1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Elists
; use Elists
;
31 with Einfo
; use Einfo
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Dist
; use Exp_Dist
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Exp_Util
; use Exp_Util
;
40 with Fname
; use Fname
;
41 with Freeze
; use Freeze
;
42 with Ghost
; use Ghost
;
43 with Itypes
; use Itypes
;
44 with Layout
; use Layout
;
46 with Lib
.Xref
; use Lib
.Xref
;
47 with Namet
; use Namet
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Case
; use Sem_Case
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch7
; use Sem_Ch7
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch10
; use Sem_Ch10
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Dim
; use Sem_Dim
;
63 with Sem_Disp
; use Sem_Disp
;
64 with Sem_Dist
; use Sem_Dist
;
65 with Sem_Elim
; use Sem_Elim
;
66 with Sem_Eval
; use Sem_Eval
;
67 with Sem_Mech
; use Sem_Mech
;
68 with Sem_Prag
; use Sem_Prag
;
69 with Sem_Res
; use Sem_Res
;
70 with Sem_Smem
; use Sem_Smem
;
71 with Sem_Type
; use Sem_Type
;
72 with Sem_Util
; use Sem_Util
;
73 with Sem_Warn
; use Sem_Warn
;
74 with Stand
; use Stand
;
75 with Sinfo
; use Sinfo
;
76 with Sinput
; use Sinput
;
77 with Snames
; use Snames
;
78 with Targparm
; use Targparm
;
79 with Tbuild
; use Tbuild
;
80 with Ttypes
; use Ttypes
;
81 with Uintp
; use Uintp
;
82 with Urealp
; use Urealp
;
84 package body Sem_Ch3
is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
91 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
92 -- abstract interface types implemented by a record type or a derived
95 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
);
96 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
97 -- if they appeared at the end of the declarative region. The pragmas to be
105 procedure Build_Derived_Type
107 Parent_Type
: Entity_Id
;
108 Derived_Type
: Entity_Id
;
109 Is_Completion
: Boolean;
110 Derive_Subps
: Boolean := True);
111 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
112 -- the N_Full_Type_Declaration node containing the derived type definition.
113 -- Parent_Type is the entity for the parent type in the derived type
114 -- definition and Derived_Type the actual derived type. Is_Completion must
115 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
116 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
117 -- completion of a private type declaration. If Is_Completion is set to
118 -- True, N is the completion of a private type declaration and Derived_Type
119 -- is different from the defining identifier inside N (i.e. Derived_Type /=
120 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
121 -- subprograms should be derived. The only case where this parameter is
122 -- False is when Build_Derived_Type is recursively called to process an
123 -- implicit derived full type for a type derived from a private type (in
124 -- that case the subprograms must only be derived for the private view of
127 -- ??? These flags need a bit of re-examination and re-documentation:
128 -- ??? are they both necessary (both seem related to the recursion)?
130 procedure Build_Derived_Access_Type
132 Parent_Type
: Entity_Id
;
133 Derived_Type
: Entity_Id
);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
135 -- create an implicit base if the parent type is constrained or if the
136 -- subtype indication has a constraint.
138 procedure Build_Derived_Array_Type
140 Parent_Type
: Entity_Id
;
141 Derived_Type
: Entity_Id
);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
143 -- create an implicit base if the parent type is constrained or if the
144 -- subtype indication has a constraint.
146 procedure Build_Derived_Concurrent_Type
148 Parent_Type
: Entity_Id
;
149 Derived_Type
: Entity_Id
);
150 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
151 -- protected type, inherit entries and protected subprograms, check
152 -- legality of discriminant constraints if any.
154 procedure Build_Derived_Enumeration_Type
156 Parent_Type
: Entity_Id
;
157 Derived_Type
: Entity_Id
);
158 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
159 -- type, we must create a new list of literals. Types derived from
160 -- Character and [Wide_]Wide_Character are special-cased.
162 procedure Build_Derived_Numeric_Type
164 Parent_Type
: Entity_Id
;
165 Derived_Type
: Entity_Id
);
166 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
167 -- an anonymous base type, and propagate constraint to subtype if needed.
169 procedure Build_Derived_Private_Type
171 Parent_Type
: Entity_Id
;
172 Derived_Type
: Entity_Id
;
173 Is_Completion
: Boolean;
174 Derive_Subps
: Boolean := True);
175 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
176 -- because the parent may or may not have a completion, and the derivation
177 -- may itself be a completion.
179 procedure Build_Derived_Record_Type
181 Parent_Type
: Entity_Id
;
182 Derived_Type
: Entity_Id
;
183 Derive_Subps
: Boolean := True);
184 -- Subsidiary procedure used for tagged and untagged record types
185 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
186 -- All parameters are as in Build_Derived_Type except that N, in
187 -- addition to being an N_Full_Type_Declaration node, can also be an
188 -- N_Private_Extension_Declaration node. See the definition of this routine
189 -- for much more info. Derive_Subps indicates whether subprograms should be
190 -- derived from the parent type. The only case where Derive_Subps is False
191 -- is for an implicit derived full type for a type derived from a private
192 -- type (see Build_Derived_Type).
194 procedure Build_Discriminal
(Discrim
: Entity_Id
);
195 -- Create the discriminal corresponding to discriminant Discrim, that is
196 -- the parameter corresponding to Discrim to be used in initialization
197 -- procedures for the type where Discrim is a discriminant. Discriminals
198 -- are not used during semantic analysis, and are not fully defined
199 -- entities until expansion. Thus they are not given a scope until
200 -- initialization procedures are built.
202 function Build_Discriminant_Constraints
205 Derived_Def
: Boolean := False) return Elist_Id
;
206 -- Validate discriminant constraints and return the list of the constraints
207 -- in order of discriminant declarations, where T is the discriminated
208 -- unconstrained type. Def is the N_Subtype_Indication node where the
209 -- discriminants constraints for T are specified. Derived_Def is True
210 -- when building the discriminant constraints in a derived type definition
211 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
212 -- type and Def is the constraint "(xxx)" on T and this routine sets the
213 -- Corresponding_Discriminant field of the discriminants in the derived
214 -- type D to point to the corresponding discriminants in the parent type T.
216 procedure Build_Discriminated_Subtype
220 Related_Nod
: Node_Id
;
221 For_Access
: Boolean := False);
222 -- Subsidiary procedure to Constrain_Discriminated_Type and to
223 -- Process_Incomplete_Dependents. Given
225 -- T (a possibly discriminated base type)
226 -- Def_Id (a very partially built subtype for T),
228 -- the call completes Def_Id to be the appropriate E_*_Subtype.
230 -- The Elist is the list of discriminant constraints if any (it is set
231 -- to No_Elist if T is not a discriminated type, and to an empty list if
232 -- T has discriminants but there are no discriminant constraints). The
233 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
234 -- The For_Access says whether or not this subtype is really constraining
235 -- an access type. That is its sole purpose is the designated type of an
236 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
237 -- is built to avoid freezing T when the access subtype is frozen.
239 function Build_Scalar_Bound
242 Der_T
: Entity_Id
) return Node_Id
;
243 -- The bounds of a derived scalar type are conversions of the bounds of
244 -- the parent type. Optimize the representation if the bounds are literals.
245 -- Needs a more complete spec--what are the parameters exactly, and what
246 -- exactly is the returned value, and how is Bound affected???
248 procedure Build_Underlying_Full_View
252 -- If the completion of a private type is itself derived from a private
253 -- type, or if the full view of a private subtype is itself private, the
254 -- back-end has no way to compute the actual size of this type. We build
255 -- an internal subtype declaration of the proper parent type to convey
256 -- this information. This extra mechanism is needed because a full
257 -- view cannot itself have a full view (it would get clobbered during
260 procedure Check_Access_Discriminant_Requires_Limited
263 -- Check the restriction that the type to which an access discriminant
264 -- belongs must be a concurrent type or a descendant of a type with
265 -- the reserved word 'limited' in its declaration.
267 procedure Check_Anonymous_Access_Components
271 Comp_List
: Node_Id
);
272 -- Ada 2005 AI-382: an access component in a record definition can refer to
273 -- the enclosing record, in which case it denotes the type itself, and not
274 -- the current instance of the type. We create an anonymous access type for
275 -- the component, and flag it as an access to a component, so accessibility
276 -- checks are properly performed on it. The declaration of the access type
277 -- is placed ahead of that of the record to prevent order-of-elaboration
278 -- circularity issues in Gigi. We create an incomplete type for the record
279 -- declaration, which is the designated type of the anonymous access.
281 procedure Check_Delta_Expression
(E
: Node_Id
);
282 -- Check that the expression represented by E is suitable for use as a
283 -- delta expression, i.e. it is of real type and is static.
285 procedure Check_Digits_Expression
(E
: Node_Id
);
286 -- Check that the expression represented by E is suitable for use as a
287 -- digits expression, i.e. it is of integer type, positive and static.
289 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
290 -- Validate the initialization of an object declaration. T is the required
291 -- type, and Exp is the initialization expression.
293 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
294 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
296 procedure Check_Or_Process_Discriminants
299 Prev
: Entity_Id
:= Empty
);
300 -- If N is the full declaration of the completion T of an incomplete or
301 -- private type, check its discriminants (which are already known to be
302 -- conformant with those of the partial view, see Find_Type_Name),
303 -- otherwise process them. Prev is the entity of the partial declaration,
306 procedure Check_Real_Bound
(Bound
: Node_Id
);
307 -- Check given bound for being of real type and static. If not, post an
308 -- appropriate message, and rewrite the bound with the real literal zero.
310 procedure Constant_Redeclaration
314 -- Various checks on legality of full declaration of deferred constant.
315 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
316 -- node. The caller has not yet set any attributes of this entity.
318 function Contain_Interface
320 Ifaces
: Elist_Id
) return Boolean;
321 -- Ada 2005: Determine whether Iface is present in the list Ifaces
323 procedure Convert_Scalar_Bounds
325 Parent_Type
: Entity_Id
;
326 Derived_Type
: Entity_Id
;
328 -- For derived scalar types, convert the bounds in the type definition to
329 -- the derived type, and complete their analysis. Given a constraint of the
330 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
331 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
332 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
333 -- subtype are conversions of those bounds to the derived_type, so that
334 -- their typing is consistent.
336 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
337 -- Copies attributes from array base type T2 to array base type T1. Copies
338 -- only attributes that apply to base types, but not subtypes.
340 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
341 -- Copies attributes from array subtype T2 to array subtype T1. Copies
342 -- attributes that apply to both subtypes and base types.
344 procedure Create_Constrained_Components
348 Constraints
: Elist_Id
);
349 -- Build the list of entities for a constrained discriminated record
350 -- subtype. If a component depends on a discriminant, replace its subtype
351 -- using the discriminant values in the discriminant constraint. Subt
352 -- is the defining identifier for the subtype whose list of constrained
353 -- entities we will create. Decl_Node is the type declaration node where
354 -- we will attach all the itypes created. Typ is the base discriminated
355 -- type for the subtype Subt. Constraints is the list of discriminant
356 -- constraints for Typ.
358 function Constrain_Component_Type
360 Constrained_Typ
: Entity_Id
;
361 Related_Node
: Node_Id
;
363 Constraints
: Elist_Id
) return Entity_Id
;
364 -- Given a discriminated base type Typ, a list of discriminant constraints,
365 -- Constraints, for Typ and a component Comp of Typ, create and return the
366 -- type corresponding to Etype (Comp) where all discriminant references
367 -- are replaced with the corresponding constraint. If Etype (Comp) contains
368 -- no discriminant references then it is returned as-is. Constrained_Typ
369 -- is the final constrained subtype to which the constrained component
370 -- belongs. Related_Node is the node where we attach all created itypes.
372 procedure Constrain_Access
373 (Def_Id
: in out Entity_Id
;
375 Related_Nod
: Node_Id
);
376 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
377 -- an anonymous type created for a subtype indication. In that case it is
378 -- created in the procedure and attached to Related_Nod.
380 procedure Constrain_Array
381 (Def_Id
: in out Entity_Id
;
383 Related_Nod
: Node_Id
;
384 Related_Id
: Entity_Id
;
386 -- Apply a list of index constraints to an unconstrained array type. The
387 -- first parameter is the entity for the resulting subtype. A value of
388 -- Empty for Def_Id indicates that an implicit type must be created, but
389 -- creation is delayed (and must be done by this procedure) because other
390 -- subsidiary implicit types must be created first (which is why Def_Id
391 -- is an in/out parameter). The second parameter is a subtype indication
392 -- node for the constrained array to be created (e.g. something of the
393 -- form string (1 .. 10)). Related_Nod gives the place where this type
394 -- has to be inserted in the tree. The Related_Id and Suffix parameters
395 -- are used to build the associated Implicit type name.
397 procedure Constrain_Concurrent
398 (Def_Id
: in out Entity_Id
;
400 Related_Nod
: Node_Id
;
401 Related_Id
: Entity_Id
;
403 -- Apply list of discriminant constraints to an unconstrained concurrent
406 -- SI is the N_Subtype_Indication node containing the constraint and
407 -- the unconstrained type to constrain.
409 -- Def_Id is the entity for the resulting constrained subtype. A value
410 -- of Empty for Def_Id indicates that an implicit type must be created,
411 -- but creation is delayed (and must be done by this procedure) because
412 -- other subsidiary implicit types must be created first (which is why
413 -- Def_Id is an in/out parameter).
415 -- Related_Nod gives the place where this type has to be inserted
418 -- The last two arguments are used to create its external name if needed.
420 function Constrain_Corresponding_Record
421 (Prot_Subt
: Entity_Id
;
422 Corr_Rec
: Entity_Id
;
423 Related_Nod
: Node_Id
) return Entity_Id
;
424 -- When constraining a protected type or task type with discriminants,
425 -- constrain the corresponding record with the same discriminant values.
427 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
428 -- Constrain a decimal fixed point type with a digits constraint and/or a
429 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
431 procedure Constrain_Discriminated_Type
434 Related_Nod
: Node_Id
;
435 For_Access
: Boolean := False);
436 -- Process discriminant constraints of composite type. Verify that values
437 -- have been provided for all discriminants, that the original type is
438 -- unconstrained, and that the types of the supplied expressions match
439 -- the discriminant types. The first three parameters are like in routine
440 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
443 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
444 -- Constrain an enumeration type with a range constraint. This is identical
445 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
447 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
448 -- Constrain a floating point type with either a digits constraint
449 -- and/or a range constraint, building a E_Floating_Point_Subtype.
451 procedure Constrain_Index
454 Related_Nod
: Node_Id
;
455 Related_Id
: Entity_Id
;
458 -- Process an index constraint S in a constrained array declaration. The
459 -- constraint can be a subtype name, or a range with or without an explicit
460 -- subtype mark. The index is the corresponding index of the unconstrained
461 -- array. The Related_Id and Suffix parameters are used to build the
462 -- associated Implicit type name.
464 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
465 -- Build subtype of a signed or modular integer type
467 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
468 -- Constrain an ordinary fixed point type with a range constraint, and
469 -- build an E_Ordinary_Fixed_Point_Subtype entity.
471 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
472 -- Copy the Priv entity into the entity of its full declaration then swap
473 -- the two entities in such a manner that the former private type is now
474 -- seen as a full type.
476 procedure Decimal_Fixed_Point_Type_Declaration
479 -- Create a new decimal fixed point type, and apply the constraint to
480 -- obtain a subtype of this new type.
482 procedure Complete_Private_Subtype
485 Full_Base
: Entity_Id
;
486 Related_Nod
: Node_Id
);
487 -- Complete the implicit full view of a private subtype by setting the
488 -- appropriate semantic fields. If the full view of the parent is a record
489 -- type, build constrained components of subtype.
491 procedure Derive_Progenitor_Subprograms
492 (Parent_Type
: Entity_Id
;
493 Tagged_Type
: Entity_Id
);
494 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
495 -- operations of progenitors of Tagged_Type, and replace the subsidiary
496 -- subtypes with Tagged_Type, to build the specs of the inherited interface
497 -- primitives. The derived primitives are aliased to those of the
498 -- interface. This routine takes care also of transferring to the full view
499 -- subprograms associated with the partial view of Tagged_Type that cover
500 -- interface primitives.
502 procedure Derived_Standard_Character
504 Parent_Type
: Entity_Id
;
505 Derived_Type
: Entity_Id
);
506 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
507 -- derivations from types Standard.Character and Standard.Wide_Character.
509 procedure Derived_Type_Declaration
512 Is_Completion
: Boolean);
513 -- Process a derived type declaration. Build_Derived_Type is invoked
514 -- to process the actual derived type definition. Parameters N and
515 -- Is_Completion have the same meaning as in Build_Derived_Type.
516 -- T is the N_Defining_Identifier for the entity defined in the
517 -- N_Full_Type_Declaration node N, that is T is the derived type.
519 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
520 -- Insert each literal in symbol table, as an overloadable identifier. Each
521 -- enumeration type is mapped into a sequence of integers, and each literal
522 -- is defined as a constant with integer value. If any of the literals are
523 -- character literals, the type is a character type, which means that
524 -- strings are legal aggregates for arrays of components of the type.
526 function Expand_To_Stored_Constraint
528 Constraint
: Elist_Id
) return Elist_Id
;
529 -- Given a constraint (i.e. a list of expressions) on the discriminants of
530 -- Typ, expand it into a constraint on the stored discriminants and return
531 -- the new list of expressions constraining the stored discriminants.
533 function Find_Type_Of_Object
535 Related_Nod
: Node_Id
) return Entity_Id
;
536 -- Get type entity for object referenced by Obj_Def, attaching the implicit
537 -- types generated to Related_Nod.
539 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
540 -- Create a new float and apply the constraint to obtain subtype of it
542 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
543 -- Given an N_Subtype_Indication node N, return True if a range constraint
544 -- is present, either directly, or as part of a digits or delta constraint.
545 -- In addition, a digits constraint in the decimal case returns True, since
546 -- it establishes a default range if no explicit range is present.
548 function Inherit_Components
550 Parent_Base
: Entity_Id
;
551 Derived_Base
: Entity_Id
;
553 Inherit_Discr
: Boolean;
554 Discs
: Elist_Id
) return Elist_Id
;
555 -- Called from Build_Derived_Record_Type to inherit the components of
556 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
557 -- For more information on derived types and component inheritance please
558 -- consult the comment above the body of Build_Derived_Record_Type.
560 -- N is the original derived type declaration
562 -- Is_Tagged is set if we are dealing with tagged types
564 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
565 -- Parent_Base, otherwise no discriminants are inherited.
567 -- Discs gives the list of constraints that apply to Parent_Base in the
568 -- derived type declaration. If Discs is set to No_Elist, then we have
569 -- the following situation:
571 -- type Parent (D1..Dn : ..) is [tagged] record ...;
572 -- type Derived is new Parent [with ...];
574 -- which gets treated as
576 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
578 -- For untagged types the returned value is an association list. The list
579 -- starts from the association (Parent_Base => Derived_Base), and then it
580 -- contains a sequence of the associations of the form
582 -- (Old_Component => New_Component),
584 -- where Old_Component is the Entity_Id of a component in Parent_Base and
585 -- New_Component is the Entity_Id of the corresponding component in
586 -- Derived_Base. For untagged records, this association list is needed when
587 -- copying the record declaration for the derived base. In the tagged case
588 -- the value returned is irrelevant.
590 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
591 -- Propagate static and dynamic predicate flags from a parent to the
592 -- subtype in a subtype declaration with and without constraints.
594 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
595 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
596 -- Determine whether subprogram Subp is a procedure subject to pragma
597 -- Extensions_Visible with value False and has at least one controlling
598 -- parameter of mode OUT.
600 function Is_Valid_Constraint_Kind
602 Constraint_Kind
: Node_Kind
) return Boolean;
603 -- Returns True if it is legal to apply the given kind of constraint to the
604 -- given kind of type (index constraint to an array type, for example).
606 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
607 -- Create new modular type. Verify that modulus is in bounds
609 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
610 -- Create an abbreviated declaration for an operator in order to
611 -- materialize concatenation on array types.
613 procedure Ordinary_Fixed_Point_Type_Declaration
616 -- Create a new ordinary fixed point type, and apply the constraint to
617 -- obtain subtype of it.
619 procedure Prepare_Private_Subtype_Completion
621 Related_Nod
: Node_Id
);
622 -- Id is a subtype of some private type. Creates the full declaration
623 -- associated with Id whenever possible, i.e. when the full declaration
624 -- of the base type is already known. Records each subtype into
625 -- Private_Dependents of the base type.
627 procedure Process_Incomplete_Dependents
631 -- Process all entities that depend on an incomplete type. There include
632 -- subtypes, subprogram types that mention the incomplete type in their
633 -- profiles, and subprogram with access parameters that designate the
636 -- Inc_T is the defining identifier of an incomplete type declaration, its
637 -- Ekind is E_Incomplete_Type.
639 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
641 -- Full_T is N's defining identifier.
643 -- Subtypes of incomplete types with discriminants are completed when the
644 -- parent type is. This is simpler than private subtypes, because they can
645 -- only appear in the same scope, and there is no need to exchange views.
646 -- Similarly, access_to_subprogram types may have a parameter or a return
647 -- type that is an incomplete type, and that must be replaced with the
650 -- If the full type is tagged, subprogram with access parameters that
651 -- designated the incomplete may be primitive operations of the full type,
652 -- and have to be processed accordingly.
654 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
655 -- Given the type definition for a real type, this procedure processes and
656 -- checks the real range specification of this type definition if one is
657 -- present. If errors are found, error messages are posted, and the
658 -- Real_Range_Specification of Def is reset to Empty.
660 procedure Propagate_Default_Init_Cond_Attributes
661 (From_Typ
: Entity_Id
;
663 Parent_To_Derivation
: Boolean := False;
664 Private_To_Full_View
: Boolean := False);
665 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
666 -- all attributes related to pragma Default_Initial_Condition from From_Typ
667 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
668 -- the creation of a derived type. Flag Private_To_Full_View should be set
669 -- when processing both views of a private type.
671 procedure Record_Type_Declaration
675 -- Process a record type declaration (for both untagged and tagged
676 -- records). Parameters T and N are exactly like in procedure
677 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
678 -- for this routine. If this is the completion of an incomplete type
679 -- declaration, Prev is the entity of the incomplete declaration, used for
680 -- cross-referencing. Otherwise Prev = T.
682 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
683 -- This routine is used to process the actual record type definition (both
684 -- for untagged and tagged records). Def is a record type definition node.
685 -- This procedure analyzes the components in this record type definition.
686 -- Prev_T is the entity for the enclosing record type. It is provided so
687 -- that its Has_Task flag can be set if any of the component have Has_Task
688 -- set. If the declaration is the completion of an incomplete type
689 -- declaration, Prev_T is the original incomplete type, whose full view is
692 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
693 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
694 -- build a copy of the declaration tree of the parent, and we create
695 -- independently the list of components for the derived type. Semantic
696 -- information uses the component entities, but record representation
697 -- clauses are validated on the declaration tree. This procedure replaces
698 -- discriminants and components in the declaration with those that have
699 -- been created by Inherit_Components.
701 procedure Set_Fixed_Range
706 -- Build a range node with the given bounds and set it as the Scalar_Range
707 -- of the given fixed-point type entity. Loc is the source location used
708 -- for the constructed range. See body for further details.
710 procedure Set_Scalar_Range_For_Subtype
714 -- This routine is used to set the scalar range field for a subtype given
715 -- Def_Id, the entity for the subtype, and R, the range expression for the
716 -- scalar range. Subt provides the parent subtype to be used to analyze,
717 -- resolve, and check the given range.
719 procedure Set_Default_SSO
(T
: Entity_Id
);
720 -- T is the entity for an array or record being declared. This procedure
721 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
722 -- to the setting of Opt.Default_SSO.
724 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
725 -- Create a new signed integer entity, and apply the constraint to obtain
726 -- the required first named subtype of this type.
728 procedure Set_Stored_Constraint_From_Discriminant_Constraint
730 -- E is some record type. This routine computes E's Stored_Constraint
731 -- from its Discriminant_Constraint.
733 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
734 -- Check that an entity in a list of progenitors is an interface,
735 -- emit error otherwise.
737 -----------------------
738 -- Access_Definition --
739 -----------------------
741 function Access_Definition
742 (Related_Nod
: Node_Id
;
743 N
: Node_Id
) return Entity_Id
745 Anon_Type
: Entity_Id
;
746 Anon_Scope
: Entity_Id
;
747 Desig_Type
: Entity_Id
;
748 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
751 Check_SPARK_05_Restriction
("access type is not allowed", N
);
753 if Is_Entry
(Current_Scope
)
754 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
756 Error_Msg_N
("task entries cannot have access parameters", N
);
760 -- Ada 2005: For an object declaration the corresponding anonymous
761 -- type is declared in the current scope.
763 -- If the access definition is the return type of another access to
764 -- function, scope is the current one, because it is the one of the
765 -- current type declaration, except for the pathological case below.
767 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
768 N_Access_Function_Definition
)
770 Anon_Scope
:= Current_Scope
;
772 -- A pathological case: function returning access functions that
773 -- return access functions, etc. Each anonymous access type created
774 -- is in the enclosing scope of the outermost function.
781 while Nkind_In
(Par
, N_Access_Function_Definition
,
787 if Nkind
(Par
) = N_Function_Specification
then
788 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
792 -- For the anonymous function result case, retrieve the scope of the
793 -- function specification's associated entity rather than using the
794 -- current scope. The current scope will be the function itself if the
795 -- formal part is currently being analyzed, but will be the parent scope
796 -- in the case of a parameterless function, and we always want to use
797 -- the function's parent scope. Finally, if the function is a child
798 -- unit, we must traverse the tree to retrieve the proper entity.
800 elsif Nkind
(Related_Nod
) = N_Function_Specification
801 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
803 -- If the current scope is a protected type, the anonymous access
804 -- is associated with one of the protected operations, and must
805 -- be available in the scope that encloses the protected declaration.
806 -- Otherwise the type is in the scope enclosing the subprogram.
808 -- If the function has formals, The return type of a subprogram
809 -- declaration is analyzed in the scope of the subprogram (see
810 -- Process_Formals) and thus the protected type, if present, is
811 -- the scope of the current function scope.
813 if Ekind
(Current_Scope
) = E_Protected_Type
then
814 Enclosing_Prot_Type
:= Current_Scope
;
816 elsif Ekind
(Current_Scope
) = E_Function
817 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
819 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
822 if Present
(Enclosing_Prot_Type
) then
823 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
826 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
829 -- For an access type definition, if the current scope is a child
830 -- unit it is the scope of the type.
832 elsif Is_Compilation_Unit
(Current_Scope
) then
833 Anon_Scope
:= Current_Scope
;
835 -- For access formals, access components, and access discriminants, the
836 -- scope is that of the enclosing declaration,
839 Anon_Scope
:= Scope
(Current_Scope
);
844 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
847 and then Ada_Version
>= Ada_2005
849 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
852 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
853 -- the corresponding semantic routine
855 if Present
(Access_To_Subprogram_Definition
(N
)) then
857 -- Compiler runtime units are compiled in Ada 2005 mode when building
858 -- the runtime library but must also be compilable in Ada 95 mode
859 -- (when bootstrapping the compiler).
861 Check_Compiler_Unit
("anonymous access to subprogram", N
);
863 Access_Subprogram_Declaration
864 (T_Name
=> Anon_Type
,
865 T_Def
=> Access_To_Subprogram_Definition
(N
));
867 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
869 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
871 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
874 Set_Can_Use_Internal_Rep
875 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
877 -- If the anonymous access is associated with a protected operation,
878 -- create a reference to it after the enclosing protected definition
879 -- because the itype will be used in the subsequent bodies.
881 if Ekind
(Current_Scope
) = E_Protected_Type
then
882 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
888 Find_Type
(Subtype_Mark
(N
));
889 Desig_Type
:= Entity
(Subtype_Mark
(N
));
891 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
892 Set_Etype
(Anon_Type
, Anon_Type
);
894 -- Make sure the anonymous access type has size and alignment fields
895 -- set, as required by gigi. This is necessary in the case of the
896 -- Task_Body_Procedure.
898 if not Has_Private_Component
(Desig_Type
) then
899 Layout_Type
(Anon_Type
);
902 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
903 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
904 -- the null value is allowed. In Ada 95 the null value is never allowed.
906 if Ada_Version
>= Ada_2005
then
907 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
909 Set_Can_Never_Be_Null
(Anon_Type
, True);
912 -- The anonymous access type is as public as the discriminated type or
913 -- subprogram that defines it. It is imported (for back-end purposes)
914 -- if the designated type is.
916 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
918 -- Ada 2005 (AI-231): Propagate the access-constant attribute
920 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
922 -- The context is either a subprogram declaration, object declaration,
923 -- or an access discriminant, in a private or a full type declaration.
924 -- In the case of a subprogram, if the designated type is incomplete,
925 -- the operation will be a primitive operation of the full type, to be
926 -- updated subsequently. If the type is imported through a limited_with
927 -- clause, the subprogram is not a primitive operation of the type
928 -- (which is declared elsewhere in some other scope).
930 if Ekind
(Desig_Type
) = E_Incomplete_Type
931 and then not From_Limited_With
(Desig_Type
)
932 and then Is_Overloadable
(Current_Scope
)
934 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
935 Set_Has_Delayed_Freeze
(Current_Scope
);
938 -- Ada 2005: If the designated type is an interface that may contain
939 -- tasks, create a Master entity for the declaration. This must be done
940 -- before expansion of the full declaration, because the declaration may
941 -- include an expression that is an allocator, whose expansion needs the
942 -- proper Master for the created tasks.
944 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
946 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
948 Build_Class_Wide_Master
(Anon_Type
);
950 -- Similarly, if the type is an anonymous access that designates
951 -- tasks, create a master entity for it in the current context.
953 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
955 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
956 Build_Master_Renaming
(Anon_Type
);
960 -- For a private component of a protected type, it is imperative that
961 -- the back-end elaborate the type immediately after the protected
962 -- declaration, because this type will be used in the declarations
963 -- created for the component within each protected body, so we must
964 -- create an itype reference for it now.
966 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
967 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
969 -- Similarly, if the access definition is the return result of a
970 -- function, create an itype reference for it because it will be used
971 -- within the function body. For a regular function that is not a
972 -- compilation unit, insert reference after the declaration. For a
973 -- protected operation, insert it after the enclosing protected type
974 -- declaration. In either case, do not create a reference for a type
975 -- obtained through a limited_with clause, because this would introduce
976 -- semantic dependencies.
978 -- Similarly, do not create a reference if the designated type is a
979 -- generic formal, because no use of it will reach the backend.
981 elsif Nkind
(Related_Nod
) = N_Function_Specification
982 and then not From_Limited_With
(Desig_Type
)
983 and then not Is_Generic_Type
(Desig_Type
)
985 if Present
(Enclosing_Prot_Type
) then
986 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
988 elsif Is_List_Member
(Parent
(Related_Nod
))
989 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
991 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
994 -- Finally, create an itype reference for an object declaration of an
995 -- anonymous access type. This is strictly necessary only for deferred
996 -- constants, but in any case will avoid out-of-scope problems in the
999 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
1000 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
1004 end Access_Definition
;
1006 -----------------------------------
1007 -- Access_Subprogram_Declaration --
1008 -----------------------------------
1010 procedure Access_Subprogram_Declaration
1011 (T_Name
: Entity_Id
;
1014 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
1015 -- Check that type T_Name is not used, directly or recursively, as a
1016 -- parameter or a return type in Def. Def is either a subtype, an
1017 -- access_definition, or an access_to_subprogram_definition.
1019 -------------------------------
1020 -- Check_For_Premature_Usage --
1021 -------------------------------
1023 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1027 -- Check for a subtype mark
1029 if Nkind
(Def
) in N_Has_Etype
then
1030 if Etype
(Def
) = T_Name
then
1032 ("type& cannot be used before end of its declaration", Def
);
1035 -- If this is not a subtype, then this is an access_definition
1037 elsif Nkind
(Def
) = N_Access_Definition
then
1038 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1039 Check_For_Premature_Usage
1040 (Access_To_Subprogram_Definition
(Def
));
1042 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1045 -- The only cases left are N_Access_Function_Definition and
1046 -- N_Access_Procedure_Definition.
1049 if Present
(Parameter_Specifications
(Def
)) then
1050 Param
:= First
(Parameter_Specifications
(Def
));
1051 while Present
(Param
) loop
1052 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1053 Param
:= Next
(Param
);
1057 if Nkind
(Def
) = N_Access_Function_Definition
then
1058 Check_For_Premature_Usage
(Result_Definition
(Def
));
1061 end Check_For_Premature_Usage
;
1065 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1068 Desig_Type
: constant Entity_Id
:=
1069 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1071 -- Start of processing for Access_Subprogram_Declaration
1074 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1076 -- Associate the Itype node with the inner full-type declaration or
1077 -- subprogram spec or entry body. This is required to handle nested
1078 -- anonymous declarations. For example:
1081 -- (X : access procedure
1082 -- (Y : access procedure
1085 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1086 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1087 N_Private_Type_Declaration
,
1088 N_Private_Extension_Declaration
,
1089 N_Procedure_Specification
,
1090 N_Function_Specification
,
1094 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1095 N_Object_Renaming_Declaration
,
1096 N_Formal_Object_Declaration
,
1097 N_Formal_Type_Declaration
,
1098 N_Task_Type_Declaration
,
1099 N_Protected_Type_Declaration
))
1101 D_Ityp
:= Parent
(D_Ityp
);
1102 pragma Assert
(D_Ityp
/= Empty
);
1105 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1107 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1108 N_Function_Specification
)
1110 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1112 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1113 N_Object_Declaration
,
1114 N_Object_Renaming_Declaration
,
1115 N_Formal_Type_Declaration
)
1117 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1120 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1121 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1123 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1126 if Present
(Access_To_Subprogram_Definition
(Acc
))
1128 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1132 Replace_Anonymous_Access_To_Protected_Subprogram
1138 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1143 Analyze
(Result_Definition
(T_Def
));
1146 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1149 -- If a null exclusion is imposed on the result type, then
1150 -- create a null-excluding itype (an access subtype) and use
1151 -- it as the function's Etype.
1153 if Is_Access_Type
(Typ
)
1154 and then Null_Exclusion_In_Return_Present
(T_Def
)
1156 Set_Etype
(Desig_Type
,
1157 Create_Null_Excluding_Itype
1159 Related_Nod
=> T_Def
,
1160 Scope_Id
=> Current_Scope
));
1163 if From_Limited_With
(Typ
) then
1165 -- AI05-151: Incomplete types are allowed in all basic
1166 -- declarations, including access to subprograms.
1168 if Ada_Version
>= Ada_2012
then
1173 ("illegal use of incomplete type&",
1174 Result_Definition
(T_Def
), Typ
);
1177 elsif Ekind
(Current_Scope
) = E_Package
1178 and then In_Private_Part
(Current_Scope
)
1180 if Ekind
(Typ
) = E_Incomplete_Type
then
1181 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1183 elsif Is_Class_Wide_Type
(Typ
)
1184 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1187 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1191 Set_Etype
(Desig_Type
, Typ
);
1196 if not (Is_Type
(Etype
(Desig_Type
))) then
1198 ("expect type in function specification",
1199 Result_Definition
(T_Def
));
1203 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1206 if Present
(Formals
) then
1207 Push_Scope
(Desig_Type
);
1209 -- Some special tests here. These special tests can be removed
1210 -- if and when Itypes always have proper parent pointers to their
1213 -- Special test 1) Link defining_identifier of formals. Required by
1214 -- First_Formal to provide its functionality.
1220 F
:= First
(Formals
);
1222 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1223 -- when it is part of an unconstrained type and subtype expansion
1224 -- is disabled. To avoid back-end problems with shared profiles,
1225 -- use previous subprogram type as the designated type, and then
1226 -- remove scope added above.
1228 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1230 Set_Etype
(T_Name
, T_Name
);
1231 Init_Size_Align
(T_Name
);
1232 Set_Directly_Designated_Type
(T_Name
,
1233 Scope
(Defining_Identifier
(F
)));
1238 while Present
(F
) loop
1239 if No
(Parent
(Defining_Identifier
(F
))) then
1240 Set_Parent
(Defining_Identifier
(F
), F
);
1247 Process_Formals
(Formals
, Parent
(T_Def
));
1249 -- Special test 2) End_Scope requires that the parent pointer be set
1250 -- to something reasonable, but Itypes don't have parent pointers. So
1251 -- we set it and then unset it ???
1253 Set_Parent
(Desig_Type
, T_Name
);
1255 Set_Parent
(Desig_Type
, Empty
);
1258 -- Check for premature usage of the type being defined
1260 Check_For_Premature_Usage
(T_Def
);
1262 -- The return type and/or any parameter type may be incomplete. Mark the
1263 -- subprogram_type as depending on the incomplete type, so that it can
1264 -- be updated when the full type declaration is seen. This only applies
1265 -- to incomplete types declared in some enclosing scope, not to limited
1266 -- views from other packages.
1268 -- Prior to Ada 2012, access to functions can only have in_parameters.
1270 if Present
(Formals
) then
1271 Formal
:= First_Formal
(Desig_Type
);
1272 while Present
(Formal
) loop
1273 if Ekind
(Formal
) /= E_In_Parameter
1274 and then Nkind
(T_Def
) = N_Access_Function_Definition
1275 and then Ada_Version
< Ada_2012
1277 Error_Msg_N
("functions can only have IN parameters", Formal
);
1280 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1281 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1283 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1284 Set_Has_Delayed_Freeze
(Desig_Type
);
1287 Next_Formal
(Formal
);
1291 -- Check whether an indirect call without actuals may be possible. This
1292 -- is used when resolving calls whose result is then indexed.
1294 May_Need_Actuals
(Desig_Type
);
1296 -- If the return type is incomplete, this is legal as long as the type
1297 -- is declared in the current scope and will be completed in it (rather
1298 -- than being part of limited view).
1300 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1301 and then not Has_Delayed_Freeze
(Desig_Type
)
1302 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1304 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1305 Set_Has_Delayed_Freeze
(Desig_Type
);
1308 Check_Delayed_Subprogram
(Desig_Type
);
1310 if Protected_Present
(T_Def
) then
1311 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1312 Set_Convention
(Desig_Type
, Convention_Protected
);
1314 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1317 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1319 Set_Etype
(T_Name
, T_Name
);
1320 Init_Size_Align
(T_Name
);
1321 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1323 Generate_Reference_To_Formals
(T_Name
);
1325 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1327 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1329 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1330 end Access_Subprogram_Declaration
;
1332 ----------------------------
1333 -- Access_Type_Declaration --
1334 ----------------------------
1336 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1337 P
: constant Node_Id
:= Parent
(Def
);
1338 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1340 Full_Desig
: Entity_Id
;
1343 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1345 -- Check for permissible use of incomplete type
1347 if Nkind
(S
) /= N_Subtype_Indication
then
1350 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1351 Set_Directly_Designated_Type
(T
, Entity
(S
));
1353 -- If the designated type is a limited view, we cannot tell if
1354 -- the full view contains tasks, and there is no way to handle
1355 -- that full view in a client. We create a master entity for the
1356 -- scope, which will be used when a client determines that one
1359 if From_Limited_With
(Entity
(S
))
1360 and then not Is_Class_Wide_Type
(Entity
(S
))
1362 Set_Ekind
(T
, E_Access_Type
);
1363 Build_Master_Entity
(T
);
1364 Build_Master_Renaming
(T
);
1368 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1371 -- If the access definition is of the form: ACCESS NOT NULL ..
1372 -- the subtype indication must be of an access type. Create
1373 -- a null-excluding subtype of it.
1375 if Null_Excluding_Subtype
(Def
) then
1376 if not Is_Access_Type
(Entity
(S
)) then
1377 Error_Msg_N
("null exclusion must apply to access type", Def
);
1381 Loc
: constant Source_Ptr
:= Sloc
(S
);
1383 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1387 Make_Subtype_Declaration
(Loc
,
1388 Defining_Identifier
=> Nam
,
1389 Subtype_Indication
=>
1390 New_Occurrence_Of
(Entity
(S
), Loc
));
1391 Set_Null_Exclusion_Present
(Decl
);
1392 Insert_Before
(Parent
(Def
), Decl
);
1394 Set_Entity
(S
, Nam
);
1400 Set_Directly_Designated_Type
(T
,
1401 Process_Subtype
(S
, P
, T
, 'P'));
1404 if All_Present
(Def
) or Constant_Present
(Def
) then
1405 Set_Ekind
(T
, E_General_Access_Type
);
1407 Set_Ekind
(T
, E_Access_Type
);
1410 Full_Desig
:= Designated_Type
(T
);
1412 if Base_Type
(Full_Desig
) = T
then
1413 Error_Msg_N
("access type cannot designate itself", S
);
1415 -- In Ada 2005, the type may have a limited view through some unit in
1416 -- its own context, allowing the following circularity that cannot be
1417 -- detected earlier.
1419 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1422 ("access type cannot designate its own classwide type", S
);
1424 -- Clean up indication of tagged status to prevent cascaded errors
1426 Set_Is_Tagged_Type
(T
, False);
1431 -- If the type has appeared already in a with_type clause, it is frozen
1432 -- and the pointer size is already set. Else, initialize.
1434 if not From_Limited_With
(T
) then
1435 Init_Size_Align
(T
);
1438 -- Note that Has_Task is always false, since the access type itself
1439 -- is not a task type. See Einfo for more description on this point.
1440 -- Exactly the same consideration applies to Has_Controlled_Component
1441 -- and to Has_Protected.
1443 Set_Has_Task
(T
, False);
1444 Set_Has_Controlled_Component
(T
, False);
1445 Set_Has_Protected
(T
, False);
1447 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1448 -- problems where an incomplete view of this entity has been previously
1449 -- established by a limited with and an overlaid version of this field
1450 -- (Stored_Constraint) was initialized for the incomplete view.
1452 -- This reset is performed in most cases except where the access type
1453 -- has been created for the purposes of allocating or deallocating a
1454 -- build-in-place object. Such access types have explicitly set pools
1455 -- and finalization masters.
1457 if No
(Associated_Storage_Pool
(T
)) then
1458 Set_Finalization_Master
(T
, Empty
);
1461 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1464 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1465 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1466 end Access_Type_Declaration
;
1468 ----------------------------------
1469 -- Add_Interface_Tag_Components --
1470 ----------------------------------
1472 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1473 Loc
: constant Source_Ptr
:= Sloc
(N
);
1477 procedure Add_Tag
(Iface
: Entity_Id
);
1478 -- Add tag for one of the progenitor interfaces
1484 procedure Add_Tag
(Iface
: Entity_Id
) is
1491 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1493 -- This is a reasonable place to propagate predicates
1495 if Has_Predicates
(Iface
) then
1496 Set_Has_Predicates
(Typ
);
1500 Make_Component_Definition
(Loc
,
1501 Aliased_Present
=> True,
1502 Subtype_Indication
=>
1503 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1505 Tag
:= Make_Temporary
(Loc
, 'V');
1508 Make_Component_Declaration
(Loc
,
1509 Defining_Identifier
=> Tag
,
1510 Component_Definition
=> Def
);
1512 Analyze_Component_Declaration
(Decl
);
1514 Set_Analyzed
(Decl
);
1515 Set_Ekind
(Tag
, E_Component
);
1517 Set_Is_Aliased
(Tag
);
1518 Set_Related_Type
(Tag
, Iface
);
1519 Init_Component_Location
(Tag
);
1521 pragma Assert
(Is_Frozen
(Iface
));
1523 Set_DT_Entry_Count
(Tag
,
1524 DT_Entry_Count
(First_Entity
(Iface
)));
1526 if No
(Last_Tag
) then
1529 Insert_After
(Last_Tag
, Decl
);
1534 -- If the ancestor has discriminants we need to give special support
1535 -- to store the offset_to_top value of the secondary dispatch tables.
1536 -- For this purpose we add a supplementary component just after the
1537 -- field that contains the tag associated with each secondary DT.
1539 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1541 Make_Component_Definition
(Loc
,
1542 Subtype_Indication
=>
1543 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1545 Offset
:= Make_Temporary
(Loc
, 'V');
1548 Make_Component_Declaration
(Loc
,
1549 Defining_Identifier
=> Offset
,
1550 Component_Definition
=> Def
);
1552 Analyze_Component_Declaration
(Decl
);
1554 Set_Analyzed
(Decl
);
1555 Set_Ekind
(Offset
, E_Component
);
1556 Set_Is_Aliased
(Offset
);
1557 Set_Related_Type
(Offset
, Iface
);
1558 Init_Component_Location
(Offset
);
1559 Insert_After
(Last_Tag
, Decl
);
1570 -- Start of processing for Add_Interface_Tag_Components
1573 if not RTE_Available
(RE_Interface_Tag
) then
1575 ("(Ada 2005) interface types not supported by this run-time!",
1580 if Ekind
(Typ
) /= E_Record_Type
1581 or else (Is_Concurrent_Record_Type
(Typ
)
1582 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1583 or else (not Is_Concurrent_Record_Type
(Typ
)
1584 and then No
(Interfaces
(Typ
))
1585 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1590 -- Find the current last tag
1592 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1593 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1595 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1596 Ext
:= Type_Definition
(N
);
1601 if not (Present
(Component_List
(Ext
))) then
1602 Set_Null_Present
(Ext
, False);
1604 Set_Component_List
(Ext
,
1605 Make_Component_List
(Loc
,
1606 Component_Items
=> L
,
1607 Null_Present
=> False));
1609 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1610 L
:= Component_Items
1612 (Record_Extension_Part
1613 (Type_Definition
(N
))));
1615 L
:= Component_Items
1617 (Type_Definition
(N
)));
1620 -- Find the last tag component
1623 while Present
(Comp
) loop
1624 if Nkind
(Comp
) = N_Component_Declaration
1625 and then Is_Tag
(Defining_Identifier
(Comp
))
1634 -- At this point L references the list of components and Last_Tag
1635 -- references the current last tag (if any). Now we add the tag
1636 -- corresponding with all the interfaces that are not implemented
1639 if Present
(Interfaces
(Typ
)) then
1640 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1641 while Present
(Elmt
) loop
1642 Add_Tag
(Node
(Elmt
));
1646 end Add_Interface_Tag_Components
;
1648 -------------------------------------
1649 -- Add_Internal_Interface_Entities --
1650 -------------------------------------
1652 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1655 Iface_Elmt
: Elmt_Id
;
1656 Iface_Prim
: Entity_Id
;
1657 Ifaces_List
: Elist_Id
;
1658 New_Subp
: Entity_Id
:= Empty
;
1660 Restore_Scope
: Boolean := False;
1663 pragma Assert
(Ada_Version
>= Ada_2005
1664 and then Is_Record_Type
(Tagged_Type
)
1665 and then Is_Tagged_Type
(Tagged_Type
)
1666 and then Has_Interfaces
(Tagged_Type
)
1667 and then not Is_Interface
(Tagged_Type
));
1669 -- Ensure that the internal entities are added to the scope of the type
1671 if Scope
(Tagged_Type
) /= Current_Scope
then
1672 Push_Scope
(Scope
(Tagged_Type
));
1673 Restore_Scope
:= True;
1676 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1678 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1679 while Present
(Iface_Elmt
) loop
1680 Iface
:= Node
(Iface_Elmt
);
1682 -- Originally we excluded here from this processing interfaces that
1683 -- are parents of Tagged_Type because their primitives are located
1684 -- in the primary dispatch table (and hence no auxiliary internal
1685 -- entities are required to handle secondary dispatch tables in such
1686 -- case). However, these auxiliary entities are also required to
1687 -- handle derivations of interfaces in formals of generics (see
1688 -- Derive_Subprograms).
1690 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1691 while Present
(Elmt
) loop
1692 Iface_Prim
:= Node
(Elmt
);
1694 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1696 Find_Primitive_Covering_Interface
1697 (Tagged_Type
=> Tagged_Type
,
1698 Iface_Prim
=> Iface_Prim
);
1700 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1704 pragma Assert
(Present
(Prim
));
1706 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1707 -- differs from the name of the interface primitive then it is
1708 -- a private primitive inherited from a parent type. In such
1709 -- case, given that Tagged_Type covers the interface, the
1710 -- inherited private primitive becomes visible. For such
1711 -- purpose we add a new entity that renames the inherited
1712 -- private primitive.
1714 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1715 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1717 (New_Subp
=> New_Subp
,
1718 Parent_Subp
=> Iface_Prim
,
1719 Derived_Type
=> Tagged_Type
,
1720 Parent_Type
=> Iface
);
1721 Set_Alias
(New_Subp
, Prim
);
1722 Set_Is_Abstract_Subprogram
1723 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1727 (New_Subp
=> New_Subp
,
1728 Parent_Subp
=> Iface_Prim
,
1729 Derived_Type
=> Tagged_Type
,
1730 Parent_Type
=> Iface
);
1732 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1733 -- associated with interface types. These entities are
1734 -- only registered in the list of primitives of its
1735 -- corresponding tagged type because they are only used
1736 -- to fill the contents of the secondary dispatch tables.
1737 -- Therefore they are removed from the homonym chains.
1739 Set_Is_Hidden
(New_Subp
);
1740 Set_Is_Internal
(New_Subp
);
1741 Set_Alias
(New_Subp
, Prim
);
1742 Set_Is_Abstract_Subprogram
1743 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1744 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1746 -- If the returned type is an interface then propagate it to
1747 -- the returned type. Needed by the thunk to generate the code
1748 -- which displaces "this" to reference the corresponding
1749 -- secondary dispatch table in the returned object.
1751 if Is_Interface
(Etype
(Iface_Prim
)) then
1752 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1755 -- Internal entities associated with interface types are
1756 -- only registered in the list of primitives of the tagged
1757 -- type. They are only used to fill the contents of the
1758 -- secondary dispatch tables. Therefore they are not needed
1759 -- in the homonym chains.
1761 Remove_Homonym
(New_Subp
);
1763 -- Hidden entities associated with interfaces must have set
1764 -- the Has_Delay_Freeze attribute to ensure that, in case of
1765 -- locally defined tagged types (or compiling with static
1766 -- dispatch tables generation disabled) the corresponding
1767 -- entry of the secondary dispatch table is filled when
1768 -- such an entity is frozen.
1770 Set_Has_Delayed_Freeze
(New_Subp
);
1777 Next_Elmt
(Iface_Elmt
);
1780 if Restore_Scope
then
1783 end Add_Internal_Interface_Entities
;
1785 -----------------------------------
1786 -- Analyze_Component_Declaration --
1787 -----------------------------------
1789 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1790 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1791 E
: constant Node_Id
:= Expression
(N
);
1792 Typ
: constant Node_Id
:=
1793 Subtype_Indication
(Component_Definition
(N
));
1797 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1798 -- Determines whether a constraint uses the discriminant of a record
1799 -- type thus becoming a per-object constraint (POC).
1801 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1802 -- Typ is the type of the current component, check whether this type is
1803 -- a limited type. Used to validate declaration against that of
1804 -- enclosing record.
1810 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1812 -- Prevent cascaded errors
1814 if Error_Posted
(Constr
) then
1818 case Nkind
(Constr
) is
1819 when N_Attribute_Reference
=>
1820 return Attribute_Name
(Constr
) = Name_Access
1821 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1823 when N_Discriminant_Association
=>
1824 return Denotes_Discriminant
(Expression
(Constr
));
1826 when N_Identifier
=>
1827 return Denotes_Discriminant
(Constr
);
1829 when N_Index_Or_Discriminant_Constraint
=>
1834 IDC
:= First
(Constraints
(Constr
));
1835 while Present
(IDC
) loop
1837 -- One per-object constraint is sufficient
1839 if Contains_POC
(IDC
) then
1850 return Denotes_Discriminant
(Low_Bound
(Constr
))
1852 Denotes_Discriminant
(High_Bound
(Constr
));
1854 when N_Range_Constraint
=>
1855 return Denotes_Discriminant
(Range_Expression
(Constr
));
1863 ----------------------
1864 -- Is_Known_Limited --
1865 ----------------------
1867 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1868 P
: constant Entity_Id
:= Etype
(Typ
);
1869 R
: constant Entity_Id
:= Root_Type
(Typ
);
1872 if Is_Limited_Record
(Typ
) then
1875 -- If the root type is limited (and not a limited interface)
1876 -- so is the current type
1878 elsif Is_Limited_Record
(R
)
1879 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1883 -- Else the type may have a limited interface progenitor, but a
1884 -- limited record parent.
1886 elsif R
/= P
and then Is_Limited_Record
(P
) then
1892 end Is_Known_Limited
;
1894 -- Start of processing for Analyze_Component_Declaration
1897 Generate_Definition
(Id
);
1900 if Present
(Typ
) then
1901 T
:= Find_Type_Of_Object
1902 (Subtype_Indication
(Component_Definition
(N
)), N
);
1904 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1905 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1908 -- Ada 2005 (AI-230): Access Definition case
1911 pragma Assert
(Present
1912 (Access_Definition
(Component_Definition
(N
))));
1914 T
:= Access_Definition
1916 N
=> Access_Definition
(Component_Definition
(N
)));
1917 Set_Is_Local_Anonymous_Access
(T
);
1919 -- Ada 2005 (AI-254)
1921 if Present
(Access_To_Subprogram_Definition
1922 (Access_Definition
(Component_Definition
(N
))))
1923 and then Protected_Present
(Access_To_Subprogram_Definition
1925 (Component_Definition
(N
))))
1927 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1931 -- If the subtype is a constrained subtype of the enclosing record,
1932 -- (which must have a partial view) the back-end does not properly
1933 -- handle the recursion. Rewrite the component declaration with an
1934 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1935 -- the tree directly because side effects have already been removed from
1936 -- discriminant constraints.
1938 if Ekind
(T
) = E_Access_Subtype
1939 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1940 and then Comes_From_Source
(T
)
1941 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1942 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1945 (Subtype_Indication
(Component_Definition
(N
)),
1946 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1947 T
:= Find_Type_Of_Object
1948 (Subtype_Indication
(Component_Definition
(N
)), N
);
1951 -- If the component declaration includes a default expression, then we
1952 -- check that the component is not of a limited type (RM 3.7(5)),
1953 -- and do the special preanalysis of the expression (see section on
1954 -- "Handling of Default and Per-Object Expressions" in the spec of
1958 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1959 Preanalyze_Default_Expression
(E
, T
);
1960 Check_Initialization
(T
, E
);
1962 if Ada_Version
>= Ada_2005
1963 and then Ekind
(T
) = E_Anonymous_Access_Type
1964 and then Etype
(E
) /= Any_Type
1966 -- Check RM 3.9.2(9): "if the expected type for an expression is
1967 -- an anonymous access-to-specific tagged type, then the object
1968 -- designated by the expression shall not be dynamically tagged
1969 -- unless it is a controlling operand in a call on a dispatching
1972 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1974 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1976 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1980 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1983 -- (Ada 2005: AI-230): Accessibility check for anonymous
1986 if Type_Access_Level
(Etype
(E
)) >
1987 Deepest_Type_Access_Level
(T
)
1990 ("expression has deeper access level than component " &
1991 "(RM 3.10.2 (12.2))", E
);
1994 -- The initialization expression is a reference to an access
1995 -- discriminant. The type of the discriminant is always deeper
1996 -- than any access type.
1998 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1999 and then Is_Entity_Name
(E
)
2000 and then Ekind
(Entity
(E
)) = E_In_Parameter
2001 and then Present
(Discriminal_Link
(Entity
(E
)))
2004 ("discriminant has deeper accessibility level than target",
2010 -- The parent type may be a private view with unknown discriminants,
2011 -- and thus unconstrained. Regular components must be constrained.
2013 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2014 if Is_Class_Wide_Type
(T
) then
2016 ("class-wide subtype with unknown discriminants" &
2017 " in component declaration",
2018 Subtype_Indication
(Component_Definition
(N
)));
2021 ("unconstrained subtype in component declaration",
2022 Subtype_Indication
(Component_Definition
(N
)));
2025 -- Components cannot be abstract, except for the special case of
2026 -- the _Parent field (case of extending an abstract tagged type)
2028 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2029 Error_Msg_N
("type of a component cannot be abstract", N
);
2033 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2035 -- The component declaration may have a per-object constraint, set
2036 -- the appropriate flag in the defining identifier of the subtype.
2038 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2040 Sindic
: constant Node_Id
:=
2041 Subtype_Indication
(Component_Definition
(N
));
2043 if Nkind
(Sindic
) = N_Subtype_Indication
2044 and then Present
(Constraint
(Sindic
))
2045 and then Contains_POC
(Constraint
(Sindic
))
2047 Set_Has_Per_Object_Constraint
(Id
);
2052 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2053 -- out some static checks.
2055 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2056 Null_Exclusion_Static_Checks
(N
);
2059 -- If this component is private (or depends on a private type), flag the
2060 -- record type to indicate that some operations are not available.
2062 P
:= Private_Component
(T
);
2066 -- Check for circular definitions
2068 if P
= Any_Type
then
2069 Set_Etype
(Id
, Any_Type
);
2071 -- There is a gap in the visibility of operations only if the
2072 -- component type is not defined in the scope of the record type.
2074 elsif Scope
(P
) = Scope
(Current_Scope
) then
2077 elsif Is_Limited_Type
(P
) then
2078 Set_Is_Limited_Composite
(Current_Scope
);
2081 Set_Is_Private_Composite
(Current_Scope
);
2086 and then Is_Limited_Type
(T
)
2087 and then Chars
(Id
) /= Name_uParent
2088 and then Is_Tagged_Type
(Current_Scope
)
2090 if Is_Derived_Type
(Current_Scope
)
2091 and then not Is_Known_Limited
(Current_Scope
)
2094 ("extension of nonlimited type cannot have limited components",
2097 if Is_Interface
(Root_Type
(Current_Scope
)) then
2099 ("\limitedness is not inherited from limited interface", N
);
2100 Error_Msg_N
("\add LIMITED to type indication", N
);
2103 Explain_Limited_Type
(T
, N
);
2104 Set_Etype
(Id
, Any_Type
);
2105 Set_Is_Limited_Composite
(Current_Scope
, False);
2107 elsif not Is_Derived_Type
(Current_Scope
)
2108 and then not Is_Limited_Record
(Current_Scope
)
2109 and then not Is_Concurrent_Type
(Current_Scope
)
2112 ("nonlimited tagged type cannot have limited components", N
);
2113 Explain_Limited_Type
(T
, N
);
2114 Set_Etype
(Id
, Any_Type
);
2115 Set_Is_Limited_Composite
(Current_Scope
, False);
2119 Set_Original_Record_Component
(Id
, Id
);
2121 if Has_Aspects
(N
) then
2122 Analyze_Aspect_Specifications
(N
, Id
);
2125 Analyze_Dimension
(N
);
2126 end Analyze_Component_Declaration
;
2128 --------------------------
2129 -- Analyze_Declarations --
2130 --------------------------
2132 procedure Analyze_Declarations
(L
: List_Id
) is
2135 procedure Adjust_Decl
;
2136 -- Adjust Decl not to include implicit label declarations, since these
2137 -- have strange Sloc values that result in elaboration check problems.
2138 -- (They have the sloc of the label as found in the source, and that
2139 -- is ahead of the current declarative part).
2141 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2142 -- Determine whether Body_Decl denotes the body of a late controlled
2143 -- primitive (either Initialize, Adjust or Finalize). If this is the
2144 -- case, add a proper spec if the body lacks one. The spec is inserted
2145 -- before Body_Decl and immedately analyzed.
2147 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2148 -- Spec_Id is the entity of a package that may define abstract states.
2149 -- If the states have visible refinement, remove the visibility of each
2150 -- constituent at the end of the package body declarations.
2156 procedure Adjust_Decl
is
2158 while Present
(Prev
(Decl
))
2159 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2165 --------------------------------------
2166 -- Handle_Late_Controlled_Primitive --
2167 --------------------------------------
2169 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2170 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2171 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2172 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2173 Params
: constant List_Id
:=
2174 Parameter_Specifications
(Body_Spec
);
2176 Spec_Id
: Entity_Id
;
2180 -- Consider only procedure bodies whose name matches one of the three
2181 -- controlled primitives.
2183 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2184 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2190 -- A controlled primitive must have exactly one formal which is not
2191 -- an anonymous access type.
2193 elsif List_Length
(Params
) /= 1 then
2197 Typ
:= Parameter_Type
(First
(Params
));
2199 if Nkind
(Typ
) = N_Access_Definition
then
2205 -- The type of the formal must be derived from [Limited_]Controlled
2207 if not Is_Controlled
(Entity
(Typ
)) then
2211 -- Check whether a specification exists for this body. We do not
2212 -- analyze the spec of the body in full, because it will be analyzed
2213 -- again when the body is properly analyzed, and we cannot create
2214 -- duplicate entries in the formals chain. We look for an explicit
2215 -- specification because the body may be an overriding operation and
2216 -- an inherited spec may be present.
2218 Spec_Id
:= Current_Entity
(Body_Id
);
2220 while Present
(Spec_Id
) loop
2221 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2222 and then Scope
(Spec_Id
) = Current_Scope
2223 and then Present
(First_Formal
(Spec_Id
))
2224 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2225 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2226 and then Comes_From_Source
(Spec_Id
)
2231 Spec_Id
:= Homonym
(Spec_Id
);
2234 -- At this point the body is known to be a late controlled primitive.
2235 -- Generate a matching spec and insert it before the body. Note the
2236 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2237 -- tree in this case.
2239 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2241 -- Ensure that the subprogram declaration does not inherit the null
2242 -- indicator from the body as we now have a proper spec/body pair.
2244 Set_Null_Present
(Spec
, False);
2246 Insert_Before_And_Analyze
(Body_Decl
,
2247 Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
2248 end Handle_Late_Controlled_Primitive
;
2250 --------------------------------
2251 -- Remove_Visible_Refinements --
2252 --------------------------------
2254 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2255 State_Elmt
: Elmt_Id
;
2257 if Present
(Abstract_States
(Spec_Id
)) then
2258 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2259 while Present
(State_Elmt
) loop
2260 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2261 Next_Elmt
(State_Elmt
);
2264 end Remove_Visible_Refinements
;
2269 Freeze_From
: Entity_Id
:= Empty
;
2270 Next_Decl
: Node_Id
;
2271 Spec_Id
: Entity_Id
;
2273 Body_Seen
: Boolean := False;
2274 -- Flag set when the first body [stub] is encountered
2276 In_Package_Body
: Boolean := False;
2277 -- Flag set when the current declaration list belongs to a package body
2279 -- Start of processing for Analyze_Declarations
2282 if Restriction_Check_Required
(SPARK_05
) then
2283 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2287 while Present
(Decl
) loop
2289 -- Package spec cannot contain a package declaration in SPARK
2291 if Nkind
(Decl
) = N_Package_Declaration
2292 and then Nkind
(Parent
(L
)) = N_Package_Specification
2294 Check_SPARK_05_Restriction
2295 ("package specification cannot contain a package declaration",
2299 -- Complete analysis of declaration
2302 Next_Decl
:= Next
(Decl
);
2304 if No
(Freeze_From
) then
2305 Freeze_From
:= First_Entity
(Current_Scope
);
2308 -- At the end of a declarative part, freeze remaining entities
2309 -- declared in it. The end of the visible declarations of package
2310 -- specification is not the end of a declarative part if private
2311 -- declarations are present. The end of a package declaration is a
2312 -- freezing point only if it a library package. A task definition or
2313 -- protected type definition is not a freeze point either. Finally,
2314 -- we do not freeze entities in generic scopes, because there is no
2315 -- code generated for them and freeze nodes will be generated for
2318 -- The end of a package instantiation is not a freeze point, but
2319 -- for now we make it one, because the generic body is inserted
2320 -- (currently) immediately after. Generic instantiations will not
2321 -- be a freeze point once delayed freezing of bodies is implemented.
2322 -- (This is needed in any case for early instantiations ???).
2324 if No
(Next_Decl
) then
2325 if Nkind_In
(Parent
(L
), N_Component_List
,
2327 N_Protected_Definition
)
2331 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2332 if Nkind
(Parent
(L
)) = N_Package_Body
then
2333 Freeze_From
:= First_Entity
(Current_Scope
);
2336 -- There may have been several freezing points previously,
2337 -- for example object declarations or subprogram bodies, but
2338 -- at the end of a declarative part we check freezing from
2339 -- the beginning, even though entities may already be frozen,
2340 -- in order to perform visibility checks on delayed aspects.
2343 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2344 Freeze_From
:= Last_Entity
(Current_Scope
);
2346 elsif Scope
(Current_Scope
) /= Standard_Standard
2347 and then not Is_Child_Unit
(Current_Scope
)
2348 and then No
(Generic_Parent
(Parent
(L
)))
2352 elsif L
/= Visible_Declarations
(Parent
(L
))
2353 or else No
(Private_Declarations
(Parent
(L
)))
2354 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2357 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2358 Freeze_From
:= Last_Entity
(Current_Scope
);
2361 -- If next node is a body then freeze all types before the body.
2362 -- An exception occurs for some expander-generated bodies. If these
2363 -- are generated at places where in general language rules would not
2364 -- allow a freeze point, then we assume that the expander has
2365 -- explicitly checked that all required types are properly frozen,
2366 -- and we do not cause general freezing here. This special circuit
2367 -- is used when the encountered body is marked as having already
2370 -- In all other cases (bodies that come from source, and expander
2371 -- generated bodies that have not been analyzed yet), freeze all
2372 -- types now. Note that in the latter case, the expander must take
2373 -- care to attach the bodies at a proper place in the tree so as to
2374 -- not cause unwanted freezing at that point.
2376 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
) then
2378 -- When a controlled type is frozen, the expander generates stream
2379 -- and controlled type support routines. If the freeze is caused
2380 -- by the stand alone body of Initialize, Adjust and Finalize, the
2381 -- expander will end up using the wrong version of these routines
2382 -- as the body has not been processed yet. To remedy this, detect
2383 -- a late controlled primitive and create a proper spec for it.
2384 -- This ensures that the primitive will override its inherited
2385 -- counterpart before the freeze takes place.
2387 -- If the declaration we just processed is a body, do not attempt
2388 -- to examine Next_Decl as the late primitive idiom can only apply
2389 -- to the first encountered body.
2391 -- The spec of the late primitive is not generated in ASIS mode to
2392 -- ensure a consistent list of primitives that indicates the true
2393 -- semantic structure of the program (which is not relevant when
2394 -- generating executable code.
2396 -- ??? a cleaner approach may be possible and/or this solution
2397 -- could be extended to general-purpose late primitives, TBD.
2399 if not ASIS_Mode
and then not Body_Seen
and then not Is_Body
(Decl
)
2403 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2404 Handle_Late_Controlled_Primitive
(Next_Decl
);
2409 Freeze_All
(Freeze_From
, Decl
);
2410 Freeze_From
:= Last_Entity
(Current_Scope
);
2416 -- Analyze the contracts of packages and their bodies
2419 Context
:= Parent
(L
);
2421 if Nkind
(Context
) = N_Package_Specification
then
2423 -- When a package has private declarations, its contract must be
2424 -- analyzed at the end of the said declarations. This way both the
2425 -- analysis and freeze actions are properly synchronized in case
2426 -- of private type use within the contract.
2428 if L
= Private_Declarations
(Context
) then
2429 Analyze_Package_Contract
(Defining_Entity
(Context
));
2431 -- Build the bodies of the default initial condition procedures
2432 -- for all types subject to pragma Default_Initial_Condition.
2433 -- From a purely Ada stand point, this is a freezing activity,
2434 -- however freezing is not available under GNATprove_Mode. To
2435 -- accomodate both scenarios, the bodies are build at the end
2436 -- of private declaration analysis.
2438 Build_Default_Init_Cond_Procedure_Bodies
(L
);
2440 -- Otherwise the contract is analyzed at the end of the visible
2443 elsif L
= Visible_Declarations
(Context
)
2444 and then No
(Private_Declarations
(Context
))
2446 Analyze_Package_Contract
(Defining_Entity
(Context
));
2449 elsif Nkind
(Context
) = N_Package_Body
then
2450 In_Package_Body
:= True;
2451 Spec_Id
:= Corresponding_Spec
(Context
);
2453 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2457 -- Analyze the contracts of subprogram declarations, subprogram bodies
2458 -- and variables now due to the delayed visibility requirements of their
2462 while Present
(Decl
) loop
2463 if Nkind
(Decl
) = N_Object_Declaration
then
2464 Analyze_Object_Contract
(Defining_Entity
(Decl
));
2466 elsif Nkind_In
(Decl
, N_Abstract_Subprogram_Declaration
,
2467 N_Subprogram_Declaration
)
2469 Analyze_Subprogram_Contract
(Defining_Entity
(Decl
));
2471 elsif Nkind
(Decl
) = N_Subprogram_Body
then
2472 Analyze_Subprogram_Body_Contract
(Defining_Entity
(Decl
));
2474 elsif Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2475 Analyze_Subprogram_Body_Stub_Contract
(Defining_Entity
(Decl
));
2481 -- State refinements are visible upto the end the of the package body
2482 -- declarations. Hide the refinements from visibility to restore the
2483 -- original state conditions.
2485 if In_Package_Body
then
2486 Remove_Visible_Refinements
(Spec_Id
);
2488 end Analyze_Declarations
;
2490 -----------------------------------
2491 -- Analyze_Full_Type_Declaration --
2492 -----------------------------------
2494 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2495 Def
: constant Node_Id
:= Type_Definition
(N
);
2496 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2500 Is_Remote
: constant Boolean :=
2501 (Is_Remote_Types
(Current_Scope
)
2502 or else Is_Remote_Call_Interface
(Current_Scope
))
2503 and then not (In_Private_Part
(Current_Scope
)
2504 or else In_Package_Body
(Current_Scope
));
2506 procedure Check_Ops_From_Incomplete_Type
;
2507 -- If there is a tagged incomplete partial view of the type, traverse
2508 -- the primitives of the incomplete view and change the type of any
2509 -- controlling formals and result to indicate the full view. The
2510 -- primitives will be added to the full type's primitive operations
2511 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2512 -- is called from Process_Incomplete_Dependents).
2514 ------------------------------------
2515 -- Check_Ops_From_Incomplete_Type --
2516 ------------------------------------
2518 procedure Check_Ops_From_Incomplete_Type
is
2525 and then Ekind
(Prev
) = E_Incomplete_Type
2526 and then Is_Tagged_Type
(Prev
)
2527 and then Is_Tagged_Type
(T
)
2529 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2530 while Present
(Elmt
) loop
2533 Formal
:= First_Formal
(Op
);
2534 while Present
(Formal
) loop
2535 if Etype
(Formal
) = Prev
then
2536 Set_Etype
(Formal
, T
);
2539 Next_Formal
(Formal
);
2542 if Etype
(Op
) = Prev
then
2549 end Check_Ops_From_Incomplete_Type
;
2551 -- Start of processing for Analyze_Full_Type_Declaration
2554 Prev
:= Find_Type_Name
(N
);
2556 -- The type declaration may be subject to pragma Ghost with policy
2557 -- Ignore. Set the mode now to ensure that any nodes generated during
2558 -- analysis and expansion are properly flagged as ignored Ghost.
2560 Set_Ghost_Mode
(N
, Prev
);
2562 -- The full view, if present, now points to the current type. If there
2563 -- is an incomplete partial view, set a link to it, to simplify the
2564 -- retrieval of primitive operations of the type.
2566 -- Ada 2005 (AI-50217): If the type was previously decorated when
2567 -- imported through a LIMITED WITH clause, it appears as incomplete
2568 -- but has no full view.
2570 if Ekind
(Prev
) = E_Incomplete_Type
2571 and then Present
(Full_View
(Prev
))
2573 T
:= Full_View
(Prev
);
2574 Set_Incomplete_View
(N
, Parent
(Prev
));
2579 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2581 -- We set the flag Is_First_Subtype here. It is needed to set the
2582 -- corresponding flag for the Implicit class-wide-type created
2583 -- during tagged types processing.
2585 Set_Is_First_Subtype
(T
, True);
2587 -- Only composite types other than array types are allowed to have
2592 -- For derived types, the rule will be checked once we've figured
2593 -- out the parent type.
2595 when N_Derived_Type_Definition
=>
2598 -- For record types, discriminants are allowed, unless we are in
2601 when N_Record_Definition
=>
2602 if Present
(Discriminant_Specifications
(N
)) then
2603 Check_SPARK_05_Restriction
2604 ("discriminant type is not allowed",
2606 (First
(Discriminant_Specifications
(N
))));
2610 if Present
(Discriminant_Specifications
(N
)) then
2612 ("elementary or array type cannot have discriminants",
2614 (First
(Discriminant_Specifications
(N
))));
2618 -- Elaborate the type definition according to kind, and generate
2619 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2620 -- already done (this happens during the reanalysis that follows a call
2621 -- to the high level optimizer).
2623 if not Analyzed
(T
) then
2627 when N_Access_To_Subprogram_Definition
=>
2628 Access_Subprogram_Declaration
(T
, Def
);
2630 -- If this is a remote access to subprogram, we must create the
2631 -- equivalent fat pointer type, and related subprograms.
2634 Process_Remote_AST_Declaration
(N
);
2637 -- Validate categorization rule against access type declaration
2638 -- usually a violation in Pure unit, Shared_Passive unit.
2640 Validate_Access_Type_Declaration
(T
, N
);
2642 when N_Access_To_Object_Definition
=>
2643 Access_Type_Declaration
(T
, Def
);
2645 -- Validate categorization rule against access type declaration
2646 -- usually a violation in Pure unit, Shared_Passive unit.
2648 Validate_Access_Type_Declaration
(T
, N
);
2650 -- If we are in a Remote_Call_Interface package and define a
2651 -- RACW, then calling stubs and specific stream attributes
2655 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2657 Add_RACW_Features
(Def_Id
);
2660 when N_Array_Type_Definition
=>
2661 Array_Type_Declaration
(T
, Def
);
2663 when N_Derived_Type_Definition
=>
2664 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2666 when N_Enumeration_Type_Definition
=>
2667 Enumeration_Type_Declaration
(T
, Def
);
2669 when N_Floating_Point_Definition
=>
2670 Floating_Point_Type_Declaration
(T
, Def
);
2672 when N_Decimal_Fixed_Point_Definition
=>
2673 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2675 when N_Ordinary_Fixed_Point_Definition
=>
2676 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2678 when N_Signed_Integer_Type_Definition
=>
2679 Signed_Integer_Type_Declaration
(T
, Def
);
2681 when N_Modular_Type_Definition
=>
2682 Modular_Type_Declaration
(T
, Def
);
2684 when N_Record_Definition
=>
2685 Record_Type_Declaration
(T
, N
, Prev
);
2687 -- If declaration has a parse error, nothing to elaborate.
2693 raise Program_Error
;
2698 if Etype
(T
) = Any_Type
then
2702 -- Controlled type is not allowed in SPARK
2704 if Is_Visibly_Controlled
(T
) then
2705 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
2708 -- A type declared within a Ghost region is automatically Ghost
2709 -- (SPARK RM 6.9(2)).
2711 if Comes_From_Source
(T
) and then Ghost_Mode
> None
then
2712 Set_Is_Ghost_Entity
(T
);
2715 -- Some common processing for all types
2717 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2718 Check_Ops_From_Incomplete_Type
;
2720 -- Both the declared entity, and its anonymous base type if one was
2721 -- created, need freeze nodes allocated.
2724 B
: constant Entity_Id
:= Base_Type
(T
);
2727 -- In the case where the base type differs from the first subtype, we
2728 -- pre-allocate a freeze node, and set the proper link to the first
2729 -- subtype. Freeze_Entity will use this preallocated freeze node when
2730 -- it freezes the entity.
2732 -- This does not apply if the base type is a generic type, whose
2733 -- declaration is independent of the current derived definition.
2735 if B
/= T
and then not Is_Generic_Type
(B
) then
2736 Ensure_Freeze_Node
(B
);
2737 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2740 -- A type that is imported through a limited_with clause cannot
2741 -- generate any code, and thus need not be frozen. However, an access
2742 -- type with an imported designated type needs a finalization list,
2743 -- which may be referenced in some other package that has non-limited
2744 -- visibility on the designated type. Thus we must create the
2745 -- finalization list at the point the access type is frozen, to
2746 -- prevent unsatisfied references at link time.
2748 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
2749 Set_Has_Delayed_Freeze
(T
);
2753 -- Case where T is the full declaration of some private type which has
2754 -- been swapped in Defining_Identifier (N).
2756 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2757 Process_Full_View
(N
, T
, Def_Id
);
2759 -- Record the reference. The form of this is a little strange, since
2760 -- the full declaration has been swapped in. So the first parameter
2761 -- here represents the entity to which a reference is made which is
2762 -- the "real" entity, i.e. the one swapped in, and the second
2763 -- parameter provides the reference location.
2765 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2766 -- since we don't want a complaint about the full type being an
2767 -- unwanted reference to the private type
2770 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2772 Set_Has_Pragma_Unreferenced
(T
, False);
2773 Generate_Reference
(T
, T
, 'c');
2774 Set_Has_Pragma_Unreferenced
(T
, B
);
2777 Set_Completion_Referenced
(Def_Id
);
2779 -- For completion of incomplete type, process incomplete dependents
2780 -- and always mark the full type as referenced (it is the incomplete
2781 -- type that we get for any real reference).
2783 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2784 Process_Incomplete_Dependents
(N
, T
, Prev
);
2785 Generate_Reference
(Prev
, Def_Id
, 'c');
2786 Set_Completion_Referenced
(Def_Id
);
2788 -- If not private type or incomplete type completion, this is a real
2789 -- definition of a new entity, so record it.
2792 Generate_Definition
(Def_Id
);
2795 -- Propagate any pending access types whose finalization masters need to
2796 -- be fully initialized from the partial to the full view. Guard against
2797 -- an illegal full view that remains unanalyzed.
2799 if Is_Type
(Def_Id
) and then Is_Incomplete_Or_Private_Type
(Prev
) then
2800 Set_Pending_Access_Types
(Def_Id
, Pending_Access_Types
(Prev
));
2803 if Chars
(Scope
(Def_Id
)) = Name_System
2804 and then Chars
(Def_Id
) = Name_Address
2805 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2807 Set_Is_Descendent_Of_Address
(Def_Id
);
2808 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2809 Set_Is_Descendent_Of_Address
(Prev
);
2812 Set_Optimize_Alignment_Flags
(Def_Id
);
2813 Check_Eliminated
(Def_Id
);
2815 -- If the declaration is a completion and aspects are present, apply
2816 -- them to the entity for the type which is currently the partial
2817 -- view, but which is the one that will be frozen.
2819 if Has_Aspects
(N
) then
2821 -- In most cases the partial view is a private type, and both views
2822 -- appear in different declarative parts. In the unusual case where
2823 -- the partial view is incomplete, perform the analysis on the
2824 -- full view, to prevent freezing anomalies with the corresponding
2825 -- class-wide type, which otherwise might be frozen before the
2826 -- dispatch table is built.
2829 and then Ekind
(Prev
) /= E_Incomplete_Type
2831 Analyze_Aspect_Specifications
(N
, Prev
);
2836 Analyze_Aspect_Specifications
(N
, Def_Id
);
2839 end Analyze_Full_Type_Declaration
;
2841 ----------------------------------
2842 -- Analyze_Incomplete_Type_Decl --
2843 ----------------------------------
2845 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2846 F
: constant Boolean := Is_Pure
(Current_Scope
);
2850 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
2852 Generate_Definition
(Defining_Identifier
(N
));
2854 -- Process an incomplete declaration. The identifier must not have been
2855 -- declared already in the scope. However, an incomplete declaration may
2856 -- appear in the private part of a package, for a private type that has
2857 -- already been declared.
2859 -- In this case, the discriminants (if any) must match
2861 T
:= Find_Type_Name
(N
);
2863 Set_Ekind
(T
, E_Incomplete_Type
);
2864 Init_Size_Align
(T
);
2865 Set_Is_First_Subtype
(T
, True);
2868 -- An incomplete type declared within a Ghost region is automatically
2869 -- Ghost (SPARK RM 6.9(2)).
2871 if Ghost_Mode
> None
then
2872 Set_Is_Ghost_Entity
(T
);
2875 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2876 -- incomplete types.
2878 if Tagged_Present
(N
) then
2879 Set_Is_Tagged_Type
(T
, True);
2880 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2881 Make_Class_Wide_Type
(T
);
2882 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2887 Set_Stored_Constraint
(T
, No_Elist
);
2889 if Present
(Discriminant_Specifications
(N
)) then
2890 Process_Discriminants
(N
);
2895 -- If the type has discriminants, non-trivial subtypes may be
2896 -- declared before the full view of the type. The full views of those
2897 -- subtypes will be built after the full view of the type.
2899 Set_Private_Dependents
(T
, New_Elmt_List
);
2901 end Analyze_Incomplete_Type_Decl
;
2903 -----------------------------------
2904 -- Analyze_Interface_Declaration --
2905 -----------------------------------
2907 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2908 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2911 Set_Is_Tagged_Type
(T
);
2912 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2914 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2915 or else Task_Present
(Def
)
2916 or else Protected_Present
(Def
)
2917 or else Synchronized_Present
(Def
));
2919 -- Type is abstract if full declaration carries keyword, or if previous
2920 -- partial view did.
2922 Set_Is_Abstract_Type
(T
);
2923 Set_Is_Interface
(T
);
2925 -- Type is a limited interface if it includes the keyword limited, task,
2926 -- protected, or synchronized.
2928 Set_Is_Limited_Interface
2929 (T
, Limited_Present
(Def
)
2930 or else Protected_Present
(Def
)
2931 or else Synchronized_Present
(Def
)
2932 or else Task_Present
(Def
));
2934 Set_Interfaces
(T
, New_Elmt_List
);
2935 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2937 -- Complete the decoration of the class-wide entity if it was already
2938 -- built (i.e. during the creation of the limited view)
2940 if Present
(CW
) then
2941 Set_Is_Interface
(CW
);
2942 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2945 -- Check runtime support for synchronized interfaces
2947 if VM_Target
= No_VM
2948 and then (Is_Task_Interface
(T
)
2949 or else Is_Protected_Interface
(T
)
2950 or else Is_Synchronized_Interface
(T
))
2951 and then not RTE_Available
(RE_Select_Specific_Data
)
2953 Error_Msg_CRT
("synchronized interfaces", T
);
2955 end Analyze_Interface_Declaration
;
2957 -----------------------------
2958 -- Analyze_Itype_Reference --
2959 -----------------------------
2961 -- Nothing to do. This node is placed in the tree only for the benefit of
2962 -- back end processing, and has no effect on the semantic processing.
2964 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2966 pragma Assert
(Is_Itype
(Itype
(N
)));
2968 end Analyze_Itype_Reference
;
2970 --------------------------------
2971 -- Analyze_Number_Declaration --
2972 --------------------------------
2974 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2975 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2976 E
: constant Node_Id
:= Expression
(N
);
2978 Index
: Interp_Index
;
2982 -- The number declaration may be subject to pragma Ghost with policy
2983 -- Ignore. Set the mode now to ensure that any nodes generated during
2984 -- analysis and expansion are properly flagged as ignored Ghost.
2988 Generate_Definition
(Id
);
2991 -- A number declared within a Ghost region is automatically Ghost
2992 -- (SPARK RM 6.9(2)).
2994 if Ghost_Mode
> None
then
2995 Set_Is_Ghost_Entity
(Id
);
2998 -- This is an optimization of a common case of an integer literal
3000 if Nkind
(E
) = N_Integer_Literal
then
3001 Set_Is_Static_Expression
(E
, True);
3002 Set_Etype
(E
, Universal_Integer
);
3004 Set_Etype
(Id
, Universal_Integer
);
3005 Set_Ekind
(Id
, E_Named_Integer
);
3006 Set_Is_Frozen
(Id
, True);
3010 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3012 -- Process expression, replacing error by integer zero, to avoid
3013 -- cascaded errors or aborts further along in the processing
3015 -- Replace Error by integer zero, which seems least likely to cause
3019 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
3020 Set_Error_Posted
(E
);
3025 -- Verify that the expression is static and numeric. If
3026 -- the expression is overloaded, we apply the preference
3027 -- rule that favors root numeric types.
3029 if not Is_Overloaded
(E
) then
3031 if Has_Dynamic_Predicate_Aspect
(T
) then
3033 ("subtype has dynamic predicate, "
3034 & "not allowed in number declaration", N
);
3040 Get_First_Interp
(E
, Index
, It
);
3041 while Present
(It
.Typ
) loop
3042 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3043 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3045 if T
= Any_Type
then
3048 elsif It
.Typ
= Universal_Real
3050 It
.Typ
= Universal_Integer
3052 -- Choose universal interpretation over any other
3059 Get_Next_Interp
(Index
, It
);
3063 if Is_Integer_Type
(T
) then
3065 Set_Etype
(Id
, Universal_Integer
);
3066 Set_Ekind
(Id
, E_Named_Integer
);
3068 elsif Is_Real_Type
(T
) then
3070 -- Because the real value is converted to universal_real, this is a
3071 -- legal context for a universal fixed expression.
3073 if T
= Universal_Fixed
then
3075 Loc
: constant Source_Ptr
:= Sloc
(N
);
3076 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3078 New_Occurrence_Of
(Universal_Real
, Loc
),
3079 Expression
=> Relocate_Node
(E
));
3086 elsif T
= Any_Fixed
then
3087 Error_Msg_N
("illegal context for mixed mode operation", E
);
3089 -- Expression is of the form : universal_fixed * integer. Try to
3090 -- resolve as universal_real.
3092 T
:= Universal_Real
;
3097 Set_Etype
(Id
, Universal_Real
);
3098 Set_Ekind
(Id
, E_Named_Real
);
3101 Wrong_Type
(E
, Any_Numeric
);
3105 Set_Ekind
(Id
, E_Constant
);
3106 Set_Never_Set_In_Source
(Id
, True);
3107 Set_Is_True_Constant
(Id
, True);
3111 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3112 Set_Etype
(E
, Etype
(Id
));
3115 if not Is_OK_Static_Expression
(E
) then
3116 Flag_Non_Static_Expr
3117 ("non-static expression used in number declaration!", E
);
3118 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3119 Set_Etype
(E
, Any_Type
);
3121 end Analyze_Number_Declaration
;
3123 -----------------------------
3124 -- Analyze_Object_Contract --
3125 -----------------------------
3127 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
) is
3128 Obj_Typ
: constant Entity_Id
:= Etype
(Obj_Id
);
3129 AR_Val
: Boolean := False;
3130 AW_Val
: Boolean := False;
3131 ER_Val
: Boolean := False;
3132 EW_Val
: Boolean := False;
3134 Seen
: Boolean := False;
3137 -- The loop parameter in an element iterator over a formal container
3138 -- is declared with an object declaration but no contracts apply.
3140 if Ekind
(Obj_Id
) = E_Loop_Parameter
then
3144 if Ekind
(Obj_Id
) = E_Constant
then
3146 -- A constant cannot be effectively volatile. This check is only
3147 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3148 -- rule. Do not flag internally-generated constants that map generic
3149 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3152 and then Is_Effectively_Volatile
(Obj_Id
)
3153 and then No
(Corresponding_Generic_Association
(Parent
(Obj_Id
)))
3155 Error_Msg_N
("constant cannot be volatile", Obj_Id
);
3158 else pragma Assert
(Ekind
(Obj_Id
) = E_Variable
);
3160 -- The following checks are only relevant when SPARK_Mode is on as
3161 -- they are not standard Ada legality rules. Internally generated
3162 -- temporaries are ignored.
3164 if SPARK_Mode
= On
and then Comes_From_Source
(Obj_Id
) then
3165 if Is_Effectively_Volatile
(Obj_Id
) then
3167 -- The declaration of an effectively volatile object must
3168 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3170 if not Is_Library_Level_Entity
(Obj_Id
) then
3172 ("volatile variable & must be declared at library level",
3175 -- An object of a discriminated type cannot be effectively
3176 -- volatile (SPARK RM C.6(4)).
3178 elsif Has_Discriminants
(Obj_Typ
) then
3180 ("discriminated object & cannot be volatile", Obj_Id
);
3182 -- An object of a tagged type cannot be effectively volatile
3183 -- (SPARK RM C.6(5)).
3185 elsif Is_Tagged_Type
(Obj_Typ
) then
3186 Error_Msg_N
("tagged object & cannot be volatile", Obj_Id
);
3189 -- The object is not effectively volatile
3192 -- A non-effectively volatile object cannot have effectively
3193 -- volatile components (SPARK RM 7.1.3(7)).
3195 if not Is_Effectively_Volatile
(Obj_Id
)
3196 and then Has_Volatile_Component
(Obj_Typ
)
3199 ("non-volatile object & cannot have volatile components",
3205 if Is_Ghost_Entity
(Obj_Id
) then
3207 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3209 if Is_Effectively_Volatile
(Obj_Id
) then
3210 Error_Msg_N
("ghost variable & cannot be volatile", Obj_Id
);
3212 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3214 elsif Is_Imported
(Obj_Id
) then
3215 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3217 elsif Is_Exported
(Obj_Id
) then
3218 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3222 -- Analyze all external properties
3224 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Readers
);
3226 if Present
(Prag
) then
3227 Analyze_External_Property_In_Decl_Part
(Prag
, AR_Val
);
3231 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Writers
);
3233 if Present
(Prag
) then
3234 Analyze_External_Property_In_Decl_Part
(Prag
, AW_Val
);
3238 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Reads
);
3240 if Present
(Prag
) then
3241 Analyze_External_Property_In_Decl_Part
(Prag
, ER_Val
);
3245 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Writes
);
3247 if Present
(Prag
) then
3248 Analyze_External_Property_In_Decl_Part
(Prag
, EW_Val
);
3252 -- Verify the mutual interaction of the various external properties
3255 Check_External_Properties
(Obj_Id
, AR_Val
, AW_Val
, ER_Val
, EW_Val
);
3258 -- Check whether the lack of indicator Part_Of agrees with the
3259 -- placement of the variable with respect to the state space.
3261 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Part_Of
);
3264 Check_Missing_Part_Of
(Obj_Id
);
3268 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3270 if Is_Ghost_Entity
(Obj_Id
) then
3271 if Is_Exported
(Obj_Id
) then
3272 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3274 elsif Is_Imported
(Obj_Id
) then
3275 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3278 end Analyze_Object_Contract
;
3280 --------------------------------
3281 -- Analyze_Object_Declaration --
3282 --------------------------------
3284 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3285 Loc
: constant Source_Ptr
:= Sloc
(N
);
3286 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3290 E
: Node_Id
:= Expression
(N
);
3291 -- E is set to Expression (N) throughout this routine. When
3292 -- Expression (N) is modified, E is changed accordingly.
3294 Prev_Entity
: Entity_Id
:= Empty
;
3296 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3297 -- This function is called when a non-generic library level object of a
3298 -- task type is declared. Its function is to count the static number of
3299 -- tasks declared within the type (it is only called if Has_Tasks is set
3300 -- for T). As a side effect, if an array of tasks with non-static bounds
3301 -- or a variant record type is encountered, Check_Restrictions is called
3302 -- indicating the count is unknown.
3308 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3314 if Is_Task_Type
(T
) then
3317 elsif Is_Record_Type
(T
) then
3318 if Has_Discriminants
(T
) then
3319 Check_Restriction
(Max_Tasks
, N
);
3324 C
:= First_Component
(T
);
3325 while Present
(C
) loop
3326 V
:= V
+ Count_Tasks
(Etype
(C
));
3333 elsif Is_Array_Type
(T
) then
3334 X
:= First_Index
(T
);
3335 V
:= Count_Tasks
(Component_Type
(T
));
3336 while Present
(X
) loop
3339 if not Is_OK_Static_Subtype
(C
) then
3340 Check_Restriction
(Max_Tasks
, N
);
3343 V
:= V
* (UI_Max
(Uint_0
,
3344 Expr_Value
(Type_High_Bound
(C
)) -
3345 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3358 -- Start of processing for Analyze_Object_Declaration
3361 -- There are three kinds of implicit types generated by an
3362 -- object declaration:
3364 -- 1. Those generated by the original Object Definition
3366 -- 2. Those generated by the Expression
3368 -- 3. Those used to constrain the Object Definition with the
3369 -- expression constraints when the definition is unconstrained.
3371 -- They must be generated in this order to avoid order of elaboration
3372 -- issues. Thus the first step (after entering the name) is to analyze
3373 -- the object definition.
3375 if Constant_Present
(N
) then
3376 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3378 if Present
(Prev_Entity
)
3380 -- If the homograph is an implicit subprogram, it is overridden
3381 -- by the current declaration.
3383 ((Is_Overloadable
(Prev_Entity
)
3384 and then Is_Inherited_Operation
(Prev_Entity
))
3386 -- The current object is a discriminal generated for an entry
3387 -- family index. Even though the index is a constant, in this
3388 -- particular context there is no true constant redeclaration.
3389 -- Enter_Name will handle the visibility.
3392 (Is_Discriminal
(Id
)
3393 and then Ekind
(Discriminal_Link
(Id
)) =
3394 E_Entry_Index_Parameter
)
3396 -- The current object is the renaming for a generic declared
3397 -- within the instance.
3400 (Ekind
(Prev_Entity
) = E_Package
3401 and then Nkind
(Parent
(Prev_Entity
)) =
3402 N_Package_Renaming_Declaration
3403 and then not Comes_From_Source
(Prev_Entity
)
3405 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
3407 Prev_Entity
:= Empty
;
3411 -- The object declaration may be subject to pragma Ghost with policy
3412 -- Ignore. Set the mode now to ensure that any nodes generated during
3413 -- analysis and expansion are properly flagged as ignored Ghost.
3415 Set_Ghost_Mode
(N
, Prev_Entity
);
3417 if Present
(Prev_Entity
) then
3418 Constant_Redeclaration
(Id
, N
, T
);
3420 Generate_Reference
(Prev_Entity
, Id
, 'c');
3421 Set_Completion_Referenced
(Id
);
3423 if Error_Posted
(N
) then
3425 -- Type mismatch or illegal redeclaration, Do not analyze
3426 -- expression to avoid cascaded errors.
3428 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3430 Set_Ekind
(Id
, E_Variable
);
3434 -- In the normal case, enter identifier at the start to catch premature
3435 -- usage in the initialization expression.
3438 Generate_Definition
(Id
);
3441 Mark_Coextensions
(N
, Object_Definition
(N
));
3443 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3445 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
3447 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3448 and then Protected_Present
3449 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3451 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
3454 if Error_Posted
(Id
) then
3456 Set_Ekind
(Id
, E_Variable
);
3461 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3462 -- out some static checks
3464 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
3466 -- In case of aggregates we must also take care of the correct
3467 -- initialization of nested aggregates bug this is done at the
3468 -- point of the analysis of the aggregate (see sem_aggr.adb).
3470 if Present
(Expression
(N
))
3471 and then Nkind
(Expression
(N
)) = N_Aggregate
3477 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
3479 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
3480 Null_Exclusion_Static_Checks
(N
);
3481 Set_Etype
(Id
, Save_Typ
);
3486 -- Object is marked pure if it is in a pure scope
3488 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3490 -- If deferred constant, make sure context is appropriate. We detect
3491 -- a deferred constant as a constant declaration with no expression.
3492 -- A deferred constant can appear in a package body if its completion
3493 -- is by means of an interface pragma.
3495 if Constant_Present
(N
) and then No
(E
) then
3497 -- A deferred constant may appear in the declarative part of the
3498 -- following constructs:
3502 -- extended return statements
3505 -- subprogram bodies
3508 -- When declared inside a package spec, a deferred constant must be
3509 -- completed by a full constant declaration or pragma Import. In all
3510 -- other cases, the only proper completion is pragma Import. Extended
3511 -- return statements are flagged as invalid contexts because they do
3512 -- not have a declarative part and so cannot accommodate the pragma.
3514 if Ekind
(Current_Scope
) = E_Return_Statement
then
3516 ("invalid context for deferred constant declaration (RM 7.4)",
3519 ("\declaration requires an initialization expression",
3521 Set_Constant_Present
(N
, False);
3523 -- In Ada 83, deferred constant must be of private type
3525 elsif not Is_Private_Type
(T
) then
3526 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3528 ("(Ada 83) deferred constant must be private type", N
);
3532 -- If not a deferred constant, then the object declaration freezes
3533 -- its type, unless the object is of an anonymous type and has delayed
3534 -- aspects. In that case the type is frozen when the object itself is.
3537 Check_Fully_Declared
(T
, N
);
3539 if Has_Delayed_Aspects
(Id
)
3540 and then Is_Array_Type
(T
)
3541 and then Is_Itype
(T
)
3543 Set_Has_Delayed_Freeze
(T
);
3545 Freeze_Before
(N
, T
);
3549 -- If the object was created by a constrained array definition, then
3550 -- set the link in both the anonymous base type and anonymous subtype
3551 -- that are built to represent the array type to point to the object.
3553 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3554 N_Constrained_Array_Definition
3556 Set_Related_Array_Object
(T
, Id
);
3557 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3560 -- Special checks for protected objects not at library level
3562 if Is_Protected_Type
(T
)
3563 and then not Is_Library_Level_Entity
(Id
)
3565 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3567 -- Protected objects with interrupt handlers must be at library level
3569 -- Ada 2005: This test is not needed (and the corresponding clause
3570 -- in the RM is removed) because accessibility checks are sufficient
3571 -- to make handlers not at the library level illegal.
3573 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3574 -- applies to the '95 version of the language as well.
3576 if Has_Interrupt_Handler
(T
) and then Ada_Version
< Ada_95
then
3578 ("interrupt object can only be declared at library level", Id
);
3582 -- The actual subtype of the object is the nominal subtype, unless
3583 -- the nominal one is unconstrained and obtained from the expression.
3587 -- These checks should be performed before the initialization expression
3588 -- is considered, so that the Object_Definition node is still the same
3589 -- as in source code.
3591 -- In SPARK, the nominal subtype is always given by a subtype mark
3592 -- and must not be unconstrained. (The only exception to this is the
3593 -- acceptance of declarations of constants of type String.)
3595 if not Nkind_In
(Object_Definition
(N
), N_Expanded_Name
, N_Identifier
)
3597 Check_SPARK_05_Restriction
3598 ("subtype mark required", Object_Definition
(N
));
3600 elsif Is_Array_Type
(T
)
3601 and then not Is_Constrained
(T
)
3602 and then T
/= Standard_String
3604 Check_SPARK_05_Restriction
3605 ("subtype mark of constrained type expected",
3606 Object_Definition
(N
));
3609 -- There are no aliased objects in SPARK
3611 if Aliased_Present
(N
) then
3612 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
3615 -- Process initialization expression if present and not in error
3617 if Present
(E
) and then E
/= Error
then
3619 -- Generate an error in case of CPP class-wide object initialization.
3620 -- Required because otherwise the expansion of the class-wide
3621 -- assignment would try to use 'size to initialize the object
3622 -- (primitive that is not available in CPP tagged types).
3624 if Is_Class_Wide_Type
(Act_T
)
3626 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3628 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3630 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3633 ("predefined assignment not available for 'C'P'P tagged types",
3637 Mark_Coextensions
(N
, E
);
3640 -- In case of errors detected in the analysis of the expression,
3641 -- decorate it with the expected type to avoid cascaded errors
3643 if No
(Etype
(E
)) then
3647 -- If an initialization expression is present, then we set the
3648 -- Is_True_Constant flag. It will be reset if this is a variable
3649 -- and it is indeed modified.
3651 Set_Is_True_Constant
(Id
, True);
3653 -- If we are analyzing a constant declaration, set its completion
3654 -- flag after analyzing and resolving the expression.
3656 if Constant_Present
(N
) then
3657 Set_Has_Completion
(Id
);
3660 -- Set type and resolve (type may be overridden later on). Note:
3661 -- Ekind (Id) must still be E_Void at this point so that incorrect
3662 -- early usage within E is properly diagnosed.
3666 -- If the expression is an aggregate we must look ahead to detect
3667 -- the possible presence of an address clause, and defer resolution
3668 -- and expansion of the aggregate to the freeze point of the entity.
3670 if Comes_From_Source
(N
)
3671 and then Expander_Active
3672 and then Nkind
(E
) = N_Aggregate
3673 and then Present
(Following_Address_Clause
(N
))
3681 -- No further action needed if E is a call to an inlined function
3682 -- which returns an unconstrained type and it has been expanded into
3683 -- a procedure call. In that case N has been replaced by an object
3684 -- declaration without initializing expression and it has been
3685 -- analyzed (see Expand_Inlined_Call).
3687 if Back_End_Inlining
3688 and then Expander_Active
3689 and then Nkind
(E
) = N_Function_Call
3690 and then Nkind
(Name
(E
)) in N_Has_Entity
3691 and then Is_Inlined
(Entity
(Name
(E
)))
3692 and then not Is_Constrained
(Etype
(E
))
3693 and then Analyzed
(N
)
3694 and then No
(Expression
(N
))
3699 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3700 -- node (which was marked already-analyzed), we need to set the type
3701 -- to something other than Any_Access in order to keep gigi happy.
3703 if Etype
(E
) = Any_Access
then
3707 -- If the object is an access to variable, the initialization
3708 -- expression cannot be an access to constant.
3710 if Is_Access_Type
(T
)
3711 and then not Is_Access_Constant
(T
)
3712 and then Is_Access_Type
(Etype
(E
))
3713 and then Is_Access_Constant
(Etype
(E
))
3716 ("access to variable cannot be initialized with an "
3717 & "access-to-constant expression", E
);
3720 if not Assignment_OK
(N
) then
3721 Check_Initialization
(T
, E
);
3724 Check_Unset_Reference
(E
);
3726 -- If this is a variable, then set current value. If this is a
3727 -- declared constant of a scalar type with a static expression,
3728 -- indicate that it is always valid.
3730 if not Constant_Present
(N
) then
3731 if Compile_Time_Known_Value
(E
) then
3732 Set_Current_Value
(Id
, E
);
3735 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
3736 Set_Is_Known_Valid
(Id
);
3739 -- Deal with setting of null flags
3741 if Is_Access_Type
(T
) then
3742 if Known_Non_Null
(E
) then
3743 Set_Is_Known_Non_Null
(Id
, True);
3744 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
3745 Set_Is_Known_Null
(Id
, True);
3749 -- Check incorrect use of dynamically tagged expressions
3751 if Is_Tagged_Type
(T
) then
3752 Check_Dynamically_Tagged_Expression
3758 Apply_Scalar_Range_Check
(E
, T
);
3759 Apply_Static_Length_Check
(E
, T
);
3761 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3762 and then Comes_From_Source
(Original_Node
(N
))
3764 -- Only call test if needed
3766 and then Restriction_Check_Required
(SPARK_05
)
3767 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
3769 Check_SPARK_05_Restriction
3770 ("initialization expression is not appropriate", E
);
3773 -- A formal parameter of a specific tagged type whose related
3774 -- subprogram is subject to pragma Extensions_Visible with value
3775 -- "False" cannot be implicitly converted to a class-wide type by
3776 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3778 if Is_Class_Wide_Type
(T
) and then Is_EVF_Expression
(E
) then
3780 ("formal parameter with Extensions_Visible False cannot be "
3781 & "implicitly converted to class-wide type", E
);
3785 -- If the No_Streams restriction is set, check that the type of the
3786 -- object is not, and does not contain, any subtype derived from
3787 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3788 -- Has_Stream just for efficiency reasons. There is no point in
3789 -- spending time on a Has_Stream check if the restriction is not set.
3791 if Restriction_Check_Required
(No_Streams
) then
3792 if Has_Stream
(T
) then
3793 Check_Restriction
(No_Streams
, N
);
3797 -- Deal with predicate check before we start to do major rewriting. It
3798 -- is OK to initialize and then check the initialized value, since the
3799 -- object goes out of scope if we get a predicate failure. Note that we
3800 -- do this in the analyzer and not the expander because the analyzer
3801 -- does some substantial rewriting in some cases.
3803 -- We need a predicate check if the type has predicates, and if either
3804 -- there is an initializing expression, or for default initialization
3805 -- when we have at least one case of an explicit default initial value
3806 -- and then this is not an internal declaration whose initialization
3807 -- comes later (as for an aggregate expansion).
3809 if not Suppress_Assignment_Checks
(N
)
3810 and then Present
(Predicate_Function
(T
))
3811 and then not No_Initialization
(N
)
3815 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3817 -- If the type has a static predicate and the expression is known at
3818 -- compile time, see if the expression satisfies the predicate.
3821 Check_Expression_Against_Static_Predicate
(E
, T
);
3825 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3828 -- Case of unconstrained type
3830 if Is_Indefinite_Subtype
(T
) then
3832 -- In SPARK, a declaration of unconstrained type is allowed
3833 -- only for constants of type string.
3835 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3836 Check_SPARK_05_Restriction
3837 ("declaration of object of unconstrained type not allowed", N
);
3840 -- Nothing to do in deferred constant case
3842 if Constant_Present
(N
) and then No
(E
) then
3845 -- Case of no initialization present
3848 if No_Initialization
(N
) then
3851 elsif Is_Class_Wide_Type
(T
) then
3853 ("initialization required in class-wide declaration ", N
);
3857 ("unconstrained subtype not allowed (need initialization)",
3858 Object_Definition
(N
));
3860 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3862 ("\provide initial value or explicit discriminant values",
3863 Object_Definition
(N
));
3866 ("\or give default discriminant values for type&",
3867 Object_Definition
(N
), T
);
3869 elsif Is_Array_Type
(T
) then
3871 ("\provide initial value or explicit array bounds",
3872 Object_Definition
(N
));
3876 -- Case of initialization present but in error. Set initial
3877 -- expression as absent (but do not make above complaints)
3879 elsif E
= Error
then
3880 Set_Expression
(N
, Empty
);
3883 -- Case of initialization present
3886 -- Check restrictions in Ada 83
3888 if not Constant_Present
(N
) then
3890 -- Unconstrained variables not allowed in Ada 83 mode
3892 if Ada_Version
= Ada_83
3893 and then Comes_From_Source
(Object_Definition
(N
))
3896 ("(Ada 83) unconstrained variable not allowed",
3897 Object_Definition
(N
));
3901 -- Now we constrain the variable from the initializing expression
3903 -- If the expression is an aggregate, it has been expanded into
3904 -- individual assignments. Retrieve the actual type from the
3905 -- expanded construct.
3907 if Is_Array_Type
(T
)
3908 and then No_Initialization
(N
)
3909 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3913 -- In case of class-wide interface object declarations we delay
3914 -- the generation of the equivalent record type declarations until
3915 -- its expansion because there are cases in they are not required.
3917 elsif Is_Interface
(T
) then
3920 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3921 -- we should prevent the generation of another Itype with the
3922 -- same name as the one already generated, or we end up with
3923 -- two identical types in GNATprove.
3925 elsif GNATprove_Mode
then
3928 -- If the type is an unchecked union, no subtype can be built from
3929 -- the expression. Rewrite declaration as a renaming, which the
3930 -- back-end can handle properly. This is a rather unusual case,
3931 -- because most unchecked_union declarations have default values
3932 -- for discriminants and are thus not indefinite.
3934 elsif Is_Unchecked_Union
(T
) then
3935 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
3936 Set_Ekind
(Id
, E_Constant
);
3938 Set_Ekind
(Id
, E_Variable
);
3941 -- An object declared within a Ghost region is automatically
3942 -- Ghost (SPARK RM 6.9(2)).
3944 if Comes_From_Source
(Id
) and then Ghost_Mode
> None
then
3945 Set_Is_Ghost_Entity
(Id
);
3947 -- The Ghost policy in effect at the point of declaration
3948 -- and at the point of completion must match
3949 -- (SPARK RM 6.9(15)).
3951 if Present
(Prev_Entity
)
3952 and then Is_Ghost_Entity
(Prev_Entity
)
3954 Check_Ghost_Completion
(Prev_Entity
, Id
);
3959 Make_Object_Renaming_Declaration
(Loc
,
3960 Defining_Identifier
=> Id
,
3961 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
3964 Set_Renamed_Object
(Id
, E
);
3965 Freeze_Before
(N
, T
);
3970 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
3971 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3974 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
3976 if Aliased_Present
(N
) then
3977 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3980 Freeze_Before
(N
, Act_T
);
3981 Freeze_Before
(N
, T
);
3984 elsif Is_Array_Type
(T
)
3985 and then No_Initialization
(N
)
3986 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3988 if not Is_Entity_Name
(Object_Definition
(N
)) then
3990 Check_Compile_Time_Size
(Act_T
);
3992 if Aliased_Present
(N
) then
3993 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3997 -- When the given object definition and the aggregate are specified
3998 -- independently, and their lengths might differ do a length check.
3999 -- This cannot happen if the aggregate is of the form (others =>...)
4001 if not Is_Constrained
(T
) then
4004 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
4006 -- Aggregate is statically illegal. Place back in declaration
4008 Set_Expression
(N
, E
);
4009 Set_No_Initialization
(N
, False);
4011 elsif T
= Etype
(E
) then
4014 elsif Nkind
(E
) = N_Aggregate
4015 and then Present
(Component_Associations
(E
))
4016 and then Present
(Choices
(First
(Component_Associations
(E
))))
4017 and then Nkind
(First
4018 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
4023 Apply_Length_Check
(E
, T
);
4026 -- If the type is limited unconstrained with defaulted discriminants and
4027 -- there is no expression, then the object is constrained by the
4028 -- defaults, so it is worthwhile building the corresponding subtype.
4030 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
4031 and then not Is_Constrained
(T
)
4032 and then Has_Discriminants
(T
)
4035 Act_T
:= Build_Default_Subtype
(T
, N
);
4037 -- Ada 2005: A limited object may be initialized by means of an
4038 -- aggregate. If the type has default discriminants it has an
4039 -- unconstrained nominal type, Its actual subtype will be obtained
4040 -- from the aggregate, and not from the default discriminants.
4045 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
4047 elsif Nkind
(E
) = N_Function_Call
4048 and then Constant_Present
(N
)
4049 and then Has_Unconstrained_Elements
(Etype
(E
))
4051 -- The back-end has problems with constants of a discriminated type
4052 -- with defaults, if the initial value is a function call. We
4053 -- generate an intermediate temporary that will receive a reference
4054 -- to the result of the call. The initialization expression then
4055 -- becomes a dereference of that temporary.
4057 Remove_Side_Effects
(E
);
4059 -- If this is a constant declaration of an unconstrained type and
4060 -- the initialization is an aggregate, we can use the subtype of the
4061 -- aggregate for the declared entity because it is immutable.
4063 elsif not Is_Constrained
(T
)
4064 and then Has_Discriminants
(T
)
4065 and then Constant_Present
(N
)
4066 and then not Has_Unchecked_Union
(T
)
4067 and then Nkind
(E
) = N_Aggregate
4072 -- Check No_Wide_Characters restriction
4074 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
4076 -- Indicate this is not set in source. Certainly true for constants, and
4077 -- true for variables so far (will be reset for a variable if and when
4078 -- we encounter a modification in the source).
4080 Set_Never_Set_In_Source
(Id
);
4082 -- Now establish the proper kind and type of the object
4084 if Constant_Present
(N
) then
4085 Set_Ekind
(Id
, E_Constant
);
4086 Set_Is_True_Constant
(Id
);
4089 Set_Ekind
(Id
, E_Variable
);
4091 -- A variable is set as shared passive if it appears in a shared
4092 -- passive package, and is at the outer level. This is not done for
4093 -- entities generated during expansion, because those are always
4094 -- manipulated locally.
4096 if Is_Shared_Passive
(Current_Scope
)
4097 and then Is_Library_Level_Entity
(Id
)
4098 and then Comes_From_Source
(Id
)
4100 Set_Is_Shared_Passive
(Id
);
4101 Check_Shared_Var
(Id
, T
, N
);
4104 -- Set Has_Initial_Value if initializing expression present. Note
4105 -- that if there is no initializing expression, we leave the state
4106 -- of this flag unchanged (usually it will be False, but notably in
4107 -- the case of exception choice variables, it will already be true).
4110 Set_Has_Initial_Value
(Id
);
4113 Set_Contract
(Id
, Make_Contract
(Sloc
(Id
)));
4116 -- Initialize alignment and size and capture alignment setting
4118 Init_Alignment
(Id
);
4120 Set_Optimize_Alignment_Flags
(Id
);
4122 -- An object declared within a Ghost region is automatically Ghost
4123 -- (SPARK RM 6.9(2)).
4125 if Comes_From_Source
(Id
)
4126 and then (Ghost_Mode
> None
4127 or else (Present
(Prev_Entity
)
4128 and then Is_Ghost_Entity
(Prev_Entity
)))
4130 Set_Is_Ghost_Entity
(Id
);
4132 -- The Ghost policy in effect at the point of declaration and at the
4133 -- point of completion must match (SPARK RM 6.9(16)).
4135 if Present
(Prev_Entity
) and then Is_Ghost_Entity
(Prev_Entity
) then
4136 Check_Ghost_Completion
(Prev_Entity
, Id
);
4140 -- Deal with aliased case
4142 if Aliased_Present
(N
) then
4143 Set_Is_Aliased
(Id
);
4145 -- If the object is aliased and the type is unconstrained with
4146 -- defaulted discriminants and there is no expression, then the
4147 -- object is constrained by the defaults, so it is worthwhile
4148 -- building the corresponding subtype.
4150 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4151 -- unconstrained, then only establish an actual subtype if the
4152 -- nominal subtype is indefinite. In definite cases the object is
4153 -- unconstrained in Ada 2005.
4156 and then Is_Record_Type
(T
)
4157 and then not Is_Constrained
(T
)
4158 and then Has_Discriminants
(T
)
4159 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
4161 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4165 -- Now we can set the type of the object
4167 Set_Etype
(Id
, Act_T
);
4169 -- Non-constant object is marked to be treated as volatile if type is
4170 -- volatile and we clear the Current_Value setting that may have been
4171 -- set above. Doing so for constants isn't required and might interfere
4172 -- with possible uses of the object as a static expression in contexts
4173 -- incompatible with volatility (e.g. as a case-statement alternative).
4175 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4176 Set_Treat_As_Volatile
(Id
);
4177 Set_Current_Value
(Id
, Empty
);
4180 -- Deal with controlled types
4182 if Has_Controlled_Component
(Etype
(Id
))
4183 or else Is_Controlled
(Etype
(Id
))
4185 if not Is_Library_Level_Entity
(Id
) then
4186 Check_Restriction
(No_Nested_Finalization
, N
);
4188 Validate_Controlled_Object
(Id
);
4192 if Has_Task
(Etype
(Id
)) then
4193 Check_Restriction
(No_Tasking
, N
);
4195 -- Deal with counting max tasks
4197 -- Nothing to do if inside a generic
4199 if Inside_A_Generic
then
4202 -- If library level entity, then count tasks
4204 elsif Is_Library_Level_Entity
(Id
) then
4205 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4207 -- If not library level entity, then indicate we don't know max
4208 -- tasks and also check task hierarchy restriction and blocking
4209 -- operation (since starting a task is definitely blocking).
4212 Check_Restriction
(Max_Tasks
, N
);
4213 Check_Restriction
(No_Task_Hierarchy
, N
);
4214 Check_Potentially_Blocking_Operation
(N
);
4217 -- A rather specialized test. If we see two tasks being declared
4218 -- of the same type in the same object declaration, and the task
4219 -- has an entry with an address clause, we know that program error
4220 -- will be raised at run time since we can't have two tasks with
4221 -- entries at the same address.
4223 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4228 E
:= First_Entity
(Etype
(Id
));
4229 while Present
(E
) loop
4230 if Ekind
(E
) = E_Entry
4231 and then Present
(Get_Attribute_Definition_Clause
4232 (E
, Attribute_Address
))
4234 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4236 ("more than one task with same entry address<<", N
);
4237 Error_Msg_N
("\Program_Error [<<", N
);
4239 Make_Raise_Program_Error
(Loc
,
4240 Reason
=> PE_Duplicated_Entry_Address
));
4250 -- Some simple constant-propagation: if the expression is a constant
4251 -- string initialized with a literal, share the literal. This avoids
4255 and then Is_Entity_Name
(E
)
4256 and then Ekind
(Entity
(E
)) = E_Constant
4257 and then Base_Type
(Etype
(E
)) = Standard_String
4260 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4262 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4263 Rewrite
(E
, New_Copy
(Val
));
4268 -- Another optimization: if the nominal subtype is unconstrained and
4269 -- the expression is a function call that returns an unconstrained
4270 -- type, rewrite the declaration as a renaming of the result of the
4271 -- call. The exceptions below are cases where the copy is expected,
4272 -- either by the back end (Aliased case) or by the semantics, as for
4273 -- initializing controlled types or copying tags for classwide types.
4276 and then Nkind
(E
) = N_Explicit_Dereference
4277 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4278 and then not Is_Library_Level_Entity
(Id
)
4279 and then not Is_Constrained
(Underlying_Type
(T
))
4280 and then not Is_Aliased
(Id
)
4281 and then not Is_Class_Wide_Type
(T
)
4282 and then not Is_Controlled
(T
)
4283 and then not Has_Controlled_Component
(Base_Type
(T
))
4284 and then Expander_Active
4287 Make_Object_Renaming_Declaration
(Loc
,
4288 Defining_Identifier
=> Id
,
4289 Access_Definition
=> Empty
,
4290 Subtype_Mark
=> New_Occurrence_Of
4291 (Base_Type
(Etype
(Id
)), Loc
),
4294 Set_Renamed_Object
(Id
, E
);
4296 -- Force generation of debugging information for the constant and for
4297 -- the renamed function call.
4299 Set_Debug_Info_Needed
(Id
);
4300 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4303 if Present
(Prev_Entity
)
4304 and then Is_Frozen
(Prev_Entity
)
4305 and then not Error_Posted
(Id
)
4307 Error_Msg_N
("full constant declaration appears too late", N
);
4310 Check_Eliminated
(Id
);
4312 -- Deal with setting In_Private_Part flag if in private part
4314 if Ekind
(Scope
(Id
)) = E_Package
and then In_Private_Part
(Scope
(Id
))
4316 Set_In_Private_Part
(Id
);
4319 -- Check for violation of No_Local_Timing_Events
4321 if Restriction_Check_Required
(No_Local_Timing_Events
)
4322 and then not Is_Library_Level_Entity
(Id
)
4323 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
4325 Check_Restriction
(No_Local_Timing_Events
, N
);
4329 -- Initialize the refined state of a variable here because this is a
4330 -- common destination for legal and illegal object declarations.
4332 if Ekind
(Id
) = E_Variable
then
4333 Set_Encapsulating_State
(Id
, Empty
);
4336 if Has_Aspects
(N
) then
4337 Analyze_Aspect_Specifications
(N
, Id
);
4340 Analyze_Dimension
(N
);
4342 -- Verify whether the object declaration introduces an illegal hidden
4343 -- state within a package subject to a null abstract state.
4345 if Ekind
(Id
) = E_Variable
then
4346 Check_No_Hidden_State
(Id
);
4348 end Analyze_Object_Declaration
;
4350 ---------------------------
4351 -- Analyze_Others_Choice --
4352 ---------------------------
4354 -- Nothing to do for the others choice node itself, the semantic analysis
4355 -- of the others choice will occur as part of the processing of the parent
4357 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4358 pragma Warnings
(Off
, N
);
4361 end Analyze_Others_Choice
;
4363 -------------------------------------------
4364 -- Analyze_Private_Extension_Declaration --
4365 -------------------------------------------
4367 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4368 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4369 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4370 Parent_Type
: Entity_Id
;
4371 Parent_Base
: Entity_Id
;
4374 -- The private extension declaration may be subject to pragma Ghost with
4375 -- policy Ignore. Set the mode now to ensure that any nodes generated
4376 -- during analysis and expansion are properly flagged as ignored Ghost.
4380 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4382 if Is_Non_Empty_List
(Interface_List
(N
)) then
4388 Intf
:= First
(Interface_List
(N
));
4389 while Present
(Intf
) loop
4390 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4392 Diagnose_Interface
(Intf
, T
);
4398 Generate_Definition
(T
);
4400 -- For other than Ada 2012, just enter the name in the current scope
4402 if Ada_Version
< Ada_2012
then
4405 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4406 -- case of private type that completes an incomplete type.
4413 Prev
:= Find_Type_Name
(N
);
4415 pragma Assert
(Prev
= T
4416 or else (Ekind
(Prev
) = E_Incomplete_Type
4417 and then Present
(Full_View
(Prev
))
4418 and then Full_View
(Prev
) = T
));
4422 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
4423 Parent_Base
:= Base_Type
(Parent_Type
);
4425 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
4426 Set_Ekind
(T
, Ekind
(Parent_Type
));
4427 Set_Etype
(T
, Any_Type
);
4430 elsif not Is_Tagged_Type
(Parent_Type
) then
4432 ("parent of type extension must be a tagged type ", Indic
);
4435 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
4436 Error_Msg_N
("premature derivation of incomplete type", Indic
);
4439 elsif Is_Concurrent_Type
(Parent_Type
) then
4441 ("parent type of a private extension cannot be "
4442 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
4444 Set_Etype
(T
, Any_Type
);
4445 Set_Ekind
(T
, E_Limited_Private_Type
);
4446 Set_Private_Dependents
(T
, New_Elmt_List
);
4447 Set_Error_Posted
(T
);
4451 -- Perhaps the parent type should be changed to the class-wide type's
4452 -- specific type in this case to prevent cascading errors ???
4454 if Is_Class_Wide_Type
(Parent_Type
) then
4456 ("parent of type extension must not be a class-wide type", Indic
);
4460 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
4461 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
4462 or else In_Private_Part
(Current_Scope
)
4465 Error_Msg_N
("invalid context for private extension", N
);
4468 -- Set common attributes
4470 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
4471 Set_Scope
(T
, Current_Scope
);
4472 Set_Ekind
(T
, E_Record_Type_With_Private
);
4473 Init_Size_Align
(T
);
4474 Set_Default_SSO
(T
);
4476 Set_Etype
(T
, Parent_Base
);
4477 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
4478 Set_Has_Protected
(T
, Has_Task
(Parent_Base
));
4480 Set_Convention
(T
, Convention
(Parent_Type
));
4481 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
4482 Set_Is_First_Subtype
(T
);
4483 Make_Class_Wide_Type
(T
);
4485 if Unknown_Discriminants_Present
(N
) then
4486 Set_Discriminant_Constraint
(T
, No_Elist
);
4489 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
4491 -- Propagate inherited invariant information. The new type has
4492 -- invariants, if the parent type has inheritable invariants,
4493 -- and these invariants can in turn be inherited.
4495 if Has_Inheritable_Invariants
(Parent_Type
) then
4496 Set_Has_Inheritable_Invariants
(T
);
4497 Set_Has_Invariants
(T
);
4500 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4501 -- synchronized formal derived type.
4503 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
4504 Set_Is_Limited_Record
(T
);
4506 -- Formal derived type case
4508 if Is_Generic_Type
(T
) then
4510 -- The parent must be a tagged limited type or a synchronized
4513 if (not Is_Tagged_Type
(Parent_Type
)
4514 or else not Is_Limited_Type
(Parent_Type
))
4516 (not Is_Interface
(Parent_Type
)
4517 or else not Is_Synchronized_Interface
(Parent_Type
))
4519 Error_Msg_NE
("parent type of & must be tagged limited " &
4520 "or synchronized", N
, T
);
4523 -- The progenitors (if any) must be limited or synchronized
4526 if Present
(Interfaces
(T
)) then
4529 Iface_Elmt
: Elmt_Id
;
4532 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
4533 while Present
(Iface_Elmt
) loop
4534 Iface
:= Node
(Iface_Elmt
);
4536 if not Is_Limited_Interface
(Iface
)
4537 and then not Is_Synchronized_Interface
(Iface
)
4539 Error_Msg_NE
("progenitor & must be limited " &
4540 "or synchronized", N
, Iface
);
4543 Next_Elmt
(Iface_Elmt
);
4548 -- Regular derived extension, the parent must be a limited or
4549 -- synchronized interface.
4552 if not Is_Interface
(Parent_Type
)
4553 or else (not Is_Limited_Interface
(Parent_Type
)
4554 and then not Is_Synchronized_Interface
(Parent_Type
))
4557 ("parent type of & must be limited interface", N
, T
);
4561 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4562 -- extension with a synchronized parent must be explicitly declared
4563 -- synchronized, because the full view will be a synchronized type.
4564 -- This must be checked before the check for limited types below,
4565 -- to ensure that types declared limited are not allowed to extend
4566 -- synchronized interfaces.
4568 elsif Is_Interface
(Parent_Type
)
4569 and then Is_Synchronized_Interface
(Parent_Type
)
4570 and then not Synchronized_Present
(N
)
4573 ("private extension of& must be explicitly synchronized",
4576 elsif Limited_Present
(N
) then
4577 Set_Is_Limited_Record
(T
);
4579 if not Is_Limited_Type
(Parent_Type
)
4581 (not Is_Interface
(Parent_Type
)
4582 or else not Is_Limited_Interface
(Parent_Type
))
4584 Error_Msg_NE
("parent type& of limited extension must be limited",
4590 if Has_Aspects
(N
) then
4591 Analyze_Aspect_Specifications
(N
, T
);
4593 end Analyze_Private_Extension_Declaration
;
4595 ---------------------------------
4596 -- Analyze_Subtype_Declaration --
4597 ---------------------------------
4599 procedure Analyze_Subtype_Declaration
4601 Skip
: Boolean := False)
4603 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4605 R_Checks
: Check_Result
;
4608 -- The subtype declaration may be subject to pragma Ghost with policy
4609 -- Ignore. Set the mode now to ensure that any nodes generated during
4610 -- analysis and expansion are properly flagged as ignored Ghost.
4614 Generate_Definition
(Id
);
4615 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4616 Init_Size_Align
(Id
);
4618 -- The following guard condition on Enter_Name is to handle cases where
4619 -- the defining identifier has already been entered into the scope but
4620 -- the declaration as a whole needs to be analyzed.
4622 -- This case in particular happens for derived enumeration types. The
4623 -- derived enumeration type is processed as an inserted enumeration type
4624 -- declaration followed by a rewritten subtype declaration. The defining
4625 -- identifier, however, is entered into the name scope very early in the
4626 -- processing of the original type declaration and therefore needs to be
4627 -- avoided here, when the created subtype declaration is analyzed. (See
4628 -- Build_Derived_Types)
4630 -- This also happens when the full view of a private type is derived
4631 -- type with constraints. In this case the entity has been introduced
4632 -- in the private declaration.
4634 -- Finally this happens in some complex cases when validity checks are
4635 -- enabled, where the same subtype declaration may be analyzed twice.
4636 -- This can happen if the subtype is created by the pre-analysis of
4637 -- an attribute tht gives the range of a loop statement, and the loop
4638 -- itself appears within an if_statement that will be rewritten during
4642 or else (Present
(Etype
(Id
))
4643 and then (Is_Private_Type
(Etype
(Id
))
4644 or else Is_Task_Type
(Etype
(Id
))
4645 or else Is_Rewrite_Substitution
(N
)))
4649 elsif Current_Entity
(Id
) = Id
then
4656 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4658 -- Class-wide equivalent types of records with unknown discriminants
4659 -- involve the generation of an itype which serves as the private view
4660 -- of a constrained record subtype. In such cases the base type of the
4661 -- current subtype we are processing is the private itype. Use the full
4662 -- of the private itype when decorating various attributes.
4665 and then Is_Private_Type
(T
)
4666 and then Present
(Full_View
(T
))
4671 -- Inherit common attributes
4673 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4674 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4675 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4676 Set_Convention
(Id
, Convention
(T
));
4678 -- If ancestor has predicates then so does the subtype, and in addition
4679 -- we must delay the freeze to properly arrange predicate inheritance.
4681 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4682 -- in which T = ID, so the above tests and assignments do nothing???
4684 if Has_Predicates
(T
)
4685 or else (Present
(Ancestor_Subtype
(T
))
4686 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4688 Set_Has_Predicates
(Id
);
4689 Set_Has_Delayed_Freeze
(Id
);
4692 -- Subtype of Boolean cannot have a constraint in SPARK
4694 if Is_Boolean_Type
(T
)
4695 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4697 Check_SPARK_05_Restriction
4698 ("subtype of Boolean cannot have constraint", N
);
4701 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4703 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4709 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4710 One_Cstr
:= First
(Constraints
(Cstr
));
4711 while Present
(One_Cstr
) loop
4713 -- Index or discriminant constraint in SPARK must be a
4717 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4719 Check_SPARK_05_Restriction
4720 ("subtype mark required", One_Cstr
);
4722 -- String subtype must have a lower bound of 1 in SPARK.
4723 -- Note that we do not need to test for the non-static case
4724 -- here, since that was already taken care of in
4725 -- Process_Range_Expr_In_Decl.
4727 elsif Base_Type
(T
) = Standard_String
then
4728 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4730 if Is_OK_Static_Expression
(Low
)
4731 and then Expr_Value
(Low
) /= 1
4733 Check_SPARK_05_Restriction
4734 ("String subtype must have lower bound of 1", N
);
4744 -- In the case where there is no constraint given in the subtype
4745 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4746 -- semantic attributes must be established here.
4748 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4749 Set_Etype
(Id
, Base_Type
(T
));
4751 -- Subtype of unconstrained array without constraint is not allowed
4754 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
4755 Check_SPARK_05_Restriction
4756 ("subtype of unconstrained array must have constraint", N
);
4761 Set_Ekind
(Id
, E_Array_Subtype
);
4762 Copy_Array_Subtype_Attributes
(Id
, T
);
4764 when Decimal_Fixed_Point_Kind
=>
4765 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4766 Set_Digits_Value
(Id
, Digits_Value
(T
));
4767 Set_Delta_Value
(Id
, Delta_Value
(T
));
4768 Set_Scale_Value
(Id
, Scale_Value
(T
));
4769 Set_Small_Value
(Id
, Small_Value
(T
));
4770 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4771 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4772 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4773 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4774 Set_RM_Size
(Id
, RM_Size
(T
));
4776 when Enumeration_Kind
=>
4777 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4778 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4779 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4780 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4781 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4782 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4783 Set_RM_Size
(Id
, RM_Size
(T
));
4784 Inherit_Predicate_Flags
(Id
, T
);
4786 when Ordinary_Fixed_Point_Kind
=>
4787 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4788 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4789 Set_Small_Value
(Id
, Small_Value
(T
));
4790 Set_Delta_Value
(Id
, Delta_Value
(T
));
4791 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4792 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4793 Set_RM_Size
(Id
, RM_Size
(T
));
4796 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4797 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4798 Set_Digits_Value
(Id
, Digits_Value
(T
));
4799 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4801 when Signed_Integer_Kind
=>
4802 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4803 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4804 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4805 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4806 Set_RM_Size
(Id
, RM_Size
(T
));
4807 Inherit_Predicate_Flags
(Id
, T
);
4809 when Modular_Integer_Kind
=>
4810 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4811 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4812 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4813 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4814 Set_RM_Size
(Id
, RM_Size
(T
));
4815 Inherit_Predicate_Flags
(Id
, T
);
4817 when Class_Wide_Kind
=>
4818 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4819 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4820 Set_Cloned_Subtype
(Id
, T
);
4821 Set_Is_Tagged_Type
(Id
, True);
4822 Set_Has_Unknown_Discriminants
4824 Set_No_Tagged_Streams_Pragma
4825 (Id
, No_Tagged_Streams_Pragma
(T
));
4827 if Ekind
(T
) = E_Class_Wide_Subtype
then
4828 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4831 when E_Record_Type | E_Record_Subtype
=>
4832 Set_Ekind
(Id
, E_Record_Subtype
);
4834 if Ekind
(T
) = E_Record_Subtype
4835 and then Present
(Cloned_Subtype
(T
))
4837 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4839 Set_Cloned_Subtype
(Id
, T
);
4842 Set_First_Entity
(Id
, First_Entity
(T
));
4843 Set_Last_Entity
(Id
, Last_Entity
(T
));
4844 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4845 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4846 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4847 Set_Has_Implicit_Dereference
4848 (Id
, Has_Implicit_Dereference
(T
));
4849 Set_Has_Unknown_Discriminants
4850 (Id
, Has_Unknown_Discriminants
(T
));
4852 if Has_Discriminants
(T
) then
4853 Set_Discriminant_Constraint
4854 (Id
, Discriminant_Constraint
(T
));
4855 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4857 elsif Has_Unknown_Discriminants
(Id
) then
4858 Set_Discriminant_Constraint
(Id
, No_Elist
);
4861 if Is_Tagged_Type
(T
) then
4862 Set_Is_Tagged_Type
(Id
, True);
4863 Set_No_Tagged_Streams_Pragma
4864 (Id
, No_Tagged_Streams_Pragma
(T
));
4865 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4866 Set_Direct_Primitive_Operations
4867 (Id
, Direct_Primitive_Operations
(T
));
4868 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4870 if Is_Interface
(T
) then
4871 Set_Is_Interface
(Id
);
4872 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4876 when Private_Kind
=>
4877 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4878 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4879 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4880 Set_First_Entity
(Id
, First_Entity
(T
));
4881 Set_Last_Entity
(Id
, Last_Entity
(T
));
4882 Set_Private_Dependents
(Id
, New_Elmt_List
);
4883 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4884 Set_Has_Implicit_Dereference
4885 (Id
, Has_Implicit_Dereference
(T
));
4886 Set_Has_Unknown_Discriminants
4887 (Id
, Has_Unknown_Discriminants
(T
));
4888 Set_Known_To_Have_Preelab_Init
4889 (Id
, Known_To_Have_Preelab_Init
(T
));
4891 if Is_Tagged_Type
(T
) then
4892 Set_Is_Tagged_Type
(Id
);
4893 Set_No_Tagged_Streams_Pragma
(Id
,
4894 No_Tagged_Streams_Pragma
(T
));
4895 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4896 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4897 Set_Direct_Primitive_Operations
(Id
,
4898 Direct_Primitive_Operations
(T
));
4901 -- In general the attributes of the subtype of a private type
4902 -- are the attributes of the partial view of parent. However,
4903 -- the full view may be a discriminated type, and the subtype
4904 -- must share the discriminant constraint to generate correct
4905 -- calls to initialization procedures.
4907 if Has_Discriminants
(T
) then
4908 Set_Discriminant_Constraint
4909 (Id
, Discriminant_Constraint
(T
));
4910 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4912 elsif Present
(Full_View
(T
))
4913 and then Has_Discriminants
(Full_View
(T
))
4915 Set_Discriminant_Constraint
4916 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4917 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4919 -- This would seem semantically correct, but apparently
4920 -- generates spurious errors about missing components ???
4922 -- Set_Has_Discriminants (Id);
4925 Prepare_Private_Subtype_Completion
(Id
, N
);
4927 -- If this is the subtype of a constrained private type with
4928 -- discriminants that has got a full view and we also have
4929 -- built a completion just above, show that the completion
4930 -- is a clone of the full view to the back-end.
4932 if Has_Discriminants
(T
)
4933 and then not Has_Unknown_Discriminants
(T
)
4934 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
4935 and then Present
(Full_View
(T
))
4936 and then Present
(Full_View
(Id
))
4938 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
4942 Set_Ekind
(Id
, E_Access_Subtype
);
4943 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4944 Set_Is_Access_Constant
4945 (Id
, Is_Access_Constant
(T
));
4946 Set_Directly_Designated_Type
4947 (Id
, Designated_Type
(T
));
4948 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
4950 -- A Pure library_item must not contain the declaration of a
4951 -- named access type, except within a subprogram, generic
4952 -- subprogram, task unit, or protected unit, or if it has
4953 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4955 if Comes_From_Source
(Id
)
4956 and then In_Pure_Unit
4957 and then not In_Subprogram_Task_Protected_Unit
4958 and then not No_Pool_Assigned
(Id
)
4961 ("named access types not allowed in pure unit", N
);
4964 when Concurrent_Kind
=>
4965 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4966 Set_Corresponding_Record_Type
(Id
,
4967 Corresponding_Record_Type
(T
));
4968 Set_First_Entity
(Id
, First_Entity
(T
));
4969 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
4970 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4971 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4972 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4973 Set_Last_Entity
(Id
, Last_Entity
(T
));
4975 if Is_Tagged_Type
(T
) then
4976 Set_No_Tagged_Streams_Pragma
4977 (Id
, No_Tagged_Streams_Pragma
(T
));
4980 if Has_Discriminants
(T
) then
4981 Set_Discriminant_Constraint
(Id
,
4982 Discriminant_Constraint
(T
));
4983 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4986 when E_Incomplete_Type
=>
4987 if Ada_Version
>= Ada_2005
then
4989 -- In Ada 2005 an incomplete type can be explicitly tagged:
4990 -- propagate indication.
4992 Set_Ekind
(Id
, E_Incomplete_Subtype
);
4993 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4994 Set_Private_Dependents
(Id
, New_Elmt_List
);
4996 if Is_Tagged_Type
(Id
) then
4997 Set_No_Tagged_Streams_Pragma
4998 (Id
, No_Tagged_Streams_Pragma
(T
));
5001 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5002 -- incomplete type visible through a limited with clause.
5004 if From_Limited_With
(T
)
5005 and then Present
(Non_Limited_View
(T
))
5007 Set_From_Limited_With
(Id
);
5008 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
5010 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5011 -- to the private dependents of the original incomplete
5012 -- type for future transformation.
5015 Append_Elmt
(Id
, Private_Dependents
(T
));
5018 -- If the subtype name denotes an incomplete type an error
5019 -- was already reported by Process_Subtype.
5022 Set_Etype
(Id
, Any_Type
);
5026 raise Program_Error
;
5030 if Etype
(Id
) = Any_Type
then
5034 -- Some common processing on all types
5036 Set_Size_Info
(Id
, T
);
5037 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
5039 -- If the parent type is a generic actual, so is the subtype. This may
5040 -- happen in a nested instance. Why Comes_From_Source test???
5042 if not Comes_From_Source
(N
) then
5043 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
5048 Set_Is_Immediately_Visible
(Id
, True);
5049 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
5050 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
5052 if Is_Interface
(T
) then
5053 Set_Is_Interface
(Id
);
5056 if Present
(Generic_Parent_Type
(N
))
5058 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
5059 N_Formal_Type_Declaration
5060 or else Nkind
(Formal_Type_Definition
5061 (Parent
(Generic_Parent_Type
(N
)))) /=
5062 N_Formal_Private_Type_Definition
)
5064 if Is_Tagged_Type
(Id
) then
5066 -- If this is a generic actual subtype for a synchronized type,
5067 -- the primitive operations are those of the corresponding record
5068 -- for which there is a separate subtype declaration.
5070 if Is_Concurrent_Type
(Id
) then
5072 elsif Is_Class_Wide_Type
(Id
) then
5073 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
5075 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
5078 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
5079 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
5083 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
5084 Conditional_Delay
(Id
, Full_View
(T
));
5086 -- The subtypes of components or subcomponents of protected types
5087 -- do not need freeze nodes, which would otherwise appear in the
5088 -- wrong scope (before the freeze node for the protected type). The
5089 -- proper subtypes are those of the subcomponents of the corresponding
5092 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
5093 and then Present
(Scope
(Scope
(Id
))) -- error defense
5094 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
5096 Conditional_Delay
(Id
, T
);
5099 -- Check that Constraint_Error is raised for a scalar subtype indication
5100 -- when the lower or upper bound of a non-null range lies outside the
5101 -- range of the type mark.
5103 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5104 if Is_Scalar_Type
(Etype
(Id
))
5105 and then Scalar_Range
(Id
) /=
5106 Scalar_Range
(Etype
(Subtype_Mark
5107 (Subtype_Indication
(N
))))
5111 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
5113 -- In the array case, check compatibility for each index
5115 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5117 -- This really should be a subprogram that finds the indications
5121 Subt_Index
: Node_Id
:= First_Index
(Id
);
5122 Target_Index
: Node_Id
:=
5124 (Subtype_Mark
(Subtype_Indication
(N
))));
5125 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5128 while Present
(Subt_Index
) loop
5129 if ((Nkind
(Subt_Index
) = N_Identifier
5130 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5131 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5133 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5136 Target_Typ
: constant Entity_Id
:=
5137 Etype
(Target_Index
);
5141 (Scalar_Range
(Etype
(Subt_Index
)),
5144 Defining_Identifier
(N
));
5146 -- Reset Has_Dynamic_Range_Check on the subtype to
5147 -- prevent elision of the index check due to a dynamic
5148 -- check generated for a preceding index (needed since
5149 -- Insert_Range_Checks tries to avoid generating
5150 -- redundant checks on a given declaration).
5152 Set_Has_Dynamic_Range_Check
(N
, False);
5158 Sloc
(Defining_Identifier
(N
)));
5160 -- Record whether this index involved a dynamic check
5163 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5167 Next_Index
(Subt_Index
);
5168 Next_Index
(Target_Index
);
5171 -- Finally, mark whether the subtype involves dynamic checks
5173 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5178 -- A type invariant applies to any subtype in its scope, in particular
5179 -- to a generic actual.
5181 if Has_Invariants
(T
) and then In_Open_Scopes
(Scope
(T
)) then
5182 Set_Has_Invariants
(Id
);
5183 Set_Invariant_Procedure
(Id
, Invariant_Procedure
(T
));
5186 -- Make sure that generic actual types are properly frozen. The subtype
5187 -- is marked as a generic actual type when the enclosing instance is
5188 -- analyzed, so here we identify the subtype from the tree structure.
5191 and then Is_Generic_Actual_Type
(Id
)
5192 and then In_Instance
5193 and then not Comes_From_Source
(N
)
5194 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
5195 and then Is_Frozen
(T
)
5197 Freeze_Before
(N
, Id
);
5200 Set_Optimize_Alignment_Flags
(Id
);
5201 Check_Eliminated
(Id
);
5204 if Has_Aspects
(N
) then
5205 Analyze_Aspect_Specifications
(N
, Id
);
5208 Analyze_Dimension
(N
);
5209 end Analyze_Subtype_Declaration
;
5211 --------------------------------
5212 -- Analyze_Subtype_Indication --
5213 --------------------------------
5215 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5216 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5217 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5224 Set_Etype
(N
, Etype
(R
));
5225 Resolve
(R
, Entity
(T
));
5227 Set_Error_Posted
(R
);
5228 Set_Error_Posted
(T
);
5230 end Analyze_Subtype_Indication
;
5232 --------------------------
5233 -- Analyze_Variant_Part --
5234 --------------------------
5236 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5237 Discr_Name
: Node_Id
;
5238 Discr_Type
: Entity_Id
;
5240 procedure Process_Variant
(A
: Node_Id
);
5241 -- Analyze declarations for a single variant
5243 package Analyze_Variant_Choices
is
5244 new Generic_Analyze_Choices
(Process_Variant
);
5245 use Analyze_Variant_Choices
;
5247 ---------------------
5248 -- Process_Variant --
5249 ---------------------
5251 procedure Process_Variant
(A
: Node_Id
) is
5252 CL
: constant Node_Id
:= Component_List
(A
);
5254 if not Null_Present
(CL
) then
5255 Analyze_Declarations
(Component_Items
(CL
));
5257 if Present
(Variant_Part
(CL
)) then
5258 Analyze
(Variant_Part
(CL
));
5261 end Process_Variant
;
5263 -- Start of processing for Analyze_Variant_Part
5266 Discr_Name
:= Name
(N
);
5267 Analyze
(Discr_Name
);
5269 -- If Discr_Name bad, get out (prevent cascaded errors)
5271 if Etype
(Discr_Name
) = Any_Type
then
5275 -- Check invalid discriminant in variant part
5277 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5278 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5281 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5283 if not Is_Discrete_Type
(Discr_Type
) then
5285 ("discriminant in a variant part must be of a discrete type",
5290 -- Now analyze the choices, which also analyzes the declarations that
5291 -- are associated with each choice.
5293 Analyze_Choices
(Variants
(N
), Discr_Type
);
5295 -- Note: we used to instantiate and call Check_Choices here to check
5296 -- that the choices covered the discriminant, but it's too early to do
5297 -- that because of statically predicated subtypes, whose analysis may
5298 -- be deferred to their freeze point which may be as late as the freeze
5299 -- point of the containing record. So this call is now to be found in
5300 -- Freeze_Record_Declaration.
5302 end Analyze_Variant_Part
;
5304 ----------------------------
5305 -- Array_Type_Declaration --
5306 ----------------------------
5308 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
5309 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
5310 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
5311 Element_Type
: Entity_Id
;
5312 Implicit_Base
: Entity_Id
;
5314 Related_Id
: Entity_Id
:= Empty
;
5316 P
: constant Node_Id
:= Parent
(Def
);
5320 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5321 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
5323 Index
:= First
(Subtype_Marks
(Def
));
5326 -- Find proper names for the implicit types which may be public. In case
5327 -- of anonymous arrays we use the name of the first object of that type
5331 Related_Id
:= Defining_Identifier
(P
);
5337 while Present
(Index
) loop
5340 -- Test for odd case of trying to index a type by the type itself
5342 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
5343 Error_Msg_N
("type& cannot be indexed by itself", Index
);
5344 Set_Entity
(Index
, Standard_Boolean
);
5345 Set_Etype
(Index
, Standard_Boolean
);
5348 -- Check SPARK restriction requiring a subtype mark
5350 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
5351 Check_SPARK_05_Restriction
("subtype mark required", Index
);
5354 -- Add a subtype declaration for each index of private array type
5355 -- declaration whose etype is also private. For example:
5358 -- type Index is private;
5360 -- type Table is array (Index) of ...
5363 -- This is currently required by the expander for the internally
5364 -- generated equality subprogram of records with variant parts in
5365 -- which the etype of some component is such private type.
5367 if Ekind
(Current_Scope
) = E_Package
5368 and then In_Private_Part
(Current_Scope
)
5369 and then Has_Private_Declaration
(Etype
(Index
))
5372 Loc
: constant Source_Ptr
:= Sloc
(Def
);
5377 New_E
:= Make_Temporary
(Loc
, 'T');
5378 Set_Is_Internal
(New_E
);
5381 Make_Subtype_Declaration
(Loc
,
5382 Defining_Identifier
=> New_E
,
5383 Subtype_Indication
=>
5384 New_Occurrence_Of
(Etype
(Index
), Loc
));
5386 Insert_Before
(Parent
(Def
), Decl
);
5388 Set_Etype
(Index
, New_E
);
5390 -- If the index is a range the Entity attribute is not
5391 -- available. Example:
5394 -- type T is private;
5396 -- type T is new Natural;
5397 -- Table : array (T(1) .. T(10)) of Boolean;
5400 if Nkind
(Index
) /= N_Range
then
5401 Set_Entity
(Index
, New_E
);
5406 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
5408 -- Check error of subtype with predicate for index type
5410 Bad_Predicated_Subtype_Use
5411 ("subtype& has predicate, not allowed as index subtype",
5412 Index
, Etype
(Index
));
5414 -- Move to next index
5417 Nb_Index
:= Nb_Index
+ 1;
5420 -- Process subtype indication if one is present
5422 if Present
(Component_Typ
) then
5423 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
5425 Set_Etype
(Component_Typ
, Element_Type
);
5427 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
5428 Check_SPARK_05_Restriction
5429 ("subtype mark required", Component_Typ
);
5432 -- Ada 2005 (AI-230): Access Definition case
5434 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
5436 -- Indicate that the anonymous access type is created by the
5437 -- array type declaration.
5439 Element_Type
:= Access_Definition
5441 N
=> Access_Definition
(Component_Def
));
5442 Set_Is_Local_Anonymous_Access
(Element_Type
);
5444 -- Propagate the parent. This field is needed if we have to generate
5445 -- the master_id associated with an anonymous access to task type
5446 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5448 Set_Parent
(Element_Type
, Parent
(T
));
5450 -- Ada 2005 (AI-230): In case of components that are anonymous access
5451 -- types the level of accessibility depends on the enclosing type
5454 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
5456 -- Ada 2005 (AI-254)
5459 CD
: constant Node_Id
:=
5460 Access_To_Subprogram_Definition
5461 (Access_Definition
(Component_Def
));
5463 if Present
(CD
) and then Protected_Present
(CD
) then
5465 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
5470 -- Constrained array case
5473 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
5476 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5478 -- Establish Implicit_Base as unconstrained base type
5480 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
5482 Set_Etype
(Implicit_Base
, Implicit_Base
);
5483 Set_Scope
(Implicit_Base
, Current_Scope
);
5484 Set_Has_Delayed_Freeze
(Implicit_Base
);
5485 Set_Default_SSO
(Implicit_Base
);
5487 -- The constrained array type is a subtype of the unconstrained one
5489 Set_Ekind
(T
, E_Array_Subtype
);
5490 Init_Size_Align
(T
);
5491 Set_Etype
(T
, Implicit_Base
);
5492 Set_Scope
(T
, Current_Scope
);
5493 Set_Is_Constrained
(T
);
5495 First
(Discrete_Subtype_Definitions
(Def
)));
5496 Set_Has_Delayed_Freeze
(T
);
5498 -- Complete setup of implicit base type
5500 Set_First_Index
(Implicit_Base
, First_Index
(T
));
5501 Set_Component_Type
(Implicit_Base
, Element_Type
);
5502 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
5503 Set_Has_Protected
(Implicit_Base
, Has_Protected
(Element_Type
));
5504 Set_Component_Size
(Implicit_Base
, Uint_0
);
5505 Set_Packed_Array_Impl_Type
(Implicit_Base
, Empty
);
5506 Set_Has_Controlled_Component
(Implicit_Base
,
5507 Has_Controlled_Component
(Element_Type
)
5508 or else Is_Controlled
(Element_Type
));
5509 Set_Finalize_Storage_Only
(Implicit_Base
,
5510 Finalize_Storage_Only
(Element_Type
));
5512 -- Inherit the "ghostness" from the constrained array type
5514 if Is_Ghost_Entity
(T
) or else Ghost_Mode
> None
then
5515 Set_Is_Ghost_Entity
(Implicit_Base
);
5518 -- Unconstrained array case
5521 Set_Ekind
(T
, E_Array_Type
);
5522 Init_Size_Align
(T
);
5524 Set_Scope
(T
, Current_Scope
);
5525 Set_Component_Size
(T
, Uint_0
);
5526 Set_Is_Constrained
(T
, False);
5527 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
5528 Set_Has_Delayed_Freeze
(T
, True);
5529 Set_Has_Task
(T
, Has_Task
(Element_Type
));
5530 Set_Has_Protected
(T
, Has_Protected
(Element_Type
));
5531 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
5534 Is_Controlled
(Element_Type
));
5535 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
5537 Set_Default_SSO
(T
);
5540 -- Common attributes for both cases
5542 Set_Component_Type
(Base_Type
(T
), Element_Type
);
5543 Set_Packed_Array_Impl_Type
(T
, Empty
);
5545 if Aliased_Present
(Component_Definition
(Def
)) then
5546 Check_SPARK_05_Restriction
5547 ("aliased is not allowed", Component_Definition
(Def
));
5548 Set_Has_Aliased_Components
(Etype
(T
));
5551 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5552 -- array type to ensure that objects of this type are initialized.
5554 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
5555 Set_Can_Never_Be_Null
(T
);
5557 if Null_Exclusion_Present
(Component_Definition
(Def
))
5559 -- No need to check itypes because in their case this check was
5560 -- done at their point of creation
5562 and then not Is_Itype
(Element_Type
)
5565 ("`NOT NULL` not allowed (null already excluded)",
5566 Subtype_Indication
(Component_Definition
(Def
)));
5570 Priv
:= Private_Component
(Element_Type
);
5572 if Present
(Priv
) then
5574 -- Check for circular definitions
5576 if Priv
= Any_Type
then
5577 Set_Component_Type
(Etype
(T
), Any_Type
);
5579 -- There is a gap in the visibility of operations on the composite
5580 -- type only if the component type is defined in a different scope.
5582 elsif Scope
(Priv
) = Current_Scope
then
5585 elsif Is_Limited_Type
(Priv
) then
5586 Set_Is_Limited_Composite
(Etype
(T
));
5587 Set_Is_Limited_Composite
(T
);
5589 Set_Is_Private_Composite
(Etype
(T
));
5590 Set_Is_Private_Composite
(T
);
5594 -- A syntax error in the declaration itself may lead to an empty index
5595 -- list, in which case do a minimal patch.
5597 if No
(First_Index
(T
)) then
5598 Error_Msg_N
("missing index definition in array type declaration", T
);
5601 Indexes
: constant List_Id
:=
5602 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
5604 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
5605 Set_First_Index
(T
, First
(Indexes
));
5610 -- Create a concatenation operator for the new type. Internal array
5611 -- types created for packed entities do not need such, they are
5612 -- compatible with the user-defined type.
5614 if Number_Dimensions
(T
) = 1
5615 and then not Is_Packed_Array_Impl_Type
(T
)
5617 New_Concatenation_Op
(T
);
5620 -- In the case of an unconstrained array the parser has already verified
5621 -- that all the indexes are unconstrained but we still need to make sure
5622 -- that the element type is constrained.
5624 if Is_Indefinite_Subtype
(Element_Type
) then
5626 ("unconstrained element type in array declaration",
5627 Subtype_Indication
(Component_Def
));
5629 elsif Is_Abstract_Type
(Element_Type
) then
5631 ("the type of a component cannot be abstract",
5632 Subtype_Indication
(Component_Def
));
5635 -- There may be an invariant declared for the component type, but
5636 -- the construction of the component invariant checking procedure
5637 -- takes place during expansion.
5638 end Array_Type_Declaration
;
5640 ------------------------------------------------------
5641 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5642 ------------------------------------------------------
5644 function Replace_Anonymous_Access_To_Protected_Subprogram
5645 (N
: Node_Id
) return Entity_Id
5647 Loc
: constant Source_Ptr
:= Sloc
(N
);
5649 Curr_Scope
: constant Scope_Stack_Entry
:=
5650 Scope_Stack
.Table
(Scope_Stack
.Last
);
5652 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5655 -- Access definition in declaration
5658 -- Object definition or formal definition with an access definition
5661 -- Declaration of anonymous access to subprogram type
5664 -- Original specification in access to subprogram
5669 Set_Is_Internal
(Anon
);
5672 when N_Component_Declaration |
5673 N_Unconstrained_Array_Definition |
5674 N_Constrained_Array_Definition
=>
5675 Comp
:= Component_Definition
(N
);
5676 Acc
:= Access_Definition
(Comp
);
5678 when N_Discriminant_Specification
=>
5679 Comp
:= Discriminant_Type
(N
);
5682 when N_Parameter_Specification
=>
5683 Comp
:= Parameter_Type
(N
);
5686 when N_Access_Function_Definition
=>
5687 Comp
:= Result_Definition
(N
);
5690 when N_Object_Declaration
=>
5691 Comp
:= Object_Definition
(N
);
5694 when N_Function_Specification
=>
5695 Comp
:= Result_Definition
(N
);
5699 raise Program_Error
;
5702 Spec
:= Access_To_Subprogram_Definition
(Acc
);
5705 Make_Full_Type_Declaration
(Loc
,
5706 Defining_Identifier
=> Anon
,
5707 Type_Definition
=> Copy_Separate_Tree
(Spec
));
5709 Mark_Rewrite_Insertion
(Decl
);
5711 -- In ASIS mode, analyze the profile on the original node, because
5712 -- the separate copy does not provide enough links to recover the
5713 -- original tree. Analysis is limited to type annotations, within
5714 -- a temporary scope that serves as an anonymous subprogram to collect
5715 -- otherwise useless temporaries and itypes.
5719 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5722 if Nkind
(Spec
) = N_Access_Function_Definition
then
5723 Set_Ekind
(Typ
, E_Function
);
5725 Set_Ekind
(Typ
, E_Procedure
);
5728 Set_Parent
(Typ
, N
);
5729 Set_Scope
(Typ
, Current_Scope
);
5732 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
5734 if Nkind
(Spec
) = N_Access_Function_Definition
then
5736 Def
: constant Node_Id
:= Result_Definition
(Spec
);
5739 -- The result might itself be an anonymous access type, so
5742 if Nkind
(Def
) = N_Access_Definition
then
5743 if Present
(Access_To_Subprogram_Definition
(Def
)) then
5746 Replace_Anonymous_Access_To_Protected_Subprogram
5749 Find_Type
(Subtype_Mark
(Def
));
5762 -- Insert the new declaration in the nearest enclosing scope. If the
5763 -- node is a body and N is its return type, the declaration belongs in
5764 -- the enclosing scope.
5768 if Nkind
(P
) = N_Subprogram_Body
5769 and then Nkind
(N
) = N_Function_Specification
5774 while Present
(P
) and then not Has_Declarations
(P
) loop
5778 pragma Assert
(Present
(P
));
5780 if Nkind
(P
) = N_Package_Specification
then
5781 Prepend
(Decl
, Visible_Declarations
(P
));
5783 Prepend
(Decl
, Declarations
(P
));
5786 -- Replace the anonymous type with an occurrence of the new declaration.
5787 -- In all cases the rewritten node does not have the null-exclusion
5788 -- attribute because (if present) it was already inherited by the
5789 -- anonymous entity (Anon). Thus, in case of components we do not
5790 -- inherit this attribute.
5792 if Nkind
(N
) = N_Parameter_Specification
then
5793 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5794 Set_Etype
(Defining_Identifier
(N
), Anon
);
5795 Set_Null_Exclusion_Present
(N
, False);
5797 elsif Nkind
(N
) = N_Object_Declaration
then
5798 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5799 Set_Etype
(Defining_Identifier
(N
), Anon
);
5801 elsif Nkind
(N
) = N_Access_Function_Definition
then
5802 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5804 elsif Nkind
(N
) = N_Function_Specification
then
5805 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5806 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5810 Make_Component_Definition
(Loc
,
5811 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5814 Mark_Rewrite_Insertion
(Comp
);
5816 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5820 -- Temporarily remove the current scope (record or subprogram) from
5821 -- the stack to add the new declarations to the enclosing scope.
5823 Scope_Stack
.Decrement_Last
;
5825 Set_Is_Itype
(Anon
);
5826 Scope_Stack
.Append
(Curr_Scope
);
5829 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5830 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5832 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5834 -------------------------------
5835 -- Build_Derived_Access_Type --
5836 -------------------------------
5838 procedure Build_Derived_Access_Type
5840 Parent_Type
: Entity_Id
;
5841 Derived_Type
: Entity_Id
)
5843 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5845 Desig_Type
: Entity_Id
;
5847 Discr_Con_Elist
: Elist_Id
;
5848 Discr_Con_El
: Elmt_Id
;
5852 -- Set the designated type so it is available in case this is an access
5853 -- to a self-referential type, e.g. a standard list type with a next
5854 -- pointer. Will be reset after subtype is built.
5856 Set_Directly_Designated_Type
5857 (Derived_Type
, Designated_Type
(Parent_Type
));
5859 Subt
:= Process_Subtype
(S
, N
);
5861 if Nkind
(S
) /= N_Subtype_Indication
5862 and then Subt
/= Base_Type
(Subt
)
5864 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5867 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5869 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5870 Ibase
: constant Entity_Id
:=
5871 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5872 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5873 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5876 Copy_Node
(Pbase
, Ibase
);
5878 Set_Chars
(Ibase
, Svg_Chars
);
5879 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5880 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5881 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5882 Set_Freeze_Node
(Ibase
, Empty
);
5883 Set_Is_Frozen
(Ibase
, False);
5884 Set_Comes_From_Source
(Ibase
, False);
5885 Set_Is_First_Subtype
(Ibase
, False);
5887 Set_Etype
(Ibase
, Pbase
);
5888 Set_Etype
(Derived_Type
, Ibase
);
5892 Set_Directly_Designated_Type
5893 (Derived_Type
, Designated_Type
(Subt
));
5895 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5896 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5897 Set_Size_Info
(Derived_Type
, Parent_Type
);
5898 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5899 Set_Depends_On_Private
(Derived_Type
,
5900 Has_Private_Component
(Derived_Type
));
5901 Conditional_Delay
(Derived_Type
, Subt
);
5903 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5904 -- that it is not redundant.
5906 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5907 Set_Can_Never_Be_Null
(Derived_Type
);
5909 -- What is with the "AND THEN FALSE" here ???
5911 if Can_Never_Be_Null
(Parent_Type
)
5915 ("`NOT NULL` not allowed (& already excludes null)",
5919 elsif Can_Never_Be_Null
(Parent_Type
) then
5920 Set_Can_Never_Be_Null
(Derived_Type
);
5923 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5924 -- the root type for this information.
5926 -- Apply range checks to discriminants for derived record case
5927 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5929 Desig_Type
:= Designated_Type
(Derived_Type
);
5930 if Is_Composite_Type
(Desig_Type
)
5931 and then (not Is_Array_Type
(Desig_Type
))
5932 and then Has_Discriminants
(Desig_Type
)
5933 and then Base_Type
(Desig_Type
) /= Desig_Type
5935 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
5936 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
5938 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
5939 while Present
(Discr_Con_El
) loop
5940 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
5941 Next_Elmt
(Discr_Con_El
);
5942 Next_Discriminant
(Discr
);
5945 end Build_Derived_Access_Type
;
5947 ------------------------------
5948 -- Build_Derived_Array_Type --
5949 ------------------------------
5951 procedure Build_Derived_Array_Type
5953 Parent_Type
: Entity_Id
;
5954 Derived_Type
: Entity_Id
)
5956 Loc
: constant Source_Ptr
:= Sloc
(N
);
5957 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5958 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5959 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5960 Implicit_Base
: Entity_Id
;
5961 New_Indic
: Node_Id
;
5963 procedure Make_Implicit_Base
;
5964 -- If the parent subtype is constrained, the derived type is a subtype
5965 -- of an implicit base type derived from the parent base.
5967 ------------------------
5968 -- Make_Implicit_Base --
5969 ------------------------
5971 procedure Make_Implicit_Base
is
5974 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5976 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5977 Set_Etype
(Implicit_Base
, Parent_Base
);
5979 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
5980 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
5982 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
5984 -- Inherit the "ghostness" from the parent base type
5986 if Is_Ghost_Entity
(Parent_Base
) or else Ghost_Mode
> None
then
5987 Set_Is_Ghost_Entity
(Implicit_Base
);
5989 end Make_Implicit_Base
;
5991 -- Start of processing for Build_Derived_Array_Type
5994 if not Is_Constrained
(Parent_Type
) then
5995 if Nkind
(Indic
) /= N_Subtype_Indication
then
5996 Set_Ekind
(Derived_Type
, E_Array_Type
);
5998 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5999 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
6001 Set_Has_Delayed_Freeze
(Derived_Type
, True);
6005 Set_Etype
(Derived_Type
, Implicit_Base
);
6008 Make_Subtype_Declaration
(Loc
,
6009 Defining_Identifier
=> Derived_Type
,
6010 Subtype_Indication
=>
6011 Make_Subtype_Indication
(Loc
,
6012 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6013 Constraint
=> Constraint
(Indic
)));
6015 Rewrite
(N
, New_Indic
);
6020 if Nkind
(Indic
) /= N_Subtype_Indication
then
6023 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
6024 Set_Etype
(Derived_Type
, Implicit_Base
);
6025 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6028 Error_Msg_N
("illegal constraint on constrained type", Indic
);
6032 -- If parent type is not a derived type itself, and is declared in
6033 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6034 -- the new type's concatenation operator since Derive_Subprograms
6035 -- will not inherit the parent's operator. If the parent type is
6036 -- unconstrained, the operator is of the unconstrained base type.
6038 if Number_Dimensions
(Parent_Type
) = 1
6039 and then not Is_Limited_Type
(Parent_Type
)
6040 and then not Is_Derived_Type
(Parent_Type
)
6041 and then not Is_Package_Or_Generic_Package
6042 (Scope
(Base_Type
(Parent_Type
)))
6044 if not Is_Constrained
(Parent_Type
)
6045 and then Is_Constrained
(Derived_Type
)
6047 New_Concatenation_Op
(Implicit_Base
);
6049 New_Concatenation_Op
(Derived_Type
);
6052 end Build_Derived_Array_Type
;
6054 -----------------------------------
6055 -- Build_Derived_Concurrent_Type --
6056 -----------------------------------
6058 procedure Build_Derived_Concurrent_Type
6060 Parent_Type
: Entity_Id
;
6061 Derived_Type
: Entity_Id
)
6063 Loc
: constant Source_Ptr
:= Sloc
(N
);
6065 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
6066 Corr_Decl
: Node_Id
;
6067 Corr_Decl_Needed
: Boolean;
6068 -- If the derived type has fewer discriminants than its parent, the
6069 -- corresponding record is also a derived type, in order to account for
6070 -- the bound discriminants. We create a full type declaration for it in
6073 Constraint_Present
: constant Boolean :=
6074 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6075 N_Subtype_Indication
;
6077 D_Constraint
: Node_Id
;
6078 New_Constraint
: Elist_Id
;
6079 Old_Disc
: Entity_Id
;
6080 New_Disc
: Entity_Id
;
6084 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6085 Corr_Decl_Needed
:= False;
6088 if Present
(Discriminant_Specifications
(N
))
6089 and then Constraint_Present
6091 Old_Disc
:= First_Discriminant
(Parent_Type
);
6092 New_Disc
:= First
(Discriminant_Specifications
(N
));
6093 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
6094 Next_Discriminant
(Old_Disc
);
6099 if Present
(Old_Disc
) and then Expander_Active
then
6101 -- The new type has fewer discriminants, so we need to create a new
6102 -- corresponding record, which is derived from the corresponding
6103 -- record of the parent, and has a stored constraint that captures
6104 -- the values of the discriminant constraints. The corresponding
6105 -- record is needed only if expander is active and code generation is
6108 -- The type declaration for the derived corresponding record has the
6109 -- same discriminant part and constraints as the current declaration.
6110 -- Copy the unanalyzed tree to build declaration.
6112 Corr_Decl_Needed
:= True;
6113 New_N
:= Copy_Separate_Tree
(N
);
6116 Make_Full_Type_Declaration
(Loc
,
6117 Defining_Identifier
=> Corr_Record
,
6118 Discriminant_Specifications
=>
6119 Discriminant_Specifications
(New_N
),
6121 Make_Derived_Type_Definition
(Loc
,
6122 Subtype_Indication
=>
6123 Make_Subtype_Indication
(Loc
,
6126 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6129 (Subtype_Indication
(Type_Definition
(New_N
))))));
6132 -- Copy Storage_Size and Relative_Deadline variables if task case
6134 if Is_Task_Type
(Parent_Type
) then
6135 Set_Storage_Size_Variable
(Derived_Type
,
6136 Storage_Size_Variable
(Parent_Type
));
6137 Set_Relative_Deadline_Variable
(Derived_Type
,
6138 Relative_Deadline_Variable
(Parent_Type
));
6141 if Present
(Discriminant_Specifications
(N
)) then
6142 Push_Scope
(Derived_Type
);
6143 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6145 if Constraint_Present
then
6147 Expand_To_Stored_Constraint
6149 Build_Discriminant_Constraints
6151 Subtype_Indication
(Type_Definition
(N
)), True));
6156 elsif Constraint_Present
then
6158 -- Build constrained subtype, copying the constraint, and derive
6159 -- from it to create a derived constrained type.
6162 Loc
: constant Source_Ptr
:= Sloc
(N
);
6163 Anon
: constant Entity_Id
:=
6164 Make_Defining_Identifier
(Loc
,
6165 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6170 Make_Subtype_Declaration
(Loc
,
6171 Defining_Identifier
=> Anon
,
6172 Subtype_Indication
=>
6173 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6174 Insert_Before
(N
, Decl
);
6177 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6178 New_Occurrence_Of
(Anon
, Loc
));
6179 Set_Analyzed
(Derived_Type
, False);
6185 -- By default, operations and private data are inherited from parent.
6186 -- However, in the presence of bound discriminants, a new corresponding
6187 -- record will be created, see below.
6189 Set_Has_Discriminants
6190 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6191 Set_Corresponding_Record_Type
6192 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6194 -- Is_Constrained is set according the parent subtype, but is set to
6195 -- False if the derived type is declared with new discriminants.
6199 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6200 and then not Present
(Discriminant_Specifications
(N
)));
6202 if Constraint_Present
then
6203 if not Has_Discriminants
(Parent_Type
) then
6204 Error_Msg_N
("untagged parent must have discriminants", N
);
6206 elsif Present
(Discriminant_Specifications
(N
)) then
6208 -- Verify that new discriminants are used to constrain old ones
6213 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6215 Old_Disc
:= First_Discriminant
(Parent_Type
);
6217 while Present
(D_Constraint
) loop
6218 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6220 -- Positional constraint. If it is a reference to a new
6221 -- discriminant, it constrains the corresponding old one.
6223 if Nkind
(D_Constraint
) = N_Identifier
then
6224 New_Disc
:= First_Discriminant
(Derived_Type
);
6225 while Present
(New_Disc
) loop
6226 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6227 Next_Discriminant
(New_Disc
);
6230 if Present
(New_Disc
) then
6231 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6235 Next_Discriminant
(Old_Disc
);
6237 -- if this is a named constraint, search by name for the old
6238 -- discriminants constrained by the new one.
6240 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6242 -- Find new discriminant with that name
6244 New_Disc
:= First_Discriminant
(Derived_Type
);
6245 while Present
(New_Disc
) loop
6247 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6248 Next_Discriminant
(New_Disc
);
6251 if Present
(New_Disc
) then
6253 -- Verify that new discriminant renames some discriminant
6254 -- of the parent type, and associate the new discriminant
6255 -- with one or more old ones that it renames.
6261 Selector
:= First
(Selector_Names
(D_Constraint
));
6262 while Present
(Selector
) loop
6263 Old_Disc
:= First_Discriminant
(Parent_Type
);
6264 while Present
(Old_Disc
) loop
6265 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6266 Next_Discriminant
(Old_Disc
);
6269 if Present
(Old_Disc
) then
6270 Set_Corresponding_Discriminant
6271 (New_Disc
, Old_Disc
);
6280 Next
(D_Constraint
);
6283 New_Disc
:= First_Discriminant
(Derived_Type
);
6284 while Present
(New_Disc
) loop
6285 if No
(Corresponding_Discriminant
(New_Disc
)) then
6287 ("new discriminant& must constrain old one", N
, New_Disc
);
6290 Subtypes_Statically_Compatible
6292 Etype
(Corresponding_Discriminant
(New_Disc
)))
6295 ("& not statically compatible with parent discriminant",
6299 Next_Discriminant
(New_Disc
);
6303 elsif Present
(Discriminant_Specifications
(N
)) then
6305 ("missing discriminant constraint in untagged derivation", N
);
6308 -- The entity chain of the derived type includes the new discriminants
6309 -- but shares operations with the parent.
6311 if Present
(Discriminant_Specifications
(N
)) then
6312 Old_Disc
:= First_Discriminant
(Parent_Type
);
6313 while Present
(Old_Disc
) loop
6314 if No
(Next_Entity
(Old_Disc
))
6315 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
6318 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
6322 Next_Discriminant
(Old_Disc
);
6326 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
6327 if Has_Discriminants
(Parent_Type
) then
6328 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6329 Set_Discriminant_Constraint
(
6330 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
6334 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
6336 Set_Has_Completion
(Derived_Type
);
6338 if Corr_Decl_Needed
then
6339 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
6340 Insert_After
(N
, Corr_Decl
);
6341 Analyze
(Corr_Decl
);
6342 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
6344 end Build_Derived_Concurrent_Type
;
6346 ------------------------------------
6347 -- Build_Derived_Enumeration_Type --
6348 ------------------------------------
6350 procedure Build_Derived_Enumeration_Type
6352 Parent_Type
: Entity_Id
;
6353 Derived_Type
: Entity_Id
)
6355 Loc
: constant Source_Ptr
:= Sloc
(N
);
6356 Def
: constant Node_Id
:= Type_Definition
(N
);
6357 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6358 Implicit_Base
: Entity_Id
;
6359 Literal
: Entity_Id
;
6360 New_Lit
: Entity_Id
;
6361 Literals_List
: List_Id
;
6362 Type_Decl
: Node_Id
;
6364 Rang_Expr
: Node_Id
;
6367 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6368 -- not have explicit literals lists we need to process types derived
6369 -- from them specially. This is handled by Derived_Standard_Character.
6370 -- If the parent type is a generic type, there are no literals either,
6371 -- and we construct the same skeletal representation as for the generic
6374 if Is_Standard_Character_Type
(Parent_Type
) then
6375 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
6377 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
6383 if Nkind
(Indic
) /= N_Subtype_Indication
then
6385 Make_Attribute_Reference
(Loc
,
6386 Attribute_Name
=> Name_First
,
6387 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6388 Set_Etype
(Lo
, Derived_Type
);
6391 Make_Attribute_Reference
(Loc
,
6392 Attribute_Name
=> Name_Last
,
6393 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6394 Set_Etype
(Hi
, Derived_Type
);
6396 Set_Scalar_Range
(Derived_Type
,
6402 -- Analyze subtype indication and verify compatibility
6403 -- with parent type.
6405 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
6406 Base_Type
(Parent_Type
)
6409 ("illegal constraint for formal discrete type", N
);
6415 -- If a constraint is present, analyze the bounds to catch
6416 -- premature usage of the derived literals.
6418 if Nkind
(Indic
) = N_Subtype_Indication
6419 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
6421 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
6422 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
6425 -- Introduce an implicit base type for the derived type even if there
6426 -- is no constraint attached to it, since this seems closer to the
6427 -- Ada semantics. Build a full type declaration tree for the derived
6428 -- type using the implicit base type as the defining identifier. The
6429 -- build a subtype declaration tree which applies the constraint (if
6430 -- any) have it replace the derived type declaration.
6432 Literal
:= First_Literal
(Parent_Type
);
6433 Literals_List
:= New_List
;
6434 while Present
(Literal
)
6435 and then Ekind
(Literal
) = E_Enumeration_Literal
6437 -- Literals of the derived type have the same representation as
6438 -- those of the parent type, but this representation can be
6439 -- overridden by an explicit representation clause. Indicate
6440 -- that there is no explicit representation given yet. These
6441 -- derived literals are implicit operations of the new type,
6442 -- and can be overridden by explicit ones.
6444 if Nkind
(Literal
) = N_Defining_Character_Literal
then
6446 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
6448 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
6451 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
6452 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
6453 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
6454 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
6455 Set_Alias
(New_Lit
, Literal
);
6456 Set_Is_Known_Valid
(New_Lit
, True);
6458 Append
(New_Lit
, Literals_List
);
6459 Next_Literal
(Literal
);
6463 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6464 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
6466 -- Indicate the proper nature of the derived type. This must be done
6467 -- before analysis of the literals, to recognize cases when a literal
6468 -- may be hidden by a previous explicit function definition (cf.
6471 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
6472 Set_Etype
(Derived_Type
, Implicit_Base
);
6475 Make_Full_Type_Declaration
(Loc
,
6476 Defining_Identifier
=> Implicit_Base
,
6477 Discriminant_Specifications
=> No_List
,
6479 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
6481 Mark_Rewrite_Insertion
(Type_Decl
);
6482 Insert_Before
(N
, Type_Decl
);
6483 Analyze
(Type_Decl
);
6485 -- After the implicit base is analyzed its Etype needs to be changed
6486 -- to reflect the fact that it is derived from the parent type which
6487 -- was ignored during analysis. We also set the size at this point.
6489 Set_Etype
(Implicit_Base
, Parent_Type
);
6491 Set_Size_Info
(Implicit_Base
, Parent_Type
);
6492 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
6493 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
6495 -- Copy other flags from parent type
6497 Set_Has_Non_Standard_Rep
6498 (Implicit_Base
, Has_Non_Standard_Rep
6500 Set_Has_Pragma_Ordered
6501 (Implicit_Base
, Has_Pragma_Ordered
6503 Set_Has_Delayed_Freeze
(Implicit_Base
);
6505 -- Process the subtype indication including a validation check on the
6506 -- constraint, if any. If a constraint is given, its bounds must be
6507 -- implicitly converted to the new type.
6509 if Nkind
(Indic
) = N_Subtype_Indication
then
6511 R
: constant Node_Id
:=
6512 Range_Expression
(Constraint
(Indic
));
6515 if Nkind
(R
) = N_Range
then
6516 Hi
:= Build_Scalar_Bound
6517 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
6518 Lo
:= Build_Scalar_Bound
6519 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
6522 -- Constraint is a Range attribute. Replace with explicit
6523 -- mention of the bounds of the prefix, which must be a
6526 Analyze
(Prefix
(R
));
6528 Convert_To
(Implicit_Base
,
6529 Make_Attribute_Reference
(Loc
,
6530 Attribute_Name
=> Name_Last
,
6532 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6535 Convert_To
(Implicit_Base
,
6536 Make_Attribute_Reference
(Loc
,
6537 Attribute_Name
=> Name_First
,
6539 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6546 (Type_High_Bound
(Parent_Type
),
6547 Parent_Type
, Implicit_Base
);
6550 (Type_Low_Bound
(Parent_Type
),
6551 Parent_Type
, Implicit_Base
);
6559 -- If we constructed a default range for the case where no range
6560 -- was given, then the expressions in the range must not freeze
6561 -- since they do not correspond to expressions in the source.
6563 if Nkind
(Indic
) /= N_Subtype_Indication
then
6564 Set_Must_Not_Freeze
(Lo
);
6565 Set_Must_Not_Freeze
(Hi
);
6566 Set_Must_Not_Freeze
(Rang_Expr
);
6570 Make_Subtype_Declaration
(Loc
,
6571 Defining_Identifier
=> Derived_Type
,
6572 Subtype_Indication
=>
6573 Make_Subtype_Indication
(Loc
,
6574 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6576 Make_Range_Constraint
(Loc
,
6577 Range_Expression
=> Rang_Expr
))));
6581 -- Propagate the aspects from the original type declaration to the
6582 -- declaration of the implicit base.
6584 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
6586 -- Apply a range check. Since this range expression doesn't have an
6587 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6590 if Nkind
(Indic
) = N_Subtype_Indication
then
6592 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
6593 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
6596 end Build_Derived_Enumeration_Type
;
6598 --------------------------------
6599 -- Build_Derived_Numeric_Type --
6600 --------------------------------
6602 procedure Build_Derived_Numeric_Type
6604 Parent_Type
: Entity_Id
;
6605 Derived_Type
: Entity_Id
)
6607 Loc
: constant Source_Ptr
:= Sloc
(N
);
6608 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6609 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6610 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6611 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
6612 N_Subtype_Indication
;
6613 Implicit_Base
: Entity_Id
;
6619 -- Process the subtype indication including a validation check on
6620 -- the constraint if any.
6622 Discard_Node
(Process_Subtype
(Indic
, N
));
6624 -- Introduce an implicit base type for the derived type even if there
6625 -- is no constraint attached to it, since this seems closer to the Ada
6629 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6631 Set_Etype
(Implicit_Base
, Parent_Base
);
6632 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6633 Set_Size_Info
(Implicit_Base
, Parent_Base
);
6634 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
6635 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
6636 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6638 -- Set RM Size for discrete type or decimal fixed-point type
6639 -- Ordinary fixed-point is excluded, why???
6641 if Is_Discrete_Type
(Parent_Base
)
6642 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
6644 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
6647 Set_Has_Delayed_Freeze
(Implicit_Base
);
6649 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
6650 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
6652 Set_Scalar_Range
(Implicit_Base
,
6657 if Has_Infinities
(Parent_Base
) then
6658 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
6661 -- The Derived_Type, which is the entity of the declaration, is a
6662 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6663 -- absence of an explicit constraint.
6665 Set_Etype
(Derived_Type
, Implicit_Base
);
6667 -- If we did not have a constraint, then the Ekind is set from the
6668 -- parent type (otherwise Process_Subtype has set the bounds)
6670 if No_Constraint
then
6671 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
6674 -- If we did not have a range constraint, then set the range from the
6675 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6677 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
6678 Set_Scalar_Range
(Derived_Type
,
6680 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6681 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6682 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6684 if Has_Infinities
(Parent_Type
) then
6685 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6688 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6691 Set_Is_Descendent_Of_Address
(Derived_Type
,
6692 Is_Descendent_Of_Address
(Parent_Type
));
6693 Set_Is_Descendent_Of_Address
(Implicit_Base
,
6694 Is_Descendent_Of_Address
(Parent_Type
));
6696 -- Set remaining type-specific fields, depending on numeric type
6698 if Is_Modular_Integer_Type
(Parent_Type
) then
6699 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6701 Set_Non_Binary_Modulus
6702 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6705 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6707 elsif Is_Floating_Point_Type
(Parent_Type
) then
6709 -- Digits of base type is always copied from the digits value of
6710 -- the parent base type, but the digits of the derived type will
6711 -- already have been set if there was a constraint present.
6713 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6714 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6716 if No_Constraint
then
6717 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6720 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6722 -- Small of base type and derived type are always copied from the
6723 -- parent base type, since smalls never change. The delta of the
6724 -- base type is also copied from the parent base type. However the
6725 -- delta of the derived type will have been set already if a
6726 -- constraint was present.
6728 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6729 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6730 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6732 if No_Constraint
then
6733 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6736 -- The scale and machine radix in the decimal case are always
6737 -- copied from the parent base type.
6739 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6740 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6741 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6743 Set_Machine_Radix_10
6744 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6745 Set_Machine_Radix_10
6746 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6748 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6750 if No_Constraint
then
6751 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6754 -- the analysis of the subtype_indication sets the
6755 -- digits value of the derived type.
6762 if Is_Integer_Type
(Parent_Type
) then
6763 Set_Has_Shift_Operator
6764 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
6767 -- The type of the bounds is that of the parent type, and they
6768 -- must be converted to the derived type.
6770 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6772 -- The implicit_base should be frozen when the derived type is frozen,
6773 -- but note that it is used in the conversions of the bounds. For fixed
6774 -- types we delay the determination of the bounds until the proper
6775 -- freezing point. For other numeric types this is rejected by GCC, for
6776 -- reasons that are currently unclear (???), so we choose to freeze the
6777 -- implicit base now. In the case of integers and floating point types
6778 -- this is harmless because subsequent representation clauses cannot
6779 -- affect anything, but it is still baffling that we cannot use the
6780 -- same mechanism for all derived numeric types.
6782 -- There is a further complication: actually some representation
6783 -- clauses can affect the implicit base type. For example, attribute
6784 -- definition clauses for stream-oriented attributes need to set the
6785 -- corresponding TSS entries on the base type, and this normally
6786 -- cannot be done after the base type is frozen, so the circuitry in
6787 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6788 -- and not use Set_TSS in this case.
6790 -- There are also consequences for the case of delayed representation
6791 -- aspects for some cases. For example, a Size aspect is delayed and
6792 -- should not be evaluated to the freeze point. This early freezing
6793 -- means that the size attribute evaluation happens too early???
6795 if Is_Fixed_Point_Type
(Parent_Type
) then
6796 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6798 Freeze_Before
(N
, Implicit_Base
);
6800 end Build_Derived_Numeric_Type
;
6802 --------------------------------
6803 -- Build_Derived_Private_Type --
6804 --------------------------------
6806 procedure Build_Derived_Private_Type
6808 Parent_Type
: Entity_Id
;
6809 Derived_Type
: Entity_Id
;
6810 Is_Completion
: Boolean;
6811 Derive_Subps
: Boolean := True)
6813 Loc
: constant Source_Ptr
:= Sloc
(N
);
6814 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6815 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
6816 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
6817 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
6820 procedure Build_Full_Derivation
;
6821 -- Build full derivation, i.e. derive from the full view
6823 procedure Copy_And_Build
;
6824 -- Copy derived type declaration, replace parent with its full view,
6825 -- and build derivation
6827 ---------------------------
6828 -- Build_Full_Derivation --
6829 ---------------------------
6831 procedure Build_Full_Derivation
is
6833 -- If parent scope is not open, install the declarations
6835 if not In_Open_Scopes
(Par_Scope
) then
6836 Install_Private_Declarations
(Par_Scope
);
6837 Install_Visible_Declarations
(Par_Scope
);
6839 Uninstall_Declarations
(Par_Scope
);
6841 -- If parent scope is open and in another unit, and parent has a
6842 -- completion, then the derivation is taking place in the visible
6843 -- part of a child unit. In that case retrieve the full view of
6844 -- the parent momentarily.
6846 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6847 Full_P
:= Full_View
(Parent_Type
);
6848 Exchange_Declarations
(Parent_Type
);
6850 Exchange_Declarations
(Full_P
);
6852 -- Otherwise it is a local derivation
6857 end Build_Full_Derivation
;
6859 --------------------
6860 -- Copy_And_Build --
6861 --------------------
6863 procedure Copy_And_Build
is
6864 Full_Parent
: Entity_Id
:= Parent_Type
;
6867 -- If the parent is itself derived from another private type,
6868 -- installing the private declarations has not affected its
6869 -- privacy status, so use its own full view explicitly.
6871 if Is_Private_Type
(Full_Parent
)
6872 and then Present
(Full_View
(Full_Parent
))
6874 Full_Parent
:= Full_View
(Full_Parent
);
6877 -- And its underlying full view if necessary
6879 if Is_Private_Type
(Full_Parent
)
6880 and then Present
(Underlying_Full_View
(Full_Parent
))
6882 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
6885 -- For record, access and most enumeration types, derivation from
6886 -- the full view requires a fully-fledged declaration. In the other
6887 -- cases, just use an itype.
6889 if Ekind
(Full_Parent
) in Record_Kind
6890 or else Ekind
(Full_Parent
) in Access_Kind
6892 (Ekind
(Full_Parent
) in Enumeration_Kind
6893 and then not Is_Standard_Character_Type
(Full_Parent
)
6894 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
6896 -- Copy and adjust declaration to provide a completion for what
6897 -- is originally a private declaration. Indicate that full view
6898 -- is internally generated.
6900 Set_Comes_From_Source
(Full_N
, False);
6901 Set_Comes_From_Source
(Full_Der
, False);
6902 Set_Parent
(Full_Der
, Full_N
);
6903 Set_Defining_Identifier
(Full_N
, Full_Der
);
6905 -- If there are no constraints, adjust the subtype mark
6907 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
6908 N_Subtype_Indication
6910 Set_Subtype_Indication
6911 (Type_Definition
(Full_N
),
6912 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
6915 Insert_After
(N
, Full_N
);
6917 -- Build full view of derived type from full view of parent which
6918 -- is now installed. Subprograms have been derived on the partial
6919 -- view, the completion does not derive them anew.
6921 if Ekind
(Full_Parent
) in Record_Kind
then
6923 -- If parent type is tagged, the completion inherits the proper
6924 -- primitive operations.
6926 if Is_Tagged_Type
(Parent_Type
) then
6927 Build_Derived_Record_Type
6928 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
6930 Build_Derived_Record_Type
6931 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
6936 (Full_N
, Full_Parent
, Full_Der
,
6937 Is_Completion
=> False, Derive_Subps
=> False);
6940 -- The full declaration has been introduced into the tree and
6941 -- processed in the step above. It should not be analyzed again
6942 -- (when encountered later in the current list of declarations)
6943 -- to prevent spurious name conflicts. The full entity remains
6946 Set_Analyzed
(Full_N
);
6950 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6951 Chars
=> Chars
(Derived_Type
));
6952 Set_Is_Itype
(Full_Der
);
6953 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6954 Set_Parent
(Full_Der
, N
);
6956 (N
, Full_Parent
, Full_Der
,
6957 Is_Completion
=> False, Derive_Subps
=> False);
6960 Set_Has_Private_Declaration
(Full_Der
);
6961 Set_Has_Private_Declaration
(Derived_Type
);
6963 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
6964 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
6965 Set_Has_Size_Clause
(Full_Der
, False);
6966 Set_Has_Alignment_Clause
(Full_Der
, False);
6967 Set_Has_Delayed_Freeze
(Full_Der
);
6968 Set_Is_Frozen
(Full_Der
, False);
6969 Set_Freeze_Node
(Full_Der
, Empty
);
6970 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
6971 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
6973 -- The convention on the base type may be set in the private part
6974 -- and not propagated to the subtype until later, so we obtain the
6975 -- convention from the base type of the parent.
6977 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
6980 -- Start of processing for Build_Derived_Private_Type
6983 if Is_Tagged_Type
(Parent_Type
) then
6984 Full_P
:= Full_View
(Parent_Type
);
6986 -- A type extension of a type with unknown discriminants is an
6987 -- indefinite type that the back-end cannot handle directly.
6988 -- We treat it as a private type, and build a completion that is
6989 -- derived from the full view of the parent, and hopefully has
6990 -- known discriminants.
6992 -- If the full view of the parent type has an underlying record view,
6993 -- use it to generate the underlying record view of this derived type
6994 -- (required for chains of derivations with unknown discriminants).
6996 -- Minor optimization: we avoid the generation of useless underlying
6997 -- record view entities if the private type declaration has unknown
6998 -- discriminants but its corresponding full view has no
7001 if Has_Unknown_Discriminants
(Parent_Type
)
7002 and then Present
(Full_P
)
7003 and then (Has_Discriminants
(Full_P
)
7004 or else Present
(Underlying_Record_View
(Full_P
)))
7005 and then not In_Open_Scopes
(Par_Scope
)
7006 and then Expander_Active
7009 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7010 New_Ext
: constant Node_Id
:=
7012 (Record_Extension_Part
(Type_Definition
(N
)));
7016 Build_Derived_Record_Type
7017 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7019 -- Build anonymous completion, as a derivation from the full
7020 -- view of the parent. This is not a completion in the usual
7021 -- sense, because the current type is not private.
7024 Make_Full_Type_Declaration
(Loc
,
7025 Defining_Identifier
=> Full_Der
,
7027 Make_Derived_Type_Definition
(Loc
,
7028 Subtype_Indication
=>
7030 (Subtype_Indication
(Type_Definition
(N
))),
7031 Record_Extension_Part
=> New_Ext
));
7033 -- If the parent type has an underlying record view, use it
7034 -- here to build the new underlying record view.
7036 if Present
(Underlying_Record_View
(Full_P
)) then
7038 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
7040 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
7041 Underlying_Record_View
(Full_P
));
7044 Install_Private_Declarations
(Par_Scope
);
7045 Install_Visible_Declarations
(Par_Scope
);
7046 Insert_Before
(N
, Decl
);
7048 -- Mark entity as an underlying record view before analysis,
7049 -- to avoid generating the list of its primitive operations
7050 -- (which is not really required for this entity) and thus
7051 -- prevent spurious errors associated with missing overriding
7052 -- of abstract primitives (overridden only for Derived_Type).
7054 Set_Ekind
(Full_Der
, E_Record_Type
);
7055 Set_Is_Underlying_Record_View
(Full_Der
);
7056 Set_Default_SSO
(Full_Der
);
7060 pragma Assert
(Has_Discriminants
(Full_Der
)
7061 and then not Has_Unknown_Discriminants
(Full_Der
));
7063 Uninstall_Declarations
(Par_Scope
);
7065 -- Freeze the underlying record view, to prevent generation of
7066 -- useless dispatching information, which is simply shared with
7067 -- the real derived type.
7069 Set_Is_Frozen
(Full_Der
);
7071 -- If the derived type has access discriminants, create
7072 -- references to their anonymous types now, to prevent
7073 -- back-end problems when their first use is in generated
7074 -- bodies of primitives.
7080 E
:= First_Entity
(Full_Der
);
7082 while Present
(E
) loop
7083 if Ekind
(E
) = E_Discriminant
7084 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
7086 Build_Itype_Reference
(Etype
(E
), Decl
);
7093 -- Set up links between real entity and underlying record view
7095 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
7096 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
7099 -- If discriminants are known, build derived record
7102 Build_Derived_Record_Type
7103 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7108 elsif Has_Discriminants
(Parent_Type
) then
7110 -- Build partial view of derived type from partial view of parent.
7111 -- This must be done before building the full derivation because the
7112 -- second derivation will modify the discriminants of the first and
7113 -- the discriminants are chained with the rest of the components in
7114 -- the full derivation.
7116 Build_Derived_Record_Type
7117 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7119 -- Build the full derivation if this is not the anonymous derived
7120 -- base type created by Build_Derived_Record_Type in the constrained
7121 -- case (see point 5. of its head comment) since we build it for the
7122 -- derived subtype. And skip it for protected types altogether, as
7123 -- gigi does not use these types directly.
7125 if Present
(Full_View
(Parent_Type
))
7126 and then not Is_Itype
(Derived_Type
)
7127 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7130 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7132 Last_Discr
: Entity_Id
;
7135 -- If this is not a completion, construct the implicit full
7136 -- view by deriving from the full view of the parent type.
7137 -- But if this is a completion, the derived private type
7138 -- being built is a full view and the full derivation can
7139 -- only be its underlying full view.
7141 Build_Full_Derivation
;
7143 if not Is_Completion
then
7144 Set_Full_View
(Derived_Type
, Full_Der
);
7146 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7149 if not Is_Base_Type
(Derived_Type
) then
7150 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7153 -- Copy the discriminant list from full view to the partial
7154 -- view (base type and its subtype). Gigi requires that the
7155 -- partial and full views have the same discriminants.
7157 -- Note that since the partial view points to discriminants
7158 -- in the full view, their scope will be that of the full
7159 -- view. This might cause some front end problems and need
7162 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7163 Set_First_Entity
(Der_Base
, Discr
);
7166 Last_Discr
:= Discr
;
7167 Next_Discriminant
(Discr
);
7168 exit when No
(Discr
);
7171 Set_Last_Entity
(Der_Base
, Last_Discr
);
7172 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7173 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7175 Set_Stored_Constraint
7176 (Full_Der
, Stored_Constraint
(Derived_Type
));
7180 elsif Present
(Full_View
(Parent_Type
))
7181 and then Has_Discriminants
(Full_View
(Parent_Type
))
7183 if Has_Unknown_Discriminants
(Parent_Type
)
7184 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7185 N_Subtype_Indication
7188 ("cannot constrain type with unknown discriminants",
7189 Subtype_Indication
(Type_Definition
(N
)));
7193 -- If this is not a completion, construct the implicit full view by
7194 -- deriving from the full view of the parent type. But if this is a
7195 -- completion, the derived private type being built is a full view
7196 -- and the full derivation can only be its underlying full view.
7198 Build_Full_Derivation
;
7200 if not Is_Completion
then
7201 Set_Full_View
(Derived_Type
, Full_Der
);
7203 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7206 -- In any case, the primitive operations are inherited from the
7207 -- parent type, not from the internal full view.
7209 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7211 if Derive_Subps
then
7212 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7215 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7217 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7220 -- Untagged type, No discriminants on either view
7222 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7223 N_Subtype_Indication
7226 ("illegal constraint on type without discriminants", N
);
7229 if Present
(Discriminant_Specifications
(N
))
7230 and then Present
(Full_View
(Parent_Type
))
7231 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7233 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7236 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7237 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7238 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7239 Set_Has_Controlled_Component
7240 (Derived_Type
, Has_Controlled_Component
7243 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7245 if not Is_Controlled
(Parent_Type
) then
7246 Set_Finalize_Storage_Only
7247 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7250 -- If this is not a completion, construct the implicit full view by
7251 -- deriving from the full view of the parent type.
7253 -- ??? If the parent is untagged private and its completion is
7254 -- tagged, this mechanism will not work because we cannot derive from
7255 -- the tagged full view unless we have an extension.
7257 if Present
(Full_View
(Parent_Type
))
7258 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7259 and then not Is_Completion
7261 Build_Full_Derivation
;
7262 Set_Full_View
(Derived_Type
, Full_Der
);
7266 Set_Has_Unknown_Discriminants
(Derived_Type
,
7267 Has_Unknown_Discriminants
(Parent_Type
));
7269 if Is_Private_Type
(Derived_Type
) then
7270 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7273 -- If the parent base type is in scope, add the derived type to its
7274 -- list of private dependents, because its full view may become
7275 -- visible subsequently (in a nested private part, a body, or in a
7276 -- further child unit).
7278 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7279 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
7281 -- Check for unusual case where a type completed by a private
7282 -- derivation occurs within a package nested in a child unit, and
7283 -- the parent is declared in an ancestor.
7285 if Is_Child_Unit
(Scope
(Current_Scope
))
7286 and then Is_Completion
7287 and then In_Private_Part
(Current_Scope
)
7288 and then Scope
(Parent_Type
) /= Current_Scope
7290 -- Note that if the parent has a completion in the private part,
7291 -- (which is itself a derivation from some other private type)
7292 -- it is that completion that is visible, there is no full view
7293 -- available, and no special processing is needed.
7295 and then Present
(Full_View
(Parent_Type
))
7297 -- In this case, the full view of the parent type will become
7298 -- visible in the body of the enclosing child, and only then will
7299 -- the current type be possibly non-private. Build an underlying
7300 -- full view that will be installed when the enclosing child body
7303 if Present
(Underlying_Full_View
(Derived_Type
)) then
7304 Full_Der
:= Underlying_Full_View
(Derived_Type
);
7306 Build_Full_Derivation
;
7307 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7310 -- The full view will be used to swap entities on entry/exit to
7311 -- the body, and must appear in the entity list for the package.
7313 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
7316 end Build_Derived_Private_Type
;
7318 -------------------------------
7319 -- Build_Derived_Record_Type --
7320 -------------------------------
7324 -- Ideally we would like to use the same model of type derivation for
7325 -- tagged and untagged record types. Unfortunately this is not quite
7326 -- possible because the semantics of representation clauses is different
7327 -- for tagged and untagged records under inheritance. Consider the
7330 -- type R (...) is [tagged] record ... end record;
7331 -- type T (...) is new R (...) [with ...];
7333 -- The representation clauses for T can specify a completely different
7334 -- record layout from R's. Hence the same component can be placed in two
7335 -- very different positions in objects of type T and R. If R and T are
7336 -- tagged types, representation clauses for T can only specify the layout
7337 -- of non inherited components, thus components that are common in R and T
7338 -- have the same position in objects of type R and T.
7340 -- This has two implications. The first is that the entire tree for R's
7341 -- declaration needs to be copied for T in the untagged case, so that T
7342 -- can be viewed as a record type of its own with its own representation
7343 -- clauses. The second implication is the way we handle discriminants.
7344 -- Specifically, in the untagged case we need a way to communicate to Gigi
7345 -- what are the real discriminants in the record, while for the semantics
7346 -- we need to consider those introduced by the user to rename the
7347 -- discriminants in the parent type. This is handled by introducing the
7348 -- notion of stored discriminants. See below for more.
7350 -- Fortunately the way regular components are inherited can be handled in
7351 -- the same way in tagged and untagged types.
7353 -- To complicate things a bit more the private view of a private extension
7354 -- cannot be handled in the same way as the full view (for one thing the
7355 -- semantic rules are somewhat different). We will explain what differs
7358 -- 2. DISCRIMINANTS UNDER INHERITANCE
7360 -- The semantic rules governing the discriminants of derived types are
7363 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7364 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7366 -- If parent type has discriminants, then the discriminants that are
7367 -- declared in the derived type are [3.4 (11)]:
7369 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7372 -- o Otherwise, each discriminant of the parent type (implicitly declared
7373 -- in the same order with the same specifications). In this case, the
7374 -- discriminants are said to be "inherited", or if unknown in the parent
7375 -- are also unknown in the derived type.
7377 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7379 -- o The parent subtype must be constrained;
7381 -- o If the parent type is not a tagged type, then each discriminant of
7382 -- the derived type must be used in the constraint defining a parent
7383 -- subtype. [Implementation note: This ensures that the new discriminant
7384 -- can share storage with an existing discriminant.]
7386 -- For the derived type each discriminant of the parent type is either
7387 -- inherited, constrained to equal some new discriminant of the derived
7388 -- type, or constrained to the value of an expression.
7390 -- When inherited or constrained to equal some new discriminant, the
7391 -- parent discriminant and the discriminant of the derived type are said
7394 -- If a discriminant of the parent type is constrained to a specific value
7395 -- in the derived type definition, then the discriminant is said to be
7396 -- "specified" by that derived type definition.
7398 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7400 -- We have spoken about stored discriminants in point 1 (introduction)
7401 -- above. There are two sort of stored discriminants: implicit and
7402 -- explicit. As long as the derived type inherits the same discriminants as
7403 -- the root record type, stored discriminants are the same as regular
7404 -- discriminants, and are said to be implicit. However, if any discriminant
7405 -- in the root type was renamed in the derived type, then the derived
7406 -- type will contain explicit stored discriminants. Explicit stored
7407 -- discriminants are discriminants in addition to the semantically visible
7408 -- discriminants defined for the derived type. Stored discriminants are
7409 -- used by Gigi to figure out what are the physical discriminants in
7410 -- objects of the derived type (see precise definition in einfo.ads).
7411 -- As an example, consider the following:
7413 -- type R (D1, D2, D3 : Int) is record ... end record;
7414 -- type T1 is new R;
7415 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7416 -- type T3 is new T2;
7417 -- type T4 (Y : Int) is new T3 (Y, 99);
7419 -- The following table summarizes the discriminants and stored
7420 -- discriminants in R and T1 through T4.
7422 -- Type Discrim Stored Discrim Comment
7423 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7424 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7425 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7426 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7427 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7429 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7430 -- find the corresponding discriminant in the parent type, while
7431 -- Original_Record_Component (abbreviated ORC below), the actual physical
7432 -- component that is renamed. Finally the field Is_Completely_Hidden
7433 -- (abbreviated ICH below) is set for all explicit stored discriminants
7434 -- (see einfo.ads for more info). For the above example this gives:
7436 -- Discrim CD ORC ICH
7437 -- ^^^^^^^ ^^ ^^^ ^^^
7438 -- D1 in R empty itself no
7439 -- D2 in R empty itself no
7440 -- D3 in R empty itself no
7442 -- D1 in T1 D1 in R itself no
7443 -- D2 in T1 D2 in R itself no
7444 -- D3 in T1 D3 in R itself no
7446 -- X1 in T2 D3 in T1 D3 in T2 no
7447 -- X2 in T2 D1 in T1 D1 in T2 no
7448 -- D1 in T2 empty itself yes
7449 -- D2 in T2 empty itself yes
7450 -- D3 in T2 empty itself yes
7452 -- X1 in T3 X1 in T2 D3 in T3 no
7453 -- X2 in T3 X2 in T2 D1 in T3 no
7454 -- D1 in T3 empty itself yes
7455 -- D2 in T3 empty itself yes
7456 -- D3 in T3 empty itself yes
7458 -- Y in T4 X1 in T3 D3 in T3 no
7459 -- D1 in T3 empty itself yes
7460 -- D2 in T3 empty itself yes
7461 -- D3 in T3 empty itself yes
7463 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7465 -- Type derivation for tagged types is fairly straightforward. If no
7466 -- discriminants are specified by the derived type, these are inherited
7467 -- from the parent. No explicit stored discriminants are ever necessary.
7468 -- The only manipulation that is done to the tree is that of adding a
7469 -- _parent field with parent type and constrained to the same constraint
7470 -- specified for the parent in the derived type definition. For instance:
7472 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7473 -- type T1 is new R with null record;
7474 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7476 -- are changed into:
7478 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7479 -- _parent : R (D1, D2, D3);
7482 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7483 -- _parent : T1 (X2, 88, X1);
7486 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7487 -- ORC and ICH fields are:
7489 -- Discrim CD ORC ICH
7490 -- ^^^^^^^ ^^ ^^^ ^^^
7491 -- D1 in R empty itself no
7492 -- D2 in R empty itself no
7493 -- D3 in R empty itself no
7495 -- D1 in T1 D1 in R D1 in R no
7496 -- D2 in T1 D2 in R D2 in R no
7497 -- D3 in T1 D3 in R D3 in R no
7499 -- X1 in T2 D3 in T1 D3 in R no
7500 -- X2 in T2 D1 in T1 D1 in R no
7502 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7504 -- Regardless of whether we dealing with a tagged or untagged type
7505 -- we will transform all derived type declarations of the form
7507 -- type T is new R (...) [with ...];
7509 -- subtype S is R (...);
7510 -- type T is new S [with ...];
7512 -- type BT is new R [with ...];
7513 -- subtype T is BT (...);
7515 -- That is, the base derived type is constrained only if it has no
7516 -- discriminants. The reason for doing this is that GNAT's semantic model
7517 -- assumes that a base type with discriminants is unconstrained.
7519 -- Note that, strictly speaking, the above transformation is not always
7520 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7522 -- procedure B34011A is
7523 -- type REC (D : integer := 0) is record
7528 -- type T6 is new Rec;
7529 -- function F return T6;
7534 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7537 -- The definition of Q6.U is illegal. However transforming Q6.U into
7539 -- type BaseU is new T6;
7540 -- subtype U is BaseU (Q6.F.I)
7542 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7543 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7544 -- the transformation described above.
7546 -- There is another instance where the above transformation is incorrect.
7550 -- type Base (D : Integer) is tagged null record;
7551 -- procedure P (X : Base);
7553 -- type Der is new Base (2) with null record;
7554 -- procedure P (X : Der);
7557 -- Then the above transformation turns this into
7559 -- type Der_Base is new Base with null record;
7560 -- -- procedure P (X : Base) is implicitly inherited here
7561 -- -- as procedure P (X : Der_Base).
7563 -- subtype Der is Der_Base (2);
7564 -- procedure P (X : Der);
7565 -- -- The overriding of P (X : Der_Base) is illegal since we
7566 -- -- have a parameter conformance problem.
7568 -- To get around this problem, after having semantically processed Der_Base
7569 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7570 -- Discriminant_Constraint from Der so that when parameter conformance is
7571 -- checked when P is overridden, no semantic errors are flagged.
7573 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7575 -- Regardless of whether we are dealing with a tagged or untagged type
7576 -- we will transform all derived type declarations of the form
7578 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7579 -- type T is new R [with ...];
7581 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7583 -- The reason for such transformation is that it allows us to implement a
7584 -- very clean form of component inheritance as explained below.
7586 -- Note that this transformation is not achieved by direct tree rewriting
7587 -- and manipulation, but rather by redoing the semantic actions that the
7588 -- above transformation will entail. This is done directly in routine
7589 -- Inherit_Components.
7591 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7593 -- In both tagged and untagged derived types, regular non discriminant
7594 -- components are inherited in the derived type from the parent type. In
7595 -- the absence of discriminants component, inheritance is straightforward
7596 -- as components can simply be copied from the parent.
7598 -- If the parent has discriminants, inheriting components constrained with
7599 -- these discriminants requires caution. Consider the following example:
7601 -- type R (D1, D2 : Positive) is [tagged] record
7602 -- S : String (D1 .. D2);
7605 -- type T1 is new R [with null record];
7606 -- type T2 (X : positive) is new R (1, X) [with null record];
7608 -- As explained in 6. above, T1 is rewritten as
7609 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7610 -- which makes the treatment for T1 and T2 identical.
7612 -- What we want when inheriting S, is that references to D1 and D2 in R are
7613 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7614 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7615 -- with either discriminant references in the derived type or expressions.
7616 -- This replacement is achieved as follows: before inheriting R's
7617 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7618 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7619 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7620 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7621 -- by String (1 .. X).
7623 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7625 -- We explain here the rules governing private type extensions relevant to
7626 -- type derivation. These rules are explained on the following example:
7628 -- type D [(...)] is new A [(...)] with private; <-- partial view
7629 -- type D [(...)] is new P [(...)] with null record; <-- full view
7631 -- Type A is called the ancestor subtype of the private extension.
7632 -- Type P is the parent type of the full view of the private extension. It
7633 -- must be A or a type derived from A.
7635 -- The rules concerning the discriminants of private type extensions are
7638 -- o If a private extension inherits known discriminants from the ancestor
7639 -- subtype, then the full view must also inherit its discriminants from
7640 -- the ancestor subtype and the parent subtype of the full view must be
7641 -- constrained if and only if the ancestor subtype is constrained.
7643 -- o If a partial view has unknown discriminants, then the full view may
7644 -- define a definite or an indefinite subtype, with or without
7647 -- o If a partial view has neither known nor unknown discriminants, then
7648 -- the full view must define a definite subtype.
7650 -- o If the ancestor subtype of a private extension has constrained
7651 -- discriminants, then the parent subtype of the full view must impose a
7652 -- statically matching constraint on those discriminants.
7654 -- This means that only the following forms of private extensions are
7657 -- type D is new A with private; <-- partial view
7658 -- type D is new P with null record; <-- full view
7660 -- If A has no discriminants than P has no discriminants, otherwise P must
7661 -- inherit A's discriminants.
7663 -- type D is new A (...) with private; <-- partial view
7664 -- type D is new P (:::) with null record; <-- full view
7666 -- P must inherit A's discriminants and (...) and (:::) must statically
7669 -- subtype A is R (...);
7670 -- type D is new A with private; <-- partial view
7671 -- type D is new P with null record; <-- full view
7673 -- P must have inherited R's discriminants and must be derived from A or
7674 -- any of its subtypes.
7676 -- type D (..) is new A with private; <-- partial view
7677 -- type D (..) is new P [(:::)] with null record; <-- full view
7679 -- No specific constraints on P's discriminants or constraint (:::).
7680 -- Note that A can be unconstrained, but the parent subtype P must either
7681 -- be constrained or (:::) must be present.
7683 -- type D (..) is new A [(...)] with private; <-- partial view
7684 -- type D (..) is new P [(:::)] with null record; <-- full view
7686 -- P's constraints on A's discriminants must statically match those
7687 -- imposed by (...).
7689 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7691 -- The full view of a private extension is handled exactly as described
7692 -- above. The model chose for the private view of a private extension is
7693 -- the same for what concerns discriminants (i.e. they receive the same
7694 -- treatment as in the tagged case). However, the private view of the
7695 -- private extension always inherits the components of the parent base,
7696 -- without replacing any discriminant reference. Strictly speaking this is
7697 -- incorrect. However, Gigi never uses this view to generate code so this
7698 -- is a purely semantic issue. In theory, a set of transformations similar
7699 -- to those given in 5. and 6. above could be applied to private views of
7700 -- private extensions to have the same model of component inheritance as
7701 -- for non private extensions. However, this is not done because it would
7702 -- further complicate private type processing. Semantically speaking, this
7703 -- leaves us in an uncomfortable situation. As an example consider:
7706 -- type R (D : integer) is tagged record
7707 -- S : String (1 .. D);
7709 -- procedure P (X : R);
7710 -- type T is new R (1) with private;
7712 -- type T is new R (1) with null record;
7715 -- This is transformed into:
7718 -- type R (D : integer) is tagged record
7719 -- S : String (1 .. D);
7721 -- procedure P (X : R);
7722 -- type T is new R (1) with private;
7724 -- type BaseT is new R with null record;
7725 -- subtype T is BaseT (1);
7728 -- (strictly speaking the above is incorrect Ada)
7730 -- From the semantic standpoint the private view of private extension T
7731 -- should be flagged as constrained since one can clearly have
7735 -- in a unit withing Pack. However, when deriving subprograms for the
7736 -- private view of private extension T, T must be seen as unconstrained
7737 -- since T has discriminants (this is a constraint of the current
7738 -- subprogram derivation model). Thus, when processing the private view of
7739 -- a private extension such as T, we first mark T as unconstrained, we
7740 -- process it, we perform program derivation and just before returning from
7741 -- Build_Derived_Record_Type we mark T as constrained.
7743 -- ??? Are there are other uncomfortable cases that we will have to
7746 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7748 -- Types that are derived from a visible record type and have a private
7749 -- extension present other peculiarities. They behave mostly like private
7750 -- types, but if they have primitive operations defined, these will not
7751 -- have the proper signatures for further inheritance, because other
7752 -- primitive operations will use the implicit base that we define for
7753 -- private derivations below. This affect subprogram inheritance (see
7754 -- Derive_Subprograms for details). We also derive the implicit base from
7755 -- the base type of the full view, so that the implicit base is a record
7756 -- type and not another private type, This avoids infinite loops.
7758 procedure Build_Derived_Record_Type
7760 Parent_Type
: Entity_Id
;
7761 Derived_Type
: Entity_Id
;
7762 Derive_Subps
: Boolean := True)
7764 Discriminant_Specs
: constant Boolean :=
7765 Present
(Discriminant_Specifications
(N
));
7766 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7767 Loc
: constant Source_Ptr
:= Sloc
(N
);
7768 Private_Extension
: constant Boolean :=
7769 Nkind
(N
) = N_Private_Extension_Declaration
;
7770 Assoc_List
: Elist_Id
;
7771 Constraint_Present
: Boolean;
7773 Discrim
: Entity_Id
;
7775 Inherit_Discrims
: Boolean := False;
7776 Last_Discrim
: Entity_Id
;
7777 New_Base
: Entity_Id
;
7779 New_Discrs
: Elist_Id
;
7780 New_Indic
: Node_Id
;
7781 Parent_Base
: Entity_Id
;
7782 Save_Etype
: Entity_Id
;
7783 Save_Discr_Constr
: Elist_Id
;
7784 Save_Next_Entity
: Entity_Id
;
7787 Discs
: Elist_Id
:= New_Elmt_List
;
7788 -- An empty Discs list means that there were no constraints in the
7789 -- subtype indication or that there was an error processing it.
7792 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7793 and then Present
(Full_View
(Parent_Type
))
7794 and then Has_Discriminants
(Parent_Type
)
7796 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7798 Parent_Base
:= Base_Type
(Parent_Type
);
7801 -- AI05-0115 : if this is a derivation from a private type in some
7802 -- other scope that may lead to invisible components for the derived
7803 -- type, mark it accordingly.
7805 if Is_Private_Type
(Parent_Type
) then
7806 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7809 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7810 and then In_Private_Part
(Scope
(Parent_Type
))
7815 Set_Has_Private_Ancestor
(Derived_Type
);
7819 Set_Has_Private_Ancestor
7820 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7823 -- Before we start the previously documented transformations, here is
7824 -- little fix for size and alignment of tagged types. Normally when we
7825 -- derive type D from type P, we copy the size and alignment of P as the
7826 -- default for D, and in the absence of explicit representation clauses
7827 -- for D, the size and alignment are indeed the same as the parent.
7829 -- But this is wrong for tagged types, since fields may be added, and
7830 -- the default size may need to be larger, and the default alignment may
7831 -- need to be larger.
7833 -- We therefore reset the size and alignment fields in the tagged case.
7834 -- Note that the size and alignment will in any case be at least as
7835 -- large as the parent type (since the derived type has a copy of the
7836 -- parent type in the _parent field)
7838 -- The type is also marked as being tagged here, which is needed when
7839 -- processing components with a self-referential anonymous access type
7840 -- in the call to Check_Anonymous_Access_Components below. Note that
7841 -- this flag is also set later on for completeness.
7844 Set_Is_Tagged_Type
(Derived_Type
);
7845 Init_Size_Align
(Derived_Type
);
7848 -- STEP 0a: figure out what kind of derived type declaration we have
7850 if Private_Extension
then
7852 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7853 Set_Default_SSO
(Derived_Type
);
7856 Type_Def
:= Type_Definition
(N
);
7858 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7859 -- Parent_Base can be a private type or private extension. However,
7860 -- for tagged types with an extension the newly added fields are
7861 -- visible and hence the Derived_Type is always an E_Record_Type.
7862 -- (except that the parent may have its own private fields).
7863 -- For untagged types we preserve the Ekind of the Parent_Base.
7865 if Present
(Record_Extension_Part
(Type_Def
)) then
7866 Set_Ekind
(Derived_Type
, E_Record_Type
);
7867 Set_Default_SSO
(Derived_Type
);
7869 -- Create internal access types for components with anonymous
7872 if Ada_Version
>= Ada_2005
then
7873 Check_Anonymous_Access_Components
7874 (N
, Derived_Type
, Derived_Type
,
7875 Component_List
(Record_Extension_Part
(Type_Def
)));
7879 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7883 -- Indic can either be an N_Identifier if the subtype indication
7884 -- contains no constraint or an N_Subtype_Indication if the subtype
7885 -- indication has a constraint.
7887 Indic
:= Subtype_Indication
(Type_Def
);
7888 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7890 -- Check that the type has visible discriminants. The type may be
7891 -- a private type with unknown discriminants whose full view has
7892 -- discriminants which are invisible.
7894 if Constraint_Present
then
7895 if not Has_Discriminants
(Parent_Base
)
7897 (Has_Unknown_Discriminants
(Parent_Base
)
7898 and then Is_Private_Type
(Parent_Base
))
7901 ("invalid constraint: type has no discriminant",
7902 Constraint
(Indic
));
7904 Constraint_Present
:= False;
7905 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7907 elsif Is_Constrained
(Parent_Type
) then
7909 ("invalid constraint: parent type is already constrained",
7910 Constraint
(Indic
));
7912 Constraint_Present
:= False;
7913 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7917 -- STEP 0b: If needed, apply transformation given in point 5. above
7919 if not Private_Extension
7920 and then Has_Discriminants
(Parent_Type
)
7921 and then not Discriminant_Specs
7922 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
7924 -- First, we must analyze the constraint (see comment in point 5.)
7925 -- The constraint may come from the subtype indication of the full
7928 if Constraint_Present
then
7929 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7931 -- If there is no explicit constraint, there might be one that is
7932 -- inherited from a constrained parent type. In that case verify that
7933 -- it conforms to the constraint in the partial view. In perverse
7934 -- cases the parent subtypes of the partial and full view can have
7935 -- different constraints.
7937 elsif Present
(Stored_Constraint
(Parent_Type
)) then
7938 New_Discrs
:= Stored_Constraint
(Parent_Type
);
7941 New_Discrs
:= No_Elist
;
7944 if Has_Discriminants
(Derived_Type
)
7945 and then Has_Private_Declaration
(Derived_Type
)
7946 and then Present
(Discriminant_Constraint
(Derived_Type
))
7947 and then Present
(New_Discrs
)
7949 -- Verify that constraints of the full view statically match
7950 -- those given in the partial view.
7956 C1
:= First_Elmt
(New_Discrs
);
7957 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
7958 while Present
(C1
) and then Present
(C2
) loop
7959 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7961 (Is_OK_Static_Expression
(Node
(C1
))
7962 and then Is_OK_Static_Expression
(Node
(C2
))
7964 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
7969 if Constraint_Present
then
7971 ("constraint not conformant to previous declaration",
7975 ("constraint of full view is incompatible "
7976 & "with partial view", N
);
7986 -- Insert and analyze the declaration for the unconstrained base type
7988 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
7991 Make_Full_Type_Declaration
(Loc
,
7992 Defining_Identifier
=> New_Base
,
7994 Make_Derived_Type_Definition
(Loc
,
7995 Abstract_Present
=> Abstract_Present
(Type_Def
),
7996 Limited_Present
=> Limited_Present
(Type_Def
),
7997 Subtype_Indication
=>
7998 New_Occurrence_Of
(Parent_Base
, Loc
),
7999 Record_Extension_Part
=>
8000 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
8001 Interface_List
=> Interface_List
(Type_Def
)));
8003 Set_Parent
(New_Decl
, Parent
(N
));
8004 Mark_Rewrite_Insertion
(New_Decl
);
8005 Insert_Before
(N
, New_Decl
);
8007 -- In the extension case, make sure ancestor is frozen appropriately
8008 -- (see also non-discriminated case below).
8010 if Present
(Record_Extension_Part
(Type_Def
))
8011 or else Is_Interface
(Parent_Base
)
8013 Freeze_Before
(New_Decl
, Parent_Type
);
8016 -- Note that this call passes False for the Derive_Subps parameter
8017 -- because subprogram derivation is deferred until after creating
8018 -- the subtype (see below).
8021 (New_Decl
, Parent_Base
, New_Base
,
8022 Is_Completion
=> False, Derive_Subps
=> False);
8024 -- ??? This needs re-examination to determine whether the
8025 -- above call can simply be replaced by a call to Analyze.
8027 Set_Analyzed
(New_Decl
);
8029 -- Insert and analyze the declaration for the constrained subtype
8031 if Constraint_Present
then
8033 Make_Subtype_Indication
(Loc
,
8034 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8035 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
8039 Constr_List
: constant List_Id
:= New_List
;
8044 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
8045 while Present
(C
) loop
8048 -- It is safe here to call New_Copy_Tree since
8049 -- Force_Evaluation was called on each constraint in
8050 -- Build_Discriminant_Constraints.
8052 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
8058 Make_Subtype_Indication
(Loc
,
8059 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8061 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
8066 Make_Subtype_Declaration
(Loc
,
8067 Defining_Identifier
=> Derived_Type
,
8068 Subtype_Indication
=> New_Indic
));
8072 -- Derivation of subprograms must be delayed until the full subtype
8073 -- has been established, to ensure proper overriding of subprograms
8074 -- inherited by full types. If the derivations occurred as part of
8075 -- the call to Build_Derived_Type above, then the check for type
8076 -- conformance would fail because earlier primitive subprograms
8077 -- could still refer to the full type prior the change to the new
8078 -- subtype and hence would not match the new base type created here.
8079 -- Subprograms are not derived, however, when Derive_Subps is False
8080 -- (since otherwise there could be redundant derivations).
8082 if Derive_Subps
then
8083 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8086 -- For tagged types the Discriminant_Constraint of the new base itype
8087 -- is inherited from the first subtype so that no subtype conformance
8088 -- problem arise when the first subtype overrides primitive
8089 -- operations inherited by the implicit base type.
8092 Set_Discriminant_Constraint
8093 (New_Base
, Discriminant_Constraint
(Derived_Type
));
8099 -- If we get here Derived_Type will have no discriminants or it will be
8100 -- a discriminated unconstrained base type.
8102 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8106 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8107 -- The declaration of a specific descendant of an interface type
8108 -- freezes the interface type (RM 13.14).
8110 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
8111 Freeze_Before
(N
, Parent_Type
);
8114 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8115 -- cannot be declared at a deeper level than its parent type is
8116 -- removed. The check on derivation within a generic body is also
8117 -- relaxed, but there's a restriction that a derived tagged type
8118 -- cannot be declared in a generic body if it's derived directly
8119 -- or indirectly from a formal type of that generic.
8121 if Ada_Version
>= Ada_2005
then
8122 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
8124 Ancestor_Type
: Entity_Id
;
8127 -- Check to see if any ancestor of the derived type is a
8130 Ancestor_Type
:= Parent_Type
;
8131 while not Is_Generic_Type
(Ancestor_Type
)
8132 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8134 Ancestor_Type
:= Etype
(Ancestor_Type
);
8137 -- If the derived type does have a formal type as an
8138 -- ancestor, then it's an error if the derived type is
8139 -- declared within the body of the generic unit that
8140 -- declares the formal type in its generic formal part. It's
8141 -- sufficient to check whether the ancestor type is declared
8142 -- inside the same generic body as the derived type (such as
8143 -- within a nested generic spec), in which case the
8144 -- derivation is legal. If the formal type is declared
8145 -- outside of that generic body, then it's guaranteed that
8146 -- the derived type is declared within the generic body of
8147 -- the generic unit declaring the formal type.
8149 if Is_Generic_Type
(Ancestor_Type
)
8150 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8151 Enclosing_Generic_Body
(Derived_Type
)
8154 ("parent type of& must not be descendant of formal type"
8155 & " of an enclosing generic body",
8156 Indic
, Derived_Type
);
8161 elsif Type_Access_Level
(Derived_Type
) /=
8162 Type_Access_Level
(Parent_Type
)
8163 and then not Is_Generic_Type
(Derived_Type
)
8165 if Is_Controlled
(Parent_Type
) then
8167 ("controlled type must be declared at the library level",
8171 ("type extension at deeper accessibility level than parent",
8177 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8180 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8183 ("parent type of& must not be outside generic body"
8185 Indic
, Derived_Type
);
8191 -- Ada 2005 (AI-251)
8193 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8195 -- "The declaration of a specific descendant of an interface type
8196 -- freezes the interface type" (RM 13.14).
8201 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8202 Iface
:= First
(Interface_List
(Type_Def
));
8203 while Present
(Iface
) loop
8204 Freeze_Before
(N
, Etype
(Iface
));
8211 -- STEP 1b : preliminary cleanup of the full view of private types
8213 -- If the type is already marked as having discriminants, then it's the
8214 -- completion of a private type or private extension and we need to
8215 -- retain the discriminants from the partial view if the current
8216 -- declaration has Discriminant_Specifications so that we can verify
8217 -- conformance. However, we must remove any existing components that
8218 -- were inherited from the parent (and attached in Copy_And_Swap)
8219 -- because the full type inherits all appropriate components anyway, and
8220 -- we do not want the partial view's components interfering.
8222 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8223 Discrim
:= First_Discriminant
(Derived_Type
);
8225 Last_Discrim
:= Discrim
;
8226 Next_Discriminant
(Discrim
);
8227 exit when No
(Discrim
);
8230 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8232 -- In all other cases wipe out the list of inherited components (even
8233 -- inherited discriminants), it will be properly rebuilt here.
8236 Set_First_Entity
(Derived_Type
, Empty
);
8237 Set_Last_Entity
(Derived_Type
, Empty
);
8240 -- STEP 1c: Initialize some flags for the Derived_Type
8242 -- The following flags must be initialized here so that
8243 -- Process_Discriminants can check that discriminants of tagged types do
8244 -- not have a default initial value and that access discriminants are
8245 -- only specified for limited records. For completeness, these flags are
8246 -- also initialized along with all the other flags below.
8248 -- AI-419: Limitedness is not inherited from an interface parent, so to
8249 -- be limited in that case the type must be explicitly declared as
8250 -- limited. However, task and protected interfaces are always limited.
8252 if Limited_Present
(Type_Def
) then
8253 Set_Is_Limited_Record
(Derived_Type
);
8255 elsif Is_Limited_Record
(Parent_Type
)
8256 or else (Present
(Full_View
(Parent_Type
))
8257 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8259 if not Is_Interface
(Parent_Type
)
8260 or else Is_Synchronized_Interface
(Parent_Type
)
8261 or else Is_Protected_Interface
(Parent_Type
)
8262 or else Is_Task_Interface
(Parent_Type
)
8264 Set_Is_Limited_Record
(Derived_Type
);
8268 -- STEP 2a: process discriminants of derived type if any
8270 Push_Scope
(Derived_Type
);
8272 if Discriminant_Specs
then
8273 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8275 -- The following call initializes fields Has_Discriminants and
8276 -- Discriminant_Constraint, unless we are processing the completion
8277 -- of a private type declaration.
8279 Check_Or_Process_Discriminants
(N
, Derived_Type
);
8281 -- For untagged types, the constraint on the Parent_Type must be
8282 -- present and is used to rename the discriminants.
8284 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
8285 Error_Msg_N
("untagged parent must have discriminants", Indic
);
8287 elsif not Is_Tagged
and then not Constraint_Present
then
8289 ("discriminant constraint needed for derived untagged records",
8292 -- Otherwise the parent subtype must be constrained unless we have a
8293 -- private extension.
8295 elsif not Constraint_Present
8296 and then not Private_Extension
8297 and then not Is_Constrained
(Parent_Type
)
8300 ("unconstrained type not allowed in this context", Indic
);
8302 elsif Constraint_Present
then
8303 -- The following call sets the field Corresponding_Discriminant
8304 -- for the discriminants in the Derived_Type.
8306 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
8308 -- For untagged types all new discriminants must rename
8309 -- discriminants in the parent. For private extensions new
8310 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8312 Discrim
:= First_Discriminant
(Derived_Type
);
8313 while Present
(Discrim
) loop
8315 and then No
(Corresponding_Discriminant
(Discrim
))
8318 ("new discriminants must constrain old ones", Discrim
);
8320 elsif Private_Extension
8321 and then Present
(Corresponding_Discriminant
(Discrim
))
8324 ("only static constraints allowed for parent"
8325 & " discriminants in the partial view", Indic
);
8329 -- If a new discriminant is used in the constraint, then its
8330 -- subtype must be statically compatible with the parent
8331 -- discriminant's subtype (3.7(15)).
8333 -- However, if the record contains an array constrained by
8334 -- the discriminant but with some different bound, the compiler
8335 -- attemps to create a smaller range for the discriminant type.
8336 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8337 -- the discriminant type is a scalar type, the check must use
8338 -- the original discriminant type in the parent declaration.
8341 Corr_Disc
: constant Entity_Id
:=
8342 Corresponding_Discriminant
(Discrim
);
8343 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
8344 Corr_Type
: Entity_Id
;
8347 if Present
(Corr_Disc
) then
8348 if Is_Scalar_Type
(Disc_Type
) then
8350 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
8352 Corr_Type
:= Etype
(Corr_Disc
);
8356 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
8359 ("subtype must be compatible "
8360 & "with parent discriminant",
8366 Next_Discriminant
(Discrim
);
8369 -- Check whether the constraints of the full view statically
8370 -- match those imposed by the parent subtype [7.3(13)].
8372 if Present
(Stored_Constraint
(Derived_Type
)) then
8377 C1
:= First_Elmt
(Discs
);
8378 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
8379 while Present
(C1
) and then Present
(C2
) loop
8381 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8384 ("not conformant with previous declaration",
8395 -- STEP 2b: No new discriminants, inherit discriminants if any
8398 if Private_Extension
then
8399 Set_Has_Unknown_Discriminants
8401 Has_Unknown_Discriminants
(Parent_Type
)
8402 or else Unknown_Discriminants_Present
(N
));
8404 -- The partial view of the parent may have unknown discriminants,
8405 -- but if the full view has discriminants and the parent type is
8406 -- in scope they must be inherited.
8408 elsif Has_Unknown_Discriminants
(Parent_Type
)
8410 (not Has_Discriminants
(Parent_Type
)
8411 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
8413 Set_Has_Unknown_Discriminants
(Derived_Type
);
8416 if not Has_Unknown_Discriminants
(Derived_Type
)
8417 and then not Has_Unknown_Discriminants
(Parent_Base
)
8418 and then Has_Discriminants
(Parent_Type
)
8420 Inherit_Discrims
:= True;
8421 Set_Has_Discriminants
8422 (Derived_Type
, True);
8423 Set_Discriminant_Constraint
8424 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
8427 -- The following test is true for private types (remember
8428 -- transformation 5. is not applied to those) and in an error
8431 if Constraint_Present
then
8432 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8435 -- For now mark a new derived type as constrained only if it has no
8436 -- discriminants. At the end of Build_Derived_Record_Type we properly
8437 -- set this flag in the case of private extensions. See comments in
8438 -- point 9. just before body of Build_Derived_Record_Type.
8442 not (Inherit_Discrims
8443 or else Has_Unknown_Discriminants
(Derived_Type
)));
8446 -- STEP 3: initialize fields of derived type
8448 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
8449 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
8451 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8452 -- but cannot be interfaces
8454 if not Private_Extension
8455 and then Ekind
(Derived_Type
) /= E_Private_Type
8456 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
8458 if Interface_Present
(Type_Def
) then
8459 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
8462 Set_Interfaces
(Derived_Type
, No_Elist
);
8465 -- Fields inherited from the Parent_Type
8467 Set_Has_Specified_Layout
8468 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
8469 Set_Is_Limited_Composite
8470 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
8471 Set_Is_Private_Composite
8472 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
8474 if Is_Tagged_Type
(Parent_Type
) then
8475 Set_No_Tagged_Streams_Pragma
8476 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8479 -- Fields inherited from the Parent_Base
8481 Set_Has_Controlled_Component
8482 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
8483 Set_Has_Non_Standard_Rep
8484 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8485 Set_Has_Primitive_Operations
8486 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
8488 -- Fields inherited from the Parent_Base in the non-private case
8490 if Ekind
(Derived_Type
) = E_Record_Type
then
8491 Set_Has_Complex_Representation
8492 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
8495 -- Fields inherited from the Parent_Base for record types
8497 if Is_Record_Type
(Derived_Type
) then
8499 Parent_Full
: Entity_Id
;
8502 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8503 -- Parent_Base can be a private type or private extension. Go
8504 -- to the full view here to get the E_Record_Type specific flags.
8506 if Present
(Full_View
(Parent_Base
)) then
8507 Parent_Full
:= Full_View
(Parent_Base
);
8509 Parent_Full
:= Parent_Base
;
8512 Set_OK_To_Reorder_Components
8513 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
8517 -- Set fields for private derived types
8519 if Is_Private_Type
(Derived_Type
) then
8520 Set_Depends_On_Private
(Derived_Type
, True);
8521 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
8523 -- Inherit fields from non private record types. If this is the
8524 -- completion of a derivation from a private type, the parent itself
8525 -- is private, and the attributes come from its full view, which must
8529 if Is_Private_Type
(Parent_Base
)
8530 and then not Is_Record_Type
(Parent_Base
)
8532 Set_Component_Alignment
8533 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
8535 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
8537 Set_Component_Alignment
8538 (Derived_Type
, Component_Alignment
(Parent_Base
));
8540 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
8544 -- Set fields for tagged types
8547 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
8549 -- All tagged types defined in Ada.Finalization are controlled
8551 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
8552 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
8553 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
8555 Set_Is_Controlled
(Derived_Type
);
8557 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
8560 -- Minor optimization: there is no need to generate the class-wide
8561 -- entity associated with an underlying record view.
8563 if not Is_Underlying_Record_View
(Derived_Type
) then
8564 Make_Class_Wide_Type
(Derived_Type
);
8567 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
8569 if Has_Discriminants
(Derived_Type
)
8570 and then Constraint_Present
8572 Set_Stored_Constraint
8573 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
8576 if Ada_Version
>= Ada_2005
then
8578 Ifaces_List
: Elist_Id
;
8581 -- Checks rules 3.9.4 (13/2 and 14/2)
8583 if Comes_From_Source
(Derived_Type
)
8584 and then not Is_Private_Type
(Derived_Type
)
8585 and then Is_Interface
(Parent_Type
)
8586 and then not Is_Interface
(Derived_Type
)
8588 if Is_Task_Interface
(Parent_Type
) then
8590 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8593 elsif Is_Protected_Interface
(Parent_Type
) then
8595 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8600 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8602 Check_Interfaces
(N
, Type_Def
);
8604 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8605 -- not already in the parents.
8609 Ifaces_List
=> Ifaces_List
,
8610 Exclude_Parents
=> True);
8612 Set_Interfaces
(Derived_Type
, Ifaces_List
);
8614 -- If the derived type is the anonymous type created for
8615 -- a declaration whose parent has a constraint, propagate
8616 -- the interface list to the source type. This must be done
8617 -- prior to the completion of the analysis of the source type
8618 -- because the components in the extension may contain current
8619 -- instances whose legality depends on some ancestor.
8621 if Is_Itype
(Derived_Type
) then
8623 Def
: constant Node_Id
:=
8624 Associated_Node_For_Itype
(Derived_Type
);
8627 and then Nkind
(Def
) = N_Full_Type_Declaration
8630 (Defining_Identifier
(Def
), Ifaces_List
);
8635 -- A type extension is automatically Ghost when one of its
8636 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8637 -- also inherited when the parent type is Ghost, but this is
8638 -- done in Build_Derived_Type as the mechanism also handles
8639 -- untagged derivations.
8641 if Implements_Ghost_Interface
(Derived_Type
) then
8642 Set_Is_Ghost_Entity
(Derived_Type
);
8648 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
8649 Set_Has_Non_Standard_Rep
8650 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8653 -- STEP 4: Inherit components from the parent base and constrain them.
8654 -- Apply the second transformation described in point 6. above.
8656 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
8657 or else not Has_Discriminants
(Parent_Type
)
8658 or else not Is_Constrained
(Parent_Type
)
8662 Constrs
:= Discriminant_Constraint
(Parent_Type
);
8667 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
8669 -- STEP 5a: Copy the parent record declaration for untagged types
8671 if not Is_Tagged
then
8673 -- Discriminant_Constraint (Derived_Type) has been properly
8674 -- constructed. Save it and temporarily set it to Empty because we
8675 -- do not want the call to New_Copy_Tree below to mess this list.
8677 if Has_Discriminants
(Derived_Type
) then
8678 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
8679 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
8681 Save_Discr_Constr
:= No_Elist
;
8684 -- Save the Etype field of Derived_Type. It is correctly set now,
8685 -- but the call to New_Copy tree may remap it to point to itself,
8686 -- which is not what we want. Ditto for the Next_Entity field.
8688 Save_Etype
:= Etype
(Derived_Type
);
8689 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
8691 -- Assoc_List maps all stored discriminants in the Parent_Base to
8692 -- stored discriminants in the Derived_Type. It is fundamental that
8693 -- no types or itypes with discriminants other than the stored
8694 -- discriminants appear in the entities declared inside
8695 -- Derived_Type, since the back end cannot deal with it.
8699 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
8701 -- Restore the fields saved prior to the New_Copy_Tree call
8702 -- and compute the stored constraint.
8704 Set_Etype
(Derived_Type
, Save_Etype
);
8705 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
8707 if Has_Discriminants
(Derived_Type
) then
8708 Set_Discriminant_Constraint
8709 (Derived_Type
, Save_Discr_Constr
);
8710 Set_Stored_Constraint
8711 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
8712 Replace_Components
(Derived_Type
, New_Decl
);
8713 Set_Has_Implicit_Dereference
8714 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
8717 -- Insert the new derived type declaration
8719 Rewrite
(N
, New_Decl
);
8721 -- STEP 5b: Complete the processing for record extensions in generics
8723 -- There is no completion for record extensions declared in the
8724 -- parameter part of a generic, so we need to complete processing for
8725 -- these generic record extensions here. The Record_Type_Definition call
8726 -- will change the Ekind of the components from E_Void to E_Component.
8728 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
8729 Record_Type_Definition
(Empty
, Derived_Type
);
8731 -- STEP 5c: Process the record extension for non private tagged types
8733 elsif not Private_Extension
then
8734 Expand_Record_Extension
(Derived_Type
, Type_Def
);
8736 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8737 -- derived type to propagate some semantic information. This led
8738 -- to other ASIS failures and has been removed.
8740 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8741 -- implemented interfaces if we are in expansion mode
8744 and then Has_Interfaces
(Derived_Type
)
8746 Add_Interface_Tag_Components
(N
, Derived_Type
);
8749 -- Analyze the record extension
8751 Record_Type_Definition
8752 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8757 -- Nothing else to do if there is an error in the derivation.
8758 -- An unusual case: the full view may be derived from a type in an
8759 -- instance, when the partial view was used illegally as an actual
8760 -- in that instance, leading to a circular definition.
8762 if Etype
(Derived_Type
) = Any_Type
8763 or else Etype
(Parent_Type
) = Derived_Type
8768 -- Set delayed freeze and then derive subprograms, we need to do
8769 -- this in this order so that derived subprograms inherit the
8770 -- derived freeze if necessary.
8772 Set_Has_Delayed_Freeze
(Derived_Type
);
8774 if Derive_Subps
then
8775 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8778 -- If we have a private extension which defines a constrained derived
8779 -- type mark as constrained here after we have derived subprograms. See
8780 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8782 if Private_Extension
and then Inherit_Discrims
then
8783 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
8784 Set_Is_Constrained
(Derived_Type
, True);
8785 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
8787 elsif Is_Constrained
(Parent_Type
) then
8789 (Derived_Type
, True);
8790 Set_Discriminant_Constraint
8791 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
8795 -- Update the class-wide type, which shares the now-completed entity
8796 -- list with its specific type. In case of underlying record views,
8797 -- we do not generate the corresponding class wide entity.
8800 and then not Is_Underlying_Record_View
(Derived_Type
)
8803 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8805 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8808 Check_Function_Writable_Actuals
(N
);
8809 end Build_Derived_Record_Type
;
8811 ------------------------
8812 -- Build_Derived_Type --
8813 ------------------------
8815 procedure Build_Derived_Type
8817 Parent_Type
: Entity_Id
;
8818 Derived_Type
: Entity_Id
;
8819 Is_Completion
: Boolean;
8820 Derive_Subps
: Boolean := True)
8822 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8825 -- Set common attributes
8827 Set_Scope
(Derived_Type
, Current_Scope
);
8829 Set_Etype
(Derived_Type
, Parent_Base
);
8830 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8831 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8832 Set_Has_Protected
(Derived_Type
, Has_Protected
(Parent_Base
));
8834 Set_Size_Info
(Derived_Type
, Parent_Type
);
8835 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8836 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8837 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8838 Set_Is_Volatile
(Derived_Type
, Is_Volatile
(Parent_Type
));
8840 if Is_Tagged_Type
(Derived_Type
) then
8841 Set_No_Tagged_Streams_Pragma
8842 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8845 -- If the parent has primitive routines, set the derived type link
8847 if Has_Primitive_Operations
(Parent_Type
) then
8848 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
8851 -- If the parent type is a private subtype, the convention on the base
8852 -- type may be set in the private part, and not propagated to the
8853 -- subtype until later, so we obtain the convention from the base type.
8855 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8857 -- Set SSO default for record or array type
8859 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
8860 and then Is_Base_Type
(Derived_Type
)
8862 Set_Default_SSO
(Derived_Type
);
8865 -- Propagate invariant information. The new type has invariants if
8866 -- they are inherited from the parent type, and these invariants can
8867 -- be further inherited, so both flags are set.
8869 -- We similarly inherit predicates
8871 if Has_Predicates
(Parent_Type
) then
8872 Set_Has_Predicates
(Derived_Type
);
8875 -- The derived type inherits the representation clauses of the parent
8877 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
8879 -- Propagate the attributes related to pragma Default_Initial_Condition
8880 -- from the parent type to the private extension. A derived type always
8881 -- inherits the default initial condition flag from the parent type. If
8882 -- the derived type carries its own Default_Initial_Condition pragma,
8883 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8884 -- mutually exclusive.
8886 Propagate_Default_Init_Cond_Attributes
8887 (From_Typ
=> Parent_Type
,
8888 To_Typ
=> Derived_Type
,
8889 Parent_To_Derivation
=> True);
8891 -- If the parent type has delayed rep aspects, then mark the derived
8892 -- type as possibly inheriting a delayed rep aspect.
8894 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
8895 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
8898 -- Propagate the attributes related to pragma Ghost from the parent type
8899 -- to the derived type or type extension (SPARK RM 6.9(9)).
8901 if Is_Ghost_Entity
(Parent_Type
) then
8902 Set_Is_Ghost_Entity
(Derived_Type
);
8905 -- Type dependent processing
8907 case Ekind
(Parent_Type
) is
8908 when Numeric_Kind
=>
8909 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
8912 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
8916 | Class_Wide_Kind
=>
8917 Build_Derived_Record_Type
8918 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
8921 when Enumeration_Kind
=>
8922 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
8925 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
8927 when Incomplete_Or_Private_Kind
=>
8928 Build_Derived_Private_Type
8929 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
8931 -- For discriminated types, the derivation includes deriving
8932 -- primitive operations. For others it is done below.
8934 if Is_Tagged_Type
(Parent_Type
)
8935 or else Has_Discriminants
(Parent_Type
)
8936 or else (Present
(Full_View
(Parent_Type
))
8937 and then Has_Discriminants
(Full_View
(Parent_Type
)))
8942 when Concurrent_Kind
=>
8943 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
8946 raise Program_Error
;
8949 -- Nothing more to do if some error occurred
8951 if Etype
(Derived_Type
) = Any_Type
then
8955 -- Set delayed freeze and then derive subprograms, we need to do this
8956 -- in this order so that derived subprograms inherit the derived freeze
8959 Set_Has_Delayed_Freeze
(Derived_Type
);
8961 if Derive_Subps
then
8962 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8965 Set_Has_Primitive_Operations
8966 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
8967 end Build_Derived_Type
;
8969 -----------------------
8970 -- Build_Discriminal --
8971 -----------------------
8973 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
8974 D_Minal
: Entity_Id
;
8975 CR_Disc
: Entity_Id
;
8978 -- A discriminal has the same name as the discriminant
8980 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8982 Set_Ekind
(D_Minal
, E_In_Parameter
);
8983 Set_Mechanism
(D_Minal
, Default_Mechanism
);
8984 Set_Etype
(D_Minal
, Etype
(Discrim
));
8985 Set_Scope
(D_Minal
, Current_Scope
);
8987 Set_Discriminal
(Discrim
, D_Minal
);
8988 Set_Discriminal_Link
(D_Minal
, Discrim
);
8990 -- For task types, build at once the discriminants of the corresponding
8991 -- record, which are needed if discriminants are used in entry defaults
8992 -- and in family bounds.
8994 if Is_Concurrent_Type
(Current_Scope
)
8996 Is_Limited_Type
(Current_Scope
)
8998 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9000 Set_Ekind
(CR_Disc
, E_In_Parameter
);
9001 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
9002 Set_Etype
(CR_Disc
, Etype
(Discrim
));
9003 Set_Scope
(CR_Disc
, Current_Scope
);
9004 Set_Discriminal_Link
(CR_Disc
, Discrim
);
9005 Set_CR_Discriminant
(Discrim
, CR_Disc
);
9007 end Build_Discriminal
;
9009 ------------------------------------
9010 -- Build_Discriminant_Constraints --
9011 ------------------------------------
9013 function Build_Discriminant_Constraints
9016 Derived_Def
: Boolean := False) return Elist_Id
9018 C
: constant Node_Id
:= Constraint
(Def
);
9019 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
9021 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
9022 -- Saves the expression corresponding to a given discriminant in T
9024 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
9025 -- Return the Position number within array Discr_Expr of a discriminant
9026 -- D within the discriminant list of the discriminated type T.
9028 procedure Process_Discriminant_Expression
9031 -- If this is a discriminant constraint on a partial view, do not
9032 -- generate an overflow check on the discriminant expression. The check
9033 -- will be generated when constraining the full view. Otherwise the
9034 -- backend creates duplicate symbols for the temporaries corresponding
9035 -- to the expressions to be checked, causing spurious assembler errors.
9041 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
9045 Disc
:= First_Discriminant
(T
);
9046 for J
in Discr_Expr
'Range loop
9051 Next_Discriminant
(Disc
);
9054 -- Note: Since this function is called on discriminants that are
9055 -- known to belong to the discriminated type, falling through the
9056 -- loop with no match signals an internal compiler error.
9058 raise Program_Error
;
9061 -------------------------------------
9062 -- Process_Discriminant_Expression --
9063 -------------------------------------
9065 procedure Process_Discriminant_Expression
9069 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
9072 -- If this is a discriminant constraint on a partial view, do
9073 -- not generate an overflow on the discriminant expression. The
9074 -- check will be generated when constraining the full view.
9076 if Is_Private_Type
(T
)
9077 and then Present
(Full_View
(T
))
9079 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
9081 Analyze_And_Resolve
(Expr
, BDT
);
9083 end Process_Discriminant_Expression
;
9085 -- Declarations local to Build_Discriminant_Constraints
9089 Elist
: constant Elist_Id
:= New_Elmt_List
;
9097 Discrim_Present
: Boolean := False;
9099 -- Start of processing for Build_Discriminant_Constraints
9102 -- The following loop will process positional associations only.
9103 -- For a positional association, the (single) discriminant is
9104 -- implicitly specified by position, in textual order (RM 3.7.2).
9106 Discr
:= First_Discriminant
(T
);
9107 Constr
:= First
(Constraints
(C
));
9108 for D
in Discr_Expr
'Range loop
9109 exit when Nkind
(Constr
) = N_Discriminant_Association
;
9112 Error_Msg_N
("too few discriminants given in constraint", C
);
9113 return New_Elmt_List
;
9115 elsif Nkind
(Constr
) = N_Range
9116 or else (Nkind
(Constr
) = N_Attribute_Reference
9117 and then Attribute_Name
(Constr
) = Name_Range
)
9120 ("a range is not a valid discriminant constraint", Constr
);
9121 Discr_Expr
(D
) := Error
;
9124 Process_Discriminant_Expression
(Constr
, Discr
);
9125 Discr_Expr
(D
) := Constr
;
9128 Next_Discriminant
(Discr
);
9132 if No
(Discr
) and then Present
(Constr
) then
9133 Error_Msg_N
("too many discriminants given in constraint", Constr
);
9134 return New_Elmt_List
;
9137 -- Named associations can be given in any order, but if both positional
9138 -- and named associations are used in the same discriminant constraint,
9139 -- then positional associations must occur first, at their normal
9140 -- position. Hence once a named association is used, the rest of the
9141 -- discriminant constraint must use only named associations.
9143 while Present
(Constr
) loop
9145 -- Positional association forbidden after a named association
9147 if Nkind
(Constr
) /= N_Discriminant_Association
then
9148 Error_Msg_N
("positional association follows named one", Constr
);
9149 return New_Elmt_List
;
9151 -- Otherwise it is a named association
9154 -- E records the type of the discriminants in the named
9155 -- association. All the discriminants specified in the same name
9156 -- association must have the same type.
9160 -- Search the list of discriminants in T to see if the simple name
9161 -- given in the constraint matches any of them.
9163 Id
:= First
(Selector_Names
(Constr
));
9164 while Present
(Id
) loop
9167 -- If Original_Discriminant is present, we are processing a
9168 -- generic instantiation and this is an instance node. We need
9169 -- to find the name of the corresponding discriminant in the
9170 -- actual record type T and not the name of the discriminant in
9171 -- the generic formal. Example:
9174 -- type G (D : int) is private;
9176 -- subtype W is G (D => 1);
9178 -- type Rec (X : int) is record ... end record;
9179 -- package Q is new P (G => Rec);
9181 -- At the point of the instantiation, formal type G is Rec
9182 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9183 -- which really looks like "subtype W is Rec (D => 1);" at
9184 -- the point of instantiation, we want to find the discriminant
9185 -- that corresponds to D in Rec, i.e. X.
9187 if Present
(Original_Discriminant
(Id
))
9188 and then In_Instance
9190 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9194 Discr
:= First_Discriminant
(T
);
9195 while Present
(Discr
) loop
9196 if Chars
(Discr
) = Chars
(Id
) then
9201 Next_Discriminant
(Discr
);
9205 Error_Msg_N
("& does not match any discriminant", Id
);
9206 return New_Elmt_List
;
9208 -- If the parent type is a generic formal, preserve the
9209 -- name of the discriminant for subsequent instances.
9210 -- see comment at the beginning of this if statement.
9212 elsif Is_Generic_Type
(Root_Type
(T
)) then
9213 Set_Original_Discriminant
(Id
, Discr
);
9217 Position
:= Pos_Of_Discr
(T
, Discr
);
9219 if Present
(Discr_Expr
(Position
)) then
9220 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9223 -- Each discriminant specified in the same named association
9224 -- must be associated with a separate copy of the
9225 -- corresponding expression.
9227 if Present
(Next
(Id
)) then
9228 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9229 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9231 Expr
:= Expression
(Constr
);
9234 Discr_Expr
(Position
) := Expr
;
9235 Process_Discriminant_Expression
(Expr
, Discr
);
9238 -- A discriminant association with more than one discriminant
9239 -- name is only allowed if the named discriminants are all of
9240 -- the same type (RM 3.7.1(8)).
9243 E
:= Base_Type
(Etype
(Discr
));
9245 elsif Base_Type
(Etype
(Discr
)) /= E
then
9247 ("all discriminants in an association " &
9248 "must have the same type", Id
);
9258 -- A discriminant constraint must provide exactly one value for each
9259 -- discriminant of the type (RM 3.7.1(8)).
9261 for J
in Discr_Expr
'Range loop
9262 if No
(Discr_Expr
(J
)) then
9263 Error_Msg_N
("too few discriminants given in constraint", C
);
9264 return New_Elmt_List
;
9268 -- Determine if there are discriminant expressions in the constraint
9270 for J
in Discr_Expr
'Range loop
9271 if Denotes_Discriminant
9272 (Discr_Expr
(J
), Check_Concurrent
=> True)
9274 Discrim_Present
:= True;
9278 -- Build an element list consisting of the expressions given in the
9279 -- discriminant constraint and apply the appropriate checks. The list
9280 -- is constructed after resolving any named discriminant associations
9281 -- and therefore the expressions appear in the textual order of the
9284 Discr
:= First_Discriminant
(T
);
9285 for J
in Discr_Expr
'Range loop
9286 if Discr_Expr
(J
) /= Error
then
9287 Append_Elmt
(Discr_Expr
(J
), Elist
);
9289 -- If any of the discriminant constraints is given by a
9290 -- discriminant and we are in a derived type declaration we
9291 -- have a discriminant renaming. Establish link between new
9292 -- and old discriminant.
9294 if Denotes_Discriminant
(Discr_Expr
(J
)) then
9296 Set_Corresponding_Discriminant
9297 (Entity
(Discr_Expr
(J
)), Discr
);
9300 -- Force the evaluation of non-discriminant expressions.
9301 -- If we have found a discriminant in the constraint 3.4(26)
9302 -- and 3.8(18) demand that no range checks are performed are
9303 -- after evaluation. If the constraint is for a component
9304 -- definition that has a per-object constraint, expressions are
9305 -- evaluated but not checked either. In all other cases perform
9309 if Discrim_Present
then
9312 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
9314 Has_Per_Object_Constraint
9315 (Defining_Identifier
(Parent
(Parent
(Def
))))
9319 elsif Is_Access_Type
(Etype
(Discr
)) then
9320 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
9323 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
9326 Force_Evaluation
(Discr_Expr
(J
));
9329 -- Check that the designated type of an access discriminant's
9330 -- expression is not a class-wide type unless the discriminant's
9331 -- designated type is also class-wide.
9333 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
9334 and then not Is_Class_Wide_Type
9335 (Designated_Type
(Etype
(Discr
)))
9336 and then Etype
(Discr_Expr
(J
)) /= Any_Type
9337 and then Is_Class_Wide_Type
9338 (Designated_Type
(Etype
(Discr_Expr
(J
))))
9340 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
9342 elsif Is_Access_Type
(Etype
(Discr
))
9343 and then not Is_Access_Constant
(Etype
(Discr
))
9344 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
9345 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
9348 ("constraint for discriminant& must be access to variable",
9353 Next_Discriminant
(Discr
);
9357 end Build_Discriminant_Constraints
;
9359 ---------------------------------
9360 -- Build_Discriminated_Subtype --
9361 ---------------------------------
9363 procedure Build_Discriminated_Subtype
9367 Related_Nod
: Node_Id
;
9368 For_Access
: Boolean := False)
9370 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
9371 Constrained
: constant Boolean :=
9373 and then not Is_Empty_Elmt_List
(Elist
)
9374 and then not Is_Class_Wide_Type
(T
))
9375 or else Is_Constrained
(T
);
9378 if Ekind
(T
) = E_Record_Type
then
9380 Set_Ekind
(Def_Id
, E_Private_Subtype
);
9381 Set_Is_For_Access_Subtype
(Def_Id
, True);
9383 Set_Ekind
(Def_Id
, E_Record_Subtype
);
9386 -- Inherit preelaboration flag from base, for types for which it
9387 -- may have been set: records, private types, protected types.
9389 Set_Known_To_Have_Preelab_Init
9390 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9392 elsif Ekind
(T
) = E_Task_Type
then
9393 Set_Ekind
(Def_Id
, E_Task_Subtype
);
9395 elsif Ekind
(T
) = E_Protected_Type
then
9396 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
9397 Set_Known_To_Have_Preelab_Init
9398 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9400 elsif Is_Private_Type
(T
) then
9401 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
9402 Set_Known_To_Have_Preelab_Init
9403 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9405 -- Private subtypes may have private dependents
9407 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
9409 elsif Is_Class_Wide_Type
(T
) then
9410 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
9413 -- Incomplete type. Attach subtype to list of dependents, to be
9414 -- completed with full view of parent type, unless is it the
9415 -- designated subtype of a record component within an init_proc.
9416 -- This last case arises for a component of an access type whose
9417 -- designated type is incomplete (e.g. a Taft Amendment type).
9418 -- The designated subtype is within an inner scope, and needs no
9419 -- elaboration, because only the access type is needed in the
9420 -- initialization procedure.
9422 Set_Ekind
(Def_Id
, Ekind
(T
));
9424 if For_Access
and then Within_Init_Proc
then
9427 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
9431 Set_Etype
(Def_Id
, T
);
9432 Init_Size_Align
(Def_Id
);
9433 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
9434 Set_Is_Constrained
(Def_Id
, Constrained
);
9436 Set_First_Entity
(Def_Id
, First_Entity
(T
));
9437 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
9438 Set_Has_Implicit_Dereference
9439 (Def_Id
, Has_Implicit_Dereference
(T
));
9441 -- If the subtype is the completion of a private declaration, there may
9442 -- have been representation clauses for the partial view, and they must
9443 -- be preserved. Build_Derived_Type chains the inherited clauses with
9444 -- the ones appearing on the extension. If this comes from a subtype
9445 -- declaration, all clauses are inherited.
9447 if No
(First_Rep_Item
(Def_Id
)) then
9448 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
9451 if Is_Tagged_Type
(T
) then
9452 Set_Is_Tagged_Type
(Def_Id
);
9453 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
9454 Make_Class_Wide_Type
(Def_Id
);
9457 Set_Stored_Constraint
(Def_Id
, No_Elist
);
9460 Set_Discriminant_Constraint
(Def_Id
, Elist
);
9461 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
9464 if Is_Tagged_Type
(T
) then
9466 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9467 -- concurrent record type (which has the list of primitive
9470 if Ada_Version
>= Ada_2005
9471 and then Is_Concurrent_Type
(T
)
9473 Set_Corresponding_Record_Type
(Def_Id
,
9474 Corresponding_Record_Type
(T
));
9476 Set_Direct_Primitive_Operations
(Def_Id
,
9477 Direct_Primitive_Operations
(T
));
9480 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
9483 -- Subtypes introduced by component declarations do not need to be
9484 -- marked as delayed, and do not get freeze nodes, because the semantics
9485 -- verifies that the parents of the subtypes are frozen before the
9486 -- enclosing record is frozen.
9488 if not Is_Type
(Scope
(Def_Id
)) then
9489 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
9491 if Is_Private_Type
(T
)
9492 and then Present
(Full_View
(T
))
9494 Conditional_Delay
(Def_Id
, Full_View
(T
));
9496 Conditional_Delay
(Def_Id
, T
);
9500 if Is_Record_Type
(T
) then
9501 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
9504 and then not Is_Empty_Elmt_List
(Elist
)
9505 and then not For_Access
9507 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
9508 elsif not For_Access
then
9509 Set_Cloned_Subtype
(Def_Id
, T
);
9512 end Build_Discriminated_Subtype
;
9514 ---------------------------
9515 -- Build_Itype_Reference --
9516 ---------------------------
9518 procedure Build_Itype_Reference
9522 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
9525 -- Itype references are only created for use by the back-end
9527 if Inside_A_Generic
then
9530 Set_Itype
(IR
, Ityp
);
9531 Insert_After
(Nod
, IR
);
9533 end Build_Itype_Reference
;
9535 ------------------------
9536 -- Build_Scalar_Bound --
9537 ------------------------
9539 function Build_Scalar_Bound
9542 Der_T
: Entity_Id
) return Node_Id
9544 New_Bound
: Entity_Id
;
9547 -- Note: not clear why this is needed, how can the original bound
9548 -- be unanalyzed at this point? and if it is, what business do we
9549 -- have messing around with it? and why is the base type of the
9550 -- parent type the right type for the resolution. It probably is
9551 -- not. It is OK for the new bound we are creating, but not for
9552 -- the old one??? Still if it never happens, no problem.
9554 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
9556 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
9557 New_Bound
:= New_Copy
(Bound
);
9558 Set_Etype
(New_Bound
, Der_T
);
9559 Set_Analyzed
(New_Bound
);
9561 elsif Is_Entity_Name
(Bound
) then
9562 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
9564 -- The following is almost certainly wrong. What business do we have
9565 -- relocating a node (Bound) that is presumably still attached to
9566 -- the tree elsewhere???
9569 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
9572 Set_Etype
(New_Bound
, Der_T
);
9574 end Build_Scalar_Bound
;
9576 --------------------------------
9577 -- Build_Underlying_Full_View --
9578 --------------------------------
9580 procedure Build_Underlying_Full_View
9585 Loc
: constant Source_Ptr
:= Sloc
(N
);
9586 Subt
: constant Entity_Id
:=
9587 Make_Defining_Identifier
9588 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
9595 procedure Set_Discriminant_Name
(Id
: Node_Id
);
9596 -- If the derived type has discriminants, they may rename discriminants
9597 -- of the parent. When building the full view of the parent, we need to
9598 -- recover the names of the original discriminants if the constraint is
9599 -- given by named associations.
9601 ---------------------------
9602 -- Set_Discriminant_Name --
9603 ---------------------------
9605 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
9609 Set_Original_Discriminant
(Id
, Empty
);
9611 if Has_Discriminants
(Typ
) then
9612 Disc
:= First_Discriminant
(Typ
);
9613 while Present
(Disc
) loop
9614 if Chars
(Disc
) = Chars
(Id
)
9615 and then Present
(Corresponding_Discriminant
(Disc
))
9617 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
9619 Next_Discriminant
(Disc
);
9622 end Set_Discriminant_Name
;
9624 -- Start of processing for Build_Underlying_Full_View
9627 if Nkind
(N
) = N_Full_Type_Declaration
then
9628 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
9630 elsif Nkind
(N
) = N_Subtype_Declaration
then
9631 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
9633 elsif Nkind
(N
) = N_Component_Declaration
then
9636 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
9639 raise Program_Error
;
9642 C
:= First
(Constraints
(Constr
));
9643 while Present
(C
) loop
9644 if Nkind
(C
) = N_Discriminant_Association
then
9645 Id
:= First
(Selector_Names
(C
));
9646 while Present
(Id
) loop
9647 Set_Discriminant_Name
(Id
);
9656 Make_Subtype_Declaration
(Loc
,
9657 Defining_Identifier
=> Subt
,
9658 Subtype_Indication
=>
9659 Make_Subtype_Indication
(Loc
,
9660 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
9661 Constraint
=> New_Copy_Tree
(Constr
)));
9663 -- If this is a component subtype for an outer itype, it is not
9664 -- a list member, so simply set the parent link for analysis: if
9665 -- the enclosing type does not need to be in a declarative list,
9666 -- neither do the components.
9668 if Is_List_Member
(N
)
9669 and then Nkind
(N
) /= N_Component_Declaration
9671 Insert_Before
(N
, Indic
);
9673 Set_Parent
(Indic
, Parent
(N
));
9677 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
9678 end Build_Underlying_Full_View
;
9680 -------------------------------
9681 -- Check_Abstract_Overriding --
9682 -------------------------------
9684 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
9685 Alias_Subp
: Entity_Id
;
9691 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
9692 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9693 -- which has pragma Implemented already set. Check whether Subp's entity
9694 -- kind conforms to the implementation kind of the overridden routine.
9696 procedure Check_Pragma_Implemented
9698 Iface_Subp
: Entity_Id
);
9699 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9700 -- Iface_Subp and both entities have pragma Implemented already set on
9701 -- them. Check whether the two implementation kinds are conforming.
9703 procedure Inherit_Pragma_Implemented
9705 Iface_Subp
: Entity_Id
);
9706 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9707 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9708 -- Propagate the implementation kind of Iface_Subp to Subp.
9710 ------------------------------
9711 -- Check_Pragma_Implemented --
9712 ------------------------------
9714 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
9715 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
9716 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
9717 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
9718 Contr_Typ
: Entity_Id
;
9719 Impl_Subp
: Entity_Id
;
9722 -- Subp must have an alias since it is a hidden entity used to link
9723 -- an interface subprogram to its overriding counterpart.
9725 pragma Assert
(Present
(Subp_Alias
));
9727 -- Handle aliases to synchronized wrappers
9729 Impl_Subp
:= Subp_Alias
;
9731 if Is_Primitive_Wrapper
(Impl_Subp
) then
9732 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
9735 -- Extract the type of the controlling formal
9737 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
9739 if Is_Concurrent_Record_Type
(Contr_Typ
) then
9740 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
9743 -- An interface subprogram whose implementation kind is By_Entry must
9744 -- be implemented by an entry.
9746 if Impl_Kind
= Name_By_Entry
9747 and then Ekind
(Impl_Subp
) /= E_Entry
9749 Error_Msg_Node_2
:= Iface_Alias
;
9751 ("type & must implement abstract subprogram & with an entry",
9752 Subp_Alias
, Contr_Typ
);
9754 elsif Impl_Kind
= Name_By_Protected_Procedure
then
9756 -- An interface subprogram whose implementation kind is By_
9757 -- Protected_Procedure cannot be implemented by a primitive
9758 -- procedure of a task type.
9760 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
9761 Error_Msg_Node_2
:= Contr_Typ
;
9763 ("interface subprogram & cannot be implemented by a " &
9764 "primitive procedure of task type &", Subp_Alias
,
9767 -- An interface subprogram whose implementation kind is By_
9768 -- Protected_Procedure must be implemented by a procedure.
9770 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
9771 Error_Msg_Node_2
:= Iface_Alias
;
9773 ("type & must implement abstract subprogram & with a " &
9774 "procedure", Subp_Alias
, Contr_Typ
);
9776 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9777 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9779 Error_Msg_Name_1
:= Impl_Kind
;
9781 ("overriding operation& must have synchronization%",
9785 -- If primitive has Optional synchronization, overriding operation
9786 -- must match if it has an explicit synchronization..
9788 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9789 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9791 Error_Msg_Name_1
:= Impl_Kind
;
9793 ("overriding operation& must have syncrhonization%",
9796 end Check_Pragma_Implemented
;
9798 ------------------------------
9799 -- Check_Pragma_Implemented --
9800 ------------------------------
9802 procedure Check_Pragma_Implemented
9804 Iface_Subp
: Entity_Id
)
9806 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9807 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
9810 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9811 -- and overriding subprogram are different. In general this is an
9812 -- error except when the implementation kind of the overridden
9813 -- subprograms is By_Any or Optional.
9815 if Iface_Kind
/= Subp_Kind
9816 and then Iface_Kind
/= Name_By_Any
9817 and then Iface_Kind
/= Name_Optional
9819 if Iface_Kind
= Name_By_Entry
then
9821 ("incompatible implementation kind, overridden subprogram " &
9822 "is marked By_Entry", Subp
);
9825 ("incompatible implementation kind, overridden subprogram " &
9826 "is marked By_Protected_Procedure", Subp
);
9829 end Check_Pragma_Implemented
;
9831 --------------------------------
9832 -- Inherit_Pragma_Implemented --
9833 --------------------------------
9835 procedure Inherit_Pragma_Implemented
9837 Iface_Subp
: Entity_Id
)
9839 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9840 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
9841 Impl_Prag
: Node_Id
;
9844 -- Since the implementation kind is stored as a representation item
9845 -- rather than a flag, create a pragma node.
9849 Chars
=> Name_Implemented
,
9850 Pragma_Argument_Associations
=> New_List
(
9851 Make_Pragma_Argument_Association
(Loc
,
9852 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
9854 Make_Pragma_Argument_Association
(Loc
,
9855 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
9857 -- The pragma doesn't need to be analyzed because it is internally
9858 -- built. It is safe to directly register it as a rep item since we
9859 -- are only interested in the characters of the implementation kind.
9861 Record_Rep_Item
(Subp
, Impl_Prag
);
9862 end Inherit_Pragma_Implemented
;
9864 -- Start of processing for Check_Abstract_Overriding
9867 Op_List
:= Primitive_Operations
(T
);
9869 -- Loop to check primitive operations
9871 Elmt
:= First_Elmt
(Op_List
);
9872 while Present
(Elmt
) loop
9873 Subp
:= Node
(Elmt
);
9874 Alias_Subp
:= Alias
(Subp
);
9876 -- Inherited subprograms are identified by the fact that they do not
9877 -- come from source, and the associated source location is the
9878 -- location of the first subtype of the derived type.
9880 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9881 -- subprograms that "require overriding".
9883 -- Special exception, do not complain about failure to override the
9884 -- stream routines _Input and _Output, as well as the primitive
9885 -- operations used in dispatching selects since we always provide
9886 -- automatic overridings for these subprograms.
9888 -- Also ignore this rule for convention CIL since .NET libraries
9889 -- do bizarre things with interfaces???
9891 -- The partial view of T may have been a private extension, for
9892 -- which inherited functions dispatching on result are abstract.
9893 -- If the full view is a null extension, there is no need for
9894 -- overriding in Ada 2005, but wrappers need to be built for them
9895 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9897 if Is_Null_Extension
(T
)
9898 and then Has_Controlling_Result
(Subp
)
9899 and then Ada_Version
>= Ada_2005
9900 and then Present
(Alias_Subp
)
9901 and then not Comes_From_Source
(Subp
)
9902 and then not Is_Abstract_Subprogram
(Alias_Subp
)
9903 and then not Is_Access_Type
(Etype
(Subp
))
9907 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9908 -- processing because this check is done with the aliased
9911 elsif Present
(Interface_Alias
(Subp
)) then
9914 elsif (Is_Abstract_Subprogram
(Subp
)
9915 or else Requires_Overriding
(Subp
)
9917 (Has_Controlling_Result
(Subp
)
9918 and then Present
(Alias_Subp
)
9919 and then not Comes_From_Source
(Subp
)
9920 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
9921 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
9922 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
9923 and then not Is_Abstract_Type
(T
)
9924 and then Convention
(T
) /= Convention_CIL
9925 and then not Is_Predefined_Interface_Primitive
(Subp
)
9927 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9928 -- with abstract interface types because the check will be done
9929 -- with the aliased entity (otherwise we generate a duplicated
9932 and then not Present
(Interface_Alias
(Subp
))
9934 if Present
(Alias_Subp
) then
9936 -- Only perform the check for a derived subprogram when the
9937 -- type has an explicit record extension. This avoids incorrect
9938 -- flagging of abstract subprograms for the case of a type
9939 -- without an extension that is derived from a formal type
9940 -- with a tagged actual (can occur within a private part).
9942 -- Ada 2005 (AI-391): In the case of an inherited function with
9943 -- a controlling result of the type, the rule does not apply if
9944 -- the type is a null extension (unless the parent function
9945 -- itself is abstract, in which case the function must still be
9946 -- be overridden). The expander will generate an overriding
9947 -- wrapper function calling the parent subprogram (see
9948 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9950 Type_Def
:= Type_Definition
(Parent
(T
));
9952 if Nkind
(Type_Def
) = N_Derived_Type_Definition
9953 and then Present
(Record_Extension_Part
(Type_Def
))
9955 (Ada_Version
< Ada_2005
9956 or else not Is_Null_Extension
(T
)
9957 or else Ekind
(Subp
) = E_Procedure
9958 or else not Has_Controlling_Result
(Subp
)
9959 or else Is_Abstract_Subprogram
(Alias_Subp
)
9960 or else Requires_Overriding
(Subp
)
9961 or else Is_Access_Type
(Etype
(Subp
)))
9963 -- Avoid reporting error in case of abstract predefined
9964 -- primitive inherited from interface type because the
9965 -- body of internally generated predefined primitives
9966 -- of tagged types are generated later by Freeze_Type
9968 if Is_Interface
(Root_Type
(T
))
9969 and then Is_Abstract_Subprogram
(Subp
)
9970 and then Is_Predefined_Dispatching_Operation
(Subp
)
9971 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
9975 -- A null extension is not obliged to override an inherited
9976 -- procedure subject to pragma Extensions_Visible with value
9977 -- False and at least one controlling OUT parameter
9978 -- (SPARK RM 6.1.7(6)).
9980 elsif Is_Null_Extension
(T
)
9981 and then Is_EVF_Procedure
(Subp
)
9987 ("type must be declared abstract or & overridden",
9990 -- Traverse the whole chain of aliased subprograms to
9991 -- complete the error notification. This is especially
9992 -- useful for traceability of the chain of entities when
9993 -- the subprogram corresponds with an interface
9994 -- subprogram (which may be defined in another package).
9996 if Present
(Alias_Subp
) then
10002 while Present
(Alias
(E
)) loop
10004 -- Avoid reporting redundant errors on entities
10005 -- inherited from interfaces
10007 if Sloc
(E
) /= Sloc
(T
) then
10008 Error_Msg_Sloc
:= Sloc
(E
);
10010 ("\& has been inherited #", T
, Subp
);
10016 Error_Msg_Sloc
:= Sloc
(E
);
10018 -- AI05-0068: report if there is an overriding
10019 -- non-abstract subprogram that is invisible.
10022 and then not Is_Abstract_Subprogram
(E
)
10025 ("\& subprogram# is not visible",
10028 -- Clarify the case where a non-null extension must
10029 -- override inherited procedure subject to pragma
10030 -- Extensions_Visible with value False and at least
10031 -- one controlling OUT param.
10033 elsif Is_EVF_Procedure
(E
) then
10035 ("\& # is subject to Extensions_Visible False",
10040 ("\& has been inherited from subprogram #",
10047 -- Ada 2005 (AI-345): Protected or task type implementing
10048 -- abstract interfaces.
10050 elsif Is_Concurrent_Record_Type
(T
)
10051 and then Present
(Interfaces
(T
))
10053 -- There is no need to check here RM 9.4(11.9/3) since we
10054 -- are processing the corresponding record type and the
10055 -- mode of the overriding subprograms was verified by
10056 -- Check_Conformance when the corresponding concurrent
10057 -- type declaration was analyzed.
10060 ("interface subprogram & must be overridden", T
, Subp
);
10062 -- Examine primitive operations of synchronized type to find
10063 -- homonyms that have the wrong profile.
10069 Prim
:= First_Entity
(Corresponding_Concurrent_Type
(T
));
10070 while Present
(Prim
) loop
10071 if Chars
(Prim
) = Chars
(Subp
) then
10073 ("profile is not type conformant with prefixed "
10074 & "view profile of inherited operation&",
10078 Next_Entity
(Prim
);
10084 Error_Msg_Node_2
:= T
;
10086 ("abstract subprogram& not allowed for type&", Subp
);
10088 -- Also post unconditional warning on the type (unconditional
10089 -- so that if there are more than one of these cases, we get
10090 -- them all, and not just the first one).
10092 Error_Msg_Node_2
:= Subp
;
10093 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
10096 -- A subprogram subject to pragma Extensions_Visible with value
10097 -- "True" cannot override a subprogram subject to the same pragma
10098 -- with value "False" (SPARK RM 6.1.7(5)).
10100 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
10101 and then Present
(Overridden_Operation
(Subp
))
10102 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
10103 Extensions_Visible_False
10105 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
10107 ("subprogram & with Extensions_Visible True cannot override "
10108 & "subprogram # with Extensions_Visible False", Subp
);
10111 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10113 -- Subp is an expander-generated procedure which maps an interface
10114 -- alias to a protected wrapper. The interface alias is flagged by
10115 -- pragma Implemented. Ensure that Subp is a procedure when the
10116 -- implementation kind is By_Protected_Procedure or an entry when
10119 if Ada_Version
>= Ada_2012
10120 and then Is_Hidden
(Subp
)
10121 and then Present
(Interface_Alias
(Subp
))
10122 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
10124 Check_Pragma_Implemented
(Subp
);
10127 -- Subp is an interface primitive which overrides another interface
10128 -- primitive marked with pragma Implemented.
10130 if Ada_Version
>= Ada_2012
10131 and then Present
(Overridden_Operation
(Subp
))
10132 and then Has_Rep_Pragma
10133 (Overridden_Operation
(Subp
), Name_Implemented
)
10135 -- If the overriding routine is also marked by Implemented, check
10136 -- that the two implementation kinds are conforming.
10138 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10139 Check_Pragma_Implemented
10141 Iface_Subp
=> Overridden_Operation
(Subp
));
10143 -- Otherwise the overriding routine inherits the implementation
10144 -- kind from the overridden subprogram.
10147 Inherit_Pragma_Implemented
10149 Iface_Subp
=> Overridden_Operation
(Subp
));
10153 -- If the operation is a wrapper for a synchronized primitive, it
10154 -- may be called indirectly through a dispatching select. We assume
10155 -- that it will be referenced elsewhere indirectly, and suppress
10156 -- warnings about an unused entity.
10158 if Is_Primitive_Wrapper
(Subp
)
10159 and then Present
(Wrapped_Entity
(Subp
))
10161 Set_Referenced
(Wrapped_Entity
(Subp
));
10166 end Check_Abstract_Overriding
;
10168 ------------------------------------------------
10169 -- Check_Access_Discriminant_Requires_Limited --
10170 ------------------------------------------------
10172 procedure Check_Access_Discriminant_Requires_Limited
10177 -- A discriminant_specification for an access discriminant shall appear
10178 -- only in the declaration for a task or protected type, or for a type
10179 -- with the reserved word 'limited' in its definition or in one of its
10180 -- ancestors (RM 3.7(10)).
10182 -- AI-0063: The proper condition is that type must be immutably limited,
10183 -- or else be a partial view.
10185 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10186 if Is_Limited_View
(Current_Scope
)
10188 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10189 and then Limited_Present
(Parent
(Current_Scope
)))
10195 ("access discriminants allowed only for limited types", Loc
);
10198 end Check_Access_Discriminant_Requires_Limited
;
10200 -----------------------------------
10201 -- Check_Aliased_Component_Types --
10202 -----------------------------------
10204 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10208 -- ??? Also need to check components of record extensions, but not
10209 -- components of protected types (which are always limited).
10211 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10212 -- types to be unconstrained. This is safe because it is illegal to
10213 -- create access subtypes to such types with explicit discriminant
10216 if not Is_Limited_Type
(T
) then
10217 if Ekind
(T
) = E_Record_Type
then
10218 C
:= First_Component
(T
);
10219 while Present
(C
) loop
10221 and then Has_Discriminants
(Etype
(C
))
10222 and then not Is_Constrained
(Etype
(C
))
10223 and then not In_Instance_Body
10224 and then Ada_Version
< Ada_2005
10227 ("aliased component must be constrained (RM 3.6(11))",
10231 Next_Component
(C
);
10234 elsif Ekind
(T
) = E_Array_Type
then
10235 if Has_Aliased_Components
(T
)
10236 and then Has_Discriminants
(Component_Type
(T
))
10237 and then not Is_Constrained
(Component_Type
(T
))
10238 and then not In_Instance_Body
10239 and then Ada_Version
< Ada_2005
10242 ("aliased component type must be constrained (RM 3.6(11))",
10247 end Check_Aliased_Component_Types
;
10249 ---------------------------------------
10250 -- Check_Anonymous_Access_Components --
10251 ---------------------------------------
10253 procedure Check_Anonymous_Access_Components
10254 (Typ_Decl
: Node_Id
;
10257 Comp_List
: Node_Id
)
10259 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
10260 Anon_Access
: Entity_Id
;
10263 Comp_Def
: Node_Id
;
10265 Type_Def
: Node_Id
;
10267 procedure Build_Incomplete_Type_Declaration
;
10268 -- If the record type contains components that include an access to the
10269 -- current record, then create an incomplete type declaration for the
10270 -- record, to be used as the designated type of the anonymous access.
10271 -- This is done only once, and only if there is no previous partial
10272 -- view of the type.
10274 function Designates_T
(Subt
: Node_Id
) return Boolean;
10275 -- Check whether a node designates the enclosing record type, or 'Class
10278 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
10279 -- Check whether an access definition includes a reference to
10280 -- the enclosing record type. The reference can be a subtype mark
10281 -- in the access definition itself, a 'Class attribute reference, or
10282 -- recursively a reference appearing in a parameter specification
10283 -- or result definition of an access_to_subprogram definition.
10285 --------------------------------------
10286 -- Build_Incomplete_Type_Declaration --
10287 --------------------------------------
10289 procedure Build_Incomplete_Type_Declaration
is
10294 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10295 -- it's "is new ... with record" or else "is tagged record ...".
10297 Is_Tagged
: constant Boolean :=
10298 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
10300 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
10302 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
10303 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
10306 -- If there is a previous partial view, no need to create a new one
10307 -- If the partial view, given by Prev, is incomplete, If Prev is
10308 -- a private declaration, full declaration is flagged accordingly.
10310 if Prev
/= Typ
then
10312 Make_Class_Wide_Type
(Prev
);
10313 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
10314 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10319 elsif Has_Private_Declaration
(Typ
) then
10321 -- If we refer to T'Class inside T, and T is the completion of a
10322 -- private type, then make sure the class-wide type exists.
10325 Make_Class_Wide_Type
(Typ
);
10330 -- If there was a previous anonymous access type, the incomplete
10331 -- type declaration will have been created already.
10333 elsif Present
(Current_Entity
(Typ
))
10334 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
10335 and then Full_View
(Current_Entity
(Typ
)) = Typ
10338 and then Comes_From_Source
(Current_Entity
(Typ
))
10339 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
10341 Make_Class_Wide_Type
(Typ
);
10343 ("incomplete view of tagged type should be declared tagged??",
10344 Parent
(Current_Entity
(Typ
)));
10349 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
10350 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
10352 -- Type has already been inserted into the current scope. Remove
10353 -- it, and add incomplete declaration for type, so that subsequent
10354 -- anonymous access types can use it. The entity is unchained from
10355 -- the homonym list and from immediate visibility. After analysis,
10356 -- the entity in the incomplete declaration becomes immediately
10357 -- visible in the record declaration that follows.
10359 H
:= Current_Entity
(Typ
);
10362 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
10365 and then Homonym
(H
) /= Typ
10367 H
:= Homonym
(Typ
);
10370 Set_Homonym
(H
, Homonym
(Typ
));
10373 Insert_Before
(Typ_Decl
, Decl
);
10375 Set_Full_View
(Inc_T
, Typ
);
10379 -- Create a common class-wide type for both views, and set the
10380 -- Etype of the class-wide type to the full view.
10382 Make_Class_Wide_Type
(Inc_T
);
10383 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
10384 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10387 end Build_Incomplete_Type_Declaration
;
10393 function Designates_T
(Subt
: Node_Id
) return Boolean is
10394 Type_Id
: constant Name_Id
:= Chars
(Typ
);
10396 function Names_T
(Nam
: Node_Id
) return Boolean;
10397 -- The record type has not been introduced in the current scope
10398 -- yet, so we must examine the name of the type itself, either
10399 -- an identifier T, or an expanded name of the form P.T, where
10400 -- P denotes the current scope.
10406 function Names_T
(Nam
: Node_Id
) return Boolean is
10408 if Nkind
(Nam
) = N_Identifier
then
10409 return Chars
(Nam
) = Type_Id
;
10411 elsif Nkind
(Nam
) = N_Selected_Component
then
10412 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
10413 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
10414 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
10416 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
10417 return Chars
(Selector_Name
(Prefix
(Nam
))) =
10418 Chars
(Current_Scope
);
10432 -- Start of processing for Designates_T
10435 if Nkind
(Subt
) = N_Identifier
then
10436 return Chars
(Subt
) = Type_Id
;
10438 -- Reference can be through an expanded name which has not been
10439 -- analyzed yet, and which designates enclosing scopes.
10441 elsif Nkind
(Subt
) = N_Selected_Component
then
10442 if Names_T
(Subt
) then
10445 -- Otherwise it must denote an entity that is already visible.
10446 -- The access definition may name a subtype of the enclosing
10447 -- type, if there is a previous incomplete declaration for it.
10450 Find_Selected_Component
(Subt
);
10452 Is_Entity_Name
(Subt
)
10453 and then Scope
(Entity
(Subt
)) = Current_Scope
10455 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
10457 (Is_Class_Wide_Type
(Entity
(Subt
))
10459 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
10463 -- A reference to the current type may appear as the prefix of
10464 -- a 'Class attribute.
10466 elsif Nkind
(Subt
) = N_Attribute_Reference
10467 and then Attribute_Name
(Subt
) = Name_Class
10469 return Names_T
(Prefix
(Subt
));
10480 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
10481 Param_Spec
: Node_Id
;
10483 Acc_Subprg
: constant Node_Id
:=
10484 Access_To_Subprogram_Definition
(Acc_Def
);
10487 if No
(Acc_Subprg
) then
10488 return Designates_T
(Subtype_Mark
(Acc_Def
));
10491 -- Component is an access_to_subprogram: examine its formals,
10492 -- and result definition in the case of an access_to_function.
10494 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
10495 while Present
(Param_Spec
) loop
10496 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
10497 and then Mentions_T
(Parameter_Type
(Param_Spec
))
10501 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
10508 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
10509 if Nkind
(Result_Definition
(Acc_Subprg
)) =
10510 N_Access_Definition
10512 return Mentions_T
(Result_Definition
(Acc_Subprg
));
10514 return Designates_T
(Result_Definition
(Acc_Subprg
));
10521 -- Start of processing for Check_Anonymous_Access_Components
10524 if No
(Comp_List
) then
10528 Comp
:= First
(Component_Items
(Comp_List
));
10529 while Present
(Comp
) loop
10530 if Nkind
(Comp
) = N_Component_Declaration
10532 (Access_Definition
(Component_Definition
(Comp
)))
10534 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
10536 Comp_Def
:= Component_Definition
(Comp
);
10538 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
10540 Build_Incomplete_Type_Declaration
;
10541 Anon_Access
:= Make_Temporary
(Loc
, 'S');
10543 -- Create a declaration for the anonymous access type: either
10544 -- an access_to_object or an access_to_subprogram.
10546 if Present
(Acc_Def
) then
10547 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
10549 Make_Access_Function_Definition
(Loc
,
10550 Parameter_Specifications
=>
10551 Parameter_Specifications
(Acc_Def
),
10552 Result_Definition
=> Result_Definition
(Acc_Def
));
10555 Make_Access_Procedure_Definition
(Loc
,
10556 Parameter_Specifications
=>
10557 Parameter_Specifications
(Acc_Def
));
10562 Make_Access_To_Object_Definition
(Loc
,
10563 Subtype_Indication
=>
10565 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
10567 Set_Constant_Present
10568 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
10570 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
10573 Set_Null_Exclusion_Present
10575 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
10578 Make_Full_Type_Declaration
(Loc
,
10579 Defining_Identifier
=> Anon_Access
,
10580 Type_Definition
=> Type_Def
);
10582 Insert_Before
(Typ_Decl
, Decl
);
10585 -- If an access to subprogram, create the extra formals
10587 if Present
(Acc_Def
) then
10588 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
10590 -- If an access to object, preserve entity of designated type,
10591 -- for ASIS use, before rewriting the component definition.
10598 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
10600 -- If the access definition is to the current record,
10601 -- the visible entity at this point is an incomplete
10602 -- type. Retrieve the full view to simplify ASIS queries
10604 if Ekind
(Desig
) = E_Incomplete_Type
then
10605 Desig
:= Full_View
(Desig
);
10609 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
10614 Make_Component_Definition
(Loc
,
10615 Subtype_Indication
=>
10616 New_Occurrence_Of
(Anon_Access
, Loc
)));
10618 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
10619 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
10621 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
10624 Set_Is_Local_Anonymous_Access
(Anon_Access
);
10630 if Present
(Variant_Part
(Comp_List
)) then
10634 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
10635 while Present
(V
) loop
10636 Check_Anonymous_Access_Components
10637 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
10638 Next_Non_Pragma
(V
);
10642 end Check_Anonymous_Access_Components
;
10644 ----------------------
10645 -- Check_Completion --
10646 ----------------------
10648 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
10651 procedure Post_Error
;
10652 -- Post error message for lack of completion for entity E
10658 procedure Post_Error
is
10660 procedure Missing_Body
;
10661 -- Output missing body message
10667 procedure Missing_Body
is
10669 -- Spec is in same unit, so we can post on spec
10671 if In_Same_Source_Unit
(Body_Id
, E
) then
10672 Error_Msg_N
("missing body for &", E
);
10674 -- Spec is in a separate unit, so we have to post on the body
10677 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
10681 -- Start of processing for Post_Error
10684 if not Comes_From_Source
(E
) then
10686 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
10688 -- It may be an anonymous protected type created for a
10689 -- single variable. Post error on variable, if present.
10695 Var
:= First_Entity
(Current_Scope
);
10696 while Present
(Var
) loop
10697 exit when Etype
(Var
) = E
10698 and then Comes_From_Source
(Var
);
10703 if Present
(Var
) then
10710 -- If a generated entity has no completion, then either previous
10711 -- semantic errors have disabled the expansion phase, or else we had
10712 -- missing subunits, or else we are compiling without expansion,
10713 -- or else something is very wrong.
10715 if not Comes_From_Source
(E
) then
10717 (Serious_Errors_Detected
> 0
10718 or else Configurable_Run_Time_Violations
> 0
10719 or else Subunits_Missing
10720 or else not Expander_Active
);
10723 -- Here for source entity
10726 -- Here if no body to post the error message, so we post the error
10727 -- on the declaration that has no completion. This is not really
10728 -- the right place to post it, think about this later ???
10730 if No
(Body_Id
) then
10731 if Is_Type
(E
) then
10733 ("missing full declaration for }", Parent
(E
), E
);
10735 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
10738 -- Package body has no completion for a declaration that appears
10739 -- in the corresponding spec. Post error on the body, with a
10740 -- reference to the non-completed declaration.
10743 Error_Msg_Sloc
:= Sloc
(E
);
10745 if Is_Type
(E
) then
10746 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
10748 elsif Is_Overloadable
(E
)
10749 and then Current_Entity_In_Scope
(E
) /= E
10751 -- It may be that the completion is mistyped and appears as
10752 -- a distinct overloading of the entity.
10755 Candidate
: constant Entity_Id
:=
10756 Current_Entity_In_Scope
(E
);
10757 Decl
: constant Node_Id
:=
10758 Unit_Declaration_Node
(Candidate
);
10761 if Is_Overloadable
(Candidate
)
10762 and then Ekind
(Candidate
) = Ekind
(E
)
10763 and then Nkind
(Decl
) = N_Subprogram_Body
10764 and then Acts_As_Spec
(Decl
)
10766 Check_Type_Conformant
(Candidate
, E
);
10782 Pack_Id
: constant Entity_Id
:= Current_Scope
;
10784 -- Start of processing for Check_Completion
10787 E
:= First_Entity
(Pack_Id
);
10788 while Present
(E
) loop
10789 if Is_Intrinsic_Subprogram
(E
) then
10792 -- A Ghost entity declared in a non-Ghost package does not force the
10793 -- need for a body (SPARK RM 6.9(11)).
10795 elsif not Is_Ghost_Entity
(Pack_Id
) and then Is_Ghost_Entity
(E
) then
10798 -- The following situation requires special handling: a child unit
10799 -- that appears in the context clause of the body of its parent:
10801 -- procedure Parent.Child (...);
10803 -- with Parent.Child;
10804 -- package body Parent is
10806 -- Here Parent.Child appears as a local entity, but should not be
10807 -- flagged as requiring completion, because it is a compilation
10810 -- Ignore missing completion for a subprogram that does not come from
10811 -- source (including the _Call primitive operation of RAS types,
10812 -- which has to have the flag Comes_From_Source for other purposes):
10813 -- we assume that the expander will provide the missing completion.
10814 -- In case of previous errors, other expansion actions that provide
10815 -- bodies for null procedures with not be invoked, so inhibit message
10818 -- Note that E_Operator is not in the list that follows, because
10819 -- this kind is reserved for predefined operators, that are
10820 -- intrinsic and do not need completion.
10822 elsif Ekind_In
(E
, E_Function
,
10824 E_Generic_Function
,
10825 E_Generic_Procedure
)
10827 if Has_Completion
(E
) then
10830 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
10833 elsif Is_Subprogram
(E
)
10834 and then (not Comes_From_Source
(E
)
10835 or else Chars
(E
) = Name_uCall
)
10840 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
10844 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
10845 and then Null_Present
(Parent
(E
))
10846 and then Serious_Errors_Detected
> 0
10854 elsif Is_Entry
(E
) then
10855 if not Has_Completion
(E
) and then
10856 (Ekind
(Scope
(E
)) = E_Protected_Object
10857 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
10862 elsif Is_Package_Or_Generic_Package
(E
) then
10863 if Unit_Requires_Body
(E
) then
10864 if not Has_Completion
(E
)
10865 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
10871 elsif not Is_Child_Unit
(E
) then
10872 May_Need_Implicit_Body
(E
);
10875 -- A formal incomplete type (Ada 2012) does not require a completion;
10876 -- other incomplete type declarations do.
10878 elsif Ekind
(E
) = E_Incomplete_Type
10879 and then No
(Underlying_Type
(E
))
10880 and then not Is_Generic_Type
(E
)
10884 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
10885 and then not Has_Completion
(E
)
10889 -- A single task declared in the current scope is a constant, verify
10890 -- that the body of its anonymous type is in the same scope. If the
10891 -- task is defined elsewhere, this may be a renaming declaration for
10892 -- which no completion is needed.
10894 elsif Ekind
(E
) = E_Constant
10895 and then Ekind
(Etype
(E
)) = E_Task_Type
10896 and then not Has_Completion
(Etype
(E
))
10897 and then Scope
(Etype
(E
)) = Current_Scope
10901 elsif Ekind
(E
) = E_Protected_Object
10902 and then not Has_Completion
(Etype
(E
))
10906 elsif Ekind
(E
) = E_Record_Type
then
10907 if Is_Tagged_Type
(E
) then
10908 Check_Abstract_Overriding
(E
);
10909 Check_Conventions
(E
);
10912 Check_Aliased_Component_Types
(E
);
10914 elsif Ekind
(E
) = E_Array_Type
then
10915 Check_Aliased_Component_Types
(E
);
10921 end Check_Completion
;
10923 ------------------------------------
10924 -- Check_CPP_Type_Has_No_Defaults --
10925 ------------------------------------
10927 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
10928 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
10933 -- Obtain the component list
10935 if Nkind
(Tdef
) = N_Record_Definition
then
10936 Clist
:= Component_List
(Tdef
);
10937 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
10938 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
10941 -- Check all components to ensure no default expressions
10943 if Present
(Clist
) then
10944 Comp
:= First
(Component_Items
(Clist
));
10945 while Present
(Comp
) loop
10946 if Present
(Expression
(Comp
)) then
10948 ("component of imported 'C'P'P type cannot have "
10949 & "default expression", Expression
(Comp
));
10955 end Check_CPP_Type_Has_No_Defaults
;
10957 ----------------------------
10958 -- Check_Delta_Expression --
10959 ----------------------------
10961 procedure Check_Delta_Expression
(E
: Node_Id
) is
10963 if not (Is_Real_Type
(Etype
(E
))) then
10964 Wrong_Type
(E
, Any_Real
);
10966 elsif not Is_OK_Static_Expression
(E
) then
10967 Flag_Non_Static_Expr
10968 ("non-static expression used for delta value!", E
);
10970 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
10971 Error_Msg_N
("delta expression must be positive", E
);
10977 -- If any of above errors occurred, then replace the incorrect
10978 -- expression by the real 0.1, which should prevent further errors.
10981 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
10982 Analyze_And_Resolve
(E
, Standard_Float
);
10983 end Check_Delta_Expression
;
10985 -----------------------------
10986 -- Check_Digits_Expression --
10987 -----------------------------
10989 procedure Check_Digits_Expression
(E
: Node_Id
) is
10991 if not (Is_Integer_Type
(Etype
(E
))) then
10992 Wrong_Type
(E
, Any_Integer
);
10994 elsif not Is_OK_Static_Expression
(E
) then
10995 Flag_Non_Static_Expr
10996 ("non-static expression used for digits value!", E
);
10998 elsif Expr_Value
(E
) <= 0 then
10999 Error_Msg_N
("digits value must be greater than zero", E
);
11005 -- If any of above errors occurred, then replace the incorrect
11006 -- expression by the integer 1, which should prevent further errors.
11008 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
11009 Analyze_And_Resolve
(E
, Standard_Integer
);
11011 end Check_Digits_Expression
;
11013 --------------------------
11014 -- Check_Initialization --
11015 --------------------------
11017 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
11019 -- Special processing for limited types
11021 if Is_Limited_Type
(T
)
11022 and then not In_Instance
11023 and then not In_Inlined_Body
11025 if not OK_For_Limited_Init
(T
, Exp
) then
11027 -- In GNAT mode, this is just a warning, to allow it to be evilly
11028 -- turned off. Otherwise it is a real error.
11032 ("??cannot initialize entities of limited type!", Exp
);
11034 elsif Ada_Version
< Ada_2005
then
11036 -- The side effect removal machinery may generate illegal Ada
11037 -- code to avoid the usage of access types and 'reference in
11038 -- SPARK mode. Since this is legal code with respect to theorem
11039 -- proving, do not emit the error.
11042 and then Nkind
(Exp
) = N_Function_Call
11043 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11044 and then not Comes_From_Source
11045 (Defining_Identifier
(Parent
(Exp
)))
11051 ("cannot initialize entities of limited type", Exp
);
11052 Explain_Limited_Type
(T
, Exp
);
11056 -- Specialize error message according to kind of illegal
11057 -- initial expression.
11059 if Nkind
(Exp
) = N_Type_Conversion
11060 and then Nkind
(Expression
(Exp
)) = N_Function_Call
11063 ("illegal context for call"
11064 & " to function with limited result", Exp
);
11068 ("initialization of limited object requires aggregate "
11069 & "or function call", Exp
);
11075 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11076 -- set unless we can be sure that no range check is required.
11078 if (GNATprove_Mode
or not Expander_Active
)
11079 and then Is_Scalar_Type
(T
)
11080 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
11082 Set_Do_Range_Check
(Exp
);
11084 end Check_Initialization
;
11086 ----------------------
11087 -- Check_Interfaces --
11088 ----------------------
11090 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
11091 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
11094 Iface_Def
: Node_Id
;
11095 Iface_Typ
: Entity_Id
;
11096 Parent_Node
: Node_Id
;
11098 Is_Task
: Boolean := False;
11099 -- Set True if parent type or any progenitor is a task interface
11101 Is_Protected
: Boolean := False;
11102 -- Set True if parent type or any progenitor is a protected interface
11104 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
11105 -- Check that a progenitor is compatible with declaration. If an error
11106 -- message is output, it is posted on Error_Node.
11112 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
11113 Iface_Id
: constant Entity_Id
:=
11114 Defining_Identifier
(Parent
(Iface_Def
));
11115 Type_Def
: Node_Id
;
11118 if Nkind
(N
) = N_Private_Extension_Declaration
then
11121 Type_Def
:= Type_Definition
(N
);
11124 if Is_Task_Interface
(Iface_Id
) then
11127 elsif Is_Protected_Interface
(Iface_Id
) then
11128 Is_Protected
:= True;
11131 if Is_Synchronized_Interface
(Iface_Id
) then
11133 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11134 -- extension derived from a synchronized interface must explicitly
11135 -- be declared synchronized, because the full view will be a
11136 -- synchronized type.
11138 if Nkind
(N
) = N_Private_Extension_Declaration
then
11139 if not Synchronized_Present
(N
) then
11141 ("private extension of& must be explicitly synchronized",
11145 -- However, by 3.9.4(16/2), a full type that is a record extension
11146 -- is never allowed to derive from a synchronized interface (note
11147 -- that interfaces must be excluded from this check, because those
11148 -- are represented by derived type definitions in some cases).
11150 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11151 and then not Interface_Present
(Type_Definition
(N
))
11153 Error_Msg_N
("record extension cannot derive from synchronized "
11154 & "interface", Error_Node
);
11158 -- Check that the characteristics of the progenitor are compatible
11159 -- with the explicit qualifier in the declaration.
11160 -- The check only applies to qualifiers that come from source.
11161 -- Limited_Present also appears in the declaration of corresponding
11162 -- records, and the check does not apply to them.
11164 if Limited_Present
(Type_Def
)
11166 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11168 if Is_Limited_Interface
(Parent_Type
)
11169 and then not Is_Limited_Interface
(Iface_Id
)
11172 ("progenitor & must be limited interface",
11173 Error_Node
, Iface_Id
);
11176 (Task_Present
(Iface_Def
)
11177 or else Protected_Present
(Iface_Def
)
11178 or else Synchronized_Present
(Iface_Def
))
11179 and then Nkind
(N
) /= N_Private_Extension_Declaration
11180 and then not Error_Posted
(N
)
11183 ("progenitor & must be limited interface",
11184 Error_Node
, Iface_Id
);
11187 -- Protected interfaces can only inherit from limited, synchronized
11188 -- or protected interfaces.
11190 elsif Nkind
(N
) = N_Full_Type_Declaration
11191 and then Protected_Present
(Type_Def
)
11193 if Limited_Present
(Iface_Def
)
11194 or else Synchronized_Present
(Iface_Def
)
11195 or else Protected_Present
(Iface_Def
)
11199 elsif Task_Present
(Iface_Def
) then
11200 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11201 & "from task interface", Error_Node
);
11204 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11205 & "from non-limited interface", Error_Node
);
11208 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11209 -- limited and synchronized.
11211 elsif Synchronized_Present
(Type_Def
) then
11212 if Limited_Present
(Iface_Def
)
11213 or else Synchronized_Present
(Iface_Def
)
11217 elsif Protected_Present
(Iface_Def
)
11218 and then Nkind
(N
) /= N_Private_Extension_Declaration
11220 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11221 & "from protected interface", Error_Node
);
11223 elsif Task_Present
(Iface_Def
)
11224 and then Nkind
(N
) /= N_Private_Extension_Declaration
11226 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11227 & "from task interface", Error_Node
);
11229 elsif not Is_Limited_Interface
(Iface_Id
) then
11230 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11231 & "from non-limited interface", Error_Node
);
11234 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11235 -- synchronized or task interfaces.
11237 elsif Nkind
(N
) = N_Full_Type_Declaration
11238 and then Task_Present
(Type_Def
)
11240 if Limited_Present
(Iface_Def
)
11241 or else Synchronized_Present
(Iface_Def
)
11242 or else Task_Present
(Iface_Def
)
11246 elsif Protected_Present
(Iface_Def
) then
11247 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11248 & "protected interface", Error_Node
);
11251 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11252 & "non-limited interface", Error_Node
);
11257 -- Start of processing for Check_Interfaces
11260 if Is_Interface
(Parent_Type
) then
11261 if Is_Task_Interface
(Parent_Type
) then
11264 elsif Is_Protected_Interface
(Parent_Type
) then
11265 Is_Protected
:= True;
11269 if Nkind
(N
) = N_Private_Extension_Declaration
then
11271 -- Check that progenitors are compatible with declaration
11273 Iface
:= First
(Interface_List
(Def
));
11274 while Present
(Iface
) loop
11275 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11277 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11278 Iface_Def
:= Type_Definition
(Parent_Node
);
11280 if not Is_Interface
(Iface_Typ
) then
11281 Diagnose_Interface
(Iface
, Iface_Typ
);
11283 Check_Ifaces
(Iface_Def
, Iface
);
11289 if Is_Task
and Is_Protected
then
11291 ("type cannot derive from task and protected interface", N
);
11297 -- Full type declaration of derived type.
11298 -- Check compatibility with parent if it is interface type
11300 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11301 and then Is_Interface
(Parent_Type
)
11303 Parent_Node
:= Parent
(Parent_Type
);
11305 -- More detailed checks for interface varieties
11308 (Iface_Def
=> Type_Definition
(Parent_Node
),
11309 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
11312 Iface
:= First
(Interface_List
(Def
));
11313 while Present
(Iface
) loop
11314 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11316 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11317 Iface_Def
:= Type_Definition
(Parent_Node
);
11319 if not Is_Interface
(Iface_Typ
) then
11320 Diagnose_Interface
(Iface
, Iface_Typ
);
11323 -- "The declaration of a specific descendant of an interface
11324 -- type freezes the interface type" RM 13.14
11326 Freeze_Before
(N
, Iface_Typ
);
11327 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
11333 if Is_Task
and Is_Protected
then
11335 ("type cannot derive from task and protected interface", N
);
11337 end Check_Interfaces
;
11339 ------------------------------------
11340 -- Check_Or_Process_Discriminants --
11341 ------------------------------------
11343 -- If an incomplete or private type declaration was already given for the
11344 -- type, the discriminants may have already been processed if they were
11345 -- present on the incomplete declaration. In this case a full conformance
11346 -- check has been performed in Find_Type_Name, and we then recheck here
11347 -- some properties that can't be checked on the partial view alone.
11348 -- Otherwise we call Process_Discriminants.
11350 procedure Check_Or_Process_Discriminants
11353 Prev
: Entity_Id
:= Empty
)
11356 if Has_Discriminants
(T
) then
11358 -- Discriminants are already set on T if they were already present
11359 -- on the partial view. Make them visible to component declarations.
11363 -- Discriminant on T (full view) referencing expr on partial view
11365 Prev_D
: Entity_Id
;
11366 -- Entity of corresponding discriminant on partial view
11369 -- Discriminant specification for full view, expression is
11370 -- the syntactic copy on full view (which has been checked for
11371 -- conformance with partial view), only used here to post error
11375 D
:= First_Discriminant
(T
);
11376 New_D
:= First
(Discriminant_Specifications
(N
));
11377 while Present
(D
) loop
11378 Prev_D
:= Current_Entity
(D
);
11379 Set_Current_Entity
(D
);
11380 Set_Is_Immediately_Visible
(D
);
11381 Set_Homonym
(D
, Prev_D
);
11383 -- Handle the case where there is an untagged partial view and
11384 -- the full view is tagged: must disallow discriminants with
11385 -- defaults, unless compiling for Ada 2012, which allows a
11386 -- limited tagged type to have defaulted discriminants (see
11387 -- AI05-0214). However, suppress error here if it was already
11388 -- reported on the default expression of the partial view.
11390 if Is_Tagged_Type
(T
)
11391 and then Present
(Expression
(Parent
(D
)))
11392 and then (not Is_Limited_Type
(Current_Scope
)
11393 or else Ada_Version
< Ada_2012
)
11394 and then not Error_Posted
(Expression
(Parent
(D
)))
11396 if Ada_Version
>= Ada_2012
then
11398 ("discriminants of nonlimited tagged type cannot have "
11400 Expression
(New_D
));
11403 ("discriminants of tagged type cannot have defaults",
11404 Expression
(New_D
));
11408 -- Ada 2005 (AI-230): Access discriminant allowed in
11409 -- non-limited record types.
11411 if Ada_Version
< Ada_2005
then
11413 -- This restriction gets applied to the full type here. It
11414 -- has already been applied earlier to the partial view.
11416 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
11419 Next_Discriminant
(D
);
11424 elsif Present
(Discriminant_Specifications
(N
)) then
11425 Process_Discriminants
(N
, Prev
);
11427 end Check_Or_Process_Discriminants
;
11429 ----------------------
11430 -- Check_Real_Bound --
11431 ----------------------
11433 procedure Check_Real_Bound
(Bound
: Node_Id
) is
11435 if not Is_Real_Type
(Etype
(Bound
)) then
11437 ("bound in real type definition must be of real type", Bound
);
11439 elsif not Is_OK_Static_Expression
(Bound
) then
11440 Flag_Non_Static_Expr
11441 ("non-static expression used for real type bound!", Bound
);
11448 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
11450 Resolve
(Bound
, Standard_Float
);
11451 end Check_Real_Bound
;
11453 ------------------------------
11454 -- Complete_Private_Subtype --
11455 ------------------------------
11457 procedure Complete_Private_Subtype
11460 Full_Base
: Entity_Id
;
11461 Related_Nod
: Node_Id
)
11463 Save_Next_Entity
: Entity_Id
;
11464 Save_Homonym
: Entity_Id
;
11467 -- Set semantic attributes for (implicit) private subtype completion.
11468 -- If the full type has no discriminants, then it is a copy of the
11469 -- full view of the base. Otherwise, it is a subtype of the base with
11470 -- a possible discriminant constraint. Save and restore the original
11471 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11472 -- not corrupt the entity chain.
11474 -- Note that the type of the full view is the same entity as the type
11475 -- of the partial view. In this fashion, the subtype has access to the
11476 -- correct view of the parent.
11478 Save_Next_Entity
:= Next_Entity
(Full
);
11479 Save_Homonym
:= Homonym
(Priv
);
11481 case Ekind
(Full_Base
) is
11482 when E_Record_Type |
11488 Copy_Node
(Priv
, Full
);
11490 Set_Has_Discriminants
11491 (Full
, Has_Discriminants
(Full_Base
));
11492 Set_Has_Unknown_Discriminants
11493 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11494 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
11495 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
11497 -- If the underlying base type is constrained, we know that the
11498 -- full view of the subtype is constrained as well (the converse
11499 -- is not necessarily true).
11501 if Is_Constrained
(Full_Base
) then
11502 Set_Is_Constrained
(Full
);
11506 Copy_Node
(Full_Base
, Full
);
11508 Set_Chars
(Full
, Chars
(Priv
));
11509 Conditional_Delay
(Full
, Priv
);
11510 Set_Sloc
(Full
, Sloc
(Priv
));
11513 Set_Next_Entity
(Full
, Save_Next_Entity
);
11514 Set_Homonym
(Full
, Save_Homonym
);
11515 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
11517 -- Set common attributes for all subtypes: kind, convention, etc.
11519 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
11520 Set_Convention
(Full
, Convention
(Full_Base
));
11522 -- The Etype of the full view is inconsistent. Gigi needs to see the
11523 -- structural full view, which is what the current scheme gives: the
11524 -- Etype of the full view is the etype of the full base. However, if the
11525 -- full base is a derived type, the full view then looks like a subtype
11526 -- of the parent, not a subtype of the full base. If instead we write:
11528 -- Set_Etype (Full, Full_Base);
11530 -- then we get inconsistencies in the front-end (confusion between
11531 -- views). Several outstanding bugs are related to this ???
11533 Set_Is_First_Subtype
(Full
, False);
11534 Set_Scope
(Full
, Scope
(Priv
));
11535 Set_Size_Info
(Full
, Full_Base
);
11536 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
11537 Set_Is_Itype
(Full
);
11539 -- A subtype of a private-type-without-discriminants, whose full-view
11540 -- has discriminants with default expressions, is not constrained.
11542 if not Has_Discriminants
(Priv
) then
11543 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
11545 if Has_Discriminants
(Full_Base
) then
11546 Set_Discriminant_Constraint
11547 (Full
, Discriminant_Constraint
(Full_Base
));
11549 -- The partial view may have been indefinite, the full view
11552 Set_Has_Unknown_Discriminants
11553 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11557 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
11558 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
11560 -- Freeze the private subtype entity if its parent is delayed, and not
11561 -- already frozen. We skip this processing if the type is an anonymous
11562 -- subtype of a record component, or is the corresponding record of a
11563 -- protected type, since ???
11565 if not Is_Type
(Scope
(Full
)) then
11566 Set_Has_Delayed_Freeze
(Full
,
11567 Has_Delayed_Freeze
(Full_Base
)
11568 and then (not Is_Frozen
(Full_Base
)));
11571 Set_Freeze_Node
(Full
, Empty
);
11572 Set_Is_Frozen
(Full
, False);
11573 Set_Full_View
(Priv
, Full
);
11575 if Has_Discriminants
(Full
) then
11576 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
11577 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
11579 if Has_Unknown_Discriminants
(Full
) then
11580 Set_Discriminant_Constraint
(Full
, No_Elist
);
11584 if Ekind
(Full_Base
) = E_Record_Type
11585 and then Has_Discriminants
(Full_Base
)
11586 and then Has_Discriminants
(Priv
) -- might not, if errors
11587 and then not Has_Unknown_Discriminants
(Priv
)
11588 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
11590 Create_Constrained_Components
11591 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
11593 -- If the full base is itself derived from private, build a congruent
11594 -- subtype of its underlying type, for use by the back end. For a
11595 -- constrained record component, the declaration cannot be placed on
11596 -- the component list, but it must nevertheless be built an analyzed, to
11597 -- supply enough information for Gigi to compute the size of component.
11599 elsif Ekind
(Full_Base
) in Private_Kind
11600 and then Is_Derived_Type
(Full_Base
)
11601 and then Has_Discriminants
(Full_Base
)
11602 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
11604 if not Is_Itype
(Priv
)
11606 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
11608 Build_Underlying_Full_View
11609 (Parent
(Priv
), Full
, Etype
(Full_Base
));
11611 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
11612 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
11615 elsif Is_Record_Type
(Full_Base
) then
11617 -- Show Full is simply a renaming of Full_Base
11619 Set_Cloned_Subtype
(Full
, Full_Base
);
11622 -- It is unsafe to share the bounds of a scalar type, because the Itype
11623 -- is elaborated on demand, and if a bound is non-static then different
11624 -- orders of elaboration in different units will lead to different
11625 -- external symbols.
11627 if Is_Scalar_Type
(Full_Base
) then
11628 Set_Scalar_Range
(Full
,
11629 Make_Range
(Sloc
(Related_Nod
),
11631 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
11633 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
11635 -- This completion inherits the bounds of the full parent, but if
11636 -- the parent is an unconstrained floating point type, so is the
11639 if Is_Floating_Point_Type
(Full_Base
) then
11640 Set_Includes_Infinities
11641 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
11645 -- ??? It seems that a lot of fields are missing that should be copied
11646 -- from Full_Base to Full. Here are some that are introduced in a
11647 -- non-disruptive way but a cleanup is necessary.
11649 if Is_Tagged_Type
(Full_Base
) then
11650 Set_Is_Tagged_Type
(Full
);
11651 Set_Direct_Primitive_Operations
11652 (Full
, Direct_Primitive_Operations
(Full_Base
));
11653 Set_No_Tagged_Streams_Pragma
11654 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
11656 -- Inherit class_wide type of full_base in case the partial view was
11657 -- not tagged. Otherwise it has already been created when the private
11658 -- subtype was analyzed.
11660 if No
(Class_Wide_Type
(Full
)) then
11661 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
11664 -- If this is a subtype of a protected or task type, constrain its
11665 -- corresponding record, unless this is a subtype without constraints,
11666 -- i.e. a simple renaming as with an actual subtype in an instance.
11668 elsif Is_Concurrent_Type
(Full_Base
) then
11669 if Has_Discriminants
(Full
)
11670 and then Present
(Corresponding_Record_Type
(Full_Base
))
11672 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
11674 Set_Corresponding_Record_Type
(Full
,
11675 Constrain_Corresponding_Record
11676 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
11679 Set_Corresponding_Record_Type
(Full
,
11680 Corresponding_Record_Type
(Full_Base
));
11684 -- Link rep item chain, and also setting of Has_Predicates from private
11685 -- subtype to full subtype, since we will need these on the full subtype
11686 -- to create the predicate function. Note that the full subtype may
11687 -- already have rep items, inherited from the full view of the base
11688 -- type, so we must be sure not to overwrite these entries.
11693 Next_Item
: Node_Id
;
11696 Item
:= First_Rep_Item
(Full
);
11698 -- If no existing rep items on full type, we can just link directly
11699 -- to the list of items on the private type, if any exist.. Same if
11700 -- the rep items are only those inherited from the base
11703 or else Nkind
(Item
) /= N_Aspect_Specification
11704 or else Entity
(Item
) = Full_Base
)
11705 and then Present
(First_Rep_Item
(Priv
))
11707 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
11709 -- Otherwise, search to the end of items currently linked to the full
11710 -- subtype and append the private items to the end. However, if Priv
11711 -- and Full already have the same list of rep items, then the append
11712 -- is not done, as that would create a circularity.
11714 elsif Item
/= First_Rep_Item
(Priv
) then
11717 Next_Item
:= Next_Rep_Item
(Item
);
11718 exit when No
(Next_Item
);
11721 -- If the private view has aspect specifications, the full view
11722 -- inherits them. Since these aspects may already have been
11723 -- attached to the full view during derivation, do not append
11724 -- them if already present.
11726 if Item
= First_Rep_Item
(Priv
) then
11732 -- And link the private type items at the end of the chain
11735 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
11740 -- Make sure Has_Predicates is set on full type if it is set on the
11741 -- private type. Note that it may already be set on the full type and
11742 -- if so, we don't want to unset it.
11744 if Has_Predicates
(Priv
) then
11745 Set_Has_Predicates
(Full
);
11747 end Complete_Private_Subtype
;
11749 ----------------------------
11750 -- Constant_Redeclaration --
11751 ----------------------------
11753 procedure Constant_Redeclaration
11758 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
11759 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
11762 procedure Check_Possible_Deferred_Completion
11763 (Prev_Id
: Entity_Id
;
11764 Prev_Obj_Def
: Node_Id
;
11765 Curr_Obj_Def
: Node_Id
);
11766 -- Determine whether the two object definitions describe the partial
11767 -- and the full view of a constrained deferred constant. Generate
11768 -- a subtype for the full view and verify that it statically matches
11769 -- the subtype of the partial view.
11771 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
11772 -- If deferred constant is an access type initialized with an allocator,
11773 -- check whether there is an illegal recursion in the definition,
11774 -- through a default value of some record subcomponent. This is normally
11775 -- detected when generating init procs, but requires this additional
11776 -- mechanism when expansion is disabled.
11778 ----------------------------------------
11779 -- Check_Possible_Deferred_Completion --
11780 ----------------------------------------
11782 procedure Check_Possible_Deferred_Completion
11783 (Prev_Id
: Entity_Id
;
11784 Prev_Obj_Def
: Node_Id
;
11785 Curr_Obj_Def
: Node_Id
)
11788 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
11789 and then Present
(Constraint
(Prev_Obj_Def
))
11790 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
11791 and then Present
(Constraint
(Curr_Obj_Def
))
11794 Loc
: constant Source_Ptr
:= Sloc
(N
);
11795 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
11796 Decl
: constant Node_Id
:=
11797 Make_Subtype_Declaration
(Loc
,
11798 Defining_Identifier
=> Def_Id
,
11799 Subtype_Indication
=>
11800 Relocate_Node
(Curr_Obj_Def
));
11803 Insert_Before_And_Analyze
(N
, Decl
);
11804 Set_Etype
(Id
, Def_Id
);
11806 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
11807 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
11808 Error_Msg_N
("subtype does not statically match deferred "
11809 & "declaration #", N
);
11813 end Check_Possible_Deferred_Completion
;
11815 ---------------------------------
11816 -- Check_Recursive_Declaration --
11817 ---------------------------------
11819 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
11823 if Is_Record_Type
(Typ
) then
11824 Comp
:= First_Component
(Typ
);
11825 while Present
(Comp
) loop
11826 if Comes_From_Source
(Comp
) then
11827 if Present
(Expression
(Parent
(Comp
)))
11828 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
11829 and then Entity
(Expression
(Parent
(Comp
))) = Prev
11831 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
11833 ("illegal circularity with declaration for & #",
11837 elsif Is_Record_Type
(Etype
(Comp
)) then
11838 Check_Recursive_Declaration
(Etype
(Comp
));
11842 Next_Component
(Comp
);
11845 end Check_Recursive_Declaration
;
11847 -- Start of processing for Constant_Redeclaration
11850 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
11851 if Nkind
(Object_Definition
11852 (Parent
(Prev
))) = N_Subtype_Indication
11854 -- Find type of new declaration. The constraints of the two
11855 -- views must match statically, but there is no point in
11856 -- creating an itype for the full view.
11858 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
11859 Find_Type
(Subtype_Mark
(Obj_Def
));
11860 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
11863 Find_Type
(Obj_Def
);
11864 New_T
:= Entity
(Obj_Def
);
11870 -- The full view may impose a constraint, even if the partial
11871 -- view does not, so construct the subtype.
11873 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
11878 -- Current declaration is illegal, diagnosed below in Enter_Name
11884 -- If previous full declaration or a renaming declaration exists, or if
11885 -- a homograph is present, let Enter_Name handle it, either with an
11886 -- error or with the removal of an overridden implicit subprogram.
11887 -- The previous one is a full declaration if it has an expression
11888 -- (which in the case of an aggregate is indicated by the Init flag).
11890 if Ekind
(Prev
) /= E_Constant
11891 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
11892 or else Present
(Expression
(Parent
(Prev
)))
11893 or else Has_Init_Expression
(Parent
(Prev
))
11894 or else Present
(Full_View
(Prev
))
11898 -- Verify that types of both declarations match, or else that both types
11899 -- are anonymous access types whose designated subtypes statically match
11900 -- (as allowed in Ada 2005 by AI-385).
11902 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
11904 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
11905 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
11906 or else Is_Access_Constant
(Etype
(New_T
)) /=
11907 Is_Access_Constant
(Etype
(Prev
))
11908 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
11909 Can_Never_Be_Null
(Etype
(Prev
))
11910 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
11911 Null_Exclusion_Present
(Parent
(Id
))
11912 or else not Subtypes_Statically_Match
11913 (Designated_Type
(Etype
(Prev
)),
11914 Designated_Type
(Etype
(New_T
))))
11916 Error_Msg_Sloc
:= Sloc
(Prev
);
11917 Error_Msg_N
("type does not match declaration#", N
);
11918 Set_Full_View
(Prev
, Id
);
11919 Set_Etype
(Id
, Any_Type
);
11921 -- A deferred constant whose type is an anonymous array is always
11922 -- illegal (unless imported). A detailed error message might be
11923 -- helpful for Ada beginners.
11925 if Nkind
(Object_Definition
(Parent
(Prev
)))
11926 = N_Constrained_Array_Definition
11927 and then Nkind
(Object_Definition
(N
))
11928 = N_Constrained_Array_Definition
11930 Error_Msg_N
("\each anonymous array is a distinct type", N
);
11931 Error_Msg_N
("a deferred constant must have a named type",
11932 Object_Definition
(Parent
(Prev
)));
11936 Null_Exclusion_Present
(Parent
(Prev
))
11937 and then not Null_Exclusion_Present
(N
)
11939 Error_Msg_Sloc
:= Sloc
(Prev
);
11940 Error_Msg_N
("null-exclusion does not match declaration#", N
);
11941 Set_Full_View
(Prev
, Id
);
11942 Set_Etype
(Id
, Any_Type
);
11944 -- If so, process the full constant declaration
11947 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11948 -- the deferred declaration is constrained, then the subtype defined
11949 -- by the subtype_indication in the full declaration shall match it
11952 Check_Possible_Deferred_Completion
11954 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
11955 Curr_Obj_Def
=> Obj_Def
);
11957 Set_Full_View
(Prev
, Id
);
11958 Set_Is_Public
(Id
, Is_Public
(Prev
));
11959 Set_Is_Internal
(Id
);
11960 Append_Entity
(Id
, Current_Scope
);
11962 -- Check ALIASED present if present before (RM 7.4(7))
11964 if Is_Aliased
(Prev
)
11965 and then not Aliased_Present
(N
)
11967 Error_Msg_Sloc
:= Sloc
(Prev
);
11968 Error_Msg_N
("ALIASED required (see declaration #)", N
);
11971 -- Check that placement is in private part and that the incomplete
11972 -- declaration appeared in the visible part.
11974 if Ekind
(Current_Scope
) = E_Package
11975 and then not In_Private_Part
(Current_Scope
)
11977 Error_Msg_Sloc
:= Sloc
(Prev
);
11979 ("full constant for declaration # must be in private part", N
);
11981 elsif Ekind
(Current_Scope
) = E_Package
11983 List_Containing
(Parent
(Prev
)) /=
11984 Visible_Declarations
(Package_Specification
(Current_Scope
))
11987 ("deferred constant must be declared in visible part",
11991 if Is_Access_Type
(T
)
11992 and then Nkind
(Expression
(N
)) = N_Allocator
11994 Check_Recursive_Declaration
(Designated_Type
(T
));
11997 -- A deferred constant is a visible entity. If type has invariants,
11998 -- verify that the initial value satisfies them.
12000 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
12002 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
12005 end Constant_Redeclaration
;
12007 ----------------------
12008 -- Constrain_Access --
12009 ----------------------
12011 procedure Constrain_Access
12012 (Def_Id
: in out Entity_Id
;
12014 Related_Nod
: Node_Id
)
12016 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12017 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
12018 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
12019 Constraint_OK
: Boolean := True;
12022 if Is_Array_Type
(Desig_Type
) then
12023 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
12025 elsif (Is_Record_Type
(Desig_Type
)
12026 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
12027 and then not Is_Constrained
(Desig_Type
)
12029 -- ??? The following code is a temporary bypass to ignore a
12030 -- discriminant constraint on access type if it is constraining
12031 -- the current record. Avoid creating the implicit subtype of the
12032 -- record we are currently compiling since right now, we cannot
12033 -- handle these. For now, just return the access type itself.
12035 if Desig_Type
= Current_Scope
12036 and then No
(Def_Id
)
12038 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
12039 Def_Id
:= Entity
(Subtype_Mark
(S
));
12041 -- This call added to ensure that the constraint is analyzed
12042 -- (needed for a B test). Note that we still return early from
12043 -- this procedure to avoid recursive processing. ???
12045 Constrain_Discriminated_Type
12046 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
12050 -- Enforce rule that the constraint is illegal if there is an
12051 -- unconstrained view of the designated type. This means that the
12052 -- partial view (either a private type declaration or a derivation
12053 -- from a private type) has no discriminants. (Defect Report
12054 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12056 -- Rule updated for Ada 2005: The private type is said to have
12057 -- a constrained partial view, given that objects of the type
12058 -- can be declared. Furthermore, the rule applies to all access
12059 -- types, unlike the rule concerning default discriminants (see
12062 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
12063 and then Has_Private_Declaration
(Desig_Type
)
12064 and then In_Open_Scopes
(Scope
(Desig_Type
))
12065 and then Has_Discriminants
(Desig_Type
)
12068 Pack
: constant Node_Id
:=
12069 Unit_Declaration_Node
(Scope
(Desig_Type
));
12074 if Nkind
(Pack
) = N_Package_Declaration
then
12075 Decls
:= Visible_Declarations
(Specification
(Pack
));
12076 Decl
:= First
(Decls
);
12077 while Present
(Decl
) loop
12078 if (Nkind
(Decl
) = N_Private_Type_Declaration
12079 and then Chars
(Defining_Identifier
(Decl
)) =
12080 Chars
(Desig_Type
))
12083 (Nkind
(Decl
) = N_Full_Type_Declaration
12085 Chars
(Defining_Identifier
(Decl
)) =
12087 and then Is_Derived_Type
(Desig_Type
)
12089 Has_Private_Declaration
(Etype
(Desig_Type
)))
12091 if No
(Discriminant_Specifications
(Decl
)) then
12093 ("cannot constrain access type if designated "
12094 & "type has constrained partial view", S
);
12106 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
12107 For_Access
=> True);
12109 elsif Is_Concurrent_Type
(Desig_Type
)
12110 and then not Is_Constrained
(Desig_Type
)
12112 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
12115 Error_Msg_N
("invalid constraint on access type", S
);
12117 -- We simply ignore an invalid constraint
12119 Desig_Subtype
:= Desig_Type
;
12120 Constraint_OK
:= False;
12123 if No
(Def_Id
) then
12124 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
12126 Set_Ekind
(Def_Id
, E_Access_Subtype
);
12129 if Constraint_OK
then
12130 Set_Etype
(Def_Id
, Base_Type
(T
));
12132 if Is_Private_Type
(Desig_Type
) then
12133 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
12136 Set_Etype
(Def_Id
, Any_Type
);
12139 Set_Size_Info
(Def_Id
, T
);
12140 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
12141 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
12142 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12143 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12145 Conditional_Delay
(Def_Id
, T
);
12147 -- AI-363 : Subtypes of general access types whose designated types have
12148 -- default discriminants are disallowed. In instances, the rule has to
12149 -- be checked against the actual, of which T is the subtype. In a
12150 -- generic body, the rule is checked assuming that the actual type has
12151 -- defaulted discriminants.
12153 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12154 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12155 and then Has_Defaulted_Discriminants
(Desig_Type
)
12157 if Ada_Version
< Ada_2005
then
12159 ("access subtype of general access type would not " &
12160 "be allowed in Ada 2005?y?", S
);
12163 ("access subtype of general access type not allowed", S
);
12166 Error_Msg_N
("\discriminants have defaults", S
);
12168 elsif Is_Access_Type
(T
)
12169 and then Is_Generic_Type
(Desig_Type
)
12170 and then Has_Discriminants
(Desig_Type
)
12171 and then In_Package_Body
(Current_Scope
)
12173 if Ada_Version
< Ada_2005
then
12175 ("access subtype would not be allowed in generic body "
12176 & "in Ada 2005?y?", S
);
12179 ("access subtype not allowed in generic body", S
);
12183 ("\designated type is a discriminated formal", S
);
12186 end Constrain_Access
;
12188 ---------------------
12189 -- Constrain_Array --
12190 ---------------------
12192 procedure Constrain_Array
12193 (Def_Id
: in out Entity_Id
;
12195 Related_Nod
: Node_Id
;
12196 Related_Id
: Entity_Id
;
12197 Suffix
: Character)
12199 C
: constant Node_Id
:= Constraint
(SI
);
12200 Number_Of_Constraints
: Nat
:= 0;
12203 Constraint_OK
: Boolean := True;
12206 T
:= Entity
(Subtype_Mark
(SI
));
12208 if Is_Access_Type
(T
) then
12209 T
:= Designated_Type
(T
);
12212 -- If an index constraint follows a subtype mark in a subtype indication
12213 -- then the type or subtype denoted by the subtype mark must not already
12214 -- impose an index constraint. The subtype mark must denote either an
12215 -- unconstrained array type or an access type whose designated type
12216 -- is such an array type... (RM 3.6.1)
12218 if Is_Constrained
(T
) then
12219 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
12220 Constraint_OK
:= False;
12223 S
:= First
(Constraints
(C
));
12224 while Present
(S
) loop
12225 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
12229 -- In either case, the index constraint must provide a discrete
12230 -- range for each index of the array type and the type of each
12231 -- discrete range must be the same as that of the corresponding
12232 -- index. (RM 3.6.1)
12234 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
12235 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
12236 Constraint_OK
:= False;
12239 S
:= First
(Constraints
(C
));
12240 Index
:= First_Index
(T
);
12243 -- Apply constraints to each index type
12245 for J
in 1 .. Number_Of_Constraints
loop
12246 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
12254 if No
(Def_Id
) then
12256 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
12257 Set_Parent
(Def_Id
, Related_Nod
);
12260 Set_Ekind
(Def_Id
, E_Array_Subtype
);
12263 Set_Size_Info
(Def_Id
, (T
));
12264 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12265 Set_Etype
(Def_Id
, Base_Type
(T
));
12267 if Constraint_OK
then
12268 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
12270 Set_First_Index
(Def_Id
, First_Index
(T
));
12273 Set_Is_Constrained
(Def_Id
, True);
12274 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
12275 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12277 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
12278 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
12280 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12281 -- We need to initialize the attribute because if Def_Id is previously
12282 -- analyzed through a limited_with clause, it will have the attributes
12283 -- of an incomplete type, one of which is an Elist that overlaps the
12284 -- Packed_Array_Impl_Type field.
12286 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
12288 -- Build a freeze node if parent still needs one. Also make sure that
12289 -- the Depends_On_Private status is set because the subtype will need
12290 -- reprocessing at the time the base type does, and also we must set a
12291 -- conditional delay.
12293 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
12294 Conditional_Delay
(Def_Id
, T
);
12295 end Constrain_Array
;
12297 ------------------------------
12298 -- Constrain_Component_Type --
12299 ------------------------------
12301 function Constrain_Component_Type
12303 Constrained_Typ
: Entity_Id
;
12304 Related_Node
: Node_Id
;
12306 Constraints
: Elist_Id
) return Entity_Id
12308 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
12309 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
12311 function Build_Constrained_Array_Type
12312 (Old_Type
: Entity_Id
) return Entity_Id
;
12313 -- If Old_Type is an array type, one of whose indexes is constrained
12314 -- by a discriminant, build an Itype whose constraint replaces the
12315 -- discriminant with its value in the constraint.
12317 function Build_Constrained_Discriminated_Type
12318 (Old_Type
: Entity_Id
) return Entity_Id
;
12319 -- Ditto for record components
12321 function Build_Constrained_Access_Type
12322 (Old_Type
: Entity_Id
) return Entity_Id
;
12323 -- Ditto for access types. Makes use of previous two functions, to
12324 -- constrain designated type.
12326 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
12327 -- T is an array or discriminated type, C is a list of constraints
12328 -- that apply to T. This routine builds the constrained subtype.
12330 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
12331 -- Returns True if Expr is a discriminant
12333 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
12334 -- Find the value of discriminant Discrim in Constraint
12336 -----------------------------------
12337 -- Build_Constrained_Access_Type --
12338 -----------------------------------
12340 function Build_Constrained_Access_Type
12341 (Old_Type
: Entity_Id
) return Entity_Id
12343 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
12345 Desig_Subtype
: Entity_Id
;
12349 -- if the original access type was not embedded in the enclosing
12350 -- type definition, there is no need to produce a new access
12351 -- subtype. In fact every access type with an explicit constraint
12352 -- generates an itype whose scope is the enclosing record.
12354 if not Is_Type
(Scope
(Old_Type
)) then
12357 elsif Is_Array_Type
(Desig_Type
) then
12358 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
12360 elsif Has_Discriminants
(Desig_Type
) then
12362 -- This may be an access type to an enclosing record type for
12363 -- which we are constructing the constrained components. Return
12364 -- the enclosing record subtype. This is not always correct,
12365 -- but avoids infinite recursion. ???
12367 Desig_Subtype
:= Any_Type
;
12369 for J
in reverse 0 .. Scope_Stack
.Last
loop
12370 Scop
:= Scope_Stack
.Table
(J
).Entity
;
12373 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
12375 Desig_Subtype
:= Scop
;
12378 exit when not Is_Type
(Scop
);
12381 if Desig_Subtype
= Any_Type
then
12383 Build_Constrained_Discriminated_Type
(Desig_Type
);
12390 if Desig_Subtype
/= Desig_Type
then
12392 -- The Related_Node better be here or else we won't be able
12393 -- to attach new itypes to a node in the tree.
12395 pragma Assert
(Present
(Related_Node
));
12397 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
12399 Set_Etype
(Itype
, Base_Type
(Old_Type
));
12400 Set_Size_Info
(Itype
, (Old_Type
));
12401 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
12402 Set_Depends_On_Private
(Itype
, Has_Private_Component
12404 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
12407 -- The new itype needs freezing when it depends on a not frozen
12408 -- type and the enclosing subtype needs freezing.
12410 if Has_Delayed_Freeze
(Constrained_Typ
)
12411 and then not Is_Frozen
(Constrained_Typ
)
12413 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
12421 end Build_Constrained_Access_Type
;
12423 ----------------------------------
12424 -- Build_Constrained_Array_Type --
12425 ----------------------------------
12427 function Build_Constrained_Array_Type
12428 (Old_Type
: Entity_Id
) return Entity_Id
12432 Old_Index
: Node_Id
;
12433 Range_Node
: Node_Id
;
12434 Constr_List
: List_Id
;
12436 Need_To_Create_Itype
: Boolean := False;
12439 Old_Index
:= First_Index
(Old_Type
);
12440 while Present
(Old_Index
) loop
12441 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12443 if Is_Discriminant
(Lo_Expr
)
12445 Is_Discriminant
(Hi_Expr
)
12447 Need_To_Create_Itype
:= True;
12450 Next_Index
(Old_Index
);
12453 if Need_To_Create_Itype
then
12454 Constr_List
:= New_List
;
12456 Old_Index
:= First_Index
(Old_Type
);
12457 while Present
(Old_Index
) loop
12458 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12460 if Is_Discriminant
(Lo_Expr
) then
12461 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
12464 if Is_Discriminant
(Hi_Expr
) then
12465 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
12470 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
12472 Append
(Range_Node
, To
=> Constr_List
);
12474 Next_Index
(Old_Index
);
12477 return Build_Subtype
(Old_Type
, Constr_List
);
12482 end Build_Constrained_Array_Type
;
12484 ------------------------------------------
12485 -- Build_Constrained_Discriminated_Type --
12486 ------------------------------------------
12488 function Build_Constrained_Discriminated_Type
12489 (Old_Type
: Entity_Id
) return Entity_Id
12492 Constr_List
: List_Id
;
12493 Old_Constraint
: Elmt_Id
;
12495 Need_To_Create_Itype
: Boolean := False;
12498 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12499 while Present
(Old_Constraint
) loop
12500 Expr
:= Node
(Old_Constraint
);
12502 if Is_Discriminant
(Expr
) then
12503 Need_To_Create_Itype
:= True;
12506 Next_Elmt
(Old_Constraint
);
12509 if Need_To_Create_Itype
then
12510 Constr_List
:= New_List
;
12512 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12513 while Present
(Old_Constraint
) loop
12514 Expr
:= Node
(Old_Constraint
);
12516 if Is_Discriminant
(Expr
) then
12517 Expr
:= Get_Discr_Value
(Expr
);
12520 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
12522 Next_Elmt
(Old_Constraint
);
12525 return Build_Subtype
(Old_Type
, Constr_List
);
12530 end Build_Constrained_Discriminated_Type
;
12532 -------------------
12533 -- Build_Subtype --
12534 -------------------
12536 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
12538 Subtyp_Decl
: Node_Id
;
12539 Def_Id
: Entity_Id
;
12540 Btyp
: Entity_Id
:= Base_Type
(T
);
12543 -- The Related_Node better be here or else we won't be able to
12544 -- attach new itypes to a node in the tree.
12546 pragma Assert
(Present
(Related_Node
));
12548 -- If the view of the component's type is incomplete or private
12549 -- with unknown discriminants, then the constraint must be applied
12550 -- to the full type.
12552 if Has_Unknown_Discriminants
(Btyp
)
12553 and then Present
(Underlying_Type
(Btyp
))
12555 Btyp
:= Underlying_Type
(Btyp
);
12559 Make_Subtype_Indication
(Loc
,
12560 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
12561 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
12563 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
12566 Make_Subtype_Declaration
(Loc
,
12567 Defining_Identifier
=> Def_Id
,
12568 Subtype_Indication
=> Indic
);
12570 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
12572 -- Itypes must be analyzed with checks off (see package Itypes)
12574 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
12579 ---------------------
12580 -- Get_Discr_Value --
12581 ---------------------
12583 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
12588 -- The discriminant may be declared for the type, in which case we
12589 -- find it by iterating over the list of discriminants. If the
12590 -- discriminant is inherited from a parent type, it appears as the
12591 -- corresponding discriminant of the current type. This will be the
12592 -- case when constraining an inherited component whose constraint is
12593 -- given by a discriminant of the parent.
12595 D
:= First_Discriminant
(Typ
);
12596 E
:= First_Elmt
(Constraints
);
12598 while Present
(D
) loop
12599 if D
= Entity
(Discrim
)
12600 or else D
= CR_Discriminant
(Entity
(Discrim
))
12601 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
12606 Next_Discriminant
(D
);
12610 -- The Corresponding_Discriminant mechanism is incomplete, because
12611 -- the correspondence between new and old discriminants is not one
12612 -- to one: one new discriminant can constrain several old ones. In
12613 -- that case, scan sequentially the stored_constraint, the list of
12614 -- discriminants of the parents, and the constraints.
12616 -- Previous code checked for the present of the Stored_Constraint
12617 -- list for the derived type, but did not use it at all. Should it
12618 -- be present when the component is a discriminated task type?
12620 if Is_Derived_Type
(Typ
)
12621 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
12623 D
:= First_Discriminant
(Etype
(Typ
));
12624 E
:= First_Elmt
(Constraints
);
12625 while Present
(D
) loop
12626 if D
= Entity
(Discrim
) then
12630 Next_Discriminant
(D
);
12635 -- Something is wrong if we did not find the value
12637 raise Program_Error
;
12638 end Get_Discr_Value
;
12640 ---------------------
12641 -- Is_Discriminant --
12642 ---------------------
12644 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
12645 Discrim_Scope
: Entity_Id
;
12648 if Denotes_Discriminant
(Expr
) then
12649 Discrim_Scope
:= Scope
(Entity
(Expr
));
12651 -- Either we have a reference to one of Typ's discriminants,
12653 pragma Assert
(Discrim_Scope
= Typ
12655 -- or to the discriminants of the parent type, in the case
12656 -- of a derivation of a tagged type with variants.
12658 or else Discrim_Scope
= Etype
(Typ
)
12659 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
12661 -- or same as above for the case where the discriminants
12662 -- were declared in Typ's private view.
12664 or else (Is_Private_Type
(Discrim_Scope
)
12665 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12667 -- or else we are deriving from the full view and the
12668 -- discriminant is declared in the private entity.
12670 or else (Is_Private_Type
(Typ
)
12671 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12673 -- Or we are constrained the corresponding record of a
12674 -- synchronized type that completes a private declaration.
12676 or else (Is_Concurrent_Record_Type
(Typ
)
12678 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
12680 -- or we have a class-wide type, in which case make sure the
12681 -- discriminant found belongs to the root type.
12683 or else (Is_Class_Wide_Type
(Typ
)
12684 and then Etype
(Typ
) = Discrim_Scope
));
12689 -- In all other cases we have something wrong
12692 end Is_Discriminant
;
12694 -- Start of processing for Constrain_Component_Type
12697 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
12698 and then Comes_From_Source
(Parent
(Comp
))
12699 and then Comes_From_Source
12700 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12703 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12705 return Compon_Type
;
12707 elsif Is_Array_Type
(Compon_Type
) then
12708 return Build_Constrained_Array_Type
(Compon_Type
);
12710 elsif Has_Discriminants
(Compon_Type
) then
12711 return Build_Constrained_Discriminated_Type
(Compon_Type
);
12713 elsif Is_Access_Type
(Compon_Type
) then
12714 return Build_Constrained_Access_Type
(Compon_Type
);
12717 return Compon_Type
;
12719 end Constrain_Component_Type
;
12721 --------------------------
12722 -- Constrain_Concurrent --
12723 --------------------------
12725 -- For concurrent types, the associated record value type carries the same
12726 -- discriminants, so when we constrain a concurrent type, we must constrain
12727 -- the corresponding record type as well.
12729 procedure Constrain_Concurrent
12730 (Def_Id
: in out Entity_Id
;
12732 Related_Nod
: Node_Id
;
12733 Related_Id
: Entity_Id
;
12734 Suffix
: Character)
12736 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12737 -- case of a private subtype (needed when only doing semantic analysis).
12739 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
12743 if Is_Access_Type
(T_Ent
) then
12744 T_Ent
:= Designated_Type
(T_Ent
);
12747 T_Val
:= Corresponding_Record_Type
(T_Ent
);
12749 if Present
(T_Val
) then
12751 if No
(Def_Id
) then
12752 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12755 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12757 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12758 Set_Corresponding_Record_Type
(Def_Id
,
12759 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
12762 -- If there is no associated record, expansion is disabled and this
12763 -- is a generic context. Create a subtype in any case, so that
12764 -- semantic analysis can proceed.
12766 if No
(Def_Id
) then
12767 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12770 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12772 end Constrain_Concurrent
;
12774 ------------------------------------
12775 -- Constrain_Corresponding_Record --
12776 ------------------------------------
12778 function Constrain_Corresponding_Record
12779 (Prot_Subt
: Entity_Id
;
12780 Corr_Rec
: Entity_Id
;
12781 Related_Nod
: Node_Id
) return Entity_Id
12783 T_Sub
: constant Entity_Id
:=
12784 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
12787 Set_Etype
(T_Sub
, Corr_Rec
);
12788 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
12789 Set_Is_Constrained
(T_Sub
, True);
12790 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
12791 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
12793 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
12794 Set_Discriminant_Constraint
12795 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
12796 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
12797 Create_Constrained_Components
12798 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
12801 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
12803 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
12804 Conditional_Delay
(T_Sub
, Corr_Rec
);
12807 -- This is a component subtype: it will be frozen in the context of
12808 -- the enclosing record's init_proc, so that discriminant references
12809 -- are resolved to discriminals. (Note: we used to skip freezing
12810 -- altogether in that case, which caused errors downstream for
12811 -- components of a bit packed array type).
12813 Set_Has_Delayed_Freeze
(T_Sub
);
12817 end Constrain_Corresponding_Record
;
12819 -----------------------
12820 -- Constrain_Decimal --
12821 -----------------------
12823 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
12824 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12825 C
: constant Node_Id
:= Constraint
(S
);
12826 Loc
: constant Source_Ptr
:= Sloc
(C
);
12827 Range_Expr
: Node_Id
;
12828 Digits_Expr
: Node_Id
;
12833 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
12835 if Nkind
(C
) = N_Range_Constraint
then
12836 Range_Expr
:= Range_Expression
(C
);
12837 Digits_Val
:= Digits_Value
(T
);
12840 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
12842 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
12844 Digits_Expr
:= Digits_Expression
(C
);
12845 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
12847 Check_Digits_Expression
(Digits_Expr
);
12848 Digits_Val
:= Expr_Value
(Digits_Expr
);
12850 if Digits_Val
> Digits_Value
(T
) then
12852 ("digits expression is incompatible with subtype", C
);
12853 Digits_Val
:= Digits_Value
(T
);
12856 if Present
(Range_Constraint
(C
)) then
12857 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
12859 Range_Expr
:= Empty
;
12863 Set_Etype
(Def_Id
, Base_Type
(T
));
12864 Set_Size_Info
(Def_Id
, (T
));
12865 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12866 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
12867 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
12868 Set_Small_Value
(Def_Id
, Small_Value
(T
));
12869 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
12870 Set_Digits_Value
(Def_Id
, Digits_Val
);
12872 -- Manufacture range from given digits value if no range present
12874 if No
(Range_Expr
) then
12875 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
12879 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
12881 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
12884 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
12885 Set_Discrete_RM_Size
(Def_Id
);
12887 -- Unconditionally delay the freeze, since we cannot set size
12888 -- information in all cases correctly until the freeze point.
12890 Set_Has_Delayed_Freeze
(Def_Id
);
12891 end Constrain_Decimal
;
12893 ----------------------------------
12894 -- Constrain_Discriminated_Type --
12895 ----------------------------------
12897 procedure Constrain_Discriminated_Type
12898 (Def_Id
: Entity_Id
;
12900 Related_Nod
: Node_Id
;
12901 For_Access
: Boolean := False)
12903 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12906 Elist
: Elist_Id
:= New_Elmt_List
;
12908 procedure Fixup_Bad_Constraint
;
12909 -- This is called after finding a bad constraint, and after having
12910 -- posted an appropriate error message. The mission is to leave the
12911 -- entity T in as reasonable state as possible.
12913 --------------------------
12914 -- Fixup_Bad_Constraint --
12915 --------------------------
12917 procedure Fixup_Bad_Constraint
is
12919 -- Set a reasonable Ekind for the entity. For an incomplete type,
12920 -- we can't do much, but for other types, we can set the proper
12921 -- corresponding subtype kind.
12923 if Ekind
(T
) = E_Incomplete_Type
then
12924 Set_Ekind
(Def_Id
, Ekind
(T
));
12926 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
12929 -- Set Etype to the known type, to reduce chances of cascaded errors
12931 Set_Etype
(Def_Id
, E
);
12932 Set_Error_Posted
(Def_Id
);
12933 end Fixup_Bad_Constraint
;
12935 -- Start of processing for Constrain_Discriminated_Type
12938 C
:= Constraint
(S
);
12940 -- A discriminant constraint is only allowed in a subtype indication,
12941 -- after a subtype mark. This subtype mark must denote either a type
12942 -- with discriminants, or an access type whose designated type is a
12943 -- type with discriminants. A discriminant constraint specifies the
12944 -- values of these discriminants (RM 3.7.2(5)).
12946 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
12948 if Is_Access_Type
(T
) then
12949 T
:= Designated_Type
(T
);
12952 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12953 -- Avoid generating an error for access-to-incomplete subtypes.
12955 if Ada_Version
>= Ada_2005
12956 and then Ekind
(T
) = E_Incomplete_Type
12957 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
12958 and then not Is_Itype
(Def_Id
)
12960 -- A little sanity check, emit an error message if the type
12961 -- has discriminants to begin with. Type T may be a regular
12962 -- incomplete type or imported via a limited with clause.
12964 if Has_Discriminants
(T
)
12965 or else (From_Limited_With
(T
)
12966 and then Present
(Non_Limited_View
(T
))
12967 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
12968 N_Full_Type_Declaration
12969 and then Present
(Discriminant_Specifications
12970 (Parent
(Non_Limited_View
(T
)))))
12973 ("(Ada 2005) incomplete subtype may not be constrained", C
);
12975 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
12978 Fixup_Bad_Constraint
;
12981 -- Check that the type has visible discriminants. The type may be
12982 -- a private type with unknown discriminants whose full view has
12983 -- discriminants which are invisible.
12985 elsif not Has_Discriminants
(T
)
12987 (Has_Unknown_Discriminants
(T
)
12988 and then Is_Private_Type
(T
))
12990 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
12991 Fixup_Bad_Constraint
;
12994 elsif Is_Constrained
(E
)
12995 or else (Ekind
(E
) = E_Class_Wide_Subtype
12996 and then Present
(Discriminant_Constraint
(E
)))
12998 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
12999 Fixup_Bad_Constraint
;
13003 -- T may be an unconstrained subtype (e.g. a generic actual).
13004 -- Constraint applies to the base type.
13006 T
:= Base_Type
(T
);
13008 Elist
:= Build_Discriminant_Constraints
(T
, S
);
13010 -- If the list returned was empty we had an error in building the
13011 -- discriminant constraint. We have also already signalled an error
13012 -- in the incomplete type case
13014 if Is_Empty_Elmt_List
(Elist
) then
13015 Fixup_Bad_Constraint
;
13019 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
13020 end Constrain_Discriminated_Type
;
13022 ---------------------------
13023 -- Constrain_Enumeration --
13024 ---------------------------
13026 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
13027 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13028 C
: constant Node_Id
:= Constraint
(S
);
13031 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13033 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
13035 Set_Etype
(Def_Id
, Base_Type
(T
));
13036 Set_Size_Info
(Def_Id
, (T
));
13037 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13038 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13040 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13042 Set_Discrete_RM_Size
(Def_Id
);
13043 end Constrain_Enumeration
;
13045 ----------------------
13046 -- Constrain_Float --
13047 ----------------------
13049 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
13050 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13056 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
13058 Set_Etype
(Def_Id
, Base_Type
(T
));
13059 Set_Size_Info
(Def_Id
, (T
));
13060 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13062 -- Process the constraint
13064 C
:= Constraint
(S
);
13066 -- Digits constraint present
13068 if Nkind
(C
) = N_Digits_Constraint
then
13070 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13071 Check_Restriction
(No_Obsolescent_Features
, C
);
13073 if Warn_On_Obsolescent_Feature
then
13075 ("subtype digits constraint is an " &
13076 "obsolescent feature (RM J.3(8))?j?", C
);
13079 D
:= Digits_Expression
(C
);
13080 Analyze_And_Resolve
(D
, Any_Integer
);
13081 Check_Digits_Expression
(D
);
13082 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
13084 -- Check that digits value is in range. Obviously we can do this
13085 -- at compile time, but it is strictly a runtime check, and of
13086 -- course there is an ACVC test that checks this.
13088 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
13089 Error_Msg_Uint_1
:= Digits_Value
(T
);
13090 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
13092 Make_Raise_Constraint_Error
(Sloc
(D
),
13093 Reason
=> CE_Range_Check_Failed
);
13094 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13097 C
:= Range_Constraint
(C
);
13099 -- No digits constraint present
13102 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
13105 -- Range constraint present
13107 if Nkind
(C
) = N_Range_Constraint
then
13108 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13110 -- No range constraint present
13113 pragma Assert
(No
(C
));
13114 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13117 Set_Is_Constrained
(Def_Id
);
13118 end Constrain_Float
;
13120 ---------------------
13121 -- Constrain_Index --
13122 ---------------------
13124 procedure Constrain_Index
13127 Related_Nod
: Node_Id
;
13128 Related_Id
: Entity_Id
;
13129 Suffix
: Character;
13130 Suffix_Index
: Nat
)
13132 Def_Id
: Entity_Id
;
13133 R
: Node_Id
:= Empty
;
13134 T
: constant Entity_Id
:= Etype
(Index
);
13137 if Nkind
(S
) = N_Range
13139 (Nkind
(S
) = N_Attribute_Reference
13140 and then Attribute_Name
(S
) = Name_Range
)
13142 -- A Range attribute will be transformed into N_Range by Resolve
13148 Process_Range_Expr_In_Decl
(R
, T
);
13150 if not Error_Posted
(S
)
13152 (Nkind
(S
) /= N_Range
13153 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
13154 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
13156 if Base_Type
(T
) /= Any_Type
13157 and then Etype
(Low_Bound
(S
)) /= Any_Type
13158 and then Etype
(High_Bound
(S
)) /= Any_Type
13160 Error_Msg_N
("range expected", S
);
13164 elsif Nkind
(S
) = N_Subtype_Indication
then
13166 -- The parser has verified that this is a discrete indication
13168 Resolve_Discrete_Subtype_Indication
(S
, T
);
13169 Bad_Predicated_Subtype_Use
13170 ("subtype& has predicate, not allowed in index constraint",
13171 S
, Entity
(Subtype_Mark
(S
)));
13173 R
:= Range_Expression
(Constraint
(S
));
13175 -- Capture values of bounds and generate temporaries for them if
13176 -- needed, since checks may cause duplication of the expressions
13177 -- which must not be reevaluated.
13179 -- The forced evaluation removes side effects from expressions, which
13180 -- should occur also in GNATprove mode. Otherwise, we end up with
13181 -- unexpected insertions of actions at places where this is not
13182 -- supposed to occur, e.g. on default parameters of a call.
13184 if Expander_Active
or GNATprove_Mode
then
13185 Force_Evaluation
(Low_Bound
(R
));
13186 Force_Evaluation
(High_Bound
(R
));
13189 elsif Nkind
(S
) = N_Discriminant_Association
then
13191 -- Syntactically valid in subtype indication
13193 Error_Msg_N
("invalid index constraint", S
);
13194 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13197 -- Subtype_Mark case, no anonymous subtypes to construct
13202 if Is_Entity_Name
(S
) then
13203 if not Is_Type
(Entity
(S
)) then
13204 Error_Msg_N
("expect subtype mark for index constraint", S
);
13206 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
13207 Wrong_Type
(S
, Base_Type
(T
));
13209 -- Check error of subtype with predicate in index constraint
13212 Bad_Predicated_Subtype_Use
13213 ("subtype& has predicate, not allowed in index constraint",
13220 Error_Msg_N
("invalid index constraint", S
);
13221 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13227 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13229 Set_Etype
(Def_Id
, Base_Type
(T
));
13231 if Is_Modular_Integer_Type
(T
) then
13232 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13234 elsif Is_Integer_Type
(T
) then
13235 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13238 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13239 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13240 Set_First_Literal
(Def_Id
, First_Literal
(T
));
13243 Set_Size_Info
(Def_Id
, (T
));
13244 Set_RM_Size
(Def_Id
, RM_Size
(T
));
13245 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13247 Set_Scalar_Range
(Def_Id
, R
);
13249 Set_Etype
(S
, Def_Id
);
13250 Set_Discrete_RM_Size
(Def_Id
);
13251 end Constrain_Index
;
13253 -----------------------
13254 -- Constrain_Integer --
13255 -----------------------
13257 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
13258 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13259 C
: constant Node_Id
:= Constraint
(S
);
13262 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13264 if Is_Modular_Integer_Type
(T
) then
13265 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13267 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13270 Set_Etype
(Def_Id
, Base_Type
(T
));
13271 Set_Size_Info
(Def_Id
, (T
));
13272 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13273 Set_Discrete_RM_Size
(Def_Id
);
13274 end Constrain_Integer
;
13276 ------------------------------
13277 -- Constrain_Ordinary_Fixed --
13278 ------------------------------
13280 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
13281 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13287 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
13288 Set_Etype
(Def_Id
, Base_Type
(T
));
13289 Set_Size_Info
(Def_Id
, (T
));
13290 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13291 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13293 -- Process the constraint
13295 C
:= Constraint
(S
);
13297 -- Delta constraint present
13299 if Nkind
(C
) = N_Delta_Constraint
then
13301 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
13302 Check_Restriction
(No_Obsolescent_Features
, C
);
13304 if Warn_On_Obsolescent_Feature
then
13306 ("subtype delta constraint is an " &
13307 "obsolescent feature (RM J.3(7))?j?");
13310 D
:= Delta_Expression
(C
);
13311 Analyze_And_Resolve
(D
, Any_Real
);
13312 Check_Delta_Expression
(D
);
13313 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
13315 -- Check that delta value is in range. Obviously we can do this
13316 -- at compile time, but it is strictly a runtime check, and of
13317 -- course there is an ACVC test that checks this.
13319 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
13320 Error_Msg_N
("??delta value is too small", D
);
13322 Make_Raise_Constraint_Error
(Sloc
(D
),
13323 Reason
=> CE_Range_Check_Failed
);
13324 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13327 C
:= Range_Constraint
(C
);
13329 -- No delta constraint present
13332 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13335 -- Range constraint present
13337 if Nkind
(C
) = N_Range_Constraint
then
13338 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13340 -- No range constraint present
13343 pragma Assert
(No
(C
));
13344 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13348 Set_Discrete_RM_Size
(Def_Id
);
13350 -- Unconditionally delay the freeze, since we cannot set size
13351 -- information in all cases correctly until the freeze point.
13353 Set_Has_Delayed_Freeze
(Def_Id
);
13354 end Constrain_Ordinary_Fixed
;
13356 -----------------------
13357 -- Contain_Interface --
13358 -----------------------
13360 function Contain_Interface
13361 (Iface
: Entity_Id
;
13362 Ifaces
: Elist_Id
) return Boolean
13364 Iface_Elmt
: Elmt_Id
;
13367 if Present
(Ifaces
) then
13368 Iface_Elmt
:= First_Elmt
(Ifaces
);
13369 while Present
(Iface_Elmt
) loop
13370 if Node
(Iface_Elmt
) = Iface
then
13374 Next_Elmt
(Iface_Elmt
);
13379 end Contain_Interface
;
13381 ---------------------------
13382 -- Convert_Scalar_Bounds --
13383 ---------------------------
13385 procedure Convert_Scalar_Bounds
13387 Parent_Type
: Entity_Id
;
13388 Derived_Type
: Entity_Id
;
13391 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
13398 -- Defend against previous errors
13400 if No
(Scalar_Range
(Derived_Type
)) then
13401 Check_Error_Detected
;
13405 Lo
:= Build_Scalar_Bound
13406 (Type_Low_Bound
(Derived_Type
),
13407 Parent_Type
, Implicit_Base
);
13409 Hi
:= Build_Scalar_Bound
13410 (Type_High_Bound
(Derived_Type
),
13411 Parent_Type
, Implicit_Base
);
13418 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
13420 Set_Parent
(Rng
, N
);
13421 Set_Scalar_Range
(Derived_Type
, Rng
);
13423 -- Analyze the bounds
13425 Analyze_And_Resolve
(Lo
, Implicit_Base
);
13426 Analyze_And_Resolve
(Hi
, Implicit_Base
);
13428 -- Analyze the range itself, except that we do not analyze it if
13429 -- the bounds are real literals, and we have a fixed-point type.
13430 -- The reason for this is that we delay setting the bounds in this
13431 -- case till we know the final Small and Size values (see circuit
13432 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13434 if Is_Fixed_Point_Type
(Parent_Type
)
13435 and then Nkind
(Lo
) = N_Real_Literal
13436 and then Nkind
(Hi
) = N_Real_Literal
13440 -- Here we do the analysis of the range
13442 -- Note: we do this manually, since if we do a normal Analyze and
13443 -- Resolve call, there are problems with the conversions used for
13444 -- the derived type range.
13447 Set_Etype
(Rng
, Implicit_Base
);
13448 Set_Analyzed
(Rng
, True);
13450 end Convert_Scalar_Bounds
;
13452 -------------------
13453 -- Copy_And_Swap --
13454 -------------------
13456 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
13458 -- Initialize new full declaration entity by copying the pertinent
13459 -- fields of the corresponding private declaration entity.
13461 -- We temporarily set Ekind to a value appropriate for a type to
13462 -- avoid assert failures in Einfo from checking for setting type
13463 -- attributes on something that is not a type. Ekind (Priv) is an
13464 -- appropriate choice, since it allowed the attributes to be set
13465 -- in the first place. This Ekind value will be modified later.
13467 Set_Ekind
(Full
, Ekind
(Priv
));
13469 -- Also set Etype temporarily to Any_Type, again, in the absence
13470 -- of errors, it will be properly reset, and if there are errors,
13471 -- then we want a value of Any_Type to remain.
13473 Set_Etype
(Full
, Any_Type
);
13475 -- Now start copying attributes
13477 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
13479 if Has_Discriminants
(Full
) then
13480 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
13481 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
13484 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
13485 Set_Homonym
(Full
, Homonym
(Priv
));
13486 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
13487 Set_Is_Public
(Full
, Is_Public
(Priv
));
13488 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
13489 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
13490 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
13491 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
13492 Set_Has_Pragma_Unreferenced_Objects
13493 (Full
, Has_Pragma_Unreferenced_Objects
13496 Conditional_Delay
(Full
, Priv
);
13498 if Is_Tagged_Type
(Full
) then
13499 Set_Direct_Primitive_Operations
13500 (Full
, Direct_Primitive_Operations
(Priv
));
13501 Set_No_Tagged_Streams_Pragma
13502 (Full
, No_Tagged_Streams_Pragma
(Priv
));
13504 if Is_Base_Type
(Priv
) then
13505 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
13509 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
13510 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
13511 Set_Scope
(Full
, Scope
(Priv
));
13512 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
13513 Set_First_Entity
(Full
, First_Entity
(Priv
));
13514 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
13516 -- If access types have been recorded for later handling, keep them in
13517 -- the full view so that they get handled when the full view freeze
13518 -- node is expanded.
13520 if Present
(Freeze_Node
(Priv
))
13521 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
13523 Ensure_Freeze_Node
(Full
);
13524 Set_Access_Types_To_Process
13525 (Freeze_Node
(Full
),
13526 Access_Types_To_Process
(Freeze_Node
(Priv
)));
13529 -- Swap the two entities. Now Private is the full type entity and Full
13530 -- is the private one. They will be swapped back at the end of the
13531 -- private part. This swapping ensures that the entity that is visible
13532 -- in the private part is the full declaration.
13534 Exchange_Entities
(Priv
, Full
);
13535 Append_Entity
(Full
, Scope
(Full
));
13538 -------------------------------------
13539 -- Copy_Array_Base_Type_Attributes --
13540 -------------------------------------
13542 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
13544 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
13545 Set_Component_Type
(T1
, Component_Type
(T2
));
13546 Set_Component_Size
(T1
, Component_Size
(T2
));
13547 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
13548 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
13549 Set_Has_Protected
(T1
, Has_Protected
(T2
));
13550 Set_Has_Task
(T1
, Has_Task
(T2
));
13551 Set_Is_Packed
(T1
, Is_Packed
(T2
));
13552 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
13553 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
13554 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
13555 end Copy_Array_Base_Type_Attributes
;
13557 -----------------------------------
13558 -- Copy_Array_Subtype_Attributes --
13559 -----------------------------------
13561 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
13563 Set_Size_Info
(T1
, T2
);
13565 Set_First_Index
(T1
, First_Index
(T2
));
13566 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
13567 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
13568 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
13569 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
13570 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
13571 Inherit_Rep_Item_Chain
(T1
, T2
);
13572 Set_Convention
(T1
, Convention
(T2
));
13573 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
13574 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
13575 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
13576 end Copy_Array_Subtype_Attributes
;
13578 -----------------------------------
13579 -- Create_Constrained_Components --
13580 -----------------------------------
13582 procedure Create_Constrained_Components
13584 Decl_Node
: Node_Id
;
13586 Constraints
: Elist_Id
)
13588 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
13589 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
13590 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
13591 Assoc_List
: constant List_Id
:= New_List
;
13592 Discr_Val
: Elmt_Id
;
13596 Is_Static
: Boolean := True;
13598 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
13599 -- Collect parent type components that do not appear in a variant part
13601 procedure Create_All_Components
;
13602 -- Iterate over Comp_List to create the components of the subtype
13604 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
13605 -- Creates a new component from Old_Compon, copying all the fields from
13606 -- it, including its Etype, inserts the new component in the Subt entity
13607 -- chain and returns the new component.
13609 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
13610 -- If true, and discriminants are static, collect only components from
13611 -- variants selected by discriminant values.
13613 ------------------------------
13614 -- Collect_Fixed_Components --
13615 ------------------------------
13617 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
13619 -- Build association list for discriminants, and find components of the
13620 -- variant part selected by the values of the discriminants.
13622 Old_C
:= First_Discriminant
(Typ
);
13623 Discr_Val
:= First_Elmt
(Constraints
);
13624 while Present
(Old_C
) loop
13625 Append_To
(Assoc_List
,
13626 Make_Component_Association
(Loc
,
13627 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
13628 Expression
=> New_Copy
(Node
(Discr_Val
))));
13630 Next_Elmt
(Discr_Val
);
13631 Next_Discriminant
(Old_C
);
13634 -- The tag and the possible parent component are unconditionally in
13637 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
13638 Old_C
:= First_Component
(Typ
);
13639 while Present
(Old_C
) loop
13640 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
13641 Append_Elmt
(Old_C
, Comp_List
);
13644 Next_Component
(Old_C
);
13647 end Collect_Fixed_Components
;
13649 ---------------------------
13650 -- Create_All_Components --
13651 ---------------------------
13653 procedure Create_All_Components
is
13657 Comp
:= First_Elmt
(Comp_List
);
13658 while Present
(Comp
) loop
13659 Old_C
:= Node
(Comp
);
13660 New_C
:= Create_Component
(Old_C
);
13664 Constrain_Component_Type
13665 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13666 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13670 end Create_All_Components
;
13672 ----------------------
13673 -- Create_Component --
13674 ----------------------
13676 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
13677 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
13680 if Ekind
(Old_Compon
) = E_Discriminant
13681 and then Is_Completely_Hidden
(Old_Compon
)
13683 -- This is a shadow discriminant created for a discriminant of
13684 -- the parent type, which needs to be present in the subtype.
13685 -- Give the shadow discriminant an internal name that cannot
13686 -- conflict with that of visible components.
13688 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
13691 -- Set the parent so we have a proper link for freezing etc. This is
13692 -- not a real parent pointer, since of course our parent does not own
13693 -- up to us and reference us, we are an illegitimate child of the
13694 -- original parent.
13696 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
13698 -- If the old component's Esize was already determined and is a
13699 -- static value, then the new component simply inherits it. Otherwise
13700 -- the old component's size may require run-time determination, but
13701 -- the new component's size still might be statically determinable
13702 -- (if, for example it has a static constraint). In that case we want
13703 -- Layout_Type to recompute the component's size, so we reset its
13704 -- size and positional fields.
13706 if Frontend_Layout_On_Target
13707 and then not Known_Static_Esize
(Old_Compon
)
13709 Set_Esize
(New_Compon
, Uint_0
);
13710 Init_Normalized_First_Bit
(New_Compon
);
13711 Init_Normalized_Position
(New_Compon
);
13712 Init_Normalized_Position_Max
(New_Compon
);
13715 -- We do not want this node marked as Comes_From_Source, since
13716 -- otherwise it would get first class status and a separate cross-
13717 -- reference line would be generated. Illegitimate children do not
13718 -- rate such recognition.
13720 Set_Comes_From_Source
(New_Compon
, False);
13722 -- But it is a real entity, and a birth certificate must be properly
13723 -- registered by entering it into the entity list.
13725 Enter_Name
(New_Compon
);
13728 end Create_Component
;
13730 -----------------------
13731 -- Is_Variant_Record --
13732 -----------------------
13734 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
13736 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
13737 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
13738 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
13741 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
13742 end Is_Variant_Record
;
13744 -- Start of processing for Create_Constrained_Components
13747 pragma Assert
(Subt
/= Base_Type
(Subt
));
13748 pragma Assert
(Typ
= Base_Type
(Typ
));
13750 Set_First_Entity
(Subt
, Empty
);
13751 Set_Last_Entity
(Subt
, Empty
);
13753 -- Check whether constraint is fully static, in which case we can
13754 -- optimize the list of components.
13756 Discr_Val
:= First_Elmt
(Constraints
);
13757 while Present
(Discr_Val
) loop
13758 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
13759 Is_Static
:= False;
13763 Next_Elmt
(Discr_Val
);
13766 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
13770 -- Inherit the discriminants of the parent type
13772 Add_Discriminants
: declare
13778 Old_C
:= First_Discriminant
(Typ
);
13780 while Present
(Old_C
) loop
13781 Num_Disc
:= Num_Disc
+ 1;
13782 New_C
:= Create_Component
(Old_C
);
13783 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13784 Next_Discriminant
(Old_C
);
13787 -- For an untagged derived subtype, the number of discriminants may
13788 -- be smaller than the number of inherited discriminants, because
13789 -- several of them may be renamed by a single new discriminant or
13790 -- constrained. In this case, add the hidden discriminants back into
13791 -- the subtype, because they need to be present if the optimizer of
13792 -- the GCC 4.x back-end decides to break apart assignments between
13793 -- objects using the parent view into member-wise assignments.
13797 if Is_Derived_Type
(Typ
)
13798 and then not Is_Tagged_Type
(Typ
)
13800 Old_C
:= First_Stored_Discriminant
(Typ
);
13802 while Present
(Old_C
) loop
13803 Num_Gird
:= Num_Gird
+ 1;
13804 Next_Stored_Discriminant
(Old_C
);
13808 if Num_Gird
> Num_Disc
then
13810 -- Find out multiple uses of new discriminants, and add hidden
13811 -- components for the extra renamed discriminants. We recognize
13812 -- multiple uses through the Corresponding_Discriminant of a
13813 -- new discriminant: if it constrains several old discriminants,
13814 -- this field points to the last one in the parent type. The
13815 -- stored discriminants of the derived type have the same name
13816 -- as those of the parent.
13820 New_Discr
: Entity_Id
;
13821 Old_Discr
: Entity_Id
;
13824 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
13825 Old_Discr
:= First_Stored_Discriminant
(Typ
);
13826 while Present
(Constr
) loop
13827 if Is_Entity_Name
(Node
(Constr
))
13828 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
13830 New_Discr
:= Entity
(Node
(Constr
));
13832 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
13835 -- The new discriminant has been used to rename a
13836 -- subsequent old discriminant. Introduce a shadow
13837 -- component for the current old discriminant.
13839 New_C
:= Create_Component
(Old_Discr
);
13840 Set_Original_Record_Component
(New_C
, Old_Discr
);
13844 -- The constraint has eliminated the old discriminant.
13845 -- Introduce a shadow component.
13847 New_C
:= Create_Component
(Old_Discr
);
13848 Set_Original_Record_Component
(New_C
, Old_Discr
);
13851 Next_Elmt
(Constr
);
13852 Next_Stored_Discriminant
(Old_Discr
);
13856 end Add_Discriminants
;
13859 and then Is_Variant_Record
(Typ
)
13861 Collect_Fixed_Components
(Typ
);
13863 Gather_Components
(
13865 Component_List
(Type_Definition
(Parent
(Typ
))),
13866 Governed_By
=> Assoc_List
,
13868 Report_Errors
=> Errors
);
13869 pragma Assert
(not Errors
);
13871 Create_All_Components
;
13873 -- If the subtype declaration is created for a tagged type derivation
13874 -- with constraints, we retrieve the record definition of the parent
13875 -- type to select the components of the proper variant.
13878 and then Is_Tagged_Type
(Typ
)
13879 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
13881 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
13882 and then Is_Variant_Record
(Parent_Type
)
13884 Collect_Fixed_Components
(Typ
);
13888 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
13889 Governed_By
=> Assoc_List
,
13891 Report_Errors
=> Errors
);
13893 -- Note: previously there was a check at this point that no errors
13894 -- were detected. As a consequence of AI05-220 there may be an error
13895 -- if an inherited discriminant that controls a variant has a non-
13896 -- static constraint.
13898 -- If the tagged derivation has a type extension, collect all the
13899 -- new components therein.
13901 if Present
(Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
13903 Old_C
:= First_Component
(Typ
);
13904 while Present
(Old_C
) loop
13905 if Original_Record_Component
(Old_C
) = Old_C
13906 and then Chars
(Old_C
) /= Name_uTag
13907 and then Chars
(Old_C
) /= Name_uParent
13909 Append_Elmt
(Old_C
, Comp_List
);
13912 Next_Component
(Old_C
);
13916 Create_All_Components
;
13919 -- If discriminants are not static, or if this is a multi-level type
13920 -- extension, we have to include all components of the parent type.
13922 Old_C
:= First_Component
(Typ
);
13923 while Present
(Old_C
) loop
13924 New_C
:= Create_Component
(Old_C
);
13928 Constrain_Component_Type
13929 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13930 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13932 Next_Component
(Old_C
);
13937 end Create_Constrained_Components
;
13939 ------------------------------------------
13940 -- Decimal_Fixed_Point_Type_Declaration --
13941 ------------------------------------------
13943 procedure Decimal_Fixed_Point_Type_Declaration
13947 Loc
: constant Source_Ptr
:= Sloc
(Def
);
13948 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
13949 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
13950 Implicit_Base
: Entity_Id
;
13957 Check_SPARK_05_Restriction
13958 ("decimal fixed point type is not allowed", Def
);
13959 Check_Restriction
(No_Fixed_Point
, Def
);
13961 -- Create implicit base type
13964 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
13965 Set_Etype
(Implicit_Base
, Implicit_Base
);
13967 -- Analyze and process delta expression
13969 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
13971 Check_Delta_Expression
(Delta_Expr
);
13972 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
13974 -- Check delta is power of 10, and determine scale value from it
13980 Scale_Val
:= Uint_0
;
13983 if Val
< Ureal_1
then
13984 while Val
< Ureal_1
loop
13985 Val
:= Val
* Ureal_10
;
13986 Scale_Val
:= Scale_Val
+ 1;
13989 if Scale_Val
> 18 then
13990 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
13991 Scale_Val
:= UI_From_Int
(+18);
13995 while Val
> Ureal_1
loop
13996 Val
:= Val
/ Ureal_10
;
13997 Scale_Val
:= Scale_Val
- 1;
14000 if Scale_Val
< -18 then
14001 Error_Msg_N
("scale is less than minimum value of -18", Def
);
14002 Scale_Val
:= UI_From_Int
(-18);
14006 if Val
/= Ureal_1
then
14007 Error_Msg_N
("delta expression must be a power of 10", Def
);
14008 Delta_Val
:= Ureal_10
** (-Scale_Val
);
14012 -- Set delta, scale and small (small = delta for decimal type)
14014 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
14015 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
14016 Set_Small_Value
(Implicit_Base
, Delta_Val
);
14018 -- Analyze and process digits expression
14020 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
14021 Check_Digits_Expression
(Digs_Expr
);
14022 Digs_Val
:= Expr_Value
(Digs_Expr
);
14024 if Digs_Val
> 18 then
14025 Digs_Val
:= UI_From_Int
(+18);
14026 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
14029 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
14030 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
14032 -- Set range of base type from digits value for now. This will be
14033 -- expanded to represent the true underlying base range by Freeze.
14035 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
14037 -- Note: We leave size as zero for now, size will be set at freeze
14038 -- time. We have to do this for ordinary fixed-point, because the size
14039 -- depends on the specified small, and we might as well do the same for
14040 -- decimal fixed-point.
14042 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
14044 -- If there are bounds given in the declaration use them as the
14045 -- bounds of the first named subtype.
14047 if Present
(Real_Range_Specification
(Def
)) then
14049 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14050 Low
: constant Node_Id
:= Low_Bound
(RRS
);
14051 High
: constant Node_Id
:= High_Bound
(RRS
);
14056 Analyze_And_Resolve
(Low
, Any_Real
);
14057 Analyze_And_Resolve
(High
, Any_Real
);
14058 Check_Real_Bound
(Low
);
14059 Check_Real_Bound
(High
);
14060 Low_Val
:= Expr_Value_R
(Low
);
14061 High_Val
:= Expr_Value_R
(High
);
14063 if Low_Val
< (-Bound_Val
) then
14065 ("range low bound too small for digits value", Low
);
14066 Low_Val
:= -Bound_Val
;
14069 if High_Val
> Bound_Val
then
14071 ("range high bound too large for digits value", High
);
14072 High_Val
:= Bound_Val
;
14075 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
14078 -- If no explicit range, use range that corresponds to given
14079 -- digits value. This will end up as the final range for the
14083 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
14086 -- Complete entity for first subtype. The inheritance of the rep item
14087 -- chain ensures that SPARK-related pragmas are not clobbered when the
14088 -- decimal fixed point type acts as a full view of a private type.
14090 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
14091 Set_Etype
(T
, Implicit_Base
);
14092 Set_Size_Info
(T
, Implicit_Base
);
14093 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
14094 Set_Digits_Value
(T
, Digs_Val
);
14095 Set_Delta_Value
(T
, Delta_Val
);
14096 Set_Small_Value
(T
, Delta_Val
);
14097 Set_Scale_Value
(T
, Scale_Val
);
14098 Set_Is_Constrained
(T
);
14099 end Decimal_Fixed_Point_Type_Declaration
;
14101 -----------------------------------
14102 -- Derive_Progenitor_Subprograms --
14103 -----------------------------------
14105 procedure Derive_Progenitor_Subprograms
14106 (Parent_Type
: Entity_Id
;
14107 Tagged_Type
: Entity_Id
)
14112 Iface_Elmt
: Elmt_Id
;
14113 Iface_Subp
: Entity_Id
;
14114 New_Subp
: Entity_Id
:= Empty
;
14115 Prim_Elmt
: Elmt_Id
;
14120 pragma Assert
(Ada_Version
>= Ada_2005
14121 and then Is_Record_Type
(Tagged_Type
)
14122 and then Is_Tagged_Type
(Tagged_Type
)
14123 and then Has_Interfaces
(Tagged_Type
));
14125 -- Step 1: Transfer to the full-view primitives associated with the
14126 -- partial-view that cover interface primitives. Conceptually this
14127 -- work should be done later by Process_Full_View; done here to
14128 -- simplify its implementation at later stages. It can be safely
14129 -- done here because interfaces must be visible in the partial and
14130 -- private view (RM 7.3(7.3/2)).
14132 -- Small optimization: This work is only required if the parent may
14133 -- have entities whose Alias attribute reference an interface primitive.
14134 -- Such a situation may occur if the parent is an abstract type and the
14135 -- primitive has not been yet overridden or if the parent is a generic
14136 -- formal type covering interfaces.
14138 -- If the tagged type is not abstract, it cannot have abstract
14139 -- primitives (the only entities in the list of primitives of
14140 -- non-abstract tagged types that can reference abstract primitives
14141 -- through its Alias attribute are the internal entities that have
14142 -- attribute Interface_Alias, and these entities are generated later
14143 -- by Add_Internal_Interface_Entities).
14145 if In_Private_Part
(Current_Scope
)
14146 and then (Is_Abstract_Type
(Parent_Type
)
14148 Is_Generic_Type
(Parent_Type
))
14150 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14151 while Present
(Elmt
) loop
14152 Subp
:= Node
(Elmt
);
14154 -- At this stage it is not possible to have entities in the list
14155 -- of primitives that have attribute Interface_Alias.
14157 pragma Assert
(No
(Interface_Alias
(Subp
)));
14159 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
14161 if Is_Interface
(Typ
) then
14162 E
:= Find_Primitive_Covering_Interface
14163 (Tagged_Type
=> Tagged_Type
,
14164 Iface_Prim
=> Subp
);
14167 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
14169 Replace_Elmt
(Elmt
, E
);
14170 Remove_Homonym
(Subp
);
14178 -- Step 2: Add primitives of progenitors that are not implemented by
14179 -- parents of Tagged_Type.
14181 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
14182 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
14183 while Present
(Iface_Elmt
) loop
14184 Iface
:= Node
(Iface_Elmt
);
14186 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
14187 while Present
(Prim_Elmt
) loop
14188 Iface_Subp
:= Node
(Prim_Elmt
);
14190 -- Exclude derivation of predefined primitives except those
14191 -- that come from source, or are inherited from one that comes
14192 -- from source. Required to catch declarations of equality
14193 -- operators of interfaces. For example:
14195 -- type Iface is interface;
14196 -- function "=" (Left, Right : Iface) return Boolean;
14198 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
14199 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
14201 E
:= Find_Primitive_Covering_Interface
14202 (Tagged_Type
=> Tagged_Type
,
14203 Iface_Prim
=> Iface_Subp
);
14205 -- If not found we derive a new primitive leaving its alias
14206 -- attribute referencing the interface primitive.
14210 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14212 -- Ada 2012 (AI05-0197): If the covering primitive's name
14213 -- differs from the name of the interface primitive then it
14214 -- is a private primitive inherited from a parent type. In
14215 -- such case, given that Tagged_Type covers the interface,
14216 -- the inherited private primitive becomes visible. For such
14217 -- purpose we add a new entity that renames the inherited
14218 -- private primitive.
14220 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
14221 pragma Assert
(Has_Suffix
(E
, 'P'));
14223 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14224 Set_Alias
(New_Subp
, E
);
14225 Set_Is_Abstract_Subprogram
(New_Subp
,
14226 Is_Abstract_Subprogram
(E
));
14228 -- Propagate to the full view interface entities associated
14229 -- with the partial view.
14231 elsif In_Private_Part
(Current_Scope
)
14232 and then Present
(Alias
(E
))
14233 and then Alias
(E
) = Iface_Subp
14235 List_Containing
(Parent
(E
)) /=
14236 Private_Declarations
14238 (Unit_Declaration_Node
(Current_Scope
)))
14240 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
14244 Next_Elmt
(Prim_Elmt
);
14247 Next_Elmt
(Iface_Elmt
);
14250 end Derive_Progenitor_Subprograms
;
14252 -----------------------
14253 -- Derive_Subprogram --
14254 -----------------------
14256 procedure Derive_Subprogram
14257 (New_Subp
: in out Entity_Id
;
14258 Parent_Subp
: Entity_Id
;
14259 Derived_Type
: Entity_Id
;
14260 Parent_Type
: Entity_Id
;
14261 Actual_Subp
: Entity_Id
:= Empty
)
14263 Formal
: Entity_Id
;
14264 -- Formal parameter of parent primitive operation
14266 Formal_Of_Actual
: Entity_Id
;
14267 -- Formal parameter of actual operation, when the derivation is to
14268 -- create a renaming for a primitive operation of an actual in an
14271 New_Formal
: Entity_Id
;
14272 -- Formal of inherited operation
14274 Visible_Subp
: Entity_Id
:= Parent_Subp
;
14276 function Is_Private_Overriding
return Boolean;
14277 -- If Subp is a private overriding of a visible operation, the inherited
14278 -- operation derives from the overridden op (even though its body is the
14279 -- overriding one) and the inherited operation is visible now. See
14280 -- sem_disp to see the full details of the handling of the overridden
14281 -- subprogram, which is removed from the list of primitive operations of
14282 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14283 -- and used to diagnose abstract operations that need overriding in the
14286 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
14287 -- When the type is an anonymous access type, create a new access type
14288 -- designating the derived type.
14290 procedure Set_Derived_Name
;
14291 -- This procedure sets the appropriate Chars name for New_Subp. This
14292 -- is normally just a copy of the parent name. An exception arises for
14293 -- type support subprograms, where the name is changed to reflect the
14294 -- name of the derived type, e.g. if type foo is derived from type bar,
14295 -- then a procedure barDA is derived with a name fooDA.
14297 ---------------------------
14298 -- Is_Private_Overriding --
14299 ---------------------------
14301 function Is_Private_Overriding
return Boolean is
14305 -- If the parent is not a dispatching operation there is no
14306 -- need to investigate overridings
14308 if not Is_Dispatching_Operation
(Parent_Subp
) then
14312 -- The visible operation that is overridden is a homonym of the
14313 -- parent subprogram. We scan the homonym chain to find the one
14314 -- whose alias is the subprogram we are deriving.
14316 Prev
:= Current_Entity
(Parent_Subp
);
14317 while Present
(Prev
) loop
14318 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
14319 and then Alias
(Prev
) = Parent_Subp
14320 and then Scope
(Parent_Subp
) = Scope
(Prev
)
14321 and then not Is_Hidden
(Prev
)
14323 Visible_Subp
:= Prev
;
14327 Prev
:= Homonym
(Prev
);
14331 end Is_Private_Overriding
;
14337 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
14338 Id_Type
: constant Entity_Id
:= Etype
(Id
);
14339 Acc_Type
: Entity_Id
;
14340 Par
: constant Node_Id
:= Parent
(Derived_Type
);
14343 -- When the type is an anonymous access type, create a new access
14344 -- type designating the derived type. This itype must be elaborated
14345 -- at the point of the derivation, not on subsequent calls that may
14346 -- be out of the proper scope for Gigi, so we insert a reference to
14347 -- it after the derivation.
14349 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
14351 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
14354 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
14355 and then Present
(Full_View
(Desig_Typ
))
14356 and then not Is_Private_Type
(Parent_Type
)
14358 Desig_Typ
:= Full_View
(Desig_Typ
);
14361 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
14363 -- Ada 2005 (AI-251): Handle also derivations of abstract
14364 -- interface primitives.
14366 or else (Is_Interface
(Desig_Typ
)
14367 and then not Is_Class_Wide_Type
(Desig_Typ
))
14369 Acc_Type
:= New_Copy
(Id_Type
);
14370 Set_Etype
(Acc_Type
, Acc_Type
);
14371 Set_Scope
(Acc_Type
, New_Subp
);
14373 -- Set size of anonymous access type. If we have an access
14374 -- to an unconstrained array, this is a fat pointer, so it
14375 -- is sizes at twice addtress size.
14377 if Is_Array_Type
(Desig_Typ
)
14378 and then not Is_Constrained
(Desig_Typ
)
14380 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
14382 -- Other cases use a thin pointer
14385 Init_Size
(Acc_Type
, System_Address_Size
);
14388 -- Set remaining characterstics of anonymous access type
14390 Init_Alignment
(Acc_Type
);
14391 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
14393 Set_Etype
(New_Id
, Acc_Type
);
14394 Set_Scope
(New_Id
, New_Subp
);
14396 -- Create a reference to it
14398 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
14401 Set_Etype
(New_Id
, Id_Type
);
14405 -- In Ada2012, a formal may have an incomplete type but the type
14406 -- derivation that inherits the primitive follows the full view.
14408 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
14410 (Ekind
(Id_Type
) = E_Record_Type_With_Private
14411 and then Present
(Full_View
(Id_Type
))
14413 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
14415 (Ada_Version
>= Ada_2012
14416 and then Ekind
(Id_Type
) = E_Incomplete_Type
14417 and then Full_View
(Id_Type
) = Parent_Type
)
14419 -- Constraint checks on formals are generated during expansion,
14420 -- based on the signature of the original subprogram. The bounds
14421 -- of the derived type are not relevant, and thus we can use
14422 -- the base type for the formals. However, the return type may be
14423 -- used in a context that requires that the proper static bounds
14424 -- be used (a case statement, for example) and for those cases
14425 -- we must use the derived type (first subtype), not its base.
14427 -- If the derived_type_definition has no constraints, we know that
14428 -- the derived type has the same constraints as the first subtype
14429 -- of the parent, and we can also use it rather than its base,
14430 -- which can lead to more efficient code.
14432 if Etype
(Id
) = Parent_Type
then
14433 if Is_Scalar_Type
(Parent_Type
)
14435 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
14437 Set_Etype
(New_Id
, Derived_Type
);
14439 elsif Nkind
(Par
) = N_Full_Type_Declaration
14441 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
14444 (Subtype_Indication
(Type_Definition
(Par
)))
14446 Set_Etype
(New_Id
, Derived_Type
);
14449 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14453 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14457 Set_Etype
(New_Id
, Etype
(Id
));
14461 ----------------------
14462 -- Set_Derived_Name --
14463 ----------------------
14465 procedure Set_Derived_Name
is
14466 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
14468 if Nm
= TSS_Null
then
14469 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
14471 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
14473 end Set_Derived_Name
;
14475 -- Start of processing for Derive_Subprogram
14478 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
14479 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
14480 Set_Contract
(New_Subp
, Make_Contract
(Sloc
(New_Subp
)));
14482 -- Check whether the inherited subprogram is a private operation that
14483 -- should be inherited but not yet made visible. Such subprograms can
14484 -- become visible at a later point (e.g., the private part of a public
14485 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14486 -- following predicate is true, then this is not such a private
14487 -- operation and the subprogram simply inherits the name of the parent
14488 -- subprogram. Note the special check for the names of controlled
14489 -- operations, which are currently exempted from being inherited with
14490 -- a hidden name because they must be findable for generation of
14491 -- implicit run-time calls.
14493 if not Is_Hidden
(Parent_Subp
)
14494 or else Is_Internal
(Parent_Subp
)
14495 or else Is_Private_Overriding
14496 or else Is_Internal_Name
(Chars
(Parent_Subp
))
14497 or else Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14503 -- An inherited dispatching equality will be overridden by an internally
14504 -- generated one, or by an explicit one, so preserve its name and thus
14505 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14506 -- private operation it may become invisible if the full view has
14507 -- progenitors, and the dispatch table will be malformed.
14508 -- We check that the type is limited to handle the anomalous declaration
14509 -- of Limited_Controlled, which is derived from a non-limited type, and
14510 -- which is handled specially elsewhere as well.
14512 elsif Chars
(Parent_Subp
) = Name_Op_Eq
14513 and then Is_Dispatching_Operation
(Parent_Subp
)
14514 and then Etype
(Parent_Subp
) = Standard_Boolean
14515 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
14517 Etype
(First_Formal
(Parent_Subp
)) =
14518 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
14522 -- If parent is hidden, this can be a regular derivation if the
14523 -- parent is immediately visible in a non-instantiating context,
14524 -- or if we are in the private part of an instance. This test
14525 -- should still be refined ???
14527 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14528 -- operation as a non-visible operation in cases where the parent
14529 -- subprogram might not be visible now, but was visible within the
14530 -- original generic, so it would be wrong to make the inherited
14531 -- subprogram non-visible now. (Not clear if this test is fully
14532 -- correct; are there any cases where we should declare the inherited
14533 -- operation as not visible to avoid it being overridden, e.g., when
14534 -- the parent type is a generic actual with private primitives ???)
14536 -- (they should be treated the same as other private inherited
14537 -- subprograms, but it's not clear how to do this cleanly). ???
14539 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14540 and then Is_Immediately_Visible
(Parent_Subp
)
14541 and then not In_Instance
)
14542 or else In_Instance_Not_Visible
14546 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14547 -- overrides an interface primitive because interface primitives
14548 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14550 elsif Ada_Version
>= Ada_2005
14551 and then Is_Dispatching_Operation
(Parent_Subp
)
14552 and then Covers_Some_Interface
(Parent_Subp
)
14556 -- Otherwise, the type is inheriting a private operation, so enter
14557 -- it with a special name so it can't be overridden.
14560 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
14563 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
14565 if Present
(Actual_Subp
) then
14566 Replace_Type
(Actual_Subp
, New_Subp
);
14568 Replace_Type
(Parent_Subp
, New_Subp
);
14571 Conditional_Delay
(New_Subp
, Parent_Subp
);
14573 -- If we are creating a renaming for a primitive operation of an
14574 -- actual of a generic derived type, we must examine the signature
14575 -- of the actual primitive, not that of the generic formal, which for
14576 -- example may be an interface. However the name and initial value
14577 -- of the inherited operation are those of the formal primitive.
14579 Formal
:= First_Formal
(Parent_Subp
);
14581 if Present
(Actual_Subp
) then
14582 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
14584 Formal_Of_Actual
:= Empty
;
14587 while Present
(Formal
) loop
14588 New_Formal
:= New_Copy
(Formal
);
14590 -- Normally we do not go copying parents, but in the case of
14591 -- formals, we need to link up to the declaration (which is the
14592 -- parameter specification), and it is fine to link up to the
14593 -- original formal's parameter specification in this case.
14595 Set_Parent
(New_Formal
, Parent
(Formal
));
14596 Append_Entity
(New_Formal
, New_Subp
);
14598 if Present
(Formal_Of_Actual
) then
14599 Replace_Type
(Formal_Of_Actual
, New_Formal
);
14600 Next_Formal
(Formal_Of_Actual
);
14602 Replace_Type
(Formal
, New_Formal
);
14605 Next_Formal
(Formal
);
14608 -- If this derivation corresponds to a tagged generic actual, then
14609 -- primitive operations rename those of the actual. Otherwise the
14610 -- primitive operations rename those of the parent type, If the parent
14611 -- renames an intrinsic operator, so does the new subprogram. We except
14612 -- concatenation, which is always properly typed, and does not get
14613 -- expanded as other intrinsic operations.
14615 if No
(Actual_Subp
) then
14616 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
14617 Set_Is_Intrinsic_Subprogram
(New_Subp
);
14619 if Present
(Alias
(Parent_Subp
))
14620 and then Chars
(Parent_Subp
) /= Name_Op_Concat
14622 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
14624 Set_Alias
(New_Subp
, Parent_Subp
);
14628 Set_Alias
(New_Subp
, Parent_Subp
);
14632 Set_Alias
(New_Subp
, Actual_Subp
);
14635 -- Inherit the "ghostness" from the parent subprogram
14637 if Is_Ghost_Entity
(Alias
(New_Subp
)) then
14638 Set_Is_Ghost_Entity
(New_Subp
);
14641 -- Derived subprograms of a tagged type must inherit the convention
14642 -- of the parent subprogram (a requirement of AI-117). Derived
14643 -- subprograms of untagged types simply get convention Ada by default.
14645 -- If the derived type is a tagged generic formal type with unknown
14646 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14648 -- However, if the type is derived from a generic formal, the further
14649 -- inherited subprogram has the convention of the non-generic ancestor.
14650 -- Otherwise there would be no way to override the operation.
14651 -- (This is subject to forthcoming ARG discussions).
14653 if Is_Tagged_Type
(Derived_Type
) then
14654 if Is_Generic_Type
(Derived_Type
)
14655 and then Has_Unknown_Discriminants
(Derived_Type
)
14657 Set_Convention
(New_Subp
, Convention_Intrinsic
);
14660 if Is_Generic_Type
(Parent_Type
)
14661 and then Has_Unknown_Discriminants
(Parent_Type
)
14663 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
14665 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
14670 -- Predefined controlled operations retain their name even if the parent
14671 -- is hidden (see above), but they are not primitive operations if the
14672 -- ancestor is not visible, for example if the parent is a private
14673 -- extension completed with a controlled extension. Note that a full
14674 -- type that is controlled can break privacy: the flag Is_Controlled is
14675 -- set on both views of the type.
14677 if Is_Controlled
(Parent_Type
)
14678 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14681 and then Is_Hidden
(Parent_Subp
)
14682 and then not Is_Visibly_Controlled
(Parent_Type
)
14684 Set_Is_Hidden
(New_Subp
);
14687 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
14688 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
14690 if Ekind
(Parent_Subp
) = E_Procedure
then
14691 Set_Is_Valued_Procedure
14692 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
14694 Set_Has_Controlling_Result
14695 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
14698 -- No_Return must be inherited properly. If this is overridden in the
14699 -- case of a dispatching operation, then a check is made in Sem_Disp
14700 -- that the overriding operation is also No_Return (no such check is
14701 -- required for the case of non-dispatching operation.
14703 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
14705 -- A derived function with a controlling result is abstract. If the
14706 -- Derived_Type is a nonabstract formal generic derived type, then
14707 -- inherited operations are not abstract: the required check is done at
14708 -- instantiation time. If the derivation is for a generic actual, the
14709 -- function is not abstract unless the actual is.
14711 if Is_Generic_Type
(Derived_Type
)
14712 and then not Is_Abstract_Type
(Derived_Type
)
14716 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14717 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14719 -- A subprogram subject to pragma Extensions_Visible with value False
14720 -- requires overriding if the subprogram has at least one controlling
14721 -- OUT parameter (SPARK RM 6.1.7(6)).
14723 elsif Ada_Version
>= Ada_2005
14724 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14725 or else (Is_Tagged_Type
(Derived_Type
)
14726 and then Etype
(New_Subp
) = Derived_Type
14727 and then not Is_Null_Extension
(Derived_Type
))
14728 or else (Is_Tagged_Type
(Derived_Type
)
14729 and then Ekind
(Etype
(New_Subp
)) =
14730 E_Anonymous_Access_Type
14731 and then Designated_Type
(Etype
(New_Subp
)) =
14733 and then not Is_Null_Extension
(Derived_Type
))
14734 or else (Comes_From_Source
(Alias
(New_Subp
))
14735 and then Is_EVF_Procedure
(Alias
(New_Subp
))))
14736 and then No
(Actual_Subp
)
14738 if not Is_Tagged_Type
(Derived_Type
)
14739 or else Is_Abstract_Type
(Derived_Type
)
14740 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
14742 Set_Is_Abstract_Subprogram
(New_Subp
);
14744 Set_Requires_Overriding
(New_Subp
);
14747 elsif Ada_Version
< Ada_2005
14748 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14749 or else (Is_Tagged_Type
(Derived_Type
)
14750 and then Etype
(New_Subp
) = Derived_Type
14751 and then No
(Actual_Subp
)))
14753 Set_Is_Abstract_Subprogram
(New_Subp
);
14755 -- AI05-0097 : an inherited operation that dispatches on result is
14756 -- abstract if the derived type is abstract, even if the parent type
14757 -- is concrete and the derived type is a null extension.
14759 elsif Has_Controlling_Result
(Alias
(New_Subp
))
14760 and then Is_Abstract_Type
(Etype
(New_Subp
))
14762 Set_Is_Abstract_Subprogram
(New_Subp
);
14764 -- Finally, if the parent type is abstract we must verify that all
14765 -- inherited operations are either non-abstract or overridden, or that
14766 -- the derived type itself is abstract (this check is performed at the
14767 -- end of a package declaration, in Check_Abstract_Overriding). A
14768 -- private overriding in the parent type will not be visible in the
14769 -- derivation if we are not in an inner package or in a child unit of
14770 -- the parent type, in which case the abstractness of the inherited
14771 -- operation is carried to the new subprogram.
14773 elsif Is_Abstract_Type
(Parent_Type
)
14774 and then not In_Open_Scopes
(Scope
(Parent_Type
))
14775 and then Is_Private_Overriding
14776 and then Is_Abstract_Subprogram
(Visible_Subp
)
14778 if No
(Actual_Subp
) then
14779 Set_Alias
(New_Subp
, Visible_Subp
);
14780 Set_Is_Abstract_Subprogram
(New_Subp
, True);
14783 -- If this is a derivation for an instance of a formal derived
14784 -- type, abstractness comes from the primitive operation of the
14785 -- actual, not from the operation inherited from the ancestor.
14787 Set_Is_Abstract_Subprogram
14788 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
14792 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
14794 -- Check for case of a derived subprogram for the instantiation of a
14795 -- formal derived tagged type, if so mark the subprogram as dispatching
14796 -- and inherit the dispatching attributes of the actual subprogram. The
14797 -- derived subprogram is effectively renaming of the actual subprogram,
14798 -- so it needs to have the same attributes as the actual.
14800 if Present
(Actual_Subp
)
14801 and then Is_Dispatching_Operation
(Actual_Subp
)
14803 Set_Is_Dispatching_Operation
(New_Subp
);
14805 if Present
(DTC_Entity
(Actual_Subp
)) then
14806 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
14807 Set_DT_Position
(New_Subp
, DT_Position
(Actual_Subp
));
14811 -- Indicate that a derived subprogram does not require a body and that
14812 -- it does not require processing of default expressions.
14814 Set_Has_Completion
(New_Subp
);
14815 Set_Default_Expressions_Processed
(New_Subp
);
14817 if Ekind
(New_Subp
) = E_Function
then
14818 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
14820 end Derive_Subprogram
;
14822 ------------------------
14823 -- Derive_Subprograms --
14824 ------------------------
14826 procedure Derive_Subprograms
14827 (Parent_Type
: Entity_Id
;
14828 Derived_Type
: Entity_Id
;
14829 Generic_Actual
: Entity_Id
:= Empty
)
14831 Op_List
: constant Elist_Id
:=
14832 Collect_Primitive_Operations
(Parent_Type
);
14834 function Check_Derived_Type
return Boolean;
14835 -- Check that all the entities derived from Parent_Type are found in
14836 -- the list of primitives of Derived_Type exactly in the same order.
14838 procedure Derive_Interface_Subprogram
14839 (New_Subp
: in out Entity_Id
;
14841 Actual_Subp
: Entity_Id
);
14842 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14843 -- (which is an interface primitive). If Generic_Actual is present then
14844 -- Actual_Subp is the actual subprogram corresponding with the generic
14845 -- subprogram Subp.
14847 function Check_Derived_Type
return Boolean is
14851 New_Subp
: Entity_Id
;
14856 -- Traverse list of entities in the current scope searching for
14857 -- an incomplete type whose full-view is derived type
14859 E
:= First_Entity
(Scope
(Derived_Type
));
14860 while Present
(E
) and then E
/= Derived_Type
loop
14861 if Ekind
(E
) = E_Incomplete_Type
14862 and then Present
(Full_View
(E
))
14863 and then Full_View
(E
) = Derived_Type
14865 -- Disable this test if Derived_Type completes an incomplete
14866 -- type because in such case more primitives can be added
14867 -- later to the list of primitives of Derived_Type by routine
14868 -- Process_Incomplete_Dependents
14873 E
:= Next_Entity
(E
);
14876 List
:= Collect_Primitive_Operations
(Derived_Type
);
14877 Elmt
:= First_Elmt
(List
);
14879 Op_Elmt
:= First_Elmt
(Op_List
);
14880 while Present
(Op_Elmt
) loop
14881 Subp
:= Node
(Op_Elmt
);
14882 New_Subp
:= Node
(Elmt
);
14884 -- At this early stage Derived_Type has no entities with attribute
14885 -- Interface_Alias. In addition, such primitives are always
14886 -- located at the end of the list of primitives of Parent_Type.
14887 -- Therefore, if found we can safely stop processing pending
14890 exit when Present
(Interface_Alias
(Subp
));
14892 -- Handle hidden entities
14894 if not Is_Predefined_Dispatching_Operation
(Subp
)
14895 and then Is_Hidden
(Subp
)
14897 if Present
(New_Subp
)
14898 and then Primitive_Names_Match
(Subp
, New_Subp
)
14904 if not Present
(New_Subp
)
14905 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
14906 or else not Primitive_Names_Match
(Subp
, New_Subp
)
14914 Next_Elmt
(Op_Elmt
);
14918 end Check_Derived_Type
;
14920 ---------------------------------
14921 -- Derive_Interface_Subprogram --
14922 ---------------------------------
14924 procedure Derive_Interface_Subprogram
14925 (New_Subp
: in out Entity_Id
;
14927 Actual_Subp
: Entity_Id
)
14929 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
14930 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
14933 pragma Assert
(Is_Interface
(Iface_Type
));
14936 (New_Subp
=> New_Subp
,
14937 Parent_Subp
=> Iface_Subp
,
14938 Derived_Type
=> Derived_Type
,
14939 Parent_Type
=> Iface_Type
,
14940 Actual_Subp
=> Actual_Subp
);
14942 -- Given that this new interface entity corresponds with a primitive
14943 -- of the parent that was not overridden we must leave it associated
14944 -- with its parent primitive to ensure that it will share the same
14945 -- dispatch table slot when overridden.
14947 if No
(Actual_Subp
) then
14948 Set_Alias
(New_Subp
, Subp
);
14950 -- For instantiations this is not needed since the previous call to
14951 -- Derive_Subprogram leaves the entity well decorated.
14954 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
14957 end Derive_Interface_Subprogram
;
14961 Alias_Subp
: Entity_Id
;
14962 Act_List
: Elist_Id
;
14963 Act_Elmt
: Elmt_Id
;
14964 Act_Subp
: Entity_Id
:= Empty
;
14966 Need_Search
: Boolean := False;
14967 New_Subp
: Entity_Id
:= Empty
;
14968 Parent_Base
: Entity_Id
;
14971 -- Start of processing for Derive_Subprograms
14974 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
14975 and then Has_Discriminants
(Parent_Type
)
14976 and then Present
(Full_View
(Parent_Type
))
14978 Parent_Base
:= Full_View
(Parent_Type
);
14980 Parent_Base
:= Parent_Type
;
14983 if Present
(Generic_Actual
) then
14984 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
14985 Act_Elmt
:= First_Elmt
(Act_List
);
14987 Act_List
:= No_Elist
;
14988 Act_Elmt
:= No_Elmt
;
14991 -- Derive primitives inherited from the parent. Note that if the generic
14992 -- actual is present, this is not really a type derivation, it is a
14993 -- completion within an instance.
14995 -- Case 1: Derived_Type does not implement interfaces
14997 if not Is_Tagged_Type
(Derived_Type
)
14998 or else (not Has_Interfaces
(Derived_Type
)
14999 and then not (Present
(Generic_Actual
)
15000 and then Has_Interfaces
(Generic_Actual
)))
15002 Elmt
:= First_Elmt
(Op_List
);
15003 while Present
(Elmt
) loop
15004 Subp
:= Node
(Elmt
);
15006 -- Literals are derived earlier in the process of building the
15007 -- derived type, and are skipped here.
15009 if Ekind
(Subp
) = E_Enumeration_Literal
then
15012 -- The actual is a direct descendant and the common primitive
15013 -- operations appear in the same order.
15015 -- If the generic parent type is present, the derived type is an
15016 -- instance of a formal derived type, and within the instance its
15017 -- operations are those of the actual. We derive from the formal
15018 -- type but make the inherited operations aliases of the
15019 -- corresponding operations of the actual.
15022 pragma Assert
(No
(Node
(Act_Elmt
))
15023 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
15026 (Subp
, Node
(Act_Elmt
),
15027 Skip_Controlling_Formals
=> True)));
15030 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
15032 if Present
(Act_Elmt
) then
15033 Next_Elmt
(Act_Elmt
);
15040 -- Case 2: Derived_Type implements interfaces
15043 -- If the parent type has no predefined primitives we remove
15044 -- predefined primitives from the list of primitives of generic
15045 -- actual to simplify the complexity of this algorithm.
15047 if Present
(Generic_Actual
) then
15049 Has_Predefined_Primitives
: Boolean := False;
15052 -- Check if the parent type has predefined primitives
15054 Elmt
:= First_Elmt
(Op_List
);
15055 while Present
(Elmt
) loop
15056 Subp
:= Node
(Elmt
);
15058 if Is_Predefined_Dispatching_Operation
(Subp
)
15059 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
15061 Has_Predefined_Primitives
:= True;
15068 -- Remove predefined primitives of Generic_Actual. We must use
15069 -- an auxiliary list because in case of tagged types the value
15070 -- returned by Collect_Primitive_Operations is the value stored
15071 -- in its Primitive_Operations attribute (and we don't want to
15072 -- modify its current contents).
15074 if not Has_Predefined_Primitives
then
15076 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
15079 Elmt
:= First_Elmt
(Act_List
);
15080 while Present
(Elmt
) loop
15081 Subp
:= Node
(Elmt
);
15083 if not Is_Predefined_Dispatching_Operation
(Subp
)
15084 or else Comes_From_Source
(Subp
)
15086 Append_Elmt
(Subp
, Aux_List
);
15092 Act_List
:= Aux_List
;
15096 Act_Elmt
:= First_Elmt
(Act_List
);
15097 Act_Subp
:= Node
(Act_Elmt
);
15101 -- Stage 1: If the generic actual is not present we derive the
15102 -- primitives inherited from the parent type. If the generic parent
15103 -- type is present, the derived type is an instance of a formal
15104 -- derived type, and within the instance its operations are those of
15105 -- the actual. We derive from the formal type but make the inherited
15106 -- operations aliases of the corresponding operations of the actual.
15108 Elmt
:= First_Elmt
(Op_List
);
15109 while Present
(Elmt
) loop
15110 Subp
:= Node
(Elmt
);
15111 Alias_Subp
:= Ultimate_Alias
(Subp
);
15113 -- Do not derive internal entities of the parent that link
15114 -- interface primitives with their covering primitive. These
15115 -- entities will be added to this type when frozen.
15117 if Present
(Interface_Alias
(Subp
)) then
15121 -- If the generic actual is present find the corresponding
15122 -- operation in the generic actual. If the parent type is a
15123 -- direct ancestor of the derived type then, even if it is an
15124 -- interface, the operations are inherited from the primary
15125 -- dispatch table and are in the proper order. If we detect here
15126 -- that primitives are not in the same order we traverse the list
15127 -- of primitive operations of the actual to find the one that
15128 -- implements the interface primitive.
15132 (Present
(Generic_Actual
)
15133 and then Present
(Act_Subp
)
15135 (Primitive_Names_Match
(Subp
, Act_Subp
)
15137 Type_Conformant
(Subp
, Act_Subp
,
15138 Skip_Controlling_Formals
=> True)))
15140 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
15141 Use_Full_View
=> True));
15143 -- Remember that we need searching for all pending primitives
15145 Need_Search
:= True;
15147 -- Handle entities associated with interface primitives
15149 if Present
(Alias_Subp
)
15150 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15151 and then not Is_Predefined_Dispatching_Operation
(Subp
)
15153 -- Search for the primitive in the homonym chain
15156 Find_Primitive_Covering_Interface
15157 (Tagged_Type
=> Generic_Actual
,
15158 Iface_Prim
=> Alias_Subp
);
15160 -- Previous search may not locate primitives covering
15161 -- interfaces defined in generics units or instantiations.
15162 -- (it fails if the covering primitive has formals whose
15163 -- type is also defined in generics or instantiations).
15164 -- In such case we search in the list of primitives of the
15165 -- generic actual for the internal entity that links the
15166 -- interface primitive and the covering primitive.
15169 and then Is_Generic_Type
(Parent_Type
)
15171 -- This code has been designed to handle only generic
15172 -- formals that implement interfaces that are defined
15173 -- in a generic unit or instantiation. If this code is
15174 -- needed for other cases we must review it because
15175 -- (given that it relies on Original_Location to locate
15176 -- the primitive of Generic_Actual that covers the
15177 -- interface) it could leave linked through attribute
15178 -- Alias entities of unrelated instantiations).
15182 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
15184 Instantiation_Depth
15185 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
15188 Iface_Prim_Loc
: constant Source_Ptr
:=
15189 Original_Location
(Sloc
(Alias_Subp
));
15196 First_Elmt
(Primitive_Operations
(Generic_Actual
));
15198 Search
: while Present
(Elmt
) loop
15199 Prim
:= Node
(Elmt
);
15201 if Present
(Interface_Alias
(Prim
))
15202 and then Original_Location
15203 (Sloc
(Interface_Alias
(Prim
))) =
15206 Act_Subp
:= Alias
(Prim
);
15215 pragma Assert
(Present
(Act_Subp
)
15216 or else Is_Abstract_Type
(Generic_Actual
)
15217 or else Serious_Errors_Detected
> 0);
15219 -- Handle predefined primitives plus the rest of user-defined
15223 Act_Elmt
:= First_Elmt
(Act_List
);
15224 while Present
(Act_Elmt
) loop
15225 Act_Subp
:= Node
(Act_Elmt
);
15227 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
15228 and then Type_Conformant
15230 Skip_Controlling_Formals
=> True)
15231 and then No
(Interface_Alias
(Act_Subp
));
15233 Next_Elmt
(Act_Elmt
);
15236 if No
(Act_Elmt
) then
15242 -- Case 1: If the parent is a limited interface then it has the
15243 -- predefined primitives of synchronized interfaces. However, the
15244 -- actual type may be a non-limited type and hence it does not
15245 -- have such primitives.
15247 if Present
(Generic_Actual
)
15248 and then not Present
(Act_Subp
)
15249 and then Is_Limited_Interface
(Parent_Base
)
15250 and then Is_Predefined_Interface_Primitive
(Subp
)
15254 -- Case 2: Inherit entities associated with interfaces that were
15255 -- not covered by the parent type. We exclude here null interface
15256 -- primitives because they do not need special management.
15258 -- We also exclude interface operations that are renamings. If the
15259 -- subprogram is an explicit renaming of an interface primitive,
15260 -- it is a regular primitive operation, and the presence of its
15261 -- alias is not relevant: it has to be derived like any other
15264 elsif Present
(Alias
(Subp
))
15265 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
15266 N_Subprogram_Renaming_Declaration
15267 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15269 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
15270 and then Null_Present
(Parent
(Alias_Subp
)))
15272 -- If this is an abstract private type then we transfer the
15273 -- derivation of the interface primitive from the partial view
15274 -- to the full view. This is safe because all the interfaces
15275 -- must be visible in the partial view. Done to avoid adding
15276 -- a new interface derivation to the private part of the
15277 -- enclosing package; otherwise this new derivation would be
15278 -- decorated as hidden when the analysis of the enclosing
15279 -- package completes.
15281 if Is_Abstract_Type
(Derived_Type
)
15282 and then In_Private_Part
(Current_Scope
)
15283 and then Has_Private_Declaration
(Derived_Type
)
15286 Partial_View
: Entity_Id
;
15291 Partial_View
:= First_Entity
(Current_Scope
);
15293 exit when No
(Partial_View
)
15294 or else (Has_Private_Declaration
(Partial_View
)
15296 Full_View
(Partial_View
) = Derived_Type
);
15298 Next_Entity
(Partial_View
);
15301 -- If the partial view was not found then the source code
15302 -- has errors and the derivation is not needed.
15304 if Present
(Partial_View
) then
15306 First_Elmt
(Primitive_Operations
(Partial_View
));
15307 while Present
(Elmt
) loop
15308 Ent
:= Node
(Elmt
);
15310 if Present
(Alias
(Ent
))
15311 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
15314 (Ent
, Primitive_Operations
(Derived_Type
));
15321 -- If the interface primitive was not found in the
15322 -- partial view then this interface primitive was
15323 -- overridden. We add a derivation to activate in
15324 -- Derive_Progenitor_Subprograms the machinery to
15328 Derive_Interface_Subprogram
15329 (New_Subp
=> New_Subp
,
15331 Actual_Subp
=> Act_Subp
);
15336 Derive_Interface_Subprogram
15337 (New_Subp
=> New_Subp
,
15339 Actual_Subp
=> Act_Subp
);
15342 -- Case 3: Common derivation
15346 (New_Subp
=> New_Subp
,
15347 Parent_Subp
=> Subp
,
15348 Derived_Type
=> Derived_Type
,
15349 Parent_Type
=> Parent_Base
,
15350 Actual_Subp
=> Act_Subp
);
15353 -- No need to update Act_Elm if we must search for the
15354 -- corresponding operation in the generic actual
15357 and then Present
(Act_Elmt
)
15359 Next_Elmt
(Act_Elmt
);
15360 Act_Subp
:= Node
(Act_Elmt
);
15367 -- Inherit additional operations from progenitors. If the derived
15368 -- type is a generic actual, there are not new primitive operations
15369 -- for the type because it has those of the actual, and therefore
15370 -- nothing needs to be done. The renamings generated above are not
15371 -- primitive operations, and their purpose is simply to make the
15372 -- proper operations visible within an instantiation.
15374 if No
(Generic_Actual
) then
15375 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
15379 -- Final check: Direct descendants must have their primitives in the
15380 -- same order. We exclude from this test untagged types and instances
15381 -- of formal derived types. We skip this test if we have already
15382 -- reported serious errors in the sources.
15384 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
15385 or else Present
(Generic_Actual
)
15386 or else Serious_Errors_Detected
> 0
15387 or else Check_Derived_Type
);
15388 end Derive_Subprograms
;
15390 --------------------------------
15391 -- Derived_Standard_Character --
15392 --------------------------------
15394 procedure Derived_Standard_Character
15396 Parent_Type
: Entity_Id
;
15397 Derived_Type
: Entity_Id
)
15399 Loc
: constant Source_Ptr
:= Sloc
(N
);
15400 Def
: constant Node_Id
:= Type_Definition
(N
);
15401 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15402 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
15403 Implicit_Base
: constant Entity_Id
:=
15405 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
15411 Discard_Node
(Process_Subtype
(Indic
, N
));
15413 Set_Etype
(Implicit_Base
, Parent_Base
);
15414 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
15415 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
15417 Set_Is_Character_Type
(Implicit_Base
, True);
15418 Set_Has_Delayed_Freeze
(Implicit_Base
);
15420 -- The bounds of the implicit base are the bounds of the parent base.
15421 -- Note that their type is the parent base.
15423 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
15424 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
15426 Set_Scalar_Range
(Implicit_Base
,
15429 High_Bound
=> Hi
));
15431 Conditional_Delay
(Derived_Type
, Parent_Type
);
15433 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
15434 Set_Etype
(Derived_Type
, Implicit_Base
);
15435 Set_Size_Info
(Derived_Type
, Parent_Type
);
15437 if Unknown_RM_Size
(Derived_Type
) then
15438 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
15441 Set_Is_Character_Type
(Derived_Type
, True);
15443 if Nkind
(Indic
) /= N_Subtype_Indication
then
15445 -- If no explicit constraint, the bounds are those
15446 -- of the parent type.
15448 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
15449 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
15450 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
15453 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
15455 -- Because the implicit base is used in the conversion of the bounds, we
15456 -- have to freeze it now. This is similar to what is done for numeric
15457 -- types, and it equally suspicious, but otherwise a non-static bound
15458 -- will have a reference to an unfrozen type, which is rejected by Gigi
15459 -- (???). This requires specific care for definition of stream
15460 -- attributes. For details, see comments at the end of
15461 -- Build_Derived_Numeric_Type.
15463 Freeze_Before
(N
, Implicit_Base
);
15464 end Derived_Standard_Character
;
15466 ------------------------------
15467 -- Derived_Type_Declaration --
15468 ------------------------------
15470 procedure Derived_Type_Declaration
15473 Is_Completion
: Boolean)
15475 Parent_Type
: Entity_Id
;
15477 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
15478 -- Check whether the parent type is a generic formal, or derives
15479 -- directly or indirectly from one.
15481 ------------------------
15482 -- Comes_From_Generic --
15483 ------------------------
15485 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
15487 if Is_Generic_Type
(Typ
) then
15490 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
15493 elsif Is_Private_Type
(Typ
)
15494 and then Present
(Full_View
(Typ
))
15495 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
15499 elsif Is_Generic_Actual_Type
(Typ
) then
15505 end Comes_From_Generic
;
15509 Def
: constant Node_Id
:= Type_Definition
(N
);
15510 Iface_Def
: Node_Id
;
15511 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15512 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
15513 Parent_Node
: Node_Id
;
15516 -- Start of processing for Derived_Type_Declaration
15519 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
15521 -- Ada 2005 (AI-251): In case of interface derivation check that the
15522 -- parent is also an interface.
15524 if Interface_Present
(Def
) then
15525 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
15527 if not Is_Interface
(Parent_Type
) then
15528 Diagnose_Interface
(Indic
, Parent_Type
);
15531 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
15532 Iface_Def
:= Type_Definition
(Parent_Node
);
15534 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15535 -- other limited interfaces.
15537 if Limited_Present
(Def
) then
15538 if Limited_Present
(Iface_Def
) then
15541 elsif Protected_Present
(Iface_Def
) then
15543 ("descendant of& must be declared"
15544 & " as a protected interface",
15547 elsif Synchronized_Present
(Iface_Def
) then
15549 ("descendant of& must be declared"
15550 & " as a synchronized interface",
15553 elsif Task_Present
(Iface_Def
) then
15555 ("descendant of& must be declared as a task interface",
15560 ("(Ada 2005) limited interface cannot "
15561 & "inherit from non-limited interface", Indic
);
15564 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15565 -- from non-limited or limited interfaces.
15567 elsif not Protected_Present
(Def
)
15568 and then not Synchronized_Present
(Def
)
15569 and then not Task_Present
(Def
)
15571 if Limited_Present
(Iface_Def
) then
15574 elsif Protected_Present
(Iface_Def
) then
15576 ("descendant of& must be declared"
15577 & " as a protected interface",
15580 elsif Synchronized_Present
(Iface_Def
) then
15582 ("descendant of& must be declared"
15583 & " as a synchronized interface",
15586 elsif Task_Present
(Iface_Def
) then
15588 ("descendant of& must be declared as a task interface",
15597 if Is_Tagged_Type
(Parent_Type
)
15598 and then Is_Concurrent_Type
(Parent_Type
)
15599 and then not Is_Interface
(Parent_Type
)
15602 ("parent type of a record extension cannot be "
15603 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
15604 Set_Etype
(T
, Any_Type
);
15608 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15611 if Is_Tagged_Type
(Parent_Type
)
15612 and then Is_Non_Empty_List
(Interface_List
(Def
))
15619 Intf
:= First
(Interface_List
(Def
));
15620 while Present
(Intf
) loop
15621 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
15623 if not Is_Interface
(T
) then
15624 Diagnose_Interface
(Intf
, T
);
15626 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15627 -- a limited type from having a nonlimited progenitor.
15629 elsif (Limited_Present
(Def
)
15630 or else (not Is_Interface
(Parent_Type
)
15631 and then Is_Limited_Type
(Parent_Type
)))
15632 and then not Is_Limited_Interface
(T
)
15635 ("progenitor interface& of limited type must be limited",
15644 if Parent_Type
= Any_Type
15645 or else Etype
(Parent_Type
) = Any_Type
15646 or else (Is_Class_Wide_Type
(Parent_Type
)
15647 and then Etype
(Parent_Type
) = T
)
15649 -- If Parent_Type is undefined or illegal, make new type into a
15650 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15651 -- errors. If this is a self-definition, emit error now.
15653 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
15654 Error_Msg_N
("type cannot be used in its own definition", Indic
);
15657 Set_Ekind
(T
, Ekind
(Parent_Type
));
15658 Set_Etype
(T
, Any_Type
);
15659 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
15661 if Is_Tagged_Type
(T
)
15662 and then Is_Record_Type
(T
)
15664 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
15670 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15671 -- an interface is special because the list of interfaces in the full
15672 -- view can be given in any order. For example:
15674 -- type A is interface;
15675 -- type B is interface and A;
15676 -- type D is new B with private;
15678 -- type D is new A and B with null record; -- 1 --
15680 -- In this case we perform the following transformation of -1-:
15682 -- type D is new B and A with null record;
15684 -- If the parent of the full-view covers the parent of the partial-view
15685 -- we have two possible cases:
15687 -- 1) They have the same parent
15688 -- 2) The parent of the full-view implements some further interfaces
15690 -- In both cases we do not need to perform the transformation. In the
15691 -- first case the source program is correct and the transformation is
15692 -- not needed; in the second case the source program does not fulfill
15693 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15696 -- This transformation not only simplifies the rest of the analysis of
15697 -- this type declaration but also simplifies the correct generation of
15698 -- the object layout to the expander.
15700 if In_Private_Part
(Current_Scope
)
15701 and then Is_Interface
(Parent_Type
)
15705 Partial_View
: Entity_Id
;
15706 Partial_View_Parent
: Entity_Id
;
15707 New_Iface
: Node_Id
;
15710 -- Look for the associated private type declaration
15712 Partial_View
:= First_Entity
(Current_Scope
);
15714 exit when No
(Partial_View
)
15715 or else (Has_Private_Declaration
(Partial_View
)
15716 and then Full_View
(Partial_View
) = T
);
15718 Next_Entity
(Partial_View
);
15721 -- If the partial view was not found then the source code has
15722 -- errors and the transformation is not needed.
15724 if Present
(Partial_View
) then
15725 Partial_View_Parent
:= Etype
(Partial_View
);
15727 -- If the parent of the full-view covers the parent of the
15728 -- partial-view we have nothing else to do.
15730 if Interface_Present_In_Ancestor
15731 (Parent_Type
, Partial_View_Parent
)
15735 -- Traverse the list of interfaces of the full-view to look
15736 -- for the parent of the partial-view and perform the tree
15740 Iface
:= First
(Interface_List
(Def
));
15741 while Present
(Iface
) loop
15742 if Etype
(Iface
) = Etype
(Partial_View
) then
15743 Rewrite
(Subtype_Indication
(Def
),
15744 New_Copy
(Subtype_Indication
15745 (Parent
(Partial_View
))));
15748 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
15749 Append
(New_Iface
, Interface_List
(Def
));
15751 -- Analyze the transformed code
15753 Derived_Type_Declaration
(T
, N
, Is_Completion
);
15764 -- Only composite types other than array types are allowed to have
15767 if Present
(Discriminant_Specifications
(N
)) then
15768 if (Is_Elementary_Type
(Parent_Type
)
15770 Is_Array_Type
(Parent_Type
))
15771 and then not Error_Posted
(N
)
15774 ("elementary or array type cannot have discriminants",
15775 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
15776 Set_Has_Discriminants
(T
, False);
15778 -- The type is allowed to have discriminants
15781 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
15785 -- In Ada 83, a derived type defined in a package specification cannot
15786 -- be used for further derivation until the end of its visible part.
15787 -- Note that derivation in the private part of the package is allowed.
15789 if Ada_Version
= Ada_83
15790 and then Is_Derived_Type
(Parent_Type
)
15791 and then In_Visible_Part
(Scope
(Parent_Type
))
15793 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
15795 ("(Ada 83): premature use of type for derivation", Indic
);
15799 -- Check for early use of incomplete or private type
15801 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
15802 Error_Msg_N
("premature derivation of incomplete type", Indic
);
15805 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
15806 and then not Comes_From_Generic
(Parent_Type
))
15807 or else Has_Private_Component
(Parent_Type
)
15809 -- The ancestor type of a formal type can be incomplete, in which
15810 -- case only the operations of the partial view are available in the
15811 -- generic. Subsequent checks may be required when the full view is
15812 -- analyzed to verify that a derivation from a tagged type has an
15815 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
15818 elsif No
(Underlying_Type
(Parent_Type
))
15819 or else Has_Private_Component
(Parent_Type
)
15822 ("premature derivation of derived or private type", Indic
);
15824 -- Flag the type itself as being in error, this prevents some
15825 -- nasty problems with subsequent uses of the malformed type.
15827 Set_Error_Posted
(T
);
15829 -- Check that within the immediate scope of an untagged partial
15830 -- view it's illegal to derive from the partial view if the
15831 -- full view is tagged. (7.3(7))
15833 -- We verify that the Parent_Type is a partial view by checking
15834 -- that it is not a Full_Type_Declaration (i.e. a private type or
15835 -- private extension declaration), to distinguish a partial view
15836 -- from a derivation from a private type which also appears as
15837 -- E_Private_Type. If the parent base type is not declared in an
15838 -- enclosing scope there is no need to check.
15840 elsif Present
(Full_View
(Parent_Type
))
15841 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
15842 and then not Is_Tagged_Type
(Parent_Type
)
15843 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
15844 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
15847 ("premature derivation from type with tagged full view",
15852 -- Check that form of derivation is appropriate
15854 Taggd
:= Is_Tagged_Type
(Parent_Type
);
15856 -- Set the parent type to the class-wide type's specific type in this
15857 -- case to prevent cascading errors
15859 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
15860 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
15861 Set_Etype
(T
, Etype
(Parent_Type
));
15865 if Present
(Extension
) and then not Taggd
then
15867 ("type derived from untagged type cannot have extension", Indic
);
15869 elsif No
(Extension
) and then Taggd
then
15871 -- If this declaration is within a private part (or body) of a
15872 -- generic instantiation then the derivation is allowed (the parent
15873 -- type can only appear tagged in this case if it's a generic actual
15874 -- type, since it would otherwise have been rejected in the analysis
15875 -- of the generic template).
15877 if not Is_Generic_Actual_Type
(Parent_Type
)
15878 or else In_Visible_Part
(Scope
(Parent_Type
))
15880 if Is_Class_Wide_Type
(Parent_Type
) then
15882 ("parent type must not be a class-wide type", Indic
);
15884 -- Use specific type to prevent cascaded errors.
15886 Parent_Type
:= Etype
(Parent_Type
);
15890 ("type derived from tagged type must have extension", Indic
);
15895 -- AI-443: Synchronized formal derived types require a private
15896 -- extension. There is no point in checking the ancestor type or
15897 -- the progenitors since the construct is wrong to begin with.
15899 if Ada_Version
>= Ada_2005
15900 and then Is_Generic_Type
(T
)
15901 and then Present
(Original_Node
(N
))
15904 Decl
: constant Node_Id
:= Original_Node
(N
);
15907 if Nkind
(Decl
) = N_Formal_Type_Declaration
15908 and then Nkind
(Formal_Type_Definition
(Decl
)) =
15909 N_Formal_Derived_Type_Definition
15910 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
15911 and then No
(Extension
)
15913 -- Avoid emitting a duplicate error message
15915 and then not Error_Posted
(Indic
)
15918 ("synchronized derived type must have extension", N
);
15923 if Null_Exclusion_Present
(Def
)
15924 and then not Is_Access_Type
(Parent_Type
)
15926 Error_Msg_N
("null exclusion can only apply to an access type", N
);
15929 -- Avoid deriving parent primitives of underlying record views
15931 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
15932 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
15934 -- AI-419: The parent type of an explicitly limited derived type must
15935 -- be a limited type or a limited interface.
15937 if Limited_Present
(Def
) then
15938 Set_Is_Limited_Record
(T
);
15940 if Is_Interface
(T
) then
15941 Set_Is_Limited_Interface
(T
);
15944 if not Is_Limited_Type
(Parent_Type
)
15946 (not Is_Interface
(Parent_Type
)
15947 or else not Is_Limited_Interface
(Parent_Type
))
15949 -- AI05-0096: a derivation in the private part of an instance is
15950 -- legal if the generic formal is untagged limited, and the actual
15953 if Is_Generic_Actual_Type
(Parent_Type
)
15954 and then In_Private_Part
(Current_Scope
)
15957 (Generic_Parent_Type
(Parent
(Parent_Type
)))
15963 ("parent type& of limited type must be limited",
15969 -- In SPARK, there are no derived type definitions other than type
15970 -- extensions of tagged record types.
15972 if No
(Extension
) then
15973 Check_SPARK_05_Restriction
15974 ("derived type is not allowed", Original_Node
(N
));
15976 end Derived_Type_Declaration
;
15978 ------------------------
15979 -- Diagnose_Interface --
15980 ------------------------
15982 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
15984 if not Is_Interface
(E
) and then E
/= Any_Type
then
15985 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
15987 end Diagnose_Interface
;
15989 ----------------------------------
15990 -- Enumeration_Type_Declaration --
15991 ----------------------------------
15993 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16000 -- Create identifier node representing lower bound
16002 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16003 L
:= First
(Literals
(Def
));
16004 Set_Chars
(B_Node
, Chars
(L
));
16005 Set_Entity
(B_Node
, L
);
16006 Set_Etype
(B_Node
, T
);
16007 Set_Is_Static_Expression
(B_Node
, True);
16009 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
16010 Set_Low_Bound
(R_Node
, B_Node
);
16012 Set_Ekind
(T
, E_Enumeration_Type
);
16013 Set_First_Literal
(T
, L
);
16015 Set_Is_Constrained
(T
);
16019 -- Loop through literals of enumeration type setting pos and rep values
16020 -- except that if the Ekind is already set, then it means the literal
16021 -- was already constructed (case of a derived type declaration and we
16022 -- should not disturb the Pos and Rep values.
16024 while Present
(L
) loop
16025 if Ekind
(L
) /= E_Enumeration_Literal
then
16026 Set_Ekind
(L
, E_Enumeration_Literal
);
16027 Set_Enumeration_Pos
(L
, Ev
);
16028 Set_Enumeration_Rep
(L
, Ev
);
16029 Set_Is_Known_Valid
(L
, True);
16033 New_Overloaded_Entity
(L
);
16034 Generate_Definition
(L
);
16035 Set_Convention
(L
, Convention_Intrinsic
);
16037 -- Case of character literal
16039 if Nkind
(L
) = N_Defining_Character_Literal
then
16040 Set_Is_Character_Type
(T
, True);
16042 -- Check violation of No_Wide_Characters
16044 if Restriction_Check_Required
(No_Wide_Characters
) then
16045 Get_Name_String
(Chars
(L
));
16047 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
16048 Check_Restriction
(No_Wide_Characters
, L
);
16057 -- Now create a node representing upper bound
16059 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16060 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
16061 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
16062 Set_Etype
(B_Node
, T
);
16063 Set_Is_Static_Expression
(B_Node
, True);
16065 Set_High_Bound
(R_Node
, B_Node
);
16067 -- Initialize various fields of the type. Some of this information
16068 -- may be overwritten later through rep.clauses.
16070 Set_Scalar_Range
(T
, R_Node
);
16071 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
16072 Set_Enum_Esize
(T
);
16073 Set_Enum_Pos_To_Rep
(T
, Empty
);
16075 -- Set Discard_Names if configuration pragma set, or if there is
16076 -- a parameterless pragma in the current declarative region
16078 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
16079 Set_Discard_Names
(T
);
16082 -- Process end label if there is one
16084 if Present
(Def
) then
16085 Process_End_Label
(Def
, 'e', T
);
16087 end Enumeration_Type_Declaration
;
16089 ---------------------------------
16090 -- Expand_To_Stored_Constraint --
16091 ---------------------------------
16093 function Expand_To_Stored_Constraint
16095 Constraint
: Elist_Id
) return Elist_Id
16097 Explicitly_Discriminated_Type
: Entity_Id
;
16098 Expansion
: Elist_Id
;
16099 Discriminant
: Entity_Id
;
16101 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
16102 -- Find the nearest type that actually specifies discriminants
16104 ---------------------------------
16105 -- Type_With_Explicit_Discrims --
16106 ---------------------------------
16108 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
16109 Typ
: constant E
:= Base_Type
(Id
);
16112 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
16113 if Present
(Full_View
(Typ
)) then
16114 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
16118 if Has_Discriminants
(Typ
) then
16123 if Etype
(Typ
) = Typ
then
16125 elsif Has_Discriminants
(Typ
) then
16128 return Type_With_Explicit_Discrims
(Etype
(Typ
));
16131 end Type_With_Explicit_Discrims
;
16133 -- Start of processing for Expand_To_Stored_Constraint
16136 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
16140 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
16142 if No
(Explicitly_Discriminated_Type
) then
16146 Expansion
:= New_Elmt_List
;
16149 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
16150 while Present
(Discriminant
) loop
16152 (Get_Discriminant_Value
16153 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
16155 Next_Stored_Discriminant
(Discriminant
);
16159 end Expand_To_Stored_Constraint
;
16161 ---------------------------
16162 -- Find_Hidden_Interface --
16163 ---------------------------
16165 function Find_Hidden_Interface
16167 Dest
: Elist_Id
) return Entity_Id
16170 Iface_Elmt
: Elmt_Id
;
16173 if Present
(Src
) and then Present
(Dest
) then
16174 Iface_Elmt
:= First_Elmt
(Src
);
16175 while Present
(Iface_Elmt
) loop
16176 Iface
:= Node
(Iface_Elmt
);
16178 if Is_Interface
(Iface
)
16179 and then not Contain_Interface
(Iface
, Dest
)
16184 Next_Elmt
(Iface_Elmt
);
16189 end Find_Hidden_Interface
;
16191 --------------------
16192 -- Find_Type_Name --
16193 --------------------
16195 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
16196 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
16198 New_Id
: Entity_Id
;
16199 Prev_Par
: Node_Id
;
16201 procedure Check_Duplicate_Aspects
;
16202 -- Check that aspects specified in a completion have not been specified
16203 -- already in the partial view. Type_Invariant and others can be
16204 -- specified on either view but never on both.
16206 procedure Tag_Mismatch
;
16207 -- Diagnose a tagged partial view whose full view is untagged.
16208 -- We post the message on the full view, with a reference to
16209 -- the previous partial view. The partial view can be private
16210 -- or incomplete, and these are handled in a different manner,
16211 -- so we determine the position of the error message from the
16212 -- respective slocs of both.
16214 -----------------------------
16215 -- Check_Duplicate_Aspects --
16216 -----------------------------
16217 procedure Check_Duplicate_Aspects
is
16218 Prev_Aspects
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
16219 Full_Aspects
: constant List_Id
:= Aspect_Specifications
(N
);
16220 F_Spec
, P_Spec
: Node_Id
;
16223 if Present
(Prev_Aspects
) and then Present
(Full_Aspects
) then
16224 F_Spec
:= First
(Full_Aspects
);
16225 while Present
(F_Spec
) loop
16226 P_Spec
:= First
(Prev_Aspects
);
16227 while Present
(P_Spec
) loop
16228 if Chars
(Identifier
(P_Spec
)) = Chars
(Identifier
(F_Spec
))
16231 ("aspect already specified in private declaration",
16243 end Check_Duplicate_Aspects
;
16249 procedure Tag_Mismatch
is
16251 if Sloc
(Prev
) < Sloc
(Id
) then
16252 if Ada_Version
>= Ada_2012
16253 and then Nkind
(N
) = N_Private_Type_Declaration
16256 ("declaration of private } must be a tagged type ", Id
, Prev
);
16259 ("full declaration of } must be a tagged type ", Id
, Prev
);
16263 if Ada_Version
>= Ada_2012
16264 and then Nkind
(N
) = N_Private_Type_Declaration
16267 ("declaration of private } must be a tagged type ", Prev
, Id
);
16270 ("full declaration of } must be a tagged type ", Prev
, Id
);
16275 -- Start of processing for Find_Type_Name
16278 -- Find incomplete declaration, if one was given
16280 Prev
:= Current_Entity_In_Scope
(Id
);
16282 -- New type declaration
16288 -- Previous declaration exists
16291 Prev_Par
:= Parent
(Prev
);
16293 -- Error if not incomplete/private case except if previous
16294 -- declaration is implicit, etc. Enter_Name will emit error if
16297 if not Is_Incomplete_Or_Private_Type
(Prev
) then
16301 -- Check invalid completion of private or incomplete type
16303 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
16304 N_Task_Type_Declaration
,
16305 N_Protected_Type_Declaration
)
16307 (Ada_Version
< Ada_2012
16308 or else not Is_Incomplete_Type
(Prev
)
16309 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
16310 N_Private_Extension_Declaration
))
16312 -- Completion must be a full type declarations (RM 7.3(4))
16314 Error_Msg_Sloc
:= Sloc
(Prev
);
16315 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
16317 -- Set scope of Id to avoid cascaded errors. Entity is never
16318 -- examined again, except when saving globals in generics.
16320 Set_Scope
(Id
, Current_Scope
);
16323 -- If this is a repeated incomplete declaration, no further
16324 -- checks are possible.
16326 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
16330 -- Case of full declaration of incomplete type
16332 elsif Ekind
(Prev
) = E_Incomplete_Type
16333 and then (Ada_Version
< Ada_2012
16334 or else No
(Full_View
(Prev
))
16335 or else not Is_Private_Type
(Full_View
(Prev
)))
16337 -- Indicate that the incomplete declaration has a matching full
16338 -- declaration. The defining occurrence of the incomplete
16339 -- declaration remains the visible one, and the procedure
16340 -- Get_Full_View dereferences it whenever the type is used.
16342 if Present
(Full_View
(Prev
)) then
16343 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16346 Set_Full_View
(Prev
, Id
);
16347 Append_Entity
(Id
, Current_Scope
);
16348 Set_Is_Public
(Id
, Is_Public
(Prev
));
16349 Set_Is_Internal
(Id
);
16352 -- If the incomplete view is tagged, a class_wide type has been
16353 -- created already. Use it for the private type as well, in order
16354 -- to prevent multiple incompatible class-wide types that may be
16355 -- created for self-referential anonymous access components.
16357 if Is_Tagged_Type
(Prev
)
16358 and then Present
(Class_Wide_Type
(Prev
))
16360 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
16361 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
16363 -- The type of the classwide type is the current Id. Previously
16364 -- this was not done for private declarations because of order-
16365 -- of elaboration issues in the back-end, but gigi now handles
16368 Set_Etype
(Class_Wide_Type
(Id
), Id
);
16371 -- Case of full declaration of private type
16374 -- If the private type was a completion of an incomplete type then
16375 -- update Prev to reference the private type
16377 if Ada_Version
>= Ada_2012
16378 and then Ekind
(Prev
) = E_Incomplete_Type
16379 and then Present
(Full_View
(Prev
))
16380 and then Is_Private_Type
(Full_View
(Prev
))
16382 Prev
:= Full_View
(Prev
);
16383 Prev_Par
:= Parent
(Prev
);
16386 if Nkind
(N
) = N_Full_Type_Declaration
16388 (Type_Definition
(N
), N_Record_Definition
,
16389 N_Derived_Type_Definition
)
16390 and then Interface_Present
(Type_Definition
(N
))
16393 ("completion of private type cannot be an interface", N
);
16396 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
16397 if Etype
(Prev
) /= Prev
then
16399 -- Prev is a private subtype or a derived type, and needs
16402 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16405 elsif Ekind
(Prev
) = E_Private_Type
16406 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16407 N_Protected_Type_Declaration
)
16410 ("completion of nonlimited type cannot be limited", N
);
16412 elsif Ekind
(Prev
) = E_Record_Type_With_Private
16413 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16414 N_Protected_Type_Declaration
)
16416 if not Is_Limited_Record
(Prev
) then
16418 ("completion of nonlimited type cannot be limited", N
);
16420 elsif No
(Interface_List
(N
)) then
16422 ("completion of tagged private type must be tagged",
16427 -- Ada 2005 (AI-251): Private extension declaration of a task
16428 -- type or a protected type. This case arises when covering
16429 -- interface types.
16431 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16432 N_Protected_Type_Declaration
)
16436 elsif Nkind
(N
) /= N_Full_Type_Declaration
16437 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
16440 ("full view of private extension must be an extension", N
);
16442 elsif not (Abstract_Present
(Parent
(Prev
)))
16443 and then Abstract_Present
(Type_Definition
(N
))
16446 ("full view of non-abstract extension cannot be abstract", N
);
16449 if not In_Private_Part
(Current_Scope
) then
16451 ("declaration of full view must appear in private part", N
);
16454 if Ada_Version
>= Ada_2012
then
16455 Check_Duplicate_Aspects
;
16458 Copy_And_Swap
(Prev
, Id
);
16459 Set_Has_Private_Declaration
(Prev
);
16460 Set_Has_Private_Declaration
(Id
);
16462 -- Preserve aspect and iterator flags that may have been set on
16463 -- the partial view.
16465 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
16466 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
16468 -- If no error, propagate freeze_node from private to full view.
16469 -- It may have been generated for an early operational item.
16471 if Present
(Freeze_Node
(Id
))
16472 and then Serious_Errors_Detected
= 0
16473 and then No
(Full_View
(Id
))
16475 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
16476 Set_Freeze_Node
(Id
, Empty
);
16477 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
16480 Set_Full_View
(Id
, Prev
);
16484 -- Verify that full declaration conforms to partial one
16486 if Is_Incomplete_Or_Private_Type
(Prev
)
16487 and then Present
(Discriminant_Specifications
(Prev_Par
))
16489 if Present
(Discriminant_Specifications
(N
)) then
16490 if Ekind
(Prev
) = E_Incomplete_Type
then
16491 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
16493 Check_Discriminant_Conformance
(N
, Prev
, Id
);
16498 ("missing discriminants in full type declaration", N
);
16500 -- To avoid cascaded errors on subsequent use, share the
16501 -- discriminants of the partial view.
16503 Set_Discriminant_Specifications
(N
,
16504 Discriminant_Specifications
(Prev_Par
));
16508 -- A prior untagged partial view can have an associated class-wide
16509 -- type due to use of the class attribute, and in this case the full
16510 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16511 -- of incomplete tagged declarations, but we check for it.
16514 and then (Is_Tagged_Type
(Prev
)
16515 or else Present
(Class_Wide_Type
(Prev
)))
16517 -- Ada 2012 (AI05-0162): A private type may be the completion of
16518 -- an incomplete type.
16520 if Ada_Version
>= Ada_2012
16521 and then Is_Incomplete_Type
(Prev
)
16522 and then Nkind_In
(N
, N_Private_Type_Declaration
,
16523 N_Private_Extension_Declaration
)
16525 -- No need to check private extensions since they are tagged
16527 if Nkind
(N
) = N_Private_Type_Declaration
16528 and then not Tagged_Present
(N
)
16533 -- The full declaration is either a tagged type (including
16534 -- a synchronized type that implements interfaces) or a
16535 -- type extension, otherwise this is an error.
16537 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16538 N_Protected_Type_Declaration
)
16540 if No
(Interface_List
(N
)) and then not Error_Posted
(N
) then
16544 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
16546 -- Indicate that the previous declaration (tagged incomplete
16547 -- or private declaration) requires the same on the full one.
16549 if not Tagged_Present
(Type_Definition
(N
)) then
16551 Set_Is_Tagged_Type
(Id
);
16554 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
16555 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
16557 ("full declaration of } must be a record extension",
16560 -- Set some attributes to produce a usable full view
16562 Set_Is_Tagged_Type
(Id
);
16571 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
16572 and then Present
(Premature_Use
(Parent
(Prev
)))
16574 Error_Msg_Sloc
:= Sloc
(N
);
16576 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
16581 end Find_Type_Name
;
16583 -------------------------
16584 -- Find_Type_Of_Object --
16585 -------------------------
16587 function Find_Type_Of_Object
16588 (Obj_Def
: Node_Id
;
16589 Related_Nod
: Node_Id
) return Entity_Id
16591 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
16592 P
: Node_Id
:= Parent
(Obj_Def
);
16597 -- If the parent is a component_definition node we climb to the
16598 -- component_declaration node
16600 if Nkind
(P
) = N_Component_Definition
then
16604 -- Case of an anonymous array subtype
16606 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
16607 N_Unconstrained_Array_Definition
)
16610 Array_Type_Declaration
(T
, Obj_Def
);
16612 -- Create an explicit subtype whenever possible
16614 elsif Nkind
(P
) /= N_Component_Declaration
16615 and then Def_Kind
= N_Subtype_Indication
16617 -- Base name of subtype on object name, which will be unique in
16618 -- the current scope.
16620 -- If this is a duplicate declaration, return base type, to avoid
16621 -- generating duplicate anonymous types.
16623 if Error_Posted
(P
) then
16624 Analyze
(Subtype_Mark
(Obj_Def
));
16625 return Entity
(Subtype_Mark
(Obj_Def
));
16630 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
16632 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
16634 Insert_Action
(Obj_Def
,
16635 Make_Subtype_Declaration
(Sloc
(P
),
16636 Defining_Identifier
=> T
,
16637 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
16639 -- This subtype may need freezing, and this will not be done
16640 -- automatically if the object declaration is not in declarative
16641 -- part. Since this is an object declaration, the type cannot always
16642 -- be frozen here. Deferred constants do not freeze their type
16643 -- (which often enough will be private).
16645 if Nkind
(P
) = N_Object_Declaration
16646 and then Constant_Present
(P
)
16647 and then No
(Expression
(P
))
16651 -- Here we freeze the base type of object type to catch premature use
16652 -- of discriminated private type without a full view.
16655 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
16658 -- Ada 2005 AI-406: the object definition in an object declaration
16659 -- can be an access definition.
16661 elsif Def_Kind
= N_Access_Definition
then
16662 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
16664 Set_Is_Local_Anonymous_Access
16666 V
=> (Ada_Version
< Ada_2012
)
16667 or else (Nkind
(P
) /= N_Object_Declaration
)
16668 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
16670 -- Otherwise, the object definition is just a subtype_mark
16673 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
16675 -- If expansion is disabled an object definition that is an aggregate
16676 -- will not get expanded and may lead to scoping problems in the back
16677 -- end, if the object is referenced in an inner scope. In that case
16678 -- create an itype reference for the object definition now. This
16679 -- may be redundant in some cases, but harmless.
16682 and then Nkind
(Related_Nod
) = N_Object_Declaration
16685 Build_Itype_Reference
(T
, Related_Nod
);
16690 end Find_Type_Of_Object
;
16692 --------------------------------
16693 -- Find_Type_Of_Subtype_Indic --
16694 --------------------------------
16696 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
16700 -- Case of subtype mark with a constraint
16702 if Nkind
(S
) = N_Subtype_Indication
then
16703 Find_Type
(Subtype_Mark
(S
));
16704 Typ
:= Entity
(Subtype_Mark
(S
));
16707 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
16710 ("incorrect constraint for this kind of type", Constraint
(S
));
16711 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
16714 -- Otherwise we have a subtype mark without a constraint
16716 elsif Error_Posted
(S
) then
16717 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
16725 -- Check No_Wide_Characters restriction
16727 Check_Wide_Character_Restriction
(Typ
, S
);
16730 end Find_Type_Of_Subtype_Indic
;
16732 -------------------------------------
16733 -- Floating_Point_Type_Declaration --
16734 -------------------------------------
16736 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16737 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
16738 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
16740 Base_Typ
: Entity_Id
;
16741 Implicit_Base
: Entity_Id
;
16744 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
16745 -- Find if given digits value, and possibly a specified range, allows
16746 -- derivation from specified type
16748 function Find_Base_Type
return Entity_Id
;
16749 -- Find a predefined base type that Def can derive from, or generate
16750 -- an error and substitute Long_Long_Float if none exists.
16752 ---------------------
16753 -- Can_Derive_From --
16754 ---------------------
16756 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
16757 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
16760 -- Check specified "digits" constraint
16762 if Digs_Val
> Digits_Value
(E
) then
16766 -- Check for matching range, if specified
16768 if Present
(Spec
) then
16769 if Expr_Value_R
(Type_Low_Bound
(E
)) >
16770 Expr_Value_R
(Low_Bound
(Spec
))
16775 if Expr_Value_R
(Type_High_Bound
(E
)) <
16776 Expr_Value_R
(High_Bound
(Spec
))
16783 end Can_Derive_From
;
16785 --------------------
16786 -- Find_Base_Type --
16787 --------------------
16789 function Find_Base_Type
return Entity_Id
is
16790 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
16793 -- Iterate over the predefined types in order, returning the first
16794 -- one that Def can derive from.
16796 while Present
(Choice
) loop
16797 if Can_Derive_From
(Node
(Choice
)) then
16798 return Node
(Choice
);
16801 Next_Elmt
(Choice
);
16804 -- If we can't derive from any existing type, use Long_Long_Float
16805 -- and give appropriate message explaining the problem.
16807 if Digs_Val
> Max_Digs_Val
then
16808 -- It might be the case that there is a type with the requested
16809 -- range, just not the combination of digits and range.
16812 ("no predefined type has requested range and precision",
16813 Real_Range_Specification
(Def
));
16817 ("range too large for any predefined type",
16818 Real_Range_Specification
(Def
));
16821 return Standard_Long_Long_Float
;
16822 end Find_Base_Type
;
16824 -- Start of processing for Floating_Point_Type_Declaration
16827 Check_Restriction
(No_Floating_Point
, Def
);
16829 -- Create an implicit base type
16832 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
16834 -- Analyze and verify digits value
16836 Analyze_And_Resolve
(Digs
, Any_Integer
);
16837 Check_Digits_Expression
(Digs
);
16838 Digs_Val
:= Expr_Value
(Digs
);
16840 -- Process possible range spec and find correct type to derive from
16842 Process_Real_Range_Specification
(Def
);
16844 -- Check that requested number of digits is not too high.
16846 if Digs_Val
> Max_Digs_Val
then
16848 -- The check for Max_Base_Digits may be somewhat expensive, as it
16849 -- requires reading System, so only do it when necessary.
16852 Max_Base_Digits
: constant Uint
:=
16855 (Parent
(RTE
(RE_Max_Base_Digits
))));
16858 if Digs_Val
> Max_Base_Digits
then
16859 Error_Msg_Uint_1
:= Max_Base_Digits
;
16860 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
16862 elsif No
(Real_Range_Specification
(Def
)) then
16863 Error_Msg_Uint_1
:= Max_Digs_Val
;
16864 Error_Msg_N
("types with more than ^ digits need range spec "
16865 & "(RM 3.5.7(6))", Digs
);
16870 -- Find a suitable type to derive from or complain and use a substitute
16872 Base_Typ
:= Find_Base_Type
;
16874 -- If there are bounds given in the declaration use them as the bounds
16875 -- of the type, otherwise use the bounds of the predefined base type
16876 -- that was chosen based on the Digits value.
16878 if Present
(Real_Range_Specification
(Def
)) then
16879 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
16880 Set_Is_Constrained
(T
);
16882 -- The bounds of this range must be converted to machine numbers
16883 -- in accordance with RM 4.9(38).
16885 Bound
:= Type_Low_Bound
(T
);
16887 if Nkind
(Bound
) = N_Real_Literal
then
16889 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
16890 Set_Is_Machine_Number
(Bound
);
16893 Bound
:= Type_High_Bound
(T
);
16895 if Nkind
(Bound
) = N_Real_Literal
then
16897 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
16898 Set_Is_Machine_Number
(Bound
);
16902 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
16905 -- Complete definition of implicit base and declared first subtype. The
16906 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16907 -- are not clobbered when the floating point type acts as a full view of
16910 Set_Etype
(Implicit_Base
, Base_Typ
);
16911 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
16912 Set_Size_Info
(Implicit_Base
, Base_Typ
);
16913 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
16914 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
16915 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
16916 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
16918 Set_Ekind
(T
, E_Floating_Point_Subtype
);
16919 Set_Etype
(T
, Implicit_Base
);
16920 Set_Size_Info
(T
, Implicit_Base
);
16921 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
16922 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
16923 Set_Digits_Value
(T
, Digs_Val
);
16924 end Floating_Point_Type_Declaration
;
16926 ----------------------------
16927 -- Get_Discriminant_Value --
16928 ----------------------------
16930 -- This is the situation:
16932 -- There is a non-derived type
16934 -- type T0 (Dx, Dy, Dz...)
16936 -- There are zero or more levels of derivation, with each derivation
16937 -- either purely inheriting the discriminants, or defining its own.
16939 -- type Ti is new Ti-1
16941 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16943 -- subtype Ti is ...
16945 -- The subtype issue is avoided by the use of Original_Record_Component,
16946 -- and the fact that derived subtypes also derive the constraints.
16948 -- This chain leads back from
16950 -- Typ_For_Constraint
16952 -- Typ_For_Constraint has discriminants, and the value for each
16953 -- discriminant is given by its corresponding Elmt of Constraints.
16955 -- Discriminant is some discriminant in this hierarchy
16957 -- We need to return its value
16959 -- We do this by recursively searching each level, and looking for
16960 -- Discriminant. Once we get to the bottom, we start backing up
16961 -- returning the value for it which may in turn be a discriminant
16962 -- further up, so on the backup we continue the substitution.
16964 function Get_Discriminant_Value
16965 (Discriminant
: Entity_Id
;
16966 Typ_For_Constraint
: Entity_Id
;
16967 Constraint
: Elist_Id
) return Node_Id
16969 function Root_Corresponding_Discriminant
16970 (Discr
: Entity_Id
) return Entity_Id
;
16971 -- Given a discriminant, traverse the chain of inherited discriminants
16972 -- and return the topmost discriminant.
16974 function Search_Derivation_Levels
16976 Discrim_Values
: Elist_Id
;
16977 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
16978 -- This is the routine that performs the recursive search of levels
16979 -- as described above.
16981 -------------------------------------
16982 -- Root_Corresponding_Discriminant --
16983 -------------------------------------
16985 function Root_Corresponding_Discriminant
16986 (Discr
: Entity_Id
) return Entity_Id
16992 while Present
(Corresponding_Discriminant
(D
)) loop
16993 D
:= Corresponding_Discriminant
(D
);
16997 end Root_Corresponding_Discriminant
;
16999 ------------------------------
17000 -- Search_Derivation_Levels --
17001 ------------------------------
17003 function Search_Derivation_Levels
17005 Discrim_Values
: Elist_Id
;
17006 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
17010 Result
: Node_Or_Entity_Id
;
17011 Result_Entity
: Node_Id
;
17014 -- If inappropriate type, return Error, this happens only in
17015 -- cascaded error situations, and we want to avoid a blow up.
17017 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
17021 -- Look deeper if possible. Use Stored_Constraints only for
17022 -- untagged types. For tagged types use the given constraint.
17023 -- This asymmetry needs explanation???
17025 if not Stored_Discrim_Values
17026 and then Present
(Stored_Constraint
(Ti
))
17027 and then not Is_Tagged_Type
(Ti
)
17030 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
17033 Td
: constant Entity_Id
:= Etype
(Ti
);
17037 Result
:= Discriminant
;
17040 if Present
(Stored_Constraint
(Ti
)) then
17042 Search_Derivation_Levels
17043 (Td
, Stored_Constraint
(Ti
), True);
17046 Search_Derivation_Levels
17047 (Td
, Discrim_Values
, Stored_Discrim_Values
);
17053 -- Extra underlying places to search, if not found above. For
17054 -- concurrent types, the relevant discriminant appears in the
17055 -- corresponding record. For a type derived from a private type
17056 -- without discriminant, the full view inherits the discriminants
17057 -- of the full view of the parent.
17059 if Result
= Discriminant
then
17060 if Is_Concurrent_Type
(Ti
)
17061 and then Present
(Corresponding_Record_Type
(Ti
))
17064 Search_Derivation_Levels
(
17065 Corresponding_Record_Type
(Ti
),
17067 Stored_Discrim_Values
);
17069 elsif Is_Private_Type
(Ti
)
17070 and then not Has_Discriminants
(Ti
)
17071 and then Present
(Full_View
(Ti
))
17072 and then Etype
(Full_View
(Ti
)) /= Ti
17075 Search_Derivation_Levels
(
17078 Stored_Discrim_Values
);
17082 -- If Result is not a (reference to a) discriminant, return it,
17083 -- otherwise set Result_Entity to the discriminant.
17085 if Nkind
(Result
) = N_Defining_Identifier
then
17086 pragma Assert
(Result
= Discriminant
);
17087 Result_Entity
:= Result
;
17090 if not Denotes_Discriminant
(Result
) then
17094 Result_Entity
:= Entity
(Result
);
17097 -- See if this level of derivation actually has discriminants because
17098 -- tagged derivations can add them, hence the lower levels need not
17101 if not Has_Discriminants
(Ti
) then
17105 -- Scan Ti's discriminants for Result_Entity, and return its
17106 -- corresponding value, if any.
17108 Result_Entity
:= Original_Record_Component
(Result_Entity
);
17110 Assoc
:= First_Elmt
(Discrim_Values
);
17112 if Stored_Discrim_Values
then
17113 Disc
:= First_Stored_Discriminant
(Ti
);
17115 Disc
:= First_Discriminant
(Ti
);
17118 while Present
(Disc
) loop
17119 pragma Assert
(Present
(Assoc
));
17121 if Original_Record_Component
(Disc
) = Result_Entity
then
17122 return Node
(Assoc
);
17127 if Stored_Discrim_Values
then
17128 Next_Stored_Discriminant
(Disc
);
17130 Next_Discriminant
(Disc
);
17134 -- Could not find it
17137 end Search_Derivation_Levels
;
17141 Result
: Node_Or_Entity_Id
;
17143 -- Start of processing for Get_Discriminant_Value
17146 -- ??? This routine is a gigantic mess and will be deleted. For the
17147 -- time being just test for the trivial case before calling recurse.
17149 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
17155 D
:= First_Discriminant
(Typ_For_Constraint
);
17156 E
:= First_Elmt
(Constraint
);
17157 while Present
(D
) loop
17158 if Chars
(D
) = Chars
(Discriminant
) then
17162 Next_Discriminant
(D
);
17168 Result
:= Search_Derivation_Levels
17169 (Typ_For_Constraint
, Constraint
, False);
17171 -- ??? hack to disappear when this routine is gone
17173 if Nkind
(Result
) = N_Defining_Identifier
then
17179 D
:= First_Discriminant
(Typ_For_Constraint
);
17180 E
:= First_Elmt
(Constraint
);
17181 while Present
(D
) loop
17182 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
17186 Next_Discriminant
(D
);
17192 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
17194 end Get_Discriminant_Value
;
17196 --------------------------
17197 -- Has_Range_Constraint --
17198 --------------------------
17200 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
17201 C
: constant Node_Id
:= Constraint
(N
);
17204 if Nkind
(C
) = N_Range_Constraint
then
17207 elsif Nkind
(C
) = N_Digits_Constraint
then
17209 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
17210 or else Present
(Range_Constraint
(C
));
17212 elsif Nkind
(C
) = N_Delta_Constraint
then
17213 return Present
(Range_Constraint
(C
));
17218 end Has_Range_Constraint
;
17220 ------------------------
17221 -- Inherit_Components --
17222 ------------------------
17224 function Inherit_Components
17226 Parent_Base
: Entity_Id
;
17227 Derived_Base
: Entity_Id
;
17228 Is_Tagged
: Boolean;
17229 Inherit_Discr
: Boolean;
17230 Discs
: Elist_Id
) return Elist_Id
17232 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
17234 procedure Inherit_Component
17235 (Old_C
: Entity_Id
;
17236 Plain_Discrim
: Boolean := False;
17237 Stored_Discrim
: Boolean := False);
17238 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17239 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17240 -- True, Old_C is a stored discriminant. If they are both false then
17241 -- Old_C is a regular component.
17243 -----------------------
17244 -- Inherit_Component --
17245 -----------------------
17247 procedure Inherit_Component
17248 (Old_C
: Entity_Id
;
17249 Plain_Discrim
: Boolean := False;
17250 Stored_Discrim
: Boolean := False)
17252 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
17253 -- Id denotes the entity of an access discriminant or anonymous
17254 -- access component. Set the type of Id to either the same type of
17255 -- Old_C or create a new one depending on whether the parent and
17256 -- the child types are in the same scope.
17258 ------------------------
17259 -- Set_Anonymous_Type --
17260 ------------------------
17262 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
17263 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
17266 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
17267 Set_Etype
(Id
, Old_Typ
);
17269 -- The parent and the derived type are in two different scopes.
17270 -- Reuse the type of the original discriminant / component by
17271 -- copying it in order to preserve all attributes.
17275 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
17278 Set_Etype
(Id
, Typ
);
17280 -- Since we do not generate component declarations for
17281 -- inherited components, associate the itype with the
17284 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
17285 Set_Scope
(Typ
, Derived_Base
);
17288 end Set_Anonymous_Type
;
17290 -- Local variables and constants
17292 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
17294 Corr_Discrim
: Entity_Id
;
17295 Discrim
: Entity_Id
;
17297 -- Start of processing for Inherit_Component
17300 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
17302 Set_Parent
(New_C
, Parent
(Old_C
));
17304 -- Regular discriminants and components must be inserted in the scope
17305 -- of the Derived_Base. Do it here.
17307 if not Stored_Discrim
then
17308 Enter_Name
(New_C
);
17311 -- For tagged types the Original_Record_Component must point to
17312 -- whatever this field was pointing to in the parent type. This has
17313 -- already been achieved by the call to New_Copy above.
17315 if not Is_Tagged
then
17316 Set_Original_Record_Component
(New_C
, New_C
);
17319 -- Set the proper type of an access discriminant
17321 if Ekind
(New_C
) = E_Discriminant
17322 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
17324 Set_Anonymous_Type
(New_C
);
17327 -- If we have inherited a component then see if its Etype contains
17328 -- references to Parent_Base discriminants. In this case, replace
17329 -- these references with the constraints given in Discs. We do not
17330 -- do this for the partial view of private types because this is
17331 -- not needed (only the components of the full view will be used
17332 -- for code generation) and cause problem. We also avoid this
17333 -- transformation in some error situations.
17335 if Ekind
(New_C
) = E_Component
then
17337 -- Set the proper type of an anonymous access component
17339 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
17340 Set_Anonymous_Type
(New_C
);
17342 elsif (Is_Private_Type
(Derived_Base
)
17343 and then not Is_Generic_Type
(Derived_Base
))
17344 or else (Is_Empty_Elmt_List
(Discs
)
17345 and then not Expander_Active
)
17347 Set_Etype
(New_C
, Etype
(Old_C
));
17350 -- The current component introduces a circularity of the
17353 -- limited with Pack_2;
17354 -- package Pack_1 is
17355 -- type T_1 is tagged record
17356 -- Comp : access Pack_2.T_2;
17362 -- package Pack_2 is
17363 -- type T_2 is new Pack_1.T_1 with ...;
17368 Constrain_Component_Type
17369 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
17373 -- In derived tagged types it is illegal to reference a non
17374 -- discriminant component in the parent type. To catch this, mark
17375 -- these components with an Ekind of E_Void. This will be reset in
17376 -- Record_Type_Definition after processing the record extension of
17377 -- the derived type.
17379 -- If the declaration is a private extension, there is no further
17380 -- record extension to process, and the components retain their
17381 -- current kind, because they are visible at this point.
17383 if Is_Tagged
and then Ekind
(New_C
) = E_Component
17384 and then Nkind
(N
) /= N_Private_Extension_Declaration
17386 Set_Ekind
(New_C
, E_Void
);
17389 if Plain_Discrim
then
17390 Set_Corresponding_Discriminant
(New_C
, Old_C
);
17391 Build_Discriminal
(New_C
);
17393 -- If we are explicitly inheriting a stored discriminant it will be
17394 -- completely hidden.
17396 elsif Stored_Discrim
then
17397 Set_Corresponding_Discriminant
(New_C
, Empty
);
17398 Set_Discriminal
(New_C
, Empty
);
17399 Set_Is_Completely_Hidden
(New_C
);
17401 -- Set the Original_Record_Component of each discriminant in the
17402 -- derived base to point to the corresponding stored that we just
17405 Discrim
:= First_Discriminant
(Derived_Base
);
17406 while Present
(Discrim
) loop
17407 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
17409 -- Corr_Discrim could be missing in an error situation
17411 if Present
(Corr_Discrim
)
17412 and then Original_Record_Component
(Corr_Discrim
) = Old_C
17414 Set_Original_Record_Component
(Discrim
, New_C
);
17417 Next_Discriminant
(Discrim
);
17420 Append_Entity
(New_C
, Derived_Base
);
17423 if not Is_Tagged
then
17424 Append_Elmt
(Old_C
, Assoc_List
);
17425 Append_Elmt
(New_C
, Assoc_List
);
17427 end Inherit_Component
;
17429 -- Variables local to Inherit_Component
17431 Loc
: constant Source_Ptr
:= Sloc
(N
);
17433 Parent_Discrim
: Entity_Id
;
17434 Stored_Discrim
: Entity_Id
;
17436 Component
: Entity_Id
;
17438 -- Start of processing for Inherit_Components
17441 if not Is_Tagged
then
17442 Append_Elmt
(Parent_Base
, Assoc_List
);
17443 Append_Elmt
(Derived_Base
, Assoc_List
);
17446 -- Inherit parent discriminants if needed
17448 if Inherit_Discr
then
17449 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
17450 while Present
(Parent_Discrim
) loop
17451 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
17452 Next_Discriminant
(Parent_Discrim
);
17456 -- Create explicit stored discrims for untagged types when necessary
17458 if not Has_Unknown_Discriminants
(Derived_Base
)
17459 and then Has_Discriminants
(Parent_Base
)
17460 and then not Is_Tagged
17463 or else First_Discriminant
(Parent_Base
) /=
17464 First_Stored_Discriminant
(Parent_Base
))
17466 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
17467 while Present
(Stored_Discrim
) loop
17468 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
17469 Next_Stored_Discriminant
(Stored_Discrim
);
17473 -- See if we can apply the second transformation for derived types, as
17474 -- explained in point 6. in the comments above Build_Derived_Record_Type
17475 -- This is achieved by appending Derived_Base discriminants into Discs,
17476 -- which has the side effect of returning a non empty Discs list to the
17477 -- caller of Inherit_Components, which is what we want. This must be
17478 -- done for private derived types if there are explicit stored
17479 -- discriminants, to ensure that we can retrieve the values of the
17480 -- constraints provided in the ancestors.
17483 and then Is_Empty_Elmt_List
(Discs
)
17484 and then Present
(First_Discriminant
(Derived_Base
))
17486 (not Is_Private_Type
(Derived_Base
)
17487 or else Is_Completely_Hidden
17488 (First_Stored_Discriminant
(Derived_Base
))
17489 or else Is_Generic_Type
(Derived_Base
))
17491 D
:= First_Discriminant
(Derived_Base
);
17492 while Present
(D
) loop
17493 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
17494 Next_Discriminant
(D
);
17498 -- Finally, inherit non-discriminant components unless they are not
17499 -- visible because defined or inherited from the full view of the
17500 -- parent. Don't inherit the _parent field of the parent type.
17502 Component
:= First_Entity
(Parent_Base
);
17503 while Present
(Component
) loop
17505 -- Ada 2005 (AI-251): Do not inherit components associated with
17506 -- secondary tags of the parent.
17508 if Ekind
(Component
) = E_Component
17509 and then Present
(Related_Type
(Component
))
17513 elsif Ekind
(Component
) /= E_Component
17514 or else Chars
(Component
) = Name_uParent
17518 -- If the derived type is within the parent type's declarative
17519 -- region, then the components can still be inherited even though
17520 -- they aren't visible at this point. This can occur for cases
17521 -- such as within public child units where the components must
17522 -- become visible upon entering the child unit's private part.
17524 elsif not Is_Visible_Component
(Component
)
17525 and then not In_Open_Scopes
(Scope
(Parent_Base
))
17529 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
17530 E_Limited_Private_Type
)
17535 Inherit_Component
(Component
);
17538 Next_Entity
(Component
);
17541 -- For tagged derived types, inherited discriminants cannot be used in
17542 -- component declarations of the record extension part. To achieve this
17543 -- we mark the inherited discriminants as not visible.
17545 if Is_Tagged
and then Inherit_Discr
then
17546 D
:= First_Discriminant
(Derived_Base
);
17547 while Present
(D
) loop
17548 Set_Is_Immediately_Visible
(D
, False);
17549 Next_Discriminant
(D
);
17554 end Inherit_Components
;
17556 -----------------------------
17557 -- Inherit_Predicate_Flags --
17558 -----------------------------
17560 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
17562 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
17563 Set_Has_Static_Predicate_Aspect
17564 (Subt
, Has_Static_Predicate_Aspect
(Par
));
17565 Set_Has_Dynamic_Predicate_Aspect
17566 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
17567 end Inherit_Predicate_Flags
;
17569 ----------------------
17570 -- Is_EVF_Procedure --
17571 ----------------------
17573 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
17574 Formal
: Entity_Id
;
17577 -- Examine the formals of an Extensions_Visible False procedure looking
17578 -- for a controlling OUT parameter.
17580 if Ekind
(Subp
) = E_Procedure
17581 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
17583 Formal
:= First_Formal
(Subp
);
17584 while Present
(Formal
) loop
17585 if Ekind
(Formal
) = E_Out_Parameter
17586 and then Is_Controlling_Formal
(Formal
)
17591 Next_Formal
(Formal
);
17596 end Is_EVF_Procedure
;
17598 -----------------------
17599 -- Is_Null_Extension --
17600 -----------------------
17602 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
17603 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
17604 Comp_List
: Node_Id
;
17608 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
17609 or else not Is_Tagged_Type
(T
)
17610 or else Nkind
(Type_Definition
(Type_Decl
)) /=
17611 N_Derived_Type_Definition
17612 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
17618 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
17620 if Present
(Discriminant_Specifications
(Type_Decl
)) then
17623 elsif Present
(Comp_List
)
17624 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
17626 Comp
:= First
(Component_Items
(Comp_List
));
17628 -- Only user-defined components are relevant. The component list
17629 -- may also contain a parent component and internal components
17630 -- corresponding to secondary tags, but these do not determine
17631 -- whether this is a null extension.
17633 while Present
(Comp
) loop
17634 if Comes_From_Source
(Comp
) then
17646 end Is_Null_Extension
;
17648 ------------------------------
17649 -- Is_Valid_Constraint_Kind --
17650 ------------------------------
17652 function Is_Valid_Constraint_Kind
17653 (T_Kind
: Type_Kind
;
17654 Constraint_Kind
: Node_Kind
) return Boolean
17658 when Enumeration_Kind |
17660 return Constraint_Kind
= N_Range_Constraint
;
17662 when Decimal_Fixed_Point_Kind
=>
17663 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17664 N_Range_Constraint
);
17666 when Ordinary_Fixed_Point_Kind
=>
17667 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
17668 N_Range_Constraint
);
17671 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17672 N_Range_Constraint
);
17679 E_Incomplete_Type |
17682 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
17685 return True; -- Error will be detected later
17687 end Is_Valid_Constraint_Kind
;
17689 --------------------------
17690 -- Is_Visible_Component --
17691 --------------------------
17693 function Is_Visible_Component
17695 N
: Node_Id
:= Empty
) return Boolean
17697 Original_Comp
: Entity_Id
:= Empty
;
17698 Original_Scope
: Entity_Id
;
17699 Type_Scope
: Entity_Id
;
17701 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
17702 -- Check whether parent type of inherited component is declared locally,
17703 -- possibly within a nested package or instance. The current scope is
17704 -- the derived record itself.
17706 -------------------
17707 -- Is_Local_Type --
17708 -------------------
17710 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
17714 Scop
:= Scope
(Typ
);
17715 while Present
(Scop
)
17716 and then Scop
/= Standard_Standard
17718 if Scop
= Scope
(Current_Scope
) then
17722 Scop
:= Scope
(Scop
);
17728 -- Start of processing for Is_Visible_Component
17731 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
17732 Original_Comp
:= Original_Record_Component
(C
);
17735 if No
(Original_Comp
) then
17737 -- Premature usage, or previous error
17742 Original_Scope
:= Scope
(Original_Comp
);
17743 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
17746 -- This test only concerns tagged types
17748 if not Is_Tagged_Type
(Original_Scope
) then
17751 -- If it is _Parent or _Tag, there is no visibility issue
17753 elsif not Comes_From_Source
(Original_Comp
) then
17756 -- Discriminants are visible unless the (private) type has unknown
17757 -- discriminants. If the discriminant reference is inserted for a
17758 -- discriminant check on a full view it is also visible.
17760 elsif Ekind
(Original_Comp
) = E_Discriminant
17762 (not Has_Unknown_Discriminants
(Original_Scope
)
17763 or else (Present
(N
)
17764 and then Nkind
(N
) = N_Selected_Component
17765 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
17766 and then not Comes_From_Source
(Prefix
(N
))))
17770 -- In the body of an instantiation, no need to check for the visibility
17773 elsif In_Instance_Body
then
17776 -- If the component has been declared in an ancestor which is currently
17777 -- a private type, then it is not visible. The same applies if the
17778 -- component's containing type is not in an open scope and the original
17779 -- component's enclosing type is a visible full view of a private type
17780 -- (which can occur in cases where an attempt is being made to reference
17781 -- a component in a sibling package that is inherited from a visible
17782 -- component of a type in an ancestor package; the component in the
17783 -- sibling package should not be visible even though the component it
17784 -- inherited from is visible). This does not apply however in the case
17785 -- where the scope of the type is a private child unit, or when the
17786 -- parent comes from a local package in which the ancestor is currently
17787 -- visible. The latter suppression of visibility is needed for cases
17788 -- that are tested in B730006.
17790 elsif Is_Private_Type
(Original_Scope
)
17792 (not Is_Private_Descendant
(Type_Scope
)
17793 and then not In_Open_Scopes
(Type_Scope
)
17794 and then Has_Private_Declaration
(Original_Scope
))
17796 -- If the type derives from an entity in a formal package, there
17797 -- are no additional visible components.
17799 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
17800 N_Formal_Package_Declaration
17804 -- if we are not in the private part of the current package, there
17805 -- are no additional visible components.
17807 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
17808 and then not In_Private_Part
(Scope
(Current_Scope
))
17813 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
17814 and then In_Open_Scopes
(Scope
(Original_Scope
))
17815 and then Is_Local_Type
(Type_Scope
);
17818 -- There is another weird way in which a component may be invisible when
17819 -- the private and the full view are not derived from the same ancestor.
17820 -- Here is an example :
17822 -- type A1 is tagged record F1 : integer; end record;
17823 -- type A2 is new A1 with record F2 : integer; end record;
17824 -- type T is new A1 with private;
17826 -- type T is new A2 with null record;
17828 -- In this case, the full view of T inherits F1 and F2 but the private
17829 -- view inherits only F1
17833 Ancestor
: Entity_Id
:= Scope
(C
);
17837 if Ancestor
= Original_Scope
then
17839 elsif Ancestor
= Etype
(Ancestor
) then
17843 Ancestor
:= Etype
(Ancestor
);
17847 end Is_Visible_Component
;
17849 --------------------------
17850 -- Make_Class_Wide_Type --
17851 --------------------------
17853 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
17854 CW_Type
: Entity_Id
;
17856 Next_E
: Entity_Id
;
17859 if Present
(Class_Wide_Type
(T
)) then
17861 -- The class-wide type is a partially decorated entity created for a
17862 -- unanalyzed tagged type referenced through a limited with clause.
17863 -- When the tagged type is analyzed, its class-wide type needs to be
17864 -- redecorated. Note that we reuse the entity created by Decorate_
17865 -- Tagged_Type in order to preserve all links.
17867 if Materialize_Entity
(Class_Wide_Type
(T
)) then
17868 CW_Type
:= Class_Wide_Type
(T
);
17869 Set_Materialize_Entity
(CW_Type
, False);
17871 -- The class wide type can have been defined by the partial view, in
17872 -- which case everything is already done.
17878 -- Default case, we need to create a new class-wide type
17882 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
17885 -- Inherit root type characteristics
17887 CW_Name
:= Chars
(CW_Type
);
17888 Next_E
:= Next_Entity
(CW_Type
);
17889 Copy_Node
(T
, CW_Type
);
17890 Set_Comes_From_Source
(CW_Type
, False);
17891 Set_Chars
(CW_Type
, CW_Name
);
17892 Set_Parent
(CW_Type
, Parent
(T
));
17893 Set_Next_Entity
(CW_Type
, Next_E
);
17895 -- Ensure we have a new freeze node for the class-wide type. The partial
17896 -- view may have freeze action of its own, requiring a proper freeze
17897 -- node, and the same freeze node cannot be shared between the two
17900 Set_Has_Delayed_Freeze
(CW_Type
);
17901 Set_Freeze_Node
(CW_Type
, Empty
);
17903 -- Customize the class-wide type: It has no prim. op., it cannot be
17904 -- abstract and its Etype points back to the specific root type.
17906 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
17907 Set_Is_Tagged_Type
(CW_Type
, True);
17908 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
17909 Set_Is_Abstract_Type
(CW_Type
, False);
17910 Set_Is_Constrained
(CW_Type
, False);
17911 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
17912 Set_Default_SSO
(CW_Type
);
17914 if Ekind
(T
) = E_Class_Wide_Subtype
then
17915 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
17917 Set_Etype
(CW_Type
, T
);
17920 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
17922 -- If this is the class_wide type of a constrained subtype, it does
17923 -- not have discriminants.
17925 Set_Has_Discriminants
(CW_Type
,
17926 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
17928 Set_Has_Unknown_Discriminants
(CW_Type
, True);
17929 Set_Class_Wide_Type
(T
, CW_Type
);
17930 Set_Equivalent_Type
(CW_Type
, Empty
);
17932 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17934 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
17935 end Make_Class_Wide_Type
;
17941 procedure Make_Index
17943 Related_Nod
: Node_Id
;
17944 Related_Id
: Entity_Id
:= Empty
;
17945 Suffix_Index
: Nat
:= 1;
17946 In_Iter_Schm
: Boolean := False)
17950 Def_Id
: Entity_Id
:= Empty
;
17951 Found
: Boolean := False;
17954 -- For a discrete range used in a constrained array definition and
17955 -- defined by a range, an implicit conversion to the predefined type
17956 -- INTEGER is assumed if each bound is either a numeric literal, a named
17957 -- number, or an attribute, and the type of both bounds (prior to the
17958 -- implicit conversion) is the type universal_integer. Otherwise, both
17959 -- bounds must be of the same discrete type, other than universal
17960 -- integer; this type must be determinable independently of the
17961 -- context, but using the fact that the type must be discrete and that
17962 -- both bounds must have the same type.
17964 -- Character literals also have a universal type in the absence of
17965 -- of additional context, and are resolved to Standard_Character.
17967 if Nkind
(N
) = N_Range
then
17969 -- The index is given by a range constraint. The bounds are known
17970 -- to be of a consistent type.
17972 if not Is_Overloaded
(N
) then
17975 -- For universal bounds, choose the specific predefined type
17977 if T
= Universal_Integer
then
17978 T
:= Standard_Integer
;
17980 elsif T
= Any_Character
then
17981 Ambiguous_Character
(Low_Bound
(N
));
17983 T
:= Standard_Character
;
17986 -- The node may be overloaded because some user-defined operators
17987 -- are available, but if a universal interpretation exists it is
17988 -- also the selected one.
17990 elsif Universal_Interpretation
(N
) = Universal_Integer
then
17991 T
:= Standard_Integer
;
17997 Ind
: Interp_Index
;
18001 Get_First_Interp
(N
, Ind
, It
);
18002 while Present
(It
.Typ
) loop
18003 if Is_Discrete_Type
(It
.Typ
) then
18006 and then not Covers
(It
.Typ
, T
)
18007 and then not Covers
(T
, It
.Typ
)
18009 Error_Msg_N
("ambiguous bounds in discrete range", N
);
18017 Get_Next_Interp
(Ind
, It
);
18020 if T
= Any_Type
then
18021 Error_Msg_N
("discrete type required for range", N
);
18022 Set_Etype
(N
, Any_Type
);
18025 elsif T
= Universal_Integer
then
18026 T
:= Standard_Integer
;
18031 if not Is_Discrete_Type
(T
) then
18032 Error_Msg_N
("discrete type required for range", N
);
18033 Set_Etype
(N
, Any_Type
);
18037 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
18038 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
18039 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
18040 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18041 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18043 -- The type of the index will be the type of the prefix, as long
18044 -- as the upper bound is 'Last of the same type.
18046 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
18048 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
18049 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
18050 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
18051 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
18058 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
18060 elsif Nkind
(N
) = N_Subtype_Indication
then
18062 -- The index is given by a subtype with a range constraint
18064 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
18066 if not Is_Discrete_Type
(T
) then
18067 Error_Msg_N
("discrete type required for range", N
);
18068 Set_Etype
(N
, Any_Type
);
18072 R
:= Range_Expression
(Constraint
(N
));
18075 Process_Range_Expr_In_Decl
18076 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
18078 elsif Nkind
(N
) = N_Attribute_Reference
then
18080 -- Catch beginner's error (use of attribute other than 'Range)
18082 if Attribute_Name
(N
) /= Name_Range
then
18083 Error_Msg_N
("expect attribute ''Range", N
);
18084 Set_Etype
(N
, Any_Type
);
18088 -- If the node denotes the range of a type mark, that is also the
18089 -- resulting type, and we do not need to create an Itype for it.
18091 if Is_Entity_Name
(Prefix
(N
))
18092 and then Comes_From_Source
(N
)
18093 and then Is_Type
(Entity
(Prefix
(N
)))
18094 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
18096 Def_Id
:= Entity
(Prefix
(N
));
18099 Analyze_And_Resolve
(N
);
18103 -- If none of the above, must be a subtype. We convert this to a
18104 -- range attribute reference because in the case of declared first
18105 -- named subtypes, the types in the range reference can be different
18106 -- from the type of the entity. A range attribute normalizes the
18107 -- reference and obtains the correct types for the bounds.
18109 -- This transformation is in the nature of an expansion, is only
18110 -- done if expansion is active. In particular, it is not done on
18111 -- formal generic types, because we need to retain the name of the
18112 -- original index for instantiation purposes.
18115 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
18116 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
18117 Set_Etype
(N
, Any_Integer
);
18121 -- The type mark may be that of an incomplete type. It is only
18122 -- now that we can get the full view, previous analysis does
18123 -- not look specifically for a type mark.
18125 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
18126 Set_Etype
(N
, Entity
(N
));
18127 Def_Id
:= Entity
(N
);
18129 if not Is_Discrete_Type
(Def_Id
) then
18130 Error_Msg_N
("discrete type required for index", N
);
18131 Set_Etype
(N
, Any_Type
);
18136 if Expander_Active
then
18138 Make_Attribute_Reference
(Sloc
(N
),
18139 Attribute_Name
=> Name_Range
,
18140 Prefix
=> Relocate_Node
(N
)));
18142 -- The original was a subtype mark that does not freeze. This
18143 -- means that the rewritten version must not freeze either.
18145 Set_Must_Not_Freeze
(N
);
18146 Set_Must_Not_Freeze
(Prefix
(N
));
18147 Analyze_And_Resolve
(N
);
18151 -- If expander is inactive, type is legal, nothing else to construct
18158 if not Is_Discrete_Type
(T
) then
18159 Error_Msg_N
("discrete type required for range", N
);
18160 Set_Etype
(N
, Any_Type
);
18163 elsif T
= Any_Type
then
18164 Set_Etype
(N
, Any_Type
);
18168 -- We will now create the appropriate Itype to describe the range, but
18169 -- first a check. If we originally had a subtype, then we just label
18170 -- the range with this subtype. Not only is there no need to construct
18171 -- a new subtype, but it is wrong to do so for two reasons:
18173 -- 1. A legality concern, if we have a subtype, it must not freeze,
18174 -- and the Itype would cause freezing incorrectly
18176 -- 2. An efficiency concern, if we created an Itype, it would not be
18177 -- recognized as the same type for the purposes of eliminating
18178 -- checks in some circumstances.
18180 -- We signal this case by setting the subtype entity in Def_Id
18182 if No
(Def_Id
) then
18184 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
18185 Set_Etype
(Def_Id
, Base_Type
(T
));
18187 if Is_Signed_Integer_Type
(T
) then
18188 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
18190 elsif Is_Modular_Integer_Type
(T
) then
18191 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
18194 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
18195 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
18196 Set_First_Literal
(Def_Id
, First_Literal
(T
));
18199 Set_Size_Info
(Def_Id
, (T
));
18200 Set_RM_Size
(Def_Id
, RM_Size
(T
));
18201 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
18203 Set_Scalar_Range
(Def_Id
, R
);
18204 Conditional_Delay
(Def_Id
, T
);
18206 if Nkind
(N
) = N_Subtype_Indication
then
18207 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
18210 -- In the subtype indication case, if the immediate parent of the
18211 -- new subtype is non-static, then the subtype we create is non-
18212 -- static, even if its bounds are static.
18214 if Nkind
(N
) = N_Subtype_Indication
18215 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
18217 Set_Is_Non_Static_Subtype
(Def_Id
);
18221 -- Final step is to label the index with this constructed type
18223 Set_Etype
(N
, Def_Id
);
18226 ------------------------------
18227 -- Modular_Type_Declaration --
18228 ------------------------------
18230 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
18231 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
18234 procedure Set_Modular_Size
(Bits
: Int
);
18235 -- Sets RM_Size to Bits, and Esize to normal word size above this
18237 ----------------------
18238 -- Set_Modular_Size --
18239 ----------------------
18241 procedure Set_Modular_Size
(Bits
: Int
) is
18243 Set_RM_Size
(T
, UI_From_Int
(Bits
));
18248 elsif Bits
<= 16 then
18249 Init_Esize
(T
, 16);
18251 elsif Bits
<= 32 then
18252 Init_Esize
(T
, 32);
18255 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
18258 if not Non_Binary_Modulus
(T
) and then Esize
(T
) = RM_Size
(T
) then
18259 Set_Is_Known_Valid
(T
);
18261 end Set_Modular_Size
;
18263 -- Start of processing for Modular_Type_Declaration
18266 -- If the mod expression is (exactly) 2 * literal, where literal is
18267 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18269 if Warn_On_Suspicious_Modulus_Value
18270 and then Nkind
(Mod_Expr
) = N_Op_Multiply
18271 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
18272 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
18273 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
18274 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
18277 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
18280 -- Proceed with analysis of mod expression
18282 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
18284 Set_Ekind
(T
, E_Modular_Integer_Type
);
18285 Init_Alignment
(T
);
18286 Set_Is_Constrained
(T
);
18288 if not Is_OK_Static_Expression
(Mod_Expr
) then
18289 Flag_Non_Static_Expr
18290 ("non-static expression used for modular type bound!", Mod_Expr
);
18291 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18293 M_Val
:= Expr_Value
(Mod_Expr
);
18297 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
18298 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18301 if M_Val
> 2 ** Standard_Long_Integer_Size
then
18302 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
18305 Set_Modulus
(T
, M_Val
);
18307 -- Create bounds for the modular type based on the modulus given in
18308 -- the type declaration and then analyze and resolve those bounds.
18310 Set_Scalar_Range
(T
,
18311 Make_Range
(Sloc
(Mod_Expr
),
18312 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
18313 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
18315 -- Properly analyze the literals for the range. We do this manually
18316 -- because we can't go calling Resolve, since we are resolving these
18317 -- bounds with the type, and this type is certainly not complete yet.
18319 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
18320 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
18321 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
18322 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
18324 -- Loop through powers of two to find number of bits required
18326 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
18330 if M_Val
= 2 ** Bits
then
18331 Set_Modular_Size
(Bits
);
18336 elsif M_Val
< 2 ** Bits
then
18337 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
18338 Set_Non_Binary_Modulus
(T
);
18340 if Bits
> System_Max_Nonbinary_Modulus_Power
then
18341 Error_Msg_Uint_1
:=
18342 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
18344 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
18345 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18349 -- In the non-binary case, set size as per RM 13.3(55)
18351 Set_Modular_Size
(Bits
);
18358 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18359 -- so we just signal an error and set the maximum size.
18361 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
18362 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
18364 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18365 Init_Alignment
(T
);
18367 end Modular_Type_Declaration
;
18369 --------------------------
18370 -- New_Concatenation_Op --
18371 --------------------------
18373 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
18374 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
18377 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
18378 -- Create abbreviated declaration for the formal of a predefined
18379 -- Operator 'Op' of type 'Typ'
18381 --------------------
18382 -- Make_Op_Formal --
18383 --------------------
18385 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
18386 Formal
: Entity_Id
;
18388 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
18389 Set_Etype
(Formal
, Typ
);
18390 Set_Mechanism
(Formal
, Default_Mechanism
);
18392 end Make_Op_Formal
;
18394 -- Start of processing for New_Concatenation_Op
18397 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
18399 Set_Ekind
(Op
, E_Operator
);
18400 Set_Scope
(Op
, Current_Scope
);
18401 Set_Etype
(Op
, Typ
);
18402 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
18403 Set_Is_Immediately_Visible
(Op
);
18404 Set_Is_Intrinsic_Subprogram
(Op
);
18405 Set_Has_Completion
(Op
);
18406 Append_Entity
(Op
, Current_Scope
);
18408 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
18410 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18411 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18412 end New_Concatenation_Op
;
18414 -------------------------
18415 -- OK_For_Limited_Init --
18416 -------------------------
18418 -- ???Check all calls of this, and compare the conditions under which it's
18421 function OK_For_Limited_Init
18423 Exp
: Node_Id
) return Boolean
18426 return Is_CPP_Constructor_Call
(Exp
)
18427 or else (Ada_Version
>= Ada_2005
18428 and then not Debug_Flag_Dot_L
18429 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
18430 end OK_For_Limited_Init
;
18432 -------------------------------
18433 -- OK_For_Limited_Init_In_05 --
18434 -------------------------------
18436 function OK_For_Limited_Init_In_05
18438 Exp
: Node_Id
) return Boolean
18441 -- An object of a limited interface type can be initialized with any
18442 -- expression of a nonlimited descendant type.
18444 if Is_Class_Wide_Type
(Typ
)
18445 and then Is_Limited_Interface
(Typ
)
18446 and then not Is_Limited_Type
(Etype
(Exp
))
18451 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18452 -- case of limited aggregates (including extension aggregates), and
18453 -- function calls. The function call may have been given in prefixed
18454 -- notation, in which case the original node is an indexed component.
18455 -- If the function is parameterless, the original node was an explicit
18456 -- dereference. The function may also be parameterless, in which case
18457 -- the source node is just an identifier.
18459 case Nkind
(Original_Node
(Exp
)) is
18460 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
18463 when N_Identifier
=>
18464 return Present
(Entity
(Original_Node
(Exp
)))
18465 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
18467 when N_Qualified_Expression
=>
18469 OK_For_Limited_Init_In_05
18470 (Typ
, Expression
(Original_Node
(Exp
)));
18472 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18473 -- with a function call, the expander has rewritten the call into an
18474 -- N_Type_Conversion node to force displacement of the pointer to
18475 -- reference the component containing the secondary dispatch table.
18476 -- Otherwise a type conversion is not a legal context.
18477 -- A return statement for a build-in-place function returning a
18478 -- synchronized type also introduces an unchecked conversion.
18480 when N_Type_Conversion |
18481 N_Unchecked_Type_Conversion
=>
18482 return not Comes_From_Source
(Exp
)
18484 OK_For_Limited_Init_In_05
18485 (Typ
, Expression
(Original_Node
(Exp
)));
18487 when N_Indexed_Component |
18488 N_Selected_Component |
18489 N_Explicit_Dereference
=>
18490 return Nkind
(Exp
) = N_Function_Call
;
18492 -- A use of 'Input is a function call, hence allowed. Normally the
18493 -- attribute will be changed to a call, but the attribute by itself
18494 -- can occur with -gnatc.
18496 when N_Attribute_Reference
=>
18497 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
18499 -- For a case expression, all dependent expressions must be legal
18501 when N_Case_Expression
=>
18506 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
18507 while Present
(Alt
) loop
18508 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
18518 -- For an if expression, all dependent expressions must be legal
18520 when N_If_Expression
=>
18522 Then_Expr
: constant Node_Id
:=
18523 Next
(First
(Expressions
(Original_Node
(Exp
))));
18524 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
18526 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
18528 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
18534 end OK_For_Limited_Init_In_05
;
18536 -------------------------------------------
18537 -- Ordinary_Fixed_Point_Type_Declaration --
18538 -------------------------------------------
18540 procedure Ordinary_Fixed_Point_Type_Declaration
18544 Loc
: constant Source_Ptr
:= Sloc
(Def
);
18545 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
18546 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
18547 Implicit_Base
: Entity_Id
;
18554 Check_Restriction
(No_Fixed_Point
, Def
);
18556 -- Create implicit base type
18559 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
18560 Set_Etype
(Implicit_Base
, Implicit_Base
);
18562 -- Analyze and process delta expression
18564 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
18566 Check_Delta_Expression
(Delta_Expr
);
18567 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
18569 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
18571 -- Compute default small from given delta, which is the largest power
18572 -- of two that does not exceed the given delta value.
18582 if Delta_Val
< Ureal_1
then
18583 while Delta_Val
< Tmp
loop
18584 Tmp
:= Tmp
/ Ureal_2
;
18585 Scale
:= Scale
+ 1;
18590 Tmp
:= Tmp
* Ureal_2
;
18591 exit when Tmp
> Delta_Val
;
18592 Scale
:= Scale
- 1;
18596 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
18599 Set_Small_Value
(Implicit_Base
, Small_Val
);
18601 -- If no range was given, set a dummy range
18603 if RRS
<= Empty_Or_Error
then
18604 Low_Val
:= -Small_Val
;
18605 High_Val
:= Small_Val
;
18607 -- Otherwise analyze and process given range
18611 Low
: constant Node_Id
:= Low_Bound
(RRS
);
18612 High
: constant Node_Id
:= High_Bound
(RRS
);
18615 Analyze_And_Resolve
(Low
, Any_Real
);
18616 Analyze_And_Resolve
(High
, Any_Real
);
18617 Check_Real_Bound
(Low
);
18618 Check_Real_Bound
(High
);
18620 -- Obtain and set the range
18622 Low_Val
:= Expr_Value_R
(Low
);
18623 High_Val
:= Expr_Value_R
(High
);
18625 if Low_Val
> High_Val
then
18626 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
18631 -- The range for both the implicit base and the declared first subtype
18632 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18633 -- set a temporary range in place. Note that the bounds of the base
18634 -- type will be widened to be symmetrical and to fill the available
18635 -- bits when the type is frozen.
18637 -- We could do this with all discrete types, and probably should, but
18638 -- we absolutely have to do it for fixed-point, since the end-points
18639 -- of the range and the size are determined by the small value, which
18640 -- could be reset before the freeze point.
18642 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
18643 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
18645 -- Complete definition of first subtype. The inheritance of the rep item
18646 -- chain ensures that SPARK-related pragmas are not clobbered when the
18647 -- ordinary fixed point type acts as a full view of a private type.
18649 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
18650 Set_Etype
(T
, Implicit_Base
);
18651 Init_Size_Align
(T
);
18652 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
18653 Set_Small_Value
(T
, Small_Val
);
18654 Set_Delta_Value
(T
, Delta_Val
);
18655 Set_Is_Constrained
(T
);
18656 end Ordinary_Fixed_Point_Type_Declaration
;
18658 ----------------------------------
18659 -- Preanalyze_Assert_Expression --
18660 ----------------------------------
18662 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18664 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
18665 Preanalyze_Spec_Expression
(N
, T
);
18666 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
18667 end Preanalyze_Assert_Expression
;
18669 -----------------------------------
18670 -- Preanalyze_Default_Expression --
18671 -----------------------------------
18673 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18674 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
18676 In_Default_Expr
:= True;
18677 Preanalyze_Spec_Expression
(N
, T
);
18678 In_Default_Expr
:= Save_In_Default_Expr
;
18679 end Preanalyze_Default_Expression
;
18681 --------------------------------
18682 -- Preanalyze_Spec_Expression --
18683 --------------------------------
18685 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18686 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
18688 In_Spec_Expression
:= True;
18689 Preanalyze_And_Resolve
(N
, T
);
18690 In_Spec_Expression
:= Save_In_Spec_Expression
;
18691 end Preanalyze_Spec_Expression
;
18693 ----------------------------------------
18694 -- Prepare_Private_Subtype_Completion --
18695 ----------------------------------------
18697 procedure Prepare_Private_Subtype_Completion
18699 Related_Nod
: Node_Id
)
18701 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
18702 Full_B
: Entity_Id
:= Full_View
(Id_B
);
18706 if Present
(Full_B
) then
18708 -- Get to the underlying full view if necessary
18710 if Is_Private_Type
(Full_B
)
18711 and then Present
(Underlying_Full_View
(Full_B
))
18713 Full_B
:= Underlying_Full_View
(Full_B
);
18716 -- The Base_Type is already completed, we can complete the subtype
18717 -- now. We have to create a new entity with the same name, Thus we
18718 -- can't use Create_Itype.
18720 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
18721 Set_Is_Itype
(Full
);
18722 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
18723 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
18726 -- The parent subtype may be private, but the base might not, in some
18727 -- nested instances. In that case, the subtype does not need to be
18728 -- exchanged. It would still be nice to make private subtypes and their
18729 -- bases consistent at all times ???
18731 if Is_Private_Type
(Id_B
) then
18732 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
18734 end Prepare_Private_Subtype_Completion
;
18736 ---------------------------
18737 -- Process_Discriminants --
18738 ---------------------------
18740 procedure Process_Discriminants
18742 Prev
: Entity_Id
:= Empty
)
18744 Elist
: constant Elist_Id
:= New_Elmt_List
;
18747 Discr_Number
: Uint
;
18748 Discr_Type
: Entity_Id
;
18749 Default_Present
: Boolean := False;
18750 Default_Not_Present
: Boolean := False;
18753 -- A composite type other than an array type can have discriminants.
18754 -- On entry, the current scope is the composite type.
18756 -- The discriminants are initially entered into the scope of the type
18757 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18758 -- use, as explained at the end of this procedure.
18760 Discr
:= First
(Discriminant_Specifications
(N
));
18761 while Present
(Discr
) loop
18762 Enter_Name
(Defining_Identifier
(Discr
));
18764 -- For navigation purposes we add a reference to the discriminant
18765 -- in the entity for the type. If the current declaration is a
18766 -- completion, place references on the partial view. Otherwise the
18767 -- type is the current scope.
18769 if Present
(Prev
) then
18771 -- The references go on the partial view, if present. If the
18772 -- partial view has discriminants, the references have been
18773 -- generated already.
18775 if not Has_Discriminants
(Prev
) then
18776 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
18780 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
18783 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
18784 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
18786 -- Ada 2005 (AI-254)
18788 if Present
(Access_To_Subprogram_Definition
18789 (Discriminant_Type
(Discr
)))
18790 and then Protected_Present
(Access_To_Subprogram_Definition
18791 (Discriminant_Type
(Discr
)))
18794 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
18798 Find_Type
(Discriminant_Type
(Discr
));
18799 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
18801 if Error_Posted
(Discriminant_Type
(Discr
)) then
18802 Discr_Type
:= Any_Type
;
18806 -- Handling of discriminants that are access types
18808 if Is_Access_Type
(Discr_Type
) then
18810 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18811 -- limited record types
18813 if Ada_Version
< Ada_2005
then
18814 Check_Access_Discriminant_Requires_Limited
18815 (Discr
, Discriminant_Type
(Discr
));
18818 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
18820 ("(Ada 83) access discriminant not allowed", Discr
);
18823 -- If not access type, must be a discrete type
18825 elsif not Is_Discrete_Type
(Discr_Type
) then
18827 ("discriminants must have a discrete or access type",
18828 Discriminant_Type
(Discr
));
18831 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
18833 -- If a discriminant specification includes the assignment compound
18834 -- delimiter followed by an expression, the expression is the default
18835 -- expression of the discriminant; the default expression must be of
18836 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18837 -- a default expression, we do the special preanalysis, since this
18838 -- expression does not freeze (see section "Handling of Default and
18839 -- Per-Object Expressions" in spec of package Sem).
18841 if Present
(Expression
(Discr
)) then
18842 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
18846 if Nkind
(N
) = N_Formal_Type_Declaration
then
18848 ("discriminant defaults not allowed for formal type",
18849 Expression
(Discr
));
18851 -- Flag an error for a tagged type with defaulted discriminants,
18852 -- excluding limited tagged types when compiling for Ada 2012
18853 -- (see AI05-0214).
18855 elsif Is_Tagged_Type
(Current_Scope
)
18856 and then (not Is_Limited_Type
(Current_Scope
)
18857 or else Ada_Version
< Ada_2012
)
18858 and then Comes_From_Source
(N
)
18860 -- Note: see similar test in Check_Or_Process_Discriminants, to
18861 -- handle the (illegal) case of the completion of an untagged
18862 -- view with discriminants with defaults by a tagged full view.
18863 -- We skip the check if Discr does not come from source, to
18864 -- account for the case of an untagged derived type providing
18865 -- defaults for a renamed discriminant from a private untagged
18866 -- ancestor with a tagged full view (ACATS B460006).
18868 if Ada_Version
>= Ada_2012
then
18870 ("discriminants of nonlimited tagged type cannot have"
18872 Expression
(Discr
));
18875 ("discriminants of tagged type cannot have defaults",
18876 Expression
(Discr
));
18880 Default_Present
:= True;
18881 Append_Elmt
(Expression
(Discr
), Elist
);
18883 -- Tag the defining identifiers for the discriminants with
18884 -- their corresponding default expressions from the tree.
18886 Set_Discriminant_Default_Value
18887 (Defining_Identifier
(Discr
), Expression
(Discr
));
18890 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18891 -- gets set unless we can be sure that no range check is required.
18893 if (GNATprove_Mode
or not Expander_Active
)
18896 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
18898 Set_Do_Range_Check
(Expression
(Discr
));
18901 -- No default discriminant value given
18904 Default_Not_Present
:= True;
18907 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18908 -- Discr_Type but with the null-exclusion attribute
18910 if Ada_Version
>= Ada_2005
then
18912 -- Ada 2005 (AI-231): Static checks
18914 if Can_Never_Be_Null
(Discr_Type
) then
18915 Null_Exclusion_Static_Checks
(Discr
);
18917 elsif Is_Access_Type
(Discr_Type
)
18918 and then Null_Exclusion_Present
(Discr
)
18920 -- No need to check itypes because in their case this check
18921 -- was done at their point of creation
18923 and then not Is_Itype
(Discr_Type
)
18925 if Can_Never_Be_Null
(Discr_Type
) then
18927 ("`NOT NULL` not allowed (& already excludes null)",
18932 Set_Etype
(Defining_Identifier
(Discr
),
18933 Create_Null_Excluding_Itype
18935 Related_Nod
=> Discr
));
18937 -- Check for improper null exclusion if the type is otherwise
18938 -- legal for a discriminant.
18940 elsif Null_Exclusion_Present
(Discr
)
18941 and then Is_Discrete_Type
(Discr_Type
)
18944 ("null exclusion can only apply to an access type", Discr
);
18947 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18948 -- can't have defaults. Synchronized types, or types that are
18949 -- explicitly limited are fine, but special tests apply to derived
18950 -- types in generics: in a generic body we have to assume the
18951 -- worst, and therefore defaults are not allowed if the parent is
18952 -- a generic formal private type (see ACATS B370001).
18954 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
18955 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
18956 or else Is_Limited_Record
(Current_Scope
)
18957 or else Is_Concurrent_Type
(Current_Scope
)
18958 or else Is_Concurrent_Record_Type
(Current_Scope
)
18959 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
18961 if not Is_Derived_Type
(Current_Scope
)
18962 or else not Is_Generic_Type
(Etype
(Current_Scope
))
18963 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
18964 or else Limited_Present
18965 (Type_Definition
(Parent
(Current_Scope
)))
18971 ("access discriminants of nonlimited types cannot "
18972 & "have defaults", Expression
(Discr
));
18975 elsif Present
(Expression
(Discr
)) then
18977 ("(Ada 2005) access discriminants of nonlimited types "
18978 & "cannot have defaults", Expression
(Discr
));
18983 -- A discriminant cannot be effectively volatile. This check is only
18984 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18985 -- rule (SPARK RM 7.1.3(6)).
18988 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
18990 Error_Msg_N
("discriminant cannot be volatile", Discr
);
18996 -- An element list consisting of the default expressions of the
18997 -- discriminants is constructed in the above loop and used to set
18998 -- the Discriminant_Constraint attribute for the type. If an object
18999 -- is declared of this (record or task) type without any explicit
19000 -- discriminant constraint given, this element list will form the
19001 -- actual parameters for the corresponding initialization procedure
19004 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
19005 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
19007 -- Default expressions must be provided either for all or for none
19008 -- of the discriminants of a discriminant part. (RM 3.7.1)
19010 if Default_Present
and then Default_Not_Present
then
19012 ("incomplete specification of defaults for discriminants", N
);
19015 -- The use of the name of a discriminant is not allowed in default
19016 -- expressions of a discriminant part if the specification of the
19017 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19019 -- To detect this, the discriminant names are entered initially with an
19020 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19021 -- attempt to use a void entity (for example in an expression that is
19022 -- type-checked) produces the error message: premature usage. Now after
19023 -- completing the semantic analysis of the discriminant part, we can set
19024 -- the Ekind of all the discriminants appropriately.
19026 Discr
:= First
(Discriminant_Specifications
(N
));
19027 Discr_Number
:= Uint_1
;
19028 while Present
(Discr
) loop
19029 Id
:= Defining_Identifier
(Discr
);
19030 Set_Ekind
(Id
, E_Discriminant
);
19031 Init_Component_Location
(Id
);
19033 Set_Discriminant_Number
(Id
, Discr_Number
);
19035 -- Make sure this is always set, even in illegal programs
19037 Set_Corresponding_Discriminant
(Id
, Empty
);
19039 -- Initialize the Original_Record_Component to the entity itself.
19040 -- Inherit_Components will propagate the right value to
19041 -- discriminants in derived record types.
19043 Set_Original_Record_Component
(Id
, Id
);
19045 -- Create the discriminal for the discriminant
19047 Build_Discriminal
(Id
);
19050 Discr_Number
:= Discr_Number
+ 1;
19053 Set_Has_Discriminants
(Current_Scope
);
19054 end Process_Discriminants
;
19056 -----------------------
19057 -- Process_Full_View --
19058 -----------------------
19060 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
19061 procedure Collect_Implemented_Interfaces
19063 Ifaces
: Elist_Id
);
19064 -- Ada 2005: Gather all the interfaces that Typ directly or
19065 -- inherently implements. Duplicate entries are not added to
19066 -- the list Ifaces.
19068 ------------------------------------
19069 -- Collect_Implemented_Interfaces --
19070 ------------------------------------
19072 procedure Collect_Implemented_Interfaces
19077 Iface_Elmt
: Elmt_Id
;
19080 -- Abstract interfaces are only associated with tagged record types
19082 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
19086 -- Recursively climb to the ancestors
19088 if Etype
(Typ
) /= Typ
19090 -- Protect the frontend against wrong cyclic declarations like:
19092 -- type B is new A with private;
19093 -- type C is new A with private;
19095 -- type B is new C with null record;
19096 -- type C is new B with null record;
19098 and then Etype
(Typ
) /= Priv_T
19099 and then Etype
(Typ
) /= Full_T
19101 -- Keep separate the management of private type declarations
19103 if Ekind
(Typ
) = E_Record_Type_With_Private
then
19105 -- Handle the following illegal usage:
19106 -- type Private_Type is tagged private;
19108 -- type Private_Type is new Type_Implementing_Iface;
19110 if Present
(Full_View
(Typ
))
19111 and then Etype
(Typ
) /= Full_View
(Typ
)
19113 if Is_Interface
(Etype
(Typ
)) then
19114 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19117 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19120 -- Non-private types
19123 if Is_Interface
(Etype
(Typ
)) then
19124 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19127 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19131 -- Handle entities in the list of abstract interfaces
19133 if Present
(Interfaces
(Typ
)) then
19134 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
19135 while Present
(Iface_Elmt
) loop
19136 Iface
:= Node
(Iface_Elmt
);
19138 pragma Assert
(Is_Interface
(Iface
));
19140 if not Contain_Interface
(Iface
, Ifaces
) then
19141 Append_Elmt
(Iface
, Ifaces
);
19142 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
19145 Next_Elmt
(Iface_Elmt
);
19148 end Collect_Implemented_Interfaces
;
19152 Full_Indic
: Node_Id
;
19153 Full_Parent
: Entity_Id
;
19154 Priv_Parent
: Entity_Id
;
19156 -- Start of processing for Process_Full_View
19159 -- First some sanity checks that must be done after semantic
19160 -- decoration of the full view and thus cannot be placed with other
19161 -- similar checks in Find_Type_Name
19163 if not Is_Limited_Type
(Priv_T
)
19164 and then (Is_Limited_Type
(Full_T
)
19165 or else Is_Limited_Composite
(Full_T
))
19167 if In_Instance
then
19171 ("completion of nonlimited type cannot be limited", Full_T
);
19172 Explain_Limited_Type
(Full_T
, Full_T
);
19175 elsif Is_Abstract_Type
(Full_T
)
19176 and then not Is_Abstract_Type
(Priv_T
)
19179 ("completion of nonabstract type cannot be abstract", Full_T
);
19181 elsif Is_Tagged_Type
(Priv_T
)
19182 and then Is_Limited_Type
(Priv_T
)
19183 and then not Is_Limited_Type
(Full_T
)
19185 -- If pragma CPP_Class was applied to the private declaration
19186 -- propagate the limitedness to the full-view
19188 if Is_CPP_Class
(Priv_T
) then
19189 Set_Is_Limited_Record
(Full_T
);
19191 -- GNAT allow its own definition of Limited_Controlled to disobey
19192 -- this rule in order in ease the implementation. This test is safe
19193 -- because Root_Controlled is defined in a child of System that
19194 -- normal programs are not supposed to use.
19196 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
19197 Set_Is_Limited_Composite
(Full_T
);
19200 ("completion of limited tagged type must be limited", Full_T
);
19203 elsif Is_Generic_Type
(Priv_T
) then
19204 Error_Msg_N
("generic type cannot have a completion", Full_T
);
19207 -- Check that ancestor interfaces of private and full views are
19208 -- consistent. We omit this check for synchronized types because
19209 -- they are performed on the corresponding record type when frozen.
19211 if Ada_Version
>= Ada_2005
19212 and then Is_Tagged_Type
(Priv_T
)
19213 and then Is_Tagged_Type
(Full_T
)
19214 and then not Is_Concurrent_Type
(Full_T
)
19218 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19219 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19222 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
19223 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
19225 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19226 -- an interface type if and only if the full type is descendant
19227 -- of the interface type (AARM 7.3 (7.3/2)).
19229 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
19231 if Present
(Iface
) then
19233 ("interface in partial view& not implemented by full type "
19234 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19237 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
19239 if Present
(Iface
) then
19241 ("interface & not implemented by partial view "
19242 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19247 if Is_Tagged_Type
(Priv_T
)
19248 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19249 and then Is_Derived_Type
(Full_T
)
19251 Priv_Parent
:= Etype
(Priv_T
);
19253 -- The full view of a private extension may have been transformed
19254 -- into an unconstrained derived type declaration and a subtype
19255 -- declaration (see build_derived_record_type for details).
19257 if Nkind
(N
) = N_Subtype_Declaration
then
19258 Full_Indic
:= Subtype_Indication
(N
);
19259 Full_Parent
:= Etype
(Base_Type
(Full_T
));
19261 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
19262 Full_Parent
:= Etype
(Full_T
);
19265 -- Check that the parent type of the full type is a descendant of
19266 -- the ancestor subtype given in the private extension. If either
19267 -- entity has an Etype equal to Any_Type then we had some previous
19268 -- error situation [7.3(8)].
19270 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
19273 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19274 -- any order. Therefore we don't have to check that its parent must
19275 -- be a descendant of the parent of the private type declaration.
19277 elsif Is_Interface
(Priv_Parent
)
19278 and then Is_Interface
(Full_Parent
)
19282 -- Ada 2005 (AI-251): If the parent of the private type declaration
19283 -- is an interface there is no need to check that it is an ancestor
19284 -- of the associated full type declaration. The required tests for
19285 -- this case are performed by Build_Derived_Record_Type.
19287 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
19288 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
19291 ("parent of full type must descend from parent"
19292 & " of private extension", Full_Indic
);
19294 -- First check a formal restriction, and then proceed with checking
19295 -- Ada rules. Since the formal restriction is not a serious error, we
19296 -- don't prevent further error detection for this check, hence the
19300 -- In formal mode, when completing a private extension the type
19301 -- named in the private part must be exactly the same as that
19302 -- named in the visible part.
19304 if Priv_Parent
/= Full_Parent
then
19305 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
19306 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
19309 -- Check the rules of 7.3(10): if the private extension inherits
19310 -- known discriminants, then the full type must also inherit those
19311 -- discriminants from the same (ancestor) type, and the parent
19312 -- subtype of the full type must be constrained if and only if
19313 -- the ancestor subtype of the private extension is constrained.
19315 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
19316 and then not Has_Unknown_Discriminants
(Priv_T
)
19317 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
19320 Priv_Indic
: constant Node_Id
:=
19321 Subtype_Indication
(Parent
(Priv_T
));
19323 Priv_Constr
: constant Boolean :=
19324 Is_Constrained
(Priv_Parent
)
19326 Nkind
(Priv_Indic
) = N_Subtype_Indication
19328 Is_Constrained
(Entity
(Priv_Indic
));
19330 Full_Constr
: constant Boolean :=
19331 Is_Constrained
(Full_Parent
)
19333 Nkind
(Full_Indic
) = N_Subtype_Indication
19335 Is_Constrained
(Entity
(Full_Indic
));
19337 Priv_Discr
: Entity_Id
;
19338 Full_Discr
: Entity_Id
;
19341 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
19342 Full_Discr
:= First_Discriminant
(Full_Parent
);
19343 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
19344 if Original_Record_Component
(Priv_Discr
) =
19345 Original_Record_Component
(Full_Discr
)
19347 Corresponding_Discriminant
(Priv_Discr
) =
19348 Corresponding_Discriminant
(Full_Discr
)
19355 Next_Discriminant
(Priv_Discr
);
19356 Next_Discriminant
(Full_Discr
);
19359 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
19361 ("full view must inherit discriminants of the parent"
19362 & " type used in the private extension", Full_Indic
);
19364 elsif Priv_Constr
and then not Full_Constr
then
19366 ("parent subtype of full type must be constrained",
19369 elsif Full_Constr
and then not Priv_Constr
then
19371 ("parent subtype of full type must be unconstrained",
19376 -- Check the rules of 7.3(12): if a partial view has neither
19377 -- known or unknown discriminants, then the full type
19378 -- declaration shall define a definite subtype.
19380 elsif not Has_Unknown_Discriminants
(Priv_T
)
19381 and then not Has_Discriminants
(Priv_T
)
19382 and then not Is_Constrained
(Full_T
)
19385 ("full view must define a constrained type if partial view"
19386 & " has no discriminants", Full_T
);
19389 -- ??????? Do we implement the following properly ?????
19390 -- If the ancestor subtype of a private extension has constrained
19391 -- discriminants, then the parent subtype of the full view shall
19392 -- impose a statically matching constraint on those discriminants
19397 -- For untagged types, verify that a type without discriminants is
19398 -- not completed with an unconstrained type. A separate error message
19399 -- is produced if the full type has defaulted discriminants.
19401 if not Is_Indefinite_Subtype
(Priv_T
)
19402 and then Is_Indefinite_Subtype
(Full_T
)
19404 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
19406 ("full view of& not compatible with declaration#",
19409 if not Is_Tagged_Type
(Full_T
) then
19411 ("\one is constrained, the other unconstrained", Full_T
);
19416 -- AI-419: verify that the use of "limited" is consistent
19419 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
19422 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19423 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
19425 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
19427 if not Limited_Present
(Parent
(Priv_T
))
19428 and then not Synchronized_Present
(Parent
(Priv_T
))
19429 and then Limited_Present
(Type_Definition
(Orig_Decl
))
19432 ("full view of non-limited extension cannot be limited", N
);
19434 -- Conversely, if the partial view carries the limited keyword,
19435 -- the full view must as well, even if it may be redundant.
19437 elsif Limited_Present
(Parent
(Priv_T
))
19438 and then not Limited_Present
(Type_Definition
(Orig_Decl
))
19441 ("full view of limited extension must be explicitly limited",
19447 -- Ada 2005 (AI-443): A synchronized private extension must be
19448 -- completed by a task or protected type.
19450 if Ada_Version
>= Ada_2005
19451 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19452 and then Synchronized_Present
(Parent
(Priv_T
))
19453 and then not Is_Concurrent_Type
(Full_T
)
19455 Error_Msg_N
("full view of synchronized extension must " &
19456 "be synchronized type", N
);
19459 -- Ada 2005 AI-363: if the full view has discriminants with
19460 -- defaults, it is illegal to declare constrained access subtypes
19461 -- whose designated type is the current type. This allows objects
19462 -- of the type that are declared in the heap to be unconstrained.
19464 if not Has_Unknown_Discriminants
(Priv_T
)
19465 and then not Has_Discriminants
(Priv_T
)
19466 and then Has_Discriminants
(Full_T
)
19468 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
19470 Set_Has_Constrained_Partial_View
(Full_T
);
19471 Set_Has_Constrained_Partial_View
(Priv_T
);
19474 -- Create a full declaration for all its subtypes recorded in
19475 -- Private_Dependents and swap them similarly to the base type. These
19476 -- are subtypes that have been define before the full declaration of
19477 -- the private type. We also swap the entry in Private_Dependents list
19478 -- so we can properly restore the private view on exit from the scope.
19481 Priv_Elmt
: Elmt_Id
;
19482 Priv_Scop
: Entity_Id
;
19487 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
19488 while Present
(Priv_Elmt
) loop
19489 Priv
:= Node
(Priv_Elmt
);
19490 Priv_Scop
:= Scope
(Priv
);
19492 if Ekind_In
(Priv
, E_Private_Subtype
,
19493 E_Limited_Private_Subtype
,
19494 E_Record_Subtype_With_Private
)
19496 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
19497 Set_Is_Itype
(Full
);
19498 Set_Parent
(Full
, Parent
(Priv
));
19499 Set_Associated_Node_For_Itype
(Full
, N
);
19501 -- Now we need to complete the private subtype, but since the
19502 -- base type has already been swapped, we must also swap the
19503 -- subtypes (and thus, reverse the arguments in the call to
19504 -- Complete_Private_Subtype). Also note that we may need to
19505 -- re-establish the scope of the private subtype.
19507 Copy_And_Swap
(Priv
, Full
);
19509 if not In_Open_Scopes
(Priv_Scop
) then
19510 Push_Scope
(Priv_Scop
);
19513 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19515 Priv_Scop
:= Empty
;
19518 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
19520 if Present
(Priv_Scop
) then
19524 Replace_Elmt
(Priv_Elmt
, Full
);
19527 Next_Elmt
(Priv_Elmt
);
19531 -- If the private view was tagged, copy the new primitive operations
19532 -- from the private view to the full view.
19534 if Is_Tagged_Type
(Full_T
) then
19536 Disp_Typ
: Entity_Id
;
19537 Full_List
: Elist_Id
;
19539 Prim_Elmt
: Elmt_Id
;
19540 Priv_List
: Elist_Id
;
19544 L
: Elist_Id
) return Boolean;
19545 -- Determine whether list L contains element E
19553 L
: Elist_Id
) return Boolean
19555 List_Elmt
: Elmt_Id
;
19558 List_Elmt
:= First_Elmt
(L
);
19559 while Present
(List_Elmt
) loop
19560 if Node
(List_Elmt
) = E
then
19564 Next_Elmt
(List_Elmt
);
19570 -- Start of processing
19573 if Is_Tagged_Type
(Priv_T
) then
19574 Priv_List
:= Primitive_Operations
(Priv_T
);
19575 Prim_Elmt
:= First_Elmt
(Priv_List
);
19577 -- In the case of a concurrent type completing a private tagged
19578 -- type, primitives may have been declared in between the two
19579 -- views. These subprograms need to be wrapped the same way
19580 -- entries and protected procedures are handled because they
19581 -- cannot be directly shared by the two views.
19583 if Is_Concurrent_Type
(Full_T
) then
19585 Conc_Typ
: constant Entity_Id
:=
19586 Corresponding_Record_Type
(Full_T
);
19587 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
19588 Wrap_Spec
: Node_Id
;
19591 while Present
(Prim_Elmt
) loop
19592 Prim
:= Node
(Prim_Elmt
);
19594 if Comes_From_Source
(Prim
)
19595 and then not Is_Abstract_Subprogram
(Prim
)
19598 Make_Subprogram_Declaration
(Sloc
(Prim
),
19602 Obj_Typ
=> Conc_Typ
,
19604 Parameter_Specifications
(
19607 Insert_After
(Curr_Nod
, Wrap_Spec
);
19608 Curr_Nod
:= Wrap_Spec
;
19610 Analyze
(Wrap_Spec
);
19613 Next_Elmt
(Prim_Elmt
);
19619 -- For non-concurrent types, transfer explicit primitives, but
19620 -- omit those inherited from the parent of the private view
19621 -- since they will be re-inherited later on.
19624 Full_List
:= Primitive_Operations
(Full_T
);
19626 while Present
(Prim_Elmt
) loop
19627 Prim
:= Node
(Prim_Elmt
);
19629 if Comes_From_Source
(Prim
)
19630 and then not Contains
(Prim
, Full_List
)
19632 Append_Elmt
(Prim
, Full_List
);
19635 Next_Elmt
(Prim_Elmt
);
19639 -- Untagged private view
19642 Full_List
:= Primitive_Operations
(Full_T
);
19644 -- In this case the partial view is untagged, so here we locate
19645 -- all of the earlier primitives that need to be treated as
19646 -- dispatching (those that appear between the two views). Note
19647 -- that these additional operations must all be new operations
19648 -- (any earlier operations that override inherited operations
19649 -- of the full view will already have been inserted in the
19650 -- primitives list, marked by Check_Operation_From_Private_View
19651 -- as dispatching. Note that implicit "/=" operators are
19652 -- excluded from being added to the primitives list since they
19653 -- shouldn't be treated as dispatching (tagged "/=" is handled
19656 Prim
:= Next_Entity
(Full_T
);
19657 while Present
(Prim
) and then Prim
/= Priv_T
loop
19658 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
19659 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
19661 if Disp_Typ
= Full_T
19662 and then (Chars
(Prim
) /= Name_Op_Ne
19663 or else Comes_From_Source
(Prim
))
19665 Check_Controlling_Formals
(Full_T
, Prim
);
19667 if not Is_Dispatching_Operation
(Prim
) then
19668 Append_Elmt
(Prim
, Full_List
);
19669 Set_Is_Dispatching_Operation
(Prim
, True);
19670 Set_DT_Position
(Prim
, No_Uint
);
19673 elsif Is_Dispatching_Operation
(Prim
)
19674 and then Disp_Typ
/= Full_T
19677 -- Verify that it is not otherwise controlled by a
19678 -- formal or a return value of type T.
19680 Check_Controlling_Formals
(Disp_Typ
, Prim
);
19684 Next_Entity
(Prim
);
19688 -- For the tagged case, the two views can share the same primitive
19689 -- operations list and the same class-wide type. Update attributes
19690 -- of the class-wide type which depend on the full declaration.
19692 if Is_Tagged_Type
(Priv_T
) then
19693 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
19694 Set_Class_Wide_Type
19695 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
19697 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
19699 (Class_Wide_Type
(Priv_T
), Has_Protected
(Full_T
));
19704 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19706 if Known_To_Have_Preelab_Init
(Priv_T
) then
19708 -- Case where there is a pragma Preelaborable_Initialization. We
19709 -- always allow this in predefined units, which is cheating a bit,
19710 -- but it means we don't have to struggle to meet the requirements in
19711 -- the RM for having Preelaborable Initialization. Otherwise we
19712 -- require that the type meets the RM rules. But we can't check that
19713 -- yet, because of the rule about overriding Initialize, so we simply
19714 -- set a flag that will be checked at freeze time.
19716 if not In_Predefined_Unit
(Full_T
) then
19717 Set_Must_Have_Preelab_Init
(Full_T
);
19721 -- If pragma CPP_Class was applied to the private type declaration,
19722 -- propagate it now to the full type declaration.
19724 if Is_CPP_Class
(Priv_T
) then
19725 Set_Is_CPP_Class
(Full_T
);
19726 Set_Convention
(Full_T
, Convention_CPP
);
19728 -- Check that components of imported CPP types do not have default
19731 Check_CPP_Type_Has_No_Defaults
(Full_T
);
19734 -- If the private view has user specified stream attributes, then so has
19737 -- Why the test, how could these flags be already set in Full_T ???
19739 if Has_Specified_Stream_Read
(Priv_T
) then
19740 Set_Has_Specified_Stream_Read
(Full_T
);
19743 if Has_Specified_Stream_Write
(Priv_T
) then
19744 Set_Has_Specified_Stream_Write
(Full_T
);
19747 if Has_Specified_Stream_Input
(Priv_T
) then
19748 Set_Has_Specified_Stream_Input
(Full_T
);
19751 if Has_Specified_Stream_Output
(Priv_T
) then
19752 Set_Has_Specified_Stream_Output
(Full_T
);
19755 -- Propagate the attributes related to pragma Default_Initial_Condition
19756 -- from the private to the full view. Note that both flags are mutually
19759 if Has_Default_Init_Cond
(Priv_T
)
19760 or else Has_Inherited_Default_Init_Cond
(Priv_T
)
19762 Propagate_Default_Init_Cond_Attributes
19763 (From_Typ
=> Priv_T
,
19765 Private_To_Full_View
=> True);
19767 -- In the case where the full view is derived from another private type,
19768 -- the attributes related to pragma Default_Initial_Condition must be
19769 -- propagated from the full to the private view to maintain consistency
19773 -- type Parent_Typ is private
19774 -- with Default_Initial_Condition ...;
19776 -- type Parent_Typ is ...;
19779 -- with Pack; use Pack;
19780 -- package Pack_2 is
19781 -- type Deriv_Typ is private; -- must inherit
19783 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19786 elsif Has_Default_Init_Cond
(Full_T
)
19787 or else Has_Inherited_Default_Init_Cond
(Full_T
)
19789 Propagate_Default_Init_Cond_Attributes
19790 (From_Typ
=> Full_T
,
19792 Private_To_Full_View
=> True);
19795 -- Propagate the attributes related to pragma Ghost from the private to
19798 if Is_Ghost_Entity
(Priv_T
) then
19799 Set_Is_Ghost_Entity
(Full_T
);
19801 -- The Ghost policy in effect at the point of declaration and at the
19802 -- point of completion must match (SPARK RM 6.9(15)).
19804 Check_Ghost_Completion
(Priv_T
, Full_T
);
19806 -- In the case where the private view of a tagged type lacks a parent
19807 -- type and is subject to pragma Ghost, ensure that the parent type
19808 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19810 if Is_Derived_Type
(Full_T
) then
19811 Check_Ghost_Derivation
(Full_T
);
19815 -- Propagate invariants to full type
19817 if Has_Invariants
(Priv_T
) then
19818 Set_Has_Invariants
(Full_T
);
19819 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
19822 if Has_Inheritable_Invariants
(Priv_T
) then
19823 Set_Has_Inheritable_Invariants
(Full_T
);
19826 -- Propagate predicates to full type, and predicate function if already
19827 -- defined. It is not clear that this can actually happen? the partial
19828 -- view cannot be frozen yet, and the predicate function has not been
19829 -- built. Still it is a cheap check and seems safer to make it.
19831 if Has_Predicates
(Priv_T
) then
19832 if Present
(Predicate_Function
(Priv_T
)) then
19833 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
19836 Set_Has_Predicates
(Full_T
);
19838 end Process_Full_View
;
19840 -----------------------------------
19841 -- Process_Incomplete_Dependents --
19842 -----------------------------------
19844 procedure Process_Incomplete_Dependents
19846 Full_T
: Entity_Id
;
19849 Inc_Elmt
: Elmt_Id
;
19850 Priv_Dep
: Entity_Id
;
19851 New_Subt
: Entity_Id
;
19853 Disc_Constraint
: Elist_Id
;
19856 if No
(Private_Dependents
(Inc_T
)) then
19860 -- Itypes that may be generated by the completion of an incomplete
19861 -- subtype are not used by the back-end and not attached to the tree.
19862 -- They are created only for constraint-checking purposes.
19864 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
19865 while Present
(Inc_Elmt
) loop
19866 Priv_Dep
:= Node
(Inc_Elmt
);
19868 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
19870 -- An Access_To_Subprogram type may have a return type or a
19871 -- parameter type that is incomplete. Replace with the full view.
19873 if Etype
(Priv_Dep
) = Inc_T
then
19874 Set_Etype
(Priv_Dep
, Full_T
);
19878 Formal
: Entity_Id
;
19881 Formal
:= First_Formal
(Priv_Dep
);
19882 while Present
(Formal
) loop
19883 if Etype
(Formal
) = Inc_T
then
19884 Set_Etype
(Formal
, Full_T
);
19887 Next_Formal
(Formal
);
19891 elsif Is_Overloadable
(Priv_Dep
) then
19893 -- If a subprogram in the incomplete dependents list is primitive
19894 -- for a tagged full type then mark it as a dispatching operation,
19895 -- check whether it overrides an inherited subprogram, and check
19896 -- restrictions on its controlling formals. Note that a protected
19897 -- operation is never dispatching: only its wrapper operation
19898 -- (which has convention Ada) is.
19900 if Is_Tagged_Type
(Full_T
)
19901 and then Is_Primitive
(Priv_Dep
)
19902 and then Convention
(Priv_Dep
) /= Convention_Protected
19904 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
19905 Set_Is_Dispatching_Operation
(Priv_Dep
);
19906 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
19909 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
19911 -- Can happen during processing of a body before the completion
19912 -- of a TA type. Ignore, because spec is also on dependent list.
19916 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19917 -- corresponding subtype of the full view.
19919 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
19920 Set_Subtype_Indication
19921 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
19922 Set_Etype
(Priv_Dep
, Full_T
);
19923 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
19924 Set_Analyzed
(Parent
(Priv_Dep
), False);
19926 -- Reanalyze the declaration, suppressing the call to
19927 -- Enter_Name to avoid duplicate names.
19929 Analyze_Subtype_Declaration
19930 (N
=> Parent
(Priv_Dep
),
19933 -- Dependent is a subtype
19936 -- We build a new subtype indication using the full view of the
19937 -- incomplete parent. The discriminant constraints have been
19938 -- elaborated already at the point of the subtype declaration.
19940 New_Subt
:= Create_Itype
(E_Void
, N
);
19942 if Has_Discriminants
(Full_T
) then
19943 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
19945 Disc_Constraint
:= No_Elist
;
19948 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
19949 Set_Full_View
(Priv_Dep
, New_Subt
);
19952 Next_Elmt
(Inc_Elmt
);
19954 end Process_Incomplete_Dependents
;
19956 --------------------------------
19957 -- Process_Range_Expr_In_Decl --
19958 --------------------------------
19960 procedure Process_Range_Expr_In_Decl
19963 Subtyp
: Entity_Id
:= Empty
;
19964 Check_List
: List_Id
:= Empty_List
;
19965 R_Check_Off
: Boolean := False;
19966 In_Iter_Schm
: Boolean := False)
19969 R_Checks
: Check_Result
;
19970 Insert_Node
: Node_Id
;
19971 Def_Id
: Entity_Id
;
19974 Analyze_And_Resolve
(R
, Base_Type
(T
));
19976 if Nkind
(R
) = N_Range
then
19978 -- In SPARK, all ranges should be static, with the exception of the
19979 -- discrete type definition of a loop parameter specification.
19981 if not In_Iter_Schm
19982 and then not Is_OK_Static_Range
(R
)
19984 Check_SPARK_05_Restriction
("range should be static", R
);
19987 Lo
:= Low_Bound
(R
);
19988 Hi
:= High_Bound
(R
);
19990 -- Validity checks on the range of a quantified expression are
19991 -- delayed until the construct is transformed into a loop.
19993 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
19994 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
19998 -- We need to ensure validity of the bounds here, because if we
19999 -- go ahead and do the expansion, then the expanded code will get
20000 -- analyzed with range checks suppressed and we miss the check.
20002 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20003 -- the temporaries generated by routine Remove_Side_Effects by means
20004 -- of validity checks must use the same names. When a range appears
20005 -- in the parent of a generic, the range is processed with checks
20006 -- disabled as part of the generic context and with checks enabled
20007 -- for code generation purposes. This leads to link issues as the
20008 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20009 -- template sees the temporaries generated by Remove_Side_Effects.
20012 Validity_Check_Range
(R
, Subtyp
);
20015 -- If there were errors in the declaration, try and patch up some
20016 -- common mistakes in the bounds. The cases handled are literals
20017 -- which are Integer where the expected type is Real and vice versa.
20018 -- These corrections allow the compilation process to proceed further
20019 -- along since some basic assumptions of the format of the bounds
20022 if Etype
(R
) = Any_Type
then
20023 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20025 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
20027 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20029 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
20031 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20033 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
20035 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20037 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
20044 -- If the bounds of the range have been mistakenly given as string
20045 -- literals (perhaps in place of character literals), then an error
20046 -- has already been reported, but we rewrite the string literal as a
20047 -- bound of the range's type to avoid blowups in later processing
20048 -- that looks at static values.
20050 if Nkind
(Lo
) = N_String_Literal
then
20052 Make_Attribute_Reference
(Sloc
(Lo
),
20053 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
20054 Attribute_Name
=> Name_First
));
20055 Analyze_And_Resolve
(Lo
);
20058 if Nkind
(Hi
) = N_String_Literal
then
20060 Make_Attribute_Reference
(Sloc
(Hi
),
20061 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
20062 Attribute_Name
=> Name_First
));
20063 Analyze_And_Resolve
(Hi
);
20066 -- If bounds aren't scalar at this point then exit, avoiding
20067 -- problems with further processing of the range in this procedure.
20069 if not Is_Scalar_Type
(Etype
(Lo
)) then
20073 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20074 -- then range of the base type. Here we check whether the bounds
20075 -- are in the range of the subtype itself. Note that if the bounds
20076 -- represent the null range the Constraint_Error exception should
20079 -- ??? The following code should be cleaned up as follows
20081 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20082 -- is done in the call to Range_Check (R, T); below
20084 -- 2. The use of R_Check_Off should be investigated and possibly
20085 -- removed, this would clean up things a bit.
20087 if Is_Null_Range
(Lo
, Hi
) then
20091 -- Capture values of bounds and generate temporaries for them
20092 -- if needed, before applying checks, since checks may cause
20093 -- duplication of the expression without forcing evaluation.
20095 -- The forced evaluation removes side effects from expressions,
20096 -- which should occur also in GNATprove mode. Otherwise, we end up
20097 -- with unexpected insertions of actions at places where this is
20098 -- not supposed to occur, e.g. on default parameters of a call.
20100 if Expander_Active
or GNATprove_Mode
then
20102 -- If no subtype name, then just call Force_Evaluation to
20103 -- create declarations as needed to deal with side effects.
20104 -- Also ignore calls from within a record type, where we
20105 -- have possible scoping issues.
20107 if No
(Subtyp
) or else Is_Record_Type
(Current_Scope
) then
20108 Force_Evaluation
(Lo
);
20109 Force_Evaluation
(Hi
);
20111 -- If a subtype is given, then we capture the bounds if they
20112 -- are not known at compile time, using constant identifiers
20113 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
20115 -- Note: we do this transformation even if expansion is not
20116 -- active, and in particular we do it in GNATprove_Mode since
20117 -- the transformation is in general required to ensure that the
20118 -- resulting tree has proper Ada semantics.
20120 -- Historical note: We used to just do Force_Evaluation calls
20121 -- in all cases, but it is better to capture the bounds with
20122 -- proper non-serialized names, since these will be accessed
20123 -- from other units, and hence may be public, and also we can
20124 -- then expand 'First and 'Last references to be references to
20125 -- these special names.
20128 if not Compile_Time_Known_Value
(Lo
)
20130 -- No need to capture bounds if they already are
20131 -- references to constants.
20133 and then not (Is_Entity_Name
(Lo
)
20134 and then Is_Constant_Object
(Entity
(Lo
)))
20137 Loc
: constant Source_Ptr
:= Sloc
(Lo
);
20138 Lov
: constant Entity_Id
:=
20139 Make_Defining_Identifier
(Loc
,
20141 New_External_Name
(Chars
(Subtyp
), "_FIRST"));
20144 Make_Object_Declaration
(Loc
,
20145 Defining_Identifier
=> Lov
,
20146 Object_Definition
=>
20147 New_Occurrence_Of
(Base_Type
(T
), Loc
),
20148 Constant_Present
=> True,
20149 Expression
=> Relocate_Node
(Lo
)));
20150 Rewrite
(Lo
, New_Occurrence_Of
(Lov
, Loc
));
20154 if not Compile_Time_Known_Value
(Hi
)
20155 and then not (Is_Entity_Name
(Hi
)
20156 and then Is_Constant_Object
(Entity
(Hi
)))
20159 Loc
: constant Source_Ptr
:= Sloc
(Hi
);
20160 Hiv
: constant Entity_Id
:=
20161 Make_Defining_Identifier
(Loc
,
20163 New_External_Name
(Chars
(Subtyp
), "_LAST"));
20166 Make_Object_Declaration
(Loc
,
20167 Defining_Identifier
=> Hiv
,
20168 Object_Definition
=>
20169 New_Occurrence_Of
(Base_Type
(T
), Loc
),
20170 Constant_Present
=> True,
20171 Expression
=> Relocate_Node
(Hi
)));
20172 Rewrite
(Hi
, New_Occurrence_Of
(Hiv
, Loc
));
20178 -- We use a flag here instead of suppressing checks on the
20179 -- type because the type we check against isn't necessarily
20180 -- the place where we put the check.
20182 if not R_Check_Off
then
20183 R_Checks
:= Get_Range_Checks
(R
, T
);
20185 -- Look up tree to find an appropriate insertion point. We
20186 -- can't just use insert_actions because later processing
20187 -- depends on the insertion node. Prior to Ada 2012 the
20188 -- insertion point could only be a declaration or a loop, but
20189 -- quantified expressions can appear within any context in an
20190 -- expression, and the insertion point can be any statement,
20191 -- pragma, or declaration.
20193 Insert_Node
:= Parent
(R
);
20194 while Present
(Insert_Node
) loop
20196 Nkind
(Insert_Node
) in N_Declaration
20199 (Insert_Node
, N_Component_Declaration
,
20200 N_Loop_Parameter_Specification
,
20201 N_Function_Specification
,
20202 N_Procedure_Specification
);
20204 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
20205 or else Nkind
(Insert_Node
) in
20206 N_Statement_Other_Than_Procedure_Call
20207 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
20210 Insert_Node
:= Parent
(Insert_Node
);
20213 -- Why would Type_Decl not be present??? Without this test,
20214 -- short regression tests fail.
20216 if Present
(Insert_Node
) then
20218 -- Case of loop statement. Verify that the range is part
20219 -- of the subtype indication of the iteration scheme.
20221 if Nkind
(Insert_Node
) = N_Loop_Statement
then
20226 Indic
:= Parent
(R
);
20227 while Present
(Indic
)
20228 and then Nkind
(Indic
) /= N_Subtype_Indication
20230 Indic
:= Parent
(Indic
);
20233 if Present
(Indic
) then
20234 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
20236 Insert_Range_Checks
20240 Sloc
(Insert_Node
),
20242 Do_Before
=> True);
20246 -- Insertion before a declaration. If the declaration
20247 -- includes discriminants, the list of applicable checks
20248 -- is given by the caller.
20250 elsif Nkind
(Insert_Node
) in N_Declaration
then
20251 Def_Id
:= Defining_Identifier
(Insert_Node
);
20253 if (Ekind
(Def_Id
) = E_Record_Type
20254 and then Depends_On_Discriminant
(R
))
20256 (Ekind
(Def_Id
) = E_Protected_Type
20257 and then Has_Discriminants
(Def_Id
))
20259 Append_Range_Checks
20261 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
20264 Insert_Range_Checks
20266 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
20270 -- Insertion before a statement. Range appears in the
20271 -- context of a quantified expression. Insertion will
20272 -- take place when expression is expanded.
20281 -- Case of other than an explicit N_Range node
20283 -- The forced evaluation removes side effects from expressions, which
20284 -- should occur also in GNATprove mode. Otherwise, we end up with
20285 -- unexpected insertions of actions at places where this is not
20286 -- supposed to occur, e.g. on default parameters of a call.
20288 elsif Expander_Active
or GNATprove_Mode
then
20289 Get_Index_Bounds
(R
, Lo
, Hi
);
20290 Force_Evaluation
(Lo
);
20291 Force_Evaluation
(Hi
);
20293 end Process_Range_Expr_In_Decl
;
20295 --------------------------------------
20296 -- Process_Real_Range_Specification --
20297 --------------------------------------
20299 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
20300 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
20303 Err
: Boolean := False;
20305 procedure Analyze_Bound
(N
: Node_Id
);
20306 -- Analyze and check one bound
20308 -------------------
20309 -- Analyze_Bound --
20310 -------------------
20312 procedure Analyze_Bound
(N
: Node_Id
) is
20314 Analyze_And_Resolve
(N
, Any_Real
);
20316 if not Is_OK_Static_Expression
(N
) then
20317 Flag_Non_Static_Expr
20318 ("bound in real type definition is not static!", N
);
20323 -- Start of processing for Process_Real_Range_Specification
20326 if Present
(Spec
) then
20327 Lo
:= Low_Bound
(Spec
);
20328 Hi
:= High_Bound
(Spec
);
20329 Analyze_Bound
(Lo
);
20330 Analyze_Bound
(Hi
);
20332 -- If error, clear away junk range specification
20335 Set_Real_Range_Specification
(Def
, Empty
);
20338 end Process_Real_Range_Specification
;
20340 ---------------------
20341 -- Process_Subtype --
20342 ---------------------
20344 function Process_Subtype
20346 Related_Nod
: Node_Id
;
20347 Related_Id
: Entity_Id
:= Empty
;
20348 Suffix
: Character := ' ') return Entity_Id
20351 Def_Id
: Entity_Id
;
20352 Error_Node
: Node_Id
;
20353 Full_View_Id
: Entity_Id
;
20354 Subtype_Mark_Id
: Entity_Id
;
20356 May_Have_Null_Exclusion
: Boolean;
20358 procedure Check_Incomplete
(T
: Entity_Id
);
20359 -- Called to verify that an incomplete type is not used prematurely
20361 ----------------------
20362 -- Check_Incomplete --
20363 ----------------------
20365 procedure Check_Incomplete
(T
: Entity_Id
) is
20367 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20369 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
20371 not (Ada_Version
>= Ada_2005
20373 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
20374 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
20375 and then Nkind
(Parent
(Parent
(T
))) =
20376 N_Subtype_Declaration
)))
20378 Error_Msg_N
("invalid use of type before its full declaration", T
);
20380 end Check_Incomplete
;
20382 -- Start of processing for Process_Subtype
20385 -- Case of no constraints present
20387 if Nkind
(S
) /= N_Subtype_Indication
then
20389 Check_Incomplete
(S
);
20392 -- Ada 2005 (AI-231): Static check
20394 if Ada_Version
>= Ada_2005
20395 and then Present
(P
)
20396 and then Null_Exclusion_Present
(P
)
20397 and then Nkind
(P
) /= N_Access_To_Object_Definition
20398 and then not Is_Access_Type
(Entity
(S
))
20400 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
20403 -- The following is ugly, can't we have a range or even a flag???
20405 May_Have_Null_Exclusion
:=
20406 Nkind_In
(P
, N_Access_Definition
,
20407 N_Access_Function_Definition
,
20408 N_Access_Procedure_Definition
,
20409 N_Access_To_Object_Definition
,
20411 N_Component_Definition
)
20413 Nkind_In
(P
, N_Derived_Type_Definition
,
20414 N_Discriminant_Specification
,
20415 N_Formal_Object_Declaration
,
20416 N_Object_Declaration
,
20417 N_Object_Renaming_Declaration
,
20418 N_Parameter_Specification
,
20419 N_Subtype_Declaration
);
20421 -- Create an Itype that is a duplicate of Entity (S) but with the
20422 -- null-exclusion attribute.
20424 if May_Have_Null_Exclusion
20425 and then Is_Access_Type
(Entity
(S
))
20426 and then Null_Exclusion_Present
(P
)
20428 -- No need to check the case of an access to object definition.
20429 -- It is correct to define double not-null pointers.
20432 -- type Not_Null_Int_Ptr is not null access Integer;
20433 -- type Acc is not null access Not_Null_Int_Ptr;
20435 and then Nkind
(P
) /= N_Access_To_Object_Definition
20437 if Can_Never_Be_Null
(Entity
(S
)) then
20438 case Nkind
(Related_Nod
) is
20439 when N_Full_Type_Declaration
=>
20440 if Nkind
(Type_Definition
(Related_Nod
))
20441 in N_Array_Type_Definition
20445 (Component_Definition
20446 (Type_Definition
(Related_Nod
)));
20449 Subtype_Indication
(Type_Definition
(Related_Nod
));
20452 when N_Subtype_Declaration
=>
20453 Error_Node
:= Subtype_Indication
(Related_Nod
);
20455 when N_Object_Declaration
=>
20456 Error_Node
:= Object_Definition
(Related_Nod
);
20458 when N_Component_Declaration
=>
20460 Subtype_Indication
(Component_Definition
(Related_Nod
));
20462 when N_Allocator
=>
20463 Error_Node
:= Expression
(Related_Nod
);
20466 pragma Assert
(False);
20467 Error_Node
:= Related_Nod
;
20471 ("`NOT NULL` not allowed (& already excludes null)",
20477 Create_Null_Excluding_Itype
20479 Related_Nod
=> P
));
20480 Set_Entity
(S
, Etype
(S
));
20485 -- Case of constraint present, so that we have an N_Subtype_Indication
20486 -- node (this node is created only if constraints are present).
20489 Find_Type
(Subtype_Mark
(S
));
20491 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
20493 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
20494 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
20496 Check_Incomplete
(Subtype_Mark
(S
));
20500 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
20502 -- Explicit subtype declaration case
20504 if Nkind
(P
) = N_Subtype_Declaration
then
20505 Def_Id
:= Defining_Identifier
(P
);
20507 -- Explicit derived type definition case
20509 elsif Nkind
(P
) = N_Derived_Type_Definition
then
20510 Def_Id
:= Defining_Identifier
(Parent
(P
));
20512 -- Implicit case, the Def_Id must be created as an implicit type.
20513 -- The one exception arises in the case of concurrent types, array
20514 -- and access types, where other subsidiary implicit types may be
20515 -- created and must appear before the main implicit type. In these
20516 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20517 -- has not yet been called to create Def_Id.
20520 if Is_Array_Type
(Subtype_Mark_Id
)
20521 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
20522 or else Is_Access_Type
(Subtype_Mark_Id
)
20526 -- For the other cases, we create a new unattached Itype,
20527 -- and set the indication to ensure it gets attached later.
20531 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20535 -- If the kind of constraint is invalid for this kind of type,
20536 -- then give an error, and then pretend no constraint was given.
20538 if not Is_Valid_Constraint_Kind
20539 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
20542 ("incorrect constraint for this kind of type", Constraint
(S
));
20544 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
20546 -- Set Ekind of orphan itype, to prevent cascaded errors
20548 if Present
(Def_Id
) then
20549 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
20552 -- Make recursive call, having got rid of the bogus constraint
20554 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
20557 -- Remaining processing depends on type. Select on Base_Type kind to
20558 -- ensure getting to the concrete type kind in the case of a private
20559 -- subtype (needed when only doing semantic analysis).
20561 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
20562 when Access_Kind
=>
20564 -- If this is a constraint on a class-wide type, discard it.
20565 -- There is currently no way to express a partial discriminant
20566 -- constraint on a type with unknown discriminants. This is
20567 -- a pathology that the ACATS wisely decides not to test.
20569 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
20570 if Comes_From_Source
(S
) then
20572 ("constraint on class-wide type ignored??",
20576 if Nkind
(P
) = N_Subtype_Declaration
then
20577 Set_Subtype_Indication
(P
,
20578 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
20581 return Subtype_Mark_Id
;
20584 Constrain_Access
(Def_Id
, S
, Related_Nod
);
20587 and then Is_Itype
(Designated_Type
(Def_Id
))
20588 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
20589 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
20591 Build_Itype_Reference
20592 (Designated_Type
(Def_Id
), Related_Nod
);
20596 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
20598 when Decimal_Fixed_Point_Kind
=>
20599 Constrain_Decimal
(Def_Id
, S
);
20601 when Enumeration_Kind
=>
20602 Constrain_Enumeration
(Def_Id
, S
);
20603 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20605 when Ordinary_Fixed_Point_Kind
=>
20606 Constrain_Ordinary_Fixed
(Def_Id
, S
);
20609 Constrain_Float
(Def_Id
, S
);
20611 when Integer_Kind
=>
20612 Constrain_Integer
(Def_Id
, S
);
20613 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20615 when E_Record_Type |
20618 E_Incomplete_Type
=>
20619 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20621 if Ekind
(Def_Id
) = E_Incomplete_Type
then
20622 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20625 when Private_Kind
=>
20626 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20627 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20629 -- In case of an invalid constraint prevent further processing
20630 -- since the type constructed is missing expected fields.
20632 if Etype
(Def_Id
) = Any_Type
then
20636 -- If the full view is that of a task with discriminants,
20637 -- we must constrain both the concurrent type and its
20638 -- corresponding record type. Otherwise we will just propagate
20639 -- the constraint to the full view, if available.
20641 if Present
(Full_View
(Subtype_Mark_Id
))
20642 and then Has_Discriminants
(Subtype_Mark_Id
)
20643 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
20646 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20648 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
20649 Constrain_Concurrent
(Full_View_Id
, S
,
20650 Related_Nod
, Related_Id
, Suffix
);
20651 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
20652 Set_Full_View
(Def_Id
, Full_View_Id
);
20654 -- Introduce an explicit reference to the private subtype,
20655 -- to prevent scope anomalies in gigi if first use appears
20656 -- in a nested context, e.g. a later function body.
20657 -- Should this be generated in other contexts than a full
20658 -- type declaration?
20660 if Is_Itype
(Def_Id
)
20662 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
20664 Build_Itype_Reference
(Def_Id
, Parent
(P
));
20668 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
20671 when Concurrent_Kind
=>
20672 Constrain_Concurrent
(Def_Id
, S
,
20673 Related_Nod
, Related_Id
, Suffix
);
20676 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
20679 -- Size and Convention are always inherited from the base type
20681 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
20682 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
20686 end Process_Subtype
;
20688 --------------------------------------------
20689 -- Propagate_Default_Init_Cond_Attributes --
20690 --------------------------------------------
20692 procedure Propagate_Default_Init_Cond_Attributes
20693 (From_Typ
: Entity_Id
;
20694 To_Typ
: Entity_Id
;
20695 Parent_To_Derivation
: Boolean := False;
20696 Private_To_Full_View
: Boolean := False)
20698 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
);
20699 -- Remove the default initial procedure (if any) from the rep chain of
20702 ----------------------------------------
20703 -- Remove_Default_Init_Cond_Procedure --
20704 ----------------------------------------
20706 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
) is
20707 Found
: Boolean := False;
20713 Subp
:= Subprograms_For_Type
(Typ
);
20714 while Present
(Subp
) loop
20715 if Is_Default_Init_Cond_Procedure
(Subp
) then
20721 Subp
:= Subprograms_For_Type
(Subp
);
20725 Set_Subprograms_For_Type
(Prev
, Subprograms_For_Type
(Subp
));
20726 Set_Subprograms_For_Type
(Subp
, Empty
);
20728 end Remove_Default_Init_Cond_Procedure
;
20732 Inherit_Procedure
: Boolean := False;
20734 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20737 if Has_Default_Init_Cond
(From_Typ
) then
20739 -- A derived type inherits the attributes from its parent type
20741 if Parent_To_Derivation
then
20742 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20744 -- A full view shares the attributes with its private view
20747 Set_Has_Default_Init_Cond
(To_Typ
);
20750 Inherit_Procedure
:= True;
20752 -- Due to the order of expansion, a derived private type is processed
20753 -- by two routines which both attempt to set the attributes related
20754 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20755 -- Process_Full_View.
20758 -- type Parent_Typ is private
20759 -- with Default_Initial_Condition ...;
20761 -- type Parent_Typ is ...;
20764 -- with Pack; use Pack;
20765 -- package Pack_2 is
20766 -- type Deriv_Typ is private
20767 -- with Default_Initial_Condition ...;
20769 -- type Deriv_Typ is new Parent_Typ;
20772 -- When Build_Derived_Type operates, it sets the attributes on the
20773 -- full view without taking into account that the private view may
20774 -- define its own default initial condition procedure. This becomes
20775 -- apparent in Process_Full_View which must undo some of the work by
20776 -- Build_Derived_Type and propagate the attributes from the private
20777 -- to the full view.
20779 if Private_To_Full_View
then
20780 Set_Has_Inherited_Default_Init_Cond
(To_Typ
, False);
20781 Remove_Default_Init_Cond_Procedure
(To_Typ
);
20784 -- A type must inherit the default initial condition procedure from a
20785 -- parent type when the parent itself is inheriting the procedure or
20786 -- when it is defining one. This circuitry is also used when dealing
20787 -- with the private / full view of a type.
20789 elsif Has_Inherited_Default_Init_Cond
(From_Typ
)
20790 or (Parent_To_Derivation
20791 and Present
(Get_Pragma
20792 (From_Typ
, Pragma_Default_Initial_Condition
)))
20794 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20795 Inherit_Procedure
:= True;
20798 if Inherit_Procedure
20799 and then No
(Default_Init_Cond_Procedure
(To_Typ
))
20801 Set_Default_Init_Cond_Procedure
20802 (To_Typ
, Default_Init_Cond_Procedure
(From_Typ
));
20804 end Propagate_Default_Init_Cond_Attributes
;
20806 -----------------------------
20807 -- Record_Type_Declaration --
20808 -----------------------------
20810 procedure Record_Type_Declaration
20815 Def
: constant Node_Id
:= Type_Definition
(N
);
20816 Is_Tagged
: Boolean;
20817 Tag_Comp
: Entity_Id
;
20820 -- These flags must be initialized before calling Process_Discriminants
20821 -- because this routine makes use of them.
20823 Set_Ekind
(T
, E_Record_Type
);
20825 Init_Size_Align
(T
);
20826 Set_Interfaces
(T
, No_Elist
);
20827 Set_Stored_Constraint
(T
, No_Elist
);
20828 Set_Default_SSO
(T
);
20832 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
20833 if Limited_Present
(Def
) then
20834 Check_SPARK_05_Restriction
("limited is not allowed", N
);
20837 if Abstract_Present
(Def
) then
20838 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
20841 -- The flag Is_Tagged_Type might have already been set by
20842 -- Find_Type_Name if it detected an error for declaration T. This
20843 -- arises in the case of private tagged types where the full view
20844 -- omits the word tagged.
20847 Tagged_Present
(Def
)
20848 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
20850 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
20853 Set_Is_Tagged_Type
(T
, True);
20854 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
20857 -- Type is abstract if full declaration carries keyword, or if
20858 -- previous partial view did.
20860 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
20861 or else Abstract_Present
(Def
));
20864 Check_SPARK_05_Restriction
("interface is not allowed", N
);
20867 Analyze_Interface_Declaration
(T
, Def
);
20869 if Present
(Discriminant_Specifications
(N
)) then
20871 ("interface types cannot have discriminants",
20872 Defining_Identifier
20873 (First
(Discriminant_Specifications
(N
))));
20877 -- First pass: if there are self-referential access components,
20878 -- create the required anonymous access type declarations, and if
20879 -- need be an incomplete type declaration for T itself.
20881 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
20883 if Ada_Version
>= Ada_2005
20884 and then Present
(Interface_List
(Def
))
20886 Check_Interfaces
(N
, Def
);
20889 Ifaces_List
: Elist_Id
;
20892 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20893 -- already in the parents.
20897 Ifaces_List
=> Ifaces_List
,
20898 Exclude_Parents
=> True);
20900 Set_Interfaces
(T
, Ifaces_List
);
20904 -- Records constitute a scope for the component declarations within.
20905 -- The scope is created prior to the processing of these declarations.
20906 -- Discriminants are processed first, so that they are visible when
20907 -- processing the other components. The Ekind of the record type itself
20908 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20910 -- Enter record scope
20914 -- If an incomplete or private type declaration was already given for
20915 -- the type, then this scope already exists, and the discriminants have
20916 -- been declared within. We must verify that the full declaration
20917 -- matches the incomplete one.
20919 Check_Or_Process_Discriminants
(N
, T
, Prev
);
20921 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
20922 Set_Has_Delayed_Freeze
(T
, True);
20924 -- For tagged types add a manually analyzed component corresponding
20925 -- to the component _tag, the corresponding piece of tree will be
20926 -- expanded as part of the freezing actions if it is not a CPP_Class.
20930 -- Do not add the tag unless we are in expansion mode
20932 if Expander_Active
then
20933 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
20934 Enter_Name
(Tag_Comp
);
20936 Set_Ekind
(Tag_Comp
, E_Component
);
20937 Set_Is_Tag
(Tag_Comp
);
20938 Set_Is_Aliased
(Tag_Comp
);
20939 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
20940 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
20941 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
20942 Init_Component_Location
(Tag_Comp
);
20944 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20945 -- implemented interfaces.
20947 if Has_Interfaces
(T
) then
20948 Add_Interface_Tag_Components
(N
, T
);
20952 Make_Class_Wide_Type
(T
);
20953 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
20956 -- We must suppress range checks when processing record components in
20957 -- the presence of discriminants, since we don't want spurious checks to
20958 -- be generated during their analysis, but Suppress_Range_Checks flags
20959 -- must be reset the after processing the record definition.
20961 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20962 -- couldn't we just use the normal range check suppression method here.
20963 -- That would seem cleaner ???
20965 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
20966 Set_Kill_Range_Checks
(T
, True);
20967 Record_Type_Definition
(Def
, Prev
);
20968 Set_Kill_Range_Checks
(T
, False);
20970 Record_Type_Definition
(Def
, Prev
);
20973 -- Exit from record scope
20977 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20978 -- the implemented interfaces and associate them an aliased entity.
20981 and then not Is_Empty_List
(Interface_List
(Def
))
20983 Derive_Progenitor_Subprograms
(T
, T
);
20986 Check_Function_Writable_Actuals
(N
);
20987 end Record_Type_Declaration
;
20989 ----------------------------
20990 -- Record_Type_Definition --
20991 ----------------------------
20993 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
20994 Component
: Entity_Id
;
20995 Ctrl_Components
: Boolean := False;
20996 Final_Storage_Only
: Boolean;
21000 if Ekind
(Prev_T
) = E_Incomplete_Type
then
21001 T
:= Full_View
(Prev_T
);
21006 -- In SPARK, tagged types and type extensions may only be declared in
21007 -- the specification of library unit packages.
21009 if Present
(Def
) and then Is_Tagged_Type
(T
) then
21015 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
21016 Typ
:= Parent
(Def
);
21019 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
21020 Typ
:= Parent
(Parent
(Def
));
21023 Ctxt
:= Parent
(Typ
);
21025 if Nkind
(Ctxt
) = N_Package_Body
21026 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
21028 Check_SPARK_05_Restriction
21029 ("type should be defined in package specification", Typ
);
21031 elsif Nkind
(Ctxt
) /= N_Package_Specification
21032 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
21034 Check_SPARK_05_Restriction
21035 ("type should be defined in library unit package", Typ
);
21040 Final_Storage_Only
:= not Is_Controlled
(T
);
21042 -- Ada 2005: Check whether an explicit Limited is present in a derived
21043 -- type declaration.
21045 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
21046 and then Limited_Present
(Parent
(Def
))
21048 Set_Is_Limited_Record
(T
);
21051 -- If the component list of a record type is defined by the reserved
21052 -- word null and there is no discriminant part, then the record type has
21053 -- no components and all records of the type are null records (RM 3.7)
21054 -- This procedure is also called to process the extension part of a
21055 -- record extension, in which case the current scope may have inherited
21059 or else No
(Component_List
(Def
))
21060 or else Null_Present
(Component_List
(Def
))
21062 if not Is_Tagged_Type
(T
) then
21063 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
21067 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
21069 if Present
(Variant_Part
(Component_List
(Def
))) then
21070 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
21071 Analyze
(Variant_Part
(Component_List
(Def
)));
21075 -- After completing the semantic analysis of the record definition,
21076 -- record components, both new and inherited, are accessible. Set their
21077 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21078 -- whose Ekind may be void.
21080 Component
:= First_Entity
(Current_Scope
);
21081 while Present
(Component
) loop
21082 if Ekind
(Component
) = E_Void
21083 and then not Is_Itype
(Component
)
21085 Set_Ekind
(Component
, E_Component
);
21086 Init_Component_Location
(Component
);
21089 if Has_Task
(Etype
(Component
)) then
21093 if Has_Protected
(Etype
(Component
)) then
21094 Set_Has_Protected
(T
);
21097 if Ekind
(Component
) /= E_Component
then
21100 -- Do not set Has_Controlled_Component on a class-wide equivalent
21101 -- type. See Make_CW_Equivalent_Type.
21103 elsif not Is_Class_Wide_Equivalent_Type
(T
)
21104 and then (Has_Controlled_Component
(Etype
(Component
))
21105 or else (Chars
(Component
) /= Name_uParent
21106 and then Is_Controlled
(Etype
(Component
))))
21108 Set_Has_Controlled_Component
(T
, True);
21109 Final_Storage_Only
:=
21111 and then Finalize_Storage_Only
(Etype
(Component
));
21112 Ctrl_Components
:= True;
21115 Next_Entity
(Component
);
21118 -- A Type is Finalize_Storage_Only only if all its controlled components
21121 if Ctrl_Components
then
21122 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
21125 -- Place reference to end record on the proper entity, which may
21126 -- be a partial view.
21128 if Present
(Def
) then
21129 Process_End_Label
(Def
, 'e', Prev_T
);
21131 end Record_Type_Definition
;
21133 ------------------------
21134 -- Replace_Components --
21135 ------------------------
21137 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
21138 function Process
(N
: Node_Id
) return Traverse_Result
;
21144 function Process
(N
: Node_Id
) return Traverse_Result
is
21148 if Nkind
(N
) = N_Discriminant_Specification
then
21149 Comp
:= First_Discriminant
(Typ
);
21150 while Present
(Comp
) loop
21151 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21152 Set_Defining_Identifier
(N
, Comp
);
21156 Next_Discriminant
(Comp
);
21159 elsif Nkind
(N
) = N_Component_Declaration
then
21160 Comp
:= First_Component
(Typ
);
21161 while Present
(Comp
) loop
21162 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21163 Set_Defining_Identifier
(N
, Comp
);
21167 Next_Component
(Comp
);
21174 procedure Replace
is new Traverse_Proc
(Process
);
21176 -- Start of processing for Replace_Components
21180 end Replace_Components
;
21182 -------------------------------
21183 -- Set_Completion_Referenced --
21184 -------------------------------
21186 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
21188 -- If in main unit, mark entity that is a completion as referenced,
21189 -- warnings go on the partial view when needed.
21191 if In_Extended_Main_Source_Unit
(E
) then
21192 Set_Referenced
(E
);
21194 end Set_Completion_Referenced
;
21196 ---------------------
21197 -- Set_Default_SSO --
21198 ---------------------
21200 procedure Set_Default_SSO
(T
: Entity_Id
) is
21202 case Opt
.Default_SSO
is
21206 Set_SSO_Set_Low_By_Default
(T
, True);
21208 Set_SSO_Set_High_By_Default
(T
, True);
21210 raise Program_Error
;
21212 end Set_Default_SSO
;
21214 ---------------------
21215 -- Set_Fixed_Range --
21216 ---------------------
21218 -- The range for fixed-point types is complicated by the fact that we
21219 -- do not know the exact end points at the time of the declaration. This
21220 -- is true for three reasons:
21222 -- A size clause may affect the fudging of the end-points.
21223 -- A small clause may affect the values of the end-points.
21224 -- We try to include the end-points if it does not affect the size.
21226 -- This means that the actual end-points must be established at the
21227 -- point when the type is frozen. Meanwhile, we first narrow the range
21228 -- as permitted (so that it will fit if necessary in a small specified
21229 -- size), and then build a range subtree with these narrowed bounds.
21230 -- Set_Fixed_Range constructs the range from real literal values, and
21231 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21233 -- The parent of this range is set to point to the entity so that it is
21234 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21235 -- other scalar types, which are just pointers to the range in the
21236 -- original tree, this would otherwise be an orphan).
21238 -- The tree is left unanalyzed. When the type is frozen, the processing
21239 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21240 -- analyzed, and uses this as an indication that it should complete
21241 -- work on the range (it will know the final small and size values).
21243 procedure Set_Fixed_Range
21249 S
: constant Node_Id
:=
21251 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
21252 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
21254 Set_Scalar_Range
(E
, S
);
21257 -- Before the freeze point, the bounds of a fixed point are universal
21258 -- and carry the corresponding type.
21260 Set_Etype
(Low_Bound
(S
), Universal_Real
);
21261 Set_Etype
(High_Bound
(S
), Universal_Real
);
21262 end Set_Fixed_Range
;
21264 ----------------------------------
21265 -- Set_Scalar_Range_For_Subtype --
21266 ----------------------------------
21268 procedure Set_Scalar_Range_For_Subtype
21269 (Def_Id
: Entity_Id
;
21273 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
21276 -- Defend against previous error
21278 if Nkind
(R
) = N_Error
then
21282 Set_Scalar_Range
(Def_Id
, R
);
21284 -- We need to link the range into the tree before resolving it so
21285 -- that types that are referenced, including importantly the subtype
21286 -- itself, are properly frozen (Freeze_Expression requires that the
21287 -- expression be properly linked into the tree). Of course if it is
21288 -- already linked in, then we do not disturb the current link.
21290 if No
(Parent
(R
)) then
21291 Set_Parent
(R
, Def_Id
);
21294 -- Reset the kind of the subtype during analysis of the range, to
21295 -- catch possible premature use in the bounds themselves.
21297 Set_Ekind
(Def_Id
, E_Void
);
21298 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
21299 Set_Ekind
(Def_Id
, Kind
);
21300 end Set_Scalar_Range_For_Subtype
;
21302 --------------------------------------------------------
21303 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21304 --------------------------------------------------------
21306 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21310 -- Make sure set if encountered during Expand_To_Stored_Constraint
21312 Set_Stored_Constraint
(E
, No_Elist
);
21314 -- Give it the right value
21316 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
21317 Set_Stored_Constraint
(E
,
21318 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
21320 end Set_Stored_Constraint_From_Discriminant_Constraint
;
21322 -------------------------------------
21323 -- Signed_Integer_Type_Declaration --
21324 -------------------------------------
21326 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
21327 Implicit_Base
: Entity_Id
;
21328 Base_Typ
: Entity_Id
;
21331 Errs
: Boolean := False;
21335 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
21336 -- Determine whether given bounds allow derivation from specified type
21338 procedure Check_Bound
(Expr
: Node_Id
);
21339 -- Check bound to make sure it is integral and static. If not, post
21340 -- appropriate error message and set Errs flag
21342 ---------------------
21343 -- Can_Derive_From --
21344 ---------------------
21346 -- Note we check both bounds against both end values, to deal with
21347 -- strange types like ones with a range of 0 .. -12341234.
21349 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
21350 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
21351 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
21353 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
21355 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
21356 end Can_Derive_From
;
21362 procedure Check_Bound
(Expr
: Node_Id
) is
21364 -- If a range constraint is used as an integer type definition, each
21365 -- bound of the range must be defined by a static expression of some
21366 -- integer type, but the two bounds need not have the same integer
21367 -- type (Negative bounds are allowed.) (RM 3.5.4)
21369 if not Is_Integer_Type
(Etype
(Expr
)) then
21371 ("integer type definition bounds must be of integer type", Expr
);
21374 elsif not Is_OK_Static_Expression
(Expr
) then
21375 Flag_Non_Static_Expr
21376 ("non-static expression used for integer type bound!", Expr
);
21379 -- The bounds are folded into literals, and we set their type to be
21380 -- universal, to avoid typing difficulties: we cannot set the type
21381 -- of the literal to the new type, because this would be a forward
21382 -- reference for the back end, and if the original type is user-
21383 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21386 if Is_Entity_Name
(Expr
) then
21387 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
21390 Set_Etype
(Expr
, Universal_Integer
);
21394 -- Start of processing for Signed_Integer_Type_Declaration
21397 -- Create an anonymous base type
21400 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
21402 -- Analyze and check the bounds, they can be of any integer type
21404 Lo
:= Low_Bound
(Def
);
21405 Hi
:= High_Bound
(Def
);
21407 -- Arbitrarily use Integer as the type if either bound had an error
21409 if Hi
= Error
or else Lo
= Error
then
21410 Base_Typ
:= Any_Integer
;
21411 Set_Error_Posted
(T
, True);
21413 -- Here both bounds are OK expressions
21416 Analyze_And_Resolve
(Lo
, Any_Integer
);
21417 Analyze_And_Resolve
(Hi
, Any_Integer
);
21423 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21424 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21427 -- Find type to derive from
21429 Lo_Val
:= Expr_Value
(Lo
);
21430 Hi_Val
:= Expr_Value
(Hi
);
21432 if Can_Derive_From
(Standard_Short_Short_Integer
) then
21433 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
21435 elsif Can_Derive_From
(Standard_Short_Integer
) then
21436 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
21438 elsif Can_Derive_From
(Standard_Integer
) then
21439 Base_Typ
:= Base_Type
(Standard_Integer
);
21441 elsif Can_Derive_From
(Standard_Long_Integer
) then
21442 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
21444 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
21445 Check_Restriction
(No_Long_Long_Integers
, Def
);
21446 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21449 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21450 Error_Msg_N
("integer type definition bounds out of range", Def
);
21451 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21452 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21456 -- Complete both implicit base and declared first subtype entities. The
21457 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21458 -- are not clobbered when the signed integer type acts as a full view of
21461 Set_Etype
(Implicit_Base
, Base_Typ
);
21462 Set_Size_Info
(Implicit_Base
, Base_Typ
);
21463 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
21464 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
21465 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
21467 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
21468 Set_Etype
(T
, Implicit_Base
);
21469 Set_Size_Info
(T
, Implicit_Base
);
21470 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
21471 Set_Scalar_Range
(T
, Def
);
21472 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
21473 Set_Is_Constrained
(T
);
21474 end Signed_Integer_Type_Declaration
;