* reload1.c (fixup_abnormal_edges): Remove unused variable.
[official-gcc.git] / gcc / dwarfout.c
blob0a41dbb9731f56386a7b8fef5ed0209645ed24b8
1 /* Output Dwarf format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 2002,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
25 Notes on the GNU Implementation of DWARF Debugging Information
26 --------------------------------------------------------------
27 Last Major Update: Sun Jul 17 08:17:42 PDT 1994 by rfg@segfault.us.com
28 ------------------------------------------------------------
30 This file describes special and unique aspects of the GNU implementation of
31 the DWARF Version 1 debugging information language, as provided in the GNU
32 version 2.x compiler(s).
34 For general information about the DWARF debugging information language,
35 you should obtain the DWARF version 1.1 specification document (and perhaps
36 also the DWARF version 2 draft specification document) developed by the
37 (now defunct) UNIX International Programming Languages Special Interest Group.
39 To obtain a copy of the DWARF Version 1 and/or DWARF Version 2
40 specification, visit the web page for the DWARF Version 2 committee, at
42 http://www.eagercon.com/dwarf/dwarf2std.htm
44 The generation of DWARF debugging information by the GNU version 2.x C
45 compiler has now been tested rather extensively for m88k, i386, i860, and
46 Sparc targets. The DWARF output of the GNU C compiler appears to inter-
47 operate well with the standard SVR4 SDB debugger on these kinds of target
48 systems (but of course, there are no guarantees).
50 DWARF 1 generation for the GNU g++ compiler is implemented, but limited.
51 C++ users should definitely use DWARF 2 instead.
53 Future plans for the dwarfout.c module of the GNU compiler(s) includes the
54 addition of full support for GNU FORTRAN. (This should, in theory, be a
55 lot simpler to add than adding support for g++... but we'll see.)
57 Many features of the DWARF version 2 specification have been adapted to
58 (and used in) the GNU implementation of DWARF (version 1). In most of
59 these cases, a DWARF version 2 approach is used in place of (or in addition
60 to) DWARF version 1 stuff simply because it is apparent that DWARF version
61 1 is not sufficiently expressive to provide the kinds of information which
62 may be necessary to support really robust debugging. In all of these cases
63 however, the use of DWARF version 2 features should not interfere in any
64 way with the interoperability (of GNU compilers) with generally available
65 "classic" (pre version 1) DWARF consumer tools (e.g. SVR4 SDB).
67 The DWARF generation enhancement for the GNU compiler(s) was initially
68 donated to the Free Software Foundation by Network Computing Devices.
69 (Thanks NCD!) Additional development and maintenance of dwarfout.c has
70 been largely supported (i.e. funded) by Intel Corporation. (Thanks Intel!)
72 If you have questions or comments about the DWARF generation feature, please
73 send mail to me <rfg@netcom.com>. I will be happy to investigate any bugs
74 reported and I may even provide fixes (but of course, I can make no promises).
76 The DWARF debugging information produced by GCC may deviate in a few minor
77 (but perhaps significant) respects from the DWARF debugging information
78 currently produced by other C compilers. A serious attempt has been made
79 however to conform to the published specifications, to existing practice,
80 and to generally accepted norms in the GNU implementation of DWARF.
82 ** IMPORTANT NOTE ** ** IMPORTANT NOTE ** ** IMPORTANT NOTE **
84 Under normal circumstances, the DWARF information generated by the GNU
85 compilers (in an assembly language file) is essentially impossible for
86 a human being to read. This fact can make it very difficult to debug
87 certain DWARF-related problems. In order to overcome this difficulty,
88 a feature has been added to dwarfout.c (enabled by the -dA
89 option) which causes additional comments to be placed into the assembly
90 language output file, out to the right-hand side of most bits of DWARF
91 material. The comments indicate (far more clearly that the obscure
92 DWARF hex codes do) what is actually being encoded in DWARF. Thus, the
93 -dA option can be highly useful for those who must study the
94 DWARF output from the GNU compilers in detail.
96 ---------
98 (Footnote: Within this file, the term `Debugging Information Entry' will
99 be abbreviated as `DIE'.)
102 Release Notes (aka known bugs)
103 -------------------------------
105 In one very obscure case involving dynamically sized arrays, the DWARF
106 "location information" for such an array may make it appear that the
107 array has been totally optimized out of existence, when in fact it
108 *must* actually exist. (This only happens when you are using *both* -g
109 *and* -O.) This is due to aggressive dead store elimination in the
110 compiler, and to the fact that the DECL_RTL expressions associated with
111 variables are not always updated to correctly reflect the effects of
112 GCC's aggressive dead store elimination.
114 -------------------------------
116 When attempting to set a breakpoint at the "start" of a function compiled
117 with -g1, the debugger currently has no way of knowing exactly where the
118 end of the prologue code for the function is. Thus, for most targets,
119 all the debugger can do is to set the breakpoint at the AT_low_pc address
120 for the function. But if you stop there and then try to look at one or
121 more of the formal parameter values, they may not have been "homed" yet,
122 so you may get inaccurate answers (or perhaps even addressing errors).
124 Some people may consider this simply a non-feature, but I consider it a
125 bug, and I hope to provide some GNU-specific attributes (on function
126 DIEs) which will specify the address of the end of the prologue and the
127 address of the beginning of the epilogue in a future release.
129 -------------------------------
131 It is believed at this time that old bugs relating to the AT_bit_offset
132 values for bit-fields have been fixed.
134 There may still be some very obscure bugs relating to the DWARF description
135 of type `long long' bit-fields for target machines (e.g. 80x86 machines)
136 where the alignment of type `long long' data objects is different from
137 (and less than) the size of a type `long long' data object.
139 Please report any problems with the DWARF description of bit-fields as you
140 would any other GCC bug. (Procedures for bug reporting are given in the
141 GNU C compiler manual.)
143 --------------------------------
145 At this time, GCC does not know how to handle the GNU C "nested functions"
146 extension. (See the GCC manual for more info on this extension to ANSI C.)
148 --------------------------------
150 The GNU compilers now represent inline functions (and inlined instances
151 thereof) in exactly the manner described by the current DWARF version 2
152 (draft) specification. The version 1 specification for handling inline
153 functions (and inlined instances) was known to be brain-damaged (by the
154 PLSIG) when the version 1 spec was finalized, but it was simply too late
155 in the cycle to get it removed before the version 1 spec was formally
156 released to the public (by UI).
158 --------------------------------
160 At this time, GCC does not generate the kind of really precise information
161 about the exact declared types of entities with signed integral types which
162 is required by the current DWARF draft specification.
164 Specifically, the current DWARF draft specification seems to require that
165 the type of an non-unsigned integral bit-field member of a struct or union
166 type be represented as either a "signed" type or as a "plain" type,
167 depending upon the exact set of keywords that were used in the
168 type specification for the given bit-field member. It was felt (by the
169 UI/PLSIG) that this distinction between "plain" and "signed" integral types
170 could have some significance (in the case of bit-fields) because ANSI C
171 does not constrain the signedness of a plain bit-field, whereas it does
172 constrain the signedness of an explicitly "signed" bit-field. For this
173 reason, the current DWARF specification calls for compilers to produce
174 type information (for *all* integral typed entities... not just bit-fields)
175 which explicitly indicates the signedness of the relevant type to be
176 "signed" or "plain" or "unsigned".
178 Unfortunately, the GNU DWARF implementation is currently incapable of making
179 such distinctions.
181 --------------------------------
184 Known Interoperability Problems
185 -------------------------------
187 Although the GNU implementation of DWARF conforms (for the most part) with
188 the current UI/PLSIG DWARF version 1 specification (with many compatible
189 version 2 features added in as "vendor specific extensions" just for good
190 measure) there are a few known cases where GCC's DWARF output can cause
191 some confusion for "classic" (pre version 1) DWARF consumers such as the
192 System V Release 4 SDB debugger. These cases are described in this section.
194 --------------------------------
196 The DWARF version 1 specification includes the fundamental type codes
197 FT_ext_prec_float, FT_complex, FT_dbl_prec_complex, and FT_ext_prec_complex.
198 Since GNU C is only a C compiler (and since C doesn't provide any "complex"
199 data types) the only one of these fundamental type codes which GCC ever
200 generates is FT_ext_prec_float. This fundamental type code is generated
201 by GCC for the `long double' data type. Unfortunately, due to an apparent
202 bug in the SVR4 SDB debugger, SDB can become very confused wherever any
203 attempt is made to print a variable, parameter, or field whose type was
204 given in terms of FT_ext_prec_float.
206 (Actually, SVR4 SDB fails to understand *any* of the four fundamental type
207 codes mentioned here. This will fact will cause additional problems when
208 there is a GNU FORTRAN front-end.)
210 --------------------------------
212 In general, it appears that SVR4 SDB is not able to effectively ignore
213 fundamental type codes in the "implementation defined" range. This can
214 cause problems when a program being debugged uses the `long long' data
215 type (or the signed or unsigned varieties thereof) because these types
216 are not defined by ANSI C, and thus, GCC must use its own private fundamental
217 type codes (from the implementation-defined range) to represent these types.
219 --------------------------------
222 General GNU DWARF extensions
223 ----------------------------
225 In the current DWARF version 1 specification, no mechanism is specified by
226 which accurate information about executable code from include files can be
227 properly (and fully) described. (The DWARF version 2 specification *does*
228 specify such a mechanism, but it is about 10 times more complicated than
229 it needs to be so I'm not terribly anxious to try to implement it right
230 away.)
232 In the GNU implementation of DWARF version 1, a fully downward-compatible
233 extension has been implemented which permits the GNU compilers to specify
234 which executable lines come from which files. This extension places
235 additional information (about source file names) in GNU-specific sections
236 (which should be totally ignored by all non-GNU DWARF consumers) so that
237 this extended information can be provided (to GNU DWARF consumers) in a way
238 which is totally transparent (and invisible) to non-GNU DWARF consumers
239 (e.g. the SVR4 SDB debugger). The additional information is placed *only*
240 in specialized GNU-specific sections, where it should never even be seen
241 by non-GNU DWARF consumers.
243 To understand this GNU DWARF extension, imagine that the sequence of entries
244 in the .lines section is broken up into several subsections. Each contiguous
245 sequence of .line entries which relates to a sequence of lines (or statements)
246 from one particular file (either a `base' file or an `include' file) could
247 be called a `line entries chunk' (LEC).
249 For each LEC there is one entry in the .debug_srcinfo section.
251 Each normal entry in the .debug_srcinfo section consists of two 4-byte
252 words of data as follows:
254 (1) The starting address (relative to the entire .line section)
255 of the first .line entry in the relevant LEC.
257 (2) The starting address (relative to the entire .debug_sfnames
258 section) of a NUL terminated string representing the
259 relevant filename. (This filename name be either a
260 relative or an absolute filename, depending upon how the
261 given source file was located during compilation.)
263 Obviously, each .debug_srcinfo entry allows you to find the relevant filename,
264 and it also points you to the first .line entry that was generated as a result
265 of having compiled a given source line from the given source file.
267 Each subsequent .line entry should also be assumed to have been produced
268 as a result of compiling yet more lines from the same file. The end of
269 any given LEC is easily found by looking at the first 4-byte pointer in
270 the *next* .debug_srcinfo entry. That next .debug_srcinfo entry points
271 to a new and different LEC, so the preceding LEC (implicitly) must have
272 ended with the last .line section entry which occurs at the 2 1/2 words
273 just before the address given in the first pointer of the new .debug_srcinfo
274 entry.
276 The following picture may help to clarify this feature. Let's assume that
277 `LE' stands for `.line entry'. Also, assume that `* 'stands for a pointer.
280 .line section .debug_srcinfo section .debug_sfnames section
281 ----------------------------------------------------------------
283 LE <---------------------- *
284 LE * -----------------> "foobar.c" <---
285 LE |
286 LE |
287 LE <---------------------- * |
288 LE * -----------------> "foobar.h" <| |
289 LE | |
290 LE | |
291 LE <---------------------- * | |
292 LE * -----------------> "inner.h" | |
293 LE | |
294 LE <---------------------- * | |
295 LE * ------------------------------- |
296 LE |
297 LE |
298 LE |
299 LE |
300 LE <---------------------- * |
301 LE * -----------------------------------
306 In effect, each entry in the .debug_srcinfo section points to *both* a
307 filename (in the .debug_sfnames section) and to the start of a block of
308 consecutive LEs (in the .line section).
310 Note that just like in the .line section, there are specialized first and
311 last entries in the .debug_srcinfo section for each object file. These
312 special first and last entries for the .debug_srcinfo section are very
313 different from the normal .debug_srcinfo section entries. They provide
314 additional information which may be helpful to a debugger when it is
315 interpreting the data in the .debug_srcinfo, .debug_sfnames, and .line
316 sections.
318 The first entry in the .debug_srcinfo section for each compilation unit
319 consists of five 4-byte words of data. The contents of these five words
320 should be interpreted (by debuggers) as follows:
322 (1) The starting address (relative to the entire .line section)
323 of the .line section for this compilation unit.
325 (2) The starting address (relative to the entire .debug_sfnames
326 section) of the .debug_sfnames section for this compilation
327 unit.
329 (3) The starting address (in the execution virtual address space)
330 of the .text section for this compilation unit.
332 (4) The ending address plus one (in the execution virtual address
333 space) of the .text section for this compilation unit.
335 (5) The date/time (in seconds since midnight 1/1/70) at which the
336 compilation of this compilation unit occurred. This value
337 should be interpreted as an unsigned quantity because gcc
338 might be configured to generate a default value of 0xffffffff
339 in this field (in cases where it is desired to have object
340 files created at different times from identical source files
341 be byte-for-byte identical). By default, these timestamps
342 are *not* generated by dwarfout.c (so that object files
343 compiled at different times will be byte-for-byte identical).
344 If you wish to enable this "timestamp" feature however, you
345 can simply place a #define for the symbol `DWARF_TIMESTAMPS'
346 in your target configuration file and then rebuild the GNU
347 compiler(s).
349 Note that the first string placed into the .debug_sfnames section for each
350 compilation unit is the name of the directory in which compilation occurred.
351 This string ends with a `/' (to help indicate that it is the pathname of a
352 directory). Thus, the second word of each specialized initial .debug_srcinfo
353 entry for each compilation unit may be used as a pointer to the (string)
354 name of the compilation directory, and that string may in turn be used to
355 "absolutize" any relative pathnames which may appear later on in the
356 .debug_sfnames section entries for the same compilation unit.
358 The fifth and last word of each specialized starting entry for a compilation
359 unit in the .debug_srcinfo section may (depending upon your configuration)
360 indicate the date/time of compilation, and this may be used (by a debugger)
361 to determine if any of the source files which contributed code to this
362 compilation unit are newer than the object code for the compilation unit
363 itself. If so, the debugger may wish to print an "out-of-date" warning
364 about the compilation unit.
366 The .debug_srcinfo section associated with each compilation will also have
367 a specialized terminating entry. This terminating .debug_srcinfo section
368 entry will consist of the following two 4-byte words of data:
370 (1) The offset, measured from the start of the .line section to
371 the beginning of the terminating entry for the .line section.
373 (2) A word containing the value 0xffffffff.
375 --------------------------------
377 In the current DWARF version 1 specification, no mechanism is specified by
378 which information about macro definitions and un-definitions may be provided
379 to the DWARF consumer.
381 The DWARF version 2 (draft) specification does specify such a mechanism.
382 That specification was based on the GNU ("vendor specific extension")
383 which provided some support for macro definitions and un-definitions,
384 but the "official" DWARF version 2 (draft) specification mechanism for
385 handling macros and the GNU implementation have diverged somewhat. I
386 plan to update the GNU implementation to conform to the "official"
387 DWARF version 2 (draft) specification as soon as I get time to do that.
389 Note that in the GNU implementation, additional information about macro
390 definitions and un-definitions is *only* provided when the -g3 level of
391 debug-info production is selected. (The default level is -g2 and the
392 plain old -g option is considered to be identical to -g2.)
394 GCC records information about macro definitions and undefinitions primarily
395 in a section called the .debug_macinfo section. Normal entries in the
396 .debug_macinfo section consist of the following three parts:
398 (1) A special "type" byte.
400 (2) A 3-byte line-number/filename-offset field.
402 (3) A NUL terminated string.
404 The interpretation of the second and third parts is dependent upon the
405 value of the leading (type) byte.
407 The type byte may have one of four values depending upon the type of the
408 .debug_macinfo entry which follows. The 1-byte MACINFO type codes presently
409 used, and their meanings are as follows:
411 MACINFO_start A base file or an include file starts here.
412 MACINFO_resume The current base or include file ends here.
413 MACINFO_define A #define directive occurs here.
414 MACINFO_undef A #undef directive occur here.
416 (Note that the MACINFO_... codes mentioned here are simply symbolic names
417 for constants which are defined in the GNU dwarf.h file.)
419 For MACINFO_define and MACINFO_undef entries, the second (3-byte) field
420 contains the number of the source line (relative to the start of the current
421 base source file or the current include files) when the #define or #undef
422 directive appears. For a MACINFO_define entry, the following string field
423 contains the name of the macro which is defined, followed by its definition.
424 Note that the definition is always separated from the name of the macro
425 by at least one whitespace character. For a MACINFO_undef entry, the
426 string which follows the 3-byte line number field contains just the name
427 of the macro which is being undef'ed.
429 For a MACINFO_start entry, the 3-byte field following the type byte contains
430 the offset, relative to the start of the .debug_sfnames section for the
431 current compilation unit, of a string which names the new source file which
432 is beginning its inclusion at this point. Following that 3-byte field,
433 each MACINFO_start entry always contains a zero length NUL terminated
434 string.
436 For a MACINFO_resume entry, the 3-byte field following the type byte contains
437 the line number WITHIN THE INCLUDING FILE at which the inclusion of the
438 current file (whose inclusion ends here) was initiated. Following that
439 3-byte field, each MACINFO_resume entry always contains a zero length NUL
440 terminated string.
442 Each set of .debug_macinfo entries for each compilation unit is terminated
443 by a special .debug_macinfo entry consisting of a 4-byte zero value followed
444 by a single NUL byte.
446 --------------------------------
448 In the current DWARF draft specification, no provision is made for providing
449 a separate level of (limited) debugging information necessary to support
450 tracebacks (only) through fully-debugged code (e.g. code in system libraries).
452 A proposal to define such a level was submitted (by me) to the UI/PLSIG.
453 This proposal was rejected by the UI/PLSIG for inclusion into the DWARF
454 version 1 specification for two reasons. First, it was felt (by the PLSIG)
455 that the issues involved in supporting a "traceback only" subset of DWARF
456 were not well understood. Second, and perhaps more importantly, the PLSIG
457 is already having enough trouble agreeing on what it means to be "conforming"
458 to the DWARF specification, and it was felt that trying to specify multiple
459 different *levels* of conformance would only complicate our discussions of
460 this already divisive issue. Nonetheless, the GNU implementation of DWARF
461 provides an abbreviated "traceback only" level of debug-info production for
462 use with fully-debugged "system library" code. This level should only be
463 used for fully debugged system library code, and even then, it should only
464 be used where there is a very strong need to conserve disk space. This
465 abbreviated level of debug-info production can be used by specifying the
466 -g1 option on the compilation command line.
468 --------------------------------
470 As mentioned above, the GNU implementation of DWARF currently uses the DWARF
471 version 2 (draft) approach for inline functions (and inlined instances
472 thereof). This is used in preference to the version 1 approach because
473 (quite simply) the version 1 approach is highly brain-damaged and probably
474 unworkable.
476 --------------------------------
479 GNU DWARF Representation of GNU C Extensions to ANSI C
480 ------------------------------------------------------
482 The file dwarfout.c has been designed and implemented so as to provide
483 some reasonable DWARF representation for each and every declarative
484 construct which is accepted by the GNU C compiler. Since the GNU C
485 compiler accepts a superset of ANSI C, this means that there are some
486 cases in which the DWARF information produced by GCC must take some
487 liberties in improvising DWARF representations for declarations which
488 are only valid in (extended) GNU C.
490 In particular, GNU C provides at least three significant extensions to
491 ANSI C when it comes to declarations. These are (1) inline functions,
492 and (2) dynamic arrays, and (3) incomplete enum types. (See the GCC
493 manual for more information on these GNU extensions to ANSI C.) When
494 used, these GNU C extensions are represented (in the generated DWARF
495 output of GCC) in the most natural and intuitively obvious ways.
497 In the case of inline functions, the DWARF representation is exactly as
498 called for in the DWARF version 2 (draft) specification for an identical
499 function written in C++; i.e. we "reuse" the representation of inline
500 functions which has been defined for C++ to support this GNU C extension.
502 In the case of dynamic arrays, we use the most obvious representational
503 mechanism available; i.e. an array type in which the upper bound of
504 some dimension (usually the first and only dimension) is a variable
505 rather than a constant. (See the DWARF version 1 specification for more
506 details.)
508 In the case of incomplete enum types, such types are represented simply
509 as TAG_enumeration_type DIEs which DO NOT contain either AT_byte_size
510 attributes or AT_element_list attributes.
512 --------------------------------
515 Future Directions
516 -----------------
518 The codes, formats, and other paraphernalia necessary to provide proper
519 support for symbolic debugging for the C++ language are still being worked
520 on by the UI/PLSIG. The vast majority of the additions to DWARF which will
521 be needed to completely support C++ have already been hashed out and agreed
522 upon, but a few small issues (e.g. anonymous unions, access declarations)
523 are still being discussed. Also, we in the PLSIG are still discussing
524 whether or not we need to do anything special for C++ templates. (At this
525 time it is not yet clear whether we even need to do anything special for
526 these.)
528 With regard to FORTRAN, the UI/PLSIG has defined what is believed to be a
529 complete and sufficient set of codes and rules for adequately representing
530 all of FORTRAN 77, and most of Fortran 90 in DWARF. While some support for
531 this has been implemented in dwarfout.c, further implementation and testing
532 is needed.
534 GNU DWARF support for other languages (i.e. Pascal and Modula) is a moot
535 issue until there are GNU front-ends for these other languages.
537 As currently defined, DWARF only describes a (binary) language which can
538 be used to communicate symbolic debugging information from a compiler
539 through an assembler and a linker, to a debugger. There is no clear
540 specification of what processing should be (or must be) done by the
541 assembler and/or the linker. Fortunately, the role of the assembler
542 is easily inferred (by anyone knowledgeable about assemblers) just by
543 looking at examples of assembly-level DWARF code. Sadly though, the
544 allowable (or required) processing steps performed by a linker are
545 harder to infer and (perhaps) even harder to agree upon. There are
546 several forms of very useful `post-processing' steps which intelligent
547 linkers *could* (in theory) perform on object files containing DWARF,
548 but any and all such link-time transformations are currently both disallowed
549 and unspecified.
551 In particular, possible link-time transformations of DWARF code which could
552 provide significant benefits include (but are not limited to):
554 Commonization of duplicate DIEs obtained from multiple input
555 (object) files.
557 Cross-compilation type checking based upon DWARF type information
558 for objects and functions.
560 Other possible `compacting' transformations designed to save disk
561 space and to reduce linker & debugger I/O activity.
565 #include "config.h"
567 #ifdef DWARF_DEBUGGING_INFO
568 #include "system.h"
569 #include "dwarf.h"
570 #include "tree.h"
571 #include "flags.h"
572 #include "function.h"
573 #include "rtl.h"
574 #include "hard-reg-set.h"
575 #include "insn-config.h"
576 #include "reload.h"
577 #include "output.h"
578 #include "dwarf2asm.h"
579 #include "toplev.h"
580 #include "tm_p.h"
581 #include "debug.h"
582 #include "langhooks.h"
584 /* NOTE: In the comments in this file, many references are made to
585 so called "Debugging Information Entries". For the sake of brevity,
586 this term is abbreviated to `DIE' throughout the remainder of this
587 file. */
589 /* Note that the implementation of C++ support herein is (as yet) unfinished.
590 If you want to try to complete it, more power to you. */
592 /* How to start an assembler comment. */
593 #ifndef ASM_COMMENT_START
594 #define ASM_COMMENT_START ";#"
595 #endif
597 /* How to print out a register name. */
598 #ifndef PRINT_REG
599 #define PRINT_REG(RTX, CODE, FILE) \
600 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
601 #endif
603 /* Define a macro which returns non-zero for any tagged type which is
604 used (directly or indirectly) in the specification of either some
605 function's return type or some formal parameter of some function.
606 We use this macro when we are operating in "terse" mode to help us
607 know what tagged types have to be represented in Dwarf (even in
608 terse mode) and which ones don't.
610 A flag bit with this meaning really should be a part of the normal
611 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
612 for these nodes. For now, we have to just fake it. It it safe for
613 us to simply return zero for all complete tagged types (which will
614 get forced out anyway if they were used in the specification of some
615 formal or return type) and non-zero for all incomplete tagged types.
618 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
620 /* Define a macro which returns non-zero for a TYPE_DECL which was
621 implicitly generated for a tagged type.
623 Note that unlike the gcc front end (which generates a NULL named
624 TYPE_DECL node for each complete tagged type, each array type, and
625 each function type node created) the g++ front end generates a
626 _named_ TYPE_DECL node for each tagged type node created.
627 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
628 generate a DW_TAG_typedef DIE for them. */
629 #define TYPE_DECL_IS_STUB(decl) \
630 (DECL_NAME (decl) == NULL \
631 || (DECL_ARTIFICIAL (decl) \
632 && is_tagged_type (TREE_TYPE (decl)) \
633 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
635 /* Maximum size (in bytes) of an artificially generated label. */
637 #define MAX_ARTIFICIAL_LABEL_BYTES 30
639 /* Structure to keep track of source filenames. */
641 struct filename_entry {
642 unsigned number;
643 const char * name;
646 typedef struct filename_entry filename_entry;
648 /* Pointer to an array of elements, each one having the structure above. */
650 static filename_entry *filename_table;
652 /* Total number of entries in the table (i.e. array) pointed to by
653 `filename_table'. This is the *total* and includes both used and
654 unused slots. */
656 static unsigned ft_entries_allocated;
658 /* Number of entries in the filename_table which are actually in use. */
660 static unsigned ft_entries;
662 /* Size (in elements) of increments by which we may expand the filename
663 table. Actually, a single hunk of space of this size should be enough
664 for most typical programs. */
666 #define FT_ENTRIES_INCREMENT 64
668 /* Local pointer to the name of the main input file. Initialized in
669 dwarfout_init. */
671 static const char *primary_filename;
673 /* Counter to generate unique names for DIEs. */
675 static unsigned next_unused_dienum = 1;
677 /* Number of the DIE which is currently being generated. */
679 static unsigned current_dienum;
681 /* Number to use for the special "pubname" label on the next DIE which
682 represents a function or data object defined in this compilation
683 unit which has "extern" linkage. */
685 static int next_pubname_number = 0;
687 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
689 /* Pointer to a dynamically allocated list of pre-reserved and still
690 pending sibling DIE numbers. Note that this list will grow as needed. */
692 static unsigned *pending_sibling_stack;
694 /* Counter to keep track of the number of pre-reserved and still pending
695 sibling DIE numbers. */
697 static unsigned pending_siblings;
699 /* The currently allocated size of the above list (expressed in number of
700 list elements). */
702 static unsigned pending_siblings_allocated;
704 /* Size (in elements) of increments by which we may expand the pending
705 sibling stack. Actually, a single hunk of space of this size should
706 be enough for most typical programs. */
708 #define PENDING_SIBLINGS_INCREMENT 64
710 /* Non-zero if we are performing our file-scope finalization pass and if
711 we should force out Dwarf descriptions of any and all file-scope
712 tagged types which are still incomplete types. */
714 static int finalizing = 0;
716 /* A pointer to the base of a list of pending types which we haven't
717 generated DIEs for yet, but which we will have to come back to
718 later on. */
720 static tree *pending_types_list;
722 /* Number of elements currently allocated for the pending_types_list. */
724 static unsigned pending_types_allocated;
726 /* Number of elements of pending_types_list currently in use. */
728 static unsigned pending_types;
730 /* Size (in elements) of increments by which we may expand the pending
731 types list. Actually, a single hunk of space of this size should
732 be enough for most typical programs. */
734 #define PENDING_TYPES_INCREMENT 64
736 /* A pointer to the base of a list of incomplete types which might be
737 completed at some later time. */
739 static tree *incomplete_types_list;
741 /* Number of elements currently allocated for the incomplete_types_list. */
742 static unsigned incomplete_types_allocated;
744 /* Number of elements of incomplete_types_list currently in use. */
745 static unsigned incomplete_types;
747 /* Size (in elements) of increments by which we may expand the incomplete
748 types list. Actually, a single hunk of space of this size should
749 be enough for most typical programs. */
750 #define INCOMPLETE_TYPES_INCREMENT 64
752 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
753 This is used in a hack to help us get the DIEs describing types of
754 formal parameters to come *after* all of the DIEs describing the formal
755 parameters themselves. That's necessary in order to be compatible
756 with what the brain-damaged svr4 SDB debugger requires. */
758 static tree fake_containing_scope;
760 /* A pointer to the ..._DECL node which we have most recently been working
761 on. We keep this around just in case something about it looks screwy
762 and we want to tell the user what the source coordinates for the actual
763 declaration are. */
765 static tree dwarf_last_decl;
767 /* A flag indicating that we are emitting the member declarations of a
768 class, so member functions and variables should not be entirely emitted.
769 This is a kludge to avoid passing a second argument to output_*_die. */
771 static int in_class;
773 /* Forward declarations for functions defined in this file. */
775 static void dwarfout_init PARAMS ((const char *));
776 static void dwarfout_finish PARAMS ((const char *));
777 static void dwarfout_define PARAMS ((unsigned int, const char *));
778 static void dwarfout_undef PARAMS ((unsigned int, const char *));
779 static void dwarfout_start_source_file PARAMS ((unsigned, const char *));
780 static void dwarfout_start_source_file_check PARAMS ((unsigned, const char *));
781 static void dwarfout_end_source_file PARAMS ((unsigned));
782 static void dwarfout_end_source_file_check PARAMS ((unsigned));
783 static void dwarfout_begin_block PARAMS ((unsigned, unsigned));
784 static void dwarfout_end_block PARAMS ((unsigned, unsigned));
785 static void dwarfout_end_epilogue PARAMS ((void));
786 static void dwarfout_source_line PARAMS ((unsigned int, const char *));
787 static void dwarfout_end_prologue PARAMS ((unsigned int));
788 static void dwarfout_end_function PARAMS ((unsigned int));
789 static void dwarfout_function_decl PARAMS ((tree));
790 static void dwarfout_global_decl PARAMS ((tree));
791 static void dwarfout_deferred_inline_function PARAMS ((tree));
792 static void dwarfout_file_scope_decl PARAMS ((tree , int));
793 static const char *dwarf_tag_name PARAMS ((unsigned));
794 static const char *dwarf_attr_name PARAMS ((unsigned));
795 static const char *dwarf_stack_op_name PARAMS ((unsigned));
796 static const char *dwarf_typemod_name PARAMS ((unsigned));
797 static const char *dwarf_fmt_byte_name PARAMS ((unsigned));
798 static const char *dwarf_fund_type_name PARAMS ((unsigned));
799 static tree decl_ultimate_origin PARAMS ((tree));
800 static tree block_ultimate_origin PARAMS ((tree));
801 static tree decl_class_context PARAMS ((tree));
802 #if 0
803 static void output_unsigned_leb128 PARAMS ((unsigned long));
804 static void output_signed_leb128 PARAMS ((long));
805 #endif
806 static int fundamental_type_code PARAMS ((tree));
807 static tree root_type_1 PARAMS ((tree, int));
808 static tree root_type PARAMS ((tree));
809 static void write_modifier_bytes_1 PARAMS ((tree, int, int, int));
810 static void write_modifier_bytes PARAMS ((tree, int, int));
811 static inline int type_is_fundamental PARAMS ((tree));
812 static void equate_decl_number_to_die_number PARAMS ((tree));
813 static inline void equate_type_number_to_die_number PARAMS ((tree));
814 static void output_reg_number PARAMS ((rtx));
815 static void output_mem_loc_descriptor PARAMS ((rtx));
816 static void output_loc_descriptor PARAMS ((rtx));
817 static void output_bound_representation PARAMS ((tree, unsigned, int));
818 static void output_enumeral_list PARAMS ((tree));
819 static inline HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
820 static inline tree field_type PARAMS ((tree));
821 static inline unsigned int simple_type_align_in_bits PARAMS ((tree));
822 static inline unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
823 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
824 static inline void sibling_attribute PARAMS ((void));
825 static void location_attribute PARAMS ((rtx));
826 static void data_member_location_attribute PARAMS ((tree));
827 static void const_value_attribute PARAMS ((rtx));
828 static void location_or_const_value_attribute PARAMS ((tree));
829 static inline void name_attribute PARAMS ((const char *));
830 static inline void fund_type_attribute PARAMS ((unsigned));
831 static void mod_fund_type_attribute PARAMS ((tree, int, int));
832 static inline void user_def_type_attribute PARAMS ((tree));
833 static void mod_u_d_type_attribute PARAMS ((tree, int, int));
834 #ifdef USE_ORDERING_ATTRIBUTE
835 static inline void ordering_attribute PARAMS ((unsigned));
836 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
837 static void subscript_data_attribute PARAMS ((tree));
838 static void byte_size_attribute PARAMS ((tree));
839 static inline void bit_offset_attribute PARAMS ((tree));
840 static inline void bit_size_attribute PARAMS ((tree));
841 static inline void element_list_attribute PARAMS ((tree));
842 static inline void stmt_list_attribute PARAMS ((const char *));
843 static inline void low_pc_attribute PARAMS ((const char *));
844 static inline void high_pc_attribute PARAMS ((const char *));
845 static inline void body_begin_attribute PARAMS ((const char *));
846 static inline void body_end_attribute PARAMS ((const char *));
847 static inline void language_attribute PARAMS ((unsigned));
848 static inline void member_attribute PARAMS ((tree));
849 #if 0
850 static inline void string_length_attribute PARAMS ((tree));
851 #endif
852 static inline void comp_dir_attribute PARAMS ((const char *));
853 static inline void sf_names_attribute PARAMS ((const char *));
854 static inline void src_info_attribute PARAMS ((const char *));
855 static inline void mac_info_attribute PARAMS ((const char *));
856 static inline void prototyped_attribute PARAMS ((tree));
857 static inline void producer_attribute PARAMS ((const char *));
858 static inline void inline_attribute PARAMS ((tree));
859 static inline void containing_type_attribute PARAMS ((tree));
860 static inline void abstract_origin_attribute PARAMS ((tree));
861 #ifdef DWARF_DECL_COORDINATES
862 static inline void src_coords_attribute PARAMS ((unsigned, unsigned));
863 #endif /* defined(DWARF_DECL_COORDINATES) */
864 static inline void pure_or_virtual_attribute PARAMS ((tree));
865 static void name_and_src_coords_attributes PARAMS ((tree));
866 static void type_attribute PARAMS ((tree, int, int));
867 static const char *type_tag PARAMS ((tree));
868 static inline void dienum_push PARAMS ((void));
869 static inline void dienum_pop PARAMS ((void));
870 static inline tree member_declared_type PARAMS ((tree));
871 static const char *function_start_label PARAMS ((tree));
872 static void output_array_type_die PARAMS ((void *));
873 static void output_set_type_die PARAMS ((void *));
874 #if 0
875 static void output_entry_point_die PARAMS ((void *));
876 #endif
877 static void output_inlined_enumeration_type_die PARAMS ((void *));
878 static void output_inlined_structure_type_die PARAMS ((void *));
879 static void output_inlined_union_type_die PARAMS ((void *));
880 static void output_enumeration_type_die PARAMS ((void *));
881 static void output_formal_parameter_die PARAMS ((void *));
882 static void output_global_subroutine_die PARAMS ((void *));
883 static void output_global_variable_die PARAMS ((void *));
884 static void output_label_die PARAMS ((void *));
885 static void output_lexical_block_die PARAMS ((void *));
886 static void output_inlined_subroutine_die PARAMS ((void *));
887 static void output_local_variable_die PARAMS ((void *));
888 static void output_member_die PARAMS ((void *));
889 #if 0
890 static void output_pointer_type_die PARAMS ((void *));
891 static void output_reference_type_die PARAMS ((void *));
892 #endif
893 static void output_ptr_to_mbr_type_die PARAMS ((void *));
894 static void output_compile_unit_die PARAMS ((void *));
895 static void output_string_type_die PARAMS ((void *));
896 static void output_inheritance_die PARAMS ((void *));
897 static void output_structure_type_die PARAMS ((void *));
898 static void output_local_subroutine_die PARAMS ((void *));
899 static void output_subroutine_type_die PARAMS ((void *));
900 static void output_typedef_die PARAMS ((void *));
901 static void output_union_type_die PARAMS ((void *));
902 static void output_unspecified_parameters_die PARAMS ((void *));
903 static void output_padded_null_die PARAMS ((void *));
904 static void output_die PARAMS ((void (*)(void *), void *));
905 static void end_sibling_chain PARAMS ((void));
906 static void output_formal_types PARAMS ((tree));
907 static void pend_type PARAMS ((tree));
908 static int type_ok_for_scope PARAMS ((tree, tree));
909 static void output_pending_types_for_scope PARAMS ((tree));
910 static void output_type PARAMS ((tree, tree));
911 static void output_tagged_type_instantiation PARAMS ((tree));
912 static void output_block PARAMS ((tree, int));
913 static void output_decls_for_scope PARAMS ((tree, int));
914 static void output_decl PARAMS ((tree, tree));
915 static void shuffle_filename_entry PARAMS ((filename_entry *));
916 static void generate_new_sfname_entry PARAMS ((void));
917 static unsigned lookup_filename PARAMS ((const char *));
918 static void generate_srcinfo_entry PARAMS ((unsigned, unsigned));
919 static void generate_macinfo_entry PARAMS ((unsigned int, rtx,
920 const char *));
921 static int is_pseudo_reg PARAMS ((rtx));
922 static tree type_main_variant PARAMS ((tree));
923 static int is_tagged_type PARAMS ((tree));
924 static int is_redundant_typedef PARAMS ((tree));
925 static void add_incomplete_type PARAMS ((tree));
926 static void retry_incomplete_types PARAMS ((void));
928 /* Definitions of defaults for assembler-dependent names of various
929 pseudo-ops and section names.
931 Theses may be overridden in your tm.h file (if necessary) for your
932 particular assembler. The default values provided here correspond to
933 what is expected by "standard" AT&T System V.4 assemblers. */
935 #ifndef FILE_ASM_OP
936 #define FILE_ASM_OP "\t.file\t"
937 #endif
938 #ifndef VERSION_ASM_OP
939 #define VERSION_ASM_OP "\t.version\t"
940 #endif
941 #ifndef SET_ASM_OP
942 #define SET_ASM_OP "\t.set\t"
943 #endif
945 /* Pseudo-ops for pushing the current section onto the section stack (and
946 simultaneously changing to a new section) and for poping back to the
947 section we were in immediately before this one. Note that most svr4
948 assemblers only maintain a one level stack... you can push all the
949 sections you want, but you can only pop out one level. (The sparc
950 svr4 assembler is an exception to this general rule.) That's
951 OK because we only use at most one level of the section stack herein. */
953 #ifndef PUSHSECTION_ASM_OP
954 #define PUSHSECTION_ASM_OP "\t.section\t"
955 #endif
956 #ifndef POPSECTION_ASM_OP
957 #define POPSECTION_ASM_OP "\t.previous"
958 #endif
960 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
961 to print the PUSHSECTION_ASM_OP and the section name. The default here
962 works for almost all svr4 assemblers, except for the sparc, where the
963 section name must be enclosed in double quotes. (See sparcv4.h.) */
965 #ifndef PUSHSECTION_FORMAT
966 #define PUSHSECTION_FORMAT "%s%s\n"
967 #endif
969 #ifndef DEBUG_SECTION
970 #define DEBUG_SECTION ".debug"
971 #endif
972 #ifndef LINE_SECTION
973 #define LINE_SECTION ".line"
974 #endif
975 #ifndef DEBUG_SFNAMES_SECTION
976 #define DEBUG_SFNAMES_SECTION ".debug_sfnames"
977 #endif
978 #ifndef DEBUG_SRCINFO_SECTION
979 #define DEBUG_SRCINFO_SECTION ".debug_srcinfo"
980 #endif
981 #ifndef DEBUG_MACINFO_SECTION
982 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
983 #endif
984 #ifndef DEBUG_PUBNAMES_SECTION
985 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
986 #endif
987 #ifndef DEBUG_ARANGES_SECTION
988 #define DEBUG_ARANGES_SECTION ".debug_aranges"
989 #endif
990 #ifndef TEXT_SECTION_NAME
991 #define TEXT_SECTION_NAME ".text"
992 #endif
993 #ifndef DATA_SECTION_NAME
994 #define DATA_SECTION_NAME ".data"
995 #endif
996 #ifndef DATA1_SECTION_NAME
997 #define DATA1_SECTION_NAME ".data1"
998 #endif
999 #ifndef RODATA_SECTION_NAME
1000 #define RODATA_SECTION_NAME ".rodata"
1001 #endif
1002 #ifndef RODATA1_SECTION_NAME
1003 #define RODATA1_SECTION_NAME ".rodata1"
1004 #endif
1005 #ifndef BSS_SECTION_NAME
1006 #define BSS_SECTION_NAME ".bss"
1007 #endif
1009 /* Definitions of defaults for formats and names of various special
1010 (artificial) labels which may be generated within this file (when
1011 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
1013 If necessary, these may be overridden from within your tm.h file,
1014 but typically, you should never need to override these.
1016 These labels have been hacked (temporarily) so that they all begin with
1017 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
1018 stock m88k/svr4 assembler, both of which need to see .L at the start of
1019 a label in order to prevent that label from going into the linker symbol
1020 table). When I get time, I'll have to fix this the right way so that we
1021 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
1022 but that will require a rather massive set of changes. For the moment,
1023 the following definitions out to produce the right results for all svr4
1024 and svr3 assemblers. -- rfg
1027 #ifndef TEXT_BEGIN_LABEL
1028 #define TEXT_BEGIN_LABEL "*.L_text_b"
1029 #endif
1030 #ifndef TEXT_END_LABEL
1031 #define TEXT_END_LABEL "*.L_text_e"
1032 #endif
1034 #ifndef DATA_BEGIN_LABEL
1035 #define DATA_BEGIN_LABEL "*.L_data_b"
1036 #endif
1037 #ifndef DATA_END_LABEL
1038 #define DATA_END_LABEL "*.L_data_e"
1039 #endif
1041 #ifndef DATA1_BEGIN_LABEL
1042 #define DATA1_BEGIN_LABEL "*.L_data1_b"
1043 #endif
1044 #ifndef DATA1_END_LABEL
1045 #define DATA1_END_LABEL "*.L_data1_e"
1046 #endif
1048 #ifndef RODATA_BEGIN_LABEL
1049 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
1050 #endif
1051 #ifndef RODATA_END_LABEL
1052 #define RODATA_END_LABEL "*.L_rodata_e"
1053 #endif
1055 #ifndef RODATA1_BEGIN_LABEL
1056 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
1057 #endif
1058 #ifndef RODATA1_END_LABEL
1059 #define RODATA1_END_LABEL "*.L_rodata1_e"
1060 #endif
1062 #ifndef BSS_BEGIN_LABEL
1063 #define BSS_BEGIN_LABEL "*.L_bss_b"
1064 #endif
1065 #ifndef BSS_END_LABEL
1066 #define BSS_END_LABEL "*.L_bss_e"
1067 #endif
1069 #ifndef LINE_BEGIN_LABEL
1070 #define LINE_BEGIN_LABEL "*.L_line_b"
1071 #endif
1072 #ifndef LINE_LAST_ENTRY_LABEL
1073 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
1074 #endif
1075 #ifndef LINE_END_LABEL
1076 #define LINE_END_LABEL "*.L_line_e"
1077 #endif
1079 #ifndef DEBUG_BEGIN_LABEL
1080 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
1081 #endif
1082 #ifndef SFNAMES_BEGIN_LABEL
1083 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
1084 #endif
1085 #ifndef SRCINFO_BEGIN_LABEL
1086 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
1087 #endif
1088 #ifndef MACINFO_BEGIN_LABEL
1089 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
1090 #endif
1092 #ifndef DEBUG_ARANGES_BEGIN_LABEL
1093 #define DEBUG_ARANGES_BEGIN_LABEL "*.L_debug_aranges_begin"
1094 #endif
1095 #ifndef DEBUG_ARANGES_END_LABEL
1096 #define DEBUG_ARANGES_END_LABEL "*.L_debug_aranges_end"
1097 #endif
1099 #ifndef DIE_BEGIN_LABEL_FMT
1100 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
1101 #endif
1102 #ifndef DIE_END_LABEL_FMT
1103 #define DIE_END_LABEL_FMT "*.L_D%u_e"
1104 #endif
1105 #ifndef PUB_DIE_LABEL_FMT
1106 #define PUB_DIE_LABEL_FMT "*.L_P%u"
1107 #endif
1108 #ifndef BLOCK_BEGIN_LABEL_FMT
1109 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
1110 #endif
1111 #ifndef BLOCK_END_LABEL_FMT
1112 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
1113 #endif
1114 #ifndef SS_BEGIN_LABEL_FMT
1115 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
1116 #endif
1117 #ifndef SS_END_LABEL_FMT
1118 #define SS_END_LABEL_FMT "*.L_s%u_e"
1119 #endif
1120 #ifndef EE_BEGIN_LABEL_FMT
1121 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
1122 #endif
1123 #ifndef EE_END_LABEL_FMT
1124 #define EE_END_LABEL_FMT "*.L_e%u_e"
1125 #endif
1126 #ifndef MT_BEGIN_LABEL_FMT
1127 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
1128 #endif
1129 #ifndef MT_END_LABEL_FMT
1130 #define MT_END_LABEL_FMT "*.L_t%u_e"
1131 #endif
1132 #ifndef LOC_BEGIN_LABEL_FMT
1133 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
1134 #endif
1135 #ifndef LOC_END_LABEL_FMT
1136 #define LOC_END_LABEL_FMT "*.L_l%u_e"
1137 #endif
1138 #ifndef BOUND_BEGIN_LABEL_FMT
1139 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
1140 #endif
1141 #ifndef BOUND_END_LABEL_FMT
1142 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
1143 #endif
1144 #ifndef DERIV_BEGIN_LABEL_FMT
1145 #define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
1146 #endif
1147 #ifndef DERIV_END_LABEL_FMT
1148 #define DERIV_END_LABEL_FMT "*.L_d%u_e"
1149 #endif
1150 #ifndef SL_BEGIN_LABEL_FMT
1151 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
1152 #endif
1153 #ifndef SL_END_LABEL_FMT
1154 #define SL_END_LABEL_FMT "*.L_sl%u_e"
1155 #endif
1156 #ifndef BODY_BEGIN_LABEL_FMT
1157 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
1158 #endif
1159 #ifndef BODY_END_LABEL_FMT
1160 #define BODY_END_LABEL_FMT "*.L_b%u_e"
1161 #endif
1162 #ifndef FUNC_END_LABEL_FMT
1163 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
1164 #endif
1165 #ifndef TYPE_NAME_FMT
1166 #define TYPE_NAME_FMT "*.L_T%u"
1167 #endif
1168 #ifndef DECL_NAME_FMT
1169 #define DECL_NAME_FMT "*.L_E%u"
1170 #endif
1171 #ifndef LINE_CODE_LABEL_FMT
1172 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
1173 #endif
1174 #ifndef SFNAMES_ENTRY_LABEL_FMT
1175 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
1176 #endif
1177 #ifndef LINE_ENTRY_LABEL_FMT
1178 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
1179 #endif
1181 /* Definitions of defaults for various types of primitive assembly language
1182 output operations.
1184 If necessary, these may be overridden from within your tm.h file,
1185 but typically, you shouldn't need to override these. */
1187 #ifndef ASM_OUTPUT_PUSH_SECTION
1188 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
1189 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
1190 #endif
1192 #ifndef ASM_OUTPUT_POP_SECTION
1193 #define ASM_OUTPUT_POP_SECTION(FILE) \
1194 fprintf ((FILE), "%s\n", POPSECTION_ASM_OP)
1195 #endif
1197 #ifndef ASM_OUTPUT_DWARF_DELTA2
1198 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
1199 dw2_asm_output_delta (2, LABEL1, LABEL2, NULL)
1200 #endif
1202 #ifndef ASM_OUTPUT_DWARF_DELTA4
1203 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
1204 dw2_asm_output_delta (4, LABEL1, LABEL2, NULL)
1205 #endif
1207 #ifndef ASM_OUTPUT_DWARF_TAG
1208 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
1209 dw2_asm_output_data (2, TAG, "%s", dwarf_tag_name (TAG));
1210 #endif
1212 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
1213 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
1214 dw2_asm_output_data (2, ATTR, "%s", dwarf_attr_name (ATTR))
1215 #endif
1217 #ifndef ASM_OUTPUT_DWARF_STACK_OP
1218 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
1219 dw2_asm_output_data (1, OP, "%s", dwarf_stack_op_name (OP))
1220 #endif
1222 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
1223 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
1224 dw2_asm_output_data (2, FT, "%s", dwarf_fund_type_name (FT))
1225 #endif
1227 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
1228 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
1229 dw2_asm_output_data (1, FMT, "%s", dwarf_fmt_byte_name (FMT));
1230 #endif
1232 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
1233 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
1234 dw2_asm_output_data (1, MOD, "%s", dwarf_typemod_name (MOD));
1235 #endif
1237 #ifndef ASM_OUTPUT_DWARF_ADDR
1238 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
1239 dw2_asm_output_addr (4, LABEL, NULL)
1240 #endif
1242 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
1243 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
1244 dw2_asm_output_addr_rtx (4, RTX, NULL)
1245 #endif
1247 #ifndef ASM_OUTPUT_DWARF_REF
1248 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
1249 dw2_asm_output_addr (4, LABEL, NULL)
1250 #endif
1252 #ifndef ASM_OUTPUT_DWARF_DATA1
1253 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
1254 dw2_asm_output_data (1, VALUE, NULL)
1255 #endif
1257 #ifndef ASM_OUTPUT_DWARF_DATA2
1258 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
1259 dw2_asm_output_data (2, VALUE, NULL)
1260 #endif
1262 #ifndef ASM_OUTPUT_DWARF_DATA4
1263 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
1264 dw2_asm_output_data (4, VALUE, NULL)
1265 #endif
1267 #ifndef ASM_OUTPUT_DWARF_DATA8
1268 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
1269 dw2_asm_output_data (8, VALUE, NULL)
1270 #endif
1272 /* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
1273 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
1274 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
1275 defined, we call it, then issue the line feed. If not, we supply a
1276 default definition of calling ASM_OUTPUT_ASCII */
1278 #ifndef ASM_OUTPUT_DWARF_STRING
1279 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1280 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
1281 #else
1282 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1283 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
1284 #endif
1287 /* The debug hooks structure. */
1288 const struct gcc_debug_hooks dwarf_debug_hooks =
1290 dwarfout_init,
1291 dwarfout_finish,
1292 dwarfout_define,
1293 dwarfout_undef,
1294 dwarfout_start_source_file_check,
1295 dwarfout_end_source_file_check,
1296 dwarfout_begin_block,
1297 dwarfout_end_block,
1298 debug_true_tree, /* ignore_block */
1299 dwarfout_source_line, /* source_line */
1300 dwarfout_source_line, /* begin_prologue */
1301 dwarfout_end_prologue,
1302 dwarfout_end_epilogue,
1303 debug_nothing_tree, /* begin_function */
1304 dwarfout_end_function,
1305 dwarfout_function_decl,
1306 dwarfout_global_decl,
1307 dwarfout_deferred_inline_function,
1308 debug_nothing_tree, /* outlining_inline_function */
1309 debug_nothing_rtx /* label */
1312 /************************ general utility functions **************************/
1314 static inline int
1315 is_pseudo_reg (rtl)
1316 rtx rtl;
1318 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
1319 || ((GET_CODE (rtl) == SUBREG)
1320 && (REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER)));
1323 static inline tree
1324 type_main_variant (type)
1325 tree type;
1327 type = TYPE_MAIN_VARIANT (type);
1329 /* There really should be only one main variant among any group of variants
1330 of a given type (and all of the MAIN_VARIANT values for all members of
1331 the group should point to that one type) but sometimes the C front-end
1332 messes this up for array types, so we work around that bug here. */
1334 if (TREE_CODE (type) == ARRAY_TYPE)
1336 while (type != TYPE_MAIN_VARIANT (type))
1337 type = TYPE_MAIN_VARIANT (type);
1340 return type;
1343 /* Return non-zero if the given type node represents a tagged type. */
1345 static inline int
1346 is_tagged_type (type)
1347 tree type;
1349 enum tree_code code = TREE_CODE (type);
1351 return (code == RECORD_TYPE || code == UNION_TYPE
1352 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
1355 static const char *
1356 dwarf_tag_name (tag)
1357 unsigned tag;
1359 switch (tag)
1361 case TAG_padding: return "TAG_padding";
1362 case TAG_array_type: return "TAG_array_type";
1363 case TAG_class_type: return "TAG_class_type";
1364 case TAG_entry_point: return "TAG_entry_point";
1365 case TAG_enumeration_type: return "TAG_enumeration_type";
1366 case TAG_formal_parameter: return "TAG_formal_parameter";
1367 case TAG_global_subroutine: return "TAG_global_subroutine";
1368 case TAG_global_variable: return "TAG_global_variable";
1369 case TAG_label: return "TAG_label";
1370 case TAG_lexical_block: return "TAG_lexical_block";
1371 case TAG_local_variable: return "TAG_local_variable";
1372 case TAG_member: return "TAG_member";
1373 case TAG_pointer_type: return "TAG_pointer_type";
1374 case TAG_reference_type: return "TAG_reference_type";
1375 case TAG_compile_unit: return "TAG_compile_unit";
1376 case TAG_string_type: return "TAG_string_type";
1377 case TAG_structure_type: return "TAG_structure_type";
1378 case TAG_subroutine: return "TAG_subroutine";
1379 case TAG_subroutine_type: return "TAG_subroutine_type";
1380 case TAG_typedef: return "TAG_typedef";
1381 case TAG_union_type: return "TAG_union_type";
1382 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
1383 case TAG_variant: return "TAG_variant";
1384 case TAG_common_block: return "TAG_common_block";
1385 case TAG_common_inclusion: return "TAG_common_inclusion";
1386 case TAG_inheritance: return "TAG_inheritance";
1387 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
1388 case TAG_module: return "TAG_module";
1389 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
1390 case TAG_set_type: return "TAG_set_type";
1391 case TAG_subrange_type: return "TAG_subrange_type";
1392 case TAG_with_stmt: return "TAG_with_stmt";
1394 /* GNU extensions. */
1396 case TAG_format_label: return "TAG_format_label";
1397 case TAG_namelist: return "TAG_namelist";
1398 case TAG_function_template: return "TAG_function_template";
1399 case TAG_class_template: return "TAG_class_template";
1401 default: return "TAG_<unknown>";
1405 static const char *
1406 dwarf_attr_name (attr)
1407 unsigned attr;
1409 switch (attr)
1411 case AT_sibling: return "AT_sibling";
1412 case AT_location: return "AT_location";
1413 case AT_name: return "AT_name";
1414 case AT_fund_type: return "AT_fund_type";
1415 case AT_mod_fund_type: return "AT_mod_fund_type";
1416 case AT_user_def_type: return "AT_user_def_type";
1417 case AT_mod_u_d_type: return "AT_mod_u_d_type";
1418 case AT_ordering: return "AT_ordering";
1419 case AT_subscr_data: return "AT_subscr_data";
1420 case AT_byte_size: return "AT_byte_size";
1421 case AT_bit_offset: return "AT_bit_offset";
1422 case AT_bit_size: return "AT_bit_size";
1423 case AT_element_list: return "AT_element_list";
1424 case AT_stmt_list: return "AT_stmt_list";
1425 case AT_low_pc: return "AT_low_pc";
1426 case AT_high_pc: return "AT_high_pc";
1427 case AT_language: return "AT_language";
1428 case AT_member: return "AT_member";
1429 case AT_discr: return "AT_discr";
1430 case AT_discr_value: return "AT_discr_value";
1431 case AT_string_length: return "AT_string_length";
1432 case AT_common_reference: return "AT_common_reference";
1433 case AT_comp_dir: return "AT_comp_dir";
1434 case AT_const_value_string: return "AT_const_value_string";
1435 case AT_const_value_data2: return "AT_const_value_data2";
1436 case AT_const_value_data4: return "AT_const_value_data4";
1437 case AT_const_value_data8: return "AT_const_value_data8";
1438 case AT_const_value_block2: return "AT_const_value_block2";
1439 case AT_const_value_block4: return "AT_const_value_block4";
1440 case AT_containing_type: return "AT_containing_type";
1441 case AT_default_value_addr: return "AT_default_value_addr";
1442 case AT_default_value_data2: return "AT_default_value_data2";
1443 case AT_default_value_data4: return "AT_default_value_data4";
1444 case AT_default_value_data8: return "AT_default_value_data8";
1445 case AT_default_value_string: return "AT_default_value_string";
1446 case AT_friends: return "AT_friends";
1447 case AT_inline: return "AT_inline";
1448 case AT_is_optional: return "AT_is_optional";
1449 case AT_lower_bound_ref: return "AT_lower_bound_ref";
1450 case AT_lower_bound_data2: return "AT_lower_bound_data2";
1451 case AT_lower_bound_data4: return "AT_lower_bound_data4";
1452 case AT_lower_bound_data8: return "AT_lower_bound_data8";
1453 case AT_private: return "AT_private";
1454 case AT_producer: return "AT_producer";
1455 case AT_program: return "AT_program";
1456 case AT_protected: return "AT_protected";
1457 case AT_prototyped: return "AT_prototyped";
1458 case AT_public: return "AT_public";
1459 case AT_pure_virtual: return "AT_pure_virtual";
1460 case AT_return_addr: return "AT_return_addr";
1461 case AT_abstract_origin: return "AT_abstract_origin";
1462 case AT_start_scope: return "AT_start_scope";
1463 case AT_stride_size: return "AT_stride_size";
1464 case AT_upper_bound_ref: return "AT_upper_bound_ref";
1465 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1466 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1467 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1468 case AT_virtual: return "AT_virtual";
1470 /* GNU extensions */
1472 case AT_sf_names: return "AT_sf_names";
1473 case AT_src_info: return "AT_src_info";
1474 case AT_mac_info: return "AT_mac_info";
1475 case AT_src_coords: return "AT_src_coords";
1476 case AT_body_begin: return "AT_body_begin";
1477 case AT_body_end: return "AT_body_end";
1479 default: return "AT_<unknown>";
1483 static const char *
1484 dwarf_stack_op_name (op)
1485 unsigned op;
1487 switch (op)
1489 case OP_REG: return "OP_REG";
1490 case OP_BASEREG: return "OP_BASEREG";
1491 case OP_ADDR: return "OP_ADDR";
1492 case OP_CONST: return "OP_CONST";
1493 case OP_DEREF2: return "OP_DEREF2";
1494 case OP_DEREF4: return "OP_DEREF4";
1495 case OP_ADD: return "OP_ADD";
1496 default: return "OP_<unknown>";
1500 static const char *
1501 dwarf_typemod_name (mod)
1502 unsigned mod;
1504 switch (mod)
1506 case MOD_pointer_to: return "MOD_pointer_to";
1507 case MOD_reference_to: return "MOD_reference_to";
1508 case MOD_const: return "MOD_const";
1509 case MOD_volatile: return "MOD_volatile";
1510 default: return "MOD_<unknown>";
1514 static const char *
1515 dwarf_fmt_byte_name (fmt)
1516 unsigned fmt;
1518 switch (fmt)
1520 case FMT_FT_C_C: return "FMT_FT_C_C";
1521 case FMT_FT_C_X: return "FMT_FT_C_X";
1522 case FMT_FT_X_C: return "FMT_FT_X_C";
1523 case FMT_FT_X_X: return "FMT_FT_X_X";
1524 case FMT_UT_C_C: return "FMT_UT_C_C";
1525 case FMT_UT_C_X: return "FMT_UT_C_X";
1526 case FMT_UT_X_C: return "FMT_UT_X_C";
1527 case FMT_UT_X_X: return "FMT_UT_X_X";
1528 case FMT_ET: return "FMT_ET";
1529 default: return "FMT_<unknown>";
1533 static const char *
1534 dwarf_fund_type_name (ft)
1535 unsigned ft;
1537 switch (ft)
1539 case FT_char: return "FT_char";
1540 case FT_signed_char: return "FT_signed_char";
1541 case FT_unsigned_char: return "FT_unsigned_char";
1542 case FT_short: return "FT_short";
1543 case FT_signed_short: return "FT_signed_short";
1544 case FT_unsigned_short: return "FT_unsigned_short";
1545 case FT_integer: return "FT_integer";
1546 case FT_signed_integer: return "FT_signed_integer";
1547 case FT_unsigned_integer: return "FT_unsigned_integer";
1548 case FT_long: return "FT_long";
1549 case FT_signed_long: return "FT_signed_long";
1550 case FT_unsigned_long: return "FT_unsigned_long";
1551 case FT_pointer: return "FT_pointer";
1552 case FT_float: return "FT_float";
1553 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1554 case FT_ext_prec_float: return "FT_ext_prec_float";
1555 case FT_complex: return "FT_complex";
1556 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1557 case FT_void: return "FT_void";
1558 case FT_boolean: return "FT_boolean";
1559 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1560 case FT_label: return "FT_label";
1562 /* GNU extensions. */
1564 case FT_long_long: return "FT_long_long";
1565 case FT_signed_long_long: return "FT_signed_long_long";
1566 case FT_unsigned_long_long: return "FT_unsigned_long_long";
1568 case FT_int8: return "FT_int8";
1569 case FT_signed_int8: return "FT_signed_int8";
1570 case FT_unsigned_int8: return "FT_unsigned_int8";
1571 case FT_int16: return "FT_int16";
1572 case FT_signed_int16: return "FT_signed_int16";
1573 case FT_unsigned_int16: return "FT_unsigned_int16";
1574 case FT_int32: return "FT_int32";
1575 case FT_signed_int32: return "FT_signed_int32";
1576 case FT_unsigned_int32: return "FT_unsigned_int32";
1577 case FT_int64: return "FT_int64";
1578 case FT_signed_int64: return "FT_signed_int64";
1579 case FT_unsigned_int64: return "FT_unsigned_int64";
1580 case FT_int128: return "FT_int128";
1581 case FT_signed_int128: return "FT_signed_int128";
1582 case FT_unsigned_int128: return "FT_unsigned_int128";
1584 case FT_real32: return "FT_real32";
1585 case FT_real64: return "FT_real64";
1586 case FT_real96: return "FT_real96";
1587 case FT_real128: return "FT_real128";
1589 default: return "FT_<unknown>";
1593 /* Determine the "ultimate origin" of a decl. The decl may be an
1594 inlined instance of an inlined instance of a decl which is local
1595 to an inline function, so we have to trace all of the way back
1596 through the origin chain to find out what sort of node actually
1597 served as the original seed for the given block. */
1599 static tree
1600 decl_ultimate_origin (decl)
1601 tree decl;
1603 #ifdef ENABLE_CHECKING
1604 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
1605 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1606 most distant ancestor, this should never happen. */
1607 abort ();
1608 #endif
1610 return DECL_ABSTRACT_ORIGIN (decl);
1613 /* Determine the "ultimate origin" of a block. The block may be an
1614 inlined instance of an inlined instance of a block which is local
1615 to an inline function, so we have to trace all of the way back
1616 through the origin chain to find out what sort of node actually
1617 served as the original seed for the given block. */
1619 static tree
1620 block_ultimate_origin (block)
1621 tree block;
1623 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1625 if (immediate_origin == NULL)
1626 return NULL;
1627 else
1629 tree ret_val;
1630 tree lookahead = immediate_origin;
1634 ret_val = lookahead;
1635 lookahead = (TREE_CODE (ret_val) == BLOCK)
1636 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1637 : NULL;
1639 while (lookahead != NULL && lookahead != ret_val);
1640 return ret_val;
1644 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1645 of a virtual function may refer to a base class, so we check the 'this'
1646 parameter. */
1648 static tree
1649 decl_class_context (decl)
1650 tree decl;
1652 tree context = NULL_TREE;
1653 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1654 context = DECL_CONTEXT (decl);
1655 else
1656 context = TYPE_MAIN_VARIANT
1657 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1659 if (context && !TYPE_P (context))
1660 context = NULL_TREE;
1662 return context;
1665 #if 0
1666 static void
1667 output_unsigned_leb128 (value)
1668 unsigned long value;
1670 unsigned long orig_value = value;
1674 unsigned byte = (value & 0x7f);
1676 value >>= 7;
1677 if (value != 0) /* more bytes to follow */
1678 byte |= 0x80;
1679 dw2_asm_output_data (1, byte, "\t%s ULEB128 number - value = %lu",
1680 orig_value);
1682 while (value != 0);
1685 static void
1686 output_signed_leb128 (value)
1687 long value;
1689 long orig_value = value;
1690 int negative = (value < 0);
1691 int more;
1695 unsigned byte = (value & 0x7f);
1697 value >>= 7;
1698 if (negative)
1699 value |= 0xfe000000; /* manually sign extend */
1700 if (((value == 0) && ((byte & 0x40) == 0))
1701 || ((value == -1) && ((byte & 0x40) == 1)))
1702 more = 0;
1703 else
1705 byte |= 0x80;
1706 more = 1;
1708 dw2_asm_output_data (1, byte, "\t%s SLEB128 number - value = %ld",
1709 orig_value);
1711 while (more);
1713 #endif
1715 /**************** utility functions for attribute functions ******************/
1717 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1718 type code for the given type.
1720 This routine must only be called for GCC type nodes that correspond to
1721 Dwarf fundamental types.
1723 The current Dwarf draft specification calls for Dwarf fundamental types
1724 to accurately reflect the fact that a given type was either a "plain"
1725 integral type or an explicitly "signed" integral type. Unfortunately,
1726 we can't always do this, because GCC may already have thrown away the
1727 information about the precise way in which the type was originally
1728 specified, as in:
1730 typedef signed int my_type;
1732 struct s { my_type f; };
1734 Since we may be stuck here without enough information to do exactly
1735 what is called for in the Dwarf draft specification, we do the best
1736 that we can under the circumstances and always use the "plain" integral
1737 fundamental type codes for int, short, and long types. That's probably
1738 good enough. The additional accuracy called for in the current DWARF
1739 draft specification is probably never even useful in practice. */
1741 static int
1742 fundamental_type_code (type)
1743 tree type;
1745 if (TREE_CODE (type) == ERROR_MARK)
1746 return 0;
1748 switch (TREE_CODE (type))
1750 case ERROR_MARK:
1751 return FT_void;
1753 case VOID_TYPE:
1754 return FT_void;
1756 case INTEGER_TYPE:
1757 /* Carefully distinguish all the standard types of C,
1758 without messing up if the language is not C.
1759 Note that we check only for the names that contain spaces;
1760 other names might occur by coincidence in other languages. */
1761 if (TYPE_NAME (type) != 0
1762 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1763 && DECL_NAME (TYPE_NAME (type)) != 0
1764 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1766 const char *const name =
1767 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1769 if (!strcmp (name, "unsigned char"))
1770 return FT_unsigned_char;
1771 if (!strcmp (name, "signed char"))
1772 return FT_signed_char;
1773 if (!strcmp (name, "unsigned int"))
1774 return FT_unsigned_integer;
1775 if (!strcmp (name, "short int"))
1776 return FT_short;
1777 if (!strcmp (name, "short unsigned int"))
1778 return FT_unsigned_short;
1779 if (!strcmp (name, "long int"))
1780 return FT_long;
1781 if (!strcmp (name, "long unsigned int"))
1782 return FT_unsigned_long;
1783 if (!strcmp (name, "long long int"))
1784 return FT_long_long; /* Not grok'ed by svr4 SDB */
1785 if (!strcmp (name, "long long unsigned int"))
1786 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1789 /* Most integer types will be sorted out above, however, for the
1790 sake of special `array index' integer types, the following code
1791 is also provided. */
1793 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1794 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1796 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1797 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1799 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1800 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1802 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1803 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1805 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1806 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1808 if (TYPE_MODE (type) == TImode)
1809 return (TREE_UNSIGNED (type) ? FT_unsigned_int128 : FT_int128);
1811 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1812 if (TYPE_PRECISION (type) == 1)
1813 return FT_boolean;
1815 abort ();
1817 case REAL_TYPE:
1818 /* Carefully distinguish all the standard types of C,
1819 without messing up if the language is not C. */
1820 if (TYPE_NAME (type) != 0
1821 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1822 && DECL_NAME (TYPE_NAME (type)) != 0
1823 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1825 const char *const name =
1826 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1828 /* Note that here we can run afoul of a serious bug in "classic"
1829 svr4 SDB debuggers. They don't seem to understand the
1830 FT_ext_prec_float type (even though they should). */
1832 if (!strcmp (name, "long double"))
1833 return FT_ext_prec_float;
1836 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1838 /* On the SH, when compiling with -m3e or -m4-single-only, both
1839 float and double are 32 bits. But since the debugger doesn't
1840 know about the subtarget, it always thinks double is 64 bits.
1841 So we have to tell the debugger that the type is float to
1842 make the output of the 'print' command etc. readable. */
1843 if (DOUBLE_TYPE_SIZE == FLOAT_TYPE_SIZE && FLOAT_TYPE_SIZE == 32)
1844 return FT_float;
1845 return FT_dbl_prec_float;
1847 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1848 return FT_float;
1850 /* Note that here we can run afoul of a serious bug in "classic"
1851 svr4 SDB debuggers. They don't seem to understand the
1852 FT_ext_prec_float type (even though they should). */
1854 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1855 return FT_ext_prec_float;
1856 abort ();
1858 case COMPLEX_TYPE:
1859 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1861 case CHAR_TYPE:
1862 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1864 case BOOLEAN_TYPE:
1865 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1867 default:
1868 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1870 return 0;
1873 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1874 the Dwarf "root" type for the given input type. The Dwarf "root" type
1875 of a given type is generally the same as the given type, except that if
1876 the given type is a pointer or reference type, then the root type of
1877 the given type is the root type of the "basis" type for the pointer or
1878 reference type. (This definition of the "root" type is recursive.)
1879 Also, the root type of a `const' qualified type or a `volatile'
1880 qualified type is the root type of the given type without the
1881 qualifiers. */
1883 static tree
1884 root_type_1 (type, count)
1885 tree type;
1886 int count;
1888 /* Give up after searching 1000 levels, in case this is a recursive
1889 pointer type. Such types are possible in Ada, but it is not possible
1890 to represent them in DWARF1 debug info. */
1891 if (count > 1000)
1892 return error_mark_node;
1894 switch (TREE_CODE (type))
1896 case ERROR_MARK:
1897 return error_mark_node;
1899 case POINTER_TYPE:
1900 case REFERENCE_TYPE:
1901 return root_type_1 (TREE_TYPE (type), count+1);
1903 default:
1904 return type;
1908 static tree
1909 root_type (type)
1910 tree type;
1912 type = root_type_1 (type, 0);
1913 if (type != error_mark_node)
1914 type = type_main_variant (type);
1915 return type;
1918 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1919 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1921 static void
1922 write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
1923 tree type;
1924 int decl_const;
1925 int decl_volatile;
1926 int count;
1928 if (TREE_CODE (type) == ERROR_MARK)
1929 return;
1931 /* Give up after searching 1000 levels, in case this is a recursive
1932 pointer type. Such types are possible in Ada, but it is not possible
1933 to represent them in DWARF1 debug info. */
1934 if (count > 1000)
1935 return;
1937 if (TYPE_READONLY (type) || decl_const)
1938 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1939 if (TYPE_VOLATILE (type) || decl_volatile)
1940 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1941 switch (TREE_CODE (type))
1943 case POINTER_TYPE:
1944 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1945 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1946 return;
1948 case REFERENCE_TYPE:
1949 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1950 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1951 return;
1953 case ERROR_MARK:
1954 default:
1955 return;
1959 static void
1960 write_modifier_bytes (type, decl_const, decl_volatile)
1961 tree type;
1962 int decl_const;
1963 int decl_volatile;
1965 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1968 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1969 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1971 static inline int
1972 type_is_fundamental (type)
1973 tree type;
1975 switch (TREE_CODE (type))
1977 case ERROR_MARK:
1978 case VOID_TYPE:
1979 case INTEGER_TYPE:
1980 case REAL_TYPE:
1981 case COMPLEX_TYPE:
1982 case BOOLEAN_TYPE:
1983 case CHAR_TYPE:
1984 return 1;
1986 case SET_TYPE:
1987 case ARRAY_TYPE:
1988 case RECORD_TYPE:
1989 case UNION_TYPE:
1990 case QUAL_UNION_TYPE:
1991 case ENUMERAL_TYPE:
1992 case FUNCTION_TYPE:
1993 case METHOD_TYPE:
1994 case POINTER_TYPE:
1995 case REFERENCE_TYPE:
1996 case FILE_TYPE:
1997 case OFFSET_TYPE:
1998 case LANG_TYPE:
1999 case VECTOR_TYPE:
2000 return 0;
2002 default:
2003 abort ();
2005 return 0;
2008 /* Given a pointer to some ..._DECL tree node, generate an assembly language
2009 equate directive which will associate a symbolic name with the current DIE.
2011 The name used is an artificial label generated from the DECL_UID number
2012 associated with the given decl node. The name it gets equated to is the
2013 symbolic label that we (previously) output at the start of the DIE that
2014 we are currently generating.
2016 Calling this function while generating some "decl related" form of DIE
2017 makes it possible to later refer to the DIE which represents the given
2018 decl simply by re-generating the symbolic name from the ..._DECL node's
2019 UID number. */
2021 static void
2022 equate_decl_number_to_die_number (decl)
2023 tree decl;
2025 /* In the case where we are generating a DIE for some ..._DECL node
2026 which represents either some inline function declaration or some
2027 entity declared within an inline function declaration/definition,
2028 setup a symbolic name for the current DIE so that we have a name
2029 for this DIE that we can easily refer to later on within
2030 AT_abstract_origin attributes. */
2032 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
2033 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
2035 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
2036 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
2037 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
2040 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
2041 equate directive which will associate a symbolic name with the current DIE.
2043 The name used is an artificial label generated from the TYPE_UID number
2044 associated with the given type node. The name it gets equated to is the
2045 symbolic label that we (previously) output at the start of the DIE that
2046 we are currently generating.
2048 Calling this function while generating some "type related" form of DIE
2049 makes it easy to later refer to the DIE which represents the given type
2050 simply by re-generating the alternative name from the ..._TYPE node's
2051 UID number. */
2053 static inline void
2054 equate_type_number_to_die_number (type)
2055 tree type;
2057 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
2058 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
2060 /* We are generating a DIE to represent the main variant of this type
2061 (i.e the type without any const or volatile qualifiers) so in order
2062 to get the equate to come out right, we need to get the main variant
2063 itself here. */
2065 type = type_main_variant (type);
2067 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
2068 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
2069 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
2072 static void
2073 output_reg_number (rtl)
2074 rtx rtl;
2076 unsigned regno = REGNO (rtl);
2078 if (regno >= DWARF_FRAME_REGISTERS)
2080 warning_with_decl (dwarf_last_decl,
2081 "internal regno botch: `%s' has regno = %d\n",
2082 regno);
2083 regno = 0;
2085 dw2_assemble_integer (4, GEN_INT (DBX_REGISTER_NUMBER (regno)));
2086 if (flag_debug_asm)
2088 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
2089 PRINT_REG (rtl, 0, asm_out_file);
2091 fputc ('\n', asm_out_file);
2094 /* The following routine is a nice and simple transducer. It converts the
2095 RTL for a variable or parameter (resident in memory) into an equivalent
2096 Dwarf representation of a mechanism for getting the address of that same
2097 variable onto the top of a hypothetical "address evaluation" stack.
2099 When creating memory location descriptors, we are effectively trans-
2100 forming the RTL for a memory-resident object into its Dwarf postfix
2101 expression equivalent. This routine just recursively descends an
2102 RTL tree, turning it into Dwarf postfix code as it goes. */
2104 static void
2105 output_mem_loc_descriptor (rtl)
2106 rtx rtl;
2108 /* Note that for a dynamically sized array, the location we will
2109 generate a description of here will be the lowest numbered location
2110 which is actually within the array. That's *not* necessarily the
2111 same as the zeroth element of the array. */
2113 #ifdef ASM_SIMPLIFY_DWARF_ADDR
2114 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
2115 #endif
2117 switch (GET_CODE (rtl))
2119 case SUBREG:
2121 /* The case of a subreg may arise when we have a local (register)
2122 variable or a formal (register) parameter which doesn't quite
2123 fill up an entire register. For now, just assume that it is
2124 legitimate to make the Dwarf info refer to the whole register
2125 which contains the given subreg. */
2127 rtl = SUBREG_REG (rtl);
2128 /* Drop thru. */
2130 case REG:
2132 /* Whenever a register number forms a part of the description of
2133 the method for calculating the (dynamic) address of a memory
2134 resident object, DWARF rules require the register number to
2135 be referred to as a "base register". This distinction is not
2136 based in any way upon what category of register the hardware
2137 believes the given register belongs to. This is strictly
2138 DWARF terminology we're dealing with here.
2140 Note that in cases where the location of a memory-resident data
2141 object could be expressed as:
2143 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
2145 the actual DWARF location descriptor that we generate may just
2146 be OP_BASEREG (basereg). This may look deceptively like the
2147 object in question was allocated to a register (rather than
2148 in memory) so DWARF consumers need to be aware of the subtle
2149 distinction between OP_REG and OP_BASEREG. */
2151 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
2152 output_reg_number (rtl);
2153 break;
2155 case MEM:
2156 output_mem_loc_descriptor (XEXP (rtl, 0));
2157 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
2158 break;
2160 case CONST:
2161 case SYMBOL_REF:
2162 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
2163 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2164 break;
2166 case PLUS:
2167 output_mem_loc_descriptor (XEXP (rtl, 0));
2168 output_mem_loc_descriptor (XEXP (rtl, 1));
2169 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2170 break;
2172 case CONST_INT:
2173 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2174 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
2175 break;
2177 case MULT:
2178 /* If a pseudo-reg is optimized away, it is possible for it to
2179 be replaced with a MEM containing a multiply. Use a GNU extension
2180 to describe it. */
2181 output_mem_loc_descriptor (XEXP (rtl, 0));
2182 output_mem_loc_descriptor (XEXP (rtl, 1));
2183 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
2184 break;
2186 default:
2187 abort ();
2191 /* Output a proper Dwarf location descriptor for a variable or parameter
2192 which is either allocated in a register or in a memory location. For
2193 a register, we just generate an OP_REG and the register number. For a
2194 memory location we provide a Dwarf postfix expression describing how to
2195 generate the (dynamic) address of the object onto the address stack. */
2197 static void
2198 output_loc_descriptor (rtl)
2199 rtx rtl;
2201 switch (GET_CODE (rtl))
2203 case SUBREG:
2205 /* The case of a subreg may arise when we have a local (register)
2206 variable or a formal (register) parameter which doesn't quite
2207 fill up an entire register. For now, just assume that it is
2208 legitimate to make the Dwarf info refer to the whole register
2209 which contains the given subreg. */
2211 rtl = SUBREG_REG (rtl);
2212 /* Drop thru. */
2214 case REG:
2215 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
2216 output_reg_number (rtl);
2217 break;
2219 case MEM:
2220 output_mem_loc_descriptor (XEXP (rtl, 0));
2221 break;
2223 default:
2224 abort (); /* Should never happen */
2228 /* Given a tree node describing an array bound (either lower or upper)
2229 output a representation for that bound. */
2231 static void
2232 output_bound_representation (bound, dim_num, u_or_l)
2233 tree bound;
2234 unsigned dim_num; /* For multi-dimensional arrays. */
2235 char u_or_l; /* Designates upper or lower bound. */
2237 switch (TREE_CODE (bound))
2240 case ERROR_MARK:
2241 return;
2243 /* All fixed-bounds are represented by INTEGER_CST nodes. */
2245 case INTEGER_CST:
2246 if (host_integerp (bound, 0))
2247 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, tree_low_cst (bound, 0));
2248 break;
2250 default:
2252 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
2253 SAVE_EXPR nodes, in which case we can do something, or as
2254 an expression, which we cannot represent. */
2256 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2257 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2259 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
2260 current_dienum, dim_num, u_or_l);
2262 sprintf (end_label, BOUND_END_LABEL_FMT,
2263 current_dienum, dim_num, u_or_l);
2265 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2266 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2268 /* If optimization is turned on, the SAVE_EXPRs that describe
2269 how to access the upper bound values are essentially bogus.
2270 They only describe (at best) how to get at these values at
2271 the points in the generated code right after they have just
2272 been computed. Worse yet, in the typical case, the upper
2273 bound values will not even *be* computed in the optimized
2274 code, so these SAVE_EXPRs are entirely bogus.
2276 In order to compensate for this fact, we check here to see
2277 if optimization is enabled, and if so, we effectively create
2278 an empty location description for the (unknown and unknowable)
2279 upper bound.
2281 This should not cause too much trouble for existing (stupid?)
2282 debuggers because they have to deal with empty upper bounds
2283 location descriptions anyway in order to be able to deal with
2284 incomplete array types.
2286 Of course an intelligent debugger (GDB?) should be able to
2287 comprehend that a missing upper bound specification in a
2288 array type used for a storage class `auto' local array variable
2289 indicates that the upper bound is both unknown (at compile-
2290 time) and unknowable (at run-time) due to optimization. */
2292 if (! optimize)
2294 while (TREE_CODE (bound) == NOP_EXPR
2295 || TREE_CODE (bound) == CONVERT_EXPR)
2296 bound = TREE_OPERAND (bound, 0);
2298 if (TREE_CODE (bound) == SAVE_EXPR
2299 && SAVE_EXPR_RTL (bound))
2300 output_loc_descriptor
2301 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
2304 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2306 break;
2311 /* Recursive function to output a sequence of value/name pairs for
2312 enumeration constants in reversed order. This is called from
2313 enumeration_type_die. */
2315 static void
2316 output_enumeral_list (link)
2317 tree link;
2319 if (link)
2321 output_enumeral_list (TREE_CHAIN (link));
2323 if (host_integerp (TREE_VALUE (link), 0))
2324 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2325 tree_low_cst (TREE_VALUE (link), 0));
2327 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
2328 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
2332 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
2333 which is not less than the value itself. */
2335 static inline HOST_WIDE_INT
2336 ceiling (value, boundary)
2337 HOST_WIDE_INT value;
2338 unsigned int boundary;
2340 return (((value + boundary - 1) / boundary) * boundary);
2343 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
2344 pointer to the declared type for the relevant field variable, or return
2345 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
2347 static inline tree
2348 field_type (decl)
2349 tree decl;
2351 tree type;
2353 if (TREE_CODE (decl) == ERROR_MARK)
2354 return integer_type_node;
2356 type = DECL_BIT_FIELD_TYPE (decl);
2357 if (type == NULL)
2358 type = TREE_TYPE (decl);
2359 return type;
2362 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2363 node, return the alignment in bits for the type, or else return
2364 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
2366 static inline unsigned int
2367 simple_type_align_in_bits (type)
2368 tree type;
2370 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
2373 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2374 node, return the size in bits for the type if it is a constant, or
2375 else return the alignment for the type if the type's size is not
2376 constant, or else return BITS_PER_WORD if the type actually turns out
2377 to be an ERROR_MARK node. */
2379 static inline unsigned HOST_WIDE_INT
2380 simple_type_size_in_bits (type)
2381 tree type;
2383 tree type_size_tree;
2385 if (TREE_CODE (type) == ERROR_MARK)
2386 return BITS_PER_WORD;
2387 type_size_tree = TYPE_SIZE (type);
2389 if (type_size_tree == NULL_TREE)
2390 return 0;
2391 if (! host_integerp (type_size_tree, 1))
2392 return TYPE_ALIGN (type);
2393 return tree_low_cst (type_size_tree, 1);
2396 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
2397 return the byte offset of the lowest addressed byte of the "containing
2398 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
2399 mine what that offset is, either because the argument turns out to be a
2400 pointer to an ERROR_MARK node, or because the offset is actually variable.
2401 (We can't handle the latter case just yet.) */
2403 static HOST_WIDE_INT
2404 field_byte_offset (decl)
2405 tree decl;
2407 unsigned int type_align_in_bytes;
2408 unsigned int type_align_in_bits;
2409 unsigned HOST_WIDE_INT type_size_in_bits;
2410 HOST_WIDE_INT object_offset_in_align_units;
2411 HOST_WIDE_INT object_offset_in_bits;
2412 HOST_WIDE_INT object_offset_in_bytes;
2413 tree type;
2414 tree field_size_tree;
2415 HOST_WIDE_INT bitpos_int;
2416 HOST_WIDE_INT deepest_bitpos;
2417 unsigned HOST_WIDE_INT field_size_in_bits;
2419 if (TREE_CODE (decl) == ERROR_MARK)
2420 return 0;
2422 if (TREE_CODE (decl) != FIELD_DECL)
2423 abort ();
2425 type = field_type (decl);
2426 field_size_tree = DECL_SIZE (decl);
2428 /* The size could be unspecified if there was an error, or for
2429 a flexible array member. */
2430 if (! field_size_tree)
2431 field_size_tree = bitsize_zero_node;
2433 /* We cannot yet cope with fields whose positions or sizes are variable,
2434 so for now, when we see such things, we simply return 0. Someday,
2435 we may be able to handle such cases, but it will be damn difficult. */
2437 if (! host_integerp (bit_position (decl), 0)
2438 || ! host_integerp (field_size_tree, 1))
2439 return 0;
2441 bitpos_int = int_bit_position (decl);
2442 field_size_in_bits = tree_low_cst (field_size_tree, 1);
2444 type_size_in_bits = simple_type_size_in_bits (type);
2445 type_align_in_bits = simple_type_align_in_bits (type);
2446 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2448 /* Note that the GCC front-end doesn't make any attempt to keep track
2449 of the starting bit offset (relative to the start of the containing
2450 structure type) of the hypothetical "containing object" for a bit-
2451 field. Thus, when computing the byte offset value for the start of
2452 the "containing object" of a bit-field, we must deduce this infor-
2453 mation on our own.
2455 This can be rather tricky to do in some cases. For example, handling
2456 the following structure type definition when compiling for an i386/i486
2457 target (which only aligns long long's to 32-bit boundaries) can be very
2458 tricky:
2460 struct S {
2461 int field1;
2462 long long field2:31;
2465 Fortunately, there is a simple rule-of-thumb which can be used in such
2466 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2467 the structure shown above. It decides to do this based upon one simple
2468 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2469 taining object" for each bit-field at the first (i.e. lowest addressed)
2470 legitimate alignment boundary (based upon the required minimum alignment
2471 for the declared type of the field) which it can possibly use, subject
2472 to the condition that there is still enough available space remaining
2473 in the containing object (when allocated at the selected point) to
2474 fully accommodate all of the bits of the bit-field itself.
2476 This simple rule makes it obvious why GCC allocates 8 bytes for each
2477 object of the structure type shown above. When looking for a place to
2478 allocate the "containing object" for `field2', the compiler simply tries
2479 to allocate a 64-bit "containing object" at each successive 32-bit
2480 boundary (starting at zero) until it finds a place to allocate that 64-
2481 bit field such that at least 31 contiguous (and previously unallocated)
2482 bits remain within that selected 64 bit field. (As it turns out, for
2483 the example above, the compiler finds that it is OK to allocate the
2484 "containing object" 64-bit field at bit-offset zero within the
2485 structure type.)
2487 Here we attempt to work backwards from the limited set of facts we're
2488 given, and we try to deduce from those facts, where GCC must have
2489 believed that the containing object started (within the structure type).
2491 The value we deduce is then used (by the callers of this routine) to
2492 generate AT_location and AT_bit_offset attributes for fields (both
2493 bit-fields and, in the case of AT_location, regular fields as well). */
2495 /* Figure out the bit-distance from the start of the structure to the
2496 "deepest" bit of the bit-field. */
2497 deepest_bitpos = bitpos_int + field_size_in_bits;
2499 /* This is the tricky part. Use some fancy footwork to deduce where the
2500 lowest addressed bit of the containing object must be. */
2501 object_offset_in_bits
2502 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2504 /* Compute the offset of the containing object in "alignment units". */
2505 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2507 /* Compute the offset of the containing object in bytes. */
2508 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2510 /* The above code assumes that the field does not cross an alignment
2511 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2512 or if the structure is packed. If this happens, then we get an object
2513 which starts after the bitfield, which means that the bit offset is
2514 negative. Gdb fails when given negative bit offsets. We avoid this
2515 by recomputing using the first bit of the bitfield. This will give
2516 us an object which does not completely contain the bitfield, but it
2517 will be aligned, and it will contain the first bit of the bitfield.
2519 However, only do this for a BYTES_BIG_ENDIAN target. For a
2520 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2521 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2522 then we end up computing the object byte offset for the wrong word of the
2523 desired bitfield, which in turn causes the field offset to be negative
2524 in bit_offset_attribute. */
2525 if (BYTES_BIG_ENDIAN
2526 && object_offset_in_bits > bitpos_int)
2528 deepest_bitpos = bitpos_int + 1;
2529 object_offset_in_bits
2530 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2531 object_offset_in_align_units = (object_offset_in_bits
2532 / type_align_in_bits);
2533 object_offset_in_bytes = (object_offset_in_align_units
2534 * type_align_in_bytes);
2537 return object_offset_in_bytes;
2540 /****************************** attributes *********************************/
2542 /* The following routines are responsible for writing out the various types
2543 of Dwarf attributes (and any following data bytes associated with them).
2544 These routines are listed in order based on the numerical codes of their
2545 associated attributes. */
2547 /* Generate an AT_sibling attribute. */
2549 static inline void
2550 sibling_attribute ()
2552 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2554 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2555 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2556 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2559 /* Output the form of location attributes suitable for whole variables and
2560 whole parameters. Note that the location attributes for struct fields
2561 are generated by the routine `data_member_location_attribute' below. */
2563 static void
2564 location_attribute (rtl)
2565 rtx rtl;
2567 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2568 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2570 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2571 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2572 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2573 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2574 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2576 /* Handle a special case. If we are about to output a location descriptor
2577 for a variable or parameter which has been optimized out of existence,
2578 don't do that. Instead we output a zero-length location descriptor
2579 value as part of the location attribute.
2581 A variable which has been optimized out of existence will have a
2582 DECL_RTL value which denotes a pseudo-reg.
2584 Currently, in some rare cases, variables can have DECL_RTL values
2585 which look like (MEM (REG pseudo-reg#)). These cases are due to
2586 bugs elsewhere in the compiler. We treat such cases
2587 as if the variable(s) in question had been optimized out of existence.
2589 Note that in all cases where we wish to express the fact that a
2590 variable has been optimized out of existence, we do not simply
2591 suppress the generation of the entire location attribute because
2592 the absence of a location attribute in certain kinds of DIEs is
2593 used to indicate something else entirely... i.e. that the DIE
2594 represents an object declaration, but not a definition. So saith
2595 the PLSIG.
2598 if (! is_pseudo_reg (rtl)
2599 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2600 output_loc_descriptor (rtl);
2602 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2605 /* Output the specialized form of location attribute used for data members
2606 of struct and union types.
2608 In the special case of a FIELD_DECL node which represents a bit-field,
2609 the "offset" part of this special location descriptor must indicate the
2610 distance in bytes from the lowest-addressed byte of the containing
2611 struct or union type to the lowest-addressed byte of the "containing
2612 object" for the bit-field. (See the `field_byte_offset' function above.)
2614 For any given bit-field, the "containing object" is a hypothetical
2615 object (of some integral or enum type) within which the given bit-field
2616 lives. The type of this hypothetical "containing object" is always the
2617 same as the declared type of the individual bit-field itself (for GCC
2618 anyway... the DWARF spec doesn't actually mandate this).
2620 Note that it is the size (in bytes) of the hypothetical "containing
2621 object" which will be given in the AT_byte_size attribute for this
2622 bit-field. (See the `byte_size_attribute' function below.) It is
2623 also used when calculating the value of the AT_bit_offset attribute.
2624 (See the `bit_offset_attribute' function below.) */
2626 static void
2627 data_member_location_attribute (t)
2628 tree t;
2630 unsigned object_offset_in_bytes;
2631 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2632 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2634 if (TREE_CODE (t) == TREE_VEC)
2635 object_offset_in_bytes = tree_low_cst (BINFO_OFFSET (t), 0);
2636 else
2637 object_offset_in_bytes = field_byte_offset (t);
2639 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2640 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2641 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2642 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2643 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2644 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2645 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2646 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2647 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2650 /* Output an AT_const_value attribute for a variable or a parameter which
2651 does not have a "location" either in memory or in a register. These
2652 things can arise in GNU C when a constant is passed as an actual
2653 parameter to an inlined function. They can also arise in C++ where
2654 declared constants do not necessarily get memory "homes". */
2656 static void
2657 const_value_attribute (rtl)
2658 rtx rtl;
2660 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2661 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2663 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2664 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2665 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2666 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2667 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2669 switch (GET_CODE (rtl))
2671 case CONST_INT:
2672 /* Note that a CONST_INT rtx could represent either an integer or
2673 a floating-point constant. A CONST_INT is used whenever the
2674 constant will fit into a single word. In all such cases, the
2675 original mode of the constant value is wiped out, and the
2676 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2677 precise mode information for these constants, we always just
2678 output them using 4 bytes. */
2680 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2681 break;
2683 case CONST_DOUBLE:
2684 /* Note that a CONST_DOUBLE rtx could represent either an integer
2685 or a floating-point constant. A CONST_DOUBLE is used whenever
2686 the constant requires more than one word in order to be adequately
2687 represented. In all such cases, the original mode of the constant
2688 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2689 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2691 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2692 (unsigned int) CONST_DOUBLE_HIGH (rtl),
2693 (unsigned int) CONST_DOUBLE_LOW (rtl));
2694 break;
2696 case CONST_STRING:
2697 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, XSTR (rtl, 0));
2698 break;
2700 case SYMBOL_REF:
2701 case LABEL_REF:
2702 case CONST:
2703 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2704 break;
2706 case PLUS:
2707 /* In cases where an inlined instance of an inline function is passed
2708 the address of an `auto' variable (which is local to the caller)
2709 we can get a situation where the DECL_RTL of the artificial
2710 local variable (for the inlining) which acts as a stand-in for
2711 the corresponding formal parameter (of the inline function)
2712 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2713 This is not exactly a compile-time constant expression, but it
2714 isn't the address of the (artificial) local variable either.
2715 Rather, it represents the *value* which the artificial local
2716 variable always has during its lifetime. We currently have no
2717 way to represent such quasi-constant values in Dwarf, so for now
2718 we just punt and generate an AT_const_value attribute with form
2719 FORM_BLOCK4 and a length of zero. */
2720 break;
2722 default:
2723 abort (); /* No other kinds of rtx should be possible here. */
2726 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2729 /* Generate *either* an AT_location attribute or else an AT_const_value
2730 data attribute for a variable or a parameter. We generate the
2731 AT_const_value attribute only in those cases where the given
2732 variable or parameter does not have a true "location" either in
2733 memory or in a register. This can happen (for example) when a
2734 constant is passed as an actual argument in a call to an inline
2735 function. (It's possible that these things can crop up in other
2736 ways also.) Note that one type of constant value which can be
2737 passed into an inlined function is a constant pointer. This can
2738 happen for example if an actual argument in an inlined function
2739 call evaluates to a compile-time constant address. */
2741 static void
2742 location_or_const_value_attribute (decl)
2743 tree decl;
2745 rtx rtl;
2747 if (TREE_CODE (decl) == ERROR_MARK)
2748 return;
2750 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2752 /* Should never happen. */
2753 abort ();
2754 return;
2757 /* Here we have to decide where we are going to say the parameter "lives"
2758 (as far as the debugger is concerned). We only have a couple of choices.
2759 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2760 normally indicates where the parameter lives during most of the activa-
2761 tion of the function. If optimization is enabled however, this could
2762 be either NULL or else a pseudo-reg. Both of those cases indicate that
2763 the parameter doesn't really live anywhere (as far as the code generation
2764 parts of GCC are concerned) during most of the function's activation.
2765 That will happen (for example) if the parameter is never referenced
2766 within the function.
2768 We could just generate a location descriptor here for all non-NULL
2769 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2770 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2771 cases where DECL_RTL is NULL or is a pseudo-reg.
2773 Note however that we can only get away with using DECL_INCOMING_RTL as
2774 a backup substitute for DECL_RTL in certain limited cases. In cases
2775 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2776 we can be sure that the parameter was passed using the same type as it
2777 is declared to have within the function, and that its DECL_INCOMING_RTL
2778 points us to a place where a value of that type is passed. In cases
2779 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2780 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2781 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2782 points us to a value of some type which is *different* from the type
2783 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2784 to generate a location attribute in such cases, the debugger would
2785 end up (for example) trying to fetch a `float' from a place which
2786 actually contains the first part of a `double'. That would lead to
2787 really incorrect and confusing output at debug-time, and we don't
2788 want that now do we?
2790 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2791 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2792 couple of cute exceptions however. On little-endian machines we can
2793 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2794 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2795 an integral type which is smaller than TREE_TYPE(decl). These cases
2796 arise when (on a little-endian machine) a non-prototyped function has
2797 a parameter declared to be of type `short' or `char'. In such cases,
2798 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2799 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2800 passed `int' value. If the debugger then uses that address to fetch a
2801 `short' or a `char' (on a little-endian machine) the result will be the
2802 correct data, so we allow for such exceptional cases below.
2804 Note that our goal here is to describe the place where the given formal
2805 parameter lives during most of the function's activation (i.e. between
2806 the end of the prologue and the start of the epilogue). We'll do that
2807 as best as we can. Note however that if the given formal parameter is
2808 modified sometime during the execution of the function, then a stack
2809 backtrace (at debug-time) will show the function as having been called
2810 with the *new* value rather than the value which was originally passed
2811 in. This happens rarely enough that it is not a major problem, but it
2812 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2813 may generate two additional attributes for any given TAG_formal_parameter
2814 DIE which will describe the "passed type" and the "passed location" for
2815 the given formal parameter in addition to the attributes we now generate
2816 to indicate the "declared type" and the "active location" for each
2817 parameter. This additional set of attributes could be used by debuggers
2818 for stack backtraces.
2820 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2821 can be NULL also. This happens (for example) for inlined-instances of
2822 inline function formal parameters which are never referenced. This really
2823 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2824 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2825 these values for inlined instances of inline function parameters, so
2826 when we see such cases, we are just out-of-luck for the time
2827 being (until integrate.c gets fixed).
2830 /* Use DECL_RTL as the "location" unless we find something better. */
2831 rtl = DECL_RTL (decl);
2833 if (TREE_CODE (decl) == PARM_DECL)
2834 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2836 /* This decl represents a formal parameter which was optimized out. */
2837 tree declared_type = type_main_variant (TREE_TYPE (decl));
2838 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2840 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2841 *all* cases where (rtl == NULL_RTX) just below. */
2843 if (declared_type == passed_type)
2844 rtl = DECL_INCOMING_RTL (decl);
2845 else if (! BYTES_BIG_ENDIAN)
2846 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2847 /* NMS WTF? */
2848 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2849 rtl = DECL_INCOMING_RTL (decl);
2852 if (rtl == NULL_RTX)
2853 return;
2855 rtl = eliminate_regs (rtl, 0, NULL_RTX);
2856 #ifdef LEAF_REG_REMAP
2857 if (current_function_uses_only_leaf_regs)
2858 leaf_renumber_regs_insn (rtl);
2859 #endif
2861 switch (GET_CODE (rtl))
2863 case ADDRESSOF:
2864 /* The address of a variable that was optimized away; don't emit
2865 anything. */
2866 break;
2868 case CONST_INT:
2869 case CONST_DOUBLE:
2870 case CONST_STRING:
2871 case SYMBOL_REF:
2872 case LABEL_REF:
2873 case CONST:
2874 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2875 const_value_attribute (rtl);
2876 break;
2878 case MEM:
2879 case REG:
2880 case SUBREG:
2881 location_attribute (rtl);
2882 break;
2884 case CONCAT:
2885 /* ??? CONCAT is used for complex variables, which may have the real
2886 part stored in one place and the imag part stored somewhere else.
2887 DWARF1 has no way to describe a variable that lives in two different
2888 places, so we just describe where the first part lives, and hope that
2889 the second part is stored after it. */
2890 location_attribute (XEXP (rtl, 0));
2891 break;
2893 default:
2894 abort (); /* Should never happen. */
2898 /* Generate an AT_name attribute given some string value to be included as
2899 the value of the attribute. */
2901 static inline void
2902 name_attribute (name_string)
2903 const char *name_string;
2905 if (name_string && *name_string)
2907 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2908 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, name_string);
2912 static inline void
2913 fund_type_attribute (ft_code)
2914 unsigned ft_code;
2916 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2917 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2920 static void
2921 mod_fund_type_attribute (type, decl_const, decl_volatile)
2922 tree type;
2923 int decl_const;
2924 int decl_volatile;
2926 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2927 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2929 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2930 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2931 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2932 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2933 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2934 write_modifier_bytes (type, decl_const, decl_volatile);
2935 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2936 fundamental_type_code (root_type (type)));
2937 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2940 static inline void
2941 user_def_type_attribute (type)
2942 tree type;
2944 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2946 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2947 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2948 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2951 static void
2952 mod_u_d_type_attribute (type, decl_const, decl_volatile)
2953 tree type;
2954 int decl_const;
2955 int decl_volatile;
2957 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2958 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2959 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2961 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2962 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2963 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2964 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2965 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2966 write_modifier_bytes (type, decl_const, decl_volatile);
2967 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2968 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2969 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2972 #ifdef USE_ORDERING_ATTRIBUTE
2973 static inline void
2974 ordering_attribute (ordering)
2975 unsigned ordering;
2977 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2978 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2980 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2982 /* Note that the block of subscript information for an array type also
2983 includes information about the element type of type given array type. */
2985 static void
2986 subscript_data_attribute (type)
2987 tree type;
2989 unsigned dimension_number;
2990 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2991 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2993 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2994 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2995 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2996 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2997 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2999 /* The GNU compilers represent multidimensional array types as sequences
3000 of one dimensional array types whose element types are themselves array
3001 types. Here we squish that down, so that each multidimensional array
3002 type gets only one array_type DIE in the Dwarf debugging info. The
3003 draft Dwarf specification say that we are allowed to do this kind
3004 of compression in C (because there is no difference between an
3005 array or arrays and a multidimensional array in C) but for other
3006 source languages (e.g. Ada) we probably shouldn't do this. */
3008 for (dimension_number = 0;
3009 TREE_CODE (type) == ARRAY_TYPE;
3010 type = TREE_TYPE (type), dimension_number++)
3012 tree domain = TYPE_DOMAIN (type);
3014 /* Arrays come in three flavors. Unspecified bounds, fixed
3015 bounds, and (in GNU C only) variable bounds. Handle all
3016 three forms here. */
3018 if (domain)
3020 /* We have an array type with specified bounds. */
3022 tree lower = TYPE_MIN_VALUE (domain);
3023 tree upper = TYPE_MAX_VALUE (domain);
3025 /* Handle only fundamental types as index types for now. */
3026 if (! type_is_fundamental (domain))
3027 abort ();
3029 /* Output the representation format byte for this dimension. */
3030 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
3031 FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
3032 upper && TREE_CODE (upper) == INTEGER_CST));
3034 /* Output the index type for this dimension. */
3035 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
3036 fundamental_type_code (domain));
3038 /* Output the representation for the lower bound. */
3039 output_bound_representation (lower, dimension_number, 'l');
3041 /* Output the representation for the upper bound. */
3042 if (upper)
3043 output_bound_representation (upper, dimension_number, 'u');
3044 else
3045 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
3047 else
3049 /* We have an array type with an unspecified length. For C and
3050 C++ we can assume that this really means that (a) the index
3051 type is an integral type, and (b) the lower bound is zero.
3052 Note that Dwarf defines the representation of an unspecified
3053 (upper) bound as being a zero-length location description. */
3055 /* Output the array-bounds format byte. */
3057 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
3059 /* Output the (assumed) index type. */
3061 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
3063 /* Output the (assumed) lower bound (constant) value. */
3065 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
3067 /* Output the (empty) location description for the upper bound. */
3069 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
3073 /* Output the prefix byte that says that the element type is coming up. */
3075 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
3077 /* Output a representation of the type of the elements of this array type. */
3079 type_attribute (type, 0, 0);
3081 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3084 static void
3085 byte_size_attribute (tree_node)
3086 tree tree_node;
3088 unsigned size;
3090 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
3091 switch (TREE_CODE (tree_node))
3093 case ERROR_MARK:
3094 size = 0;
3095 break;
3097 case ENUMERAL_TYPE:
3098 case RECORD_TYPE:
3099 case UNION_TYPE:
3100 case QUAL_UNION_TYPE:
3101 case ARRAY_TYPE:
3102 size = int_size_in_bytes (tree_node);
3103 break;
3105 case FIELD_DECL:
3106 /* For a data member of a struct or union, the AT_byte_size is
3107 generally given as the number of bytes normally allocated for
3108 an object of the *declared* type of the member itself. This
3109 is true even for bit-fields. */
3110 size = simple_type_size_in_bits (field_type (tree_node))
3111 / BITS_PER_UNIT;
3112 break;
3114 default:
3115 abort ();
3118 /* Note that `size' might be -1 when we get to this point. If it
3119 is, that indicates that the byte size of the entity in question
3120 is variable. We have no good way of expressing this fact in Dwarf
3121 at the present time, so just let the -1 pass on through. */
3123 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
3126 /* For a FIELD_DECL node which represents a bit-field, output an attribute
3127 which specifies the distance in bits from the highest order bit of the
3128 "containing object" for the bit-field to the highest order bit of the
3129 bit-field itself.
3131 For any given bit-field, the "containing object" is a hypothetical
3132 object (of some integral or enum type) within which the given bit-field
3133 lives. The type of this hypothetical "containing object" is always the
3134 same as the declared type of the individual bit-field itself.
3136 The determination of the exact location of the "containing object" for
3137 a bit-field is rather complicated. It's handled by the `field_byte_offset'
3138 function (above).
3140 Note that it is the size (in bytes) of the hypothetical "containing
3141 object" which will be given in the AT_byte_size attribute for this
3142 bit-field. (See `byte_size_attribute' above.) */
3144 static inline void
3145 bit_offset_attribute (decl)
3146 tree decl;
3148 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
3149 tree type = DECL_BIT_FIELD_TYPE (decl);
3150 HOST_WIDE_INT bitpos_int;
3151 HOST_WIDE_INT highest_order_object_bit_offset;
3152 HOST_WIDE_INT highest_order_field_bit_offset;
3153 HOST_WIDE_INT bit_offset;
3155 /* Must be a bit field. */
3156 if (!type
3157 || TREE_CODE (decl) != FIELD_DECL)
3158 abort ();
3160 /* We can't yet handle bit-fields whose offsets or sizes are variable, so
3161 if we encounter such things, just return without generating any
3162 attribute whatsoever. */
3164 if (! host_integerp (bit_position (decl), 0)
3165 || ! host_integerp (DECL_SIZE (decl), 1))
3166 return;
3168 bitpos_int = int_bit_position (decl);
3170 /* Note that the bit offset is always the distance (in bits) from the
3171 highest-order bit of the "containing object" to the highest-order
3172 bit of the bit-field itself. Since the "high-order end" of any
3173 object or field is different on big-endian and little-endian machines,
3174 the computation below must take account of these differences. */
3176 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
3177 highest_order_field_bit_offset = bitpos_int;
3179 if (! BYTES_BIG_ENDIAN)
3181 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 1);
3182 highest_order_object_bit_offset += simple_type_size_in_bits (type);
3185 bit_offset =
3186 (! BYTES_BIG_ENDIAN
3187 ? highest_order_object_bit_offset - highest_order_field_bit_offset
3188 : highest_order_field_bit_offset - highest_order_object_bit_offset);
3190 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
3191 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
3194 /* For a FIELD_DECL node which represents a bit field, output an attribute
3195 which specifies the length in bits of the given field. */
3197 static inline void
3198 bit_size_attribute (decl)
3199 tree decl;
3201 /* Must be a field and a bit field. */
3202 if (TREE_CODE (decl) != FIELD_DECL
3203 || ! DECL_BIT_FIELD_TYPE (decl))
3204 abort ();
3206 if (host_integerp (DECL_SIZE (decl), 1))
3208 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
3209 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
3210 tree_low_cst (DECL_SIZE (decl), 1));
3214 /* The following routine outputs the `element_list' attribute for enumeration
3215 type DIEs. The element_lits attribute includes the names and values of
3216 all of the enumeration constants associated with the given enumeration
3217 type. */
3219 static inline void
3220 element_list_attribute (element)
3221 tree element;
3223 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3224 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3226 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
3227 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
3228 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
3229 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3230 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3232 /* Here we output a list of value/name pairs for each enumeration constant
3233 defined for this enumeration type (as required), but we do it in REVERSE
3234 order. The order is the one required by the draft #5 Dwarf specification
3235 published by the UI/PLSIG. */
3237 output_enumeral_list (element); /* Recursively output the whole list. */
3239 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3242 /* Generate an AT_stmt_list attribute. These are normally present only in
3243 DIEs with a TAG_compile_unit tag. */
3245 static inline void
3246 stmt_list_attribute (label)
3247 const char *label;
3249 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
3250 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3251 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
3254 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
3255 for a subroutine DIE. */
3257 static inline void
3258 low_pc_attribute (asm_low_label)
3259 const char *asm_low_label;
3261 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
3262 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
3265 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
3266 subroutine DIE. */
3268 static inline void
3269 high_pc_attribute (asm_high_label)
3270 const char *asm_high_label;
3272 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
3273 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
3276 /* Generate an AT_body_begin attribute for a subroutine DIE. */
3278 static inline void
3279 body_begin_attribute (asm_begin_label)
3280 const char *asm_begin_label;
3282 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
3283 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
3286 /* Generate an AT_body_end attribute for a subroutine DIE. */
3288 static inline void
3289 body_end_attribute (asm_end_label)
3290 const char *asm_end_label;
3292 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
3293 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
3296 /* Generate an AT_language attribute given a LANG value. These attributes
3297 are used only within TAG_compile_unit DIEs. */
3299 static inline void
3300 language_attribute (language_code)
3301 unsigned language_code;
3303 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
3304 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
3307 static inline void
3308 member_attribute (context)
3309 tree context;
3311 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3313 /* Generate this attribute only for members in C++. */
3315 if (context != NULL && is_tagged_type (context))
3317 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
3318 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
3319 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3323 #if 0
3324 static inline void
3325 string_length_attribute (upper_bound)
3326 tree upper_bound;
3328 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3329 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3331 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
3332 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
3333 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
3334 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
3335 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3336 output_bound_representation (upper_bound, 0, 'u');
3337 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3339 #endif
3341 static inline void
3342 comp_dir_attribute (dirname)
3343 const char *dirname;
3345 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
3346 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
3349 static inline void
3350 sf_names_attribute (sf_names_start_label)
3351 const char *sf_names_start_label;
3353 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
3354 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3355 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
3358 static inline void
3359 src_info_attribute (src_info_start_label)
3360 const char *src_info_start_label;
3362 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
3363 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3364 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
3367 static inline void
3368 mac_info_attribute (mac_info_start_label)
3369 const char *mac_info_start_label;
3371 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
3372 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3373 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
3376 static inline void
3377 prototyped_attribute (func_type)
3378 tree func_type;
3380 if ((strcmp (lang_hooks.name, "GNU C") == 0)
3381 && (TYPE_ARG_TYPES (func_type) != NULL))
3383 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
3384 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3388 static inline void
3389 producer_attribute (producer)
3390 const char *producer;
3392 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
3393 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, producer);
3396 static inline void
3397 inline_attribute (decl)
3398 tree decl;
3400 if (DECL_INLINE (decl))
3402 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
3403 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3407 static inline void
3408 containing_type_attribute (containing_type)
3409 tree containing_type;
3411 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3413 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
3414 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
3415 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3418 static inline void
3419 abstract_origin_attribute (origin)
3420 tree origin;
3422 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3424 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
3425 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
3427 case 'd':
3428 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
3429 break;
3431 case 't':
3432 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
3433 break;
3435 default:
3436 abort (); /* Should never happen. */
3439 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3442 #ifdef DWARF_DECL_COORDINATES
3443 static inline void
3444 src_coords_attribute (src_fileno, src_lineno)
3445 unsigned src_fileno;
3446 unsigned src_lineno;
3448 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3449 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3450 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
3452 #endif /* defined(DWARF_DECL_COORDINATES) */
3454 static inline void
3455 pure_or_virtual_attribute (func_decl)
3456 tree func_decl;
3458 if (DECL_VIRTUAL_P (func_decl))
3460 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3461 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3462 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3463 else
3464 #endif
3465 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3466 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3470 /************************* end of attributes *****************************/
3472 /********************* utility routines for DIEs *************************/
3474 /* Output an AT_name attribute and an AT_src_coords attribute for the
3475 given decl, but only if it actually has a name. */
3477 static void
3478 name_and_src_coords_attributes (decl)
3479 tree decl;
3481 tree decl_name = DECL_NAME (decl);
3483 if (decl_name && IDENTIFIER_POINTER (decl_name))
3485 name_attribute (IDENTIFIER_POINTER (decl_name));
3486 #ifdef DWARF_DECL_COORDINATES
3488 register unsigned file_index;
3490 /* This is annoying, but we have to pop out of the .debug section
3491 for a moment while we call `lookup_filename' because calling it
3492 may cause a temporary switch into the .debug_sfnames section and
3493 most svr4 assemblers are not smart enough to be able to nest
3494 section switches to any depth greater than one. Note that we
3495 also can't skirt this issue by delaying all output to the
3496 .debug_sfnames section unit the end of compilation because that
3497 would cause us to have inter-section forward references and
3498 Fred Fish sez that m68k/svr4 assemblers botch those. */
3500 ASM_OUTPUT_POP_SECTION (asm_out_file);
3501 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3502 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3504 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3506 #endif /* defined(DWARF_DECL_COORDINATES) */
3510 /* Many forms of DIEs contain a "type description" part. The following
3511 routine writes out these "type descriptor" parts. */
3513 static void
3514 type_attribute (type, decl_const, decl_volatile)
3515 tree type;
3516 int decl_const;
3517 int decl_volatile;
3519 enum tree_code code = TREE_CODE (type);
3520 int root_type_modified;
3522 if (code == ERROR_MARK)
3523 return;
3525 /* Handle a special case. For functions whose return type is void,
3526 we generate *no* type attribute. (Note that no object may have
3527 type `void', so this only applies to function return types. */
3529 if (code == VOID_TYPE)
3530 return;
3532 /* If this is a subtype, find the underlying type. Eventually,
3533 this should write out the appropriate subtype info. */
3534 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3535 && TREE_TYPE (type) != 0)
3536 type = TREE_TYPE (type), code = TREE_CODE (type);
3538 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3539 || decl_const || decl_volatile
3540 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3542 if (type_is_fundamental (root_type (type)))
3544 if (root_type_modified)
3545 mod_fund_type_attribute (type, decl_const, decl_volatile);
3546 else
3547 fund_type_attribute (fundamental_type_code (type));
3549 else
3551 if (root_type_modified)
3552 mod_u_d_type_attribute (type, decl_const, decl_volatile);
3553 else
3554 /* We have to get the type_main_variant here (and pass that to the
3555 `user_def_type_attribute' routine) because the ..._TYPE node we
3556 have might simply be a *copy* of some original type node (where
3557 the copy was created to help us keep track of typedef names)
3558 and that copy might have a different TYPE_UID from the original
3559 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3560 is labeling a given type DIE for future reference, it always and
3561 only creates labels for DIEs representing *main variants*, and it
3562 never even knows about non-main-variants.) */
3563 user_def_type_attribute (type_main_variant (type));
3567 /* Given a tree pointer to a struct, class, union, or enum type node, return
3568 a pointer to the (string) tag name for the given type, or zero if the
3569 type was declared without a tag. */
3571 static const char *
3572 type_tag (type)
3573 tree type;
3575 const char *name = 0;
3577 if (TYPE_NAME (type) != 0)
3579 tree t = 0;
3581 /* Find the IDENTIFIER_NODE for the type name. */
3582 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3583 t = TYPE_NAME (type);
3585 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3586 a TYPE_DECL node, regardless of whether or not a `typedef' was
3587 involved. */
3588 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3589 && ! DECL_IGNORED_P (TYPE_NAME (type)))
3590 t = DECL_NAME (TYPE_NAME (type));
3592 /* Now get the name as a string, or invent one. */
3593 if (t != 0)
3594 name = IDENTIFIER_POINTER (t);
3597 return (name == 0 || *name == '\0') ? 0 : name;
3600 static inline void
3601 dienum_push ()
3603 /* Start by checking if the pending_sibling_stack needs to be expanded.
3604 If necessary, expand it. */
3606 if (pending_siblings == pending_siblings_allocated)
3608 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3609 pending_sibling_stack
3610 = (unsigned *) xrealloc (pending_sibling_stack,
3611 pending_siblings_allocated * sizeof(unsigned));
3614 pending_siblings++;
3615 NEXT_DIE_NUM = next_unused_dienum++;
3618 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3619 NEXT_DIE_NUM. */
3621 static inline void
3622 dienum_pop ()
3624 pending_siblings--;
3627 static inline tree
3628 member_declared_type (member)
3629 tree member;
3631 return (DECL_BIT_FIELD_TYPE (member))
3632 ? DECL_BIT_FIELD_TYPE (member)
3633 : TREE_TYPE (member);
3636 /* Get the function's label, as described by its RTL.
3637 This may be different from the DECL_NAME name used
3638 in the source file. */
3640 static const char *
3641 function_start_label (decl)
3642 tree decl;
3644 rtx x;
3645 const char *fnname;
3647 x = DECL_RTL (decl);
3648 if (GET_CODE (x) != MEM)
3649 abort ();
3650 x = XEXP (x, 0);
3651 if (GET_CODE (x) != SYMBOL_REF)
3652 abort ();
3653 fnname = XSTR (x, 0);
3654 return fnname;
3658 /******************************* DIEs ************************************/
3660 /* Output routines for individual types of DIEs. */
3662 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3664 static void
3665 output_array_type_die (arg)
3666 void *arg;
3668 tree type = arg;
3670 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3671 sibling_attribute ();
3672 equate_type_number_to_die_number (type);
3673 member_attribute (TYPE_CONTEXT (type));
3675 /* I believe that we can default the array ordering. SDB will probably
3676 do the right things even if AT_ordering is not present. It's not
3677 even an issue until we start to get into multidimensional arrays
3678 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3679 dimensional arrays, then we'll have to put the AT_ordering attribute
3680 back in. (But if and when we find out that we need to put these in,
3681 we will only do so for multidimensional arrays. After all, we don't
3682 want to waste space in the .debug section now do we?) */
3684 #ifdef USE_ORDERING_ATTRIBUTE
3685 ordering_attribute (ORD_row_major);
3686 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3688 subscript_data_attribute (type);
3691 static void
3692 output_set_type_die (arg)
3693 void *arg;
3695 tree type = arg;
3697 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3698 sibling_attribute ();
3699 equate_type_number_to_die_number (type);
3700 member_attribute (TYPE_CONTEXT (type));
3701 type_attribute (TREE_TYPE (type), 0, 0);
3704 #if 0
3705 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3707 static void
3708 output_entry_point_die (arg)
3709 void *arg;
3711 tree decl = arg;
3712 tree origin = decl_ultimate_origin (decl);
3714 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3715 sibling_attribute ();
3716 dienum_push ();
3717 if (origin != NULL)
3718 abstract_origin_attribute (origin);
3719 else
3721 name_and_src_coords_attributes (decl);
3722 member_attribute (DECL_CONTEXT (decl));
3723 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3725 if (DECL_ABSTRACT (decl))
3726 equate_decl_number_to_die_number (decl);
3727 else
3728 low_pc_attribute (function_start_label (decl));
3730 #endif
3732 /* Output a DIE to represent an inlined instance of an enumeration type. */
3734 static void
3735 output_inlined_enumeration_type_die (arg)
3736 void *arg;
3738 tree type = arg;
3740 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3741 sibling_attribute ();
3742 if (!TREE_ASM_WRITTEN (type))
3743 abort ();
3744 abstract_origin_attribute (type);
3747 /* Output a DIE to represent an inlined instance of a structure type. */
3749 static void
3750 output_inlined_structure_type_die (arg)
3751 void *arg;
3753 tree type = arg;
3755 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3756 sibling_attribute ();
3757 if (!TREE_ASM_WRITTEN (type))
3758 abort ();
3759 abstract_origin_attribute (type);
3762 /* Output a DIE to represent an inlined instance of a union type. */
3764 static void
3765 output_inlined_union_type_die (arg)
3766 void *arg;
3768 tree type = arg;
3770 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3771 sibling_attribute ();
3772 if (!TREE_ASM_WRITTEN (type))
3773 abort ();
3774 abstract_origin_attribute (type);
3777 /* Output a DIE to represent an enumeration type. Note that these DIEs
3778 include all of the information about the enumeration values also.
3779 This information is encoded into the element_list attribute. */
3781 static void
3782 output_enumeration_type_die (arg)
3783 void *arg;
3785 tree type = arg;
3787 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3788 sibling_attribute ();
3789 equate_type_number_to_die_number (type);
3790 name_attribute (type_tag (type));
3791 member_attribute (TYPE_CONTEXT (type));
3793 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3794 given enum type is incomplete, do not generate the AT_byte_size
3795 attribute or the AT_element_list attribute. */
3797 if (COMPLETE_TYPE_P (type))
3799 byte_size_attribute (type);
3800 element_list_attribute (TYPE_FIELDS (type));
3804 /* Output a DIE to represent either a real live formal parameter decl or
3805 to represent just the type of some formal parameter position in some
3806 function type.
3808 Note that this routine is a bit unusual because its argument may be
3809 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3810 represents an inlining of some PARM_DECL) or else some sort of a
3811 ..._TYPE node. If it's the former then this function is being called
3812 to output a DIE to represent a formal parameter object (or some inlining
3813 thereof). If it's the latter, then this function is only being called
3814 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3815 formal argument type of some subprogram type. */
3817 static void
3818 output_formal_parameter_die (arg)
3819 void *arg;
3821 tree node = arg;
3823 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3824 sibling_attribute ();
3826 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3828 case 'd': /* We were called with some kind of a ..._DECL node. */
3830 register tree origin = decl_ultimate_origin (node);
3832 if (origin != NULL)
3833 abstract_origin_attribute (origin);
3834 else
3836 name_and_src_coords_attributes (node);
3837 type_attribute (TREE_TYPE (node),
3838 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3840 if (DECL_ABSTRACT (node))
3841 equate_decl_number_to_die_number (node);
3842 else
3843 location_or_const_value_attribute (node);
3845 break;
3847 case 't': /* We were called with some kind of a ..._TYPE node. */
3848 type_attribute (node, 0, 0);
3849 break;
3851 default:
3852 abort (); /* Should never happen. */
3856 /* Output a DIE to represent a declared function (either file-scope
3857 or block-local) which has "external linkage" (according to ANSI-C). */
3859 static void
3860 output_global_subroutine_die (arg)
3861 void *arg;
3863 tree decl = arg;
3864 tree origin = decl_ultimate_origin (decl);
3866 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3867 sibling_attribute ();
3868 dienum_push ();
3869 if (origin != NULL)
3870 abstract_origin_attribute (origin);
3871 else
3873 tree type = TREE_TYPE (decl);
3875 name_and_src_coords_attributes (decl);
3876 inline_attribute (decl);
3877 prototyped_attribute (type);
3878 member_attribute (DECL_CONTEXT (decl));
3879 type_attribute (TREE_TYPE (type), 0, 0);
3880 pure_or_virtual_attribute (decl);
3882 if (DECL_ABSTRACT (decl))
3883 equate_decl_number_to_die_number (decl);
3884 else
3886 if (! DECL_EXTERNAL (decl) && ! in_class
3887 && decl == current_function_decl)
3889 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3891 low_pc_attribute (function_start_label (decl));
3892 sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
3893 high_pc_attribute (label);
3894 if (use_gnu_debug_info_extensions)
3896 sprintf (label, BODY_BEGIN_LABEL_FMT,
3897 current_function_funcdef_no);
3898 body_begin_attribute (label);
3899 sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
3900 body_end_attribute (label);
3906 /* Output a DIE to represent a declared data object (either file-scope
3907 or block-local) which has "external linkage" (according to ANSI-C). */
3909 static void
3910 output_global_variable_die (arg)
3911 void *arg;
3913 tree decl = arg;
3914 tree origin = decl_ultimate_origin (decl);
3916 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3917 sibling_attribute ();
3918 if (origin != NULL)
3919 abstract_origin_attribute (origin);
3920 else
3922 name_and_src_coords_attributes (decl);
3923 member_attribute (DECL_CONTEXT (decl));
3924 type_attribute (TREE_TYPE (decl),
3925 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3927 if (DECL_ABSTRACT (decl))
3928 equate_decl_number_to_die_number (decl);
3929 else
3931 if (! DECL_EXTERNAL (decl) && ! in_class
3932 && current_function_decl == decl_function_context (decl))
3933 location_or_const_value_attribute (decl);
3937 static void
3938 output_label_die (arg)
3939 void *arg;
3941 tree decl = arg;
3942 tree origin = decl_ultimate_origin (decl);
3944 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3945 sibling_attribute ();
3946 if (origin != NULL)
3947 abstract_origin_attribute (origin);
3948 else
3949 name_and_src_coords_attributes (decl);
3950 if (DECL_ABSTRACT (decl))
3951 equate_decl_number_to_die_number (decl);
3952 else
3954 rtx insn = DECL_RTL (decl);
3956 /* Deleted labels are programmer specified labels which have been
3957 eliminated because of various optimisations. We still emit them
3958 here so that it is possible to put breakpoints on them. */
3959 if (GET_CODE (insn) == CODE_LABEL
3960 || ((GET_CODE (insn) == NOTE
3961 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
3963 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3965 /* When optimization is enabled (via -O) some parts of the compiler
3966 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3967 represent source-level labels which were explicitly declared by
3968 the user. This really shouldn't be happening though, so catch
3969 it if it ever does happen. */
3971 if (INSN_DELETED_P (insn))
3972 abort (); /* Should never happen. */
3974 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
3975 low_pc_attribute (label);
3980 static void
3981 output_lexical_block_die (arg)
3982 void *arg;
3984 tree stmt = arg;
3986 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3987 sibling_attribute ();
3988 dienum_push ();
3989 if (! BLOCK_ABSTRACT (stmt))
3991 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3992 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3994 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
3995 low_pc_attribute (begin_label);
3996 sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
3997 high_pc_attribute (end_label);
4001 static void
4002 output_inlined_subroutine_die (arg)
4003 void *arg;
4005 tree stmt = arg;
4007 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
4008 sibling_attribute ();
4009 dienum_push ();
4010 abstract_origin_attribute (block_ultimate_origin (stmt));
4011 if (! BLOCK_ABSTRACT (stmt))
4013 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4014 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4016 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
4017 low_pc_attribute (begin_label);
4018 sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
4019 high_pc_attribute (end_label);
4023 /* Output a DIE to represent a declared data object (either file-scope
4024 or block-local) which has "internal linkage" (according to ANSI-C). */
4026 static void
4027 output_local_variable_die (arg)
4028 void *arg;
4030 tree decl = arg;
4031 tree origin = decl_ultimate_origin (decl);
4033 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
4034 sibling_attribute ();
4035 if (origin != NULL)
4036 abstract_origin_attribute (origin);
4037 else
4039 name_and_src_coords_attributes (decl);
4040 member_attribute (DECL_CONTEXT (decl));
4041 type_attribute (TREE_TYPE (decl),
4042 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4044 if (DECL_ABSTRACT (decl))
4045 equate_decl_number_to_die_number (decl);
4046 else
4047 location_or_const_value_attribute (decl);
4050 static void
4051 output_member_die (arg)
4052 void *arg;
4054 tree decl = arg;
4056 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
4057 sibling_attribute ();
4058 name_and_src_coords_attributes (decl);
4059 member_attribute (DECL_CONTEXT (decl));
4060 type_attribute (member_declared_type (decl),
4061 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4062 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
4064 byte_size_attribute (decl);
4065 bit_size_attribute (decl);
4066 bit_offset_attribute (decl);
4068 data_member_location_attribute (decl);
4071 #if 0
4072 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
4073 modified types instead.
4075 We keep this code here just in case these types of DIEs may be
4076 needed to represent certain things in other languages (e.g. Pascal)
4077 someday. */
4079 static void
4080 output_pointer_type_die (arg)
4081 void *arg;
4083 tree type = arg;
4085 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
4086 sibling_attribute ();
4087 equate_type_number_to_die_number (type);
4088 member_attribute (TYPE_CONTEXT (type));
4089 type_attribute (TREE_TYPE (type), 0, 0);
4092 static void
4093 output_reference_type_die (arg)
4094 void *arg;
4096 tree type = arg;
4098 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
4099 sibling_attribute ();
4100 equate_type_number_to_die_number (type);
4101 member_attribute (TYPE_CONTEXT (type));
4102 type_attribute (TREE_TYPE (type), 0, 0);
4104 #endif
4106 static void
4107 output_ptr_to_mbr_type_die (arg)
4108 void *arg;
4110 tree type = arg;
4112 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
4113 sibling_attribute ();
4114 equate_type_number_to_die_number (type);
4115 member_attribute (TYPE_CONTEXT (type));
4116 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
4117 type_attribute (TREE_TYPE (type), 0, 0);
4120 static void
4121 output_compile_unit_die (arg)
4122 void *arg;
4124 const char *main_input_filename = arg;
4125 const char *language_string = lang_hooks.name;
4127 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
4128 sibling_attribute ();
4129 dienum_push ();
4130 name_attribute (main_input_filename);
4133 char producer[250];
4135 sprintf (producer, "%s %s", language_string, version_string);
4136 producer_attribute (producer);
4139 if (strcmp (language_string, "GNU C++") == 0)
4140 language_attribute (LANG_C_PLUS_PLUS);
4141 else if (strcmp (language_string, "GNU Ada") == 0)
4142 language_attribute (LANG_ADA83);
4143 else if (strcmp (language_string, "GNU F77") == 0)
4144 language_attribute (LANG_FORTRAN77);
4145 else if (strcmp (language_string, "GNU Pascal") == 0)
4146 language_attribute (LANG_PASCAL83);
4147 else if (strcmp (language_string, "GNU Java") == 0)
4148 language_attribute (LANG_JAVA);
4149 else
4150 language_attribute (LANG_C89);
4151 low_pc_attribute (TEXT_BEGIN_LABEL);
4152 high_pc_attribute (TEXT_END_LABEL);
4153 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4154 stmt_list_attribute (LINE_BEGIN_LABEL);
4157 const char *wd = getpwd ();
4158 if (wd)
4159 comp_dir_attribute (wd);
4162 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
4164 sf_names_attribute (SFNAMES_BEGIN_LABEL);
4165 src_info_attribute (SRCINFO_BEGIN_LABEL);
4166 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
4167 mac_info_attribute (MACINFO_BEGIN_LABEL);
4171 static void
4172 output_string_type_die (arg)
4173 void *arg;
4175 tree type = arg;
4177 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
4178 sibling_attribute ();
4179 equate_type_number_to_die_number (type);
4180 member_attribute (TYPE_CONTEXT (type));
4181 /* this is a fixed length string */
4182 byte_size_attribute (type);
4185 static void
4186 output_inheritance_die (arg)
4187 void *arg;
4189 tree binfo = arg;
4191 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
4192 sibling_attribute ();
4193 type_attribute (BINFO_TYPE (binfo), 0, 0);
4194 data_member_location_attribute (binfo);
4195 if (TREE_VIA_VIRTUAL (binfo))
4197 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
4198 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4200 if (TREE_VIA_PUBLIC (binfo))
4202 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
4203 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4205 else if (TREE_VIA_PROTECTED (binfo))
4207 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
4208 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4212 static void
4213 output_structure_type_die (arg)
4214 void *arg;
4216 tree type = arg;
4218 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
4219 sibling_attribute ();
4220 equate_type_number_to_die_number (type);
4221 name_attribute (type_tag (type));
4222 member_attribute (TYPE_CONTEXT (type));
4224 /* If this type has been completed, then give it a byte_size attribute
4225 and prepare to give a list of members. Otherwise, don't do either of
4226 these things. In the latter case, we will not be generating a list
4227 of members (since we don't have any idea what they might be for an
4228 incomplete type). */
4230 if (COMPLETE_TYPE_P (type))
4232 dienum_push ();
4233 byte_size_attribute (type);
4237 /* Output a DIE to represent a declared function (either file-scope
4238 or block-local) which has "internal linkage" (according to ANSI-C). */
4240 static void
4241 output_local_subroutine_die (arg)
4242 void *arg;
4244 tree decl = arg;
4245 tree origin = decl_ultimate_origin (decl);
4247 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
4248 sibling_attribute ();
4249 dienum_push ();
4250 if (origin != NULL)
4251 abstract_origin_attribute (origin);
4252 else
4254 tree type = TREE_TYPE (decl);
4256 name_and_src_coords_attributes (decl);
4257 inline_attribute (decl);
4258 prototyped_attribute (type);
4259 member_attribute (DECL_CONTEXT (decl));
4260 type_attribute (TREE_TYPE (type), 0, 0);
4261 pure_or_virtual_attribute (decl);
4263 if (DECL_ABSTRACT (decl))
4264 equate_decl_number_to_die_number (decl);
4265 else
4267 /* Avoid getting screwed up in cases where a function was declared
4268 static but where no definition was ever given for it. */
4270 if (TREE_ASM_WRITTEN (decl))
4272 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4273 low_pc_attribute (function_start_label (decl));
4274 sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
4275 high_pc_attribute (label);
4276 if (use_gnu_debug_info_extensions)
4278 sprintf (label, BODY_BEGIN_LABEL_FMT,
4279 current_function_funcdef_no);
4280 body_begin_attribute (label);
4281 sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
4282 body_end_attribute (label);
4288 static void
4289 output_subroutine_type_die (arg)
4290 void *arg;
4292 tree type = arg;
4293 tree return_type = TREE_TYPE (type);
4295 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
4296 sibling_attribute ();
4297 dienum_push ();
4298 equate_type_number_to_die_number (type);
4299 prototyped_attribute (type);
4300 member_attribute (TYPE_CONTEXT (type));
4301 type_attribute (return_type, 0, 0);
4304 static void
4305 output_typedef_die (arg)
4306 void *arg;
4308 tree decl = arg;
4309 tree origin = decl_ultimate_origin (decl);
4311 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
4312 sibling_attribute ();
4313 if (origin != NULL)
4314 abstract_origin_attribute (origin);
4315 else
4317 name_and_src_coords_attributes (decl);
4318 member_attribute (DECL_CONTEXT (decl));
4319 type_attribute (TREE_TYPE (decl),
4320 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4322 if (DECL_ABSTRACT (decl))
4323 equate_decl_number_to_die_number (decl);
4326 static void
4327 output_union_type_die (arg)
4328 void *arg;
4330 tree type = arg;
4332 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
4333 sibling_attribute ();
4334 equate_type_number_to_die_number (type);
4335 name_attribute (type_tag (type));
4336 member_attribute (TYPE_CONTEXT (type));
4338 /* If this type has been completed, then give it a byte_size attribute
4339 and prepare to give a list of members. Otherwise, don't do either of
4340 these things. In the latter case, we will not be generating a list
4341 of members (since we don't have any idea what they might be for an
4342 incomplete type). */
4344 if (COMPLETE_TYPE_P (type))
4346 dienum_push ();
4347 byte_size_attribute (type);
4351 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
4352 at the end of an (ANSI prototyped) formal parameters list. */
4354 static void
4355 output_unspecified_parameters_die (arg)
4356 void *arg;
4358 tree decl_or_type = arg;
4360 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
4361 sibling_attribute ();
4363 /* This kludge is here only for the sake of being compatible with what
4364 the USL CI5 C compiler does. The specification of Dwarf Version 1
4365 doesn't say that TAG_unspecified_parameters DIEs should contain any
4366 attributes other than the AT_sibling attribute, but they are certainly
4367 allowed to contain additional attributes, and the CI5 compiler
4368 generates AT_name, AT_fund_type, and AT_location attributes within
4369 TAG_unspecified_parameters DIEs which appear in the child lists for
4370 DIEs representing function definitions, so we do likewise here. */
4372 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
4374 name_attribute ("...");
4375 fund_type_attribute (FT_pointer);
4376 /* location_attribute (?); */
4380 static void
4381 output_padded_null_die (arg)
4382 void *arg ATTRIBUTE_UNUSED;
4384 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
4387 /*************************** end of DIEs *********************************/
4389 /* Generate some type of DIE. This routine generates the generic outer
4390 wrapper stuff which goes around all types of DIE's (regardless of their
4391 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
4392 DIE-length word, followed by the guts of the DIE itself. After the guts
4393 of the DIE, there must always be a terminator label for the DIE. */
4395 static void
4396 output_die (die_specific_output_function, param)
4397 void (*die_specific_output_function) PARAMS ((void *));
4398 void *param;
4400 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4401 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4403 current_dienum = NEXT_DIE_NUM;
4404 NEXT_DIE_NUM = next_unused_dienum;
4406 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4407 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
4409 /* Write a label which will act as the name for the start of this DIE. */
4411 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4413 /* Write the DIE-length word. */
4415 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
4417 /* Fill in the guts of the DIE. */
4419 next_unused_dienum++;
4420 die_specific_output_function (param);
4422 /* Write a label which will act as the name for the end of this DIE. */
4424 ASM_OUTPUT_LABEL (asm_out_file, end_label);
4427 static void
4428 end_sibling_chain ()
4430 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4432 current_dienum = NEXT_DIE_NUM;
4433 NEXT_DIE_NUM = next_unused_dienum;
4435 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4437 /* Write a label which will act as the name for the start of this DIE. */
4439 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4441 /* Write the DIE-length word. */
4443 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
4445 dienum_pop ();
4448 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4449 TAG_unspecified_parameters DIE) to represent the types of the formal
4450 parameters as specified in some function type specification (except
4451 for those which appear as part of a function *definition*).
4453 Note that we must be careful here to output all of the parameter
4454 DIEs *before* we output any DIEs needed to represent the types of
4455 the formal parameters. This keeps svr4 SDB happy because it
4456 (incorrectly) thinks that the first non-parameter DIE it sees ends
4457 the formal parameter list. */
4459 static void
4460 output_formal_types (function_or_method_type)
4461 tree function_or_method_type;
4463 tree link;
4464 tree formal_type = NULL;
4465 tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4467 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4468 get bogus recursion when outputting tagged types local to a
4469 function declaration. */
4470 int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4471 TREE_ASM_WRITTEN (function_or_method_type) = 1;
4473 /* In the case where we are generating a formal types list for a C++
4474 non-static member function type, skip over the first thing on the
4475 TYPE_ARG_TYPES list because it only represents the type of the
4476 hidden `this pointer'. The debugger should be able to figure
4477 out (without being explicitly told) that this non-static member
4478 function type takes a `this pointer' and should be able to figure
4479 what the type of that hidden parameter is from the AT_member
4480 attribute of the parent TAG_subroutine_type DIE. */
4482 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4483 first_parm_type = TREE_CHAIN (first_parm_type);
4485 /* Make our first pass over the list of formal parameter types and output
4486 a TAG_formal_parameter DIE for each one. */
4488 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4490 formal_type = TREE_VALUE (link);
4491 if (formal_type == void_type_node)
4492 break;
4494 /* Output a (nameless) DIE to represent the formal parameter itself. */
4496 output_die (output_formal_parameter_die, formal_type);
4499 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4500 DIE to the end of the parameter list. */
4502 if (formal_type != void_type_node)
4503 output_die (output_unspecified_parameters_die, function_or_method_type);
4505 /* Make our second (and final) pass over the list of formal parameter types
4506 and output DIEs to represent those types (as necessary). */
4508 for (link = TYPE_ARG_TYPES (function_or_method_type);
4509 link;
4510 link = TREE_CHAIN (link))
4512 formal_type = TREE_VALUE (link);
4513 if (formal_type == void_type_node)
4514 break;
4516 output_type (formal_type, function_or_method_type);
4519 TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
4522 /* Remember a type in the pending_types_list. */
4524 static void
4525 pend_type (type)
4526 tree type;
4528 if (pending_types == pending_types_allocated)
4530 pending_types_allocated += PENDING_TYPES_INCREMENT;
4531 pending_types_list
4532 = (tree *) xrealloc (pending_types_list,
4533 sizeof (tree) * pending_types_allocated);
4535 pending_types_list[pending_types++] = type;
4537 /* Mark the pending type as having been output already (even though
4538 it hasn't been). This prevents the type from being added to the
4539 pending_types_list more than once. */
4541 TREE_ASM_WRITTEN (type) = 1;
4544 /* Return non-zero if it is legitimate to output DIEs to represent a
4545 given type while we are generating the list of child DIEs for some
4546 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4548 See the comments within the function for a description of when it is
4549 considered legitimate to output DIEs for various kinds of types.
4551 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4552 or it may point to a BLOCK node (for types local to a block), or to a
4553 FUNCTION_DECL node (for types local to the heading of some function
4554 definition), or to a FUNCTION_TYPE node (for types local to the
4555 prototyped parameter list of a function type specification), or to a
4556 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4557 (in the case of C++ nested types).
4559 The `scope' parameter should likewise be NULL or should point to a
4560 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4561 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4563 This function is used only for deciding when to "pend" and when to
4564 "un-pend" types to/from the pending_types_list.
4566 Note that we sometimes make use of this "type pending" feature in a
4567 rather twisted way to temporarily delay the production of DIEs for the
4568 types of formal parameters. (We do this just to make svr4 SDB happy.)
4569 It order to delay the production of DIEs representing types of formal
4570 parameters, callers of this function supply `fake_containing_scope' as
4571 the `scope' parameter to this function. Given that fake_containing_scope
4572 is a tagged type which is *not* the containing scope for *any* other type,
4573 the desired effect is achieved, i.e. output of DIEs representing types
4574 is temporarily suspended, and any type DIEs which would have otherwise
4575 been output are instead placed onto the pending_types_list. Later on,
4576 we force these (temporarily pended) types to be output simply by calling
4577 `output_pending_types_for_scope' with an actual argument equal to the
4578 true scope of the types we temporarily pended. */
4580 static inline int
4581 type_ok_for_scope (type, scope)
4582 tree type;
4583 tree scope;
4585 /* Tagged types (i.e. struct, union, and enum types) must always be
4586 output only in the scopes where they actually belong (or else the
4587 scoping of their own tag names and the scoping of their member
4588 names will be incorrect). Non-tagged-types on the other hand can
4589 generally be output anywhere, except that svr4 SDB really doesn't
4590 want to see them nested within struct or union types, so here we
4591 say it is always OK to immediately output any such a (non-tagged)
4592 type, so long as we are not within such a context. Note that the
4593 only kinds of non-tagged types which we will be dealing with here
4594 (for C and C++ anyway) will be array types and function types. */
4596 return is_tagged_type (type)
4597 ? (TYPE_CONTEXT (type) == scope
4598 /* Ignore namespaces for the moment. */
4599 || (scope == NULL_TREE
4600 && TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4601 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4602 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4603 : (scope == NULL_TREE || ! is_tagged_type (scope));
4606 /* Output any pending types (from the pending_types list) which we can output
4607 now (taking into account the scope that we are working on now).
4609 For each type output, remove the given type from the pending_types_list
4610 *before* we try to output it.
4612 Note that we have to process the list in beginning-to-end order,
4613 because the call made here to output_type may cause yet more types
4614 to be added to the end of the list, and we may have to output some
4615 of them too. */
4617 static void
4618 output_pending_types_for_scope (containing_scope)
4619 tree containing_scope;
4621 unsigned i;
4623 for (i = 0; i < pending_types; )
4625 tree type = pending_types_list[i];
4627 if (type_ok_for_scope (type, containing_scope))
4629 tree *mover;
4630 tree *limit;
4632 pending_types--;
4633 limit = &pending_types_list[pending_types];
4634 for (mover = &pending_types_list[i]; mover < limit; mover++)
4635 *mover = *(mover+1);
4637 /* Un-mark the type as having been output already (because it
4638 hasn't been, really). Then call output_type to generate a
4639 Dwarf representation of it. */
4641 TREE_ASM_WRITTEN (type) = 0;
4642 output_type (type, containing_scope);
4644 /* Don't increment the loop counter in this case because we
4645 have shifted all of the subsequent pending types down one
4646 element in the pending_types_list array. */
4648 else
4649 i++;
4653 /* Remember a type in the incomplete_types_list. */
4655 static void
4656 add_incomplete_type (type)
4657 tree type;
4659 if (incomplete_types == incomplete_types_allocated)
4661 incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
4662 incomplete_types_list
4663 = (tree *) xrealloc (incomplete_types_list,
4664 sizeof (tree) * incomplete_types_allocated);
4667 incomplete_types_list[incomplete_types++] = type;
4670 /* Walk through the list of incomplete types again, trying once more to
4671 emit full debugging info for them. */
4673 static void
4674 retry_incomplete_types ()
4676 tree type;
4678 finalizing = 1;
4679 while (incomplete_types)
4681 --incomplete_types;
4682 type = incomplete_types_list[incomplete_types];
4683 output_type (type, NULL_TREE);
4687 static void
4688 output_type (type, containing_scope)
4689 tree type;
4690 tree containing_scope;
4692 if (type == 0 || type == error_mark_node)
4693 return;
4695 /* We are going to output a DIE to represent the unqualified version of
4696 this type (i.e. without any const or volatile qualifiers) so get
4697 the main variant (i.e. the unqualified version) of this type now. */
4699 type = type_main_variant (type);
4701 if (TREE_ASM_WRITTEN (type))
4703 if (finalizing && AGGREGATE_TYPE_P (type))
4705 tree member;
4707 /* Some of our nested types might not have been defined when we
4708 were written out before; force them out now. */
4710 for (member = TYPE_FIELDS (type); member;
4711 member = TREE_CHAIN (member))
4712 if (TREE_CODE (member) == TYPE_DECL
4713 && ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4714 output_type (TREE_TYPE (member), containing_scope);
4716 return;
4719 /* If this is a nested type whose containing class hasn't been
4720 written out yet, writing it out will cover this one, too. */
4722 if (TYPE_CONTEXT (type)
4723 && TYPE_P (TYPE_CONTEXT (type))
4724 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4726 output_type (TYPE_CONTEXT (type), containing_scope);
4727 return;
4730 /* Don't generate any DIEs for this type now unless it is OK to do so
4731 (based upon what `type_ok_for_scope' tells us). */
4733 if (! type_ok_for_scope (type, containing_scope))
4735 pend_type (type);
4736 return;
4739 switch (TREE_CODE (type))
4741 case ERROR_MARK:
4742 break;
4744 case VECTOR_TYPE:
4745 output_type (TYPE_DEBUG_REPRESENTATION_TYPE (type), containing_scope);
4746 break;
4748 case POINTER_TYPE:
4749 case REFERENCE_TYPE:
4750 /* Prevent infinite recursion in cases where this is a recursive
4751 type. Recursive types are possible in Ada. */
4752 TREE_ASM_WRITTEN (type) = 1;
4753 /* For these types, all that is required is that we output a DIE
4754 (or a set of DIEs) to represent the "basis" type. */
4755 output_type (TREE_TYPE (type), containing_scope);
4756 break;
4758 case OFFSET_TYPE:
4759 /* This code is used for C++ pointer-to-data-member types. */
4760 /* Output a description of the relevant class type. */
4761 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4762 /* Output a description of the type of the object pointed to. */
4763 output_type (TREE_TYPE (type), containing_scope);
4764 /* Now output a DIE to represent this pointer-to-data-member type
4765 itself. */
4766 output_die (output_ptr_to_mbr_type_die, type);
4767 break;
4769 case SET_TYPE:
4770 output_type (TYPE_DOMAIN (type), containing_scope);
4771 output_die (output_set_type_die, type);
4772 break;
4774 case FILE_TYPE:
4775 output_type (TREE_TYPE (type), containing_scope);
4776 abort (); /* No way to represent these in Dwarf yet! */
4777 break;
4779 case FUNCTION_TYPE:
4780 /* Force out return type (in case it wasn't forced out already). */
4781 output_type (TREE_TYPE (type), containing_scope);
4782 output_die (output_subroutine_type_die, type);
4783 output_formal_types (type);
4784 end_sibling_chain ();
4785 break;
4787 case METHOD_TYPE:
4788 /* Force out return type (in case it wasn't forced out already). */
4789 output_type (TREE_TYPE (type), containing_scope);
4790 output_die (output_subroutine_type_die, type);
4791 output_formal_types (type);
4792 end_sibling_chain ();
4793 break;
4795 case ARRAY_TYPE:
4796 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4798 output_type (TREE_TYPE (type), containing_scope);
4799 output_die (output_string_type_die, type);
4801 else
4803 tree element_type;
4805 element_type = TREE_TYPE (type);
4806 while (TREE_CODE (element_type) == ARRAY_TYPE)
4807 element_type = TREE_TYPE (element_type);
4809 output_type (element_type, containing_scope);
4810 output_die (output_array_type_die, type);
4812 break;
4814 case ENUMERAL_TYPE:
4815 case RECORD_TYPE:
4816 case UNION_TYPE:
4817 case QUAL_UNION_TYPE:
4819 /* For a non-file-scope tagged type, we can always go ahead and
4820 output a Dwarf description of this type right now, even if
4821 the type in question is still incomplete, because if this
4822 local type *was* ever completed anywhere within its scope,
4823 that complete definition would already have been attached to
4824 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4825 node by the time we reach this point. That's true because of the
4826 way the front-end does its processing of file-scope declarations (of
4827 functions and class types) within which other types might be
4828 nested. The C and C++ front-ends always gobble up such "local
4829 scope" things en-mass before they try to output *any* debugging
4830 information for any of the stuff contained inside them and thus,
4831 we get the benefit here of what is (in effect) a pre-resolution
4832 of forward references to tagged types in local scopes.
4834 Note however that for file-scope tagged types we cannot assume
4835 that such pre-resolution of forward references has taken place.
4836 A given file-scope tagged type may appear to be incomplete when
4837 we reach this point, but it may yet be given a full definition
4838 (at file-scope) later on during compilation. In order to avoid
4839 generating a premature (and possibly incorrect) set of Dwarf
4840 DIEs for such (as yet incomplete) file-scope tagged types, we
4841 generate nothing at all for as-yet incomplete file-scope tagged
4842 types here unless we are making our special "finalization" pass
4843 for file-scope things at the very end of compilation. At that
4844 time, we will certainly know as much about each file-scope tagged
4845 type as we are ever going to know, so at that point in time, we
4846 can safely generate correct Dwarf descriptions for these file-
4847 scope tagged types. */
4849 if (!COMPLETE_TYPE_P (type)
4850 && (TYPE_CONTEXT (type) == NULL
4851 || AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
4852 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4853 && !finalizing)
4855 /* We don't need to do this for function-local types. */
4856 if (! decl_function_context (TYPE_STUB_DECL (type)))
4857 add_incomplete_type (type);
4858 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4861 /* Prevent infinite recursion in cases where the type of some
4862 member of this type is expressed in terms of this type itself. */
4864 TREE_ASM_WRITTEN (type) = 1;
4866 /* Output a DIE to represent the tagged type itself. */
4868 switch (TREE_CODE (type))
4870 case ENUMERAL_TYPE:
4871 output_die (output_enumeration_type_die, type);
4872 return; /* a special case -- nothing left to do so just return */
4874 case RECORD_TYPE:
4875 output_die (output_structure_type_die, type);
4876 break;
4878 case UNION_TYPE:
4879 case QUAL_UNION_TYPE:
4880 output_die (output_union_type_die, type);
4881 break;
4883 default:
4884 abort (); /* Should never happen. */
4887 /* If this is not an incomplete type, output descriptions of
4888 each of its members.
4890 Note that as we output the DIEs necessary to represent the
4891 members of this record or union type, we will also be trying
4892 to output DIEs to represent the *types* of those members.
4893 However the `output_type' function (above) will specifically
4894 avoid generating type DIEs for member types *within* the list
4895 of member DIEs for this (containing) type except for those
4896 types (of members) which are explicitly marked as also being
4897 members of this (containing) type themselves. The g++ front-
4898 end can force any given type to be treated as a member of some
4899 other (containing) type by setting the TYPE_CONTEXT of the
4900 given (member) type to point to the TREE node representing the
4901 appropriate (containing) type.
4904 if (COMPLETE_TYPE_P (type))
4906 /* First output info about the base classes. */
4907 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4909 register tree bases = TYPE_BINFO_BASETYPES (type);
4910 register int n_bases = TREE_VEC_LENGTH (bases);
4911 register int i;
4913 for (i = 0; i < n_bases; i++)
4915 tree binfo = TREE_VEC_ELT (bases, i);
4916 output_type (BINFO_TYPE (binfo), containing_scope);
4917 output_die (output_inheritance_die, binfo);
4921 ++in_class;
4924 tree normal_member;
4926 /* Now output info about the data members and type members. */
4928 for (normal_member = TYPE_FIELDS (type);
4929 normal_member;
4930 normal_member = TREE_CHAIN (normal_member))
4931 output_decl (normal_member, type);
4935 tree func_member;
4937 /* Now output info about the function members (if any). */
4939 for (func_member = TYPE_METHODS (type);
4940 func_member;
4941 func_member = TREE_CHAIN (func_member))
4943 /* Don't include clones in the member list. */
4944 if (DECL_ABSTRACT_ORIGIN (func_member))
4945 continue;
4947 output_decl (func_member, type);
4951 --in_class;
4953 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4954 scopes (at least in C++) so we must now output any nested
4955 pending types which are local just to this type. */
4957 output_pending_types_for_scope (type);
4959 end_sibling_chain (); /* Terminate member chain. */
4962 break;
4964 case VOID_TYPE:
4965 case INTEGER_TYPE:
4966 case REAL_TYPE:
4967 case COMPLEX_TYPE:
4968 case BOOLEAN_TYPE:
4969 case CHAR_TYPE:
4970 break; /* No DIEs needed for fundamental types. */
4972 case LANG_TYPE: /* No Dwarf representation currently defined. */
4973 break;
4975 default:
4976 abort ();
4979 TREE_ASM_WRITTEN (type) = 1;
4982 static void
4983 output_tagged_type_instantiation (type)
4984 tree type;
4986 if (type == 0 || type == error_mark_node)
4987 return;
4989 /* We are going to output a DIE to represent the unqualified version of
4990 this type (i.e. without any const or volatile qualifiers) so make
4991 sure that we have the main variant (i.e. the unqualified version) of
4992 this type now. */
4994 if (type != type_main_variant (type))
4995 abort ();
4997 if (!TREE_ASM_WRITTEN (type))
4998 abort ();
5000 switch (TREE_CODE (type))
5002 case ERROR_MARK:
5003 break;
5005 case ENUMERAL_TYPE:
5006 output_die (output_inlined_enumeration_type_die, type);
5007 break;
5009 case RECORD_TYPE:
5010 output_die (output_inlined_structure_type_die, type);
5011 break;
5013 case UNION_TYPE:
5014 case QUAL_UNION_TYPE:
5015 output_die (output_inlined_union_type_die, type);
5016 break;
5018 default:
5019 abort (); /* Should never happen. */
5023 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
5024 the things which are local to the given block. */
5026 static void
5027 output_block (stmt, depth)
5028 tree stmt;
5029 int depth;
5031 int must_output_die = 0;
5032 tree origin;
5033 enum tree_code origin_code;
5035 /* Ignore blocks never really used to make RTL. */
5037 if (! stmt || ! TREE_USED (stmt)
5038 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
5039 return;
5041 /* Determine the "ultimate origin" of this block. This block may be an
5042 inlined instance of an inlined instance of inline function, so we
5043 have to trace all of the way back through the origin chain to find
5044 out what sort of node actually served as the original seed for the
5045 creation of the current block. */
5047 origin = block_ultimate_origin (stmt);
5048 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
5050 /* Determine if we need to output any Dwarf DIEs at all to represent this
5051 block. */
5053 if (origin_code == FUNCTION_DECL)
5054 /* The outer scopes for inlinings *must* always be represented. We
5055 generate TAG_inlined_subroutine DIEs for them. (See below.) */
5056 must_output_die = 1;
5057 else
5059 /* In the case where the current block represents an inlining of the
5060 "body block" of an inline function, we must *NOT* output any DIE
5061 for this block because we have already output a DIE to represent
5062 the whole inlined function scope and the "body block" of any
5063 function doesn't really represent a different scope according to
5064 ANSI C rules. So we check here to make sure that this block does
5065 not represent a "body block inlining" before trying to set the
5066 `must_output_die' flag. */
5068 if (! is_body_block (origin ? origin : stmt))
5070 /* Determine if this block directly contains any "significant"
5071 local declarations which we will need to output DIEs for. */
5073 if (debug_info_level > DINFO_LEVEL_TERSE)
5074 /* We are not in terse mode so *any* local declaration counts
5075 as being a "significant" one. */
5076 must_output_die = (BLOCK_VARS (stmt) != NULL);
5077 else
5079 tree decl;
5081 /* We are in terse mode, so only local (nested) function
5082 definitions count as "significant" local declarations. */
5084 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
5085 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
5087 must_output_die = 1;
5088 break;
5094 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
5095 DIE for any block which contains no significant local declarations
5096 at all. Rather, in such cases we just call `output_decls_for_scope'
5097 so that any needed Dwarf info for any sub-blocks will get properly
5098 generated. Note that in terse mode, our definition of what constitutes
5099 a "significant" local declaration gets restricted to include only
5100 inlined function instances and local (nested) function definitions. */
5102 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
5103 /* We don't care about an abstract inlined subroutine. */;
5104 else if (must_output_die)
5106 output_die ((origin_code == FUNCTION_DECL)
5107 ? output_inlined_subroutine_die
5108 : output_lexical_block_die,
5109 stmt);
5110 output_decls_for_scope (stmt, depth);
5111 end_sibling_chain ();
5113 else
5114 output_decls_for_scope (stmt, depth);
5117 /* Output all of the decls declared within a given scope (also called
5118 a `binding contour') and (recursively) all of it's sub-blocks. */
5120 static void
5121 output_decls_for_scope (stmt, depth)
5122 tree stmt;
5123 int depth;
5125 /* Ignore blocks never really used to make RTL. */
5127 if (! stmt || ! TREE_USED (stmt))
5128 return;
5130 /* Output the DIEs to represent all of the data objects, functions,
5131 typedefs, and tagged types declared directly within this block
5132 but not within any nested sub-blocks. */
5135 tree decl;
5137 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
5138 output_decl (decl, stmt);
5141 output_pending_types_for_scope (stmt);
5143 /* Output the DIEs to represent all sub-blocks (and the items declared
5144 therein) of this block. */
5147 tree subblocks;
5149 for (subblocks = BLOCK_SUBBLOCKS (stmt);
5150 subblocks;
5151 subblocks = BLOCK_CHAIN (subblocks))
5152 output_block (subblocks, depth + 1);
5156 /* Is this a typedef we can avoid emitting? */
5158 static inline int
5159 is_redundant_typedef (decl)
5160 tree decl;
5162 if (TYPE_DECL_IS_STUB (decl))
5163 return 1;
5164 if (DECL_ARTIFICIAL (decl)
5165 && DECL_CONTEXT (decl)
5166 && is_tagged_type (DECL_CONTEXT (decl))
5167 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
5168 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
5169 /* Also ignore the artificial member typedef for the class name. */
5170 return 1;
5171 return 0;
5174 /* Output Dwarf .debug information for a decl described by DECL. */
5176 static void
5177 output_decl (decl, containing_scope)
5178 tree decl;
5179 tree containing_scope;
5181 /* Make a note of the decl node we are going to be working on. We may
5182 need to give the user the source coordinates of where it appeared in
5183 case we notice (later on) that something about it looks screwy. */
5185 dwarf_last_decl = decl;
5187 if (TREE_CODE (decl) == ERROR_MARK)
5188 return;
5190 /* If a structure is declared within an initialization, e.g. as the
5191 operand of a sizeof, then it will not have a name. We don't want
5192 to output a DIE for it, as the tree nodes are in the temporary obstack */
5194 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5195 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
5196 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
5197 || (TYPE_FIELDS (TREE_TYPE (decl))
5198 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
5199 return;
5201 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5203 if (DECL_IGNORED_P (decl))
5204 return;
5206 switch (TREE_CODE (decl))
5208 case CONST_DECL:
5209 /* The individual enumerators of an enum type get output when we
5210 output the Dwarf representation of the relevant enum type itself. */
5211 break;
5213 case FUNCTION_DECL:
5214 /* If we are in terse mode, don't output any DIEs to represent
5215 mere function declarations. Also, if we are conforming
5216 to the DWARF version 1 specification, don't output DIEs for
5217 mere function declarations. */
5219 if (DECL_INITIAL (decl) == NULL_TREE)
5220 #if (DWARF_VERSION > 1)
5221 if (debug_info_level <= DINFO_LEVEL_TERSE)
5222 #endif
5223 break;
5225 /* Before we describe the FUNCTION_DECL itself, make sure that we
5226 have described its return type. */
5228 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
5231 /* And its containing type. */
5232 register tree origin = decl_class_context (decl);
5233 if (origin)
5234 output_type (origin, containing_scope);
5237 /* If we're emitting an out-of-line copy of an inline function,
5238 set up to refer to the abstract instance emitted from
5239 dwarfout_deferred_inline_function. */
5240 if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
5241 && ! (containing_scope && TYPE_P (containing_scope)))
5242 set_decl_origin_self (decl);
5244 /* If the following DIE will represent a function definition for a
5245 function with "extern" linkage, output a special "pubnames" DIE
5246 label just ahead of the actual DIE. A reference to this label
5247 was already generated in the .debug_pubnames section sub-entry
5248 for this function definition. */
5250 if (TREE_PUBLIC (decl))
5252 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5254 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5255 ASM_OUTPUT_LABEL (asm_out_file, label);
5258 /* Now output a DIE to represent the function itself. */
5260 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
5261 ? output_global_subroutine_die
5262 : output_local_subroutine_die,
5263 decl);
5265 /* Now output descriptions of the arguments for this function.
5266 This gets (unnecessarily?) complex because of the fact that
5267 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
5268 cases where there was a trailing `...' at the end of the formal
5269 parameter list. In order to find out if there was a trailing
5270 ellipsis or not, we must instead look at the type associated
5271 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
5272 If the chain of type nodes hanging off of this FUNCTION_TYPE node
5273 ends with a void_type_node then there should *not* be an ellipsis
5274 at the end. */
5276 /* In the case where we are describing a mere function declaration, all
5277 we need to do here (and all we *can* do here) is to describe
5278 the *types* of its formal parameters. */
5280 if (decl != current_function_decl || in_class)
5281 output_formal_types (TREE_TYPE (decl));
5282 else
5284 /* Generate DIEs to represent all known formal parameters */
5286 tree arg_decls = DECL_ARGUMENTS (decl);
5287 tree parm;
5289 /* WARNING! Kludge zone ahead! Here we have a special
5290 hack for svr4 SDB compatibility. Instead of passing the
5291 current FUNCTION_DECL node as the second parameter (i.e.
5292 the `containing_scope' parameter) to `output_decl' (as
5293 we ought to) we instead pass a pointer to our own private
5294 fake_containing_scope node. That node is a RECORD_TYPE
5295 node which NO OTHER TYPE may ever actually be a member of.
5297 This pointer will ultimately get passed into `output_type'
5298 as its `containing_scope' parameter. `Output_type' will
5299 then perform its part in the hack... i.e. it will pend
5300 the type of the formal parameter onto the pending_types
5301 list. Later on, when we are done generating the whole
5302 sequence of formal parameter DIEs for this function
5303 definition, we will un-pend all previously pended types
5304 of formal parameters for this function definition.
5306 This whole kludge prevents any type DIEs from being
5307 mixed in with the formal parameter DIEs. That's good
5308 because svr4 SDB believes that the list of formal
5309 parameter DIEs for a function ends wherever the first
5310 non-formal-parameter DIE appears. Thus, we have to
5311 keep the formal parameter DIEs segregated. They must
5312 all appear (consecutively) at the start of the list of
5313 children for the DIE representing the function definition.
5314 Then (and only then) may we output any additional DIEs
5315 needed to represent the types of these formal parameters.
5319 When generating DIEs, generate the unspecified_parameters
5320 DIE instead if we come across the arg "__builtin_va_alist"
5323 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
5324 if (TREE_CODE (parm) == PARM_DECL)
5326 if (DECL_NAME(parm) &&
5327 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
5328 "__builtin_va_alist") )
5329 output_die (output_unspecified_parameters_die, decl);
5330 else
5331 output_decl (parm, fake_containing_scope);
5335 Now that we have finished generating all of the DIEs to
5336 represent the formal parameters themselves, force out
5337 any DIEs needed to represent their types. We do this
5338 simply by un-pending all previously pended types which
5339 can legitimately go into the chain of children DIEs for
5340 the current FUNCTION_DECL.
5343 output_pending_types_for_scope (decl);
5346 Decide whether we need an unspecified_parameters DIE at the end.
5347 There are 2 more cases to do this for:
5348 1) the ansi ... declaration - this is detectable when the end
5349 of the arg list is not a void_type_node
5350 2) an unprototyped function declaration (not a definition). This
5351 just means that we have no info about the parameters at all.
5355 tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
5357 if (fn_arg_types)
5359 /* this is the prototyped case, check for ... */
5360 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
5361 output_die (output_unspecified_parameters_die, decl);
5363 else
5365 /* this is unprototyped, check for undefined (just declaration) */
5366 if (!DECL_INITIAL (decl))
5367 output_die (output_unspecified_parameters_die, decl);
5371 /* Output Dwarf info for all of the stuff within the body of the
5372 function (if it has one - it may be just a declaration). */
5375 tree outer_scope = DECL_INITIAL (decl);
5377 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
5379 /* Note that here, `outer_scope' is a pointer to the outermost
5380 BLOCK node created to represent a function.
5381 This outermost BLOCK actually represents the outermost
5382 binding contour for the function, i.e. the contour in which
5383 the function's formal parameters and labels get declared.
5385 Curiously, it appears that the front end doesn't actually
5386 put the PARM_DECL nodes for the current function onto the
5387 BLOCK_VARS list for this outer scope. (They are strung
5388 off of the DECL_ARGUMENTS list for the function instead.)
5389 The BLOCK_VARS list for the `outer_scope' does provide us
5390 with a list of the LABEL_DECL nodes for the function however,
5391 and we output DWARF info for those here.
5393 Just within the `outer_scope' there will be a BLOCK node
5394 representing the function's outermost pair of curly braces,
5395 and any blocks used for the base and member initializers of
5396 a C++ constructor function. */
5398 output_decls_for_scope (outer_scope, 0);
5400 /* Finally, force out any pending types which are local to the
5401 outermost block of this function definition. These will
5402 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
5403 node itself. */
5405 output_pending_types_for_scope (decl);
5410 /* Generate a terminator for the list of stuff `owned' by this
5411 function. */
5413 end_sibling_chain ();
5415 break;
5417 case TYPE_DECL:
5418 /* If we are in terse mode, don't generate any DIEs to represent
5419 any actual typedefs. Note that even when we are in terse mode,
5420 we must still output DIEs to represent those tagged types which
5421 are used (directly or indirectly) in the specification of either
5422 a return type or a formal parameter type of some function. */
5424 if (debug_info_level <= DINFO_LEVEL_TERSE)
5425 if (! TYPE_DECL_IS_STUB (decl)
5426 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
5427 return;
5429 /* In the special case of a TYPE_DECL node representing
5430 the declaration of some type tag, if the given TYPE_DECL is
5431 marked as having been instantiated from some other (original)
5432 TYPE_DECL node (e.g. one which was generated within the original
5433 definition of an inline function) we have to generate a special
5434 (abbreviated) TAG_structure_type, TAG_union_type, or
5435 TAG_enumeration-type DIE here. */
5437 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
5439 output_tagged_type_instantiation (TREE_TYPE (decl));
5440 return;
5443 output_type (TREE_TYPE (decl), containing_scope);
5445 if (! is_redundant_typedef (decl))
5446 /* Output a DIE to represent the typedef itself. */
5447 output_die (output_typedef_die, decl);
5448 break;
5450 case LABEL_DECL:
5451 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5452 output_die (output_label_die, decl);
5453 break;
5455 case VAR_DECL:
5456 /* If we are conforming to the DWARF version 1 specification, don't
5457 generated any DIEs to represent mere external object declarations. */
5459 #if (DWARF_VERSION <= 1)
5460 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
5461 break;
5462 #endif
5464 /* If we are in terse mode, don't generate any DIEs to represent
5465 any variable declarations or definitions. */
5467 if (debug_info_level <= DINFO_LEVEL_TERSE)
5468 break;
5470 /* Output any DIEs that are needed to specify the type of this data
5471 object. */
5473 output_type (TREE_TYPE (decl), containing_scope);
5476 /* And its containing type. */
5477 register tree origin = decl_class_context (decl);
5478 if (origin)
5479 output_type (origin, containing_scope);
5482 /* If the following DIE will represent a data object definition for a
5483 data object with "extern" linkage, output a special "pubnames" DIE
5484 label just ahead of the actual DIE. A reference to this label
5485 was already generated in the .debug_pubnames section sub-entry
5486 for this data object definition. */
5488 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
5490 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5492 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5493 ASM_OUTPUT_LABEL (asm_out_file, label);
5496 /* Now output the DIE to represent the data object itself. This gets
5497 complicated because of the possibility that the VAR_DECL really
5498 represents an inlined instance of a formal parameter for an inline
5499 function. */
5502 void (*func) PARAMS ((void *));
5503 register tree origin = decl_ultimate_origin (decl);
5505 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5506 func = output_formal_parameter_die;
5507 else
5509 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5510 func = output_global_variable_die;
5511 else
5512 func = output_local_variable_die;
5514 output_die (func, decl);
5516 break;
5518 case FIELD_DECL:
5519 /* Ignore the nameless fields that are used to skip bits. */
5520 if (DECL_NAME (decl) != 0)
5522 output_type (member_declared_type (decl), containing_scope);
5523 output_die (output_member_die, decl);
5525 break;
5527 case PARM_DECL:
5528 /* Force out the type of this formal, if it was not forced out yet.
5529 Note that here we can run afoul of a bug in "classic" svr4 SDB.
5530 It should be able to grok the presence of type DIEs within a list
5531 of TAG_formal_parameter DIEs, but it doesn't. */
5533 output_type (TREE_TYPE (decl), containing_scope);
5534 output_die (output_formal_parameter_die, decl);
5535 break;
5537 case NAMESPACE_DECL:
5538 /* Ignore for now. */
5539 break;
5541 default:
5542 abort ();
5546 /* Output debug information for a function. */
5547 static void
5548 dwarfout_function_decl (decl)
5549 tree decl;
5551 dwarfout_file_scope_decl (decl, 0);
5554 /* Debug information for a global DECL. Called from toplev.c after
5555 compilation proper has finished. */
5556 static void
5557 dwarfout_global_decl (decl)
5558 tree decl;
5560 /* Output DWARF information for file-scope tentative data object
5561 declarations, file-scope (extern) function declarations (which
5562 had no corresponding body) and file-scope tagged type
5563 declarations and definitions which have not yet been forced out. */
5565 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
5566 dwarfout_file_scope_decl (decl, 1);
5569 /* DECL is an inline function, whose body is present, but which is not
5570 being output at this point. (We're putting that off until we need
5571 to do it.) */
5572 static void
5573 dwarfout_deferred_inline_function (decl)
5574 tree decl;
5576 /* Generate the DWARF info for the "abstract" instance of a function
5577 which we may later generate inlined and/or out-of-line instances
5578 of. */
5579 if ((DECL_INLINE (decl) || DECL_ABSTRACT (decl))
5580 && ! DECL_ABSTRACT_ORIGIN (decl))
5582 /* The front-end may not have set CURRENT_FUNCTION_DECL, but the
5583 DWARF code expects it to be set in this case. Intuitively,
5584 DECL is the function we just finished defining, so setting
5585 CURRENT_FUNCTION_DECL is sensible. */
5586 tree saved_cfd = current_function_decl;
5587 int was_abstract = DECL_ABSTRACT (decl);
5588 current_function_decl = decl;
5590 /* Let the DWARF code do its work. */
5591 set_decl_abstract_flags (decl, 1);
5592 dwarfout_file_scope_decl (decl, 0);
5593 if (! was_abstract)
5594 set_decl_abstract_flags (decl, 0);
5596 /* Reset CURRENT_FUNCTION_DECL. */
5597 current_function_decl = saved_cfd;
5601 static void
5602 dwarfout_file_scope_decl (decl, set_finalizing)
5603 tree decl;
5604 int set_finalizing;
5606 if (TREE_CODE (decl) == ERROR_MARK)
5607 return;
5609 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5611 if (DECL_IGNORED_P (decl))
5612 return;
5614 switch (TREE_CODE (decl))
5616 case FUNCTION_DECL:
5618 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5619 a builtin function. Explicit programmer-supplied declarations of
5620 these same functions should NOT be ignored however. */
5622 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5623 return;
5625 /* What we would really like to do here is to filter out all mere
5626 file-scope declarations of file-scope functions which are never
5627 referenced later within this translation unit (and keep all of
5628 ones that *are* referenced later on) but we aren't clairvoyant,
5629 so we have no idea which functions will be referenced in the
5630 future (i.e. later on within the current translation unit).
5631 So here we just ignore all file-scope function declarations
5632 which are not also definitions. If and when the debugger needs
5633 to know something about these functions, it will have to hunt
5634 around and find the DWARF information associated with the
5635 *definition* of the function.
5637 Note that we can't just check `DECL_EXTERNAL' to find out which
5638 FUNCTION_DECL nodes represent definitions and which ones represent
5639 mere declarations. We have to check `DECL_INITIAL' instead. That's
5640 because the C front-end supports some weird semantics for "extern
5641 inline" function definitions. These can get inlined within the
5642 current translation unit (an thus, we need to generate DWARF info
5643 for their abstract instances so that the DWARF info for the
5644 concrete inlined instances can have something to refer to) but
5645 the compiler never generates any out-of-lines instances of such
5646 things (despite the fact that they *are* definitions). The
5647 important point is that the C front-end marks these "extern inline"
5648 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5649 anyway.
5651 Note that the C++ front-end also plays some similar games for inline
5652 function definitions appearing within include files which also
5653 contain `#pragma interface' pragmas. */
5655 if (DECL_INITIAL (decl) == NULL_TREE)
5656 return;
5658 if (TREE_PUBLIC (decl)
5659 && ! DECL_EXTERNAL (decl)
5660 && ! DECL_ABSTRACT (decl))
5662 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5664 /* Output a .debug_pubnames entry for a public function
5665 defined in this compilation unit. */
5667 fputc ('\n', asm_out_file);
5668 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
5669 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5670 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5671 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5672 IDENTIFIER_POINTER (DECL_NAME (decl)));
5673 ASM_OUTPUT_POP_SECTION (asm_out_file);
5676 break;
5678 case VAR_DECL:
5680 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5681 object declaration and if the declaration was never even
5682 referenced from within this entire compilation unit. We
5683 suppress these DIEs in order to save space in the .debug section
5684 (by eliminating entries which are probably useless). Note that
5685 we must not suppress block-local extern declarations (whether
5686 used or not) because that would screw-up the debugger's name
5687 lookup mechanism and cause it to miss things which really ought
5688 to be in scope at a given point. */
5690 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5691 return;
5693 if (TREE_PUBLIC (decl)
5694 && ! DECL_EXTERNAL (decl)
5695 && GET_CODE (DECL_RTL (decl)) == MEM
5696 && ! DECL_ABSTRACT (decl))
5698 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5700 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5702 /* Output a .debug_pubnames entry for a public variable
5703 defined in this compilation unit. */
5705 fputc ('\n', asm_out_file);
5706 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
5707 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5708 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5709 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5710 IDENTIFIER_POINTER (DECL_NAME (decl)));
5711 ASM_OUTPUT_POP_SECTION (asm_out_file);
5714 if (DECL_INITIAL (decl) == NULL)
5716 /* Output a .debug_aranges entry for a public variable
5717 which is tentatively defined in this compilation unit. */
5719 fputc ('\n', asm_out_file);
5720 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
5721 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5722 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5723 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5724 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5725 ASM_OUTPUT_POP_SECTION (asm_out_file);
5729 /* If we are in terse mode, don't generate any DIEs to represent
5730 any variable declarations or definitions. */
5732 if (debug_info_level <= DINFO_LEVEL_TERSE)
5733 return;
5735 break;
5737 case TYPE_DECL:
5738 /* Don't bother trying to generate any DIEs to represent any of the
5739 normal built-in types for the language we are compiling, except
5740 in cases where the types in question are *not* DWARF fundamental
5741 types. We make an exception in the case of non-fundamental types
5742 for the sake of objective C (and perhaps C++) because the GNU
5743 front-ends for these languages may in fact create certain "built-in"
5744 types which are (for example) RECORD_TYPEs. In such cases, we
5745 really need to output these (non-fundamental) types because other
5746 DIEs may contain references to them. */
5748 /* Also ignore language dependent types here, because they are probably
5749 also built-in types. If we didn't ignore them, then we would get
5750 references to undefined labels because output_type doesn't support
5751 them. So, for now, we need to ignore them to avoid assembler
5752 errors. */
5754 /* ??? This code is different than the equivalent code in dwarf2out.c.
5755 The dwarf2out.c code is probably more correct. */
5757 if (DECL_SOURCE_LINE (decl) == 0
5758 && (type_is_fundamental (TREE_TYPE (decl))
5759 || TREE_CODE (TREE_TYPE (decl)) == LANG_TYPE))
5760 return;
5762 /* If we are in terse mode, don't generate any DIEs to represent
5763 any actual typedefs. Note that even when we are in terse mode,
5764 we must still output DIEs to represent those tagged types which
5765 are used (directly or indirectly) in the specification of either
5766 a return type or a formal parameter type of some function. */
5768 if (debug_info_level <= DINFO_LEVEL_TERSE)
5769 if (! TYPE_DECL_IS_STUB (decl)
5770 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5771 return;
5773 break;
5775 default:
5776 return;
5779 fputc ('\n', asm_out_file);
5780 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5781 finalizing = set_finalizing;
5782 output_decl (decl, NULL_TREE);
5784 /* NOTE: The call above to `output_decl' may have caused one or more
5785 file-scope named types (i.e. tagged types) to be placed onto the
5786 pending_types_list. We have to get those types off of that list
5787 at some point, and this is the perfect time to do it. If we didn't
5788 take them off now, they might still be on the list when cc1 finally
5789 exits. That might be OK if it weren't for the fact that when we put
5790 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5791 for these types, and that causes them never to be output unless
5792 `output_pending_types_for_scope' takes them off of the list and un-sets
5793 their TREE_ASM_WRITTEN flags. */
5795 output_pending_types_for_scope (NULL_TREE);
5797 /* The above call should have totally emptied the pending_types_list
5798 if this is not a nested function or class. If this is a nested type,
5799 then the remaining pending_types will be emitted when the containing type
5800 is handled. */
5802 if (! DECL_CONTEXT (decl))
5804 if (pending_types != 0)
5805 abort ();
5808 ASM_OUTPUT_POP_SECTION (asm_out_file);
5811 /* Output a marker (i.e. a label) for the beginning of the generated code
5812 for a lexical block. */
5814 static void
5815 dwarfout_begin_block (line, blocknum)
5816 unsigned int line ATTRIBUTE_UNUSED;
5817 unsigned int blocknum;
5819 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5821 function_section (current_function_decl);
5822 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5823 ASM_OUTPUT_LABEL (asm_out_file, label);
5826 /* Output a marker (i.e. a label) for the end of the generated code
5827 for a lexical block. */
5829 static void
5830 dwarfout_end_block (line, blocknum)
5831 unsigned int line ATTRIBUTE_UNUSED;
5832 unsigned int blocknum;
5834 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5836 function_section (current_function_decl);
5837 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5838 ASM_OUTPUT_LABEL (asm_out_file, label);
5841 /* Output a marker (i.e. a label) for the point in the generated code where
5842 the real body of the function begins (after parameters have been moved
5843 to their home locations). */
5845 static void
5846 dwarfout_end_prologue (line)
5847 unsigned int line ATTRIBUTE_UNUSED;
5849 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5851 if (! use_gnu_debug_info_extensions)
5852 return;
5854 function_section (current_function_decl);
5855 sprintf (label, BODY_BEGIN_LABEL_FMT, current_function_funcdef_no);
5856 ASM_OUTPUT_LABEL (asm_out_file, label);
5859 /* Output a marker (i.e. a label) for the point in the generated code where
5860 the real body of the function ends (just before the epilogue code). */
5862 static void
5863 dwarfout_end_function (line)
5864 unsigned int line ATTRIBUTE_UNUSED;
5866 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5868 if (! use_gnu_debug_info_extensions)
5869 return;
5870 function_section (current_function_decl);
5871 sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
5872 ASM_OUTPUT_LABEL (asm_out_file, label);
5875 /* Output a marker (i.e. a label) for the absolute end of the generated code
5876 for a function definition. This gets called *after* the epilogue code
5877 has been generated. */
5879 static void
5880 dwarfout_end_epilogue ()
5882 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5884 /* Output a label to mark the endpoint of the code generated for this
5885 function. */
5887 sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
5888 ASM_OUTPUT_LABEL (asm_out_file, label);
5891 static void
5892 shuffle_filename_entry (new_zeroth)
5893 filename_entry *new_zeroth;
5895 filename_entry temp_entry;
5896 filename_entry *limit_p;
5897 filename_entry *move_p;
5899 if (new_zeroth == &filename_table[0])
5900 return;
5902 temp_entry = *new_zeroth;
5904 /* Shift entries up in the table to make room at [0]. */
5906 limit_p = &filename_table[0];
5907 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5908 *move_p = *(move_p-1);
5910 /* Install the found entry at [0]. */
5912 filename_table[0] = temp_entry;
5915 /* Create a new (string) entry for the .debug_sfnames section. */
5917 static void
5918 generate_new_sfname_entry ()
5920 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5922 fputc ('\n', asm_out_file);
5923 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SFNAMES_SECTION);
5924 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5925 ASM_OUTPUT_LABEL (asm_out_file, label);
5926 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5927 filename_table[0].name
5928 ? filename_table[0].name
5929 : "");
5930 ASM_OUTPUT_POP_SECTION (asm_out_file);
5933 /* Lookup a filename (in the list of filenames that we know about here in
5934 dwarfout.c) and return its "index". The index of each (known) filename
5935 is just a unique number which is associated with only that one filename.
5936 We need such numbers for the sake of generating labels (in the
5937 .debug_sfnames section) and references to those unique labels (in the
5938 .debug_srcinfo and .debug_macinfo sections).
5940 If the filename given as an argument is not found in our current list,
5941 add it to the list and assign it the next available unique index number.
5943 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5944 one), we shuffle the filename found (or added) up to the zeroth entry of
5945 our list of filenames (which is always searched linearly). We do this so
5946 as to optimize the most common case for these filename lookups within
5947 dwarfout.c. The most common case by far is the case where we call
5948 lookup_filename to lookup the very same filename that we did a lookup
5949 on the last time we called lookup_filename. We make sure that this
5950 common case is fast because such cases will constitute 99.9% of the
5951 lookups we ever do (in practice).
5953 If we add a new filename entry to our table, we go ahead and generate
5954 the corresponding entry in the .debug_sfnames section right away.
5955 Doing so allows us to avoid tickling an assembler bug (present in some
5956 m68k assemblers) which yields assembly-time errors in cases where the
5957 difference of two label addresses is taken and where the two labels
5958 are in a section *other* than the one where the difference is being
5959 calculated, and where at least one of the two symbol references is a
5960 forward reference. (This bug could be tickled by our .debug_srcinfo
5961 entries if we don't output their corresponding .debug_sfnames entries
5962 before them.) */
5964 static unsigned
5965 lookup_filename (file_name)
5966 const char *file_name;
5968 filename_entry *search_p;
5969 filename_entry *limit_p = &filename_table[ft_entries];
5971 for (search_p = filename_table; search_p < limit_p; search_p++)
5972 if (!strcmp (file_name, search_p->name))
5974 /* When we get here, we have found the filename that we were
5975 looking for in the filename_table. Now we want to make sure
5976 that it gets moved to the zero'th entry in the table (if it
5977 is not already there) so that subsequent attempts to find the
5978 same filename will find it as quickly as possible. */
5980 shuffle_filename_entry (search_p);
5981 return filename_table[0].number;
5984 /* We come here whenever we have a new filename which is not registered
5985 in the current table. Here we add it to the table. */
5987 /* Prepare to add a new table entry by making sure there is enough space
5988 in the table to do so. If not, expand the current table. */
5990 if (ft_entries == ft_entries_allocated)
5992 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5993 filename_table
5994 = (filename_entry *)
5995 xrealloc (filename_table,
5996 ft_entries_allocated * sizeof (filename_entry));
5999 /* Initially, add the new entry at the end of the filename table. */
6001 filename_table[ft_entries].number = ft_entries;
6002 filename_table[ft_entries].name = xstrdup (file_name);
6004 /* Shuffle the new entry into filename_table[0]. */
6006 shuffle_filename_entry (&filename_table[ft_entries]);
6008 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6009 generate_new_sfname_entry ();
6011 ft_entries++;
6012 return filename_table[0].number;
6015 static void
6016 generate_srcinfo_entry (line_entry_num, files_entry_num)
6017 unsigned line_entry_num;
6018 unsigned files_entry_num;
6020 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6022 fputc ('\n', asm_out_file);
6023 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6024 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
6025 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
6026 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
6027 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
6028 ASM_OUTPUT_POP_SECTION (asm_out_file);
6031 static void
6032 dwarfout_source_line (line, filename)
6033 unsigned int line;
6034 const char *filename;
6036 if (debug_info_level >= DINFO_LEVEL_NORMAL
6037 /* We can't emit line number info for functions in separate sections,
6038 because the assembler can't subtract labels in different sections. */
6039 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
6041 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6042 static unsigned last_line_entry_num = 0;
6043 static unsigned prev_file_entry_num = (unsigned) -1;
6044 unsigned this_file_entry_num;
6046 function_section (current_function_decl);
6047 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
6048 ASM_OUTPUT_LABEL (asm_out_file, label);
6050 fputc ('\n', asm_out_file);
6052 if (use_gnu_debug_info_extensions)
6053 this_file_entry_num = lookup_filename (filename);
6054 else
6055 this_file_entry_num = (unsigned) -1;
6057 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6058 if (this_file_entry_num != prev_file_entry_num)
6060 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
6062 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
6063 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
6067 const char *tail = strrchr (filename, '/');
6069 if (tail != NULL)
6070 filename = tail;
6073 dw2_asm_output_data (4, line, "%s:%u", filename, line);
6074 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6075 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
6076 ASM_OUTPUT_POP_SECTION (asm_out_file);
6078 if (this_file_entry_num != prev_file_entry_num)
6079 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
6080 prev_file_entry_num = this_file_entry_num;
6084 /* Generate an entry in the .debug_macinfo section. */
6086 static void
6087 generate_macinfo_entry (type, offset, string)
6088 unsigned int type;
6089 rtx offset;
6090 const char *string;
6092 if (! use_gnu_debug_info_extensions)
6093 return;
6095 fputc ('\n', asm_out_file);
6096 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6097 assemble_integer (gen_rtx_PLUS (SImode, GEN_INT (type << 24), offset),
6098 4, BITS_PER_UNIT, 1);
6099 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, string);
6100 ASM_OUTPUT_POP_SECTION (asm_out_file);
6103 /* Wrapper for toplev.c callback to check debug info level. */
6104 static void
6105 dwarfout_start_source_file_check (line, filename)
6106 unsigned int line;
6107 const char *filename;
6109 if (debug_info_level == DINFO_LEVEL_VERBOSE)
6110 dwarfout_start_source_file (line, filename);
6113 static void
6114 dwarfout_start_source_file (line, filename)
6115 unsigned int line ATTRIBUTE_UNUSED;
6116 const char *filename;
6118 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6119 const char *label1, *label2;
6121 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
6122 label1 = (*label == '*') + label;
6123 label2 = (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL;
6124 generate_macinfo_entry (MACINFO_start,
6125 gen_rtx_MINUS (Pmode,
6126 gen_rtx_SYMBOL_REF (Pmode, label1),
6127 gen_rtx_SYMBOL_REF (Pmode, label2)),
6128 "");
6131 /* Wrapper for toplev.c callback to check debug info level. */
6132 static void
6133 dwarfout_end_source_file_check (lineno)
6134 unsigned lineno;
6136 if (debug_info_level == DINFO_LEVEL_VERBOSE)
6137 dwarfout_end_source_file (lineno);
6140 static void
6141 dwarfout_end_source_file (lineno)
6142 unsigned lineno;
6144 generate_macinfo_entry (MACINFO_resume, GEN_INT (lineno), "");
6147 /* Called from check_newline in c-parse.y. The `buffer' parameter
6148 contains the tail part of the directive line, i.e. the part which
6149 is past the initial whitespace, #, whitespace, directive-name,
6150 whitespace part. */
6152 static void
6153 dwarfout_define (lineno, buffer)
6154 unsigned lineno;
6155 const char *buffer;
6157 static int initialized = 0;
6159 if (!initialized)
6161 dwarfout_start_source_file (0, primary_filename);
6162 initialized = 1;
6164 generate_macinfo_entry (MACINFO_define, GEN_INT (lineno), buffer);
6167 /* Called from check_newline in c-parse.y. The `buffer' parameter
6168 contains the tail part of the directive line, i.e. the part which
6169 is past the initial whitespace, #, whitespace, directive-name,
6170 whitespace part. */
6172 static void
6173 dwarfout_undef (lineno, buffer)
6174 unsigned lineno;
6175 const char *buffer;
6177 generate_macinfo_entry (MACINFO_undef, GEN_INT (lineno), buffer);
6180 /* Set up for Dwarf output at the start of compilation. */
6182 static void
6183 dwarfout_init (main_input_filename)
6184 const char *main_input_filename;
6186 warning ("support for the DWARF1 debugging format is deprecated");
6188 /* Remember the name of the primary input file. */
6190 primary_filename = main_input_filename;
6192 /* Allocate the initial hunk of the pending_sibling_stack. */
6194 pending_sibling_stack
6195 = (unsigned *)
6196 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
6197 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
6198 pending_siblings = 1;
6200 /* Allocate the initial hunk of the filename_table. */
6202 filename_table
6203 = (filename_entry *)
6204 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
6205 ft_entries_allocated = FT_ENTRIES_INCREMENT;
6206 ft_entries = 0;
6208 /* Allocate the initial hunk of the pending_types_list. */
6210 pending_types_list
6211 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
6212 pending_types_allocated = PENDING_TYPES_INCREMENT;
6213 pending_types = 0;
6215 /* Create an artificial RECORD_TYPE node which we can use in our hack
6216 to get the DIEs representing types of formal parameters to come out
6217 only *after* the DIEs for the formal parameters themselves. */
6219 fake_containing_scope = make_node (RECORD_TYPE);
6221 /* Output a starting label for the .text section. */
6223 fputc ('\n', asm_out_file);
6224 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION_NAME);
6225 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
6226 ASM_OUTPUT_POP_SECTION (asm_out_file);
6228 /* Output a starting label for the .data section. */
6230 fputc ('\n', asm_out_file);
6231 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION_NAME);
6232 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
6233 ASM_OUTPUT_POP_SECTION (asm_out_file);
6235 #if 0 /* GNU C doesn't currently use .data1. */
6236 /* Output a starting label for the .data1 section. */
6238 fputc ('\n', asm_out_file);
6239 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION_NAME);
6240 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
6241 ASM_OUTPUT_POP_SECTION (asm_out_file);
6242 #endif
6244 /* Output a starting label for the .rodata section. */
6246 fputc ('\n', asm_out_file);
6247 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION_NAME);
6248 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
6249 ASM_OUTPUT_POP_SECTION (asm_out_file);
6251 #if 0 /* GNU C doesn't currently use .rodata1. */
6252 /* Output a starting label for the .rodata1 section. */
6254 fputc ('\n', asm_out_file);
6255 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION_NAME);
6256 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
6257 ASM_OUTPUT_POP_SECTION (asm_out_file);
6258 #endif
6260 /* Output a starting label for the .bss section. */
6262 fputc ('\n', asm_out_file);
6263 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION_NAME);
6264 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
6265 ASM_OUTPUT_POP_SECTION (asm_out_file);
6267 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6269 if (use_gnu_debug_info_extensions)
6271 /* Output a starting label and an initial (compilation directory)
6272 entry for the .debug_sfnames section. The starting label will be
6273 referenced by the initial entry in the .debug_srcinfo section. */
6275 fputc ('\n', asm_out_file);
6276 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SFNAMES_SECTION);
6277 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
6279 const char *pwd = getpwd ();
6280 char *dirname;
6282 if (!pwd)
6283 fatal_io_error ("can't get current directory");
6285 dirname = concat (pwd, "/", NULL);
6286 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
6287 free (dirname);
6289 ASM_OUTPUT_POP_SECTION (asm_out_file);
6292 if (debug_info_level >= DINFO_LEVEL_VERBOSE
6293 && use_gnu_debug_info_extensions)
6295 /* Output a starting label for the .debug_macinfo section. This
6296 label will be referenced by the AT_mac_info attribute in the
6297 TAG_compile_unit DIE. */
6299 fputc ('\n', asm_out_file);
6300 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6301 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
6302 ASM_OUTPUT_POP_SECTION (asm_out_file);
6305 /* Generate the initial entry for the .line section. */
6307 fputc ('\n', asm_out_file);
6308 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6309 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
6310 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
6311 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6312 ASM_OUTPUT_POP_SECTION (asm_out_file);
6314 if (use_gnu_debug_info_extensions)
6316 /* Generate the initial entry for the .debug_srcinfo section. */
6318 fputc ('\n', asm_out_file);
6319 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6320 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
6321 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
6322 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
6323 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6324 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
6325 #ifdef DWARF_TIMESTAMPS
6326 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
6327 #else
6328 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6329 #endif
6330 ASM_OUTPUT_POP_SECTION (asm_out_file);
6333 /* Generate the initial entry for the .debug_pubnames section. */
6335 fputc ('\n', asm_out_file);
6336 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
6337 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
6338 ASM_OUTPUT_POP_SECTION (asm_out_file);
6340 /* Generate the initial entry for the .debug_aranges section. */
6342 fputc ('\n', asm_out_file);
6343 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
6344 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6345 DEBUG_ARANGES_END_LABEL,
6346 DEBUG_ARANGES_BEGIN_LABEL);
6347 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_ARANGES_BEGIN_LABEL);
6348 ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 1);
6349 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
6350 ASM_OUTPUT_POP_SECTION (asm_out_file);
6353 /* Setup first DIE number == 1. */
6354 NEXT_DIE_NUM = next_unused_dienum++;
6356 /* Generate the initial DIE for the .debug section. Note that the
6357 (string) value given in the AT_name attribute of the TAG_compile_unit
6358 DIE will (typically) be a relative pathname and that this pathname
6359 should be taken as being relative to the directory from which the
6360 compiler was invoked when the given (base) source file was compiled. */
6362 fputc ('\n', asm_out_file);
6363 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
6364 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
6365 output_die (output_compile_unit_die, (PTR) main_input_filename);
6366 ASM_OUTPUT_POP_SECTION (asm_out_file);
6368 fputc ('\n', asm_out_file);
6371 /* Output stuff that dwarf requires at the end of every file. */
6373 static void
6374 dwarfout_finish (main_input_filename)
6375 const char *main_input_filename ATTRIBUTE_UNUSED;
6377 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6379 fputc ('\n', asm_out_file);
6380 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
6381 retry_incomplete_types ();
6382 fputc ('\n', asm_out_file);
6384 /* Mark the end of the chain of siblings which represent all file-scope
6385 declarations in this compilation unit. */
6387 /* The (null) DIE which represents the terminator for the (sibling linked)
6388 list of file-scope items is *special*. Normally, we would just call
6389 end_sibling_chain at this point in order to output a word with the
6390 value `4' and that word would act as the terminator for the list of
6391 DIEs describing file-scope items. Unfortunately, if we were to simply
6392 do that, the label that would follow this DIE in the .debug section
6393 (i.e. `..D2') would *not* be properly aligned (as it must be on some
6394 machines) to a 4 byte boundary.
6396 In order to force the label `..D2' to get aligned to a 4 byte boundary,
6397 the trick used is to insert extra (otherwise useless) padding bytes
6398 into the (null) DIE that we know must precede the ..D2 label in the
6399 .debug section. The amount of padding required can be anywhere between
6400 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
6401 with the padding) would normally contain the value 4, but now it will
6402 also have to include the padding bytes, so it will instead have some
6403 value in the range 4..7.
6405 Fortunately, the rules of Dwarf say that any DIE whose length word
6406 contains *any* value less than 8 should be treated as a null DIE, so
6407 this trick works out nicely. Clever, eh? Don't give me any credit
6408 (or blame). I didn't think of this scheme. I just conformed to it.
6411 output_die (output_padded_null_die, (void *) 0);
6412 dienum_pop ();
6414 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
6415 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
6416 ASM_OUTPUT_POP_SECTION (asm_out_file);
6418 /* Output a terminator label for the .text section. */
6420 fputc ('\n', asm_out_file);
6421 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION_NAME);
6422 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
6423 ASM_OUTPUT_POP_SECTION (asm_out_file);
6425 /* Output a terminator label for the .data section. */
6427 fputc ('\n', asm_out_file);
6428 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION_NAME);
6429 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
6430 ASM_OUTPUT_POP_SECTION (asm_out_file);
6432 #if 0 /* GNU C doesn't currently use .data1. */
6433 /* Output a terminator label for the .data1 section. */
6435 fputc ('\n', asm_out_file);
6436 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION_NAME);
6437 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
6438 ASM_OUTPUT_POP_SECTION (asm_out_file);
6439 #endif
6441 /* Output a terminator label for the .rodata section. */
6443 fputc ('\n', asm_out_file);
6444 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION_NAME);
6445 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
6446 ASM_OUTPUT_POP_SECTION (asm_out_file);
6448 #if 0 /* GNU C doesn't currently use .rodata1. */
6449 /* Output a terminator label for the .rodata1 section. */
6451 fputc ('\n', asm_out_file);
6452 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION_NAME);
6453 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
6454 ASM_OUTPUT_POP_SECTION (asm_out_file);
6455 #endif
6457 /* Output a terminator label for the .bss section. */
6459 fputc ('\n', asm_out_file);
6460 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION_NAME);
6461 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
6462 ASM_OUTPUT_POP_SECTION (asm_out_file);
6464 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6466 /* Output a terminating entry for the .line section. */
6468 fputc ('\n', asm_out_file);
6469 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6470 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
6471 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6472 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6473 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6474 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
6475 ASM_OUTPUT_POP_SECTION (asm_out_file);
6477 if (use_gnu_debug_info_extensions)
6479 /* Output a terminating entry for the .debug_srcinfo section. */
6481 fputc ('\n', asm_out_file);
6482 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6483 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6484 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
6485 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6486 ASM_OUTPUT_POP_SECTION (asm_out_file);
6489 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
6491 /* Output terminating entries for the .debug_macinfo section. */
6493 dwarfout_end_source_file (0);
6495 fputc ('\n', asm_out_file);
6496 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6497 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6498 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6499 ASM_OUTPUT_POP_SECTION (asm_out_file);
6502 /* Generate the terminating entry for the .debug_pubnames section. */
6504 fputc ('\n', asm_out_file);
6505 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
6506 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6507 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6508 ASM_OUTPUT_POP_SECTION (asm_out_file);
6510 /* Generate the terminating entries for the .debug_aranges section.
6512 Note that we want to do this only *after* we have output the end
6513 labels (for the various program sections) which we are going to
6514 refer to here. This allows us to work around a bug in the m68k
6515 svr4 assembler. That assembler gives bogus assembly-time errors
6516 if (within any given section) you try to take the difference of
6517 two relocatable symbols, both of which are located within some
6518 other section, and if one (or both?) of the symbols involved is
6519 being forward-referenced. By generating the .debug_aranges
6520 entries at this late point in the assembly output, we skirt the
6521 issue simply by avoiding forward-references.
6524 fputc ('\n', asm_out_file);
6525 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
6527 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6528 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6530 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
6531 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
6533 #if 0 /* GNU C doesn't currently use .data1. */
6534 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
6535 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
6536 DATA1_BEGIN_LABEL);
6537 #endif
6539 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
6540 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
6541 RODATA_BEGIN_LABEL);
6543 #if 0 /* GNU C doesn't currently use .rodata1. */
6544 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
6545 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
6546 RODATA1_BEGIN_LABEL);
6547 #endif
6549 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
6550 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
6552 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6553 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6555 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_ARANGES_END_LABEL);
6556 ASM_OUTPUT_POP_SECTION (asm_out_file);
6559 /* There should not be any pending types left at the end. We need
6560 this now because it may not have been checked on the last call to
6561 dwarfout_file_scope_decl. */
6562 if (pending_types != 0)
6563 abort ();
6566 #endif /* DWARF_DEBUGGING_INFO */