2006-08-18 Christophe Jaillet <christophe.jaillet@wanadoo.fr>
[official-gcc.git] / libgfortran / generated / maxloc1_8_r4.c
blob359cb7c1543da2bb8b15f63a7ccffc7a77026c3d
1 /* Implementation of the MAXLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include <limits.h>
36 #include "libgfortran.h"
39 #if defined (HAVE_GFC_REAL_4) && defined (HAVE_GFC_INTEGER_8)
42 extern void maxloc1_8_r4 (gfc_array_i8 * const restrict,
43 gfc_array_r4 * const restrict, const index_type * const restrict);
44 export_proto(maxloc1_8_r4);
46 void
47 maxloc1_8_r4 (gfc_array_i8 * const restrict retarray,
48 gfc_array_r4 * const restrict array,
49 const index_type * const restrict pdim)
51 index_type count[GFC_MAX_DIMENSIONS];
52 index_type extent[GFC_MAX_DIMENSIONS];
53 index_type sstride[GFC_MAX_DIMENSIONS];
54 index_type dstride[GFC_MAX_DIMENSIONS];
55 const GFC_REAL_4 * restrict base;
56 GFC_INTEGER_8 * restrict dest;
57 index_type rank;
58 index_type n;
59 index_type len;
60 index_type delta;
61 index_type dim;
63 /* Make dim zero based to avoid confusion. */
64 dim = (*pdim) - 1;
65 rank = GFC_DESCRIPTOR_RANK (array) - 1;
67 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
68 delta = array->dim[dim].stride;
70 for (n = 0; n < dim; n++)
72 sstride[n] = array->dim[n].stride;
73 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
75 for (n = dim; n < rank; n++)
77 sstride[n] = array->dim[n + 1].stride;
78 extent[n] =
79 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
82 if (retarray->data == NULL)
84 for (n = 0; n < rank; n++)
86 retarray->dim[n].lbound = 0;
87 retarray->dim[n].ubound = extent[n]-1;
88 if (n == 0)
89 retarray->dim[n].stride = 1;
90 else
91 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
94 retarray->data
95 = internal_malloc_size (sizeof (GFC_INTEGER_8)
96 * retarray->dim[rank-1].stride
97 * extent[rank-1]);
98 retarray->offset = 0;
99 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
101 else
103 if (rank != GFC_DESCRIPTOR_RANK (retarray))
104 runtime_error ("rank of return array incorrect");
107 for (n = 0; n < rank; n++)
109 count[n] = 0;
110 dstride[n] = retarray->dim[n].stride;
111 if (extent[n] <= 0)
112 len = 0;
115 base = array->data;
116 dest = retarray->data;
118 while (base)
120 const GFC_REAL_4 * restrict src;
121 GFC_INTEGER_8 result;
122 src = base;
125 GFC_REAL_4 maxval;
126 maxval = -GFC_REAL_4_HUGE;
127 result = 0;
128 if (len <= 0)
129 *dest = 0;
130 else
132 for (n = 0; n < len; n++, src += delta)
135 if (*src > maxval || !result)
137 maxval = *src;
138 result = (GFC_INTEGER_8)n + 1;
141 *dest = result;
144 /* Advance to the next element. */
145 count[0]++;
146 base += sstride[0];
147 dest += dstride[0];
148 n = 0;
149 while (count[n] == extent[n])
151 /* When we get to the end of a dimension, reset it and increment
152 the next dimension. */
153 count[n] = 0;
154 /* We could precalculate these products, but this is a less
155 frequently used path so proabably not worth it. */
156 base -= sstride[n] * extent[n];
157 dest -= dstride[n] * extent[n];
158 n++;
159 if (n == rank)
161 /* Break out of the look. */
162 base = NULL;
163 break;
165 else
167 count[n]++;
168 base += sstride[n];
169 dest += dstride[n];
176 extern void mmaxloc1_8_r4 (gfc_array_i8 * const restrict,
177 gfc_array_r4 * const restrict, const index_type * const restrict,
178 gfc_array_l4 * const restrict);
179 export_proto(mmaxloc1_8_r4);
181 void
182 mmaxloc1_8_r4 (gfc_array_i8 * const restrict retarray,
183 gfc_array_r4 * const restrict array,
184 const index_type * const restrict pdim,
185 gfc_array_l4 * const restrict mask)
187 index_type count[GFC_MAX_DIMENSIONS];
188 index_type extent[GFC_MAX_DIMENSIONS];
189 index_type sstride[GFC_MAX_DIMENSIONS];
190 index_type dstride[GFC_MAX_DIMENSIONS];
191 index_type mstride[GFC_MAX_DIMENSIONS];
192 GFC_INTEGER_8 * restrict dest;
193 const GFC_REAL_4 * restrict base;
194 const GFC_LOGICAL_4 * restrict mbase;
195 int rank;
196 int dim;
197 index_type n;
198 index_type len;
199 index_type delta;
200 index_type mdelta;
202 dim = (*pdim) - 1;
203 rank = GFC_DESCRIPTOR_RANK (array) - 1;
205 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
206 if (len <= 0)
207 return;
208 delta = array->dim[dim].stride;
209 mdelta = mask->dim[dim].stride;
211 for (n = 0; n < dim; n++)
213 sstride[n] = array->dim[n].stride;
214 mstride[n] = mask->dim[n].stride;
215 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
217 for (n = dim; n < rank; n++)
219 sstride[n] = array->dim[n + 1].stride;
220 mstride[n] = mask->dim[n + 1].stride;
221 extent[n] =
222 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
225 if (retarray->data == NULL)
227 for (n = 0; n < rank; n++)
229 retarray->dim[n].lbound = 0;
230 retarray->dim[n].ubound = extent[n]-1;
231 if (n == 0)
232 retarray->dim[n].stride = 1;
233 else
234 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
237 retarray->data
238 = internal_malloc_size (sizeof (GFC_INTEGER_8)
239 * retarray->dim[rank-1].stride
240 * extent[rank-1]);
241 retarray->offset = 0;
242 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
244 else
246 if (rank != GFC_DESCRIPTOR_RANK (retarray))
247 runtime_error ("rank of return array incorrect");
250 for (n = 0; n < rank; n++)
252 count[n] = 0;
253 dstride[n] = retarray->dim[n].stride;
254 if (extent[n] <= 0)
255 return;
258 dest = retarray->data;
259 base = array->data;
260 mbase = mask->data;
262 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
264 /* This allows the same loop to be used for all logical types. */
265 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
266 for (n = 0; n < rank; n++)
267 mstride[n] <<= 1;
268 mdelta <<= 1;
269 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
272 while (base)
274 const GFC_REAL_4 * restrict src;
275 const GFC_LOGICAL_4 * restrict msrc;
276 GFC_INTEGER_8 result;
277 src = base;
278 msrc = mbase;
281 GFC_REAL_4 maxval;
282 maxval = -GFC_REAL_4_HUGE;
283 result = 0;
284 if (len <= 0)
285 *dest = 0;
286 else
288 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
291 if (*msrc && (*src > maxval || !result))
293 maxval = *src;
294 result = (GFC_INTEGER_8)n + 1;
297 *dest = result;
300 /* Advance to the next element. */
301 count[0]++;
302 base += sstride[0];
303 mbase += mstride[0];
304 dest += dstride[0];
305 n = 0;
306 while (count[n] == extent[n])
308 /* When we get to the end of a dimension, reset it and increment
309 the next dimension. */
310 count[n] = 0;
311 /* We could precalculate these products, but this is a less
312 frequently used path so proabably not worth it. */
313 base -= sstride[n] * extent[n];
314 mbase -= mstride[n] * extent[n];
315 dest -= dstride[n] * extent[n];
316 n++;
317 if (n == rank)
319 /* Break out of the look. */
320 base = NULL;
321 break;
323 else
325 count[n]++;
326 base += sstride[n];
327 mbase += mstride[n];
328 dest += dstride[n];
335 extern void smaxloc1_8_r4 (gfc_array_i8 * const restrict,
336 gfc_array_r4 * const restrict, const index_type * const restrict,
337 GFC_LOGICAL_4 *);
338 export_proto(smaxloc1_8_r4);
340 void
341 smaxloc1_8_r4 (gfc_array_i8 * const restrict retarray,
342 gfc_array_r4 * const restrict array,
343 const index_type * const restrict pdim,
344 GFC_LOGICAL_4 * mask)
346 index_type rank;
347 index_type n;
348 index_type dstride;
349 GFC_INTEGER_8 *dest;
351 if (*mask)
353 maxloc1_8_r4 (retarray, array, pdim);
354 return;
356 rank = GFC_DESCRIPTOR_RANK (array);
357 if (rank <= 0)
358 runtime_error ("Rank of array needs to be > 0");
360 if (retarray->data == NULL)
362 retarray->dim[0].lbound = 0;
363 retarray->dim[0].ubound = rank-1;
364 retarray->dim[0].stride = 1;
365 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
366 retarray->offset = 0;
367 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
369 else
371 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
372 runtime_error ("rank of return array does not equal 1");
374 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
375 runtime_error ("dimension of return array incorrect");
378 dstride = retarray->dim[0].stride;
379 dest = retarray->data;
381 for (n = 0; n < rank; n++)
382 dest[n * dstride] = 0 ;
385 #endif