MEM_P (XEXP (x, 0)))
3860 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3861 return;
3863 case MEM:
3864 /* Don't bother watching stores to mems if this is not the
3865 final pass. We'll not be deleting dead stores this round. */
3866 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3868 /* Invalidate the data for the last MEM stored, but only if MEM is
3869 something that can be stored into. */
3870 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3871 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3872 /* Needn't clear the memory set list. */
3874 else
3876 rtx temp = pbi->mem_set_list;
3877 rtx prev = NULL_RTX;
3878 rtx next;
3880 while (temp)
3882 next = XEXP (temp, 1);
3883 if (anti_dependence (XEXP (temp, 0), x))
3885 /* Splice temp out of the list. */
3886 if (prev)
3887 XEXP (prev, 1) = next;
3888 else
3889 pbi->mem_set_list = next;
3890 free_EXPR_LIST_node (temp);
3891 pbi->mem_set_list_len--;
3893 else
3894 prev = temp;
3895 temp = next;
3899 /* If the memory reference had embedded side effects (autoincrement
3900 address modes. Then we may need to kill some entries on the
3901 memory set list. */
3902 if (insn)
3903 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3906 #ifdef AUTO_INC_DEC
3907 if (flags & PROP_AUTOINC)
3908 find_auto_inc (pbi, x, insn);
3909 #endif
3910 break;
3912 case SUBREG:
3913 #ifdef CANNOT_CHANGE_MODE_CLASS
3914 if (flags & PROP_REG_INFO)
3915 record_subregs_of_mode (x);
3916 #endif
3918 /* While we're here, optimize this case. */
3919 x = SUBREG_REG (x);
3920 if (!REG_P (x))
3921 goto retry;
3922 /* Fall through. */
3924 case REG:
3925 /* See a register other than being set => mark it as needed. */
3926 mark_used_reg (pbi, x, cond, insn);
3927 return;
3929 case SET:
3931 rtx testreg = SET_DEST (x);
3932 int mark_dest = 0;
3934 /* If storing into MEM, don't show it as being used. But do
3935 show the address as being used. */
3936 if (MEM_P (testreg))
3938 #ifdef AUTO_INC_DEC
3939 if (flags & PROP_AUTOINC)
3940 find_auto_inc (pbi, testreg, insn);
3941 #endif
3942 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3943 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3944 return;
3947 /* Storing in STRICT_LOW_PART is like storing in a reg
3948 in that this SET might be dead, so ignore it in TESTREG.
3949 but in some other ways it is like using the reg.
3951 Storing in a SUBREG or a bit field is like storing the entire
3952 register in that if the register's value is not used
3953 then this SET is not needed. */
3954 while (GET_CODE (testreg) == STRICT_LOW_PART
3955 || GET_CODE (testreg) == ZERO_EXTRACT
3956 || GET_CODE (testreg) == SUBREG)
3958 #ifdef CANNOT_CHANGE_MODE_CLASS
3959 if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3960 record_subregs_of_mode (testreg);
3961 #endif
3963 /* Modifying a single register in an alternate mode
3964 does not use any of the old value. But these other
3965 ways of storing in a register do use the old value. */
3966 if (GET_CODE (testreg) == SUBREG
3967 && !((REG_BYTES (SUBREG_REG (testreg))
3968 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3969 > (REG_BYTES (testreg)
3970 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3972 else
3973 mark_dest = 1;
3975 testreg = XEXP (testreg, 0);
3978 /* If this is a store into a register or group of registers,
3979 recursively scan the value being stored. */
3981 if ((GET_CODE (testreg) == PARALLEL
3982 && GET_MODE (testreg) == BLKmode)
3983 || (REG_P (testreg)
3984 && (regno = REGNO (testreg),
3985 ! (regno == FRAME_POINTER_REGNUM
3986 && (! reload_completed || frame_pointer_needed)))
3987 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3988 && ! (regno == HARD_FRAME_POINTER_REGNUM
3989 && (! reload_completed || frame_pointer_needed))
3990 #endif
3991 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3992 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3993 #endif
3996 if (mark_dest)
3997 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3998 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3999 return;
4002 break;
4004 case ASM_OPERANDS:
4005 case UNSPEC_VOLATILE:
4006 case TRAP_IF:
4007 case ASM_INPUT:
4009 /* Traditional and volatile asm instructions must be considered to use
4010 and clobber all hard registers, all pseudo-registers and all of
4011 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
4013 Consider for instance a volatile asm that changes the fpu rounding
4014 mode. An insn should not be moved across this even if it only uses
4015 pseudo-regs because it might give an incorrectly rounded result.
4017 ?!? Unfortunately, marking all hard registers as live causes massive
4018 problems for the register allocator and marking all pseudos as live
4019 creates mountains of uninitialized variable warnings.
4021 So for now, just clear the memory set list and mark any regs
4022 we can find in ASM_OPERANDS as used. */
4023 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
4025 free_EXPR_LIST_list (&pbi->mem_set_list);
4026 pbi->mem_set_list_len = 0;
4029 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
4030 We can not just fall through here since then we would be confused
4031 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
4032 traditional asms unlike their normal usage. */
4033 if (code == ASM_OPERANDS)
4035 int j;
4037 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
4038 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
4040 break;
4043 case COND_EXEC:
4044 gcc_assert (!cond);
4046 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4048 cond = COND_EXEC_TEST (x);
4049 x = COND_EXEC_CODE (x);
4050 goto retry;
4052 default:
4053 break;
4056 /* Recursively scan the operands of this expression. */
4059 const char * const fmt = GET_RTX_FORMAT (code);
4060 int i;
4062 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4064 if (fmt[i] == 'e')
4066 /* Tail recursive case: save a function call level. */
4067 if (i == 0)
4069 x = XEXP (x, 0);
4070 goto retry;
4072 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4074 else if (fmt[i] == 'E')
4076 int j;
4077 for (j = 0; j < XVECLEN (x, i); j++)
4078 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4084 #ifdef AUTO_INC_DEC
4086 static int
4087 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4089 /* Find the next use of this reg. If in same basic block,
4090 make it do pre-increment or pre-decrement if appropriate. */
4091 rtx x = single_set (insn);
4092 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4093 * INTVAL (XEXP (SET_SRC (x), 1)));
4094 int regno = REGNO (SET_DEST (x));
4095 rtx y = pbi->reg_next_use[regno];
4096 if (y != 0
4097 && SET_DEST (x) != stack_pointer_rtx
4098 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4099 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4100 mode would be better. */
4101 && ! dead_or_set_p (y, SET_DEST (x))
4102 && try_pre_increment (y, SET_DEST (x), amount))
4104 /* We have found a suitable auto-increment and already changed
4105 insn Y to do it. So flush this increment instruction. */
4106 propagate_block_delete_insn (insn);
4108 /* Count a reference to this reg for the increment insn we are
4109 deleting. When a reg is incremented, spilling it is worse,
4110 so we want to make that less likely. */
4111 if (regno >= FIRST_PSEUDO_REGISTER)
4113 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4114 REG_N_SETS (regno)++;
4117 /* Flush any remembered memories depending on the value of
4118 the incremented register. */
4119 invalidate_mems_from_set (pbi, SET_DEST (x));
4121 return 1;
4123 return 0;
4126 /* Try to change INSN so that it does pre-increment or pre-decrement
4127 addressing on register REG in order to add AMOUNT to REG.
4128 AMOUNT is negative for pre-decrement.
4129 Returns 1 if the change could be made.
4130 This checks all about the validity of the result of modifying INSN. */
4132 static int
4133 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4135 rtx use;
4137 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4138 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4139 int pre_ok = 0;
4140 /* Nonzero if we can try to make a post-increment or post-decrement.
4141 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4142 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4143 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4144 int post_ok = 0;
4146 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4147 int do_post = 0;
4149 /* From the sign of increment, see which possibilities are conceivable
4150 on this target machine. */
4151 if (HAVE_PRE_INCREMENT && amount > 0)
4152 pre_ok = 1;
4153 if (HAVE_POST_INCREMENT && amount > 0)
4154 post_ok = 1;
4156 if (HAVE_PRE_DECREMENT && amount < 0)
4157 pre_ok = 1;
4158 if (HAVE_POST_DECREMENT && amount < 0)
4159 post_ok = 1;
4161 if (! (pre_ok || post_ok))
4162 return 0;
4164 /* It is not safe to add a side effect to a jump insn
4165 because if the incremented register is spilled and must be reloaded
4166 there would be no way to store the incremented value back in memory. */
4168 if (JUMP_P (insn))
4169 return 0;
4171 use = 0;
4172 if (pre_ok)
4173 use = find_use_as_address (PATTERN (insn), reg, 0);
4174 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4176 use = find_use_as_address (PATTERN (insn), reg, -amount);
4177 do_post = 1;
4180 if (use == 0 || use == (rtx) (size_t) 1)
4181 return 0;
4183 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4184 return 0;
4186 /* See if this combination of instruction and addressing mode exists. */
4187 if (! validate_change (insn, &XEXP (use, 0),
4188 gen_rtx_fmt_e (amount > 0
4189 ? (do_post ? POST_INC : PRE_INC)
4190 : (do_post ? POST_DEC : PRE_DEC),
4191 Pmode, reg), 0))
4192 return 0;
4194 /* Record that this insn now has an implicit side effect on X. */
4195 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4196 return 1;
4199 #endif /* AUTO_INC_DEC */
4201 /* Find the place in the rtx X where REG is used as a memory address.
4202 Return the MEM rtx that so uses it.
4203 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4204 (plus REG (const_int PLUSCONST)).
4206 If such an address does not appear, return 0.
4207 If REG appears more than once, or is used other than in such an address,
4208 return (rtx) 1. */
4211 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4213 enum rtx_code code = GET_CODE (x);
4214 const char * const fmt = GET_RTX_FORMAT (code);
4215 int i;
4216 rtx value = 0;
4217 rtx tem;
4219 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4220 return x;
4222 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4223 && XEXP (XEXP (x, 0), 0) == reg
4224 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4225 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4226 return x;
4228 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4230 /* If REG occurs inside a MEM used in a bit-field reference,
4231 that is unacceptable. */
4232 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4233 return (rtx) (size_t) 1;
4236 if (x == reg)
4237 return (rtx) (size_t) 1;
4239 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4241 if (fmt[i] == 'e')
4243 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4244 if (value == 0)
4245 value = tem;
4246 else if (tem != 0)
4247 return (rtx) (size_t) 1;
4249 else if (fmt[i] == 'E')
4251 int j;
4252 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4254 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4255 if (value == 0)
4256 value = tem;
4257 else if (tem != 0)
4258 return (rtx) (size_t) 1;
4263 return value;
4266 /* Write information about registers and basic blocks into FILE.
4267 This is part of making a debugging dump. */
4269 void
4270 dump_regset (regset r, FILE *outf)
4272 unsigned i;
4273 reg_set_iterator rsi;
4275 if (r == NULL)
4277 fputs (" (nil)", outf);
4278 return;
4281 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4283 fprintf (outf, " %d", i);
4284 if (i < FIRST_PSEUDO_REGISTER)
4285 fprintf (outf, " [%s]",
4286 reg_names[i]);
4290 /* Print a human-readable representation of R on the standard error
4291 stream. This function is designed to be used from within the
4292 debugger. */
4294 void
4295 debug_regset (regset r)
4297 dump_regset (r, stderr);
4298 putc ('\n', stderr);
4301 /* Recompute register set/reference counts immediately prior to register
4302 allocation.
4304 This avoids problems with set/reference counts changing to/from values
4305 which have special meanings to the register allocators.
4307 Additionally, the reference counts are the primary component used by the
4308 register allocators to prioritize pseudos for allocation to hard regs.
4309 More accurate reference counts generally lead to better register allocation.
4311 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4312 possibly other information which is used by the register allocators. */
4314 void
4315 recompute_reg_usage (void)
4317 allocate_reg_life_data ();
4318 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4319 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4320 solve this update the DEATH_NOTES here. */
4321 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4324 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4325 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4326 of the number of registers that died. */
4329 count_or_remove_death_notes (sbitmap blocks, int kill)
4331 int count = 0;
4332 int i;
4333 basic_block bb;
4335 /* This used to be a loop over all the blocks with a membership test
4336 inside the loop. That can be amazingly expensive on a large CFG
4337 when only a small number of bits are set in BLOCKs (for example,
4338 the calls from the scheduler typically have very few bits set).
4340 For extra credit, someone should convert BLOCKS to a bitmap rather
4341 than an sbitmap. */
4342 if (blocks)
4344 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4346 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4349 else
4351 FOR_EACH_BB (bb)
4353 count += count_or_remove_death_notes_bb (bb, kill);
4357 return count;
4360 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4361 block BB. Returns a count of the number of registers that died. */
4363 static int
4364 count_or_remove_death_notes_bb (basic_block bb, int kill)
4366 int count = 0;
4367 rtx insn;
4369 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4371 if (INSN_P (insn))
4373 rtx *pprev = &REG_NOTES (insn);
4374 rtx link = *pprev;
4376 while (link)
4378 switch (REG_NOTE_KIND (link))
4380 case REG_DEAD:
4381 if (REG_P (XEXP (link, 0)))
4383 rtx reg = XEXP (link, 0);
4384 int n;
4386 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4387 n = 1;
4388 else
4389 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4390 count += n;
4393 /* Fall through. */
4395 case REG_UNUSED:
4396 if (kill)
4398 rtx next = XEXP (link, 1);
4399 free_EXPR_LIST_node (link);
4400 *pprev = link = next;
4401 break;
4403 /* Fall through. */
4405 default:
4406 pprev = &XEXP (link, 1);
4407 link = *pprev;
4408 break;
4413 if (insn == BB_END (bb))
4414 break;
4417 return count;
4420 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4421 if blocks is NULL. */
4423 static void
4424 clear_log_links (sbitmap blocks)
4426 rtx insn;
4427 int i;
4429 if (!blocks)
4431 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4432 if (INSN_P (insn))
4433 free_INSN_LIST_list (&LOG_LINKS (insn));
4435 else
4436 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4438 basic_block bb = BASIC_BLOCK (i);
4440 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4441 insn = NEXT_INSN (insn))
4442 if (INSN_P (insn))
4443 free_INSN_LIST_list (&LOG_LINKS (insn));
4447 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4448 correspond to the hard registers, if any, set in that map. This
4449 could be done far more efficiently by having all sorts of special-cases
4450 with moving single words, but probably isn't worth the trouble. */
4452 void
4453 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4455 unsigned i;
4456 bitmap_iterator bi;
4458 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4460 if (i >= FIRST_PSEUDO_REGISTER)
4461 return;
4462 SET_HARD_REG_BIT (*to, i);