* mn10300.c (expand_prologue): End the current sequence before
[official-gcc.git] / gcc / config / mn10300 / mn10300.h
blob39b307b60ca81d09d904c35c46e09cb5233e095d
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 #include "svr4.h"
25 #undef ASM_SPEC
26 #undef ASM_FINAL_SPEC
27 #undef LIB_SPEC
28 #undef ENDFILE_SPEC
29 #undef LINK_SPEC
30 #undef STARTFILE_SPEC
32 /* Names to predefine in the preprocessor for this target machine. */
34 #define CPP_PREDEFINES "-D__mn10300__ -D__MN10300__"
36 /* Run-time compilation parameters selecting different hardware subsets. */
38 extern int target_flags;
40 /* Global registers known to hold the value zero. */
41 extern struct rtx_def *zero_dreg;
42 extern struct rtx_def *zero_areg;
44 /* Macros used in the machine description to test the flags. */
46 /* Macro to define tables used to set the flags.
47 This is a list in braces of pairs in braces,
48 each pair being { "NAME", VALUE }
49 where VALUE is the bits to set or minus the bits to clear.
50 An empty string NAME is used to identify the default VALUE. */
52 #define TARGET_SWITCHES \
53 {{ "", TARGET_DEFAULT}}
55 #ifndef TARGET_DEFAULT
56 #define TARGET_DEFAULT 0
57 #endif
59 /* Print subsidiary information on the compiler version in use. */
61 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
64 /* Target machine storage layout */
66 /* Define this if most significant bit is lowest numbered
67 in instructions that operate on numbered bit-fields.
68 This is not true on the Matsushita MN1003. */
69 #define BITS_BIG_ENDIAN 0
71 /* Define this if most significant byte of a word is the lowest numbered. */
72 /* This is not true on the Matsushita MN10300. */
73 #define BYTES_BIG_ENDIAN 0
75 /* Define this if most significant word of a multiword number is lowest
76 numbered.
77 This is not true on the Matsushita MN10300. */
78 #define WORDS_BIG_ENDIAN 0
80 /* Number of bits in an addressable storage unit */
81 #define BITS_PER_UNIT 8
83 /* Width in bits of a "word", which is the contents of a machine register.
84 Note that this is not necessarily the width of data type `int';
85 if using 16-bit ints on a 68000, this would still be 32.
86 But on a machine with 16-bit registers, this would be 16. */
87 #define BITS_PER_WORD 32
89 /* Width of a word, in units (bytes). */
90 #define UNITS_PER_WORD 4
92 /* Width in bits of a pointer.
93 See also the macro `Pmode' defined below. */
94 #define POINTER_SIZE 32
96 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
97 #define PARM_BOUNDARY 32
99 /* The stack goes in 32 bit lumps. */
100 #define STACK_BOUNDARY 32
102 /* Allocation boundary (in *bits*) for the code of a function.
103 8 is the minimum boundary; it's unclear if bigger alignments
104 would improve performance. */
105 #define FUNCTION_BOUNDARY 8
107 /* No data type wants to be aligned rounder than this. */
108 #define BIGGEST_ALIGNMENT 32
110 /* Alignment of field after `int : 0' in a structure. */
111 #define EMPTY_FIELD_BOUNDARY 32
113 /* Define this if move instructions will actually fail to work
114 when given unaligned data. */
115 #define STRICT_ALIGNMENT 1
117 /* Define this as 1 if `char' should by default be signed; else as 0. */
118 #define DEFAULT_SIGNED_CHAR 0
120 /* Define results of standard character escape sequences. */
121 #define TARGET_BELL 007
122 #define TARGET_BS 010
123 #define TARGET_TAB 011
124 #define TARGET_NEWLINE 012
125 #define TARGET_VT 013
126 #define TARGET_FF 014
127 #define TARGET_CR 015
129 /* Standard register usage. */
131 /* Number of actual hardware registers.
132 The hardware registers are assigned numbers for the compiler
133 from 0 to just below FIRST_PSEUDO_REGISTER.
135 All registers that the compiler knows about must be given numbers,
136 even those that are not normally considered general registers. */
138 #define FIRST_PSEUDO_REGISTER 10
140 /* 1 for registers that have pervasive standard uses
141 and are not available for the register allocator. */
143 #define FIXED_REGISTERS \
144 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}
146 /* 1 for registers not available across function calls.
147 These must include the FIXED_REGISTERS and also any
148 registers that can be used without being saved.
149 The latter must include the registers where values are returned
150 and the register where structure-value addresses are passed.
151 Aside from that, you can include as many other registers as you
152 like. */
154 #define CALL_USED_REGISTERS \
155 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1}
157 #define REG_ALLOC_ORDER \
158 { 0, 1, 4, 5, 2, 3, 6, 7, 8, 9}
160 /* Return number of consecutive hard regs needed starting at reg REGNO
161 to hold something of mode MODE.
163 This is ordinarily the length in words of a value of mode MODE
164 but can be less for certain modes in special long registers. */
166 #define HARD_REGNO_NREGS(REGNO, MODE) \
167 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
169 /* Value is 1 if hard register REGNO can hold a value of machine-mode
170 MODE. */
172 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
173 (REGNO_REG_CLASS (REGNO) == DATA_REGS \
174 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
175 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
177 /* Value is 1 if it is a good idea to tie two pseudo registers
178 when one has mode MODE1 and one has mode MODE2.
179 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
180 for any hard reg, then this must be 0 for correct output. */
181 #define MODES_TIEABLE_P(MODE1, MODE2) \
182 (MODE1 == MODE2 || GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4)
184 /* 4 data, and effectively 3 address registers is small as far as I'm
185 concerned. */
186 #define SMALL_REGISTER_CLASSES 1
188 /* Define the classes of registers for register constraints in the
189 machine description. Also define ranges of constants.
191 One of the classes must always be named ALL_REGS and include all hard regs.
192 If there is more than one class, another class must be named NO_REGS
193 and contain no registers.
195 The name GENERAL_REGS must be the name of a class (or an alias for
196 another name such as ALL_REGS). This is the class of registers
197 that is allowed by "g" or "r" in a register constraint.
198 Also, registers outside this class are allocated only when
199 instructions express preferences for them.
201 The classes must be numbered in nondecreasing order; that is,
202 a larger-numbered class must never be contained completely
203 in a smaller-numbered class.
205 For any two classes, it is very desirable that there be another
206 class that represents their union. */
208 enum reg_class {
209 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
212 #define N_REG_CLASSES (int) LIM_REG_CLASSES
214 /* Give names of register classes as strings for dump file. */
216 #define REG_CLASS_NAMES \
217 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
218 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
219 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
221 /* Define which registers fit in which classes.
222 This is an initializer for a vector of HARD_REG_SET
223 of length N_REG_CLASSES. */
225 #define REG_CLASS_CONTENTS \
226 { 0, /* No regs */ \
227 0x00f, /* DATA_REGS */ \
228 0x1f0, /* ADDRESS_REGS */ \
229 0x200, /* SP_REGS */ \
230 0x1ff, /* DATA_OR_ADDRESS_REGS */\
231 0x1f0, /* SP_OR_ADDRESS_REGS */\
232 0x1ff, /* GENERAL_REGS */ \
233 0x3ff, /* ALL_REGS */ \
236 /* The same information, inverted:
237 Return the class number of the smallest class containing
238 reg number REGNO. This could be a conditional expression
239 or could index an array. */
241 #define REGNO_REG_CLASS(REGNO) \
242 ((REGNO) < 4 ? DATA_REGS : \
243 (REGNO) < 9 ? ADDRESS_REGS : \
244 (REGNO) == 9 ? SP_REGS: 0)
246 /* The class value for index registers, and the one for base regs. */
248 #define INDEX_REG_CLASS DATA_REGS
249 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
251 /* Get reg_class from a letter such as appears in the machine description. */
253 #define REG_CLASS_FROM_LETTER(C) \
254 ((C) == 'd' ? DATA_REGS : \
255 (C) == 'a' ? ADDRESS_REGS : \
256 (C) == 'x' ? SP_REGS : NO_REGS)
258 /* Macros to check register numbers against specific register classes. */
260 /* These assume that REGNO is a hard or pseudo reg number.
261 They give nonzero only if REGNO is a hard reg of the suitable class
262 or a pseudo reg currently allocated to a suitable hard reg.
263 Since they use reg_renumber, they are safe only once reg_renumber
264 has been allocated, which happens in local-alloc.c. */
266 #define REGNO_OK_FOR_BASE_P(regno) \
267 (((regno) > 3 && regno < FIRST_PSEUDO_REGISTER) \
268 || (reg_renumber[regno] > 3 && reg_renumber[regno] < FIRST_PSEUDO_REGISTER))
270 #define REGNO_OK_FOR_INDEX_P(regno) \
271 (((regno) >= 0 && regno < 4) \
272 || (reg_renumber[regno] >= 0 && reg_renumber[regno] < 4))
275 /* Given an rtx X being reloaded into a reg required to be
276 in class CLASS, return the class of reg to actually use.
277 In general this is just CLASS; but on some machines
278 in some cases it is preferable to use a more restrictive class. */
280 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
281 (X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS)
283 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
284 (X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS)
286 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
287 ((MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
289 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
290 secondary_reload_class(CLASS,MODE,IN)
292 /* Return the maximum number of consecutive registers
293 needed to represent mode MODE in a register of class CLASS. */
295 #define CLASS_MAX_NREGS(CLASS, MODE) \
296 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
298 /* The letters I, J, K, L, M, N, O, P in a register constraint string
299 can be used to stand for particular ranges of immediate operands.
300 This macro defines what the ranges are.
301 C is the letter, and VALUE is a constant value.
302 Return 1 if VALUE is in the range specified by C. */
304 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
305 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
307 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
308 #define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
309 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
310 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
311 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
312 #define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
314 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
315 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
316 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
317 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
318 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
319 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
320 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
323 /* Similar, but for floating constants, and defining letters G and H.
324 Here VALUE is the CONST_DOUBLE rtx itself.
326 `G' is a floating-point zero. */
328 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
329 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
330 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
333 /* Stack layout; function entry, exit and calling. */
335 /* Define this if pushing a word on the stack
336 makes the stack pointer a smaller address. */
338 #define STACK_GROWS_DOWNWARD
340 /* Define this if the nominal address of the stack frame
341 is at the high-address end of the local variables;
342 that is, each additional local variable allocated
343 goes at a more negative offset in the frame. */
345 #define FRAME_GROWS_DOWNWARD
347 /* Offset within stack frame to start allocating local variables at.
348 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
349 first local allocated. Otherwise, it is the offset to the BEGINNING
350 of the first local allocated. */
352 #define STARTING_FRAME_OFFSET 0
354 /* Offset of first parameter from the argument pointer register value. */
355 /* Is equal to the size of the saved fp + pc, even if an fp isn't
356 saved since the value is used before we know. */
358 #define FIRST_PARM_OFFSET(FNDECL) 4
360 /* Specify the registers used for certain standard purposes.
361 The values of these macros are register numbers. */
363 /* Register to use for pushing function arguments. */
364 #define STACK_POINTER_REGNUM 9
366 /* Base register for access to local variables of the function. */
367 #define FRAME_POINTER_REGNUM 7
369 /* Base register for access to arguments of the function. This
370 is a fake register and will be eliminated into either the frame
371 pointer or stack pointer. */
372 #define ARG_POINTER_REGNUM 8
374 /* Register in which static-chain is passed to a function. */
375 #define STATIC_CHAIN_REGNUM 5
377 #define ELIMINABLE_REGS \
378 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
379 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
380 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
382 #define CAN_ELIMINATE(FROM, TO) 1
384 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
385 OFFSET = initial_offset (FROM, TO)
387 /* We can debug without frame pointers on the mn10300, so eliminate
388 them whenever possible. */
389 #define FRAME_POINTER_REQUIRED 0
390 #define CAN_DEBUG_WITHOUT_FP
392 /* A guess for the MN10300. */
393 #define PROMOTE_PROTOTYPES 1
395 /* Value is the number of bytes of arguments automatically
396 popped when returning from a subroutine call.
397 FUNDECL is the declaration node of the function (as a tree),
398 FUNTYPE is the data type of the function (as a tree),
399 or for a library call it is an identifier node for the subroutine name.
400 SIZE is the number of bytes of arguments passed on the stack. */
402 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
404 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
405 for a register flushback area. */
406 #define REG_PARM_STACK_SPACE(DECL) 8
407 #define OUTGOING_REG_PARM_STACK_SPACE
408 #define ACCUMULATE_OUTGOING_ARGS
410 /* So we can allocate space for return pointers once for the function
411 instead of around every call. */
412 #define STACK_POINTER_OFFSET 4
414 /* 1 if N is a possible register number for function argument passing.
415 On the MN10300, no registers are used in this way. */
417 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
420 /* Define a data type for recording info about an argument list
421 during the scan of that argument list. This data type should
422 hold all necessary information about the function itself
423 and about the args processed so far, enough to enable macros
424 such as FUNCTION_ARG to determine where the next arg should go.
426 On the MN10300, this is a single integer, which is a number of bytes
427 of arguments scanned so far. */
429 #define CUMULATIVE_ARGS struct cum_arg
430 struct cum_arg {int nbytes; };
432 /* Initialize a variable CUM of type CUMULATIVE_ARGS
433 for a call to a function whose data type is FNTYPE.
434 For a library call, FNTYPE is 0.
436 On the MN10300, the offset starts at 0. */
438 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
439 ((CUM).nbytes = 0)
441 /* Update the data in CUM to advance over an argument
442 of mode MODE and data type TYPE.
443 (TYPE is null for libcalls where that information may not be available.) */
445 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
446 ((CUM).nbytes += ((MODE) != BLKmode \
447 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
448 : (int_size_in_bytes (TYPE) + 3) & ~3))
450 /* Define where to put the arguments to a function.
451 Value is zero to push the argument on the stack,
452 or a hard register in which to store the argument.
454 MODE is the argument's machine mode.
455 TYPE is the data type of the argument (as a tree).
456 This is null for libcalls where that information may
457 not be available.
458 CUM is a variable of type CUMULATIVE_ARGS which gives info about
459 the preceding args and about the function being called.
460 NAMED is nonzero if this argument is a named parameter
461 (otherwise it is an extra parameter matching an ellipsis). */
463 /* On the MN10300 all args are pushed. */
465 extern struct rtx_def *function_arg ();
466 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
467 function_arg (&CUM, MODE, TYPE, NAMED)
469 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
470 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
473 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
474 ((TYPE) && int_size_in_bytes (TYPE) > 8)
476 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
477 ((TYPE) && int_size_in_bytes (TYPE) > 8)
479 /* Define how to find the value returned by a function.
480 VALTYPE is the data type of the value (as a tree).
481 If the precise function being called is known, FUNC is its FUNCTION_DECL;
482 otherwise, FUNC is 0. */
484 #define FUNCTION_VALUE(VALTYPE, FUNC) \
485 gen_rtx (REG, TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) ? 4 : 0)
487 /* Define how to find the value returned by a library function
488 assuming the value has mode MODE. */
490 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
492 /* 1 if N is a possible register number for a function value. */
494 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 4)
496 /* Return values > 8 bytes in length in memory. */
497 #define DEFAULT_PCC_STRUCT_RETURN 0
498 #define RETURN_IN_MEMORY(TYPE) \
499 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
501 /* Register in which address to store a structure value
502 is passed to a function. On the MN10300 it's passed as
503 the first parameter. */
505 #define STRUCT_VALUE 0
507 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
508 the stack pointer does not matter. The value is tested only in
509 functions that have frame pointers.
510 No definition is equivalent to always zero. */
512 #define EXIT_IGNORE_STACK 1
514 /* Output assembler code to FILE to increment profiler label # LABELNO
515 for profiling a function entry. */
517 #define FUNCTION_PROFILER(FILE, LABELNO) ;
519 #define TRAMPOLINE_TEMPLATE(FILE) \
520 do { \
521 fprintf (FILE, "\tadd -4,sp\n"); \
522 fprintf (FILE, "\t.long 0x0004fffa\n"); \
523 fprintf (FILE, "\tmov (0,sp),a0\n"); \
524 fprintf (FILE, "\tadd 4,sp\n"); \
525 fprintf (FILE, "\tmov (13,a0),a1\n"); \
526 fprintf (FILE, "\tmov (17,a0),a0\n"); \
527 fprintf (FILE, "\tjmp (a0)\n"); \
528 fprintf (FILE, "\t.long 0\n"); \
529 fprintf (FILE, "\t.long 0\n"); \
530 } while (0)
532 /* Length in units of the trampoline for entering a nested function. */
534 #define TRAMPOLINE_SIZE 0x1b
536 #define TRAMPOLINE_ALIGNMENT 32
538 /* Emit RTL insns to initialize the variable parts of a trampoline.
539 FNADDR is an RTX for the address of the function's pure code.
540 CXT is an RTX for the static chain value for the function. */
542 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
544 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 0x14)), \
545 (CXT)); \
546 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 0x18)), \
547 (FNADDR)); \
549 /* A C expression whose value is RTL representing the value of the return
550 address for the frame COUNT steps up from the current frame.
552 On the mn10300, the return address is not at a constant location
553 due to the frame layout. Luckily, it is at a constant offset from
554 the argument pointer, so we define RETURN_ADDR_RTX to return a
555 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
556 with a reference to the stack/frame pointer + an appropriate offset. */
558 #define RETURN_ADDR_RTX(COUNT, FRAME) \
559 ((COUNT == 0) \
560 ? gen_rtx (MEM, Pmode, arg_pointer_rtx) \
561 : (rtx) 0)
563 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
564 reference the 2 integer arg registers.
565 Ordinarily they are not call used registers, but they are for
566 _builtin_saveregs, so we must make this explicit. */
568 extern struct rtx_def *mn10300_builtin_saveregs ();
569 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) mn10300_builtin_saveregs (ARGLIST)
571 /* Addressing modes, and classification of registers for them. */
574 /* 1 if X is an rtx for a constant that is a valid address. */
576 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
578 /* Extra constraints. */
580 #define OK_FOR_R(OP) \
581 (GET_CODE (OP) == MEM \
582 && GET_MODE (OP) == QImode \
583 && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
584 || (GET_CODE (XEXP (OP, 0)) == REG \
585 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
586 && XEXP (OP, 0) != stack_pointer_rtx) \
587 || (GET_CODE (XEXP (OP, 0)) == PLUS \
588 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
589 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0)) \
590 && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
591 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
592 && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
594 #define EXTRA_CONSTRAINT(OP, C) \
595 ((C) == 'R' ? OK_FOR_R (OP) : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF : 0)
597 /* Maximum number of registers that can appear in a valid memory address. */
599 #define MAX_REGS_PER_ADDRESS 2
601 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
602 and check its validity for a certain class.
603 We have two alternate definitions for each of them.
604 The usual definition accepts all pseudo regs; the other rejects
605 them unless they have been allocated suitable hard regs.
606 The symbol REG_OK_STRICT causes the latter definition to be used.
608 Most source files want to accept pseudo regs in the hope that
609 they will get allocated to the class that the insn wants them to be in.
610 Source files for reload pass need to be strict.
611 After reload, it makes no difference, since pseudo regs have
612 been eliminated by then. */
614 #ifndef REG_OK_STRICT
615 /* Nonzero if X is a hard reg that can be used as an index
616 or if it is a pseudo reg. */
617 #define REG_OK_FOR_INDEX_P(X) \
618 ((REGNO (X) >= 0 && REGNO(X) <= 3) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
619 /* Nonzero if X is a hard reg that can be used as a base reg
620 or if it is a pseudo reg. */
621 #define REG_OK_FOR_BASE_P(X) \
622 ((REGNO (X) >= 4 && REGNO(X) <= 9) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
623 #else
624 /* Nonzero if X is a hard reg that can be used as an index. */
625 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
626 /* Nonzero if X is a hard reg that can be used as a base reg. */
627 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
628 #endif
631 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
632 that is a valid memory address for an instruction.
633 The MODE argument is the machine mode for the MEM expression
634 that wants to use this address.
636 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
637 except for CONSTANT_ADDRESS_P which is actually
638 machine-independent. */
640 /* Accept either REG or SUBREG where a register is valid. */
642 #define RTX_OK_FOR_BASE_P(X) \
643 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
644 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
645 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
647 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
649 if (CONSTANT_ADDRESS_P (X)) \
650 goto ADDR; \
651 if (RTX_OK_FOR_BASE_P (X)) \
652 goto ADDR; \
653 if (GET_CODE (X) == PLUS) \
655 rtx base = 0, index = 0; \
656 if (REG_P (XEXP (X, 0)) \
657 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
658 base = XEXP (X, 0), index = XEXP (X, 1); \
659 if (REG_P (XEXP (X, 1)) \
660 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
661 base = XEXP (X, 1), index = XEXP (X, 0); \
662 if (base != 0 && index != 0) \
664 if (CONSTANT_ADDRESS_P (index)) \
665 goto ADDR; \
666 if (REG_P (index) \
667 && REG_OK_FOR_INDEX_P (index) \
668 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (word_mode)) \
669 goto ADDR; \
675 /* Try machine-dependent ways of modifying an illegitimate address
676 to be legitimate. If we find one, return the new, valid address.
677 This macro is used in only one place: `memory_address' in explow.c.
679 OLDX is the address as it was before break_out_memory_refs was called.
680 In some cases it is useful to look at this to decide what needs to be done.
682 MODE and WIN are passed so that this macro can use
683 GO_IF_LEGITIMATE_ADDRESS.
685 It is always safe for this macro to do nothing. It exists to recognize
686 opportunities to optimize the output. */
688 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
690 /* Go to LABEL if ADDR (a legitimate address expression)
691 has an effect that depends on the machine mode it is used for. */
693 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
695 /* Nonzero if the constant value X is a legitimate general operand.
696 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
698 #define LEGITIMATE_CONSTANT_P(X) 1
701 /* Tell final.c how to eliminate redundant test instructions. */
703 /* Here we define machine-dependent flags and fields in cc_status
704 (see `conditions.h'). No extra ones are needed for the vax. */
706 /* Store in cc_status the expressions
707 that the condition codes will describe
708 after execution of an instruction whose pattern is EXP.
709 Do not alter them if the instruction would not alter the cc's. */
711 #define CC_OVERFLOW_UNUSABLE 0x200
712 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
714 /* Compute the cost of computing a constant rtl expression RTX
715 whose rtx-code is CODE. The body of this macro is a portion
716 of a switch statement. If the code is computed here,
717 return it with a return statement. Otherwise, break from the switch. */
719 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
720 case CONST_INT: \
721 /* Zeros are extremely cheap. */ \
722 if (INTVAL (RTX) == 0 && OUTER_CODE == SET) \
723 return 0; \
724 /* If it fits in 8 bits, then it's still relatively cheap. */ \
725 if (INT_8_BITS (INTVAL (RTX))) \
726 return 1; \
727 /* This is the "base" cost, includes constants where either the \
728 upper or lower 16bits are all zeros. */ \
729 if (INT_16_BITS (INTVAL (RTX)) \
730 || (INTVAL (RTX) & 0xffff) == 0 \
731 || (INTVAL (RTX) & 0xffff0000) == 0) \
732 return 2; \
733 return 4; \
734 /* These are more costly than a CONST_INT, but we can relax them, \
735 so they're less costly than a CONST_DOUBLE. */ \
736 case CONST: \
737 case LABEL_REF: \
738 case SYMBOL_REF: \
739 return 6; \
740 /* We don't optimize CONST_DOUBLEs well nor do we relax them well, \
741 so their cost is very high. */ \
742 case CONST_DOUBLE: \
743 return 8;
746 #define REGISTER_MOVE_COST(CLASS1, CLASS2) (CLASS1 != CLASS2 ? 4 : 2)
748 /* A crude cut at RTX_COSTS for the MN10300. */
750 /* Provide the costs of a rtl expression. This is in the body of a
751 switch on CODE. */
752 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
753 case MOD: \
754 case DIV: \
755 return 8; \
756 case MULT: \
757 return 8;
759 /* Nonzero if access to memory by bytes or half words is no faster
760 than accessing full words. */
761 #define SLOW_BYTE_ACCESS 1
763 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
764 and readonly data size. So we crank up the case threshold value to
765 encourage a series of if/else comparisons to implement many small switch
766 statements. In theory, this value could be increased much more if we
767 were solely optimizing for space, but we keep it "reasonable" to avoid
768 serious code efficiency lossage. */
769 #define CASE_VALUES_THRESHOLD 6
771 #define NO_FUNCTION_CSE
773 /* According expr.c, a value of around 6 should minimize code size, and
774 for the MN10300 series, that's our primary concern. */
775 #define MOVE_RATIO 6
777 #define TEXT_SECTION_ASM_OP "\t.section .text"
778 #define DATA_SECTION_ASM_OP "\t.section .data"
779 #define BSS_SECTION_ASM_OP "\t.section .bss"
781 /* Output at beginning/end of assembler file. */
782 #undef ASM_FILE_START
783 #define ASM_FILE_START(FILE) asm_file_start(FILE)
785 #define ASM_COMMENT_START "#"
787 /* Output to assembler file text saying following lines
788 may contain character constants, extra white space, comments, etc. */
790 #define ASM_APP_ON "#APP\n"
792 /* Output to assembler file text saying following lines
793 no longer contain unusual constructs. */
795 #define ASM_APP_OFF "#NO_APP\n"
797 /* This is how to output an assembler line defining a `double' constant.
798 It is .dfloat or .gfloat, depending. */
800 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
801 do { char dstr[30]; \
802 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
803 fprintf (FILE, "\t.double %s\n", dstr); \
804 } while (0)
807 /* This is how to output an assembler line defining a `float' constant. */
808 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
809 do { char dstr[30]; \
810 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
811 fprintf (FILE, "\t.float %s\n", dstr); \
812 } while (0)
814 /* This is how to output an assembler line defining an `int' constant. */
816 #define ASM_OUTPUT_INT(FILE, VALUE) \
817 ( fprintf (FILE, "\t.long "), \
818 output_addr_const (FILE, (VALUE)), \
819 fprintf (FILE, "\n"))
821 /* Likewise for `char' and `short' constants. */
823 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
824 ( fprintf (FILE, "\t.hword "), \
825 output_addr_const (FILE, (VALUE)), \
826 fprintf (FILE, "\n"))
828 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
829 ( fprintf (FILE, "\t.byte "), \
830 output_addr_const (FILE, (VALUE)), \
831 fprintf (FILE, "\n"))
833 /* This is how to output an assembler line for a numeric constant byte. */
834 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
835 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
837 /* Define the parentheses used to group arithmetic operations
838 in assembler code. */
840 #define ASM_OPEN_PAREN "("
841 #define ASM_CLOSE_PAREN ")"
843 /* This says how to output the assembler to define a global
844 uninitialized but not common symbol.
845 Try to use asm_output_bss to implement this macro. */
847 #define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ROUNDED) \
848 asm_output_bss ((FILE), (DECL), (NAME), (SIZE), (ROUNDED))
850 /* This is how to output the definition of a user-level label named NAME,
851 such as the label on a static function or variable NAME. */
853 #define ASM_OUTPUT_LABEL(FILE, NAME) \
854 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
856 /* This is how to output a command to make the user-level label named NAME
857 defined for reference from other files. */
859 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
860 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
862 /* This is how to output a reference to a user-level label named NAME.
863 `assemble_name' uses this. */
865 #undef ASM_OUTPUT_LABELREF
866 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
867 do { \
868 char* real_name; \
869 STRIP_NAME_ENCODING (real_name, (NAME)); \
870 fprintf (FILE, "_%s", real_name); \
871 } while (0)
873 /* Store in OUTPUT a string (made with alloca) containing
874 an assembler-name for a local static variable named NAME.
875 LABELNO is an integer which is different for each call. */
877 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
878 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
879 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
881 /* This is how we tell the assembler that two symbols have the same value. */
883 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
884 do { assemble_name(FILE, NAME1); \
885 fputs(" = ", FILE); \
886 assemble_name(FILE, NAME2); \
887 fputc('\n', FILE); } while (0)
890 /* How to refer to registers in assembler output.
891 This sequence is indexed by compiler's hard-register-number (see above). */
893 #define REGISTER_NAMES \
894 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp" }
896 /* Print an instruction operand X on file FILE.
897 look in mn10300.c for details */
899 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
901 /* Print a memory operand whose address is X, on file FILE.
902 This uses a function in output-vax.c. */
904 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
906 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
907 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
909 /* This is how to output an element of a case-vector that is absolute. */
911 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
912 asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
914 /* This is how to output an element of a case-vector that is relative. */
916 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
917 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
919 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
920 if ((LOG) != 0) \
921 fprintf (FILE, "\t.align %d\n", (LOG))
923 /* We don't have to worry about dbx compatability for the mn10300. */
924 #define DEFAULT_GDB_EXTENSIONS 1
926 /* Use stabs debugging info by default. */
927 #undef PREFERRED_DEBUGGING_TYPE
928 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
930 #define DBX_REGISTER_NUMBER(REGNO) REGNO
932 /* Define to use software floating point emulator for REAL_ARITHMETIC and
933 decimal <-> binary conversion. */
934 #define REAL_ARITHMETIC
936 /* Specify the machine mode that this machine uses
937 for the index in the tablejump instruction. */
938 #define CASE_VECTOR_MODE Pmode
940 /* Define this if the case instruction drops through after the table
941 when the index is out of range. Don't define it if the case insn
942 jumps to the default label instead. */
943 #define CASE_DROPS_THROUGH
945 /* Define if operations between registers always perform the operation
946 on the full register even if a narrower mode is specified. */
947 #define WORD_REGISTER_OPERATIONS
949 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
951 /* Specify the tree operation to be used to convert reals to integers. */
952 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
954 /* This flag, if defined, says the same insns that convert to a signed fixnum
955 also convert validly to an unsigned one. */
956 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
958 /* This is the kind of divide that is easiest to do in the general case. */
959 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
961 /* Max number of bytes we can move from memory to memory
962 in one reasonably fast instruction. */
963 #define MOVE_MAX 4
965 /* Define if shifts truncate the shift count
966 which implies one can omit a sign-extension or zero-extension
967 of a shift count. */
968 #define SHIFT_COUNT_TRUNCATED 1
970 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
971 is done just by pretending it is already truncated. */
972 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
974 #define STORE_FLAG_VALUE 1
976 /* Specify the machine mode that pointers have.
977 After generation of rtl, the compiler makes no further distinction
978 between pointers and any other objects of this machine mode. */
979 #define Pmode SImode
981 /* A function address in a call instruction
982 is a byte address (for indexing purposes)
983 so give the MEM rtx a byte's mode. */
984 #define FUNCTION_MODE QImode
986 /* The assembler op to get a word. */
988 #define FILE_ASM_OP "\t.file\n"
990 extern void asm_file_start ();
991 extern int const_costs ();
992 extern void print_operand ();
993 extern void print_operand_address ();
994 extern void expand_prologue ();
995 extern void expand_epilogue ();
996 extern void notice_update_cc ();
997 extern int call_address_operand ();
998 extern int impossible_plus_operand ();
999 extern enum reg_class secondary_reload_class ();
1000 extern int initial_offset ();
1001 extern char *output_tst ();