This commit was manufactured by cvs2svn to create branch
[official-gcc.git] / gcc / gcse.c
blob5535aa121a717be12cdeec9ff846829ac5c16e20
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
225 the expense.
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
233 substitutions.
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing register.
269 **********************
271 A fair bit of simplicity is created by creating small functions for simple
272 tasks, even when the function is only called in one place. This may
273 measurably slow things down [or may not] by creating more function call
274 overhead than is necessary. The source is laid out so that it's trivial
275 to make the affected functions inline so that one can measure what speed
276 up, if any, can be achieved, and maybe later when things settle things can
277 be rearranged.
279 Help stamp out big monolithic functions! */
281 /* GCSE global vars. */
283 /* -dG dump file. */
284 static FILE *gcse_file;
286 /* Note whether or not we should run jump optimization after gcse. We
287 want to do this for two cases.
289 * If we changed any jumps via cprop.
291 * If we added any labels via edge splitting. */
292 static int run_jump_opt_after_gcse;
294 /* Bitmaps are normally not included in debugging dumps.
295 However it's useful to be able to print them from GDB.
296 We could create special functions for this, but it's simpler to
297 just allow passing stderr to the dump_foo fns. Since stderr can
298 be a macro, we store a copy here. */
299 static FILE *debug_stderr;
301 /* An obstack for our working variables. */
302 static struct obstack gcse_obstack;
304 struct reg_use {rtx reg_rtx; };
306 /* Hash table of expressions. */
308 struct expr
310 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
311 rtx expr;
312 /* Index in the available expression bitmaps. */
313 int bitmap_index;
314 /* Next entry with the same hash. */
315 struct expr *next_same_hash;
316 /* List of anticipatable occurrences in basic blocks in the function.
317 An "anticipatable occurrence" is one that is the first occurrence in the
318 basic block, the operands are not modified in the basic block prior
319 to the occurrence and the output is not used between the start of
320 the block and the occurrence. */
321 struct occr *antic_occr;
322 /* List of available occurrence in basic blocks in the function.
323 An "available occurrence" is one that is the last occurrence in the
324 basic block and the operands are not modified by following statements in
325 the basic block [including this insn]. */
326 struct occr *avail_occr;
327 /* Non-null if the computation is PRE redundant.
328 The value is the newly created pseudo-reg to record a copy of the
329 expression in all the places that reach the redundant copy. */
330 rtx reaching_reg;
333 /* Occurrence of an expression.
334 There is one per basic block. If a pattern appears more than once the
335 last appearance is used [or first for anticipatable expressions]. */
337 struct occr
339 /* Next occurrence of this expression. */
340 struct occr *next;
341 /* The insn that computes the expression. */
342 rtx insn;
343 /* Nonzero if this [anticipatable] occurrence has been deleted. */
344 char deleted_p;
345 /* Nonzero if this [available] occurrence has been copied to
346 reaching_reg. */
347 /* ??? This is mutually exclusive with deleted_p, so they could share
348 the same byte. */
349 char copied_p;
352 /* Expression and copy propagation hash tables.
353 Each hash table is an array of buckets.
354 ??? It is known that if it were an array of entries, structure elements
355 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
356 not clear whether in the final analysis a sufficient amount of memory would
357 be saved as the size of the available expression bitmaps would be larger
358 [one could build a mapping table without holes afterwards though].
359 Someday I'll perform the computation and figure it out. */
361 struct hash_table
363 /* The table itself.
364 This is an array of `expr_hash_table_size' elements. */
365 struct expr **table;
367 /* Size of the hash table, in elements. */
368 unsigned int size;
370 /* Number of hash table elements. */
371 unsigned int n_elems;
373 /* Whether the table is expression of copy propagation one. */
374 int set_p;
377 /* Expression hash table. */
378 static struct hash_table expr_hash_table;
380 /* Copy propagation hash table. */
381 static struct hash_table set_hash_table;
383 /* Mapping of uids to cuids.
384 Only real insns get cuids. */
385 static int *uid_cuid;
387 /* Highest UID in UID_CUID. */
388 static int max_uid;
390 /* Get the cuid of an insn. */
391 #ifdef ENABLE_CHECKING
392 #define INSN_CUID(INSN) \
393 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
394 #else
395 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
396 #endif
398 /* Number of cuids. */
399 static int max_cuid;
401 /* Mapping of cuids to insns. */
402 static rtx *cuid_insn;
404 /* Get insn from cuid. */
405 #define CUID_INSN(CUID) (cuid_insn[CUID])
407 /* Maximum register number in function prior to doing gcse + 1.
408 Registers created during this pass have regno >= max_gcse_regno.
409 This is named with "gcse" to not collide with global of same name. */
410 static unsigned int max_gcse_regno;
412 /* Table of registers that are modified.
414 For each register, each element is a list of places where the pseudo-reg
415 is set.
417 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
418 requires knowledge of which blocks kill which regs [and thus could use
419 a bitmap instead of the lists `reg_set_table' uses].
421 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
422 num-regs) [however perhaps it may be useful to keep the data as is]. One
423 advantage of recording things this way is that `reg_set_table' is fairly
424 sparse with respect to pseudo regs but for hard regs could be fairly dense
425 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
426 up functions like compute_transp since in the case of pseudo-regs we only
427 need to iterate over the number of times a pseudo-reg is set, not over the
428 number of basic blocks [clearly there is a bit of a slow down in the cases
429 where a pseudo is set more than once in a block, however it is believed
430 that the net effect is to speed things up]. This isn't done for hard-regs
431 because recording call-clobbered hard-regs in `reg_set_table' at each
432 function call can consume a fair bit of memory, and iterating over
433 hard-regs stored this way in compute_transp will be more expensive. */
435 typedef struct reg_set
437 /* The next setting of this register. */
438 struct reg_set *next;
439 /* The index of the block where it was set. */
440 int bb_index;
441 } reg_set;
443 static reg_set **reg_set_table;
445 /* Size of `reg_set_table'.
446 The table starts out at max_gcse_regno + slop, and is enlarged as
447 necessary. */
448 static int reg_set_table_size;
450 /* Amount to grow `reg_set_table' by when it's full. */
451 #define REG_SET_TABLE_SLOP 100
453 /* This is a list of expressions which are MEMs and will be used by load
454 or store motion.
455 Load motion tracks MEMs which aren't killed by
456 anything except itself. (i.e., loads and stores to a single location).
457 We can then allow movement of these MEM refs with a little special
458 allowance. (all stores copy the same value to the reaching reg used
459 for the loads). This means all values used to store into memory must have
460 no side effects so we can re-issue the setter value.
461 Store Motion uses this structure as an expression table to track stores
462 which look interesting, and might be moveable towards the exit block. */
464 struct ls_expr
466 struct expr * expr; /* Gcse expression reference for LM. */
467 rtx pattern; /* Pattern of this mem. */
468 rtx pattern_regs; /* List of registers mentioned by the mem. */
469 rtx loads; /* INSN list of loads seen. */
470 rtx stores; /* INSN list of stores seen. */
471 struct ls_expr * next; /* Next in the list. */
472 int invalid; /* Invalid for some reason. */
473 int index; /* If it maps to a bitmap index. */
474 unsigned int hash_index; /* Index when in a hash table. */
475 rtx reaching_reg; /* Register to use when re-writing. */
478 /* Array of implicit set patterns indexed by basic block index. */
479 static rtx *implicit_sets;
481 /* Head of the list of load/store memory refs. */
482 static struct ls_expr * pre_ldst_mems = NULL;
484 /* Bitmap containing one bit for each register in the program.
485 Used when performing GCSE to track which registers have been set since
486 the start of the basic block. */
487 static regset reg_set_bitmap;
489 /* For each block, a bitmap of registers set in the block.
490 This is used by compute_transp.
491 It is computed during hash table computation and not by compute_sets
492 as it includes registers added since the last pass (or between cprop and
493 gcse) and it's currently not easy to realloc sbitmap vectors. */
494 static sbitmap *reg_set_in_block;
496 /* Array, indexed by basic block number for a list of insns which modify
497 memory within that block. */
498 static rtx * modify_mem_list;
499 static bitmap modify_mem_list_set;
501 /* This array parallels modify_mem_list, but is kept canonicalized. */
502 static rtx * canon_modify_mem_list;
503 static bitmap canon_modify_mem_list_set;
505 /* Various variables for statistics gathering. */
507 /* Memory used in a pass.
508 This isn't intended to be absolutely precise. Its intent is only
509 to keep an eye on memory usage. */
510 static int bytes_used;
512 /* GCSE substitutions made. */
513 static int gcse_subst_count;
514 /* Number of copy instructions created. */
515 static int gcse_create_count;
516 /* Number of local constants propagated. */
517 static int local_const_prop_count;
518 /* Number of local copys propagated. */
519 static int local_copy_prop_count;
520 /* Number of global constants propagated. */
521 static int global_const_prop_count;
522 /* Number of global copys propagated. */
523 static int global_copy_prop_count;
525 /* For available exprs */
526 static sbitmap *ae_kill, *ae_gen;
528 static void compute_can_copy (void);
529 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
530 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
531 static void *grealloc (void *, size_t);
532 static void *gcse_alloc (unsigned long);
533 static void alloc_gcse_mem (rtx);
534 static void free_gcse_mem (void);
535 static void alloc_reg_set_mem (int);
536 static void free_reg_set_mem (void);
537 static void record_one_set (int, rtx);
538 static void record_set_info (rtx, rtx, void *);
539 static void compute_sets (rtx);
540 static void hash_scan_insn (rtx, struct hash_table *, int);
541 static void hash_scan_set (rtx, rtx, struct hash_table *);
542 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
543 static void hash_scan_call (rtx, rtx, struct hash_table *);
544 static int want_to_gcse_p (rtx);
545 static bool can_assign_to_reg_p (rtx);
546 static bool gcse_constant_p (rtx);
547 static int oprs_unchanged_p (rtx, rtx, int);
548 static int oprs_anticipatable_p (rtx, rtx);
549 static int oprs_available_p (rtx, rtx);
550 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
551 struct hash_table *);
552 static void insert_set_in_table (rtx, rtx, struct hash_table *);
553 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
554 static unsigned int hash_set (int, int);
555 static int expr_equiv_p (rtx, rtx);
556 static void record_last_reg_set_info (rtx, int);
557 static void record_last_mem_set_info (rtx);
558 static void record_last_set_info (rtx, rtx, void *);
559 static void compute_hash_table (struct hash_table *);
560 static void alloc_hash_table (int, struct hash_table *, int);
561 static void free_hash_table (struct hash_table *);
562 static void compute_hash_table_work (struct hash_table *);
563 static void dump_hash_table (FILE *, const char *, struct hash_table *);
564 static struct expr *lookup_set (unsigned int, struct hash_table *);
565 static struct expr *next_set (unsigned int, struct expr *);
566 static void reset_opr_set_tables (void);
567 static int oprs_not_set_p (rtx, rtx);
568 static void mark_call (rtx);
569 static void mark_set (rtx, rtx);
570 static void mark_clobber (rtx, rtx);
571 static void mark_oprs_set (rtx);
572 static void alloc_cprop_mem (int, int);
573 static void free_cprop_mem (void);
574 static void compute_transp (rtx, int, sbitmap *, int);
575 static void compute_transpout (void);
576 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
577 struct hash_table *);
578 static void compute_cprop_data (void);
579 static void find_used_regs (rtx *, void *);
580 static int try_replace_reg (rtx, rtx, rtx);
581 static struct expr *find_avail_set (int, rtx);
582 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
583 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
584 static int load_killed_in_block_p (basic_block, int, rtx, int);
585 static void canon_list_insert (rtx, rtx, void *);
586 static int cprop_insn (rtx, int);
587 static int cprop (int);
588 static void find_implicit_sets (void);
589 static int one_cprop_pass (int, int, int);
590 static bool constprop_register (rtx, rtx, rtx, int);
591 static struct expr *find_bypass_set (int, int);
592 static bool reg_killed_on_edge (rtx, edge);
593 static int bypass_block (basic_block, rtx, rtx);
594 static int bypass_conditional_jumps (void);
595 static void alloc_pre_mem (int, int);
596 static void free_pre_mem (void);
597 static void compute_pre_data (void);
598 static int pre_expr_reaches_here_p (basic_block, struct expr *,
599 basic_block);
600 static void insert_insn_end_bb (struct expr *, basic_block, int);
601 static void pre_insert_copy_insn (struct expr *, rtx);
602 static void pre_insert_copies (void);
603 static int pre_delete (void);
604 static int pre_gcse (void);
605 static int one_pre_gcse_pass (int);
606 static void add_label_notes (rtx, rtx);
607 static void alloc_code_hoist_mem (int, int);
608 static void free_code_hoist_mem (void);
609 static void compute_code_hoist_vbeinout (void);
610 static void compute_code_hoist_data (void);
611 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
612 static void hoist_code (void);
613 static int one_code_hoisting_pass (void);
614 static rtx process_insert_insn (struct expr *);
615 static int pre_edge_insert (struct edge_list *, struct expr **);
616 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
617 basic_block, char *);
618 static struct ls_expr * ldst_entry (rtx);
619 static void free_ldst_entry (struct ls_expr *);
620 static void free_ldst_mems (void);
621 static void print_ldst_list (FILE *);
622 static struct ls_expr * find_rtx_in_ldst (rtx);
623 static int enumerate_ldsts (void);
624 static inline struct ls_expr * first_ls_expr (void);
625 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
626 static int simple_mem (rtx);
627 static void invalidate_any_buried_refs (rtx);
628 static void compute_ld_motion_mems (void);
629 static void trim_ld_motion_mems (void);
630 static void update_ld_motion_stores (struct expr *);
631 static void reg_set_info (rtx, rtx, void *);
632 static void reg_clear_last_set (rtx, rtx, void *);
633 static bool store_ops_ok (rtx, int *);
634 static rtx extract_mentioned_regs (rtx);
635 static rtx extract_mentioned_regs_helper (rtx, rtx);
636 static void find_moveable_store (rtx, int *, int *);
637 static int compute_store_table (void);
638 static bool load_kills_store (rtx, rtx, int);
639 static bool find_loads (rtx, rtx, int);
640 static bool store_killed_in_insn (rtx, rtx, rtx, int);
641 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
642 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
643 static void build_store_vectors (void);
644 static void insert_insn_start_bb (rtx, basic_block);
645 static int insert_store (struct ls_expr *, edge);
646 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
647 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
648 static void delete_store (struct ls_expr *, basic_block);
649 static void free_store_memory (void);
650 static void store_motion (void);
651 static void free_insn_expr_list_list (rtx *);
652 static void clear_modify_mem_tables (void);
653 static void free_modify_mem_tables (void);
654 static rtx gcse_emit_move_after (rtx, rtx, rtx);
655 static void local_cprop_find_used_regs (rtx *, void *);
656 static bool do_local_cprop (rtx, rtx, int, rtx*);
657 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
658 static void local_cprop_pass (int);
659 static bool is_too_expensive (const char *);
662 /* Entry point for global common subexpression elimination.
663 F is the first instruction in the function. Return nonzero if a
664 change is mode. */
667 gcse_main (rtx f, FILE *file)
669 int changed, pass;
670 /* Bytes used at start of pass. */
671 int initial_bytes_used;
672 /* Maximum number of bytes used by a pass. */
673 int max_pass_bytes;
674 /* Point to release obstack data from for each pass. */
675 char *gcse_obstack_bottom;
677 /* We do not construct an accurate cfg in functions which call
678 setjmp, so just punt to be safe. */
679 if (current_function_calls_setjmp)
680 return 0;
682 /* Assume that we do not need to run jump optimizations after gcse. */
683 run_jump_opt_after_gcse = 0;
685 /* For calling dump_foo fns from gdb. */
686 debug_stderr = stderr;
687 gcse_file = file;
689 /* Identify the basic block information for this function, including
690 successors and predecessors. */
691 max_gcse_regno = max_reg_num ();
693 if (file)
694 dump_flow_info (file);
696 /* Return if there's nothing to do, or it is too expensive. */
697 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
698 return 0;
700 gcc_obstack_init (&gcse_obstack);
701 bytes_used = 0;
703 /* We need alias. */
704 init_alias_analysis ();
705 /* Record where pseudo-registers are set. This data is kept accurate
706 during each pass. ??? We could also record hard-reg information here
707 [since it's unchanging], however it is currently done during hash table
708 computation.
710 It may be tempting to compute MEM set information here too, but MEM sets
711 will be subject to code motion one day and thus we need to compute
712 information about memory sets when we build the hash tables. */
714 alloc_reg_set_mem (max_gcse_regno);
715 compute_sets (f);
717 pass = 0;
718 initial_bytes_used = bytes_used;
719 max_pass_bytes = 0;
720 gcse_obstack_bottom = gcse_alloc (1);
721 changed = 1;
722 while (changed && pass < MAX_GCSE_PASSES)
724 changed = 0;
725 if (file)
726 fprintf (file, "GCSE pass %d\n\n", pass + 1);
728 /* Initialize bytes_used to the space for the pred/succ lists,
729 and the reg_set_table data. */
730 bytes_used = initial_bytes_used;
732 /* Each pass may create new registers, so recalculate each time. */
733 max_gcse_regno = max_reg_num ();
735 alloc_gcse_mem (f);
737 /* Don't allow constant propagation to modify jumps
738 during this pass. */
739 timevar_push (TV_CPROP1);
740 changed = one_cprop_pass (pass + 1, 0, 0);
741 timevar_pop (TV_CPROP1);
743 if (optimize_size)
744 /* Do nothing. */ ;
745 else
747 timevar_push (TV_PRE);
748 changed |= one_pre_gcse_pass (pass + 1);
749 /* We may have just created new basic blocks. Release and
750 recompute various things which are sized on the number of
751 basic blocks. */
752 if (changed)
754 free_modify_mem_tables ();
755 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
756 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
758 free_reg_set_mem ();
759 alloc_reg_set_mem (max_reg_num ());
760 compute_sets (f);
761 run_jump_opt_after_gcse = 1;
762 timevar_pop (TV_PRE);
765 if (max_pass_bytes < bytes_used)
766 max_pass_bytes = bytes_used;
768 /* Free up memory, then reallocate for code hoisting. We can
769 not re-use the existing allocated memory because the tables
770 will not have info for the insns or registers created by
771 partial redundancy elimination. */
772 free_gcse_mem ();
774 /* It does not make sense to run code hoisting unless we are optimizing
775 for code size -- it rarely makes programs faster, and can make
776 them bigger if we did partial redundancy elimination (when optimizing
777 for space, we don't run the partial redundancy algorithms). */
778 if (optimize_size)
780 timevar_push (TV_HOIST);
781 max_gcse_regno = max_reg_num ();
782 alloc_gcse_mem (f);
783 changed |= one_code_hoisting_pass ();
784 free_gcse_mem ();
786 if (max_pass_bytes < bytes_used)
787 max_pass_bytes = bytes_used;
788 timevar_pop (TV_HOIST);
791 if (file)
793 fprintf (file, "\n");
794 fflush (file);
797 obstack_free (&gcse_obstack, gcse_obstack_bottom);
798 pass++;
801 /* Do one last pass of copy propagation, including cprop into
802 conditional jumps. */
804 max_gcse_regno = max_reg_num ();
805 alloc_gcse_mem (f);
806 /* This time, go ahead and allow cprop to alter jumps. */
807 timevar_push (TV_CPROP2);
808 one_cprop_pass (pass + 1, 1, 0);
809 timevar_pop (TV_CPROP2);
810 free_gcse_mem ();
812 if (file)
814 fprintf (file, "GCSE of %s: %d basic blocks, ",
815 current_function_name (), n_basic_blocks);
816 fprintf (file, "%d pass%s, %d bytes\n\n",
817 pass, pass > 1 ? "es" : "", max_pass_bytes);
820 obstack_free (&gcse_obstack, NULL);
821 free_reg_set_mem ();
823 /* We are finished with alias. */
824 end_alias_analysis ();
825 allocate_reg_info (max_reg_num (), FALSE, FALSE);
827 if (!optimize_size && flag_gcse_sm)
829 timevar_push (TV_LSM);
830 store_motion ();
831 timevar_pop (TV_LSM);
834 /* Record where pseudo-registers are set. */
835 return run_jump_opt_after_gcse;
838 /* Misc. utilities. */
840 /* Nonzero for each mode that supports (set (reg) (reg)).
841 This is trivially true for integer and floating point values.
842 It may or may not be true for condition codes. */
843 static char can_copy[(int) NUM_MACHINE_MODES];
845 /* Compute which modes support reg/reg copy operations. */
847 static void
848 compute_can_copy (void)
850 int i;
851 #ifndef AVOID_CCMODE_COPIES
852 rtx reg, insn;
853 #endif
854 memset (can_copy, 0, NUM_MACHINE_MODES);
856 start_sequence ();
857 for (i = 0; i < NUM_MACHINE_MODES; i++)
858 if (GET_MODE_CLASS (i) == MODE_CC)
860 #ifdef AVOID_CCMODE_COPIES
861 can_copy[i] = 0;
862 #else
863 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
864 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
865 if (recog (PATTERN (insn), insn, NULL) >= 0)
866 can_copy[i] = 1;
867 #endif
869 else
870 can_copy[i] = 1;
872 end_sequence ();
875 /* Returns whether the mode supports reg/reg copy operations. */
877 bool
878 can_copy_p (enum machine_mode mode)
880 static bool can_copy_init_p = false;
882 if (! can_copy_init_p)
884 compute_can_copy ();
885 can_copy_init_p = true;
888 return can_copy[mode] != 0;
891 /* Cover function to xmalloc to record bytes allocated. */
893 static void *
894 gmalloc (size_t size)
896 bytes_used += size;
897 return xmalloc (size);
900 /* Cover function to xcalloc to record bytes allocated. */
902 static void *
903 gcalloc (size_t nelem, size_t elsize)
905 bytes_used += nelem * elsize;
906 return xcalloc (nelem, elsize);
909 /* Cover function to xrealloc.
910 We don't record the additional size since we don't know it.
911 It won't affect memory usage stats much anyway. */
913 static void *
914 grealloc (void *ptr, size_t size)
916 return xrealloc (ptr, size);
919 /* Cover function to obstack_alloc. */
921 static void *
922 gcse_alloc (unsigned long size)
924 bytes_used += size;
925 return obstack_alloc (&gcse_obstack, size);
928 /* Allocate memory for the cuid mapping array,
929 and reg/memory set tracking tables.
931 This is called at the start of each pass. */
933 static void
934 alloc_gcse_mem (rtx f)
936 int i;
937 rtx insn;
939 /* Find the largest UID and create a mapping from UIDs to CUIDs.
940 CUIDs are like UIDs except they increase monotonically, have no gaps,
941 and only apply to real insns. */
943 max_uid = get_max_uid ();
944 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
945 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
947 if (INSN_P (insn))
948 uid_cuid[INSN_UID (insn)] = i++;
949 else
950 uid_cuid[INSN_UID (insn)] = i;
953 /* Create a table mapping cuids to insns. */
955 max_cuid = i;
956 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
957 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
958 if (INSN_P (insn))
959 CUID_INSN (i++) = insn;
961 /* Allocate vars to track sets of regs. */
962 reg_set_bitmap = BITMAP_XMALLOC ();
964 /* Allocate vars to track sets of regs, memory per block. */
965 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
966 /* Allocate array to keep a list of insns which modify memory in each
967 basic block. */
968 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
969 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
970 modify_mem_list_set = BITMAP_XMALLOC ();
971 canon_modify_mem_list_set = BITMAP_XMALLOC ();
974 /* Free memory allocated by alloc_gcse_mem. */
976 static void
977 free_gcse_mem (void)
979 free (uid_cuid);
980 free (cuid_insn);
982 BITMAP_XFREE (reg_set_bitmap);
984 sbitmap_vector_free (reg_set_in_block);
985 free_modify_mem_tables ();
986 BITMAP_XFREE (modify_mem_list_set);
987 BITMAP_XFREE (canon_modify_mem_list_set);
990 /* Compute the local properties of each recorded expression.
992 Local properties are those that are defined by the block, irrespective of
993 other blocks.
995 An expression is transparent in a block if its operands are not modified
996 in the block.
998 An expression is computed (locally available) in a block if it is computed
999 at least once and expression would contain the same value if the
1000 computation was moved to the end of the block.
1002 An expression is locally anticipatable in a block if it is computed at
1003 least once and expression would contain the same value if the computation
1004 was moved to the beginning of the block.
1006 We call this routine for cprop, pre and code hoisting. They all compute
1007 basically the same information and thus can easily share this code.
1009 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1010 properties. If NULL, then it is not necessary to compute or record that
1011 particular property.
1013 TABLE controls which hash table to look at. If it is set hash table,
1014 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1015 ABSALTERED. */
1017 static void
1018 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1019 struct hash_table *table)
1021 unsigned int i;
1023 /* Initialize any bitmaps that were passed in. */
1024 if (transp)
1026 if (table->set_p)
1027 sbitmap_vector_zero (transp, last_basic_block);
1028 else
1029 sbitmap_vector_ones (transp, last_basic_block);
1032 if (comp)
1033 sbitmap_vector_zero (comp, last_basic_block);
1034 if (antloc)
1035 sbitmap_vector_zero (antloc, last_basic_block);
1037 for (i = 0; i < table->size; i++)
1039 struct expr *expr;
1041 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1043 int indx = expr->bitmap_index;
1044 struct occr *occr;
1046 /* The expression is transparent in this block if it is not killed.
1047 We start by assuming all are transparent [none are killed], and
1048 then reset the bits for those that are. */
1049 if (transp)
1050 compute_transp (expr->expr, indx, transp, table->set_p);
1052 /* The occurrences recorded in antic_occr are exactly those that
1053 we want to set to nonzero in ANTLOC. */
1054 if (antloc)
1055 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1057 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1059 /* While we're scanning the table, this is a good place to
1060 initialize this. */
1061 occr->deleted_p = 0;
1064 /* The occurrences recorded in avail_occr are exactly those that
1065 we want to set to nonzero in COMP. */
1066 if (comp)
1067 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1069 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1071 /* While we're scanning the table, this is a good place to
1072 initialize this. */
1073 occr->copied_p = 0;
1076 /* While we're scanning the table, this is a good place to
1077 initialize this. */
1078 expr->reaching_reg = 0;
1083 /* Register set information.
1085 `reg_set_table' records where each register is set or otherwise
1086 modified. */
1088 static struct obstack reg_set_obstack;
1090 static void
1091 alloc_reg_set_mem (int n_regs)
1093 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1094 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1096 gcc_obstack_init (&reg_set_obstack);
1099 static void
1100 free_reg_set_mem (void)
1102 free (reg_set_table);
1103 obstack_free (&reg_set_obstack, NULL);
1106 /* Record REGNO in the reg_set table. */
1108 static void
1109 record_one_set (int regno, rtx insn)
1111 /* Allocate a new reg_set element and link it onto the list. */
1112 struct reg_set *new_reg_info;
1114 /* If the table isn't big enough, enlarge it. */
1115 if (regno >= reg_set_table_size)
1117 int new_size = regno + REG_SET_TABLE_SLOP;
1119 reg_set_table = grealloc (reg_set_table,
1120 new_size * sizeof (struct reg_set *));
1121 memset (reg_set_table + reg_set_table_size, 0,
1122 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1123 reg_set_table_size = new_size;
1126 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1127 bytes_used += sizeof (struct reg_set);
1128 new_reg_info->bb_index = BLOCK_NUM (insn);
1129 new_reg_info->next = reg_set_table[regno];
1130 reg_set_table[regno] = new_reg_info;
1133 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1134 an insn. The DATA is really the instruction in which the SET is
1135 occurring. */
1137 static void
1138 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1140 rtx record_set_insn = (rtx) data;
1142 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1143 record_one_set (REGNO (dest), record_set_insn);
1146 /* Scan the function and record each set of each pseudo-register.
1148 This is called once, at the start of the gcse pass. See the comments for
1149 `reg_set_table' for further documentation. */
1151 static void
1152 compute_sets (rtx f)
1154 rtx insn;
1156 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1157 if (INSN_P (insn))
1158 note_stores (PATTERN (insn), record_set_info, insn);
1161 /* Hash table support. */
1163 struct reg_avail_info
1165 basic_block last_bb;
1166 int first_set;
1167 int last_set;
1170 static struct reg_avail_info *reg_avail_info;
1171 static basic_block current_bb;
1174 /* See whether X, the source of a set, is something we want to consider for
1175 GCSE. */
1177 static int
1178 want_to_gcse_p (rtx x)
1180 switch (GET_CODE (x))
1182 case REG:
1183 case SUBREG:
1184 case CONST_INT:
1185 case CONST_DOUBLE:
1186 case CONST_VECTOR:
1187 case CALL:
1188 return 0;
1190 default:
1191 return can_assign_to_reg_p (x);
1195 /* Used internally by can_assign_to_reg_p. */
1197 static GTY(()) rtx test_insn;
1199 /* Return true if we can assign X to a pseudo register. */
1201 static bool
1202 can_assign_to_reg_p (rtx x)
1204 int num_clobbers = 0;
1205 int icode;
1207 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1208 if (general_operand (x, GET_MODE (x)))
1209 return 1;
1210 else if (GET_MODE (x) == VOIDmode)
1211 return 0;
1213 /* Otherwise, check if we can make a valid insn from it. First initialize
1214 our test insn if we haven't already. */
1215 if (test_insn == 0)
1217 test_insn
1218 = make_insn_raw (gen_rtx_SET (VOIDmode,
1219 gen_rtx_REG (word_mode,
1220 FIRST_PSEUDO_REGISTER * 2),
1221 const0_rtx));
1222 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1225 /* Now make an insn like the one we would make when GCSE'ing and see if
1226 valid. */
1227 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1228 SET_SRC (PATTERN (test_insn)) = x;
1229 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1230 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1233 /* Return nonzero if the operands of expression X are unchanged from the
1234 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1235 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1237 static int
1238 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1240 int i, j;
1241 enum rtx_code code;
1242 const char *fmt;
1244 if (x == 0)
1245 return 1;
1247 code = GET_CODE (x);
1248 switch (code)
1250 case REG:
1252 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1254 if (info->last_bb != current_bb)
1255 return 1;
1256 if (avail_p)
1257 return info->last_set < INSN_CUID (insn);
1258 else
1259 return info->first_set >= INSN_CUID (insn);
1262 case MEM:
1263 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1264 x, avail_p))
1265 return 0;
1266 else
1267 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1269 case PRE_DEC:
1270 case PRE_INC:
1271 case POST_DEC:
1272 case POST_INC:
1273 case PRE_MODIFY:
1274 case POST_MODIFY:
1275 return 0;
1277 case PC:
1278 case CC0: /*FIXME*/
1279 case CONST:
1280 case CONST_INT:
1281 case CONST_DOUBLE:
1282 case CONST_VECTOR:
1283 case SYMBOL_REF:
1284 case LABEL_REF:
1285 case ADDR_VEC:
1286 case ADDR_DIFF_VEC:
1287 return 1;
1289 default:
1290 break;
1293 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1295 if (fmt[i] == 'e')
1297 /* If we are about to do the last recursive call needed at this
1298 level, change it into iteration. This function is called enough
1299 to be worth it. */
1300 if (i == 0)
1301 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1303 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1304 return 0;
1306 else if (fmt[i] == 'E')
1307 for (j = 0; j < XVECLEN (x, i); j++)
1308 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1309 return 0;
1312 return 1;
1315 /* Used for communication between mems_conflict_for_gcse_p and
1316 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1317 conflict between two memory references. */
1318 static int gcse_mems_conflict_p;
1320 /* Used for communication between mems_conflict_for_gcse_p and
1321 load_killed_in_block_p. A memory reference for a load instruction,
1322 mems_conflict_for_gcse_p will see if a memory store conflicts with
1323 this memory load. */
1324 static rtx gcse_mem_operand;
1326 /* DEST is the output of an instruction. If it is a memory reference, and
1327 possibly conflicts with the load found in gcse_mem_operand, then set
1328 gcse_mems_conflict_p to a nonzero value. */
1330 static void
1331 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1332 void *data ATTRIBUTE_UNUSED)
1334 while (GET_CODE (dest) == SUBREG
1335 || GET_CODE (dest) == ZERO_EXTRACT
1336 || GET_CODE (dest) == STRICT_LOW_PART)
1337 dest = XEXP (dest, 0);
1339 /* If DEST is not a MEM, then it will not conflict with the load. Note
1340 that function calls are assumed to clobber memory, but are handled
1341 elsewhere. */
1342 if (! MEM_P (dest))
1343 return;
1345 /* If we are setting a MEM in our list of specially recognized MEMs,
1346 don't mark as killed this time. */
1348 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1350 if (!find_rtx_in_ldst (dest))
1351 gcse_mems_conflict_p = 1;
1352 return;
1355 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1356 rtx_addr_varies_p))
1357 gcse_mems_conflict_p = 1;
1360 /* Return nonzero if the expression in X (a memory reference) is killed
1361 in block BB before or after the insn with the CUID in UID_LIMIT.
1362 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1363 before UID_LIMIT.
1365 To check the entire block, set UID_LIMIT to max_uid + 1 and
1366 AVAIL_P to 0. */
1368 static int
1369 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1371 rtx list_entry = modify_mem_list[bb->index];
1372 while (list_entry)
1374 rtx setter;
1375 /* Ignore entries in the list that do not apply. */
1376 if ((avail_p
1377 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1378 || (! avail_p
1379 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1381 list_entry = XEXP (list_entry, 1);
1382 continue;
1385 setter = XEXP (list_entry, 0);
1387 /* If SETTER is a call everything is clobbered. Note that calls
1388 to pure functions are never put on the list, so we need not
1389 worry about them. */
1390 if (CALL_P (setter))
1391 return 1;
1393 /* SETTER must be an INSN of some kind that sets memory. Call
1394 note_stores to examine each hunk of memory that is modified.
1396 The note_stores interface is pretty limited, so we have to
1397 communicate via global variables. Yuk. */
1398 gcse_mem_operand = x;
1399 gcse_mems_conflict_p = 0;
1400 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1401 if (gcse_mems_conflict_p)
1402 return 1;
1403 list_entry = XEXP (list_entry, 1);
1405 return 0;
1408 /* Return nonzero if the operands of expression X are unchanged from
1409 the start of INSN's basic block up to but not including INSN. */
1411 static int
1412 oprs_anticipatable_p (rtx x, rtx insn)
1414 return oprs_unchanged_p (x, insn, 0);
1417 /* Return nonzero if the operands of expression X are unchanged from
1418 INSN to the end of INSN's basic block. */
1420 static int
1421 oprs_available_p (rtx x, rtx insn)
1423 return oprs_unchanged_p (x, insn, 1);
1426 /* Hash expression X.
1428 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1429 indicating if a volatile operand is found or if the expression contains
1430 something we don't want to insert in the table. HASH_TABLE_SIZE is
1431 the current size of the hash table to be probed. */
1433 static unsigned int
1434 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1435 int hash_table_size)
1437 unsigned int hash;
1439 *do_not_record_p = 0;
1441 hash = hash_rtx (x, mode, do_not_record_p,
1442 NULL, /*have_reg_qty=*/false);
1443 return hash % hash_table_size;
1446 /* Hash a set of register REGNO.
1448 Sets are hashed on the register that is set. This simplifies the PRE copy
1449 propagation code.
1451 ??? May need to make things more elaborate. Later, as necessary. */
1453 static unsigned int
1454 hash_set (int regno, int hash_table_size)
1456 unsigned int hash;
1458 hash = regno;
1459 return hash % hash_table_size;
1462 /* Return nonzero if exp1 is equivalent to exp2. */
1464 static int
1465 expr_equiv_p (rtx x, rtx y)
1467 return exp_equiv_p (x, y, 0, true);
1470 /* Insert expression X in INSN in the hash TABLE.
1471 If it is already present, record it as the last occurrence in INSN's
1472 basic block.
1474 MODE is the mode of the value X is being stored into.
1475 It is only used if X is a CONST_INT.
1477 ANTIC_P is nonzero if X is an anticipatable expression.
1478 AVAIL_P is nonzero if X is an available expression. */
1480 static void
1481 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1482 int avail_p, struct hash_table *table)
1484 int found, do_not_record_p;
1485 unsigned int hash;
1486 struct expr *cur_expr, *last_expr = NULL;
1487 struct occr *antic_occr, *avail_occr;
1489 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1491 /* Do not insert expression in table if it contains volatile operands,
1492 or if hash_expr determines the expression is something we don't want
1493 to or can't handle. */
1494 if (do_not_record_p)
1495 return;
1497 cur_expr = table->table[hash];
1498 found = 0;
1500 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1502 /* If the expression isn't found, save a pointer to the end of
1503 the list. */
1504 last_expr = cur_expr;
1505 cur_expr = cur_expr->next_same_hash;
1508 if (! found)
1510 cur_expr = gcse_alloc (sizeof (struct expr));
1511 bytes_used += sizeof (struct expr);
1512 if (table->table[hash] == NULL)
1513 /* This is the first pattern that hashed to this index. */
1514 table->table[hash] = cur_expr;
1515 else
1516 /* Add EXPR to end of this hash chain. */
1517 last_expr->next_same_hash = cur_expr;
1519 /* Set the fields of the expr element. */
1520 cur_expr->expr = x;
1521 cur_expr->bitmap_index = table->n_elems++;
1522 cur_expr->next_same_hash = NULL;
1523 cur_expr->antic_occr = NULL;
1524 cur_expr->avail_occr = NULL;
1527 /* Now record the occurrence(s). */
1528 if (antic_p)
1530 antic_occr = cur_expr->antic_occr;
1532 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1533 antic_occr = NULL;
1535 if (antic_occr)
1536 /* Found another instance of the expression in the same basic block.
1537 Prefer the currently recorded one. We want the first one in the
1538 block and the block is scanned from start to end. */
1539 ; /* nothing to do */
1540 else
1542 /* First occurrence of this expression in this basic block. */
1543 antic_occr = gcse_alloc (sizeof (struct occr));
1544 bytes_used += sizeof (struct occr);
1545 antic_occr->insn = insn;
1546 antic_occr->next = cur_expr->antic_occr;
1547 antic_occr->deleted_p = 0;
1548 cur_expr->antic_occr = antic_occr;
1552 if (avail_p)
1554 avail_occr = cur_expr->avail_occr;
1556 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1558 /* Found another instance of the expression in the same basic block.
1559 Prefer this occurrence to the currently recorded one. We want
1560 the last one in the block and the block is scanned from start
1561 to end. */
1562 avail_occr->insn = insn;
1564 else
1566 /* First occurrence of this expression in this basic block. */
1567 avail_occr = gcse_alloc (sizeof (struct occr));
1568 bytes_used += sizeof (struct occr);
1569 avail_occr->insn = insn;
1570 avail_occr->next = cur_expr->avail_occr;
1571 avail_occr->deleted_p = 0;
1572 cur_expr->avail_occr = avail_occr;
1577 /* Insert pattern X in INSN in the hash table.
1578 X is a SET of a reg to either another reg or a constant.
1579 If it is already present, record it as the last occurrence in INSN's
1580 basic block. */
1582 static void
1583 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1585 int found;
1586 unsigned int hash;
1587 struct expr *cur_expr, *last_expr = NULL;
1588 struct occr *cur_occr;
1590 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1592 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1594 cur_expr = table->table[hash];
1595 found = 0;
1597 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1599 /* If the expression isn't found, save a pointer to the end of
1600 the list. */
1601 last_expr = cur_expr;
1602 cur_expr = cur_expr->next_same_hash;
1605 if (! found)
1607 cur_expr = gcse_alloc (sizeof (struct expr));
1608 bytes_used += sizeof (struct expr);
1609 if (table->table[hash] == NULL)
1610 /* This is the first pattern that hashed to this index. */
1611 table->table[hash] = cur_expr;
1612 else
1613 /* Add EXPR to end of this hash chain. */
1614 last_expr->next_same_hash = cur_expr;
1616 /* Set the fields of the expr element.
1617 We must copy X because it can be modified when copy propagation is
1618 performed on its operands. */
1619 cur_expr->expr = copy_rtx (x);
1620 cur_expr->bitmap_index = table->n_elems++;
1621 cur_expr->next_same_hash = NULL;
1622 cur_expr->antic_occr = NULL;
1623 cur_expr->avail_occr = NULL;
1626 /* Now record the occurrence. */
1627 cur_occr = cur_expr->avail_occr;
1629 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1631 /* Found another instance of the expression in the same basic block.
1632 Prefer this occurrence to the currently recorded one. We want
1633 the last one in the block and the block is scanned from start
1634 to end. */
1635 cur_occr->insn = insn;
1637 else
1639 /* First occurrence of this expression in this basic block. */
1640 cur_occr = gcse_alloc (sizeof (struct occr));
1641 bytes_used += sizeof (struct occr);
1643 cur_occr->insn = insn;
1644 cur_occr->next = cur_expr->avail_occr;
1645 cur_occr->deleted_p = 0;
1646 cur_expr->avail_occr = cur_occr;
1650 /* Determine whether the rtx X should be treated as a constant for
1651 the purposes of GCSE's constant propagation. */
1653 static bool
1654 gcse_constant_p (rtx x)
1656 /* Consider a COMPARE of two integers constant. */
1657 if (GET_CODE (x) == COMPARE
1658 && GET_CODE (XEXP (x, 0)) == CONST_INT
1659 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1660 return true;
1662 /* Consider a COMPARE of the same registers is a constant
1663 if they are not floating point registers. */
1664 if (GET_CODE(x) == COMPARE
1665 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1666 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1667 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1668 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1669 return true;
1671 return CONSTANT_P (x);
1674 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1675 expression one). */
1677 static void
1678 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1680 rtx src = SET_SRC (pat);
1681 rtx dest = SET_DEST (pat);
1682 rtx note;
1684 if (GET_CODE (src) == CALL)
1685 hash_scan_call (src, insn, table);
1687 else if (REG_P (dest))
1689 unsigned int regno = REGNO (dest);
1690 rtx tmp;
1692 /* If this is a single set and we are doing constant propagation,
1693 see if a REG_NOTE shows this equivalent to a constant. */
1694 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
1695 && gcse_constant_p (XEXP (note, 0)))
1696 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1698 /* Only record sets of pseudo-regs in the hash table. */
1699 if (! table->set_p
1700 && regno >= FIRST_PSEUDO_REGISTER
1701 /* Don't GCSE something if we can't do a reg/reg copy. */
1702 && can_copy_p (GET_MODE (dest))
1703 /* GCSE commonly inserts instruction after the insn. We can't
1704 do that easily for EH_REGION notes so disable GCSE on these
1705 for now. */
1706 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1707 /* Is SET_SRC something we want to gcse? */
1708 && want_to_gcse_p (src)
1709 /* Don't CSE a nop. */
1710 && ! set_noop_p (pat)
1711 /* Don't GCSE if it has attached REG_EQUIV note.
1712 At this point this only function parameters should have
1713 REG_EQUIV notes and if the argument slot is used somewhere
1714 explicitly, it means address of parameter has been taken,
1715 so we should not extend the lifetime of the pseudo. */
1716 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1717 || ! MEM_P (XEXP (note, 0))))
1719 /* An expression is not anticipatable if its operands are
1720 modified before this insn or if this is not the only SET in
1721 this insn. */
1722 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1723 /* An expression is not available if its operands are
1724 subsequently modified, including this insn. It's also not
1725 available if this is a branch, because we can't insert
1726 a set after the branch. */
1727 int avail_p = (oprs_available_p (src, insn)
1728 && ! JUMP_P (insn));
1730 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1733 /* Record sets for constant/copy propagation. */
1734 else if (table->set_p
1735 && regno >= FIRST_PSEUDO_REGISTER
1736 && ((REG_P (src)
1737 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1738 && can_copy_p (GET_MODE (dest))
1739 && REGNO (src) != regno)
1740 || gcse_constant_p (src))
1741 /* A copy is not available if its src or dest is subsequently
1742 modified. Here we want to search from INSN+1 on, but
1743 oprs_available_p searches from INSN on. */
1744 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1745 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1746 && oprs_available_p (pat, tmp))))
1747 insert_set_in_table (pat, insn, table);
1749 /* In case of store we want to consider the memory value as available in
1750 the REG stored in that memory. This makes it possible to remove
1751 redundant loads from due to stores to the same location. */
1752 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1754 unsigned int regno = REGNO (src);
1756 /* Do not do this for constant/copy propagation. */
1757 if (! table->set_p
1758 /* Only record sets of pseudo-regs in the hash table. */
1759 && regno >= FIRST_PSEUDO_REGISTER
1760 /* Don't GCSE something if we can't do a reg/reg copy. */
1761 && can_copy_p (GET_MODE (src))
1762 /* GCSE commonly inserts instruction after the insn. We can't
1763 do that easily for EH_REGION notes so disable GCSE on these
1764 for now. */
1765 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1766 /* Is SET_DEST something we want to gcse? */
1767 && want_to_gcse_p (dest)
1768 /* Don't CSE a nop. */
1769 && ! set_noop_p (pat)
1770 /* Don't GCSE if it has attached REG_EQUIV note.
1771 At this point this only function parameters should have
1772 REG_EQUIV notes and if the argument slot is used somewhere
1773 explicitly, it means address of parameter has been taken,
1774 so we should not extend the lifetime of the pseudo. */
1775 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1776 || ! MEM_P (XEXP (note, 0))))
1778 /* Stores are never anticipatable. */
1779 int antic_p = 0;
1780 /* An expression is not available if its operands are
1781 subsequently modified, including this insn. It's also not
1782 available if this is a branch, because we can't insert
1783 a set after the branch. */
1784 int avail_p = oprs_available_p (dest, insn)
1785 && ! JUMP_P (insn);
1787 /* Record the memory expression (DEST) in the hash table. */
1788 insert_expr_in_table (dest, GET_MODE (dest), insn,
1789 antic_p, avail_p, table);
1794 static void
1795 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1796 struct hash_table *table ATTRIBUTE_UNUSED)
1798 /* Currently nothing to do. */
1801 static void
1802 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1803 struct hash_table *table ATTRIBUTE_UNUSED)
1805 /* Currently nothing to do. */
1808 /* Process INSN and add hash table entries as appropriate.
1810 Only available expressions that set a single pseudo-reg are recorded.
1812 Single sets in a PARALLEL could be handled, but it's an extra complication
1813 that isn't dealt with right now. The trick is handling the CLOBBERs that
1814 are also in the PARALLEL. Later.
1816 If SET_P is nonzero, this is for the assignment hash table,
1817 otherwise it is for the expression hash table.
1818 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1819 not record any expressions. */
1821 static void
1822 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1824 rtx pat = PATTERN (insn);
1825 int i;
1827 if (in_libcall_block)
1828 return;
1830 /* Pick out the sets of INSN and for other forms of instructions record
1831 what's been modified. */
1833 if (GET_CODE (pat) == SET)
1834 hash_scan_set (pat, insn, table);
1835 else if (GET_CODE (pat) == PARALLEL)
1836 for (i = 0; i < XVECLEN (pat, 0); i++)
1838 rtx x = XVECEXP (pat, 0, i);
1840 if (GET_CODE (x) == SET)
1841 hash_scan_set (x, insn, table);
1842 else if (GET_CODE (x) == CLOBBER)
1843 hash_scan_clobber (x, insn, table);
1844 else if (GET_CODE (x) == CALL)
1845 hash_scan_call (x, insn, table);
1848 else if (GET_CODE (pat) == CLOBBER)
1849 hash_scan_clobber (pat, insn, table);
1850 else if (GET_CODE (pat) == CALL)
1851 hash_scan_call (pat, insn, table);
1854 static void
1855 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1857 int i;
1858 /* Flattened out table, so it's printed in proper order. */
1859 struct expr **flat_table;
1860 unsigned int *hash_val;
1861 struct expr *expr;
1863 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1864 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1866 for (i = 0; i < (int) table->size; i++)
1867 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1869 flat_table[expr->bitmap_index] = expr;
1870 hash_val[expr->bitmap_index] = i;
1873 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1874 name, table->size, table->n_elems);
1876 for (i = 0; i < (int) table->n_elems; i++)
1877 if (flat_table[i] != 0)
1879 expr = flat_table[i];
1880 fprintf (file, "Index %d (hash value %d)\n ",
1881 expr->bitmap_index, hash_val[i]);
1882 print_rtl (file, expr->expr);
1883 fprintf (file, "\n");
1886 fprintf (file, "\n");
1888 free (flat_table);
1889 free (hash_val);
1892 /* Record register first/last/block set information for REGNO in INSN.
1894 first_set records the first place in the block where the register
1895 is set and is used to compute "anticipatability".
1897 last_set records the last place in the block where the register
1898 is set and is used to compute "availability".
1900 last_bb records the block for which first_set and last_set are
1901 valid, as a quick test to invalidate them.
1903 reg_set_in_block records whether the register is set in the block
1904 and is used to compute "transparency". */
1906 static void
1907 record_last_reg_set_info (rtx insn, int regno)
1909 struct reg_avail_info *info = &reg_avail_info[regno];
1910 int cuid = INSN_CUID (insn);
1912 info->last_set = cuid;
1913 if (info->last_bb != current_bb)
1915 info->last_bb = current_bb;
1916 info->first_set = cuid;
1917 SET_BIT (reg_set_in_block[current_bb->index], regno);
1922 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1923 Note we store a pair of elements in the list, so they have to be
1924 taken off pairwise. */
1926 static void
1927 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1928 void * v_insn)
1930 rtx dest_addr, insn;
1931 int bb;
1933 while (GET_CODE (dest) == SUBREG
1934 || GET_CODE (dest) == ZERO_EXTRACT
1935 || GET_CODE (dest) == STRICT_LOW_PART)
1936 dest = XEXP (dest, 0);
1938 /* If DEST is not a MEM, then it will not conflict with a load. Note
1939 that function calls are assumed to clobber memory, but are handled
1940 elsewhere. */
1942 if (! MEM_P (dest))
1943 return;
1945 dest_addr = get_addr (XEXP (dest, 0));
1946 dest_addr = canon_rtx (dest_addr);
1947 insn = (rtx) v_insn;
1948 bb = BLOCK_NUM (insn);
1950 canon_modify_mem_list[bb] =
1951 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1952 canon_modify_mem_list[bb] =
1953 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1954 bitmap_set_bit (canon_modify_mem_list_set, bb);
1957 /* Record memory modification information for INSN. We do not actually care
1958 about the memory location(s) that are set, or even how they are set (consider
1959 a CALL_INSN). We merely need to record which insns modify memory. */
1961 static void
1962 record_last_mem_set_info (rtx insn)
1964 int bb = BLOCK_NUM (insn);
1966 /* load_killed_in_block_p will handle the case of calls clobbering
1967 everything. */
1968 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1969 bitmap_set_bit (modify_mem_list_set, bb);
1971 if (CALL_P (insn))
1973 /* Note that traversals of this loop (other than for free-ing)
1974 will break after encountering a CALL_INSN. So, there's no
1975 need to insert a pair of items, as canon_list_insert does. */
1976 canon_modify_mem_list[bb] =
1977 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1978 bitmap_set_bit (canon_modify_mem_list_set, bb);
1980 else
1981 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1984 /* Called from compute_hash_table via note_stores to handle one
1985 SET or CLOBBER in an insn. DATA is really the instruction in which
1986 the SET is taking place. */
1988 static void
1989 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1991 rtx last_set_insn = (rtx) data;
1993 if (GET_CODE (dest) == SUBREG)
1994 dest = SUBREG_REG (dest);
1996 if (REG_P (dest))
1997 record_last_reg_set_info (last_set_insn, REGNO (dest));
1998 else if (MEM_P (dest)
1999 /* Ignore pushes, they clobber nothing. */
2000 && ! push_operand (dest, GET_MODE (dest)))
2001 record_last_mem_set_info (last_set_insn);
2004 /* Top level function to create an expression or assignment hash table.
2006 Expression entries are placed in the hash table if
2007 - they are of the form (set (pseudo-reg) src),
2008 - src is something we want to perform GCSE on,
2009 - none of the operands are subsequently modified in the block
2011 Assignment entries are placed in the hash table if
2012 - they are of the form (set (pseudo-reg) src),
2013 - src is something we want to perform const/copy propagation on,
2014 - none of the operands or target are subsequently modified in the block
2016 Currently src must be a pseudo-reg or a const_int.
2018 TABLE is the table computed. */
2020 static void
2021 compute_hash_table_work (struct hash_table *table)
2023 unsigned int i;
2025 /* While we compute the hash table we also compute a bit array of which
2026 registers are set in which blocks.
2027 ??? This isn't needed during const/copy propagation, but it's cheap to
2028 compute. Later. */
2029 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2031 /* re-Cache any INSN_LIST nodes we have allocated. */
2032 clear_modify_mem_tables ();
2033 /* Some working arrays used to track first and last set in each block. */
2034 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2036 for (i = 0; i < max_gcse_regno; ++i)
2037 reg_avail_info[i].last_bb = NULL;
2039 FOR_EACH_BB (current_bb)
2041 rtx insn;
2042 unsigned int regno;
2043 int in_libcall_block;
2045 /* First pass over the instructions records information used to
2046 determine when registers and memory are first and last set.
2047 ??? hard-reg reg_set_in_block computation
2048 could be moved to compute_sets since they currently don't change. */
2050 for (insn = BB_HEAD (current_bb);
2051 insn && insn != NEXT_INSN (BB_END (current_bb));
2052 insn = NEXT_INSN (insn))
2054 if (! INSN_P (insn))
2055 continue;
2057 if (CALL_P (insn))
2059 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2060 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2061 record_last_reg_set_info (insn, regno);
2063 mark_call (insn);
2066 note_stores (PATTERN (insn), record_last_set_info, insn);
2069 /* Insert implicit sets in the hash table. */
2070 if (table->set_p
2071 && implicit_sets[current_bb->index] != NULL_RTX)
2072 hash_scan_set (implicit_sets[current_bb->index],
2073 BB_HEAD (current_bb), table);
2075 /* The next pass builds the hash table. */
2077 for (insn = BB_HEAD (current_bb), in_libcall_block = 0;
2078 insn && insn != NEXT_INSN (BB_END (current_bb));
2079 insn = NEXT_INSN (insn))
2080 if (INSN_P (insn))
2082 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2083 in_libcall_block = 1;
2084 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2085 in_libcall_block = 0;
2086 hash_scan_insn (insn, table, in_libcall_block);
2087 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2088 in_libcall_block = 0;
2092 free (reg_avail_info);
2093 reg_avail_info = NULL;
2096 /* Allocate space for the set/expr hash TABLE.
2097 N_INSNS is the number of instructions in the function.
2098 It is used to determine the number of buckets to use.
2099 SET_P determines whether set or expression table will
2100 be created. */
2102 static void
2103 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2105 int n;
2107 table->size = n_insns / 4;
2108 if (table->size < 11)
2109 table->size = 11;
2111 /* Attempt to maintain efficient use of hash table.
2112 Making it an odd number is simplest for now.
2113 ??? Later take some measurements. */
2114 table->size |= 1;
2115 n = table->size * sizeof (struct expr *);
2116 table->table = gmalloc (n);
2117 table->set_p = set_p;
2120 /* Free things allocated by alloc_hash_table. */
2122 static void
2123 free_hash_table (struct hash_table *table)
2125 free (table->table);
2128 /* Compute the hash TABLE for doing copy/const propagation or
2129 expression hash table. */
2131 static void
2132 compute_hash_table (struct hash_table *table)
2134 /* Initialize count of number of entries in hash table. */
2135 table->n_elems = 0;
2136 memset (table->table, 0, table->size * sizeof (struct expr *));
2138 compute_hash_table_work (table);
2141 /* Expression tracking support. */
2143 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2144 table entry, or NULL if not found. */
2146 static struct expr *
2147 lookup_set (unsigned int regno, struct hash_table *table)
2149 unsigned int hash = hash_set (regno, table->size);
2150 struct expr *expr;
2152 expr = table->table[hash];
2154 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2155 expr = expr->next_same_hash;
2157 return expr;
2160 /* Return the next entry for REGNO in list EXPR. */
2162 static struct expr *
2163 next_set (unsigned int regno, struct expr *expr)
2166 expr = expr->next_same_hash;
2167 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2169 return expr;
2172 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2173 types may be mixed. */
2175 static void
2176 free_insn_expr_list_list (rtx *listp)
2178 rtx list, next;
2180 for (list = *listp; list ; list = next)
2182 next = XEXP (list, 1);
2183 if (GET_CODE (list) == EXPR_LIST)
2184 free_EXPR_LIST_node (list);
2185 else
2186 free_INSN_LIST_node (list);
2189 *listp = NULL;
2192 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2193 static void
2194 clear_modify_mem_tables (void)
2196 unsigned i;
2197 bitmap_iterator bi;
2199 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2201 free_INSN_LIST_list (modify_mem_list + i);
2203 bitmap_clear (modify_mem_list_set);
2205 EXECUTE_IF_SET_IN_BITMAP (canon_modify_mem_list_set, 0, i, bi)
2207 free_insn_expr_list_list (canon_modify_mem_list + i);
2209 bitmap_clear (canon_modify_mem_list_set);
2212 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2214 static void
2215 free_modify_mem_tables (void)
2217 clear_modify_mem_tables ();
2218 free (modify_mem_list);
2219 free (canon_modify_mem_list);
2220 modify_mem_list = 0;
2221 canon_modify_mem_list = 0;
2224 /* Reset tables used to keep track of what's still available [since the
2225 start of the block]. */
2227 static void
2228 reset_opr_set_tables (void)
2230 /* Maintain a bitmap of which regs have been set since beginning of
2231 the block. */
2232 CLEAR_REG_SET (reg_set_bitmap);
2234 /* Also keep a record of the last instruction to modify memory.
2235 For now this is very trivial, we only record whether any memory
2236 location has been modified. */
2237 clear_modify_mem_tables ();
2240 /* Return nonzero if the operands of X are not set before INSN in
2241 INSN's basic block. */
2243 static int
2244 oprs_not_set_p (rtx x, rtx insn)
2246 int i, j;
2247 enum rtx_code code;
2248 const char *fmt;
2250 if (x == 0)
2251 return 1;
2253 code = GET_CODE (x);
2254 switch (code)
2256 case PC:
2257 case CC0:
2258 case CONST:
2259 case CONST_INT:
2260 case CONST_DOUBLE:
2261 case CONST_VECTOR:
2262 case SYMBOL_REF:
2263 case LABEL_REF:
2264 case ADDR_VEC:
2265 case ADDR_DIFF_VEC:
2266 return 1;
2268 case MEM:
2269 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2270 INSN_CUID (insn), x, 0))
2271 return 0;
2272 else
2273 return oprs_not_set_p (XEXP (x, 0), insn);
2275 case REG:
2276 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2278 default:
2279 break;
2282 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2284 if (fmt[i] == 'e')
2286 /* If we are about to do the last recursive call
2287 needed at this level, change it into iteration.
2288 This function is called enough to be worth it. */
2289 if (i == 0)
2290 return oprs_not_set_p (XEXP (x, i), insn);
2292 if (! oprs_not_set_p (XEXP (x, i), insn))
2293 return 0;
2295 else if (fmt[i] == 'E')
2296 for (j = 0; j < XVECLEN (x, i); j++)
2297 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2298 return 0;
2301 return 1;
2304 /* Mark things set by a CALL. */
2306 static void
2307 mark_call (rtx insn)
2309 if (! CONST_OR_PURE_CALL_P (insn))
2310 record_last_mem_set_info (insn);
2313 /* Mark things set by a SET. */
2315 static void
2316 mark_set (rtx pat, rtx insn)
2318 rtx dest = SET_DEST (pat);
2320 while (GET_CODE (dest) == SUBREG
2321 || GET_CODE (dest) == ZERO_EXTRACT
2322 || GET_CODE (dest) == STRICT_LOW_PART)
2323 dest = XEXP (dest, 0);
2325 if (REG_P (dest))
2326 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2327 else if (MEM_P (dest))
2328 record_last_mem_set_info (insn);
2330 if (GET_CODE (SET_SRC (pat)) == CALL)
2331 mark_call (insn);
2334 /* Record things set by a CLOBBER. */
2336 static void
2337 mark_clobber (rtx pat, rtx insn)
2339 rtx clob = XEXP (pat, 0);
2341 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2342 clob = XEXP (clob, 0);
2344 if (REG_P (clob))
2345 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2346 else
2347 record_last_mem_set_info (insn);
2350 /* Record things set by INSN.
2351 This data is used by oprs_not_set_p. */
2353 static void
2354 mark_oprs_set (rtx insn)
2356 rtx pat = PATTERN (insn);
2357 int i;
2359 if (GET_CODE (pat) == SET)
2360 mark_set (pat, insn);
2361 else if (GET_CODE (pat) == PARALLEL)
2362 for (i = 0; i < XVECLEN (pat, 0); i++)
2364 rtx x = XVECEXP (pat, 0, i);
2366 if (GET_CODE (x) == SET)
2367 mark_set (x, insn);
2368 else if (GET_CODE (x) == CLOBBER)
2369 mark_clobber (x, insn);
2370 else if (GET_CODE (x) == CALL)
2371 mark_call (insn);
2374 else if (GET_CODE (pat) == CLOBBER)
2375 mark_clobber (pat, insn);
2376 else if (GET_CODE (pat) == CALL)
2377 mark_call (insn);
2381 /* Compute copy/constant propagation working variables. */
2383 /* Local properties of assignments. */
2384 static sbitmap *cprop_pavloc;
2385 static sbitmap *cprop_absaltered;
2387 /* Global properties of assignments (computed from the local properties). */
2388 static sbitmap *cprop_avin;
2389 static sbitmap *cprop_avout;
2391 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2392 basic blocks. N_SETS is the number of sets. */
2394 static void
2395 alloc_cprop_mem (int n_blocks, int n_sets)
2397 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2398 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2400 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2401 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2404 /* Free vars used by copy/const propagation. */
2406 static void
2407 free_cprop_mem (void)
2409 sbitmap_vector_free (cprop_pavloc);
2410 sbitmap_vector_free (cprop_absaltered);
2411 sbitmap_vector_free (cprop_avin);
2412 sbitmap_vector_free (cprop_avout);
2415 /* For each block, compute whether X is transparent. X is either an
2416 expression or an assignment [though we don't care which, for this context
2417 an assignment is treated as an expression]. For each block where an
2418 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2419 bit in BMAP. */
2421 static void
2422 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2424 int i, j;
2425 basic_block bb;
2426 enum rtx_code code;
2427 reg_set *r;
2428 const char *fmt;
2430 /* repeat is used to turn tail-recursion into iteration since GCC
2431 can't do it when there's no return value. */
2432 repeat:
2434 if (x == 0)
2435 return;
2437 code = GET_CODE (x);
2438 switch (code)
2440 case REG:
2441 if (set_p)
2443 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2445 FOR_EACH_BB (bb)
2446 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2447 SET_BIT (bmap[bb->index], indx);
2449 else
2451 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2452 SET_BIT (bmap[r->bb_index], indx);
2455 else
2457 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2459 FOR_EACH_BB (bb)
2460 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2461 RESET_BIT (bmap[bb->index], indx);
2463 else
2465 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2466 RESET_BIT (bmap[r->bb_index], indx);
2470 return;
2472 case MEM:
2473 FOR_EACH_BB (bb)
2475 rtx list_entry = canon_modify_mem_list[bb->index];
2477 while (list_entry)
2479 rtx dest, dest_addr;
2481 if (CALL_P (XEXP (list_entry, 0)))
2483 if (set_p)
2484 SET_BIT (bmap[bb->index], indx);
2485 else
2486 RESET_BIT (bmap[bb->index], indx);
2487 break;
2489 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2490 Examine each hunk of memory that is modified. */
2492 dest = XEXP (list_entry, 0);
2493 list_entry = XEXP (list_entry, 1);
2494 dest_addr = XEXP (list_entry, 0);
2496 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2497 x, rtx_addr_varies_p))
2499 if (set_p)
2500 SET_BIT (bmap[bb->index], indx);
2501 else
2502 RESET_BIT (bmap[bb->index], indx);
2503 break;
2505 list_entry = XEXP (list_entry, 1);
2509 x = XEXP (x, 0);
2510 goto repeat;
2512 case PC:
2513 case CC0: /*FIXME*/
2514 case CONST:
2515 case CONST_INT:
2516 case CONST_DOUBLE:
2517 case CONST_VECTOR:
2518 case SYMBOL_REF:
2519 case LABEL_REF:
2520 case ADDR_VEC:
2521 case ADDR_DIFF_VEC:
2522 return;
2524 default:
2525 break;
2528 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2530 if (fmt[i] == 'e')
2532 /* If we are about to do the last recursive call
2533 needed at this level, change it into iteration.
2534 This function is called enough to be worth it. */
2535 if (i == 0)
2537 x = XEXP (x, i);
2538 goto repeat;
2541 compute_transp (XEXP (x, i), indx, bmap, set_p);
2543 else if (fmt[i] == 'E')
2544 for (j = 0; j < XVECLEN (x, i); j++)
2545 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2549 /* Top level routine to do the dataflow analysis needed by copy/const
2550 propagation. */
2552 static void
2553 compute_cprop_data (void)
2555 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2556 compute_available (cprop_pavloc, cprop_absaltered,
2557 cprop_avout, cprop_avin);
2560 /* Copy/constant propagation. */
2562 /* Maximum number of register uses in an insn that we handle. */
2563 #define MAX_USES 8
2565 /* Table of uses found in an insn.
2566 Allocated statically to avoid alloc/free complexity and overhead. */
2567 static struct reg_use reg_use_table[MAX_USES];
2569 /* Index into `reg_use_table' while building it. */
2570 static int reg_use_count;
2572 /* Set up a list of register numbers used in INSN. The found uses are stored
2573 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2574 and contains the number of uses in the table upon exit.
2576 ??? If a register appears multiple times we will record it multiple times.
2577 This doesn't hurt anything but it will slow things down. */
2579 static void
2580 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2582 int i, j;
2583 enum rtx_code code;
2584 const char *fmt;
2585 rtx x = *xptr;
2587 /* repeat is used to turn tail-recursion into iteration since GCC
2588 can't do it when there's no return value. */
2589 repeat:
2590 if (x == 0)
2591 return;
2593 code = GET_CODE (x);
2594 if (REG_P (x))
2596 if (reg_use_count == MAX_USES)
2597 return;
2599 reg_use_table[reg_use_count].reg_rtx = x;
2600 reg_use_count++;
2603 /* Recursively scan the operands of this expression. */
2605 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2607 if (fmt[i] == 'e')
2609 /* If we are about to do the last recursive call
2610 needed at this level, change it into iteration.
2611 This function is called enough to be worth it. */
2612 if (i == 0)
2614 x = XEXP (x, 0);
2615 goto repeat;
2618 find_used_regs (&XEXP (x, i), data);
2620 else if (fmt[i] == 'E')
2621 for (j = 0; j < XVECLEN (x, i); j++)
2622 find_used_regs (&XVECEXP (x, i, j), data);
2626 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2627 Returns nonzero is successful. */
2629 static int
2630 try_replace_reg (rtx from, rtx to, rtx insn)
2632 rtx note = find_reg_equal_equiv_note (insn);
2633 rtx src = 0;
2634 int success = 0;
2635 rtx set = single_set (insn);
2637 validate_replace_src_group (from, to, insn);
2638 if (num_changes_pending () && apply_change_group ())
2639 success = 1;
2641 /* Try to simplify SET_SRC if we have substituted a constant. */
2642 if (success && set && CONSTANT_P (to))
2644 src = simplify_rtx (SET_SRC (set));
2646 if (src)
2647 validate_change (insn, &SET_SRC (set), src, 0);
2650 /* If there is already a NOTE, update the expression in it with our
2651 replacement. */
2652 if (note != 0)
2653 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2655 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2657 /* If above failed and this is a single set, try to simplify the source of
2658 the set given our substitution. We could perhaps try this for multiple
2659 SETs, but it probably won't buy us anything. */
2660 src = simplify_replace_rtx (SET_SRC (set), from, to);
2662 if (!rtx_equal_p (src, SET_SRC (set))
2663 && validate_change (insn, &SET_SRC (set), src, 0))
2664 success = 1;
2666 /* If we've failed to do replacement, have a single SET, don't already
2667 have a note, and have no special SET, add a REG_EQUAL note to not
2668 lose information. */
2669 if (!success && note == 0 && set != 0
2670 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT)
2671 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2674 /* REG_EQUAL may get simplified into register.
2675 We don't allow that. Remove that note. This code ought
2676 not to happen, because previous code ought to synthesize
2677 reg-reg move, but be on the safe side. */
2678 if (note && REG_P (XEXP (note, 0)))
2679 remove_note (insn, note);
2681 return success;
2684 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2685 NULL no such set is found. */
2687 static struct expr *
2688 find_avail_set (int regno, rtx insn)
2690 /* SET1 contains the last set found that can be returned to the caller for
2691 use in a substitution. */
2692 struct expr *set1 = 0;
2694 /* Loops are not possible here. To get a loop we would need two sets
2695 available at the start of the block containing INSN. i.e. we would
2696 need two sets like this available at the start of the block:
2698 (set (reg X) (reg Y))
2699 (set (reg Y) (reg X))
2701 This can not happen since the set of (reg Y) would have killed the
2702 set of (reg X) making it unavailable at the start of this block. */
2703 while (1)
2705 rtx src;
2706 struct expr *set = lookup_set (regno, &set_hash_table);
2708 /* Find a set that is available at the start of the block
2709 which contains INSN. */
2710 while (set)
2712 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2713 break;
2714 set = next_set (regno, set);
2717 /* If no available set was found we've reached the end of the
2718 (possibly empty) copy chain. */
2719 if (set == 0)
2720 break;
2722 gcc_assert (GET_CODE (set->expr) == SET);
2724 src = SET_SRC (set->expr);
2726 /* We know the set is available.
2727 Now check that SRC is ANTLOC (i.e. none of the source operands
2728 have changed since the start of the block).
2730 If the source operand changed, we may still use it for the next
2731 iteration of this loop, but we may not use it for substitutions. */
2733 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2734 set1 = set;
2736 /* If the source of the set is anything except a register, then
2737 we have reached the end of the copy chain. */
2738 if (! REG_P (src))
2739 break;
2741 /* Follow the copy chain, i.e. start another iteration of the loop
2742 and see if we have an available copy into SRC. */
2743 regno = REGNO (src);
2746 /* SET1 holds the last set that was available and anticipatable at
2747 INSN. */
2748 return set1;
2751 /* Subroutine of cprop_insn that tries to propagate constants into
2752 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2753 it is the instruction that immediately precedes JUMP, and must be a
2754 single SET of a register. FROM is what we will try to replace,
2755 SRC is the constant we will try to substitute for it. Returns nonzero
2756 if a change was made. */
2758 static int
2759 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2761 rtx new, set_src, note_src;
2762 rtx set = pc_set (jump);
2763 rtx note = find_reg_equal_equiv_note (jump);
2765 if (note)
2767 note_src = XEXP (note, 0);
2768 if (GET_CODE (note_src) == EXPR_LIST)
2769 note_src = NULL_RTX;
2771 else note_src = NULL_RTX;
2773 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2774 set_src = note_src ? note_src : SET_SRC (set);
2776 /* First substitute the SETCC condition into the JUMP instruction,
2777 then substitute that given values into this expanded JUMP. */
2778 if (setcc != NULL_RTX
2779 && !modified_between_p (from, setcc, jump)
2780 && !modified_between_p (src, setcc, jump))
2782 rtx setcc_src;
2783 rtx setcc_set = single_set (setcc);
2784 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2785 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2786 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2787 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2788 setcc_src);
2790 else
2791 setcc = NULL_RTX;
2793 new = simplify_replace_rtx (set_src, from, src);
2795 /* If no simplification can be made, then try the next register. */
2796 if (rtx_equal_p (new, SET_SRC (set)))
2797 return 0;
2799 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2800 if (new == pc_rtx)
2801 delete_insn (jump);
2802 else
2804 /* Ensure the value computed inside the jump insn to be equivalent
2805 to one computed by setcc. */
2806 if (setcc && modified_in_p (new, setcc))
2807 return 0;
2808 if (! validate_change (jump, &SET_SRC (set), new, 0))
2810 /* When (some) constants are not valid in a comparison, and there
2811 are two registers to be replaced by constants before the entire
2812 comparison can be folded into a constant, we need to keep
2813 intermediate information in REG_EQUAL notes. For targets with
2814 separate compare insns, such notes are added by try_replace_reg.
2815 When we have a combined compare-and-branch instruction, however,
2816 we need to attach a note to the branch itself to make this
2817 optimization work. */
2819 if (!rtx_equal_p (new, note_src))
2820 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2821 return 0;
2824 /* Remove REG_EQUAL note after simplification. */
2825 if (note_src)
2826 remove_note (jump, note);
2828 /* If this has turned into an unconditional jump,
2829 then put a barrier after it so that the unreachable
2830 code will be deleted. */
2831 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2832 emit_barrier_after (jump);
2835 #ifdef HAVE_cc0
2836 /* Delete the cc0 setter. */
2837 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2838 delete_insn (setcc);
2839 #endif
2841 run_jump_opt_after_gcse = 1;
2843 global_const_prop_count++;
2844 if (gcse_file != NULL)
2846 fprintf (gcse_file,
2847 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2848 REGNO (from), INSN_UID (jump));
2849 print_rtl (gcse_file, src);
2850 fprintf (gcse_file, "\n");
2852 purge_dead_edges (bb);
2854 return 1;
2857 static bool
2858 constprop_register (rtx insn, rtx from, rtx to, int alter_jumps)
2860 rtx sset;
2862 /* Check for reg or cc0 setting instructions followed by
2863 conditional branch instructions first. */
2864 if (alter_jumps
2865 && (sset = single_set (insn)) != NULL
2866 && NEXT_INSN (insn)
2867 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2869 rtx dest = SET_DEST (sset);
2870 if ((REG_P (dest) || CC0_P (dest))
2871 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2872 return 1;
2875 /* Handle normal insns next. */
2876 if (NONJUMP_INSN_P (insn)
2877 && try_replace_reg (from, to, insn))
2878 return 1;
2880 /* Try to propagate a CONST_INT into a conditional jump.
2881 We're pretty specific about what we will handle in this
2882 code, we can extend this as necessary over time.
2884 Right now the insn in question must look like
2885 (set (pc) (if_then_else ...)) */
2886 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2887 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2888 return 0;
2891 /* Perform constant and copy propagation on INSN.
2892 The result is nonzero if a change was made. */
2894 static int
2895 cprop_insn (rtx insn, int alter_jumps)
2897 struct reg_use *reg_used;
2898 int changed = 0;
2899 rtx note;
2901 if (!INSN_P (insn))
2902 return 0;
2904 reg_use_count = 0;
2905 note_uses (&PATTERN (insn), find_used_regs, NULL);
2907 note = find_reg_equal_equiv_note (insn);
2909 /* We may win even when propagating constants into notes. */
2910 if (note)
2911 find_used_regs (&XEXP (note, 0), NULL);
2913 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2914 reg_used++, reg_use_count--)
2916 unsigned int regno = REGNO (reg_used->reg_rtx);
2917 rtx pat, src;
2918 struct expr *set;
2920 /* Ignore registers created by GCSE.
2921 We do this because ... */
2922 if (regno >= max_gcse_regno)
2923 continue;
2925 /* If the register has already been set in this block, there's
2926 nothing we can do. */
2927 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2928 continue;
2930 /* Find an assignment that sets reg_used and is available
2931 at the start of the block. */
2932 set = find_avail_set (regno, insn);
2933 if (! set)
2934 continue;
2936 pat = set->expr;
2937 /* ??? We might be able to handle PARALLELs. Later. */
2938 gcc_assert (GET_CODE (pat) == SET);
2940 src = SET_SRC (pat);
2942 /* Constant propagation. */
2943 if (gcse_constant_p (src))
2945 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2947 changed = 1;
2948 global_const_prop_count++;
2949 if (gcse_file != NULL)
2951 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2952 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
2953 print_rtl (gcse_file, src);
2954 fprintf (gcse_file, "\n");
2956 if (INSN_DELETED_P (insn))
2957 return 1;
2960 else if (REG_P (src)
2961 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2962 && REGNO (src) != regno)
2964 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2966 changed = 1;
2967 global_copy_prop_count++;
2968 if (gcse_file != NULL)
2970 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2971 regno, INSN_UID (insn));
2972 fprintf (gcse_file, " with reg %d\n", REGNO (src));
2975 /* The original insn setting reg_used may or may not now be
2976 deletable. We leave the deletion to flow. */
2977 /* FIXME: If it turns out that the insn isn't deletable,
2978 then we may have unnecessarily extended register lifetimes
2979 and made things worse. */
2984 return changed;
2987 /* Like find_used_regs, but avoid recording uses that appear in
2988 input-output contexts such as zero_extract or pre_dec. This
2989 restricts the cases we consider to those for which local cprop
2990 can legitimately make replacements. */
2992 static void
2993 local_cprop_find_used_regs (rtx *xptr, void *data)
2995 rtx x = *xptr;
2997 if (x == 0)
2998 return;
3000 switch (GET_CODE (x))
3002 case ZERO_EXTRACT:
3003 case SIGN_EXTRACT:
3004 case STRICT_LOW_PART:
3005 return;
3007 case PRE_DEC:
3008 case PRE_INC:
3009 case POST_DEC:
3010 case POST_INC:
3011 case PRE_MODIFY:
3012 case POST_MODIFY:
3013 /* Can only legitimately appear this early in the context of
3014 stack pushes for function arguments, but handle all of the
3015 codes nonetheless. */
3016 return;
3018 case SUBREG:
3019 /* Setting a subreg of a register larger than word_mode leaves
3020 the non-written words unchanged. */
3021 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3022 return;
3023 break;
3025 default:
3026 break;
3029 find_used_regs (xptr, data);
3032 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3033 their REG_EQUAL notes need updating. */
3035 static bool
3036 do_local_cprop (rtx x, rtx insn, int alter_jumps, rtx *libcall_sp)
3038 rtx newreg = NULL, newcnst = NULL;
3040 /* Rule out USE instructions and ASM statements as we don't want to
3041 change the hard registers mentioned. */
3042 if (REG_P (x)
3043 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3044 || (GET_CODE (PATTERN (insn)) != USE
3045 && asm_noperands (PATTERN (insn)) < 0)))
3047 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3048 struct elt_loc_list *l;
3050 if (!val)
3051 return false;
3052 for (l = val->locs; l; l = l->next)
3054 rtx this_rtx = l->loc;
3055 rtx note;
3057 /* Don't CSE non-constant values out of libcall blocks. */
3058 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3059 continue;
3061 if (gcse_constant_p (this_rtx))
3062 newcnst = this_rtx;
3063 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3064 /* Don't copy propagate if it has attached REG_EQUIV note.
3065 At this point this only function parameters should have
3066 REG_EQUIV notes and if the argument slot is used somewhere
3067 explicitly, it means address of parameter has been taken,
3068 so we should not extend the lifetime of the pseudo. */
3069 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3070 || ! MEM_P (XEXP (note, 0))))
3071 newreg = this_rtx;
3073 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3075 /* If we find a case where we can't fix the retval REG_EQUAL notes
3076 match the new register, we either have to abandon this replacement
3077 or fix delete_trivially_dead_insns to preserve the setting insn,
3078 or make it delete the REG_EUAQL note, and fix up all passes that
3079 require the REG_EQUAL note there. */
3080 bool adjusted;
3082 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3083 gcc_assert (adjusted);
3085 if (gcse_file != NULL)
3087 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3088 REGNO (x));
3089 fprintf (gcse_file, "insn %d with constant ",
3090 INSN_UID (insn));
3091 print_rtl (gcse_file, newcnst);
3092 fprintf (gcse_file, "\n");
3094 local_const_prop_count++;
3095 return true;
3097 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3099 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3100 if (gcse_file != NULL)
3102 fprintf (gcse_file,
3103 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3104 REGNO (x), INSN_UID (insn));
3105 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3107 local_copy_prop_count++;
3108 return true;
3111 return false;
3114 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3115 their REG_EQUAL notes need updating to reflect that OLDREG has been
3116 replaced with NEWVAL in INSN. Return true if all substitutions could
3117 be made. */
3118 static bool
3119 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3121 rtx end;
3123 while ((end = *libcall_sp++))
3125 rtx note = find_reg_equal_equiv_note (end);
3127 if (! note)
3128 continue;
3130 if (REG_P (newval))
3132 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3136 note = find_reg_equal_equiv_note (end);
3137 if (! note)
3138 continue;
3139 if (reg_mentioned_p (newval, XEXP (note, 0)))
3140 return false;
3142 while ((end = *libcall_sp++));
3143 return true;
3146 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3147 insn = end;
3149 return true;
3152 #define MAX_NESTED_LIBCALLS 9
3154 static void
3155 local_cprop_pass (int alter_jumps)
3157 rtx insn;
3158 struct reg_use *reg_used;
3159 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3160 bool changed = false;
3162 cselib_init (false);
3163 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3164 *libcall_sp = 0;
3165 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3167 if (INSN_P (insn))
3169 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3171 if (note)
3173 gcc_assert (libcall_sp != libcall_stack);
3174 *--libcall_sp = XEXP (note, 0);
3176 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3177 if (note)
3178 libcall_sp++;
3179 note = find_reg_equal_equiv_note (insn);
3182 reg_use_count = 0;
3183 note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
3184 if (note)
3185 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3187 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3188 reg_used++, reg_use_count--)
3189 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3190 libcall_sp))
3192 changed = true;
3193 break;
3195 if (INSN_DELETED_P (insn))
3196 break;
3198 while (reg_use_count);
3200 cselib_process_insn (insn);
3202 cselib_finish ();
3203 /* Global analysis may get into infinite loops for unreachable blocks. */
3204 if (changed && alter_jumps)
3206 delete_unreachable_blocks ();
3207 free_reg_set_mem ();
3208 alloc_reg_set_mem (max_reg_num ());
3209 compute_sets (get_insns ());
3213 /* Forward propagate copies. This includes copies and constants. Return
3214 nonzero if a change was made. */
3216 static int
3217 cprop (int alter_jumps)
3219 int changed;
3220 basic_block bb;
3221 rtx insn;
3223 /* Note we start at block 1. */
3224 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3226 if (gcse_file != NULL)
3227 fprintf (gcse_file, "\n");
3228 return 0;
3231 changed = 0;
3232 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3234 /* Reset tables used to keep track of what's still valid [since the
3235 start of the block]. */
3236 reset_opr_set_tables ();
3238 for (insn = BB_HEAD (bb);
3239 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3240 insn = NEXT_INSN (insn))
3241 if (INSN_P (insn))
3243 changed |= cprop_insn (insn, alter_jumps);
3245 /* Keep track of everything modified by this insn. */
3246 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3247 call mark_oprs_set if we turned the insn into a NOTE. */
3248 if (! NOTE_P (insn))
3249 mark_oprs_set (insn);
3253 if (gcse_file != NULL)
3254 fprintf (gcse_file, "\n");
3256 return changed;
3259 /* Similar to get_condition, only the resulting condition must be
3260 valid at JUMP, instead of at EARLIEST.
3262 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3263 settle for the condition variable in the jump instruction being integral.
3264 We prefer to be able to record the value of a user variable, rather than
3265 the value of a temporary used in a condition. This could be solved by
3266 recording the value of *every* register scaned by canonicalize_condition,
3267 but this would require some code reorganization. */
3270 fis_get_condition (rtx jump)
3272 return get_condition (jump, NULL, false, true);
3275 /* Check the comparison COND to see if we can safely form an implicit set from
3276 it. COND is either an EQ or NE comparison. */
3278 static bool
3279 implicit_set_cond_p (rtx cond)
3281 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3282 rtx cst = XEXP (cond, 1);
3284 /* We can't perform this optimization if either operand might be or might
3285 contain a signed zero. */
3286 if (HONOR_SIGNED_ZEROS (mode))
3288 /* It is sufficient to check if CST is or contains a zero. We must
3289 handle float, complex, and vector. If any subpart is a zero, then
3290 the optimization can't be performed. */
3291 /* ??? The complex and vector checks are not implemented yet. We just
3292 always return zero for them. */
3293 if (GET_CODE (cst) == CONST_DOUBLE)
3295 REAL_VALUE_TYPE d;
3296 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3297 if (REAL_VALUES_EQUAL (d, dconst0))
3298 return 0;
3300 else
3301 return 0;
3304 return gcse_constant_p (cst);
3307 /* Find the implicit sets of a function. An "implicit set" is a constraint
3308 on the value of a variable, implied by a conditional jump. For example,
3309 following "if (x == 2)", the then branch may be optimized as though the
3310 conditional performed an "explicit set", in this example, "x = 2". This
3311 function records the set patterns that are implicit at the start of each
3312 basic block. */
3314 static void
3315 find_implicit_sets (void)
3317 basic_block bb, dest;
3318 unsigned int count;
3319 rtx cond, new;
3321 count = 0;
3322 FOR_EACH_BB (bb)
3323 /* Check for more than one successor. */
3324 if (EDGE_COUNT (bb->succs) > 1)
3326 cond = fis_get_condition (BB_END (bb));
3328 if (cond
3329 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3330 && REG_P (XEXP (cond, 0))
3331 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3332 && implicit_set_cond_p (cond))
3334 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3335 : FALLTHRU_EDGE (bb)->dest;
3337 if (dest && EDGE_COUNT (dest->preds) == 1
3338 && dest != EXIT_BLOCK_PTR)
3340 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3341 XEXP (cond, 1));
3342 implicit_sets[dest->index] = new;
3343 if (gcse_file)
3345 fprintf(gcse_file, "Implicit set of reg %d in ",
3346 REGNO (XEXP (cond, 0)));
3347 fprintf(gcse_file, "basic block %d\n", dest->index);
3349 count++;
3354 if (gcse_file)
3355 fprintf (gcse_file, "Found %d implicit sets\n", count);
3358 /* Perform one copy/constant propagation pass.
3359 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3360 propagation into conditional jumps. If BYPASS_JUMPS is true,
3361 perform conditional jump bypassing optimizations. */
3363 static int
3364 one_cprop_pass (int pass, int cprop_jumps, int bypass_jumps)
3366 int changed = 0;
3368 global_const_prop_count = local_const_prop_count = 0;
3369 global_copy_prop_count = local_copy_prop_count = 0;
3371 local_cprop_pass (cprop_jumps);
3373 /* Determine implicit sets. */
3374 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3375 find_implicit_sets ();
3377 alloc_hash_table (max_cuid, &set_hash_table, 1);
3378 compute_hash_table (&set_hash_table);
3380 /* Free implicit_sets before peak usage. */
3381 free (implicit_sets);
3382 implicit_sets = NULL;
3384 if (gcse_file)
3385 dump_hash_table (gcse_file, "SET", &set_hash_table);
3386 if (set_hash_table.n_elems > 0)
3388 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3389 compute_cprop_data ();
3390 changed = cprop (cprop_jumps);
3391 if (bypass_jumps)
3392 changed |= bypass_conditional_jumps ();
3393 free_cprop_mem ();
3396 free_hash_table (&set_hash_table);
3398 if (gcse_file)
3400 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3401 current_function_name (), pass, bytes_used);
3402 fprintf (gcse_file, "%d local const props, %d local copy props\n\n",
3403 local_const_prop_count, local_copy_prop_count);
3404 fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3405 global_const_prop_count, global_copy_prop_count);
3407 /* Global analysis may get into infinite loops for unreachable blocks. */
3408 if (changed && cprop_jumps)
3409 delete_unreachable_blocks ();
3411 return changed;
3414 /* Bypass conditional jumps. */
3416 /* The value of last_basic_block at the beginning of the jump_bypass
3417 pass. The use of redirect_edge_and_branch_force may introduce new
3418 basic blocks, but the data flow analysis is only valid for basic
3419 block indices less than bypass_last_basic_block. */
3421 static int bypass_last_basic_block;
3423 /* Find a set of REGNO to a constant that is available at the end of basic
3424 block BB. Returns NULL if no such set is found. Based heavily upon
3425 find_avail_set. */
3427 static struct expr *
3428 find_bypass_set (int regno, int bb)
3430 struct expr *result = 0;
3432 for (;;)
3434 rtx src;
3435 struct expr *set = lookup_set (regno, &set_hash_table);
3437 while (set)
3439 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3440 break;
3441 set = next_set (regno, set);
3444 if (set == 0)
3445 break;
3447 gcc_assert (GET_CODE (set->expr) == SET);
3449 src = SET_SRC (set->expr);
3450 if (gcse_constant_p (src))
3451 result = set;
3453 if (! REG_P (src))
3454 break;
3456 regno = REGNO (src);
3458 return result;
3462 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3463 any of the instructions inserted on an edge. Jump bypassing places
3464 condition code setters on CFG edges using insert_insn_on_edge. This
3465 function is required to check that our data flow analysis is still
3466 valid prior to commit_edge_insertions. */
3468 static bool
3469 reg_killed_on_edge (rtx reg, edge e)
3471 rtx insn;
3473 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3474 if (INSN_P (insn) && reg_set_p (reg, insn))
3475 return true;
3477 return false;
3480 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3481 basic block BB which has more than one predecessor. If not NULL, SETCC
3482 is the first instruction of BB, which is immediately followed by JUMP_INSN
3483 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3484 Returns nonzero if a change was made.
3486 During the jump bypassing pass, we may place copies of SETCC instructions
3487 on CFG edges. The following routine must be careful to pay attention to
3488 these inserted insns when performing its transformations. */
3490 static int
3491 bypass_block (basic_block bb, rtx setcc, rtx jump)
3493 rtx insn, note;
3494 edge e, edest;
3495 int i, change;
3496 int may_be_loop_header;
3497 unsigned removed_p;
3498 edge_iterator ei;
3500 insn = (setcc != NULL) ? setcc : jump;
3502 /* Determine set of register uses in INSN. */
3503 reg_use_count = 0;
3504 note_uses (&PATTERN (insn), find_used_regs, NULL);
3505 note = find_reg_equal_equiv_note (insn);
3506 if (note)
3507 find_used_regs (&XEXP (note, 0), NULL);
3509 may_be_loop_header = false;
3510 FOR_EACH_EDGE (e, ei, bb->preds)
3511 if (e->flags & EDGE_DFS_BACK)
3513 may_be_loop_header = true;
3514 break;
3517 change = 0;
3518 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3520 removed_p = 0;
3522 if (e->flags & EDGE_COMPLEX)
3524 ei_next (&ei);
3525 continue;
3528 /* We can't redirect edges from new basic blocks. */
3529 if (e->src->index >= bypass_last_basic_block)
3531 ei_next (&ei);
3532 continue;
3535 /* The irreducible loops created by redirecting of edges entering the
3536 loop from outside would decrease effectiveness of some of the following
3537 optimizations, so prevent this. */
3538 if (may_be_loop_header
3539 && !(e->flags & EDGE_DFS_BACK))
3541 ei_next (&ei);
3542 continue;
3545 for (i = 0; i < reg_use_count; i++)
3547 struct reg_use *reg_used = &reg_use_table[i];
3548 unsigned int regno = REGNO (reg_used->reg_rtx);
3549 basic_block dest, old_dest;
3550 struct expr *set;
3551 rtx src, new;
3553 if (regno >= max_gcse_regno)
3554 continue;
3556 set = find_bypass_set (regno, e->src->index);
3558 if (! set)
3559 continue;
3561 /* Check the data flow is valid after edge insertions. */
3562 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3563 continue;
3565 src = SET_SRC (pc_set (jump));
3567 if (setcc != NULL)
3568 src = simplify_replace_rtx (src,
3569 SET_DEST (PATTERN (setcc)),
3570 SET_SRC (PATTERN (setcc)));
3572 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3573 SET_SRC (set->expr));
3575 /* Jump bypassing may have already placed instructions on
3576 edges of the CFG. We can't bypass an outgoing edge that
3577 has instructions associated with it, as these insns won't
3578 get executed if the incoming edge is redirected. */
3580 if (new == pc_rtx)
3582 edest = FALLTHRU_EDGE (bb);
3583 dest = edest->insns.r ? NULL : edest->dest;
3585 else if (GET_CODE (new) == LABEL_REF)
3587 edge_iterator ei2;
3589 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3590 /* Don't bypass edges containing instructions. */
3591 FOR_EACH_EDGE (edest, ei2, bb->succs)
3592 if (edest->dest == dest && edest->insns.r)
3594 dest = NULL;
3595 break;
3598 else
3599 dest = NULL;
3601 /* Avoid unification of the edge with other edges from original
3602 branch. We would end up emitting the instruction on "both"
3603 edges. */
3605 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc))))
3607 edge e2;
3608 edge_iterator ei2;
3610 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3611 if (e2->dest == dest)
3613 dest = NULL;
3614 break;
3618 old_dest = e->dest;
3619 if (dest != NULL
3620 && dest != old_dest
3621 && dest != EXIT_BLOCK_PTR)
3623 redirect_edge_and_branch_force (e, dest);
3625 /* Copy the register setter to the redirected edge.
3626 Don't copy CC0 setters, as CC0 is dead after jump. */
3627 if (setcc)
3629 rtx pat = PATTERN (setcc);
3630 if (!CC0_P (SET_DEST (pat)))
3631 insert_insn_on_edge (copy_insn (pat), e);
3634 if (gcse_file != NULL)
3636 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3637 "in jump_insn %d equals constant ",
3638 regno, INSN_UID (jump));
3639 print_rtl (gcse_file, SET_SRC (set->expr));
3640 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3641 e->src->index, old_dest->index, dest->index);
3643 change = 1;
3644 removed_p = 1;
3645 break;
3648 if (!removed_p)
3649 ei_next (&ei);
3651 return change;
3654 /* Find basic blocks with more than one predecessor that only contain a
3655 single conditional jump. If the result of the comparison is known at
3656 compile-time from any incoming edge, redirect that edge to the
3657 appropriate target. Returns nonzero if a change was made.
3659 This function is now mis-named, because we also handle indirect jumps. */
3661 static int
3662 bypass_conditional_jumps (void)
3664 basic_block bb;
3665 int changed;
3666 rtx setcc;
3667 rtx insn;
3668 rtx dest;
3670 /* Note we start at block 1. */
3671 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3672 return 0;
3674 bypass_last_basic_block = last_basic_block;
3675 mark_dfs_back_edges ();
3677 changed = 0;
3678 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3679 EXIT_BLOCK_PTR, next_bb)
3681 /* Check for more than one predecessor. */
3682 if (EDGE_COUNT (bb->preds) > 1)
3684 setcc = NULL_RTX;
3685 for (insn = BB_HEAD (bb);
3686 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3687 insn = NEXT_INSN (insn))
3688 if (NONJUMP_INSN_P (insn))
3690 if (setcc)
3691 break;
3692 if (GET_CODE (PATTERN (insn)) != SET)
3693 break;
3695 dest = SET_DEST (PATTERN (insn));
3696 if (REG_P (dest) || CC0_P (dest))
3697 setcc = insn;
3698 else
3699 break;
3701 else if (JUMP_P (insn))
3703 if ((any_condjump_p (insn) || computed_jump_p (insn))
3704 && onlyjump_p (insn))
3705 changed |= bypass_block (bb, setcc, insn);
3706 break;
3708 else if (INSN_P (insn))
3709 break;
3713 /* If we bypassed any register setting insns, we inserted a
3714 copy on the redirected edge. These need to be committed. */
3715 if (changed)
3716 commit_edge_insertions();
3718 return changed;
3721 /* Compute PRE+LCM working variables. */
3723 /* Local properties of expressions. */
3724 /* Nonzero for expressions that are transparent in the block. */
3725 static sbitmap *transp;
3727 /* Nonzero for expressions that are transparent at the end of the block.
3728 This is only zero for expressions killed by abnormal critical edge
3729 created by a calls. */
3730 static sbitmap *transpout;
3732 /* Nonzero for expressions that are computed (available) in the block. */
3733 static sbitmap *comp;
3735 /* Nonzero for expressions that are locally anticipatable in the block. */
3736 static sbitmap *antloc;
3738 /* Nonzero for expressions where this block is an optimal computation
3739 point. */
3740 static sbitmap *pre_optimal;
3742 /* Nonzero for expressions which are redundant in a particular block. */
3743 static sbitmap *pre_redundant;
3745 /* Nonzero for expressions which should be inserted on a specific edge. */
3746 static sbitmap *pre_insert_map;
3748 /* Nonzero for expressions which should be deleted in a specific block. */
3749 static sbitmap *pre_delete_map;
3751 /* Contains the edge_list returned by pre_edge_lcm. */
3752 static struct edge_list *edge_list;
3754 /* Redundant insns. */
3755 static sbitmap pre_redundant_insns;
3757 /* Allocate vars used for PRE analysis. */
3759 static void
3760 alloc_pre_mem (int n_blocks, int n_exprs)
3762 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3763 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3764 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3766 pre_optimal = NULL;
3767 pre_redundant = NULL;
3768 pre_insert_map = NULL;
3769 pre_delete_map = NULL;
3770 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3772 /* pre_insert and pre_delete are allocated later. */
3775 /* Free vars used for PRE analysis. */
3777 static void
3778 free_pre_mem (void)
3780 sbitmap_vector_free (transp);
3781 sbitmap_vector_free (comp);
3783 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3785 if (pre_optimal)
3786 sbitmap_vector_free (pre_optimal);
3787 if (pre_redundant)
3788 sbitmap_vector_free (pre_redundant);
3789 if (pre_insert_map)
3790 sbitmap_vector_free (pre_insert_map);
3791 if (pre_delete_map)
3792 sbitmap_vector_free (pre_delete_map);
3794 transp = comp = NULL;
3795 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3798 /* Top level routine to do the dataflow analysis needed by PRE. */
3800 static void
3801 compute_pre_data (void)
3803 sbitmap trapping_expr;
3804 basic_block bb;
3805 unsigned int ui;
3807 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3808 sbitmap_vector_zero (ae_kill, last_basic_block);
3810 /* Collect expressions which might trap. */
3811 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3812 sbitmap_zero (trapping_expr);
3813 for (ui = 0; ui < expr_hash_table.size; ui++)
3815 struct expr *e;
3816 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3817 if (may_trap_p (e->expr))
3818 SET_BIT (trapping_expr, e->bitmap_index);
3821 /* Compute ae_kill for each basic block using:
3823 ~(TRANSP | COMP)
3826 FOR_EACH_BB (bb)
3828 edge e;
3829 edge_iterator ei;
3831 /* If the current block is the destination of an abnormal edge, we
3832 kill all trapping expressions because we won't be able to properly
3833 place the instruction on the edge. So make them neither
3834 anticipatable nor transparent. This is fairly conservative. */
3835 FOR_EACH_EDGE (e, ei, bb->preds)
3836 if (e->flags & EDGE_ABNORMAL)
3838 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3839 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3840 break;
3843 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3844 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3847 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3848 ae_kill, &pre_insert_map, &pre_delete_map);
3849 sbitmap_vector_free (antloc);
3850 antloc = NULL;
3851 sbitmap_vector_free (ae_kill);
3852 ae_kill = NULL;
3853 sbitmap_free (trapping_expr);
3856 /* PRE utilities */
3858 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3859 block BB.
3861 VISITED is a pointer to a working buffer for tracking which BB's have
3862 been visited. It is NULL for the top-level call.
3864 We treat reaching expressions that go through blocks containing the same
3865 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3866 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3867 2 as not reaching. The intent is to improve the probability of finding
3868 only one reaching expression and to reduce register lifetimes by picking
3869 the closest such expression. */
3871 static int
3872 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3874 edge pred;
3875 edge_iterator ei;
3877 FOR_EACH_EDGE (pred, ei, bb->preds)
3879 basic_block pred_bb = pred->src;
3881 if (pred->src == ENTRY_BLOCK_PTR
3882 /* Has predecessor has already been visited? */
3883 || visited[pred_bb->index])
3884 ;/* Nothing to do. */
3886 /* Does this predecessor generate this expression? */
3887 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3889 /* Is this the occurrence we're looking for?
3890 Note that there's only one generating occurrence per block
3891 so we just need to check the block number. */
3892 if (occr_bb == pred_bb)
3893 return 1;
3895 visited[pred_bb->index] = 1;
3897 /* Ignore this predecessor if it kills the expression. */
3898 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3899 visited[pred_bb->index] = 1;
3901 /* Neither gen nor kill. */
3902 else
3904 visited[pred_bb->index] = 1;
3905 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3906 return 1;
3910 /* All paths have been checked. */
3911 return 0;
3914 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3915 memory allocated for that function is returned. */
3917 static int
3918 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3920 int rval;
3921 char *visited = xcalloc (last_basic_block, 1);
3923 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3925 free (visited);
3926 return rval;
3930 /* Given an expr, generate RTL which we can insert at the end of a BB,
3931 or on an edge. Set the block number of any insns generated to
3932 the value of BB. */
3934 static rtx
3935 process_insert_insn (struct expr *expr)
3937 rtx reg = expr->reaching_reg;
3938 rtx exp = copy_rtx (expr->expr);
3939 rtx pat;
3941 start_sequence ();
3943 /* If the expression is something that's an operand, like a constant,
3944 just copy it to a register. */
3945 if (general_operand (exp, GET_MODE (reg)))
3946 emit_move_insn (reg, exp);
3948 /* Otherwise, make a new insn to compute this expression and make sure the
3949 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3950 expression to make sure we don't have any sharing issues. */
3951 else
3953 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3955 if (insn_invalid_p (insn))
3956 gcc_unreachable ();
3960 pat = get_insns ();
3961 end_sequence ();
3963 return pat;
3966 /* Add EXPR to the end of basic block BB.
3968 This is used by both the PRE and code hoisting.
3970 For PRE, we want to verify that the expr is either transparent
3971 or locally anticipatable in the target block. This check makes
3972 no sense for code hoisting. */
3974 static void
3975 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
3977 rtx insn = BB_END (bb);
3978 rtx new_insn;
3979 rtx reg = expr->reaching_reg;
3980 int regno = REGNO (reg);
3981 rtx pat, pat_end;
3983 pat = process_insert_insn (expr);
3984 gcc_assert (pat && INSN_P (pat));
3986 pat_end = pat;
3987 while (NEXT_INSN (pat_end) != NULL_RTX)
3988 pat_end = NEXT_INSN (pat_end);
3990 /* If the last insn is a jump, insert EXPR in front [taking care to
3991 handle cc0, etc. properly]. Similarly we need to care trapping
3992 instructions in presence of non-call exceptions. */
3994 if (JUMP_P (insn)
3995 || (NONJUMP_INSN_P (insn)
3996 && (EDGE_COUNT (bb->succs) > 1
3997 || EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL)))
3999 #ifdef HAVE_cc0
4000 rtx note;
4001 #endif
4002 /* It should always be the case that we can put these instructions
4003 anywhere in the basic block with performing PRE optimizations.
4004 Check this. */
4005 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4006 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4007 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4009 /* If this is a jump table, then we can't insert stuff here. Since
4010 we know the previous real insn must be the tablejump, we insert
4011 the new instruction just before the tablejump. */
4012 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4013 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4014 insn = prev_real_insn (insn);
4016 #ifdef HAVE_cc0
4017 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4018 if cc0 isn't set. */
4019 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4020 if (note)
4021 insn = XEXP (note, 0);
4022 else
4024 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4025 if (maybe_cc0_setter
4026 && INSN_P (maybe_cc0_setter)
4027 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4028 insn = maybe_cc0_setter;
4030 #endif
4031 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4032 new_insn = emit_insn_before_noloc (pat, insn);
4035 /* Likewise if the last insn is a call, as will happen in the presence
4036 of exception handling. */
4037 else if (CALL_P (insn)
4038 && (EDGE_COUNT (bb->succs) > 1 || EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL))
4040 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4041 we search backward and place the instructions before the first
4042 parameter is loaded. Do this for everyone for consistency and a
4043 presumption that we'll get better code elsewhere as well.
4045 It should always be the case that we can put these instructions
4046 anywhere in the basic block with performing PRE optimizations.
4047 Check this. */
4049 gcc_assert (!pre
4050 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4051 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4053 /* Since different machines initialize their parameter registers
4054 in different orders, assume nothing. Collect the set of all
4055 parameter registers. */
4056 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4058 /* If we found all the parameter loads, then we want to insert
4059 before the first parameter load.
4061 If we did not find all the parameter loads, then we might have
4062 stopped on the head of the block, which could be a CODE_LABEL.
4063 If we inserted before the CODE_LABEL, then we would be putting
4064 the insn in the wrong basic block. In that case, put the insn
4065 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4066 while (LABEL_P (insn)
4067 || NOTE_INSN_BASIC_BLOCK_P (insn))
4068 insn = NEXT_INSN (insn);
4070 new_insn = emit_insn_before_noloc (pat, insn);
4072 else
4073 new_insn = emit_insn_after_noloc (pat, insn);
4075 while (1)
4077 if (INSN_P (pat))
4079 add_label_notes (PATTERN (pat), new_insn);
4080 note_stores (PATTERN (pat), record_set_info, pat);
4082 if (pat == pat_end)
4083 break;
4084 pat = NEXT_INSN (pat);
4087 gcse_create_count++;
4089 if (gcse_file)
4091 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4092 bb->index, INSN_UID (new_insn));
4093 fprintf (gcse_file, "copying expression %d to reg %d\n",
4094 expr->bitmap_index, regno);
4098 /* Insert partially redundant expressions on edges in the CFG to make
4099 the expressions fully redundant. */
4101 static int
4102 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4104 int e, i, j, num_edges, set_size, did_insert = 0;
4105 sbitmap *inserted;
4107 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4108 if it reaches any of the deleted expressions. */
4110 set_size = pre_insert_map[0]->size;
4111 num_edges = NUM_EDGES (edge_list);
4112 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4113 sbitmap_vector_zero (inserted, num_edges);
4115 for (e = 0; e < num_edges; e++)
4117 int indx;
4118 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4120 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4122 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4124 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4125 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4127 struct expr *expr = index_map[j];
4128 struct occr *occr;
4130 /* Now look at each deleted occurrence of this expression. */
4131 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4133 if (! occr->deleted_p)
4134 continue;
4136 /* Insert this expression on this edge if if it would
4137 reach the deleted occurrence in BB. */
4138 if (!TEST_BIT (inserted[e], j))
4140 rtx insn;
4141 edge eg = INDEX_EDGE (edge_list, e);
4143 /* We can't insert anything on an abnormal and
4144 critical edge, so we insert the insn at the end of
4145 the previous block. There are several alternatives
4146 detailed in Morgans book P277 (sec 10.5) for
4147 handling this situation. This one is easiest for
4148 now. */
4150 if (eg->flags & EDGE_ABNORMAL)
4151 insert_insn_end_bb (index_map[j], bb, 0);
4152 else
4154 insn = process_insert_insn (index_map[j]);
4155 insert_insn_on_edge (insn, eg);
4158 if (gcse_file)
4160 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4161 bb->index,
4162 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4163 fprintf (gcse_file, "copy expression %d\n",
4164 expr->bitmap_index);
4167 update_ld_motion_stores (expr);
4168 SET_BIT (inserted[e], j);
4169 did_insert = 1;
4170 gcse_create_count++;
4177 sbitmap_vector_free (inserted);
4178 return did_insert;
4181 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4182 Given "old_reg <- expr" (INSN), instead of adding after it
4183 reaching_reg <- old_reg
4184 it's better to do the following:
4185 reaching_reg <- expr
4186 old_reg <- reaching_reg
4187 because this way copy propagation can discover additional PRE
4188 opportunities. But if this fails, we try the old way.
4189 When "expr" is a store, i.e.
4190 given "MEM <- old_reg", instead of adding after it
4191 reaching_reg <- old_reg
4192 it's better to add it before as follows:
4193 reaching_reg <- old_reg
4194 MEM <- reaching_reg. */
4196 static void
4197 pre_insert_copy_insn (struct expr *expr, rtx insn)
4199 rtx reg = expr->reaching_reg;
4200 int regno = REGNO (reg);
4201 int indx = expr->bitmap_index;
4202 rtx pat = PATTERN (insn);
4203 rtx set, new_insn;
4204 rtx old_reg;
4205 int i;
4207 /* This block matches the logic in hash_scan_insn. */
4208 switch (GET_CODE (pat))
4210 case SET:
4211 set = pat;
4212 break;
4214 case PARALLEL:
4215 /* Search through the parallel looking for the set whose
4216 source was the expression that we're interested in. */
4217 set = NULL_RTX;
4218 for (i = 0; i < XVECLEN (pat, 0); i++)
4220 rtx x = XVECEXP (pat, 0, i);
4221 if (GET_CODE (x) == SET
4222 && expr_equiv_p (SET_SRC (x), expr->expr))
4224 set = x;
4225 break;
4228 break;
4230 default:
4231 gcc_unreachable ();
4234 if (REG_P (SET_DEST (set)))
4236 old_reg = SET_DEST (set);
4237 /* Check if we can modify the set destination in the original insn. */
4238 if (validate_change (insn, &SET_DEST (set), reg, 0))
4240 new_insn = gen_move_insn (old_reg, reg);
4241 new_insn = emit_insn_after (new_insn, insn);
4243 /* Keep register set table up to date. */
4244 record_one_set (regno, insn);
4246 else
4248 new_insn = gen_move_insn (reg, old_reg);
4249 new_insn = emit_insn_after (new_insn, insn);
4251 /* Keep register set table up to date. */
4252 record_one_set (regno, new_insn);
4255 else /* This is possible only in case of a store to memory. */
4257 old_reg = SET_SRC (set);
4258 new_insn = gen_move_insn (reg, old_reg);
4260 /* Check if we can modify the set source in the original insn. */
4261 if (validate_change (insn, &SET_SRC (set), reg, 0))
4262 new_insn = emit_insn_before (new_insn, insn);
4263 else
4264 new_insn = emit_insn_after (new_insn, insn);
4266 /* Keep register set table up to date. */
4267 record_one_set (regno, new_insn);
4270 gcse_create_count++;
4272 if (gcse_file)
4273 fprintf (gcse_file,
4274 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4275 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4276 INSN_UID (insn), regno);
4279 /* Copy available expressions that reach the redundant expression
4280 to `reaching_reg'. */
4282 static void
4283 pre_insert_copies (void)
4285 unsigned int i, added_copy;
4286 struct expr *expr;
4287 struct occr *occr;
4288 struct occr *avail;
4290 /* For each available expression in the table, copy the result to
4291 `reaching_reg' if the expression reaches a deleted one.
4293 ??? The current algorithm is rather brute force.
4294 Need to do some profiling. */
4296 for (i = 0; i < expr_hash_table.size; i++)
4297 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4299 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4300 we don't want to insert a copy here because the expression may not
4301 really be redundant. So only insert an insn if the expression was
4302 deleted. This test also avoids further processing if the
4303 expression wasn't deleted anywhere. */
4304 if (expr->reaching_reg == NULL)
4305 continue;
4307 /* Set when we add a copy for that expression. */
4308 added_copy = 0;
4310 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4312 if (! occr->deleted_p)
4313 continue;
4315 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4317 rtx insn = avail->insn;
4319 /* No need to handle this one if handled already. */
4320 if (avail->copied_p)
4321 continue;
4323 /* Don't handle this one if it's a redundant one. */
4324 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4325 continue;
4327 /* Or if the expression doesn't reach the deleted one. */
4328 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4329 expr,
4330 BLOCK_FOR_INSN (occr->insn)))
4331 continue;
4333 added_copy = 1;
4335 /* Copy the result of avail to reaching_reg. */
4336 pre_insert_copy_insn (expr, insn);
4337 avail->copied_p = 1;
4341 if (added_copy)
4342 update_ld_motion_stores (expr);
4346 /* Emit move from SRC to DEST noting the equivalence with expression computed
4347 in INSN. */
4348 static rtx
4349 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4351 rtx new;
4352 rtx set = single_set (insn), set2;
4353 rtx note;
4354 rtx eqv;
4356 /* This should never fail since we're creating a reg->reg copy
4357 we've verified to be valid. */
4359 new = emit_insn_after (gen_move_insn (dest, src), insn);
4361 /* Note the equivalence for local CSE pass. */
4362 set2 = single_set (new);
4363 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4364 return new;
4365 if ((note = find_reg_equal_equiv_note (insn)))
4366 eqv = XEXP (note, 0);
4367 else
4368 eqv = SET_SRC (set);
4370 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4372 return new;
4375 /* Delete redundant computations.
4376 Deletion is done by changing the insn to copy the `reaching_reg' of
4377 the expression into the result of the SET. It is left to later passes
4378 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4380 Returns nonzero if a change is made. */
4382 static int
4383 pre_delete (void)
4385 unsigned int i;
4386 int changed;
4387 struct expr *expr;
4388 struct occr *occr;
4390 changed = 0;
4391 for (i = 0; i < expr_hash_table.size; i++)
4392 for (expr = expr_hash_table.table[i];
4393 expr != NULL;
4394 expr = expr->next_same_hash)
4396 int indx = expr->bitmap_index;
4398 /* We only need to search antic_occr since we require
4399 ANTLOC != 0. */
4401 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4403 rtx insn = occr->insn;
4404 rtx set;
4405 basic_block bb = BLOCK_FOR_INSN (insn);
4407 /* We only delete insns that have a single_set. */
4408 if (TEST_BIT (pre_delete_map[bb->index], indx)
4409 && (set = single_set (insn)) != 0)
4411 /* Create a pseudo-reg to store the result of reaching
4412 expressions into. Get the mode for the new pseudo from
4413 the mode of the original destination pseudo. */
4414 if (expr->reaching_reg == NULL)
4415 expr->reaching_reg
4416 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4418 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4419 delete_insn (insn);
4420 occr->deleted_p = 1;
4421 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4422 changed = 1;
4423 gcse_subst_count++;
4425 if (gcse_file)
4427 fprintf (gcse_file,
4428 "PRE: redundant insn %d (expression %d) in ",
4429 INSN_UID (insn), indx);
4430 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4431 bb->index, REGNO (expr->reaching_reg));
4437 return changed;
4440 /* Perform GCSE optimizations using PRE.
4441 This is called by one_pre_gcse_pass after all the dataflow analysis
4442 has been done.
4444 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4445 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4446 Compiler Design and Implementation.
4448 ??? A new pseudo reg is created to hold the reaching expression. The nice
4449 thing about the classical approach is that it would try to use an existing
4450 reg. If the register can't be adequately optimized [i.e. we introduce
4451 reload problems], one could add a pass here to propagate the new register
4452 through the block.
4454 ??? We don't handle single sets in PARALLELs because we're [currently] not
4455 able to copy the rest of the parallel when we insert copies to create full
4456 redundancies from partial redundancies. However, there's no reason why we
4457 can't handle PARALLELs in the cases where there are no partial
4458 redundancies. */
4460 static int
4461 pre_gcse (void)
4463 unsigned int i;
4464 int did_insert, changed;
4465 struct expr **index_map;
4466 struct expr *expr;
4468 /* Compute a mapping from expression number (`bitmap_index') to
4469 hash table entry. */
4471 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4472 for (i = 0; i < expr_hash_table.size; i++)
4473 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4474 index_map[expr->bitmap_index] = expr;
4476 /* Reset bitmap used to track which insns are redundant. */
4477 pre_redundant_insns = sbitmap_alloc (max_cuid);
4478 sbitmap_zero (pre_redundant_insns);
4480 /* Delete the redundant insns first so that
4481 - we know what register to use for the new insns and for the other
4482 ones with reaching expressions
4483 - we know which insns are redundant when we go to create copies */
4485 changed = pre_delete ();
4487 did_insert = pre_edge_insert (edge_list, index_map);
4489 /* In other places with reaching expressions, copy the expression to the
4490 specially allocated pseudo-reg that reaches the redundant expr. */
4491 pre_insert_copies ();
4492 if (did_insert)
4494 commit_edge_insertions ();
4495 changed = 1;
4498 free (index_map);
4499 sbitmap_free (pre_redundant_insns);
4500 return changed;
4503 /* Top level routine to perform one PRE GCSE pass.
4505 Return nonzero if a change was made. */
4507 static int
4508 one_pre_gcse_pass (int pass)
4510 int changed = 0;
4512 gcse_subst_count = 0;
4513 gcse_create_count = 0;
4515 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4516 add_noreturn_fake_exit_edges ();
4517 if (flag_gcse_lm)
4518 compute_ld_motion_mems ();
4520 compute_hash_table (&expr_hash_table);
4521 trim_ld_motion_mems ();
4522 if (gcse_file)
4523 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4525 if (expr_hash_table.n_elems > 0)
4527 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4528 compute_pre_data ();
4529 changed |= pre_gcse ();
4530 free_edge_list (edge_list);
4531 free_pre_mem ();
4534 free_ldst_mems ();
4535 remove_fake_exit_edges ();
4536 free_hash_table (&expr_hash_table);
4538 if (gcse_file)
4540 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4541 current_function_name (), pass, bytes_used);
4542 fprintf (gcse_file, "%d substs, %d insns created\n",
4543 gcse_subst_count, gcse_create_count);
4546 return changed;
4549 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4550 If notes are added to an insn which references a CODE_LABEL, the
4551 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4552 because the following loop optimization pass requires them. */
4554 /* ??? This is very similar to the loop.c add_label_notes function. We
4555 could probably share code here. */
4557 /* ??? If there was a jump optimization pass after gcse and before loop,
4558 then we would not need to do this here, because jump would add the
4559 necessary REG_LABEL notes. */
4561 static void
4562 add_label_notes (rtx x, rtx insn)
4564 enum rtx_code code = GET_CODE (x);
4565 int i, j;
4566 const char *fmt;
4568 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4570 /* This code used to ignore labels that referred to dispatch tables to
4571 avoid flow generating (slightly) worse code.
4573 We no longer ignore such label references (see LABEL_REF handling in
4574 mark_jump_label for additional information). */
4576 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4577 REG_NOTES (insn));
4578 if (LABEL_P (XEXP (x, 0)))
4579 LABEL_NUSES (XEXP (x, 0))++;
4580 return;
4583 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4585 if (fmt[i] == 'e')
4586 add_label_notes (XEXP (x, i), insn);
4587 else if (fmt[i] == 'E')
4588 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4589 add_label_notes (XVECEXP (x, i, j), insn);
4593 /* Compute transparent outgoing information for each block.
4595 An expression is transparent to an edge unless it is killed by
4596 the edge itself. This can only happen with abnormal control flow,
4597 when the edge is traversed through a call. This happens with
4598 non-local labels and exceptions.
4600 This would not be necessary if we split the edge. While this is
4601 normally impossible for abnormal critical edges, with some effort
4602 it should be possible with exception handling, since we still have
4603 control over which handler should be invoked. But due to increased
4604 EH table sizes, this may not be worthwhile. */
4606 static void
4607 compute_transpout (void)
4609 basic_block bb;
4610 unsigned int i;
4611 struct expr *expr;
4613 sbitmap_vector_ones (transpout, last_basic_block);
4615 FOR_EACH_BB (bb)
4617 /* Note that flow inserted a nop a the end of basic blocks that
4618 end in call instructions for reasons other than abnormal
4619 control flow. */
4620 if (! CALL_P (BB_END (bb)))
4621 continue;
4623 for (i = 0; i < expr_hash_table.size; i++)
4624 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4625 if (MEM_P (expr->expr))
4627 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4628 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4629 continue;
4631 /* ??? Optimally, we would use interprocedural alias
4632 analysis to determine if this mem is actually killed
4633 by this call. */
4634 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4639 /* Code Hoisting variables and subroutines. */
4641 /* Very busy expressions. */
4642 static sbitmap *hoist_vbein;
4643 static sbitmap *hoist_vbeout;
4645 /* Hoistable expressions. */
4646 static sbitmap *hoist_exprs;
4648 /* ??? We could compute post dominators and run this algorithm in
4649 reverse to perform tail merging, doing so would probably be
4650 more effective than the tail merging code in jump.c.
4652 It's unclear if tail merging could be run in parallel with
4653 code hoisting. It would be nice. */
4655 /* Allocate vars used for code hoisting analysis. */
4657 static void
4658 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4660 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4661 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4662 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4664 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4665 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4666 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4667 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4670 /* Free vars used for code hoisting analysis. */
4672 static void
4673 free_code_hoist_mem (void)
4675 sbitmap_vector_free (antloc);
4676 sbitmap_vector_free (transp);
4677 sbitmap_vector_free (comp);
4679 sbitmap_vector_free (hoist_vbein);
4680 sbitmap_vector_free (hoist_vbeout);
4681 sbitmap_vector_free (hoist_exprs);
4682 sbitmap_vector_free (transpout);
4684 free_dominance_info (CDI_DOMINATORS);
4687 /* Compute the very busy expressions at entry/exit from each block.
4689 An expression is very busy if all paths from a given point
4690 compute the expression. */
4692 static void
4693 compute_code_hoist_vbeinout (void)
4695 int changed, passes;
4696 basic_block bb;
4698 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4699 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4701 passes = 0;
4702 changed = 1;
4704 while (changed)
4706 changed = 0;
4708 /* We scan the blocks in the reverse order to speed up
4709 the convergence. */
4710 FOR_EACH_BB_REVERSE (bb)
4712 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4713 hoist_vbeout[bb->index], transp[bb->index]);
4714 if (bb->next_bb != EXIT_BLOCK_PTR)
4715 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4718 passes++;
4721 if (gcse_file)
4722 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4725 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4727 static void
4728 compute_code_hoist_data (void)
4730 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4731 compute_transpout ();
4732 compute_code_hoist_vbeinout ();
4733 calculate_dominance_info (CDI_DOMINATORS);
4734 if (gcse_file)
4735 fprintf (gcse_file, "\n");
4738 /* Determine if the expression identified by EXPR_INDEX would
4739 reach BB unimpared if it was placed at the end of EXPR_BB.
4741 It's unclear exactly what Muchnick meant by "unimpared". It seems
4742 to me that the expression must either be computed or transparent in
4743 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4744 would allow the expression to be hoisted out of loops, even if
4745 the expression wasn't a loop invariant.
4747 Contrast this to reachability for PRE where an expression is
4748 considered reachable if *any* path reaches instead of *all*
4749 paths. */
4751 static int
4752 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4754 edge pred;
4755 edge_iterator ei;
4756 int visited_allocated_locally = 0;
4759 if (visited == NULL)
4761 visited_allocated_locally = 1;
4762 visited = xcalloc (last_basic_block, 1);
4765 FOR_EACH_EDGE (pred, ei, bb->preds)
4767 basic_block pred_bb = pred->src;
4769 if (pred->src == ENTRY_BLOCK_PTR)
4770 break;
4771 else if (pred_bb == expr_bb)
4772 continue;
4773 else if (visited[pred_bb->index])
4774 continue;
4776 /* Does this predecessor generate this expression? */
4777 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4778 break;
4779 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4780 break;
4782 /* Not killed. */
4783 else
4785 visited[pred_bb->index] = 1;
4786 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4787 pred_bb, visited))
4788 break;
4791 if (visited_allocated_locally)
4792 free (visited);
4794 return (pred == NULL);
4797 /* Actually perform code hoisting. */
4799 static void
4800 hoist_code (void)
4802 basic_block bb, dominated;
4803 basic_block *domby;
4804 unsigned int domby_len;
4805 unsigned int i,j;
4806 struct expr **index_map;
4807 struct expr *expr;
4809 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4811 /* Compute a mapping from expression number (`bitmap_index') to
4812 hash table entry. */
4814 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4815 for (i = 0; i < expr_hash_table.size; i++)
4816 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4817 index_map[expr->bitmap_index] = expr;
4819 /* Walk over each basic block looking for potentially hoistable
4820 expressions, nothing gets hoisted from the entry block. */
4821 FOR_EACH_BB (bb)
4823 int found = 0;
4824 int insn_inserted_p;
4826 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4827 /* Examine each expression that is very busy at the exit of this
4828 block. These are the potentially hoistable expressions. */
4829 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4831 int hoistable = 0;
4833 if (TEST_BIT (hoist_vbeout[bb->index], i)
4834 && TEST_BIT (transpout[bb->index], i))
4836 /* We've found a potentially hoistable expression, now
4837 we look at every block BB dominates to see if it
4838 computes the expression. */
4839 for (j = 0; j < domby_len; j++)
4841 dominated = domby[j];
4842 /* Ignore self dominance. */
4843 if (bb == dominated)
4844 continue;
4845 /* We've found a dominated block, now see if it computes
4846 the busy expression and whether or not moving that
4847 expression to the "beginning" of that block is safe. */
4848 if (!TEST_BIT (antloc[dominated->index], i))
4849 continue;
4851 /* Note if the expression would reach the dominated block
4852 unimpared if it was placed at the end of BB.
4854 Keep track of how many times this expression is hoistable
4855 from a dominated block into BB. */
4856 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4857 hoistable++;
4860 /* If we found more than one hoistable occurrence of this
4861 expression, then note it in the bitmap of expressions to
4862 hoist. It makes no sense to hoist things which are computed
4863 in only one BB, and doing so tends to pessimize register
4864 allocation. One could increase this value to try harder
4865 to avoid any possible code expansion due to register
4866 allocation issues; however experiments have shown that
4867 the vast majority of hoistable expressions are only movable
4868 from two successors, so raising this threshold is likely
4869 to nullify any benefit we get from code hoisting. */
4870 if (hoistable > 1)
4872 SET_BIT (hoist_exprs[bb->index], i);
4873 found = 1;
4877 /* If we found nothing to hoist, then quit now. */
4878 if (! found)
4880 free (domby);
4881 continue;
4884 /* Loop over all the hoistable expressions. */
4885 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4887 /* We want to insert the expression into BB only once, so
4888 note when we've inserted it. */
4889 insn_inserted_p = 0;
4891 /* These tests should be the same as the tests above. */
4892 if (TEST_BIT (hoist_vbeout[bb->index], i))
4894 /* We've found a potentially hoistable expression, now
4895 we look at every block BB dominates to see if it
4896 computes the expression. */
4897 for (j = 0; j < domby_len; j++)
4899 dominated = domby[j];
4900 /* Ignore self dominance. */
4901 if (bb == dominated)
4902 continue;
4904 /* We've found a dominated block, now see if it computes
4905 the busy expression and whether or not moving that
4906 expression to the "beginning" of that block is safe. */
4907 if (!TEST_BIT (antloc[dominated->index], i))
4908 continue;
4910 /* The expression is computed in the dominated block and
4911 it would be safe to compute it at the start of the
4912 dominated block. Now we have to determine if the
4913 expression would reach the dominated block if it was
4914 placed at the end of BB. */
4915 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4917 struct expr *expr = index_map[i];
4918 struct occr *occr = expr->antic_occr;
4919 rtx insn;
4920 rtx set;
4922 /* Find the right occurrence of this expression. */
4923 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4924 occr = occr->next;
4926 gcc_assert (occr);
4927 insn = occr->insn;
4928 set = single_set (insn);
4929 gcc_assert (set);
4931 /* Create a pseudo-reg to store the result of reaching
4932 expressions into. Get the mode for the new pseudo
4933 from the mode of the original destination pseudo. */
4934 if (expr->reaching_reg == NULL)
4935 expr->reaching_reg
4936 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4938 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4939 delete_insn (insn);
4940 occr->deleted_p = 1;
4941 if (!insn_inserted_p)
4943 insert_insn_end_bb (index_map[i], bb, 0);
4944 insn_inserted_p = 1;
4950 free (domby);
4953 free (index_map);
4956 /* Top level routine to perform one code hoisting (aka unification) pass
4958 Return nonzero if a change was made. */
4960 static int
4961 one_code_hoisting_pass (void)
4963 int changed = 0;
4965 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4966 compute_hash_table (&expr_hash_table);
4967 if (gcse_file)
4968 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
4970 if (expr_hash_table.n_elems > 0)
4972 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4973 compute_code_hoist_data ();
4974 hoist_code ();
4975 free_code_hoist_mem ();
4978 free_hash_table (&expr_hash_table);
4980 return changed;
4983 /* Here we provide the things required to do store motion towards
4984 the exit. In order for this to be effective, gcse also needed to
4985 be taught how to move a load when it is kill only by a store to itself.
4987 int i;
4988 float a[10];
4990 void foo(float scale)
4992 for (i=0; i<10; i++)
4993 a[i] *= scale;
4996 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4997 the load out since its live around the loop, and stored at the bottom
4998 of the loop.
5000 The 'Load Motion' referred to and implemented in this file is
5001 an enhancement to gcse which when using edge based lcm, recognizes
5002 this situation and allows gcse to move the load out of the loop.
5004 Once gcse has hoisted the load, store motion can then push this
5005 load towards the exit, and we end up with no loads or stores of 'i'
5006 in the loop. */
5008 /* This will search the ldst list for a matching expression. If it
5009 doesn't find one, we create one and initialize it. */
5011 static struct ls_expr *
5012 ldst_entry (rtx x)
5014 int do_not_record_p = 0;
5015 struct ls_expr * ptr;
5016 unsigned int hash;
5018 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5019 NULL, /*have_reg_qty=*/false);
5021 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5022 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
5023 return ptr;
5025 ptr = xmalloc (sizeof (struct ls_expr));
5027 ptr->next = pre_ldst_mems;
5028 ptr->expr = NULL;
5029 ptr->pattern = x;
5030 ptr->pattern_regs = NULL_RTX;
5031 ptr->loads = NULL_RTX;
5032 ptr->stores = NULL_RTX;
5033 ptr->reaching_reg = NULL_RTX;
5034 ptr->invalid = 0;
5035 ptr->index = 0;
5036 ptr->hash_index = hash;
5037 pre_ldst_mems = ptr;
5039 return ptr;
5042 /* Free up an individual ldst entry. */
5044 static void
5045 free_ldst_entry (struct ls_expr * ptr)
5047 free_INSN_LIST_list (& ptr->loads);
5048 free_INSN_LIST_list (& ptr->stores);
5050 free (ptr);
5053 /* Free up all memory associated with the ldst list. */
5055 static void
5056 free_ldst_mems (void)
5058 while (pre_ldst_mems)
5060 struct ls_expr * tmp = pre_ldst_mems;
5062 pre_ldst_mems = pre_ldst_mems->next;
5064 free_ldst_entry (tmp);
5067 pre_ldst_mems = NULL;
5070 /* Dump debugging info about the ldst list. */
5072 static void
5073 print_ldst_list (FILE * file)
5075 struct ls_expr * ptr;
5077 fprintf (file, "LDST list: \n");
5079 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5081 fprintf (file, " Pattern (%3d): ", ptr->index);
5083 print_rtl (file, ptr->pattern);
5085 fprintf (file, "\n Loads : ");
5087 if (ptr->loads)
5088 print_rtl (file, ptr->loads);
5089 else
5090 fprintf (file, "(nil)");
5092 fprintf (file, "\n Stores : ");
5094 if (ptr->stores)
5095 print_rtl (file, ptr->stores);
5096 else
5097 fprintf (file, "(nil)");
5099 fprintf (file, "\n\n");
5102 fprintf (file, "\n");
5105 /* Returns 1 if X is in the list of ldst only expressions. */
5107 static struct ls_expr *
5108 find_rtx_in_ldst (rtx x)
5110 struct ls_expr * ptr;
5112 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5113 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5114 return ptr;
5116 return NULL;
5119 /* Assign each element of the list of mems a monotonically increasing value. */
5121 static int
5122 enumerate_ldsts (void)
5124 struct ls_expr * ptr;
5125 int n = 0;
5127 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5128 ptr->index = n++;
5130 return n;
5133 /* Return first item in the list. */
5135 static inline struct ls_expr *
5136 first_ls_expr (void)
5138 return pre_ldst_mems;
5141 /* Return the next item in the list after the specified one. */
5143 static inline struct ls_expr *
5144 next_ls_expr (struct ls_expr * ptr)
5146 return ptr->next;
5149 /* Load Motion for loads which only kill themselves. */
5151 /* Return true if x is a simple MEM operation, with no registers or
5152 side effects. These are the types of loads we consider for the
5153 ld_motion list, otherwise we let the usual aliasing take care of it. */
5155 static int
5156 simple_mem (rtx x)
5158 if (! MEM_P (x))
5159 return 0;
5161 if (MEM_VOLATILE_P (x))
5162 return 0;
5164 if (GET_MODE (x) == BLKmode)
5165 return 0;
5167 /* If we are handling exceptions, we must be careful with memory references
5168 that may trap. If we are not, the behavior is undefined, so we may just
5169 continue. */
5170 if (flag_non_call_exceptions && may_trap_p (x))
5171 return 0;
5173 if (side_effects_p (x))
5174 return 0;
5176 /* Do not consider function arguments passed on stack. */
5177 if (reg_mentioned_p (stack_pointer_rtx, x))
5178 return 0;
5180 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5181 return 0;
5183 return 1;
5186 /* Make sure there isn't a buried reference in this pattern anywhere.
5187 If there is, invalidate the entry for it since we're not capable
5188 of fixing it up just yet.. We have to be sure we know about ALL
5189 loads since the aliasing code will allow all entries in the
5190 ld_motion list to not-alias itself. If we miss a load, we will get
5191 the wrong value since gcse might common it and we won't know to
5192 fix it up. */
5194 static void
5195 invalidate_any_buried_refs (rtx x)
5197 const char * fmt;
5198 int i, j;
5199 struct ls_expr * ptr;
5201 /* Invalidate it in the list. */
5202 if (MEM_P (x) && simple_mem (x))
5204 ptr = ldst_entry (x);
5205 ptr->invalid = 1;
5208 /* Recursively process the insn. */
5209 fmt = GET_RTX_FORMAT (GET_CODE (x));
5211 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5213 if (fmt[i] == 'e')
5214 invalidate_any_buried_refs (XEXP (x, i));
5215 else if (fmt[i] == 'E')
5216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5217 invalidate_any_buried_refs (XVECEXP (x, i, j));
5221 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5222 being defined as MEM loads and stores to symbols, with no side effects
5223 and no registers in the expression. For a MEM destination, we also
5224 check that the insn is still valid if we replace the destination with a
5225 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5226 which don't match this criteria, they are invalidated and trimmed out
5227 later. */
5229 static void
5230 compute_ld_motion_mems (void)
5232 struct ls_expr * ptr;
5233 basic_block bb;
5234 rtx insn;
5236 pre_ldst_mems = NULL;
5238 FOR_EACH_BB (bb)
5240 for (insn = BB_HEAD (bb);
5241 insn && insn != NEXT_INSN (BB_END (bb));
5242 insn = NEXT_INSN (insn))
5244 if (INSN_P (insn))
5246 if (GET_CODE (PATTERN (insn)) == SET)
5248 rtx src = SET_SRC (PATTERN (insn));
5249 rtx dest = SET_DEST (PATTERN (insn));
5251 /* Check for a simple LOAD... */
5252 if (MEM_P (src) && simple_mem (src))
5254 ptr = ldst_entry (src);
5255 if (REG_P (dest))
5256 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5257 else
5258 ptr->invalid = 1;
5260 else
5262 /* Make sure there isn't a buried load somewhere. */
5263 invalidate_any_buried_refs (src);
5266 /* Check for stores. Don't worry about aliased ones, they
5267 will block any movement we might do later. We only care
5268 about this exact pattern since those are the only
5269 circumstance that we will ignore the aliasing info. */
5270 if (MEM_P (dest) && simple_mem (dest))
5272 ptr = ldst_entry (dest);
5274 if (! MEM_P (src)
5275 && GET_CODE (src) != ASM_OPERANDS
5276 /* Check for REG manually since want_to_gcse_p
5277 returns 0 for all REGs. */
5278 && can_assign_to_reg_p (src))
5279 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5280 else
5281 ptr->invalid = 1;
5284 else
5285 invalidate_any_buried_refs (PATTERN (insn));
5291 /* Remove any references that have been either invalidated or are not in the
5292 expression list for pre gcse. */
5294 static void
5295 trim_ld_motion_mems (void)
5297 struct ls_expr * * last = & pre_ldst_mems;
5298 struct ls_expr * ptr = pre_ldst_mems;
5300 while (ptr != NULL)
5302 struct expr * expr;
5304 /* Delete if entry has been made invalid. */
5305 if (! ptr->invalid)
5307 /* Delete if we cannot find this mem in the expression list. */
5308 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5310 for (expr = expr_hash_table.table[hash];
5311 expr != NULL;
5312 expr = expr->next_same_hash)
5313 if (expr_equiv_p (expr->expr, ptr->pattern))
5314 break;
5316 else
5317 expr = (struct expr *) 0;
5319 if (expr)
5321 /* Set the expression field if we are keeping it. */
5322 ptr->expr = expr;
5323 last = & ptr->next;
5324 ptr = ptr->next;
5326 else
5328 *last = ptr->next;
5329 free_ldst_entry (ptr);
5330 ptr = * last;
5334 /* Show the world what we've found. */
5335 if (gcse_file && pre_ldst_mems != NULL)
5336 print_ldst_list (gcse_file);
5339 /* This routine will take an expression which we are replacing with
5340 a reaching register, and update any stores that are needed if
5341 that expression is in the ld_motion list. Stores are updated by
5342 copying their SRC to the reaching register, and then storing
5343 the reaching register into the store location. These keeps the
5344 correct value in the reaching register for the loads. */
5346 static void
5347 update_ld_motion_stores (struct expr * expr)
5349 struct ls_expr * mem_ptr;
5351 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5353 /* We can try to find just the REACHED stores, but is shouldn't
5354 matter to set the reaching reg everywhere... some might be
5355 dead and should be eliminated later. */
5357 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5358 where reg is the reaching reg used in the load. We checked in
5359 compute_ld_motion_mems that we can replace (set mem expr) with
5360 (set reg expr) in that insn. */
5361 rtx list = mem_ptr->stores;
5363 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5365 rtx insn = XEXP (list, 0);
5366 rtx pat = PATTERN (insn);
5367 rtx src = SET_SRC (pat);
5368 rtx reg = expr->reaching_reg;
5369 rtx copy, new;
5371 /* If we've already copied it, continue. */
5372 if (expr->reaching_reg == src)
5373 continue;
5375 if (gcse_file)
5377 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5378 print_rtl (gcse_file, expr->reaching_reg);
5379 fprintf (gcse_file, ":\n ");
5380 print_inline_rtx (gcse_file, insn, 8);
5381 fprintf (gcse_file, "\n");
5384 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5385 new = emit_insn_before (copy, insn);
5386 record_one_set (REGNO (reg), new);
5387 SET_SRC (pat) = reg;
5389 /* un-recognize this pattern since it's probably different now. */
5390 INSN_CODE (insn) = -1;
5391 gcse_create_count++;
5396 /* Store motion code. */
5398 #define ANTIC_STORE_LIST(x) ((x)->loads)
5399 #define AVAIL_STORE_LIST(x) ((x)->stores)
5400 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5402 /* This is used to communicate the target bitvector we want to use in the
5403 reg_set_info routine when called via the note_stores mechanism. */
5404 static int * regvec;
5406 /* And current insn, for the same routine. */
5407 static rtx compute_store_table_current_insn;
5409 /* Used in computing the reverse edge graph bit vectors. */
5410 static sbitmap * st_antloc;
5412 /* Global holding the number of store expressions we are dealing with. */
5413 static int num_stores;
5415 /* Checks to set if we need to mark a register set. Called from
5416 note_stores. */
5418 static void
5419 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5420 void *data)
5422 sbitmap bb_reg = data;
5424 if (GET_CODE (dest) == SUBREG)
5425 dest = SUBREG_REG (dest);
5427 if (REG_P (dest))
5429 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5430 if (bb_reg)
5431 SET_BIT (bb_reg, REGNO (dest));
5435 /* Clear any mark that says that this insn sets dest. Called from
5436 note_stores. */
5438 static void
5439 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5440 void *data)
5442 int *dead_vec = data;
5444 if (GET_CODE (dest) == SUBREG)
5445 dest = SUBREG_REG (dest);
5447 if (REG_P (dest) &&
5448 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5449 dead_vec[REGNO (dest)] = 0;
5452 /* Return zero if some of the registers in list X are killed
5453 due to set of registers in bitmap REGS_SET. */
5455 static bool
5456 store_ops_ok (rtx x, int *regs_set)
5458 rtx reg;
5460 for (; x; x = XEXP (x, 1))
5462 reg = XEXP (x, 0);
5463 if (regs_set[REGNO(reg)])
5464 return false;
5467 return true;
5470 /* Returns a list of registers mentioned in X. */
5471 static rtx
5472 extract_mentioned_regs (rtx x)
5474 return extract_mentioned_regs_helper (x, NULL_RTX);
5477 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5478 registers. */
5479 static rtx
5480 extract_mentioned_regs_helper (rtx x, rtx accum)
5482 int i;
5483 enum rtx_code code;
5484 const char * fmt;
5486 /* Repeat is used to turn tail-recursion into iteration. */
5487 repeat:
5489 if (x == 0)
5490 return accum;
5492 code = GET_CODE (x);
5493 switch (code)
5495 case REG:
5496 return alloc_EXPR_LIST (0, x, accum);
5498 case MEM:
5499 x = XEXP (x, 0);
5500 goto repeat;
5502 case PRE_DEC:
5503 case PRE_INC:
5504 case POST_DEC:
5505 case POST_INC:
5506 /* We do not run this function with arguments having side effects. */
5507 gcc_unreachable ();
5509 case PC:
5510 case CC0: /*FIXME*/
5511 case CONST:
5512 case CONST_INT:
5513 case CONST_DOUBLE:
5514 case CONST_VECTOR:
5515 case SYMBOL_REF:
5516 case LABEL_REF:
5517 case ADDR_VEC:
5518 case ADDR_DIFF_VEC:
5519 return accum;
5521 default:
5522 break;
5525 i = GET_RTX_LENGTH (code) - 1;
5526 fmt = GET_RTX_FORMAT (code);
5528 for (; i >= 0; i--)
5530 if (fmt[i] == 'e')
5532 rtx tem = XEXP (x, i);
5534 /* If we are about to do the last recursive call
5535 needed at this level, change it into iteration. */
5536 if (i == 0)
5538 x = tem;
5539 goto repeat;
5542 accum = extract_mentioned_regs_helper (tem, accum);
5544 else if (fmt[i] == 'E')
5546 int j;
5548 for (j = 0; j < XVECLEN (x, i); j++)
5549 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5553 return accum;
5556 /* Determine whether INSN is MEM store pattern that we will consider moving.
5557 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5558 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5559 including) the insn in this basic block. We must be passing through BB from
5560 head to end, as we are using this fact to speed things up.
5562 The results are stored this way:
5564 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5565 -- if the processed expression is not anticipatable, NULL_RTX is added
5566 there instead, so that we can use it as indicator that no further
5567 expression of this type may be anticipatable
5568 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5569 consequently, all of them but this head are dead and may be deleted.
5570 -- if the expression is not available, the insn due to that it fails to be
5571 available is stored in reaching_reg.
5573 The things are complicated a bit by fact that there already may be stores
5574 to the same MEM from other blocks; also caller must take care of the
5575 necessary cleanup of the temporary markers after end of the basic block.
5578 static void
5579 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5581 struct ls_expr * ptr;
5582 rtx dest, set, tmp;
5583 int check_anticipatable, check_available;
5584 basic_block bb = BLOCK_FOR_INSN (insn);
5586 set = single_set (insn);
5587 if (!set)
5588 return;
5590 dest = SET_DEST (set);
5592 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5593 || GET_MODE (dest) == BLKmode)
5594 return;
5596 if (side_effects_p (dest))
5597 return;
5599 /* If we are handling exceptions, we must be careful with memory references
5600 that may trap. If we are not, the behavior is undefined, so we may just
5601 continue. */
5602 if (flag_non_call_exceptions && may_trap_p (dest))
5603 return;
5605 /* Even if the destination cannot trap, the source may. In this case we'd
5606 need to handle updating the REG_EH_REGION note. */
5607 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5608 return;
5610 ptr = ldst_entry (dest);
5611 if (!ptr->pattern_regs)
5612 ptr->pattern_regs = extract_mentioned_regs (dest);
5614 /* Do not check for anticipatability if we either found one anticipatable
5615 store already, or tested for one and found out that it was killed. */
5616 check_anticipatable = 0;
5617 if (!ANTIC_STORE_LIST (ptr))
5618 check_anticipatable = 1;
5619 else
5621 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5622 if (tmp != NULL_RTX
5623 && BLOCK_FOR_INSN (tmp) != bb)
5624 check_anticipatable = 1;
5626 if (check_anticipatable)
5628 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5629 tmp = NULL_RTX;
5630 else
5631 tmp = insn;
5632 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5633 ANTIC_STORE_LIST (ptr));
5636 /* It is not necessary to check whether store is available if we did
5637 it successfully before; if we failed before, do not bother to check
5638 until we reach the insn that caused us to fail. */
5639 check_available = 0;
5640 if (!AVAIL_STORE_LIST (ptr))
5641 check_available = 1;
5642 else
5644 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5645 if (BLOCK_FOR_INSN (tmp) != bb)
5646 check_available = 1;
5648 if (check_available)
5650 /* Check that we have already reached the insn at that the check
5651 failed last time. */
5652 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5654 for (tmp = BB_END (bb);
5655 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5656 tmp = PREV_INSN (tmp))
5657 continue;
5658 if (tmp == insn)
5659 check_available = 0;
5661 else
5662 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5663 bb, regs_set_after,
5664 &LAST_AVAIL_CHECK_FAILURE (ptr));
5666 if (!check_available)
5667 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5670 /* Find available and anticipatable stores. */
5672 static int
5673 compute_store_table (void)
5675 int ret;
5676 basic_block bb;
5677 unsigned regno;
5678 rtx insn, pat, tmp;
5679 int *last_set_in, *already_set;
5680 struct ls_expr * ptr, **prev_next_ptr_ptr;
5682 max_gcse_regno = max_reg_num ();
5684 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5685 max_gcse_regno);
5686 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5687 pre_ldst_mems = 0;
5688 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5689 already_set = xmalloc (sizeof (int) * max_gcse_regno);
5691 /* Find all the stores we care about. */
5692 FOR_EACH_BB (bb)
5694 /* First compute the registers set in this block. */
5695 regvec = last_set_in;
5697 for (insn = BB_HEAD (bb);
5698 insn != NEXT_INSN (BB_END (bb));
5699 insn = NEXT_INSN (insn))
5701 if (! INSN_P (insn))
5702 continue;
5704 if (CALL_P (insn))
5706 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5707 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5709 last_set_in[regno] = INSN_UID (insn);
5710 SET_BIT (reg_set_in_block[bb->index], regno);
5714 pat = PATTERN (insn);
5715 compute_store_table_current_insn = insn;
5716 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5719 /* Now find the stores. */
5720 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5721 regvec = already_set;
5722 for (insn = BB_HEAD (bb);
5723 insn != NEXT_INSN (BB_END (bb));
5724 insn = NEXT_INSN (insn))
5726 if (! INSN_P (insn))
5727 continue;
5729 if (CALL_P (insn))
5731 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5732 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5733 already_set[regno] = 1;
5736 pat = PATTERN (insn);
5737 note_stores (pat, reg_set_info, NULL);
5739 /* Now that we've marked regs, look for stores. */
5740 find_moveable_store (insn, already_set, last_set_in);
5742 /* Unmark regs that are no longer set. */
5743 compute_store_table_current_insn = insn;
5744 note_stores (pat, reg_clear_last_set, last_set_in);
5745 if (CALL_P (insn))
5747 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5748 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5749 && last_set_in[regno] == INSN_UID (insn))
5750 last_set_in[regno] = 0;
5754 #ifdef ENABLE_CHECKING
5755 /* last_set_in should now be all-zero. */
5756 for (regno = 0; regno < max_gcse_regno; regno++)
5757 gcc_assert (!last_set_in[regno]);
5758 #endif
5760 /* Clear temporary marks. */
5761 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5763 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5764 if (ANTIC_STORE_LIST (ptr)
5765 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5766 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5770 /* Remove the stores that are not available anywhere, as there will
5771 be no opportunity to optimize them. */
5772 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5773 ptr != NULL;
5774 ptr = *prev_next_ptr_ptr)
5776 if (!AVAIL_STORE_LIST (ptr))
5778 *prev_next_ptr_ptr = ptr->next;
5779 free_ldst_entry (ptr);
5781 else
5782 prev_next_ptr_ptr = &ptr->next;
5785 ret = enumerate_ldsts ();
5787 if (gcse_file)
5789 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5790 print_ldst_list (gcse_file);
5793 free (last_set_in);
5794 free (already_set);
5795 return ret;
5798 /* Check to see if the load X is aliased with STORE_PATTERN.
5799 AFTER is true if we are checking the case when STORE_PATTERN occurs
5800 after the X. */
5802 static bool
5803 load_kills_store (rtx x, rtx store_pattern, int after)
5805 if (after)
5806 return anti_dependence (x, store_pattern);
5807 else
5808 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5809 rtx_addr_varies_p);
5812 /* Go through the entire insn X, looking for any loads which might alias
5813 STORE_PATTERN. Return true if found.
5814 AFTER is true if we are checking the case when STORE_PATTERN occurs
5815 after the insn X. */
5817 static bool
5818 find_loads (rtx x, rtx store_pattern, int after)
5820 const char * fmt;
5821 int i, j;
5822 int ret = false;
5824 if (!x)
5825 return false;
5827 if (GET_CODE (x) == SET)
5828 x = SET_SRC (x);
5830 if (MEM_P (x))
5832 if (load_kills_store (x, store_pattern, after))
5833 return true;
5836 /* Recursively process the insn. */
5837 fmt = GET_RTX_FORMAT (GET_CODE (x));
5839 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5841 if (fmt[i] == 'e')
5842 ret |= find_loads (XEXP (x, i), store_pattern, after);
5843 else if (fmt[i] == 'E')
5844 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5845 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5847 return ret;
5850 /* Check if INSN kills the store pattern X (is aliased with it).
5851 AFTER is true if we are checking the case when store X occurs
5852 after the insn. Return true if it it does. */
5854 static bool
5855 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5857 rtx reg, base, note;
5859 if (!INSN_P (insn))
5860 return false;
5862 if (CALL_P (insn))
5864 /* A normal or pure call might read from pattern,
5865 but a const call will not. */
5866 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5867 return true;
5869 /* But even a const call reads its parameters. Check whether the
5870 base of some of registers used in mem is stack pointer. */
5871 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5873 base = find_base_term (XEXP (reg, 0));
5874 if (!base
5875 || (GET_CODE (base) == ADDRESS
5876 && GET_MODE (base) == Pmode
5877 && XEXP (base, 0) == stack_pointer_rtx))
5878 return true;
5881 return false;
5884 if (GET_CODE (PATTERN (insn)) == SET)
5886 rtx pat = PATTERN (insn);
5887 rtx dest = SET_DEST (pat);
5889 if (GET_CODE (dest) == ZERO_EXTRACT)
5890 dest = XEXP (dest, 0);
5892 /* Check for memory stores to aliased objects. */
5893 if (MEM_P (dest)
5894 && !expr_equiv_p (dest, x))
5896 if (after)
5898 if (output_dependence (dest, x))
5899 return true;
5901 else
5903 if (output_dependence (x, dest))
5904 return true;
5907 if (find_loads (SET_SRC (pat), x, after))
5908 return true;
5910 else if (find_loads (PATTERN (insn), x, after))
5911 return true;
5913 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5914 location aliased with X, then this insn kills X. */
5915 note = find_reg_equal_equiv_note (insn);
5916 if (! note)
5917 return false;
5918 note = XEXP (note, 0);
5920 /* However, if the note represents a must alias rather than a may
5921 alias relationship, then it does not kill X. */
5922 if (expr_equiv_p (note, x))
5923 return false;
5925 /* See if there are any aliased loads in the note. */
5926 return find_loads (note, x, after);
5929 /* Returns true if the expression X is loaded or clobbered on or after INSN
5930 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5931 or after the insn. X_REGS is list of registers mentioned in X. If the store
5932 is killed, return the last insn in that it occurs in FAIL_INSN. */
5934 static bool
5935 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
5936 int *regs_set_after, rtx *fail_insn)
5938 rtx last = BB_END (bb), act;
5940 if (!store_ops_ok (x_regs, regs_set_after))
5942 /* We do not know where it will happen. */
5943 if (fail_insn)
5944 *fail_insn = NULL_RTX;
5945 return true;
5948 /* Scan from the end, so that fail_insn is determined correctly. */
5949 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
5950 if (store_killed_in_insn (x, x_regs, act, false))
5952 if (fail_insn)
5953 *fail_insn = act;
5954 return true;
5957 return false;
5960 /* Returns true if the expression X is loaded or clobbered on or before INSN
5961 within basic block BB. X_REGS is list of registers mentioned in X.
5962 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
5963 static bool
5964 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
5965 int *regs_set_before)
5967 rtx first = BB_HEAD (bb);
5969 if (!store_ops_ok (x_regs, regs_set_before))
5970 return true;
5972 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
5973 if (store_killed_in_insn (x, x_regs, insn, true))
5974 return true;
5976 return false;
5979 /* Fill in available, anticipatable, transparent and kill vectors in
5980 STORE_DATA, based on lists of available and anticipatable stores. */
5981 static void
5982 build_store_vectors (void)
5984 basic_block bb;
5985 int *regs_set_in_block;
5986 rtx insn, st;
5987 struct ls_expr * ptr;
5988 unsigned regno;
5990 /* Build the gen_vector. This is any store in the table which is not killed
5991 by aliasing later in its block. */
5992 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
5993 sbitmap_vector_zero (ae_gen, last_basic_block);
5995 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
5996 sbitmap_vector_zero (st_antloc, last_basic_block);
5998 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6000 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6002 insn = XEXP (st, 0);
6003 bb = BLOCK_FOR_INSN (insn);
6005 /* If we've already seen an available expression in this block,
6006 we can delete this one (It occurs earlier in the block). We'll
6007 copy the SRC expression to an unused register in case there
6008 are any side effects. */
6009 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6011 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6012 if (gcse_file)
6013 fprintf (gcse_file, "Removing redundant store:\n");
6014 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6015 continue;
6017 SET_BIT (ae_gen[bb->index], ptr->index);
6020 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6022 insn = XEXP (st, 0);
6023 bb = BLOCK_FOR_INSN (insn);
6024 SET_BIT (st_antloc[bb->index], ptr->index);
6028 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6029 sbitmap_vector_zero (ae_kill, last_basic_block);
6031 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6032 sbitmap_vector_zero (transp, last_basic_block);
6033 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6035 FOR_EACH_BB (bb)
6037 for (regno = 0; regno < max_gcse_regno; regno++)
6038 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6040 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6042 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6043 bb, regs_set_in_block, NULL))
6045 /* It should not be necessary to consider the expression
6046 killed if it is both anticipatable and available. */
6047 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6048 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6049 SET_BIT (ae_kill[bb->index], ptr->index);
6051 else
6052 SET_BIT (transp[bb->index], ptr->index);
6056 free (regs_set_in_block);
6058 if (gcse_file)
6060 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6061 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6062 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6063 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6067 /* Insert an instruction at the beginning of a basic block, and update
6068 the BB_HEAD if needed. */
6070 static void
6071 insert_insn_start_bb (rtx insn, basic_block bb)
6073 /* Insert at start of successor block. */
6074 rtx prev = PREV_INSN (BB_HEAD (bb));
6075 rtx before = BB_HEAD (bb);
6076 while (before != 0)
6078 if (! LABEL_P (before)
6079 && (! NOTE_P (before)
6080 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6081 break;
6082 prev = before;
6083 if (prev == BB_END (bb))
6084 break;
6085 before = NEXT_INSN (before);
6088 insn = emit_insn_after_noloc (insn, prev);
6090 if (gcse_file)
6092 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6093 bb->index);
6094 print_inline_rtx (gcse_file, insn, 6);
6095 fprintf (gcse_file, "\n");
6099 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6100 the memory reference, and E is the edge to insert it on. Returns nonzero
6101 if an edge insertion was performed. */
6103 static int
6104 insert_store (struct ls_expr * expr, edge e)
6106 rtx reg, insn;
6107 basic_block bb;
6108 edge tmp;
6109 edge_iterator ei;
6111 /* We did all the deleted before this insert, so if we didn't delete a
6112 store, then we haven't set the reaching reg yet either. */
6113 if (expr->reaching_reg == NULL_RTX)
6114 return 0;
6116 if (e->flags & EDGE_FAKE)
6117 return 0;
6119 reg = expr->reaching_reg;
6120 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6122 /* If we are inserting this expression on ALL predecessor edges of a BB,
6123 insert it at the start of the BB, and reset the insert bits on the other
6124 edges so we don't try to insert it on the other edges. */
6125 bb = e->dest;
6126 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6127 if (!(tmp->flags & EDGE_FAKE))
6129 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6131 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6132 if (! TEST_BIT (pre_insert_map[index], expr->index))
6133 break;
6136 /* If tmp is NULL, we found an insertion on every edge, blank the
6137 insertion vector for these edges, and insert at the start of the BB. */
6138 if (!tmp && bb != EXIT_BLOCK_PTR)
6140 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6142 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6143 RESET_BIT (pre_insert_map[index], expr->index);
6145 insert_insn_start_bb (insn, bb);
6146 return 0;
6149 /* We can't put stores in the front of blocks pointed to by abnormal
6150 edges since that may put a store where one didn't used to be. */
6151 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6153 insert_insn_on_edge (insn, e);
6155 if (gcse_file)
6157 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6158 e->src->index, e->dest->index);
6159 print_inline_rtx (gcse_file, insn, 6);
6160 fprintf (gcse_file, "\n");
6163 return 1;
6166 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6167 memory location in SMEXPR set in basic block BB.
6169 This could be rather expensive. */
6171 static void
6172 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6174 edge_iterator *stack, ei;
6175 int sp;
6176 edge act;
6177 sbitmap visited = sbitmap_alloc (last_basic_block);
6178 rtx last, insn, note;
6179 rtx mem = smexpr->pattern;
6181 stack = xmalloc (sizeof (edge_iterator) * n_basic_blocks);
6182 sp = 0;
6183 ei = ei_start (bb->succs);
6185 sbitmap_zero (visited);
6187 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6188 while (1)
6190 if (!act)
6192 if (!sp)
6194 free (stack);
6195 sbitmap_free (visited);
6196 return;
6198 act = ei_edge (stack[--sp]);
6200 bb = act->dest;
6202 if (bb == EXIT_BLOCK_PTR
6203 || TEST_BIT (visited, bb->index))
6205 if (!ei_end_p (ei))
6206 ei_next (&ei);
6207 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6208 continue;
6210 SET_BIT (visited, bb->index);
6212 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6214 for (last = ANTIC_STORE_LIST (smexpr);
6215 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6216 last = XEXP (last, 1))
6217 continue;
6218 last = XEXP (last, 0);
6220 else
6221 last = NEXT_INSN (BB_END (bb));
6223 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6224 if (INSN_P (insn))
6226 note = find_reg_equal_equiv_note (insn);
6227 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6228 continue;
6230 if (gcse_file)
6231 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6232 INSN_UID (insn));
6233 remove_note (insn, note);
6236 if (!ei_end_p (ei))
6237 ei_next (&ei);
6238 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6240 if (EDGE_COUNT (bb->succs) > 0)
6242 if (act)
6243 stack[sp++] = ei;
6244 ei = ei_start (bb->succs);
6245 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6250 /* This routine will replace a store with a SET to a specified register. */
6252 static void
6253 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6255 rtx insn, mem, note, set, ptr, pair;
6257 mem = smexpr->pattern;
6258 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6259 insn = emit_insn_after (insn, del);
6261 if (gcse_file)
6263 fprintf (gcse_file,
6264 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6265 print_inline_rtx (gcse_file, del, 6);
6266 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6267 print_inline_rtx (gcse_file, insn, 6);
6268 fprintf (gcse_file, "\n");
6271 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6272 if (XEXP (ptr, 0) == del)
6274 XEXP (ptr, 0) = insn;
6275 break;
6278 /* Move the notes from the deleted insn to its replacement, and patch
6279 up the LIBCALL notes. */
6280 REG_NOTES (insn) = REG_NOTES (del);
6282 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6283 if (note)
6285 pair = XEXP (note, 0);
6286 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6287 XEXP (note, 0) = insn;
6289 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6290 if (note)
6292 pair = XEXP (note, 0);
6293 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6294 XEXP (note, 0) = insn;
6297 delete_insn (del);
6299 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6300 they are no longer accurate provided that they are reached by this
6301 definition, so drop them. */
6302 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6303 if (INSN_P (insn))
6305 set = single_set (insn);
6306 if (!set)
6307 continue;
6308 if (expr_equiv_p (SET_DEST (set), mem))
6309 return;
6310 note = find_reg_equal_equiv_note (insn);
6311 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6312 continue;
6314 if (gcse_file)
6315 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6316 INSN_UID (insn));
6317 remove_note (insn, note);
6319 remove_reachable_equiv_notes (bb, smexpr);
6323 /* Delete a store, but copy the value that would have been stored into
6324 the reaching_reg for later storing. */
6326 static void
6327 delete_store (struct ls_expr * expr, basic_block bb)
6329 rtx reg, i, del;
6331 if (expr->reaching_reg == NULL_RTX)
6332 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6334 reg = expr->reaching_reg;
6336 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6338 del = XEXP (i, 0);
6339 if (BLOCK_FOR_INSN (del) == bb)
6341 /* We know there is only one since we deleted redundant
6342 ones during the available computation. */
6343 replace_store_insn (reg, del, bb, expr);
6344 break;
6349 /* Free memory used by store motion. */
6351 static void
6352 free_store_memory (void)
6354 free_ldst_mems ();
6356 if (ae_gen)
6357 sbitmap_vector_free (ae_gen);
6358 if (ae_kill)
6359 sbitmap_vector_free (ae_kill);
6360 if (transp)
6361 sbitmap_vector_free (transp);
6362 if (st_antloc)
6363 sbitmap_vector_free (st_antloc);
6364 if (pre_insert_map)
6365 sbitmap_vector_free (pre_insert_map);
6366 if (pre_delete_map)
6367 sbitmap_vector_free (pre_delete_map);
6368 if (reg_set_in_block)
6369 sbitmap_vector_free (reg_set_in_block);
6371 ae_gen = ae_kill = transp = st_antloc = NULL;
6372 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6375 /* Perform store motion. Much like gcse, except we move expressions the
6376 other way by looking at the flowgraph in reverse. */
6378 static void
6379 store_motion (void)
6381 basic_block bb;
6382 int x;
6383 struct ls_expr * ptr;
6384 int update_flow = 0;
6386 if (gcse_file)
6388 fprintf (gcse_file, "before store motion\n");
6389 print_rtl (gcse_file, get_insns ());
6392 init_alias_analysis ();
6394 /* Find all the available and anticipatable stores. */
6395 num_stores = compute_store_table ();
6396 if (num_stores == 0)
6398 sbitmap_vector_free (reg_set_in_block);
6399 end_alias_analysis ();
6400 return;
6403 /* Now compute kill & transp vectors. */
6404 build_store_vectors ();
6405 add_noreturn_fake_exit_edges ();
6406 connect_infinite_loops_to_exit ();
6408 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6409 st_antloc, ae_kill, &pre_insert_map,
6410 &pre_delete_map);
6412 /* Now we want to insert the new stores which are going to be needed. */
6413 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6415 /* If any of the edges we have above are abnormal, we can't move this
6416 store. */
6417 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6418 if (TEST_BIT (pre_insert_map[x], ptr->index)
6419 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6420 break;
6422 if (x >= 0)
6424 if (gcse_file != NULL)
6425 fprintf (gcse_file,
6426 "Can't replace store %d: abnormal edge from %d to %d\n",
6427 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6428 INDEX_EDGE (edge_list, x)->dest->index);
6429 continue;
6432 /* Now we want to insert the new stores which are going to be needed. */
6434 FOR_EACH_BB (bb)
6435 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6436 delete_store (ptr, bb);
6438 for (x = 0; x < NUM_EDGES (edge_list); x++)
6439 if (TEST_BIT (pre_insert_map[x], ptr->index))
6440 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6443 if (update_flow)
6444 commit_edge_insertions ();
6446 free_store_memory ();
6447 free_edge_list (edge_list);
6448 remove_fake_exit_edges ();
6449 end_alias_analysis ();
6453 /* Entry point for jump bypassing optimization pass. */
6456 bypass_jumps (FILE *file)
6458 int changed;
6460 /* We do not construct an accurate cfg in functions which call
6461 setjmp, so just punt to be safe. */
6462 if (current_function_calls_setjmp)
6463 return 0;
6465 /* For calling dump_foo fns from gdb. */
6466 debug_stderr = stderr;
6467 gcse_file = file;
6469 /* Identify the basic block information for this function, including
6470 successors and predecessors. */
6471 max_gcse_regno = max_reg_num ();
6473 if (file)
6474 dump_flow_info (file);
6476 /* Return if there's nothing to do, or it is too expensive. */
6477 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6478 return 0;
6480 gcc_obstack_init (&gcse_obstack);
6481 bytes_used = 0;
6483 /* We need alias. */
6484 init_alias_analysis ();
6486 /* Record where pseudo-registers are set. This data is kept accurate
6487 during each pass. ??? We could also record hard-reg information here
6488 [since it's unchanging], however it is currently done during hash table
6489 computation.
6491 It may be tempting to compute MEM set information here too, but MEM sets
6492 will be subject to code motion one day and thus we need to compute
6493 information about memory sets when we build the hash tables. */
6495 alloc_reg_set_mem (max_gcse_regno);
6496 compute_sets (get_insns ());
6498 max_gcse_regno = max_reg_num ();
6499 alloc_gcse_mem (get_insns ());
6500 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, 1, 1);
6501 free_gcse_mem ();
6503 if (file)
6505 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6506 current_function_name (), n_basic_blocks);
6507 fprintf (file, "%d bytes\n\n", bytes_used);
6510 obstack_free (&gcse_obstack, NULL);
6511 free_reg_set_mem ();
6513 /* We are finished with alias. */
6514 end_alias_analysis ();
6515 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6517 return changed;
6520 /* Return true if the graph is too expensive to optimize. PASS is the
6521 optimization about to be performed. */
6523 static bool
6524 is_too_expensive (const char *pass)
6526 /* Trying to perform global optimizations on flow graphs which have
6527 a high connectivity will take a long time and is unlikely to be
6528 particularly useful.
6530 In normal circumstances a cfg should have about twice as many
6531 edges as blocks. But we do not want to punish small functions
6532 which have a couple switch statements. Rather than simply
6533 threshold the number of blocks, uses something with a more
6534 graceful degradation. */
6535 if (n_edges > 20000 + n_basic_blocks * 4)
6537 if (warn_disabled_optimization)
6538 warning ("%s: %d basic blocks and %d edges/basic block",
6539 pass, n_basic_blocks, n_edges / n_basic_blocks);
6541 return true;
6544 /* If allocating memory for the cprop bitmap would take up too much
6545 storage it's better just to disable the optimization. */
6546 if ((n_basic_blocks
6547 * SBITMAP_SET_SIZE (max_reg_num ())
6548 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6550 if (warn_disabled_optimization)
6551 warning ("%s: %d basic blocks and %d registers",
6552 pass, n_basic_blocks, max_reg_num ());
6554 return true;
6557 return false;
6560 #include "gt-gcse.h"