1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* High-level class interface. */
27 #include "coretypes.h"
39 static bool begin_init_stmts (tree
*, tree
*);
40 static tree
finish_init_stmts (bool, tree
, tree
);
41 static void construct_virtual_base (tree
, tree
);
42 static void expand_aggr_init_1 (tree
, tree
, tree
, tree
, int);
43 static void expand_default_init (tree
, tree
, tree
, tree
, int);
44 static tree
build_vec_delete_1 (tree
, tree
, tree
, special_function_kind
, int);
45 static void perform_member_init (tree
, tree
);
46 static tree
build_builtin_delete_call (tree
);
47 static int member_init_ok_or_else (tree
, tree
, tree
);
48 static void expand_virtual_init (tree
, tree
);
49 static tree
sort_mem_initializers (tree
, tree
);
50 static tree
initializing_context (tree
);
51 static void expand_cleanup_for_base (tree
, tree
);
52 static tree
get_temp_regvar (tree
, tree
);
53 static tree
dfs_initialize_vtbl_ptrs (tree
, void *);
54 static tree
build_default_init (tree
, tree
);
55 static tree
build_new_1 (tree
);
56 static tree
build_dtor_call (tree
, special_function_kind
, int);
57 static tree
build_field_list (tree
, tree
, int *);
58 static tree
build_vtbl_address (tree
);
60 /* We are about to generate some complex initialization code.
61 Conceptually, it is all a single expression. However, we may want
62 to include conditionals, loops, and other such statement-level
63 constructs. Therefore, we build the initialization code inside a
64 statement-expression. This function starts such an expression.
65 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
66 pass them back to finish_init_stmts when the expression is
70 begin_init_stmts (tree
*stmt_expr_p
, tree
*compound_stmt_p
)
72 bool is_global
= !building_stmt_tree ();
74 *stmt_expr_p
= begin_stmt_expr ();
75 *compound_stmt_p
= begin_compound_stmt (BCS_NO_SCOPE
);
80 /* Finish out the statement-expression begun by the previous call to
81 begin_init_stmts. Returns the statement-expression itself. */
84 finish_init_stmts (bool is_global
, tree stmt_expr
, tree compound_stmt
)
86 finish_compound_stmt (compound_stmt
);
88 stmt_expr
= finish_stmt_expr (stmt_expr
, true);
90 gcc_assert (!building_stmt_tree () == is_global
);
97 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
98 which we want to initialize the vtable pointer for, DATA is
99 TREE_LIST whose TREE_VALUE is the this ptr expression. */
102 dfs_initialize_vtbl_ptrs (tree binfo
, void *data
)
104 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
105 return dfs_skip_bases
;
107 if (!BINFO_PRIMARY_P (binfo
) || BINFO_VIRTUAL_P (binfo
))
109 tree base_ptr
= TREE_VALUE ((tree
) data
);
111 base_ptr
= build_base_path (PLUS_EXPR
, base_ptr
, binfo
, /*nonnull=*/1);
113 expand_virtual_init (binfo
, base_ptr
);
119 /* Initialize all the vtable pointers in the object pointed to by
123 initialize_vtbl_ptrs (tree addr
)
128 type
= TREE_TYPE (TREE_TYPE (addr
));
129 list
= build_tree_list (type
, addr
);
131 /* Walk through the hierarchy, initializing the vptr in each base
132 class. We do these in pre-order because we can't find the virtual
133 bases for a class until we've initialized the vtbl for that
135 dfs_walk_once (TYPE_BINFO (type
), dfs_initialize_vtbl_ptrs
, NULL
, list
);
138 /* Return an expression for the zero-initialization of an object with
139 type T. This expression will either be a constant (in the case
140 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
141 aggregate). In either case, the value can be used as DECL_INITIAL
142 for a decl of the indicated TYPE; it is a valid static initializer.
143 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
144 number of elements in the array. If STATIC_STORAGE_P is TRUE,
145 initializers are only generated for entities for which
146 zero-initialization does not simply mean filling the storage with
150 build_zero_init (tree type
, tree nelts
, bool static_storage_p
)
152 tree init
= NULL_TREE
;
156 To zero-initialization storage for an object of type T means:
158 -- if T is a scalar type, the storage is set to the value of zero
161 -- if T is a non-union class type, the storage for each nonstatic
162 data member and each base-class subobject is zero-initialized.
164 -- if T is a union type, the storage for its first data member is
167 -- if T is an array type, the storage for each element is
170 -- if T is a reference type, no initialization is performed. */
172 gcc_assert (nelts
== NULL_TREE
|| TREE_CODE (nelts
) == INTEGER_CST
);
174 if (type
== error_mark_node
)
176 else if (static_storage_p
&& zero_init_p (type
))
177 /* In order to save space, we do not explicitly build initializers
178 for items that do not need them. GCC's semantics are that
179 items with static storage duration that are not otherwise
180 initialized are initialized to zero. */
182 else if (SCALAR_TYPE_P (type
))
183 init
= convert (type
, integer_zero_node
);
184 else if (CLASS_TYPE_P (type
))
189 /* Build a constructor to contain the initializations. */
190 init
= build_constructor (type
, NULL_TREE
);
191 /* Iterate over the fields, building initializations. */
193 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
195 if (TREE_CODE (field
) != FIELD_DECL
)
198 /* Note that for class types there will be FIELD_DECLs
199 corresponding to base classes as well. Thus, iterating
200 over TYPE_FIELDs will result in correct initialization of
201 all of the subobjects. */
202 if (static_storage_p
&& !zero_init_p (TREE_TYPE (field
)))
203 inits
= tree_cons (field
,
204 build_zero_init (TREE_TYPE (field
),
209 /* For unions, only the first field is initialized. */
210 if (TREE_CODE (type
) == UNION_TYPE
)
213 CONSTRUCTOR_ELTS (init
) = nreverse (inits
);
215 else if (TREE_CODE (type
) == ARRAY_TYPE
)
220 /* Build a constructor to contain the initializations. */
221 init
= build_constructor (type
, NULL_TREE
);
222 /* Iterate over the array elements, building initializations. */
225 max_index
= fold (build2 (MINUS_EXPR
, TREE_TYPE (nelts
),
226 nelts
, integer_one_node
));
228 max_index
= array_type_nelts (type
);
229 gcc_assert (TREE_CODE (max_index
) == INTEGER_CST
);
231 /* A zero-sized array, which is accepted as an extension, will
232 have an upper bound of -1. */
233 if (!tree_int_cst_equal (max_index
, integer_minus_one_node
))
235 tree elt_init
= build_zero_init (TREE_TYPE (type
),
240 /* If this is a one element array, we just use a regular init. */
241 if (tree_int_cst_equal (size_zero_node
, max_index
))
242 range
= size_zero_node
;
244 range
= build2 (RANGE_EXPR
, sizetype
, size_zero_node
, max_index
);
246 inits
= tree_cons (range
, elt_init
, inits
);
249 CONSTRUCTOR_ELTS (init
) = nreverse (inits
);
252 gcc_assert (TREE_CODE (type
) == REFERENCE_TYPE
);
254 /* In all cases, the initializer is a constant. */
257 TREE_CONSTANT (init
) = 1;
258 TREE_INVARIANT (init
) = 1;
264 /* Build an expression for the default-initialization of an object of
265 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
266 ARRAY_TYPE, NELTS is the number of elements in the array. If
267 initialization of TYPE requires calling constructors, this function
268 returns NULL_TREE; the caller is responsible for arranging for the
269 constructors to be called. */
272 build_default_init (tree type
, tree nelts
)
276 To default-initialize an object of type T means:
278 --if T is a non-POD class type (clause _class_), the default construc-
279 tor for T is called (and the initialization is ill-formed if T has
280 no accessible default constructor);
282 --if T is an array type, each element is default-initialized;
284 --otherwise, the storage for the object is zero-initialized.
286 A program that calls for default-initialization of an entity of refer-
287 ence type is ill-formed. */
289 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
290 performing the initialization. This is confusing in that some
291 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
292 a class with a pointer-to-data member as a non-static data member
293 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
294 passing non-PODs to build_zero_init below, which is contrary to
295 the semantics quoted above from [dcl.init].
297 It happens, however, that the behavior of the constructor the
298 standard says we should have generated would be precisely the
299 same as that obtained by calling build_zero_init below, so things
301 if (TYPE_NEEDS_CONSTRUCTING (type
)
302 || (nelts
&& TREE_CODE (nelts
) != INTEGER_CST
))
305 /* At this point, TYPE is either a POD class type, an array of POD
306 classes, or something even more innocuous. */
307 return build_zero_init (type
, nelts
, /*static_storage_p=*/false);
310 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
311 arguments. If TREE_LIST is void_type_node, an empty initializer
312 list was given; if NULL_TREE no initializer was given. */
315 perform_member_init (tree member
, tree init
)
318 tree type
= TREE_TYPE (member
);
321 explicit = (init
!= NULL_TREE
);
323 /* Effective C++ rule 12 requires that all data members be
325 if (warn_ecpp
&& !explicit && TREE_CODE (type
) != ARRAY_TYPE
)
326 warning ("%J%qD should be initialized in the member initialization "
327 "list", current_function_decl
, member
);
329 if (init
== void_type_node
)
332 /* Get an lvalue for the data member. */
333 decl
= build_class_member_access_expr (current_class_ref
, member
,
334 /*access_path=*/NULL_TREE
,
335 /*preserve_reference=*/true);
336 if (decl
== error_mark_node
)
339 /* Deal with this here, as we will get confused if we try to call the
340 assignment op for an anonymous union. This can happen in a
341 synthesized copy constructor. */
342 if (ANON_AGGR_TYPE_P (type
))
346 init
= build2 (INIT_EXPR
, type
, decl
, TREE_VALUE (init
));
347 finish_expr_stmt (init
);
350 else if (TYPE_NEEDS_CONSTRUCTING (type
))
353 && TREE_CODE (type
) == ARRAY_TYPE
355 && TREE_CHAIN (init
) == NULL_TREE
356 && TREE_CODE (TREE_TYPE (TREE_VALUE (init
))) == ARRAY_TYPE
)
358 /* Initialization of one array from another. */
359 finish_expr_stmt (build_vec_init (decl
, NULL_TREE
, TREE_VALUE (init
),
363 finish_expr_stmt (build_aggr_init (decl
, init
, 0));
367 if (init
== NULL_TREE
)
371 init
= build_default_init (type
, /*nelts=*/NULL_TREE
);
372 if (TREE_CODE (type
) == REFERENCE_TYPE
)
373 warning ("%Jdefault-initialization of %q#D, "
374 "which has reference type",
375 current_function_decl
, member
);
377 /* member traversal: note it leaves init NULL */
378 else if (TREE_CODE (type
) == REFERENCE_TYPE
)
379 pedwarn ("%Juninitialized reference member %qD",
380 current_function_decl
, member
);
381 else if (CP_TYPE_CONST_P (type
))
382 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
383 current_function_decl
, member
, type
);
385 else if (TREE_CODE (init
) == TREE_LIST
)
386 /* There was an explicit member initialization. Do some work
388 init
= build_x_compound_expr_from_list (init
, "member initializer");
391 finish_expr_stmt (build_modify_expr (decl
, INIT_EXPR
, init
));
394 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
398 expr
= build_class_member_access_expr (current_class_ref
, member
,
399 /*access_path=*/NULL_TREE
,
400 /*preserve_reference=*/false);
401 expr
= build_delete (type
, expr
, sfk_complete_destructor
,
402 LOOKUP_NONVIRTUAL
|LOOKUP_DESTRUCTOR
, 0);
404 if (expr
!= error_mark_node
)
405 finish_eh_cleanup (expr
);
409 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
410 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
413 build_field_list (tree t
, tree list
, int *uses_unions_p
)
419 /* Note whether or not T is a union. */
420 if (TREE_CODE (t
) == UNION_TYPE
)
423 for (fields
= TYPE_FIELDS (t
); fields
; fields
= TREE_CHAIN (fields
))
425 /* Skip CONST_DECLs for enumeration constants and so forth. */
426 if (TREE_CODE (fields
) != FIELD_DECL
|| DECL_ARTIFICIAL (fields
))
429 /* Keep track of whether or not any fields are unions. */
430 if (TREE_CODE (TREE_TYPE (fields
)) == UNION_TYPE
)
433 /* For an anonymous struct or union, we must recursively
434 consider the fields of the anonymous type. They can be
435 directly initialized from the constructor. */
436 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields
)))
438 /* Add this field itself. Synthesized copy constructors
439 initialize the entire aggregate. */
440 list
= tree_cons (fields
, NULL_TREE
, list
);
441 /* And now add the fields in the anonymous aggregate. */
442 list
= build_field_list (TREE_TYPE (fields
), list
,
445 /* Add this field. */
446 else if (DECL_NAME (fields
))
447 list
= tree_cons (fields
, NULL_TREE
, list
);
453 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
454 a FIELD_DECL or BINFO in T that needs initialization. The
455 TREE_VALUE gives the initializer, or list of initializer arguments.
457 Return a TREE_LIST containing all of the initializations required
458 for T, in the order in which they should be performed. The output
459 list has the same format as the input. */
462 sort_mem_initializers (tree t
, tree mem_inits
)
465 tree base
, binfo
, base_binfo
;
472 /* Build up a list of initializations. The TREE_PURPOSE of entry
473 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
474 TREE_VALUE will be the constructor arguments, or NULL if no
475 explicit initialization was provided. */
476 sorted_inits
= NULL_TREE
;
478 /* Process the virtual bases. */
479 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
480 VEC_iterate (tree
, vbases
, i
, base
); i
++)
481 sorted_inits
= tree_cons (base
, NULL_TREE
, sorted_inits
);
483 /* Process the direct bases. */
484 for (binfo
= TYPE_BINFO (t
), i
= 0;
485 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
486 if (!BINFO_VIRTUAL_P (base_binfo
))
487 sorted_inits
= tree_cons (base_binfo
, NULL_TREE
, sorted_inits
);
489 /* Process the non-static data members. */
490 sorted_inits
= build_field_list (t
, sorted_inits
, &uses_unions_p
);
491 /* Reverse the entire list of initializations, so that they are in
492 the order that they will actually be performed. */
493 sorted_inits
= nreverse (sorted_inits
);
495 /* If the user presented the initializers in an order different from
496 that in which they will actually occur, we issue a warning. Keep
497 track of the next subobject which can be explicitly initialized
498 without issuing a warning. */
499 next_subobject
= sorted_inits
;
501 /* Go through the explicit initializers, filling in TREE_PURPOSE in
503 for (init
= mem_inits
; init
; init
= TREE_CHAIN (init
))
508 subobject
= TREE_PURPOSE (init
);
510 /* If the explicit initializers are in sorted order, then
511 SUBOBJECT will be NEXT_SUBOBJECT, or something following
513 for (subobject_init
= next_subobject
;
515 subobject_init
= TREE_CHAIN (subobject_init
))
516 if (TREE_PURPOSE (subobject_init
) == subobject
)
519 /* Issue a warning if the explicit initializer order does not
520 match that which will actually occur.
521 ??? Are all these on the correct lines? */
522 if (warn_reorder
&& !subobject_init
)
524 if (TREE_CODE (TREE_PURPOSE (next_subobject
)) == FIELD_DECL
)
525 cp_warning_at ("%qD will be initialized after",
526 TREE_PURPOSE (next_subobject
));
528 warning ("base %qT will be initialized after",
529 TREE_PURPOSE (next_subobject
));
530 if (TREE_CODE (subobject
) == FIELD_DECL
)
531 cp_warning_at (" %q#D", subobject
);
533 warning (" base %qT", subobject
);
534 warning ("%J when initialized here", current_function_decl
);
537 /* Look again, from the beginning of the list. */
540 subobject_init
= sorted_inits
;
541 while (TREE_PURPOSE (subobject_init
) != subobject
)
542 subobject_init
= TREE_CHAIN (subobject_init
);
545 /* It is invalid to initialize the same subobject more than
547 if (TREE_VALUE (subobject_init
))
549 if (TREE_CODE (subobject
) == FIELD_DECL
)
550 error ("%Jmultiple initializations given for %qD",
551 current_function_decl
, subobject
);
553 error ("%Jmultiple initializations given for base %qT",
554 current_function_decl
, subobject
);
557 /* Record the initialization. */
558 TREE_VALUE (subobject_init
) = TREE_VALUE (init
);
559 next_subobject
= subobject_init
;
564 If a ctor-initializer specifies more than one mem-initializer for
565 multiple members of the same union (including members of
566 anonymous unions), the ctor-initializer is ill-formed. */
569 tree last_field
= NULL_TREE
;
570 for (init
= sorted_inits
; init
; init
= TREE_CHAIN (init
))
576 /* Skip uninitialized members and base classes. */
577 if (!TREE_VALUE (init
)
578 || TREE_CODE (TREE_PURPOSE (init
)) != FIELD_DECL
)
580 /* See if this field is a member of a union, or a member of a
581 structure contained in a union, etc. */
582 field
= TREE_PURPOSE (init
);
583 for (field_type
= DECL_CONTEXT (field
);
584 !same_type_p (field_type
, t
);
585 field_type
= TYPE_CONTEXT (field_type
))
586 if (TREE_CODE (field_type
) == UNION_TYPE
)
588 /* If this field is not a member of a union, skip it. */
589 if (TREE_CODE (field_type
) != UNION_TYPE
)
592 /* It's only an error if we have two initializers for the same
600 /* See if LAST_FIELD and the field initialized by INIT are
601 members of the same union. If so, there's a problem,
602 unless they're actually members of the same structure
603 which is itself a member of a union. For example, given:
605 union { struct { int i; int j; }; };
607 initializing both `i' and `j' makes sense. */
608 field_type
= DECL_CONTEXT (field
);
612 tree last_field_type
;
614 last_field_type
= DECL_CONTEXT (last_field
);
617 if (same_type_p (last_field_type
, field_type
))
619 if (TREE_CODE (field_type
) == UNION_TYPE
)
620 error ("%Jinitializations for multiple members of %qT",
621 current_function_decl
, last_field_type
);
626 if (same_type_p (last_field_type
, t
))
629 last_field_type
= TYPE_CONTEXT (last_field_type
);
632 /* If we've reached the outermost class, then we're
634 if (same_type_p (field_type
, t
))
637 field_type
= TYPE_CONTEXT (field_type
);
648 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
649 is a TREE_LIST giving the explicit mem-initializer-list for the
650 constructor. The TREE_PURPOSE of each entry is a subobject (a
651 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
652 is a TREE_LIST giving the arguments to the constructor or
653 void_type_node for an empty list of arguments. */
656 emit_mem_initializers (tree mem_inits
)
658 /* Sort the mem-initializers into the order in which the
659 initializations should be performed. */
660 mem_inits
= sort_mem_initializers (current_class_type
, mem_inits
);
662 in_base_initializer
= 1;
664 /* Initialize base classes. */
666 && TREE_CODE (TREE_PURPOSE (mem_inits
)) != FIELD_DECL
)
668 tree subobject
= TREE_PURPOSE (mem_inits
);
669 tree arguments
= TREE_VALUE (mem_inits
);
671 /* If these initializations are taking place in a copy
672 constructor, the base class should probably be explicitly
674 if (extra_warnings
&& !arguments
675 && DECL_COPY_CONSTRUCTOR_P (current_function_decl
)
676 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject
)))
677 warning ("%Jbase class %q#T should be explicitly initialized in the "
679 current_function_decl
, BINFO_TYPE (subobject
));
681 /* If an explicit -- but empty -- initializer list was present,
682 treat it just like default initialization at this point. */
683 if (arguments
== void_type_node
)
684 arguments
= NULL_TREE
;
686 /* Initialize the base. */
687 if (BINFO_VIRTUAL_P (subobject
))
688 construct_virtual_base (subobject
, arguments
);
693 base_addr
= build_base_path (PLUS_EXPR
, current_class_ptr
,
695 expand_aggr_init_1 (subobject
, NULL_TREE
,
696 build_indirect_ref (base_addr
, NULL
),
699 expand_cleanup_for_base (subobject
, NULL_TREE
);
702 mem_inits
= TREE_CHAIN (mem_inits
);
704 in_base_initializer
= 0;
706 /* Initialize the vptrs. */
707 initialize_vtbl_ptrs (current_class_ptr
);
709 /* Initialize the data members. */
712 perform_member_init (TREE_PURPOSE (mem_inits
),
713 TREE_VALUE (mem_inits
));
714 mem_inits
= TREE_CHAIN (mem_inits
);
718 /* Returns the address of the vtable (i.e., the value that should be
719 assigned to the vptr) for BINFO. */
722 build_vtbl_address (tree binfo
)
724 tree binfo_for
= binfo
;
727 if (BINFO_VPTR_INDEX (binfo
) && BINFO_VIRTUAL_P (binfo
))
728 /* If this is a virtual primary base, then the vtable we want to store
729 is that for the base this is being used as the primary base of. We
730 can't simply skip the initialization, because we may be expanding the
731 inits of a subobject constructor where the virtual base layout
733 while (BINFO_PRIMARY_P (binfo_for
))
734 binfo_for
= BINFO_INHERITANCE_CHAIN (binfo_for
);
736 /* Figure out what vtable BINFO's vtable is based on, and mark it as
738 vtbl
= get_vtbl_decl_for_binfo (binfo_for
);
739 assemble_external (vtbl
);
740 TREE_USED (vtbl
) = 1;
742 /* Now compute the address to use when initializing the vptr. */
743 vtbl
= unshare_expr (BINFO_VTABLE (binfo_for
));
744 if (TREE_CODE (vtbl
) == VAR_DECL
)
745 vtbl
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (vtbl
)), vtbl
);
750 /* This code sets up the virtual function tables appropriate for
751 the pointer DECL. It is a one-ply initialization.
753 BINFO is the exact type that DECL is supposed to be. In
754 multiple inheritance, this might mean "C's A" if C : A, B. */
757 expand_virtual_init (tree binfo
, tree decl
)
762 /* Compute the initializer for vptr. */
763 vtbl
= build_vtbl_address (binfo
);
765 /* We may get this vptr from a VTT, if this is a subobject
766 constructor or subobject destructor. */
767 vtt_index
= BINFO_VPTR_INDEX (binfo
);
773 /* Compute the value to use, when there's a VTT. */
774 vtt_parm
= current_vtt_parm
;
775 vtbl2
= build2 (PLUS_EXPR
,
776 TREE_TYPE (vtt_parm
),
779 vtbl2
= build_indirect_ref (vtbl2
, NULL
);
780 vtbl2
= convert (TREE_TYPE (vtbl
), vtbl2
);
782 /* The actual initializer is the VTT value only in the subobject
783 constructor. In maybe_clone_body we'll substitute NULL for
784 the vtt_parm in the case of the non-subobject constructor. */
785 vtbl
= build3 (COND_EXPR
,
787 build2 (EQ_EXPR
, boolean_type_node
,
788 current_in_charge_parm
, integer_zero_node
),
793 /* Compute the location of the vtpr. */
794 vtbl_ptr
= build_vfield_ref (build_indirect_ref (decl
, NULL
),
796 gcc_assert (vtbl_ptr
!= error_mark_node
);
798 /* Assign the vtable to the vptr. */
799 vtbl
= convert_force (TREE_TYPE (vtbl_ptr
), vtbl
, 0);
800 finish_expr_stmt (build_modify_expr (vtbl_ptr
, NOP_EXPR
, vtbl
));
803 /* If an exception is thrown in a constructor, those base classes already
804 constructed must be destroyed. This function creates the cleanup
805 for BINFO, which has just been constructed. If FLAG is non-NULL,
806 it is a DECL which is nonzero when this base needs to be
810 expand_cleanup_for_base (tree binfo
, tree flag
)
814 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo
)))
817 /* Call the destructor. */
818 expr
= build_special_member_call (current_class_ref
,
819 base_dtor_identifier
,
822 LOOKUP_NORMAL
| LOOKUP_NONVIRTUAL
);
824 expr
= fold (build3 (COND_EXPR
, void_type_node
,
825 c_common_truthvalue_conversion (flag
),
826 expr
, integer_zero_node
));
828 finish_eh_cleanup (expr
);
831 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
835 construct_virtual_base (tree vbase
, tree arguments
)
841 /* If there are virtual base classes with destructors, we need to
842 emit cleanups to destroy them if an exception is thrown during
843 the construction process. These exception regions (i.e., the
844 period during which the cleanups must occur) begin from the time
845 the construction is complete to the end of the function. If we
846 create a conditional block in which to initialize the
847 base-classes, then the cleanup region for the virtual base begins
848 inside a block, and ends outside of that block. This situation
849 confuses the sjlj exception-handling code. Therefore, we do not
850 create a single conditional block, but one for each
851 initialization. (That way the cleanup regions always begin
852 in the outer block.) We trust the back-end to figure out
853 that the FLAG will not change across initializations, and
854 avoid doing multiple tests. */
855 flag
= TREE_CHAIN (DECL_ARGUMENTS (current_function_decl
));
856 inner_if_stmt
= begin_if_stmt ();
857 finish_if_stmt_cond (flag
, inner_if_stmt
);
859 /* Compute the location of the virtual base. If we're
860 constructing virtual bases, then we must be the most derived
861 class. Therefore, we don't have to look up the virtual base;
862 we already know where it is. */
863 exp
= convert_to_base_statically (current_class_ref
, vbase
);
865 expand_aggr_init_1 (vbase
, current_class_ref
, exp
, arguments
,
867 finish_then_clause (inner_if_stmt
);
868 finish_if_stmt (inner_if_stmt
);
870 expand_cleanup_for_base (vbase
, flag
);
873 /* Find the context in which this FIELD can be initialized. */
876 initializing_context (tree field
)
878 tree t
= DECL_CONTEXT (field
);
880 /* Anonymous union members can be initialized in the first enclosing
881 non-anonymous union context. */
882 while (t
&& ANON_AGGR_TYPE_P (t
))
883 t
= TYPE_CONTEXT (t
);
887 /* Function to give error message if member initialization specification
888 is erroneous. FIELD is the member we decided to initialize.
889 TYPE is the type for which the initialization is being performed.
890 FIELD must be a member of TYPE.
892 MEMBER_NAME is the name of the member. */
895 member_init_ok_or_else (tree field
, tree type
, tree member_name
)
897 if (field
== error_mark_node
)
901 error ("class %qT does not have any field named %qD", type
,
905 if (TREE_CODE (field
) == VAR_DECL
)
907 error ("%q#D is a static data member; it can only be "
908 "initialized at its definition",
912 if (TREE_CODE (field
) != FIELD_DECL
)
914 error ("%q#D is not a non-static data member of %qT",
918 if (initializing_context (field
) != type
)
920 error ("class %qT does not have any field named %qD", type
,
928 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
929 is a _TYPE node or TYPE_DECL which names a base for that type.
930 Check the validity of NAME, and return either the base _TYPE, base
931 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
932 NULL_TREE and issue a diagnostic.
934 An old style unnamed direct single base construction is permitted,
935 where NAME is NULL. */
938 expand_member_init (tree name
)
943 if (!current_class_ref
)
948 /* This is an obsolete unnamed base class initializer. The
949 parser will already have warned about its use. */
950 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type
)))
953 error ("unnamed initializer for %qT, which has no base classes",
957 basetype
= BINFO_TYPE
958 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type
), 0));
961 error ("unnamed initializer for %qT, which uses multiple inheritance",
966 else if (TYPE_P (name
))
968 basetype
= TYPE_MAIN_VARIANT (name
);
969 name
= TYPE_NAME (name
);
971 else if (TREE_CODE (name
) == TYPE_DECL
)
972 basetype
= TYPE_MAIN_VARIANT (TREE_TYPE (name
));
974 basetype
= NULL_TREE
;
983 if (current_template_parms
)
986 class_binfo
= TYPE_BINFO (current_class_type
);
987 direct_binfo
= NULL_TREE
;
988 virtual_binfo
= NULL_TREE
;
990 /* Look for a direct base. */
991 for (i
= 0; BINFO_BASE_ITERATE (class_binfo
, i
, direct_binfo
); ++i
)
992 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo
), basetype
))
995 /* Look for a virtual base -- unless the direct base is itself
997 if (!direct_binfo
|| !BINFO_VIRTUAL_P (direct_binfo
))
998 virtual_binfo
= binfo_for_vbase (basetype
, current_class_type
);
1000 /* [class.base.init]
1002 If a mem-initializer-id is ambiguous because it designates
1003 both a direct non-virtual base class and an inherited virtual
1004 base class, the mem-initializer is ill-formed. */
1005 if (direct_binfo
&& virtual_binfo
)
1007 error ("%qD is both a direct base and an indirect virtual base",
1012 if (!direct_binfo
&& !virtual_binfo
)
1014 if (CLASSTYPE_VBASECLASSES (current_class_type
))
1015 error ("type %qD is not a direct or virtual base of %qT",
1016 name
, current_class_type
);
1018 error ("type %qD is not a direct base of %qT",
1019 name
, current_class_type
);
1023 return direct_binfo
? direct_binfo
: virtual_binfo
;
1027 if (TREE_CODE (name
) == IDENTIFIER_NODE
)
1028 field
= lookup_field (current_class_type
, name
, 1, false);
1032 if (member_init_ok_or_else (field
, current_class_type
, name
))
1039 /* This is like `expand_member_init', only it stores one aggregate
1042 INIT comes in two flavors: it is either a value which
1043 is to be stored in EXP, or it is a parameter list
1044 to go to a constructor, which will operate on EXP.
1045 If INIT is not a parameter list for a constructor, then set
1046 LOOKUP_ONLYCONVERTING.
1047 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1048 the initializer, if FLAGS is 0, then it is the (init) form.
1049 If `init' is a CONSTRUCTOR, then we emit a warning message,
1050 explaining that such initializations are invalid.
1052 If INIT resolves to a CALL_EXPR which happens to return
1053 something of the type we are looking for, then we know
1054 that we can safely use that call to perform the
1057 The virtual function table pointer cannot be set up here, because
1058 we do not really know its type.
1060 This never calls operator=().
1062 When initializing, nothing is CONST.
1064 A default copy constructor may have to be used to perform the
1067 A constructor or a conversion operator may have to be used to
1068 perform the initialization, but not both, as it would be ambiguous. */
1071 build_aggr_init (tree exp
, tree init
, int flags
)
1076 tree type
= TREE_TYPE (exp
);
1077 int was_const
= TREE_READONLY (exp
);
1078 int was_volatile
= TREE_THIS_VOLATILE (exp
);
1081 if (init
== error_mark_node
)
1082 return error_mark_node
;
1084 TREE_READONLY (exp
) = 0;
1085 TREE_THIS_VOLATILE (exp
) = 0;
1087 if (init
&& TREE_CODE (init
) != TREE_LIST
)
1088 flags
|= LOOKUP_ONLYCONVERTING
;
1090 if (TREE_CODE (type
) == ARRAY_TYPE
)
1094 /* An array may not be initialized use the parenthesized
1095 initialization form -- unless the initializer is "()". */
1096 if (init
&& TREE_CODE (init
) == TREE_LIST
)
1098 error ("bad array initializer");
1099 return error_mark_node
;
1101 /* Must arrange to initialize each element of EXP
1102 from elements of INIT. */
1103 itype
= init
? TREE_TYPE (init
) : NULL_TREE
;
1104 if (cp_type_quals (type
) != TYPE_UNQUALIFIED
)
1105 TREE_TYPE (exp
) = TYPE_MAIN_VARIANT (type
);
1106 if (itype
&& cp_type_quals (itype
) != TYPE_UNQUALIFIED
)
1107 itype
= TREE_TYPE (init
) = TYPE_MAIN_VARIANT (itype
);
1108 stmt_expr
= build_vec_init (exp
, NULL_TREE
, init
,
1109 itype
&& same_type_p (itype
,
1111 TREE_READONLY (exp
) = was_const
;
1112 TREE_THIS_VOLATILE (exp
) = was_volatile
;
1113 TREE_TYPE (exp
) = type
;
1115 TREE_TYPE (init
) = itype
;
1119 if (TREE_CODE (exp
) == VAR_DECL
|| TREE_CODE (exp
) == PARM_DECL
)
1120 /* Just know that we've seen something for this node. */
1121 TREE_USED (exp
) = 1;
1123 TREE_TYPE (exp
) = TYPE_MAIN_VARIANT (type
);
1124 is_global
= begin_init_stmts (&stmt_expr
, &compound_stmt
);
1125 destroy_temps
= stmts_are_full_exprs_p ();
1126 current_stmt_tree ()->stmts_are_full_exprs_p
= 0;
1127 expand_aggr_init_1 (TYPE_BINFO (type
), exp
, exp
,
1128 init
, LOOKUP_NORMAL
|flags
);
1129 stmt_expr
= finish_init_stmts (is_global
, stmt_expr
, compound_stmt
);
1130 current_stmt_tree ()->stmts_are_full_exprs_p
= destroy_temps
;
1131 TREE_TYPE (exp
) = type
;
1132 TREE_READONLY (exp
) = was_const
;
1133 TREE_THIS_VOLATILE (exp
) = was_volatile
;
1138 /* Like build_aggr_init, but not just for aggregates. */
1141 build_init (tree decl
, tree init
, int flags
)
1145 if (TREE_CODE (TREE_TYPE (decl
)) == ARRAY_TYPE
)
1146 expr
= build_aggr_init (decl
, init
, flags
);
1147 else if (CLASS_TYPE_P (TREE_TYPE (decl
)))
1148 expr
= build_special_member_call (decl
, complete_ctor_identifier
,
1149 build_tree_list (NULL_TREE
, init
),
1151 LOOKUP_NORMAL
|flags
);
1153 expr
= build2 (INIT_EXPR
, TREE_TYPE (decl
), decl
, init
);
1159 expand_default_init (tree binfo
, tree true_exp
, tree exp
, tree init
, int flags
)
1161 tree type
= TREE_TYPE (exp
);
1164 /* It fails because there may not be a constructor which takes
1165 its own type as the first (or only parameter), but which does
1166 take other types via a conversion. So, if the thing initializing
1167 the expression is a unit element of type X, first try X(X&),
1168 followed by initialization by X. If neither of these work
1169 out, then look hard. */
1173 if (init
&& TREE_CODE (init
) != TREE_LIST
1174 && (flags
& LOOKUP_ONLYCONVERTING
))
1176 /* Base subobjects should only get direct-initialization. */
1177 gcc_assert (true_exp
== exp
);
1179 if (flags
& DIRECT_BIND
)
1180 /* Do nothing. We hit this in two cases: Reference initialization,
1181 where we aren't initializing a real variable, so we don't want
1182 to run a new constructor; and catching an exception, where we
1183 have already built up the constructor call so we could wrap it
1184 in an exception region. */;
1185 else if (BRACE_ENCLOSED_INITIALIZER_P (init
))
1187 /* A brace-enclosed initializer for an aggregate. */
1188 gcc_assert (CP_AGGREGATE_TYPE_P (type
));
1189 init
= digest_init (type
, init
, (tree
*)NULL
);
1192 init
= ocp_convert (type
, init
, CONV_IMPLICIT
|CONV_FORCE_TEMP
, flags
);
1194 if (TREE_CODE (init
) == MUST_NOT_THROW_EXPR
)
1195 /* We need to protect the initialization of a catch parm with a
1196 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1197 around the TARGET_EXPR for the copy constructor. See
1198 initialize_handler_parm. */
1200 TREE_OPERAND (init
, 0) = build2 (INIT_EXPR
, TREE_TYPE (exp
), exp
,
1201 TREE_OPERAND (init
, 0));
1202 TREE_TYPE (init
) = void_type_node
;
1205 init
= build2 (INIT_EXPR
, TREE_TYPE (exp
), exp
, init
);
1206 TREE_SIDE_EFFECTS (init
) = 1;
1207 finish_expr_stmt (init
);
1211 if (init
== NULL_TREE
1212 || (TREE_CODE (init
) == TREE_LIST
&& ! TREE_TYPE (init
)))
1216 init
= TREE_VALUE (parms
);
1219 parms
= build_tree_list (NULL_TREE
, init
);
1221 if (true_exp
== exp
)
1222 ctor_name
= complete_ctor_identifier
;
1224 ctor_name
= base_ctor_identifier
;
1226 rval
= build_special_member_call (exp
, ctor_name
, parms
, binfo
, flags
);
1227 if (TREE_SIDE_EFFECTS (rval
))
1228 finish_expr_stmt (convert_to_void (rval
, NULL
));
1231 /* This function is responsible for initializing EXP with INIT
1234 BINFO is the binfo of the type for who we are performing the
1235 initialization. For example, if W is a virtual base class of A and B,
1237 If we are initializing B, then W must contain B's W vtable, whereas
1238 were we initializing C, W must contain C's W vtable.
1240 TRUE_EXP is nonzero if it is the true expression being initialized.
1241 In this case, it may be EXP, or may just contain EXP. The reason we
1242 need this is because if EXP is a base element of TRUE_EXP, we
1243 don't necessarily know by looking at EXP where its virtual
1244 baseclass fields should really be pointing. But we do know
1245 from TRUE_EXP. In constructors, we don't know anything about
1246 the value being initialized.
1248 FLAGS is just passed to `build_new_method_call'. See that function
1249 for its description. */
1252 expand_aggr_init_1 (tree binfo
, tree true_exp
, tree exp
, tree init
, int flags
)
1254 tree type
= TREE_TYPE (exp
);
1256 gcc_assert (init
!= error_mark_node
&& type
!= error_mark_node
);
1257 gcc_assert (building_stmt_tree ());
1259 /* Use a function returning the desired type to initialize EXP for us.
1260 If the function is a constructor, and its first argument is
1261 NULL_TREE, know that it was meant for us--just slide exp on
1262 in and expand the constructor. Constructors now come
1265 if (init
&& TREE_CODE (exp
) == VAR_DECL
1266 && TREE_CODE (init
) == CONSTRUCTOR
1267 && TREE_HAS_CONSTRUCTOR (init
))
1269 /* If store_init_value returns NULL_TREE, the INIT has been
1270 record in the DECL_INITIAL for EXP. That means there's
1271 nothing more we have to do. */
1272 init
= store_init_value (exp
, init
);
1274 finish_expr_stmt (init
);
1278 /* We know that expand_default_init can handle everything we want
1280 expand_default_init (binfo
, true_exp
, exp
, init
, flags
);
1283 /* Report an error if TYPE is not a user-defined, aggregate type. If
1284 OR_ELSE is nonzero, give an error message. */
1287 is_aggr_type (tree type
, int or_else
)
1289 if (type
== error_mark_node
)
1292 if (! IS_AGGR_TYPE (type
)
1293 && TREE_CODE (type
) != TEMPLATE_TYPE_PARM
1294 && TREE_CODE (type
) != BOUND_TEMPLATE_TEMPLATE_PARM
)
1297 error ("%qT is not an aggregate type", type
);
1304 get_type_value (tree name
)
1306 if (name
== error_mark_node
)
1309 if (IDENTIFIER_HAS_TYPE_VALUE (name
))
1310 return IDENTIFIER_TYPE_VALUE (name
);
1315 /* Build a reference to a member of an aggregate. This is not a C++
1316 `&', but really something which can have its address taken, and
1317 then act as a pointer to member, for example TYPE :: FIELD can have
1318 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1319 this expression is the operand of "&".
1321 @@ Prints out lousy diagnostics for operator <typename>
1324 @@ This function should be rewritten and placed in search.c. */
1327 build_offset_ref (tree type
, tree name
, bool address_p
)
1331 tree basebinfo
= NULL_TREE
;
1332 tree orig_name
= name
;
1334 /* class templates can come in as TEMPLATE_DECLs here. */
1335 if (TREE_CODE (name
) == TEMPLATE_DECL
)
1338 if (dependent_type_p (type
) || type_dependent_expression_p (name
))
1339 return build_min_nt (SCOPE_REF
, type
, name
);
1341 if (TREE_CODE (name
) == TEMPLATE_ID_EXPR
)
1343 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1344 something like `a.template f<int>' or the like. For the most
1345 part, we treat this just like a.f. We do remember, however,
1346 the template-id that was used. */
1347 name
= TREE_OPERAND (orig_name
, 0);
1350 name
= DECL_NAME (name
);
1353 if (TREE_CODE (name
) == COMPONENT_REF
)
1354 name
= TREE_OPERAND (name
, 1);
1355 if (TREE_CODE (name
) == OVERLOAD
)
1356 name
= DECL_NAME (OVL_CURRENT (name
));
1359 gcc_assert (TREE_CODE (name
) == IDENTIFIER_NODE
);
1362 if (type
== NULL_TREE
)
1363 return error_mark_node
;
1365 /* Handle namespace names fully here. */
1366 if (TREE_CODE (type
) == NAMESPACE_DECL
)
1368 tree t
= lookup_namespace_name (type
, name
);
1369 if (t
== error_mark_node
)
1371 if (TREE_CODE (orig_name
) == TEMPLATE_ID_EXPR
)
1372 /* Reconstruct the TEMPLATE_ID_EXPR. */
1373 t
= build2 (TEMPLATE_ID_EXPR
, TREE_TYPE (t
),
1374 t
, TREE_OPERAND (orig_name
, 1));
1375 if (! type_unknown_p (t
))
1378 t
= convert_from_reference (t
);
1383 if (! is_aggr_type (type
, 1))
1384 return error_mark_node
;
1386 if (TREE_CODE (name
) == BIT_NOT_EXPR
)
1388 if (! check_dtor_name (type
, name
))
1389 error ("qualified type %qT does not match destructor name %<~%T%>",
1390 type
, TREE_OPERAND (name
, 0));
1391 name
= dtor_identifier
;
1394 if (!COMPLETE_TYPE_P (complete_type (type
))
1395 && !TYPE_BEING_DEFINED (type
))
1397 error ("incomplete type %qT does not have member %qD", type
, name
);
1398 return error_mark_node
;
1401 /* Set up BASEBINFO for member lookup. */
1402 decl
= maybe_dummy_object (type
, &basebinfo
);
1404 if (BASELINK_P (name
) || DECL_P (name
))
1408 member
= lookup_member (basebinfo
, name
, 1, 0);
1410 if (member
== error_mark_node
)
1411 return error_mark_node
;
1416 error ("%qD is not a member of type %qT", name
, type
);
1417 return error_mark_node
;
1420 if (processing_template_decl
)
1422 if (TREE_CODE (orig_name
) == TEMPLATE_ID_EXPR
)
1423 return build_min (SCOPE_REF
, TREE_TYPE (member
), type
, orig_name
);
1425 return build_min (SCOPE_REF
, TREE_TYPE (member
), type
, name
);
1428 if (TREE_CODE (member
) == TYPE_DECL
)
1430 TREE_USED (member
) = 1;
1433 /* static class members and class-specific enum
1434 values can be returned without further ado. */
1435 if (TREE_CODE (member
) == VAR_DECL
|| TREE_CODE (member
) == CONST_DECL
)
1438 return convert_from_reference (member
);
1441 if (TREE_CODE (member
) == FIELD_DECL
&& DECL_C_BIT_FIELD (member
))
1443 error ("invalid pointer to bit-field %qD", member
);
1444 return error_mark_node
;
1447 /* A lot of this logic is now handled in lookup_member. */
1448 if (BASELINK_P (member
))
1450 /* Go from the TREE_BASELINK to the member function info. */
1451 tree fnfields
= member
;
1452 tree t
= BASELINK_FUNCTIONS (fnfields
);
1454 if (TREE_CODE (orig_name
) == TEMPLATE_ID_EXPR
)
1456 /* The FNFIELDS are going to contain functions that aren't
1457 necessarily templates, and templates that don't
1458 necessarily match the explicit template parameters. We
1459 save all the functions, and the explicit parameters, and
1460 then figure out exactly what to instantiate with what
1461 arguments in instantiate_type. */
1463 if (TREE_CODE (t
) != OVERLOAD
)
1464 /* The code in instantiate_type which will process this
1465 expects to encounter OVERLOADs, not raw functions. */
1466 t
= ovl_cons (t
, NULL_TREE
);
1468 t
= build2 (TEMPLATE_ID_EXPR
, TREE_TYPE (t
), t
,
1469 TREE_OPERAND (orig_name
, 1));
1470 t
= build2 (OFFSET_REF
, unknown_type_node
, decl
, t
);
1472 PTRMEM_OK_P (t
) = 1;
1477 if (TREE_CODE (t
) != TEMPLATE_ID_EXPR
&& !really_overloaded_fn (t
))
1479 /* Get rid of a potential OVERLOAD around it. */
1480 t
= OVL_CURRENT (t
);
1482 /* Unique functions are handled easily. */
1484 /* For non-static member of base class, we need a special rule
1485 for access checking [class.protected]:
1487 If the access is to form a pointer to member, the
1488 nested-name-specifier shall name the derived class
1489 (or any class derived from that class). */
1490 if (address_p
&& DECL_P (t
)
1491 && DECL_NONSTATIC_MEMBER_P (t
))
1492 perform_or_defer_access_check (TYPE_BINFO (type
), t
);
1494 perform_or_defer_access_check (basebinfo
, t
);
1497 if (DECL_STATIC_FUNCTION_P (t
))
1503 TREE_TYPE (fnfields
) = unknown_type_node
;
1507 else if (address_p
&& TREE_CODE (member
) == FIELD_DECL
)
1508 /* We need additional test besides the one in
1509 check_accessibility_of_qualified_id in case it is
1510 a pointer to non-static member. */
1511 perform_or_defer_access_check (TYPE_BINFO (type
), member
);
1515 /* If MEMBER is non-static, then the program has fallen afoul of
1518 An id-expression that denotes a nonstatic data member or
1519 nonstatic member function of a class can only be used:
1521 -- as part of a class member access (_expr.ref_) in which the
1522 object-expression refers to the member's class or a class
1523 derived from that class, or
1525 -- to form a pointer to member (_expr.unary.op_), or
1527 -- in the body of a nonstatic member function of that class or
1528 of a class derived from that class (_class.mfct.nonstatic_), or
1530 -- in a mem-initializer for a constructor for that class or for
1531 a class derived from that class (_class.base.init_). */
1532 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member
))
1534 /* Build a representation of a the qualified name suitable
1535 for use as the operand to "&" -- even though the "&" is
1536 not actually present. */
1537 member
= build2 (OFFSET_REF
, TREE_TYPE (member
), decl
, member
);
1538 /* In Microsoft mode, treat a non-static member function as if
1539 it were a pointer-to-member. */
1540 if (flag_ms_extensions
)
1542 PTRMEM_OK_P (member
) = 1;
1543 return build_unary_op (ADDR_EXPR
, member
, 0);
1545 error ("invalid use of non-static member function %qD",
1546 TREE_OPERAND (member
, 1));
1549 else if (TREE_CODE (member
) == FIELD_DECL
)
1551 error ("invalid use of non-static data member %qD", member
);
1552 return error_mark_node
;
1557 /* In member functions, the form `type::name' is no longer
1558 equivalent to `this->type::name', at least not until
1559 resolve_offset_ref. */
1560 member
= build2 (OFFSET_REF
, TREE_TYPE (member
), decl
, member
);
1561 PTRMEM_OK_P (member
) = 1;
1565 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1566 constant of integral or enumeration type, then return that value.
1567 These are those variables permitted in constant expressions by
1568 [5.19/1]. FIXME:If we did lazy folding, this could be localized. */
1571 integral_constant_value (tree decl
)
1573 if ((TREE_CODE (decl
) == CONST_DECL
1574 || (TREE_CODE (decl
) == VAR_DECL
1575 /* And so are variables with a 'const' type -- unless they
1576 are also 'volatile'. */
1577 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl
))
1578 && DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl
)))
1579 && DECL_INITIAL (decl
)
1580 && DECL_INITIAL (decl
) != error_mark_node
1581 && TREE_TYPE (DECL_INITIAL (decl
))
1582 && INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl
)))
1583 return DECL_INITIAL (decl
);
1587 /* A more relaxed version of integral_constant_value, for which type
1588 is not considered. This is used by the common C/C++ code, and not
1589 directly by the C++ front end. */
1592 decl_constant_value (tree decl
)
1594 if ((TREE_CODE (decl
) == CONST_DECL
1595 || (TREE_CODE (decl
) == VAR_DECL
1596 /* And so are variables with a 'const' type -- unless they
1597 are also 'volatile'. */
1598 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl
))))
1599 && DECL_INITIAL (decl
)
1600 && DECL_INITIAL (decl
) != error_mark_node
1601 /* This is invalid if initial value is not constant. If it has
1602 either a function call, a memory reference, or a variable,
1603 then re-evaluating it could give different results. */
1604 && TREE_CONSTANT (DECL_INITIAL (decl
)))
1605 return DECL_INITIAL (decl
);
1610 /* Common subroutines of build_new and build_vec_delete. */
1612 /* Call the global __builtin_delete to delete ADDR. */
1615 build_builtin_delete_call (tree addr
)
1617 mark_used (global_delete_fndecl
);
1618 return build_call (global_delete_fndecl
, build_tree_list (NULL_TREE
, addr
));
1621 /* Generate a representation for a C++ "new" expression. PLACEMENT is
1622 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
1623 NELTS is NULL, TYPE is the type of the storage to be allocated. If
1624 NELTS is not NULL, then this is an array-new allocation; TYPE is
1625 the type of the elements in the array and NELTS is the number of
1626 elements in the array. INIT, if non-NULL, is the initializer for
1627 the new object. If USE_GLOBAL_NEW is true, then the user
1628 explicitly wrote "::new" rather than just "new". */
1631 build_new (tree placement
, tree type
, tree nelts
, tree init
,
1636 if (type
== error_mark_node
)
1637 return error_mark_node
;
1639 if (processing_template_decl
)
1641 rval
= build_min (NEW_EXPR
, build_pointer_type (type
),
1642 placement
, type
, nelts
, init
);
1643 NEW_EXPR_USE_GLOBAL (rval
) = use_global_new
;
1644 TREE_SIDE_EFFECTS (rval
) = 1;
1650 if (!build_expr_type_conversion (WANT_INT
| WANT_ENUM
, nelts
, false))
1651 pedwarn ("size in array new must have integral type");
1652 nelts
= save_expr (cp_convert (sizetype
, nelts
));
1653 if (nelts
== integer_zero_node
)
1654 warning ("zero size array reserves no space");
1657 /* ``A reference cannot be created by the new operator. A reference
1658 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
1659 returned by new.'' ARM 5.3.3 */
1660 if (TREE_CODE (type
) == REFERENCE_TYPE
)
1662 error ("new cannot be applied to a reference type");
1663 type
= TREE_TYPE (type
);
1666 if (TREE_CODE (type
) == FUNCTION_TYPE
)
1668 error ("new cannot be applied to a function type");
1669 return error_mark_node
;
1672 rval
= build4 (NEW_EXPR
, build_pointer_type (type
), placement
, type
,
1674 NEW_EXPR_USE_GLOBAL (rval
) = use_global_new
;
1675 TREE_SIDE_EFFECTS (rval
) = 1;
1676 rval
= build_new_1 (rval
);
1677 if (rval
== error_mark_node
)
1678 return error_mark_node
;
1680 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
1681 rval
= build1 (NOP_EXPR
, TREE_TYPE (rval
), rval
);
1682 TREE_NO_WARNING (rval
) = 1;
1687 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
1690 build_java_class_ref (tree type
)
1692 tree name
= NULL_TREE
, class_decl
;
1693 static tree CL_suffix
= NULL_TREE
;
1694 if (CL_suffix
== NULL_TREE
)
1695 CL_suffix
= get_identifier("class$");
1696 if (jclass_node
== NULL_TREE
)
1698 jclass_node
= IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
1699 if (jclass_node
== NULL_TREE
)
1700 fatal_error ("call to Java constructor, while %<jclass%> undefined");
1702 jclass_node
= TREE_TYPE (jclass_node
);
1705 /* Mangle the class$ field. */
1708 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1709 if (DECL_NAME (field
) == CL_suffix
)
1711 mangle_decl (field
);
1712 name
= DECL_ASSEMBLER_NAME (field
);
1716 internal_error ("can't find class$");
1719 class_decl
= IDENTIFIER_GLOBAL_VALUE (name
);
1720 if (class_decl
== NULL_TREE
)
1722 class_decl
= build_decl (VAR_DECL
, name
, TREE_TYPE (jclass_node
));
1723 TREE_STATIC (class_decl
) = 1;
1724 DECL_EXTERNAL (class_decl
) = 1;
1725 TREE_PUBLIC (class_decl
) = 1;
1726 DECL_ARTIFICIAL (class_decl
) = 1;
1727 DECL_IGNORED_P (class_decl
) = 1;
1728 pushdecl_top_level (class_decl
);
1729 make_decl_rtl (class_decl
);
1735 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
1736 value is immediately handed to expand_expr. */
1739 build_new_1 (tree exp
)
1741 tree placement
, init
;
1743 /* True iff this is a call to "operator new[]" instead of just
1745 bool array_p
= false;
1746 /* True iff ARRAY_P is true and the bound of the array type is
1747 not necessarily a compile time constant. For example, VLA_P is
1748 true for "new int[f()]". */
1750 /* The type being allocated. If ARRAY_P is true, this will be an
1753 /* If ARRAY_P is true, the element type of the array. This is an
1754 never ARRAY_TYPE; for something like "new int[3][4]", the
1755 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1758 /* The type of the new-expression. (This type is always a pointer
1761 /* The type pointed to by POINTER_TYPE. This type may be different
1762 from ELT_TYPE for a multi-dimensional array; ELT_TYPE is never an
1763 ARRAY_TYPE, but TYPE may be an ARRAY_TYPE. */
1765 /* A pointer type pointing to to the FULL_TYPE. */
1766 tree full_pointer_type
;
1767 tree outer_nelts
= NULL_TREE
;
1768 tree nelts
= NULL_TREE
;
1769 tree alloc_call
, alloc_expr
;
1770 /* The address returned by the call to "operator new". This node is
1771 a VAR_DECL and is therefore reusable. */
1774 tree cookie_expr
, init_expr
;
1775 int nothrow
, check_new
;
1776 /* Nonzero if the user wrote `::new' rather than just `new'. */
1777 int globally_qualified_p
;
1778 int use_java_new
= 0;
1779 /* If non-NULL, the number of extra bytes to allocate at the
1780 beginning of the storage allocated for an array-new expression in
1781 order to store the number of elements. */
1782 tree cookie_size
= NULL_TREE
;
1783 /* True if the function we are calling is a placement allocation
1785 bool placement_allocation_fn_p
;
1786 tree args
= NULL_TREE
;
1787 /* True if the storage must be initialized, either by a constructor
1788 or due to an explicit new-initializer. */
1789 bool is_initialized
;
1790 /* The address of the thing allocated, not including any cookie. In
1791 particular, if an array cookie is in use, DATA_ADDR is the
1792 address of the first array element. This node is a VAR_DECL, and
1793 is therefore reusable. */
1795 tree init_preeval_expr
= NULL_TREE
;
1797 placement
= TREE_OPERAND (exp
, 0);
1798 type
= TREE_OPERAND (exp
, 1);
1799 nelts
= TREE_OPERAND (exp
, 2);
1800 init
= TREE_OPERAND (exp
, 3);
1801 globally_qualified_p
= NEW_EXPR_USE_GLOBAL (exp
);
1807 outer_nelts
= nelts
;
1810 /* ??? The middle-end will error on us for building a VLA outside a
1811 function context. Methinks that's not it's purvey. So we'll do
1812 our own VLA layout later. */
1814 full_type
= build_cplus_array_type (type
, NULL_TREE
);
1815 index
= convert (sizetype
, nelts
);
1816 index
= size_binop (MINUS_EXPR
, index
, size_one_node
);
1817 TYPE_DOMAIN (full_type
) = build_index_type (index
);
1822 if (TREE_CODE (type
) == ARRAY_TYPE
)
1825 nelts
= array_type_nelts_top (type
);
1826 outer_nelts
= nelts
;
1827 type
= TREE_TYPE (type
);
1831 /* If our base type is an array, then make sure we know how many elements
1833 for (elt_type
= type
;
1834 TREE_CODE (elt_type
) == ARRAY_TYPE
;
1835 elt_type
= TREE_TYPE (elt_type
))
1836 nelts
= cp_build_binary_op (MULT_EXPR
, nelts
,
1837 array_type_nelts_top (elt_type
));
1839 if (!complete_type_or_else (elt_type
, exp
))
1840 return error_mark_node
;
1842 if (TREE_CODE (elt_type
) == VOID_TYPE
)
1844 error ("invalid type %<void%> for new");
1845 return error_mark_node
;
1848 if (abstract_virtuals_error (NULL_TREE
, elt_type
))
1849 return error_mark_node
;
1851 is_initialized
= (TYPE_NEEDS_CONSTRUCTING (elt_type
) || init
);
1852 if (CP_TYPE_CONST_P (elt_type
) && !is_initialized
)
1854 error ("uninitialized const in %<new%> of %q#T", elt_type
);
1855 return error_mark_node
;
1858 size
= size_in_bytes (elt_type
);
1861 size
= size_binop (MULT_EXPR
, size
, convert (sizetype
, nelts
));
1866 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1867 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1868 ...>> to be valid. */
1869 TYPE_SIZE_UNIT (full_type
) = size
;
1870 n
= convert (bitsizetype
, nelts
);
1871 bitsize
= size_binop (MULT_EXPR
, TYPE_SIZE (elt_type
), n
);
1872 TYPE_SIZE (full_type
) = bitsize
;
1876 /* Allocate the object. */
1877 if (! placement
&& TYPE_FOR_JAVA (elt_type
))
1879 tree class_addr
, alloc_decl
;
1880 tree class_decl
= build_java_class_ref (elt_type
);
1881 static const char alloc_name
[] = "_Jv_AllocObject";
1885 if (!get_global_value_if_present (get_identifier (alloc_name
),
1888 error ("call to Java constructor with %qs undefined", alloc_name
);
1889 return error_mark_node
;
1891 else if (really_overloaded_fn (alloc_decl
))
1893 error ("%qD should never be overloaded", alloc_decl
);
1894 return error_mark_node
;
1896 alloc_decl
= OVL_CURRENT (alloc_decl
);
1897 class_addr
= build1 (ADDR_EXPR
, jclass_node
, class_decl
);
1898 alloc_call
= (build_function_call
1900 build_tree_list (NULL_TREE
, class_addr
)));
1907 fnname
= ansi_opname (array_p
? VEC_NEW_EXPR
: NEW_EXPR
);
1909 if (!globally_qualified_p
1910 && CLASS_TYPE_P (elt_type
)
1912 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type
)
1913 : TYPE_HAS_NEW_OPERATOR (elt_type
)))
1915 /* Use a class-specific operator new. */
1916 /* If a cookie is required, add some extra space. */
1917 if (array_p
&& TYPE_VEC_NEW_USES_COOKIE (elt_type
))
1919 cookie_size
= targetm
.cxx
.get_cookie_size (elt_type
);
1920 size
= size_binop (PLUS_EXPR
, size
, cookie_size
);
1922 /* Create the argument list. */
1923 args
= tree_cons (NULL_TREE
, size
, placement
);
1924 /* Do name-lookup to find the appropriate operator. */
1925 fns
= lookup_fnfields (elt_type
, fnname
, /*protect=*/2);
1926 if (TREE_CODE (fns
) == TREE_LIST
)
1928 error ("request for member %qD is ambiguous", fnname
);
1929 print_candidates (fns
);
1930 return error_mark_node
;
1932 alloc_call
= build_new_method_call (build_dummy_object (elt_type
),
1934 /*conversion_path=*/NULL_TREE
,
1939 /* Use a global operator new. */
1940 /* See if a cookie might be required. */
1941 if (array_p
&& TYPE_VEC_NEW_USES_COOKIE (elt_type
))
1942 cookie_size
= targetm
.cxx
.get_cookie_size (elt_type
);
1944 cookie_size
= NULL_TREE
;
1946 alloc_call
= build_operator_new_call (fnname
, placement
,
1947 &size
, &cookie_size
);
1951 if (alloc_call
== error_mark_node
)
1952 return error_mark_node
;
1954 /* In the simple case, we can stop now. */
1955 pointer_type
= build_pointer_type (type
);
1956 if (!cookie_size
&& !is_initialized
)
1957 return build_nop (pointer_type
, alloc_call
);
1959 /* While we're working, use a pointer to the type we've actually
1960 allocated. Store the result of the call in a variable so that we
1961 can use it more than once. */
1962 full_pointer_type
= build_pointer_type (full_type
);
1963 alloc_expr
= get_target_expr (build_nop (full_pointer_type
, alloc_call
));
1964 alloc_node
= TARGET_EXPR_SLOT (alloc_expr
);
1966 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1967 while (TREE_CODE (alloc_call
) == COMPOUND_EXPR
)
1968 alloc_call
= TREE_OPERAND (alloc_call
, 1);
1969 alloc_fn
= get_callee_fndecl (alloc_call
);
1970 gcc_assert (alloc_fn
!= NULL_TREE
);
1972 /* Now, check to see if this function is actually a placement
1973 allocation function. This can happen even when PLACEMENT is NULL
1974 because we might have something like:
1976 struct S { void* operator new (size_t, int i = 0); };
1978 A call to `new S' will get this allocation function, even though
1979 there is no explicit placement argument. If there is more than
1980 one argument, or there are variable arguments, then this is a
1981 placement allocation function. */
1982 placement_allocation_fn_p
1983 = (type_num_arguments (TREE_TYPE (alloc_fn
)) > 1
1984 || varargs_function_p (alloc_fn
));
1986 /* Preevaluate the placement args so that we don't reevaluate them for a
1987 placement delete. */
1988 if (placement_allocation_fn_p
)
1991 stabilize_call (alloc_call
, &inits
);
1993 alloc_expr
= build2 (COMPOUND_EXPR
, TREE_TYPE (alloc_expr
), inits
,
1997 /* unless an allocation function is declared with an empty excep-
1998 tion-specification (_except.spec_), throw(), it indicates failure to
1999 allocate storage by throwing a bad_alloc exception (clause _except_,
2000 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2001 cation function is declared with an empty exception-specification,
2002 throw(), it returns null to indicate failure to allocate storage and a
2003 non-null pointer otherwise.
2005 So check for a null exception spec on the op new we just called. */
2007 nothrow
= TYPE_NOTHROW_P (TREE_TYPE (alloc_fn
));
2008 check_new
= (flag_check_new
|| nothrow
) && ! use_java_new
;
2015 /* Adjust so we're pointing to the start of the object. */
2016 data_addr
= get_target_expr (build2 (PLUS_EXPR
, full_pointer_type
,
2017 alloc_node
, cookie_size
));
2019 /* Store the number of bytes allocated so that we can know how
2020 many elements to destroy later. We use the last sizeof
2021 (size_t) bytes to store the number of elements. */
2022 cookie_ptr
= build2 (MINUS_EXPR
, build_pointer_type (sizetype
),
2023 data_addr
, size_in_bytes (sizetype
));
2024 cookie
= build_indirect_ref (cookie_ptr
, NULL
);
2026 cookie_expr
= build2 (MODIFY_EXPR
, sizetype
, cookie
, nelts
);
2028 if (targetm
.cxx
.cookie_has_size ())
2030 /* Also store the element size. */
2031 cookie_ptr
= build2 (MINUS_EXPR
, build_pointer_type (sizetype
),
2032 cookie_ptr
, size_in_bytes (sizetype
));
2033 cookie
= build_indirect_ref (cookie_ptr
, NULL
);
2034 cookie
= build2 (MODIFY_EXPR
, sizetype
, cookie
,
2035 size_in_bytes(elt_type
));
2036 cookie_expr
= build2 (COMPOUND_EXPR
, TREE_TYPE (cookie_expr
),
2037 cookie
, cookie_expr
);
2039 data_addr
= TARGET_EXPR_SLOT (data_addr
);
2043 cookie_expr
= NULL_TREE
;
2044 data_addr
= alloc_node
;
2047 /* Now initialize the allocated object. Note that we preevaluate the
2048 initialization expression, apart from the actual constructor call or
2049 assignment--we do this because we want to delay the allocation as long
2050 as possible in order to minimize the size of the exception region for
2051 placement delete. */
2056 init_expr
= build_indirect_ref (data_addr
, NULL
);
2058 if (init
== void_zero_node
)
2059 init
= build_default_init (full_type
, nelts
);
2060 else if (init
&& array_p
)
2061 pedwarn ("ISO C++ forbids initialization in array new");
2066 = build_vec_init (init_expr
,
2067 cp_build_binary_op (MINUS_EXPR
, outer_nelts
,
2069 init
, /*from_array=*/0);
2071 /* An array initialization is stable because the initialization
2072 of each element is a full-expression, so the temporaries don't
2076 else if (TYPE_NEEDS_CONSTRUCTING (type
))
2078 init_expr
= build_special_member_call (init_expr
,
2079 complete_ctor_identifier
,
2082 stable
= stabilize_init (init_expr
, &init_preeval_expr
);
2086 /* We are processing something like `new int (10)', which
2087 means allocate an int, and initialize it with 10. */
2089 if (TREE_CODE (init
) == TREE_LIST
)
2090 init
= build_x_compound_expr_from_list (init
, "new initializer");
2093 gcc_assert (TREE_CODE (init
) != CONSTRUCTOR
2094 || TREE_TYPE (init
) != NULL_TREE
);
2096 init_expr
= build_modify_expr (init_expr
, INIT_EXPR
, init
);
2097 stable
= stabilize_init (init_expr
, &init_preeval_expr
);
2100 if (init_expr
== error_mark_node
)
2101 return error_mark_node
;
2103 /* If any part of the object initialization terminates by throwing an
2104 exception and a suitable deallocation function can be found, the
2105 deallocation function is called to free the memory in which the
2106 object was being constructed, after which the exception continues
2107 to propagate in the context of the new-expression. If no
2108 unambiguous matching deallocation function can be found,
2109 propagating the exception does not cause the object's memory to be
2111 if (flag_exceptions
&& ! use_java_new
)
2113 enum tree_code dcode
= array_p
? VEC_DELETE_EXPR
: DELETE_EXPR
;
2116 /* The Standard is unclear here, but the right thing to do
2117 is to use the same method for finding deallocation
2118 functions that we use for finding allocation functions. */
2119 cleanup
= build_op_delete_call (dcode
, alloc_node
, size
,
2120 globally_qualified_p
,
2121 (placement_allocation_fn_p
2122 ? alloc_call
: NULL_TREE
));
2127 /* This is much simpler if we were able to preevaluate all of
2128 the arguments to the constructor call. */
2129 init_expr
= build2 (TRY_CATCH_EXPR
, void_type_node
,
2130 init_expr
, cleanup
);
2132 /* Ack! First we allocate the memory. Then we set our sentry
2133 variable to true, and expand a cleanup that deletes the
2134 memory if sentry is true. Then we run the constructor, and
2135 finally clear the sentry.
2137 We need to do this because we allocate the space first, so
2138 if there are any temporaries with cleanups in the
2139 constructor args and we weren't able to preevaluate them, we
2140 need this EH region to extend until end of full-expression
2141 to preserve nesting. */
2143 tree end
, sentry
, begin
;
2145 begin
= get_target_expr (boolean_true_node
);
2146 CLEANUP_EH_ONLY (begin
) = 1;
2148 sentry
= TARGET_EXPR_SLOT (begin
);
2150 TARGET_EXPR_CLEANUP (begin
)
2151 = build3 (COND_EXPR
, void_type_node
, sentry
,
2152 cleanup
, void_zero_node
);
2154 end
= build2 (MODIFY_EXPR
, TREE_TYPE (sentry
),
2155 sentry
, boolean_false_node
);
2158 = build2 (COMPOUND_EXPR
, void_type_node
, begin
,
2159 build2 (COMPOUND_EXPR
, void_type_node
, init_expr
,
2166 init_expr
= NULL_TREE
;
2168 /* Now build up the return value in reverse order. */
2173 rval
= build2 (COMPOUND_EXPR
, TREE_TYPE (rval
), init_expr
, rval
);
2175 rval
= build2 (COMPOUND_EXPR
, TREE_TYPE (rval
), cookie_expr
, rval
);
2177 if (rval
== alloc_node
)
2178 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2179 and return the call (which doesn't need to be adjusted). */
2180 rval
= TARGET_EXPR_INITIAL (alloc_expr
);
2185 tree ifexp
= cp_build_binary_op (NE_EXPR
, alloc_node
,
2187 rval
= build_conditional_expr (ifexp
, rval
, alloc_node
);
2190 /* Perform the allocation before anything else, so that ALLOC_NODE
2191 has been initialized before we start using it. */
2192 rval
= build2 (COMPOUND_EXPR
, TREE_TYPE (rval
), alloc_expr
, rval
);
2195 if (init_preeval_expr
)
2196 rval
= build2 (COMPOUND_EXPR
, TREE_TYPE (rval
), init_preeval_expr
, rval
);
2198 /* Convert to the final type. */
2199 rval
= build_nop (pointer_type
, rval
);
2201 /* A new-expression is never an lvalue. */
2202 if (real_lvalue_p (rval
))
2203 rval
= build1 (NON_LVALUE_EXPR
, TREE_TYPE (rval
), rval
);
2209 build_vec_delete_1 (tree base
, tree maxindex
, tree type
,
2210 special_function_kind auto_delete_vec
, int use_global_delete
)
2213 tree ptype
= build_pointer_type (type
= complete_type (type
));
2214 tree size_exp
= size_in_bytes (type
);
2216 /* Temporary variables used by the loop. */
2217 tree tbase
, tbase_init
;
2219 /* This is the body of the loop that implements the deletion of a
2220 single element, and moves temp variables to next elements. */
2223 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2226 /* This is the thing that governs what to do after the loop has run. */
2227 tree deallocate_expr
= 0;
2229 /* This is the BIND_EXPR which holds the outermost iterator of the
2230 loop. It is convenient to set this variable up and test it before
2231 executing any other code in the loop.
2232 This is also the containing expression returned by this function. */
2233 tree controller
= NULL_TREE
;
2235 /* We should only have 1-D arrays here. */
2236 gcc_assert (TREE_CODE (type
) != ARRAY_TYPE
);
2238 if (! IS_AGGR_TYPE (type
) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type
))
2241 /* The below is short by the cookie size. */
2242 virtual_size
= size_binop (MULT_EXPR
, size_exp
,
2243 convert (sizetype
, maxindex
));
2245 tbase
= create_temporary_var (ptype
);
2246 tbase_init
= build_modify_expr (tbase
, NOP_EXPR
,
2247 fold (build2 (PLUS_EXPR
, ptype
,
2250 DECL_REGISTER (tbase
) = 1;
2251 controller
= build3 (BIND_EXPR
, void_type_node
, tbase
,
2252 NULL_TREE
, NULL_TREE
);
2253 TREE_SIDE_EFFECTS (controller
) = 1;
2255 body
= build1 (EXIT_EXPR
, void_type_node
,
2256 build2 (EQ_EXPR
, boolean_type_node
, base
, tbase
));
2257 body
= build_compound_expr
2258 (body
, build_modify_expr (tbase
, NOP_EXPR
,
2259 build2 (MINUS_EXPR
, ptype
, tbase
, size_exp
)));
2260 body
= build_compound_expr
2261 (body
, build_delete (ptype
, tbase
, sfk_complete_destructor
,
2262 LOOKUP_NORMAL
|LOOKUP_DESTRUCTOR
, 1));
2264 loop
= build1 (LOOP_EXPR
, void_type_node
, body
);
2265 loop
= build_compound_expr (tbase_init
, loop
);
2268 /* If the delete flag is one, or anything else with the low bit set,
2269 delete the storage. */
2270 if (auto_delete_vec
!= sfk_base_destructor
)
2274 /* The below is short by the cookie size. */
2275 virtual_size
= size_binop (MULT_EXPR
, size_exp
,
2276 convert (sizetype
, maxindex
));
2278 if (! TYPE_VEC_NEW_USES_COOKIE (type
))
2285 cookie_size
= targetm
.cxx
.get_cookie_size (type
);
2287 = cp_convert (ptype
,
2288 cp_build_binary_op (MINUS_EXPR
,
2289 cp_convert (string_type_node
,
2292 /* True size with header. */
2293 virtual_size
= size_binop (PLUS_EXPR
, virtual_size
, cookie_size
);
2296 if (auto_delete_vec
== sfk_deleting_destructor
)
2297 deallocate_expr
= build_x_delete (base_tbd
,
2298 2 | use_global_delete
,
2303 if (!deallocate_expr
)
2306 body
= deallocate_expr
;
2308 body
= build_compound_expr (body
, deallocate_expr
);
2311 body
= integer_zero_node
;
2313 /* Outermost wrapper: If pointer is null, punt. */
2314 body
= fold (build3 (COND_EXPR
, void_type_node
,
2315 fold (build2 (NE_EXPR
, boolean_type_node
, base
,
2316 convert (TREE_TYPE (base
),
2317 integer_zero_node
))),
2318 body
, integer_zero_node
));
2319 body
= build1 (NOP_EXPR
, void_type_node
, body
);
2323 TREE_OPERAND (controller
, 1) = body
;
2327 if (TREE_CODE (base
) == SAVE_EXPR
)
2328 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2329 body
= build2 (COMPOUND_EXPR
, void_type_node
, base
, body
);
2331 return convert_to_void (body
, /*implicit=*/NULL
);
2334 /* Create an unnamed variable of the indicated TYPE. */
2337 create_temporary_var (tree type
)
2341 decl
= build_decl (VAR_DECL
, NULL_TREE
, type
);
2342 TREE_USED (decl
) = 1;
2343 DECL_ARTIFICIAL (decl
) = 1;
2344 DECL_IGNORED_P (decl
) = 1;
2345 DECL_SOURCE_LOCATION (decl
) = input_location
;
2346 DECL_CONTEXT (decl
) = current_function_decl
;
2351 /* Create a new temporary variable of the indicated TYPE, initialized
2354 It is not entered into current_binding_level, because that breaks
2355 things when it comes time to do final cleanups (which take place
2356 "outside" the binding contour of the function). */
2359 get_temp_regvar (tree type
, tree init
)
2363 decl
= create_temporary_var (type
);
2364 add_decl_expr (decl
);
2366 finish_expr_stmt (build_modify_expr (decl
, INIT_EXPR
, init
));
2371 /* `build_vec_init' returns tree structure that performs
2372 initialization of a vector of aggregate types.
2374 BASE is a reference to the vector, of ARRAY_TYPE.
2375 MAXINDEX is the maximum index of the array (one less than the
2376 number of elements). It is only used if
2377 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2378 INIT is the (possibly NULL) initializer.
2380 FROM_ARRAY is 0 if we should init everything with INIT
2381 (i.e., every element initialized from INIT).
2382 FROM_ARRAY is 1 if we should index into INIT in parallel
2383 with initialization of DECL.
2384 FROM_ARRAY is 2 if we should index into INIT in parallel,
2385 but use assignment instead of initialization. */
2388 build_vec_init (tree base
, tree maxindex
, tree init
, int from_array
)
2391 tree base2
= NULL_TREE
;
2393 tree itype
= NULL_TREE
;
2395 /* The type of the array. */
2396 tree atype
= TREE_TYPE (base
);
2397 /* The type of an element in the array. */
2398 tree type
= TREE_TYPE (atype
);
2399 /* The type of a pointer to an element in the array. */
2404 tree try_block
= NULL_TREE
;
2405 int num_initialized_elts
= 0;
2408 if (TYPE_DOMAIN (atype
))
2409 maxindex
= array_type_nelts (atype
);
2411 if (maxindex
== NULL_TREE
|| maxindex
== error_mark_node
)
2412 return error_mark_node
;
2416 ? (!CLASS_TYPE_P (type
) || !TYPE_HAS_COMPLEX_ASSIGN_REF (type
))
2417 : !TYPE_NEEDS_CONSTRUCTING (type
))
2418 && ((TREE_CODE (init
) == CONSTRUCTOR
2419 /* Don't do this if the CONSTRUCTOR might contain something
2420 that might throw and require us to clean up. */
2421 && (CONSTRUCTOR_ELTS (init
) == NULL_TREE
2422 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type
))))
2425 /* Do non-default initialization of POD arrays resulting from
2426 brace-enclosed initializers. In this case, digest_init and
2427 store_constructor will handle the semantics for us. */
2429 stmt_expr
= build2 (INIT_EXPR
, atype
, base
, init
);
2433 maxindex
= cp_convert (ptrdiff_type_node
, maxindex
);
2434 ptype
= build_pointer_type (type
);
2435 size
= size_in_bytes (type
);
2436 if (TREE_CODE (TREE_TYPE (base
)) == ARRAY_TYPE
)
2437 base
= cp_convert (ptype
, decay_conversion (base
));
2439 /* The code we are generating looks like:
2443 ptrdiff_t iterator = maxindex;
2445 for (; iterator != -1; --iterator) {
2446 ... initialize *t1 ...
2450 ... destroy elements that were constructed ...
2455 We can omit the try and catch blocks if we know that the
2456 initialization will never throw an exception, or if the array
2457 elements do not have destructors. We can omit the loop completely if
2458 the elements of the array do not have constructors.
2460 We actually wrap the entire body of the above in a STMT_EXPR, for
2463 When copying from array to another, when the array elements have
2464 only trivial copy constructors, we should use __builtin_memcpy
2465 rather than generating a loop. That way, we could take advantage
2466 of whatever cleverness the back-end has for dealing with copies
2467 of blocks of memory. */
2469 is_global
= begin_init_stmts (&stmt_expr
, &compound_stmt
);
2470 destroy_temps
= stmts_are_full_exprs_p ();
2471 current_stmt_tree ()->stmts_are_full_exprs_p
= 0;
2472 rval
= get_temp_regvar (ptype
, base
);
2473 base
= get_temp_regvar (ptype
, rval
);
2474 iterator
= get_temp_regvar (ptrdiff_type_node
, maxindex
);
2476 /* Protect the entire array initialization so that we can destroy
2477 the partially constructed array if an exception is thrown.
2478 But don't do this if we're assigning. */
2479 if (flag_exceptions
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
)
2482 try_block
= begin_try_block ();
2485 if (init
!= NULL_TREE
&& TREE_CODE (init
) == CONSTRUCTOR
)
2487 /* Do non-default initialization of non-POD arrays resulting from
2488 brace-enclosed initializers. */
2493 for (elts
= CONSTRUCTOR_ELTS (init
); elts
; elts
= TREE_CHAIN (elts
))
2495 tree elt
= TREE_VALUE (elts
);
2496 tree baseref
= build1 (INDIRECT_REF
, type
, base
);
2498 num_initialized_elts
++;
2500 current_stmt_tree ()->stmts_are_full_exprs_p
= 1;
2501 if (IS_AGGR_TYPE (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
2502 finish_expr_stmt (build_aggr_init (baseref
, elt
, 0));
2504 finish_expr_stmt (build_modify_expr (baseref
, NOP_EXPR
,
2506 current_stmt_tree ()->stmts_are_full_exprs_p
= 0;
2508 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR
, base
, 0));
2509 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR
, iterator
, 0));
2512 /* Clear out INIT so that we don't get confused below. */
2515 else if (from_array
)
2517 /* If initializing one array from another, initialize element by
2518 element. We rely upon the below calls the do argument
2522 base2
= decay_conversion (init
);
2523 itype
= TREE_TYPE (base2
);
2524 base2
= get_temp_regvar (itype
, base2
);
2525 itype
= TREE_TYPE (itype
);
2527 else if (TYPE_LANG_SPECIFIC (type
)
2528 && TYPE_NEEDS_CONSTRUCTING (type
)
2529 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type
))
2531 error ("initializer ends prematurely");
2532 return error_mark_node
;
2536 /* Now, default-initialize any remaining elements. We don't need to
2537 do that if a) the type does not need constructing, or b) we've
2538 already initialized all the elements.
2540 We do need to keep going if we're copying an array. */
2543 || (TYPE_NEEDS_CONSTRUCTING (type
)
2544 && ! (host_integerp (maxindex
, 0)
2545 && (num_initialized_elts
2546 == tree_low_cst (maxindex
, 0) + 1))))
2548 /* If the ITERATOR is equal to -1, then we don't have to loop;
2549 we've already initialized all the elements. */
2553 for_stmt
= begin_for_stmt ();
2554 finish_for_init_stmt (for_stmt
);
2555 finish_for_cond (build2 (NE_EXPR
, boolean_type_node
,
2556 iterator
, integer_minus_one_node
),
2558 finish_for_expr (build_unary_op (PREDECREMENT_EXPR
, iterator
, 0),
2563 tree to
= build1 (INDIRECT_REF
, type
, base
);
2567 from
= build1 (INDIRECT_REF
, itype
, base2
);
2571 if (from_array
== 2)
2572 elt_init
= build_modify_expr (to
, NOP_EXPR
, from
);
2573 else if (TYPE_NEEDS_CONSTRUCTING (type
))
2574 elt_init
= build_aggr_init (to
, from
, 0);
2576 elt_init
= build_modify_expr (to
, NOP_EXPR
, from
);
2580 else if (TREE_CODE (type
) == ARRAY_TYPE
)
2584 ("cannot initialize multi-dimensional array with initializer");
2585 elt_init
= build_vec_init (build1 (INDIRECT_REF
, type
, base
),
2589 elt_init
= build_aggr_init (build1 (INDIRECT_REF
, type
, base
),
2592 current_stmt_tree ()->stmts_are_full_exprs_p
= 1;
2593 finish_expr_stmt (elt_init
);
2594 current_stmt_tree ()->stmts_are_full_exprs_p
= 0;
2596 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR
, base
, 0));
2598 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR
, base2
, 0));
2600 finish_for_stmt (for_stmt
);
2603 /* Make sure to cleanup any partially constructed elements. */
2604 if (flag_exceptions
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
)
2608 tree m
= cp_build_binary_op (MINUS_EXPR
, maxindex
, iterator
);
2610 /* Flatten multi-dimensional array since build_vec_delete only
2611 expects one-dimensional array. */
2612 if (TREE_CODE (type
) == ARRAY_TYPE
)
2614 m
= cp_build_binary_op (MULT_EXPR
, m
,
2615 array_type_nelts_total (type
));
2616 type
= strip_array_types (type
);
2619 finish_cleanup_try_block (try_block
);
2620 e
= build_vec_delete_1 (rval
, m
, type
, sfk_base_destructor
,
2621 /*use_global_delete=*/0);
2622 finish_cleanup (e
, try_block
);
2625 /* The value of the array initialization is the array itself, RVAL
2626 is a pointer to the first element. */
2627 finish_stmt_expr_expr (rval
, stmt_expr
);
2629 stmt_expr
= finish_init_stmts (is_global
, stmt_expr
, compound_stmt
);
2631 /* Now convert make the result have the correct type. */
2632 atype
= build_pointer_type (atype
);
2633 stmt_expr
= build1 (NOP_EXPR
, atype
, stmt_expr
);
2634 stmt_expr
= build_indirect_ref (stmt_expr
, NULL
);
2636 current_stmt_tree ()->stmts_are_full_exprs_p
= destroy_temps
;
2640 /* Free up storage of type TYPE, at address ADDR.
2642 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
2645 VIRTUAL_SIZE is the amount of storage that was allocated, and is
2646 used as the second argument to operator delete. It can include
2647 things like padding and magic size cookies. It has virtual in it,
2648 because if you have a base pointer and you delete through a virtual
2649 destructor, it should be the size of the dynamic object, not the
2650 static object, see Free Store 12.5 ISO C++.
2652 This does not call any destructors. */
2655 build_x_delete (tree addr
, int which_delete
, tree virtual_size
)
2657 int use_global_delete
= which_delete
& 1;
2658 int use_vec_delete
= !!(which_delete
& 2);
2659 enum tree_code code
= use_vec_delete
? VEC_DELETE_EXPR
: DELETE_EXPR
;
2661 return build_op_delete_call (code
, addr
, virtual_size
, use_global_delete
,
2665 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2669 build_dtor_call (tree exp
, special_function_kind dtor_kind
, int flags
)
2675 case sfk_complete_destructor
:
2676 name
= complete_dtor_identifier
;
2679 case sfk_base_destructor
:
2680 name
= base_dtor_identifier
;
2683 case sfk_deleting_destructor
:
2684 name
= deleting_dtor_identifier
;
2690 fn
= lookup_fnfields (TREE_TYPE (exp
), name
, /*protect=*/2);
2691 return build_new_method_call (exp
, fn
,
2693 /*conversion_path=*/NULL_TREE
,
2697 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2698 ADDR is an expression which yields the store to be destroyed.
2699 AUTO_DELETE is the name of the destructor to call, i.e., either
2700 sfk_complete_destructor, sfk_base_destructor, or
2701 sfk_deleting_destructor.
2703 FLAGS is the logical disjunction of zero or more LOOKUP_
2704 flags. See cp-tree.h for more info. */
2707 build_delete (tree type
, tree addr
, special_function_kind auto_delete
,
2708 int flags
, int use_global_delete
)
2712 if (addr
== error_mark_node
)
2713 return error_mark_node
;
2715 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2716 set to `error_mark_node' before it gets properly cleaned up. */
2717 if (type
== error_mark_node
)
2718 return error_mark_node
;
2720 type
= TYPE_MAIN_VARIANT (type
);
2722 if (TREE_CODE (type
) == POINTER_TYPE
)
2724 bool complete_p
= true;
2726 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
2727 if (TREE_CODE (type
) == ARRAY_TYPE
)
2730 /* We don't want to warn about delete of void*, only other
2731 incomplete types. Deleting other incomplete types
2732 invokes undefined behavior, but it is not ill-formed, so
2733 compile to something that would even do The Right Thing
2734 (TM) should the type have a trivial dtor and no delete
2736 if (!VOID_TYPE_P (type
))
2738 complete_type (type
);
2739 if (!COMPLETE_TYPE_P (type
))
2741 warning ("possible problem detected in invocation of "
2742 "delete operator:");
2743 cxx_incomplete_type_diagnostic (addr
, type
, 1);
2744 inform ("neither the destructor nor the class-specific "
2745 "operator delete will be called, even if they are "
2746 "declared when the class is defined.");
2750 if (VOID_TYPE_P (type
) || !complete_p
|| !IS_AGGR_TYPE (type
))
2751 /* Call the builtin operator delete. */
2752 return build_builtin_delete_call (addr
);
2753 if (TREE_SIDE_EFFECTS (addr
))
2754 addr
= save_expr (addr
);
2756 /* Throw away const and volatile on target type of addr. */
2757 addr
= convert_force (build_pointer_type (type
), addr
, 0);
2759 else if (TREE_CODE (type
) == ARRAY_TYPE
)
2763 if (TYPE_DOMAIN (type
) == NULL_TREE
)
2765 error ("unknown array size in delete");
2766 return error_mark_node
;
2768 return build_vec_delete (addr
, array_type_nelts (type
),
2769 auto_delete
, use_global_delete
);
2773 /* Don't check PROTECT here; leave that decision to the
2774 destructor. If the destructor is accessible, call it,
2775 else report error. */
2776 addr
= build_unary_op (ADDR_EXPR
, addr
, 0);
2777 if (TREE_SIDE_EFFECTS (addr
))
2778 addr
= save_expr (addr
);
2780 addr
= convert_force (build_pointer_type (type
), addr
, 0);
2783 gcc_assert (IS_AGGR_TYPE (type
));
2785 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type
))
2787 if (auto_delete
!= sfk_deleting_destructor
)
2788 return void_zero_node
;
2790 return build_op_delete_call
2791 (DELETE_EXPR
, addr
, cxx_sizeof_nowarn (type
), use_global_delete
,
2796 tree do_delete
= NULL_TREE
;
2799 if (CLASSTYPE_LAZY_DESTRUCTOR (type
))
2800 lazily_declare_fn (sfk_destructor
, type
);
2802 /* For `::delete x', we must not use the deleting destructor
2803 since then we would not be sure to get the global `operator
2805 if (use_global_delete
&& auto_delete
== sfk_deleting_destructor
)
2807 /* We will use ADDR multiple times so we must save it. */
2808 addr
= save_expr (addr
);
2809 /* Delete the object. */
2810 do_delete
= build_builtin_delete_call (addr
);
2811 /* Otherwise, treat this like a complete object destructor
2813 auto_delete
= sfk_complete_destructor
;
2815 /* If the destructor is non-virtual, there is no deleting
2816 variant. Instead, we must explicitly call the appropriate
2817 `operator delete' here. */
2818 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type
))
2819 && auto_delete
== sfk_deleting_destructor
)
2821 /* We will use ADDR multiple times so we must save it. */
2822 addr
= save_expr (addr
);
2823 /* Build the call. */
2824 do_delete
= build_op_delete_call (DELETE_EXPR
,
2826 cxx_sizeof_nowarn (type
),
2829 /* Call the complete object destructor. */
2830 auto_delete
= sfk_complete_destructor
;
2832 else if (auto_delete
== sfk_deleting_destructor
2833 && TYPE_GETS_REG_DELETE (type
))
2835 /* Make sure we have access to the member op delete, even though
2836 we'll actually be calling it from the destructor. */
2837 build_op_delete_call (DELETE_EXPR
, addr
, cxx_sizeof_nowarn (type
),
2838 /*global_p=*/false, NULL_TREE
);
2841 expr
= build_dtor_call (build_indirect_ref (addr
, NULL
),
2842 auto_delete
, flags
);
2844 expr
= build2 (COMPOUND_EXPR
, void_type_node
, expr
, do_delete
);
2846 if (flags
& LOOKUP_DESTRUCTOR
)
2847 /* Explicit destructor call; don't check for null pointer. */
2848 ifexp
= integer_one_node
;
2850 /* Handle deleting a null pointer. */
2851 ifexp
= fold (cp_build_binary_op (NE_EXPR
, addr
, integer_zero_node
));
2853 if (ifexp
!= integer_one_node
)
2854 expr
= build3 (COND_EXPR
, void_type_node
,
2855 ifexp
, expr
, void_zero_node
);
2861 /* At the beginning of a destructor, push cleanups that will call the
2862 destructors for our base classes and members.
2864 Called from begin_destructor_body. */
2867 push_base_cleanups (void)
2869 tree binfo
, base_binfo
;
2875 /* Run destructors for all virtual baseclasses. */
2876 if (CLASSTYPE_VBASECLASSES (current_class_type
))
2878 tree cond
= (condition_conversion
2879 (build2 (BIT_AND_EXPR
, integer_type_node
,
2880 current_in_charge_parm
,
2881 integer_two_node
)));
2883 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2884 order, which is also the right order for pushing cleanups. */
2885 for (vbases
= CLASSTYPE_VBASECLASSES (current_class_type
), i
= 0;
2886 VEC_iterate (tree
, vbases
, i
, base_binfo
); i
++)
2888 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo
)))
2890 expr
= build_special_member_call (current_class_ref
,
2891 base_dtor_identifier
,
2895 | LOOKUP_NONVIRTUAL
));
2896 expr
= build3 (COND_EXPR
, void_type_node
, cond
,
2897 expr
, void_zero_node
);
2898 finish_decl_cleanup (NULL_TREE
, expr
);
2903 /* Take care of the remaining baseclasses. */
2904 for (binfo
= TYPE_BINFO (current_class_type
), i
= 0;
2905 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
2907 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo
))
2908 || BINFO_VIRTUAL_P (base_binfo
))
2911 expr
= build_special_member_call (current_class_ref
,
2912 base_dtor_identifier
,
2913 NULL_TREE
, base_binfo
,
2914 LOOKUP_NORMAL
| LOOKUP_NONVIRTUAL
);
2915 finish_decl_cleanup (NULL_TREE
, expr
);
2918 for (member
= TYPE_FIELDS (current_class_type
); member
;
2919 member
= TREE_CHAIN (member
))
2921 if (TREE_CODE (member
) != FIELD_DECL
|| DECL_ARTIFICIAL (member
))
2923 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member
)))
2925 tree this_member
= (build_class_member_access_expr
2926 (current_class_ref
, member
,
2927 /*access_path=*/NULL_TREE
,
2928 /*preserve_reference=*/false));
2929 tree this_type
= TREE_TYPE (member
);
2930 expr
= build_delete (this_type
, this_member
,
2931 sfk_complete_destructor
,
2932 LOOKUP_NONVIRTUAL
|LOOKUP_DESTRUCTOR
|LOOKUP_NORMAL
,
2934 finish_decl_cleanup (NULL_TREE
, expr
);
2939 /* Build a C++ vector delete expression.
2940 MAXINDEX is the number of elements to be deleted.
2941 ELT_SIZE is the nominal size of each element in the vector.
2942 BASE is the expression that should yield the store to be deleted.
2943 This function expands (or synthesizes) these calls itself.
2944 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
2946 This also calls delete for virtual baseclasses of elements of the vector.
2948 Update: MAXINDEX is no longer needed. The size can be extracted from the
2949 start of the vector for pointers, and from the type for arrays. We still
2950 use MAXINDEX for arrays because it happens to already have one of the
2951 values we'd have to extract. (We could use MAXINDEX with pointers to
2952 confirm the size, and trap if the numbers differ; not clear that it'd
2953 be worth bothering.) */
2956 build_vec_delete (tree base
, tree maxindex
,
2957 special_function_kind auto_delete_vec
, int use_global_delete
)
2961 tree base_init
= NULL_TREE
;
2963 type
= TREE_TYPE (base
);
2965 if (TREE_CODE (type
) == POINTER_TYPE
)
2967 /* Step back one from start of vector, and read dimension. */
2970 if (TREE_SIDE_EFFECTS (base
))
2972 base_init
= get_target_expr (base
);
2973 base
= TARGET_EXPR_SLOT (base_init
);
2975 type
= strip_array_types (TREE_TYPE (type
));
2976 cookie_addr
= build2 (MINUS_EXPR
,
2977 build_pointer_type (sizetype
),
2979 TYPE_SIZE_UNIT (sizetype
));
2980 maxindex
= build_indirect_ref (cookie_addr
, NULL
);
2982 else if (TREE_CODE (type
) == ARRAY_TYPE
)
2984 /* Get the total number of things in the array, maxindex is a
2986 maxindex
= array_type_nelts_total (type
);
2987 type
= strip_array_types (type
);
2988 base
= build_unary_op (ADDR_EXPR
, base
, 1);
2989 if (TREE_SIDE_EFFECTS (base
))
2991 base_init
= get_target_expr (base
);
2992 base
= TARGET_EXPR_SLOT (base_init
);
2997 if (base
!= error_mark_node
)
2998 error ("type to vector delete is neither pointer or array type");
2999 return error_mark_node
;
3002 rval
= build_vec_delete_1 (base
, maxindex
, type
, auto_delete_vec
,
3005 rval
= build2 (COMPOUND_EXPR
, TREE_TYPE (rval
), base_init
, rval
);